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Abstract

Experimental studies of the flowering of Arabidopsis Thaliana have shown that a large

complex gene regulatory network (GRN) is responsible for its regulation. This process

has recently been modelled with deterministic differential equations by considering the

interactions between gene activators and inhibitors [Valentim et al., 2015, van Mourik

et al., 2010]. However, due to the complexity of the models, the properties of the net-

work and the roles of the individual genes cannot be deduced from the numerical so-

lution the published work offers. In this study, deterministic and stochastic dynamic

models of Arabidopsis flowering GRN are considered by following the deterministic

delayed model introduced in [Valentim et al., 2015]. A stable solution of this model

is sought by its linearisation, which contributes to further investigation of the role of

the individual genes to the flowering. By decoupling some concentrations, the system

has been reduced to emphasise the role played by the transcription factor Suppressor of

Overexpression of Constants1 (S OC1) and the important floral meristem identity genes,

Leafy (LFY) and Apetala1 (AP1). Two-dimensional motifs, based on the dynamics of

LFY and AP1, are obtained from the reduced network and parameter ranges ensuring

flowering are determined. Their stability analysis shows that LFY and AP1 are regulat-

ing each other for flowering, matching experimental findings (see e.g. [Blázquez et al.,

2001, Welch et al., 2004, Yeap et al., 2014]). Moreover, the role of noise is studied

by introducing and investigating two types of stochastic elements into the motifs. New

sufficient conditions of mean square stability and their domain are obtained analytically

for the stochastic models using Lyapunov stability theory. Numerical solutions are ob-

tained by using Euler-Maruyama method and Ito stochastic formula. We demonstrate

that the stochastic motifs of Arabidopsis flowering time can capture the essential be-

haviour of the full system and that stochastic effects can change the behaviour of the

stability region through a stability switch. Furthermore, the problem of designing an

observer and a controller, in which FT is seen as a control input, is considered in the

objective of ensuring flowering conditions are met. This study thus contributes to a

better understanding of the role of LFY and AP1 in Arabidopsis flowering.
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Chapter 1

Introduction

1.1 Introduction

Genomic and molecular information have been obtained with high throughput genomic

and proteomic technologies enabling operating mechanism of diseases, cells, genes,

and proteins to be observed. Mathematical and computational biology and the systems

biology framework have been developed to analyse genomic and molecular information

and understand complex biological systems.

Systems biology aims to study any living system to understand their behaviour at molec-

ular level, effected by the interactions of their internal components. Complex models of

regulatory networks that characterise life require quantitative approaches such as differ-

ential equations to identify recurrent patterns [Boogerd et al., 2007, Breitling, 2010].

Systems biology is a new expanding area in biological and medical research and one of

its purposes is to investigate biological processes and networks from a system perspec-

tive. According to Kitano [2002], systems biology is one of the biggest interdisciplinary

fields in science because it integrates a crucial relationship between biology, biochem-

istry, computer science, mathematics, physics and statistics. The origins of systems bi-

ology can be traced back, at least, to the 1960’s and 1970’s when Biochemical Systems

Theory [Savageau, 1969a,b] and Metabolic Control Theory [Heinrich and Rapoport,

1
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1974] were introduced, following the work of Higgins [1963]. The main aim was then

to formally represent biochemical systems and understand their behaviour around equi-

libria under the influence of external processes. A historical review can be found in

[Haubelt et al., 2002]. Nowadays, systems biology has found applications in many ar-

eas such as in the modelling of gene expressions, large scale networks and pathways as

well as cellular and protein process.

As mentioned before, the design of mathematical models to describe the dynamics of

complex systems and to represent the actual behaviour is the principal focus of systems

biology. The development of differential equation models has emerged as a promising

area in systems biology. Population dynamics [Bartoszewski et al., 2015, Kepler and

Perelson, 1995], chemical reaction networks [Belbas and Kim, 2003, Higham, 2008]

and gene regulatory networks (GRNs) analyses [Hecker et al., 2009] are some examples

of relevant application areas.

Systems biology provides an approach to study living organism and investigate pro-

teins and genes. The interactions of genes among the proteins, DNA, RNA and other

molecules constitute the main components of a gene regulatory network (GRN) [Hecker

et al., 2009]. GRNs have a crucial place in life processes such as metabolism and cell

differentiation of plant species. Behaviour of regulatory networks can be relatively pre-

dicted, thus accelerating the process of biotechnological studies and it also helps to re-

duce the time and cost of lab experiments. To predict the behaviour of networks, math-

ematical and computational methods have an important place [Karlebach and Shamir,

2008].

There are different methods for the modelling and simulation of GRNs, and dynamic

models that are based on (ordinary and delay) differential equations, are one of the

well-known methods utilised for them. These models are used for the simulation of real-

time network and the estimation of its response for different environmental conditions

[Schlitt and Brazma, 2007].

Stability analysis of dynamic models have a crucial place to understand their behaviour.

Most of the dynamic models are constructed by using deterministic differential equa-

tions, which are not considering the noise terms. On the other hand, stochastic models
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have recently received considerable attention. They are obtained by adding noise terms

into the deterministic models to observe more realistic behaviour of the networks. Their

stability analysis also allows us to characterise the interplay between noise and equilib-

rium [Burrage et al., 2000, Carletti, 2007, Klimešová, 2015, Lahrouz et al., 2011, Tang

et al., 2015].

Another well-known method used in the literature is control design approach which

is a separate process from dynamical modelling [Al Hokayem and Gallestey, 2017,

Cosentino and Bates, 2011, Gallestey et al., 2015, Iglesias and Ingalls, 2010, Kalman,

1959, Lantos and Márton, 2010]. This is used to regulate the concentrations of some

necessary variables in the regulatory networks. Observer design is an approach to obtain

a direct implementation of any control algorithm, which might also be dependent on

measured variables.

Over the last twenty years, many methods that depend on genome-wide data have been

established to resolve the complexity of gene regulation. Arabidopsis Thaliana flower-

ing time is an example of well-known complex GRN. Recently, the dynamics of Ara-

bidopsis flowering time regulation has been analysed mathematically using systems ap-

proach along with experimental data to understand the effect of the genes on flowering

of Arabidopsis Thaliana [Daly et al., 2009, Jaeger et al., 2013, Pullen et al., 2013,

Valentim et al., 2015, van Mourik et al., 2010, Wang et al., 2014].

In this study, we focus on a dynamical model of Arabidopsis flowering time GRN, pro-

posed by Valentim et al. [2015]. The main features of this model are that it constitutes

the first model making use of delay differential equations along with Hill functions

to represent interactions. While we focus on investigating this deterministic dynamic

model, we also present new small (simplified and motif) models constituted by decou-

pling some concentrations in original model and stochastic approaches of the motif

model. The validity of simplified model is observed with the control design approach.

Therefore, this study also aims to reformulate one of the deterministic simplified model

by using two different observers; constant and state-dependent high gain observers.
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1.2 Motivation for the modelling of the Arabidopsis

flowering time

Observing the main genes, which have effect on behaviour of flowering process, and

the time of this process have crucial place for the life cycle of Arabidopsis Thaliana.

The reactions of input and output concentrations and interactions between each other

can be monitored and regulated by defining their regulatory networks. Moreover, these

networks of Arabidopsis flowering can be modelled via deterministic and stochastic ap-

proaches like other biological networks by using ordinary and delay differential equa-

tion models [Shmulevich and Aitchison, 2009] to understand the impact of gene regu-

lations and their interactions between each other. However, there is a limited number of

studies of the dynamic modelling of Arabidopsis flowering GRN, and these are aimed at

constructing a model by using deterministic ordinary differential equations. This study

brings an overview of the most common modelling methods and summarises some ex-

isting challenges in GRN modelling. Moreover, it aims to review and extend the mod-

elling of Arabidopsis flowering time GRN, based on the model proposed by Valentim

et al. [2015], and reconstruct it from experimental data via computational methods. This

model has the feature of being the first and only deterministic delay differential equation

model in this network as mentioned before.

System behaviour of the GRNs usually cannot be understood heuristically due to the

complexity of interactions in organisms. Stability analysis is used to study the properties

of the GRN and thresholds in biological models [Chen and Aihara, 2002, Engelborghs

and Roose, 1999, Lahrouz et al., 2011]. It is needed to clarify the features of complex

systems and provides specific conditions to ensure appropriate regulation. Moreover,

such analysis of the system networks provides a reliability test and more insights into

the behaviours of GRN’s elements. In the literature, the stability properties of the Ara-

bidopsis flowering system behaviour has not been studied yet. This work, for the first

time, analyses the local stability behaviour of an Arabidopsis flowering network. It uses

linearisation of the dynamical model around its steady state and introduces simplified

versions with three and two differential equations. The motivation for this is to obtain
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necessary and sufficient stability range of the modified systems from both the analytical

and numerical perspectives.

Stochastic differential equation models have also been developed to analyse the be-

haviour of the biological systems in order to obtain more realistic solutions [Carletti,

2007, Chen and Chang, 2008, Klimešová, 2015, Qun et al., 2017, Saarinen et al., 2008].

However, no stochastic model of the Arabidopsis flowering has been introduced in

the literature yet. Hence, this study represents the first stochastic differential equation

model for the GRN of Arabidopsis flowering, which is constructed by incorporating a

noise term into the deterministic two differential equations, which is called motif of the

dynamical model. Furthermore, the stability behaviour of the stochastic motif models is

investigated analytically and numerically by using a Lyapunov function and Ito stochas-

tic formula with the Euler-Maruyama method, respectively, to observe the differences

between deterministic and stochastic behaviour of the regulatory network.

Finally, observer and control design methodologies can been applied on the determin-

istic simplified model to regulate behaviour of the model and estimate non-measured

variables from measured ones. Therefore, this study considers an observer design ap-

proach, which has been applied by using constant and state-dependent high gain ob-

servers. The first one can be simply obtained, being independent of the state variables.

However, the second one is more complicated, because it can be obtained from the state

variables and performs faster than a normal state observer. Therefore, state-dependent

high gain observers are the most commonly used approaches to construct an observer

system. The importance of these observers is to estimate the unmeasured variables by

using the measured ones, which are the inputs and outputs of the simplified system.

Furthermore, the simplified systems can be regulated by a controller (their input) to

estimate the variables and to obtain a desired behaviour. To do this, it is necessary to

consider the reference value of the measured variable (output) while the non-measured

ones are bounded.
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1.3 Aims and objectives

The main aim of this study is to investigate the dynamic behaviour of Arabidopsis flow-

ering time gene regulatory network in a more realistic perspective.

The main objectives of this study are:

• Deterministic and stochastic approaches of ordinary and delay differential equa-

tion systems that have been inferred from chemical kinetics models (Hill func-

tions) will be used.

• The latest dynamic and quantitative model of Arabidopsis flowering time GRN,

proposed by Valentim et al. [2015], will be introduced, and a literature review of

the existing studies on that topic with different types of models will be given.

• Steady state and stability analysis of the original dynamic model will be numeri-

cally and analytically investigated.

• A simplified model will be analytically constituted by decoupling some concen-

trations in the original model, and the results will be numerically compared with

the original model.

• Motif models of the simplified system will be constructed by considering the

behaviour of the original model. They will be analytically calculated to find the

range of the parameters for stability of Arabidopsis flowering motifs. Threshold

values of concentrations for flowering process in meristem and input parameter

values in motifs, which gives the best matching with the original model, will been

obtained, and the results will then be discussed numerically.

• Stochastic motifs will be provided with additive and multiplicative white noise.

• Analytical investigation for the local stability of the deterministic and stochastic

motifs will be performed to provide explicit conditions for the flowering regula-

tion.
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• Observer design of the simplified model will be studied to estimate unmeasured

variables in the system by investigating the available experimental measurements

of the inputs and outputs of this model.

• A control feedback design will be investigated for the simplified model to modify

it by controlling the input variable and to obtain a desired behaviour of the model

by targeting a reference output variable.

1.4 Contributions of the thesis

The contributions of this thesis can be listed as follows:

• This thesis contributes the first stability analysis of a dynamical model, con-

structed for the flowering of Arabidopsis Thaliana GRN, in order to represent the

importance of steady state and stability of the model for the flowering behaviour.

• This thesis introduces a simplified version of the original dynamical model and its

motifs with three and two differential equations, respectively, which is confirmed

from numerical solutions that they represent the same behaviour of the original

model.

• This thesis analytically investigates the possible range of parameters in motif

models for stability of Arabidopsis flowering. Moreover, it analytically and nu-

merically obtains threshold values of concentrations for initiation of flowering

process in meristem and necessary input parameter values in motifs for the best

matching with the original model.

• This study introduces the first stochastic model for the Arabidopsis flowering,

which is formed by using Ito stochastic formula and adding noise terms into the

deterministic motif. Analytical and numerical solutions of the stochastic motif

have been investigated in probability. The aim is to reveal the effect of noise

terms on switching behaviour from non-flowering to flowering.
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• This thesis presents observer design approaches to obtain unmeasured variables

by using measured ones in the simplified deterministic model. Furthermore, this

study produces a way to obtain a desired behaviour by using control design.

Elements of the research introduced in this thesis have also been submitted for publica-

tion and presented in conferences as follows:

Journal Papers

• Haspolat, E., Huard, B., Angelova, M. Deterministic and stochastic models of

Arabidopsis Thaliana flowering. Bulletin of Mathematical Biology - Springer

(Submitted).

• Haspolat, E., Huard, B., Krishna, B. Observer design approach for Arabidopsis

Thaliana flowering model. (in Preparation).

Presentations

• Haspolat, E., Huard, B., Angelova, M. (2016, June 20th) Stability Analysis for a

Dynamic Model of Arabidopsis Flowering Gene Regulatory Network.

EE PGR Conference 2016, Northumbria University, UK.

• Haspolat, E., Huard, B., Angelova, M. (2016, July 14th) Stability Analysis of

Network Motifs for Arabidopsis Flowering Gene Regulatory Network.

ECMTB/SMB 2016, Nottingham, UK.

• Haspolat, E., Huard, B., Angelova, M. (2017, May 24th) Deterministic and Stochas-

tic Stability of Arabidopsis Flowering Model. 2017 SIAM Conference on Dy-

namical Systems, Utah, USA.

• Haspolat, E., Huard, B., Angelova, M. (2017, June 15th) Deterministic and Stochas-

tic Stability Analyses and Observation Design of Arabidopsis Flowering Model.

EE PGR Conference 2017, Northumbria University, UK.
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Poster

• Haspolat, E. (2014) Gene expression modelling by using ordinary differential

equations. PhD Summer School: Methods for Mathematical and Empirical Anal-

ysis of Microbial Communities, Isaac Newton Institute for Mathematical Sci-

ences, Cambridge, UK. Date viewed: 29th October.

1.5 Outline of the thesis

The thesis is structured into seven chapters. Following the introductory chapter, a math-

ematical background of GRNs and their dynamical modelling with both deterministic

and stochastic differential equations are given in Chapter 2. Moreover, the stability

analysis of these dynamic models and their estimation approaches are introduced, and

observer and control design methodologies are reviewed alongside the motivation of the

thesis.

Chapter 3 gives an overview of the literature for an Arabidopsis Thaliana flowering time

GRN and one example network with its deterministic dynamic model constructed with

delay differential equations by Valentim et al. [2015]. This chapter also presents steady

state and stability solutions of the dynamic model by considering the linearisation of the

model around the equilibrium point and produces numerical simulation of the steady

state results.

In Chapter 4, simplification approaches for the full deterministic dynamic model, given

in Chapter 3, is studied by considering the main concentrations for flowering process.

Deterministic motif models are introduced and their analytical and numerical solutions

are given.

Stochastic versions of the motif model, constructed with additive and multiplicative

white noise, are introduced in Chapter 5, and stochastic stabilities of the models are

analytically and numerically studied to analyse the effect of noise terms on stability

domain of the motif models.
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In Chapter 6, two different closed-loop observers for the simplified model are designed

to estimate non-measured variables and their results are compared. This chapter also

gives a control design approach for the simplified model and its observer to regulate

behaviour of the systems by a controller (input variable) depend on state and output

variables.

Finally, all works and their results, studied in this thesis, are summarised in Chapter 7.

Moreover, some possible perspectives for future works are provided.



Chapter 2

Background for mathematical

modelling of gene regulatory

networks

This chapter gives a brief introduction for gene regulatory networks modelling. The

study of non-linear dynamical systems for the gene regulatory networks are currently an

extensive field of research in biology. The aim of this thesis is to focus the application of

mathematical aspects of non-linear systems and control theory to Arabidopsis flowering

time gene regulatory networks, which have specific importance to the biological system

considered.

2.1 Background of gene regulatory networks

Gene regulatory network is defined by Emmert-Streib et al. [2014] as follows:

Definition 2.1. A gene regulatory network (GRN) is a network which has been inferred

from gene expression data.

11
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More extensively, a gene network consists of a set of genes and transcription elements

that interact with each other to control a significant cell function. Expression of gene

levels is regulated by two sequential processes, namely transcription and translation.

The main components are therefore genes, cis-components (areas of non-coding DNA)

and transcription elements (e.g., proteins, RNAs and metabolites). The gene expres-

sion level during the transcription process is regulated by binding and interactions of

these transcription elements to the cis-components in the cis-area of genes. The input

signals, interceded by the transcription elements, are collected with the help of the cis-

areas. Subsequently, these cis-areas produce particular expression signal for the target

gene [Filkov, 2005]. An example of a gene regulation process with its components and

interactions of them with each other is shown in following Figure 2.1.

Figure 2.1: An example figure of gene regulatory network [Koyuturk, 2007].

There is a variety of gene network modelling levels relying on the degree of concept and

accessibility of observational data. They also rely on the analysis aim and objective that

might be an assumption testing or complex quantitative network modelling [Emmert-

Streib et al., 2014, Filkov, 2005].

Numerous different computational models have been developed for regulatory network

analysis. Logical models, which are qualitative approaches to identify the regulatory
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networks, are an example of these computational models. An essential comprehension

of the various functionalities of a specified network in several states can be achieved

with them. Some examples of these models are Boolean networks [Akutsu et al., 1999,

Wang et al., 2012] and Bayesian networks [Friedman et al., 2000, Kim et al., 2003].

• Boolean Networks: Boolean network models, being one of the widely studied

models and the simplest assumption in GRNs, depend on the propositional logic

that has an expression level either ON (expressed, active) or OFF (not expressed,

inactive) for genes and cells [Chaves et al., 2006, Jönsson, 2005]. They are dis-

crete dynamical networks, and they have been first introduced by Kauffman in

1969 [Hecker et al., 2009, Kaderali and Radde, 2008]. A Boolean network is a

directed graph. It can be described as G = (X, F), where X = (x1, x2, ..., xn) is

a set of nodes (a vector of Boolean variables), and F = ( f1, f2, ..., fn) is a set of

Boolean functions. The xi, i = {1, ..., n}, symbolise the genes in gene expression

networks and the fi, fi : {0, 1}k −→ {0, 1}, k ≤ n, represents the links between

them. The values of all nodes identify the state of network at given time t as

x(t) = (x1(t), x2(t), ..., xn(t)). The corresponding Boolean interactions are being

performed to move on to the next step for the state of each gene. The nodes X are

updated simultaneously, with the help of Boolean function F and, these updated

nodes are deterministic at discrete time-steps, x(t + 1) = fi(xi1(t), xi2(t), ..., xik(t)).

The description of Boolean networks is uncomplicated and, they are suitable to use

for simulation of GRNs [Hecker et al., 2009]. Moreover, a large number of compu-

tational methods can be applied to build a Boolean network and this network can be

deduced from time course data if there is existing experimental data [Lee and Tzou,

2009]. According to Thieffry and Thomas [1997], a logical Boolean model can be

utilised to provide an early examination of a differential model that will help to clarify

and create a more advanced version. However, due to Boolean networks being discrete,

the dynamics of network cannot be obtained precisely [De Jong, 2002]. Even if they

are interesting and efficient in the modelling of regulatory networks because of their

simplicity, easy application and fast implementation [Kaderali and Radde, 2008], these

models have some problems. They do not include any kinetic constants or continuous
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variables [Kim et al., 2007], therefore, noisy data may cause computational instabil-

ity. Due to the low resolution compared to other models, Boolean models cannot help

to solve highly complex problems and have been shown to be incapable of capturing

important details of system behaviour.

• Bayesian Networks: Bayesian networks belong to the class of graphical prob-

abilistic models, which integrate probability and graph theory. These networks

have been first seen in artificial network studies at the end of 1970s [Nielsen

et al., 2012, Nielsen, 2003]. They have also started to be used in the study of

gene expression data since the end of the 1990s [Friedman et al., 2000]. The aim

of Bayesian networks is to construct the GRNs by using gene expression data

to ideally describe the measured data. These networks help to realise the tran-

scriptional regulation process by revealing the dependence system among gene

expression levels. A Bayesian network is composed of a directed acyclic graph

G(X, E), where the nodes X1, ..., Xn are random variables, symbolise the genes’

expression levels and edges point out the interaction between the nodes. Condi-

tional probability distributions P(xi|Pa(xi)), where i = 1, . . . , n and Pa(xi) is the

group of parents for each node, help to achieve the random variables. A scoring

function is commonly created to benchmark every network, and a heuristic in-

vestigation into the solution space selects the best network. One vital feature for

this causal network method is the observation for components that are frequently

found in high-scoring networks, rather than looking for one single model that

clarifies the data [Gebert et al., 2007].

An advantage of Bayesian networks is that they are able to include the prior knowledge

and provide tools for approaching missing data. On the other hand, a dynamical form

of gene regulation cannot be derived from Bayesian network models. Some applica-

tions of this model may have restricted capacity to manage the continuous data. Such

information for the most part should be separated into discrete states. The states need

to involve interim values that characterise the aggregate scope of values the continuous

variable can expect. Even though discretising is an advantageous approach to control
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the system size, discrete states may not catch the first dispersion of the variable totally

and can prompt lower exactness of variable values [Kragt, 2009].

Continuous models are another example. They were developed to understand and con-

trol the behaviour of molecular concentrations in GRNs that depend on time [Cao et al.,

2012, Chen et al., 1999, De Hoon et al., 2002, de Hoon et al., 2002, De Jong, 2002].

Some other modelling methods that are used to predict GRNs are: state-space model

[Wu et al., 2004], artificial neural networks [Lee and Yang, 2008], dynamics bayesian

networks [Li et al., 2007] and stochastic models [Chen et al., 2005, Shmulevich and

Aitchison, 2009].

The flowering time regulation pathway of Arabidopsis Thaliana has been widely ex-

amined in the literature and shown to involve a large complex network. A qualitative

approach helps to identify which genes direct one another in flowering time regulation.

In addition to this method, a quantitative approach provides an understanding of the

numerical amounts of gene products involved in the interactions. Therefore, a quantita-

tive and dynamic modelling of Arabidopsis Thaliana flowering time GRN, based on a

system of differential equations with numerous parameters, is required. In recent years,

a few studies have been introduced with that aim [Jaeger et al., 2013, Valentim et al.,

2015, Wang et al., 2014].

In this work, we consider quantitative models, in the form of deterministic and stochas-

tic differential equations, and study their behaviour using stability analysis and control

design methods.

2.2 Quantitative modelling of gene regulatory networks

Quantitative mathematical models have an essential place in GRNs to characterise the

functions in complex network systems. The dynamics of GRNs can be quantitatively

modelled by differential equations to capture the behaviour of gene expression. Ordi-

nary and delay differential equations (ODEs, DDEs) in deterministic or stochastic form,

are frequently used modelling approaches in GRN. The equations can be either linear
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or non-linear. Linear equations are generally easier to treat, but the non-linear forms

very often provide a better description of the GRN and allow to study more complex

phenomena.

The formalisation of gene expression dynamics into a general deterministic differential

equations system can be written as

dxi

dt
= fi(x1(t), x2(t), ..., xm(t)), (i = 1, 2, ..., n), n ∈ N, (2.1)

where xi = (x1, x2, ..., xn) is the vector components of the system representing concen-

tration variables, more precisely, xi defines the expression level of gene i at time t as a

continuous function. The functions fi = ( f1, f2, ..., fn) measure the mutual impact of its

arguments or regulators on the xi. Moreover, each fi function comprises the biochemical

effects of interactions and degradations. The input argument set (x1, x2, ..., xm), m ≥ n,

in the fi function, which generates an output rate of each gene, represents a subset of

xi functions [Filkov, 2005]. The definition of f and the value of parameters fitted us-

ing parameters evaluated signals x at time t is the meaning of GRNs inference [Hecker

et al., 2009, Ristevski, 2013].

To build an identification model of GRNs, differential equations rely on where the con-

centration of genes, proteins, mRNA and different molecules are frequently utilised as

essential variables. These variables consist of non-negative real numbers, and they are

expected to change persistently in time. In the following subsections, deterministic or-

dinary and delay differential equations and their general stochastic counterparts will be

introduced.

2.2.1 Deterministic differential equations

2.2.1.1 Ordinary differential equations

Ordinary Differential Equations (ODEs) are a good model to identify GRNs as they

describe changes of the concentration of any metabolites over time and are widely used

in the modelling of biological systems [Masoudi-Nejad et al., 2015]. They describe a
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deterministic or stochastic quantitative variation of a system in an interval of time with

details [Kaderali and Radde, 2008]. One of the main differences of differential equation

models in GRNs from other models is that they use continuous variables instead of

discrete variables and thus, they are appropriate modelling methods in dynamic systems

of GRNs.

Many examples of applications of ODEs for the study of complex GRNs can be seen.

For instance, Sakamoto and Iba [2001] utilised the observed gene expression time-series

data to show the definition of an arbitrary GRN by using an evolutionary method (EM).

This network model was based on an ODE system. A similar approach was employed

by Iba [2008]. Unlike the previous study, Iba extended the method to the derivation of

systems of differential equation with transcendental functions. Similarly, Ando et al.

[2002] used a hybrid evolutionary modelling method to form of a system of differen-

tial equations from observed time-series data. They also used a hybrid EM method

of genetic programming (GP) and least mean squares (LMS) methods to describe a

brief regulation form among variables. The target networks in this study are selected

from the chemical reaction model, metabolic network (E-cell simulation model) and

S-system gene network models. In [de Hoon et al., 2002] and [De Hoon et al., 2002],

authors applied a linear system of differential equations to identify a method for infer-

ring sparseness’ degree of the GRNs from time-series gene expression data. They used

Akaike’s Information Criterion to predict the number of non-zero coefficients of their

system from the data.

Discrete-time gene expression models have a limited place for the application of gen-

eral biological data sets. Therefore, a continuous-time ODEs model was developed

to identify the process description of gene expression models [Zak et al., 2003]. This

ODEs model was used in three simulated systems application. These are linear gene

expression models, auto-regulatory gene expression model and microarray data from

a non-linear transcriptional network, respectively. The methodology was commonly

appropriate for recognizing gene expression progress models, fit for precisely distin-

guishing parameters for little quantities of data samples in the existence of simple test

noise [Zak et al., 2003]. Tabus et al. [2004] also used gene expression time-series data

to constituting GRNs. Their aim was to determine gene-gene collaborations and to infer
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the gene regulatory network system by testing gene expression data. They introduced

an algorithm to derive the GRN systems by working with the exact solutions of the

differential equations while the current derivation of the network structure of genetic

algorithms depended on the change of differential equation systems into an approxi-

mate discretized framework. Gebert et al. [2007] investigated many data around a state

of cell that are produced by microarray chips to portray the regulation systems inside

a cell. They introduced a model depending on time-series that is composed of linear

differential equations for illustration of the interaction between genes and the build-

ing of the elemental regulatory network. Their model was catching the most pertinent

regulating cooperation and presented a methodology based on the discrete least squares

approximation to compute model parameters from time-series data [Gebert et al., 2007].

In addition of these examples, ODE models have been seen in GRNs to constitute from

linear types of simple models to non-linear systems of complex models such as linear,

piecewise linear, pseudo-linear or continuous non-linear [De Jong, 2002, Kaderali and

Radde, 2008].

In the equation (2.1), the function f can be either linear or non-linear. These linear and

non-linear differential equations have an important place in the approaches of GRNs

inference. One of the first example for the modelling of GRNs through the linear ODEs

can be seen in [Chen et al., 1999] which presents a simple linear function formalisation

as

f (x(t)) = Kx(t),

where K is a constant n × n matrix, f is a linear function of x and t is time. The

advantage of linear ODEs models is that they have analytical solutions. However, the

concentrations in the linear models are not always being non-negative and bounded

in GRNs. Additionally, they cannot capture the non-linear phenomena (oscillations and

multistationary) that are the most important points of an appropriate biological network.

Therefore, linear models are generally not the best solutions for the regulatory networks

[Kaderali and Radde, 2008].
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The non-linear ordinary differential equation models describe the non-negative concen-

trations of gene products such as protein, mRNA and other molecules by continuous,

time dependent variables. The values of variables are also non-negative. Equation sys-

tem (2.1) can be a formal description of the non-linear ODEs for the GRNs, where fi is

the non-linear function which performs as an interaction of the regulatory system.

Non-linear ODEs are more accurate models for the dynamic systems of GRNs, though

they are not as easy to solve as linear equations. Therefore, many recent papers are

established based on non-linear differential equations [Floares and Birlutiu, 2012, Wu

et al., 2014, Zhang et al., 2013].

2.2.1.2 Delay differential equations

Delay differential equations (DDEs) have been utilised in many biological applications

in the numerical formulation of real life phenomena such as modelling of genetic reg-

ulation [Ling et al., 2012] and population dynamics [Bocharov and Rihan, 2000]. In

contrast to ODEs, the evolution of system at a determined time instant depends of the

condition of the system at prior times in DDEs. This requires to transform equations

(2.1) into a delay differential system by incorporating delays occurring in the transla-

tion, transcription and other synthesis processes or in the protein transports. Recasting

system (2.1) into DDEs helps explain the effect of delays caused by the aforementioned

mechanisms [De Jong and Geiselmann, 2005]. An example of non-linear DDE system

with related history functions H(t) in a given time interval is formalized as:

dxi

dt
= fi(t, x(t), x(t − τ1), x(t − τ2), ..., x(t − τm)), t ≥ tin, (2.2)

x(t) = H(t), m ≤ t ≤ tin,

where x(t) ∈ Rn, x(t − τi) are the delayed terms, m = min1≤i≤m{mint≥tin(t − τi)}, and the

delays {τi}
m
i=1 are unknown, non-negative and constant [Mehrkanoon et al., 2014].

In this study, the first and only system of delay differential equations for the Arabidopsis

flowering GRN in the literature, introduced by Valentim et al. [2015], will be studied,

and will be used to constitute new reduced models.
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2.2.2 Stochastic approach for differential equations

Deterministic approaches only consider the dynamics of internal changes in systems.

However, there are also non-modelled external effects in real life systems which cannot

be included in deterministic models. Therefore, stochastic approaches are becoming

more important to understand and analyse the behaviour of real life systems in a more

realistic perspective.

A stochastic differential equation (SDE) consists in a deterministic differential equation

into which noise terms are incorporated. SDEs are used to model systems coming from

many fields such as finance, physics, control and biology where random phenomena

can be important. The main aim of SDE models is to observe changes of behaviour that

can occur in the presence of random noise, also called Wiener processes or Brownian

motion, to obtain more realistic solutions.

Before we define a Wiener process, which is the most important stochastic process in

continuous systems, it is necessary to introduce the following definitions [Socha, 2007].

Definition 2.2 (Stochastic Processes:). Let I ⊂ R. A family W = {W(t)}t∈I of R-valued

random variables W(t), t ∈ I, defined on Ω is called a stochastic process. The process

W is said to be a stochastic process in discrete time if I is discrete (e.g. I = {1, 2, · · · })

and in continuous time if I is an interval (e.g. I = [0,∞]).

Throughout this section, unless otherwise specified, W = {W(t)}t≥0 is a stochastic pro-

cess.

Definition 2.3. A stochastic process {W(t)}t≥0 is said to have independent increments if

for any 0 ≤ t0 < t1 < ... < tn < ∞, random variables W(t0), W(t1) − W(t0), W(t2) −

W(t1),...,W(tn) −W(tn−1) are independent.

Definition 2.4. A stochastic process {W(t)}t≥0 with independent increments is said to

have stationary independent increments if its increments W(t1)−W(t0), W(t2)−W(t1),...,W(tn)−

W(tn−1) depend only on differences t1 − t0, t2 − t1,...,tn − tn−1 respectively.
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The stochastic process with stationary independent increments have very important

place in stochastic analysis, and they are called as Wiener process (or Brownian mo-

tion), defined as follow.

Definition 2.5 (Wiener process). A stochastic process {W(t)}t≥0 is called a Wiener pro-

cess (or Brownian motion), if the following conditions satisfy:

1. W(0) = 0, (with probability 1).

2. {W(t)}t≥0 has independent increments such as the increment W(t) −W(s) is inde-

pendent with the increment W(u) −W(v) for 0 ≤ v < u < s < t ≤ T .

3. The increment W(t) −W(s) is normally distributed with mean zero Nm(0, 1) and

variance ∆t = t − s as W(s + ∆t) −W(s) ∼ Nm(0,∆t) for 0 ≤ s < t ≤ T .

In other words, the increments follow a Gaussian distribution,

E[W(t) −W(s)] = 0, (2.3)

E
[
(W(t) −W(s))2] = σ2|t − s|, (2.4)

where σ2 is positive constant.

Most of the realisations of {W(t)}t≥0 are continuous. In the case when σ2 = 1, {W(t)}t≥0

is called a standard Wiener motion.

Definition 2.6. A stochastic process W(t) = (W1(t),W2(t), ...,Wd(t)), t ≥ 0 is called a

d-dimensional Wiener process if for each i = 1, 2, ..., d, the process Wi(t), t ≥ 0, is a

Wiener process and all processes Wi(t) are mutually independent.

Definition 2.7. A generalised derivative of a Wiener process W(t) for t ≥ 0, which can

be demonstrated as
dW(t)

dt
= η(t), is called a Gaussian white noise, and it is particularly

used in the form dW(t) = η(t)dt.

Using these definitions, an SDE model for random variable X in terms of Wiener process

can be introduced with continuous functions F and G as

dX(t) = F(t, X(t))dt + G(t, X(t))dW(t). (2.5)
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or equivalently as a stochastic integral equation as follows

X(t) = X(0) +

∫ t

0
F(s, X(s))ds +

∫ t

0
G(s, X(s))dW(s). (2.6)

An important result regarding equation (2.5) is Ito’s formula. Now, we can introduce

Ito stochastic differential equations.

2.2.2.1 Itô stochastic differential equations

A system of Itô stochastic differential equations on the interval [0, T] has the form

X(t) = X(0) +

∫ t

0
F(s, X(s))ds +

m∑
j=1

∫ t

0
G j(s, X(s))dW j(s), s ≥ 0, (2.7)

where W(t) = [W1(t),W2(t), ...,Wm(t)]T is an m-dimensional vector of independent stan-

dard Wiener processes on the probability space, F : [0,T ] × Rn → Rn and G : [0,T ] ×

Rn → Rn×m are measurable functions. The process X(t) = [X1(t), X2(t), ..., Xm(t)]T is the

solution of the stochastic differential equation

dXi(t) = Fi(t, X(t))dt + Gi(t, X(t))dWi(t),

for 0 ≤ t ≤ T and i = 1, 2, ..., n.

2.3 Hill functions

Hill functions represent a more extensive form of Michaelis-Menten function and pro-

vide a good approach to represent non-linear biochemical reactions. As such, they are

commonly used in enzyme kinetics modeling [Chen et al., 2017, Cosentino and Bates,

2011, Murray, 2002].

A reaction rate equation for the enzyme kinetics can be represented as

E + nS
k1
−⇀↽−
k2

ES n
k3
−→ P + E. (2.8)
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where ki, {i = 1, 2, 3}, are constant reaction rates, and n presents inhibition (n < 1) and

activation (n ≥ 1) of the process. Equation (2.8) represents that an enzyme E reacts

with n substrates nS to form a complex ES n which is transformed into the enzyme and

product form P.

Let us define Km =
k2 + k3

k1
as an equilibrium constant and Vmax = k2E as a maximum

reaction velocity. By using for n substrate molecules with n equilibrium constants, the

production rate can be formulated as a Hill equation

dP
dt

=
VmaxS n

Kn
m + S n . (2.9)

Non-linear Hill-type functions are extensively used in higher-level models of gene reg-

ulatory networks. An example of a simple activation–inhibition network with two genes

is shown in Figure 2.2. Gene1 and Gene2 that are transported by the DNA, P1 and P2

represent the proteins for the inhibitor and activator of Gene2 and Gene1, respectively.

Figure 2.2: An example of simplified network model with two genes and their proteins
P1 and P2 is described.

A simple non-linear ODE model of the dynamics of transcription and translation net-

work can be represented by two differential equations

dx1

dt
= β1h(x2, k2,m2) − d1x1, (2.10)

dx2

dt
= β2h(x1, k1,m1) − d2x2, (2.11)
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where

h−(xi, ki,mi) =
kmi

i

kmi
i + xmi

i

,

h+(xi, ki,mi) =
xmi

i

kmi
i + xmi

i

.

In these equations, h−(xi, ki,mi) represents the Hill function for the inhibition case and

h+(xi, ki,mi) represents the Hill function for the activation case (see Fig. 2.3). All

parameters in these equations are positive and defined as below:

• x1 and x2 represent the concentration of translated proteins,

• k1 and k2 are the expression thresholds,

• m1 and m2 are the Hill coefficients representing the cooperativity degree of the

interactions,

• β1 and β2 are the parameters for the maximum rate of protein synthesis and,

• d1 and d2 are the parameters of constant degradation rates.

The first terms in the right-hand side of equations (2.10) and (2.11), β1h(x2, k2,m2) and

β2h(x1, k1,m1), account for inhibition and activation effects, respectively. The degrada-

tion of proteins is generally not regulated, which means they depend only on their own

concentrations. Therefore, the degradation terms of the equations in (2.10) and (2.11)

are taken as d1x1 and d2x2, respectively.

In the following chapters, non-linear Hill functions, which are commonly utilised as

an activity switch for modelling of step-regulated reactions [Chen et al., 2017], are

considered in the form :

f (x) =
βxn

kn + xn , (2.12)

where β and k are the Hill coefficients with the same meaning as in equations (2.10)

and (2.11). The coefficient k determines the turning point of the functions, which can

be seen in Figures 2.3 and 2.4 for k = 1 and k = 2, respectively. Therefore, it is also
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Figure 2.3: Hill function representation for inhibition and activation for k = 1.

called half maximal output. The value of β determines the maximum output of the Hill

function which is set as β = 1 in Figure 2.3 and β = 10 in Figure 2.4.

Figure 2.4: A plot of Hill function f for k = 2 and β = 10 within range 0 ≤ x ≤ 5.

2.4 Stability analysis of dynamic models

Stability analysis of non-linear differential equations systems with numerical simula-

tions is an important approach to understand their behaviour. Stability analysis is gener-

ally difficult for large systems of non-linear differential equations. Linearisation around

steady states is a general approach to investigate local stability of a non-linear system
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by studying a linear system. In this section, stability of a sample dynamic model for a

small network will be discussed. Hence, equilibrium points and nullclines, which are

important concepts for the stability analysis of a differential equations system, will be

introduced.

A system of differential equations with two independent variables x1 and x2 can be

defined as

ẋ1(t) = f (x1(t), x2(t), k)

ẋ2(t) = g(x1(t), x2(t), k) (2.13)

where k represents external input constants and ẋi the time derivative of xi, {i = 1, 2}.

The functions f and g are non-linear and continuous.

The phase plane in (x1, x2) coordinates can supply a deeper understanding and global

way of looking at the system. It can be constructed for every k by considering each value

of time and point of the coordinates and associating a unique vector ( f (x1, x2, k), g(x1, x2, k)).

Nullclines are zero solutions of the equation ( f , g) = 0 while x1-nullcline and x2-

nullcline are defined as the zero solutions of f (x1, x2, k) and g(x1, x2, k), respectively.

The steady states of the system can be obtained from the intersections of these null-

clines.

To analyse the local stability of a system of differential equations, at least one steady

state point must be present. This fixed point represents a stationary solution for the

system dynamics.

Definition 2.8. A point x̄ is called a steady state or equilibrium point of ẋ = f (x) if

x(tn) = x̄ for some tn implies x(tm) = x̄ for tm ≥ tn. For an autonomous system the set of

equilibrium points is equal to the set of real solutions of the equation f (x) = 0.

From definition 2.8, steady state x̄i points are determined by considering the derivative

of the variables are equal to zero which means f (x̄1, x̄2, k) = g(x̄1, x̄2, k) = 0. These

equilibrium points in non-linear dynamical systems are important to specify the poten-

tial starting conditions in phase space that will reach biological significance. At that

point one can consider the dynamical system properties close to the equilibria.
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Definition 2.9. (Local Stability): Assume that there exists a region nearby an equilib-

rium point, and a positive constant, ε, corresponding to the distance between boundary

of the region and the equilibrium point. If any initial conditions in this region will con-

tinue to stay between the equilibrium and boundary of the region as time increases, in

other words, the trajectory of system is guaranteed not to move away by more than the

distance between boundary of the region and the equilibrium point, then this equilib-

rium point is said to be locally stable. More formally, an equilibrium point x̄ is locally

stable if for all ε > 0, there exists a δ > 0 such that

‖x(0) − x̄‖ < δ⇒ ‖x(t) − x̄‖ < ε for all t > 0.

Definition 2.10. (Asymptotically Stability): [Cosentino and Bates, 2011] A stable

equilibrium point x̄ is said to be asymptotically stable if it is stable and the trajectory

tends asymptotically to that point,

‖x(0) − x̄‖ < δ⇒ lim
t→∞
‖x(t) − x̄‖ = 0.

Locally stable Asymptotically stable

Figure 2.5: Local and asymptotic stability of an equilibrium point.

Definition 2.11. (Exponentially Stability): A stable equilibrium point x̄ is said to be

exponentially stable if there exist two strictly positive numbers λ and α such that
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‖x(t) − x̄‖ ≤ λ ‖x(0) − x̄‖ e−αt.

If a system has only one stable equilibrium point, and there is no limitation of the initial

conditions being in a region, ε, which means for any initial conditions whether they

are in or out of the region, ε, will move into and stay in that region as time increase,

then the equilibrium point is said to be globally stable. Formally, an equilibrium point

is globally stable if it is the only fixed point of the system and the trajectories of the

solution will move within a region, ε, around that fixed point for any initial condition,

x(0), as time increases,

x(0) ∈ R =⇒ ‖x(t) − x̄‖ < ε, for t > 0.

The local stability of the linearised systems at the fixed points can be analysed by eval-

uating the matrix of partial derivatives of the system, called Jacobian matrix, given in

the following form for the 2 × 2 system (2.13)

J(x̄1,x̄2) =


∂ f
∂x1

∂ f
∂x2

∂g
∂x1

∂g
∂x2


|x=x̄

. (2.14)

The corresponding linearised system is obtained as:

Ẋ = J(x̄1,x̄2)X, X = [x1, x2]T . (2.15)

The eigenvalues λi, {i = 1, 2}, which are obtained as the solution of the equation

det(J − λI) = 0 (2.16)

give information about the behaviour of the system around the equilibrium.

A steady state point in a linearised system is stable if all eigenvalues have negative real

parts and it is unstable if there is at least one has positive real part. It is unstable if both

eigenvalues have positive real part and a saddle point occurs when they have different
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sign. The different behaviours of system trajectories around a steady state point are

represented in Figure 2.6.

Stable node Unstable node Saddle node

Figure 2.6: Phase trajectories around a steady state point.

Stability conditions can generally be formulated by using Routh–Hurwitz stability cri-

terion. Equation (2.16) for an n-dimensional system gives the following n-degree char-

acteristic polynomial,

λn + a1λ
n−1 + · · · + an−1 + an = 0. (2.17)

The Routh-Hurwitz stability criterion provides necessary and sufficient conditions en-

suring all roots are either negative or have negative real part. These conditions are

obtained by requiring that the following Hurwitz matrices have positive determinant.

H1 =

(
a1

)
, H2 =

 a1 1

a3 a2

, H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

, · · · and,

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an


, where a j = 0 if j > n.

The details of the Routh-Hurwitz stability criterion can be found, for instance, in Gant-

macher et al. [1960] and Saeed [2008].
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Non-linear systems can be understood by describing the linearised system behaviour

in regions close to the equilibrium points. However, linearisation can only provide the

local behaviour of the non-linear system in the neighbourhood of the steady state point.

Analytical description of the stability region is generally difficult task but numerical

solutions can be obtained, and approximation to the stability region is possible by using

level curves of suitable Lyapunov functions [Al Hokayem and Gallestey, 2017].

2.4.1 Lyapunov and LaSalle stability theories

In this part, we introduce the direct approach to stability, developed by the Russian

mathematician Aleksandr Mikhailovich Lyapunov in 1892 [Lyapunov, 1992]. We also

present developed versions called LaSalle’s or Barbashin-Krasovskii method for invari-

ant and positively invariant sets of non-autonomous systems.

2.4.1.1 Lyapunov’s direct method

Lyapunov’s second stability theorem, which is known as Lyapunov’s direct method, can

be stated locally and globally as follows (see e.g. [Cosentino and Bates, 2011, Gallestey

et al., 2015, Iglesias and Ingalls, 2010, Lantos and Márton, 2010]).

Theorem 2.12. Let x̄ ≡ 0 be an equilibrium point for a continuously differentiable

system ẋ = f (x) where x ∈ D ⊂ Rn, and D is defined as a neighborhood of x̄. Suppose

that there exists a candidate (positive definite) Lyapunov function V(x) : D → R which

is continuously differentiable such that

• V(0) = 0, and

• V(x) > 0, ∀x ∈ D\{0}, and

• V̇(x) =
∑n

j=1
∂V
∂x j

ẋ j =
∑n

j=1
∂V
∂x j

f j(x) ≤ 0, (negative semidefinite),

then, the equilibrium point x̄ = 0 is locally stable. If V̇(x) is strictly less than zero,

• V̇(x) < 0, (negative definite),

then, the equilibrium point x̄ = 0 is locally asymptotically stable.
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Theorem 2.12 shows that a fixed point x̄ is locally stable for all x in the region D if

and only if the derivative of positive definite Lyapunov function, V̇(x), is less than or

equal to zero. It is locally asymptotically stable if and only if V̇(x) is strictly less than

zero. If the conditions above are satisfied for all x ∈ R, which means x is not bounded

in the defined regionD, then x̄ is said to be globally asymptotically stable as defined in

following theorem.

Theorem 2.13. Let x̄ ≡ 0 be an equilibrium point for ẋ = f (x). Suppose that there exists

a candidate (positive definite) Lyapunov function V(x) : Rn → R which is continuously

differentiable such that

• V(0) = 0, and

• V(x) > 0, ∀x , 0, and

• V(x)→ ∞ as ||x|| → ∞, (radially unbounded)

• V̇(x) =
∑n

j=1
∂V
∂x j

ẋ j =
∑n

j=1
∂V
∂x j

f j(x) ≤ 0,

then the equilibrium point x̄ = 0 is globally asymptotically stable.

Additionally, Lyapunov’s second method was extended by LaSalle and Barbashin-Krasovskii

for locating limit sets of nonautonomous systems which can be seen with the name

LaSalle theorem [LaSalle, 1960, 1968] and Barbashin - Krasovskii theorem [Barbashin

and Krasovskii, 1961].

2.4.1.2 Barbashin - Krasovski - LaSalle invariance principle

The main difference between Barbashin - Krasovski - LaSalle invariance principle and

Lyapunov’s theorem is that the candidate function V(x) is not required to be a posi-

tive definite function in Barbashin - Krasovski - LaSalle invariance principle. Before

defining the Barbashin - Krasovski - LaSalle invariance method, we should give the

definition of invariant and positively invariant sets by following [Aström and Murray,

2010, Gallestey et al., 2015, Haddad and Chellaboina, 2011, Khalil, 2002, Lantos and

Márton, 2010].
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Definition 2.14. A domain D ⊂ Rn is said to be an invariant set of a system ẋ(t) =

f (x(t)) if for all initial values of x chosen in D, all trajectories x(t) remain in D. It is

positively invariant if all future trajectories remain in D.

Theorem 2.15 (LaSalle invariance principle [Lantos and Márton, 2010]). Suppose that

x̄ = 0 is an equilibrium point of continuously differentiable system ẋ = f (x) where

x ∈ D ⊂ Rn, and D is defined as a neighborhood of x̄. Suppose that there exists a

function V(x) : D → R which is continuously differentiable such that V̇(x) ≤ 0 in a

positively invariant compact set M ⊂ D. Let E be the set of all points in compact set M

where V̇(x) = 0. Let S be the largest invariant set in E. Then every solution starting in

M approaches S as t → ∞.

The special case of the LaSalle’s invariance principle is Barbashin - Krasovskii theorem,

can be defined as follow.

Theorem 2.16 (Barbashin - Krasovskii theorem [Khalil, 2002]). Suppose that x̄ = 0 is

an equilibrium point of continuously differentiable system ẋ = f (x) such that f (0) = 0.

Suppose there exists a continuously differentiable positive definite function V(x) : D →

R, which is on a domain D containing the origin such that

• V(x) > 0, ∀x ∈ D\{0},

• V̇(x) =
∑n

j=1
∂V
∂x j

ẋ j =
∑n

j=1
∂V
∂x j

f j(x) ≤ 0 on D, and

• S = {x ∈ D|V̇(x) = 0}.

If the only solution that can remain inside S is the trivial solution x(t) ≡ 0, then the

origin is asymptotically stable.

If V is radially unbounded such that

• V(x)→ ∞ as ||x|| → ∞, and

• V̇(x) < 0,

then the origin is globally asymptotically stable.
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2.5 Observer and control design

The dynamic behaviour of gene regulatory networks has been analysed by using the

mathematical tools given in previous subsections. The same mathematical tools, along

with elements of linear algebra, can be employed to synthesise controllers and observers

for these systems, which is the main objective of the observer and control design chapter.

Before this, we give a preliminary presentation of the observer design approaches from

basic to complex gain observers, the theory of state and output feedback controller

design and their observer-based approximations for continuous systems of differential

equations.

Figure 2.7: An example figure for the control process of a gene regulatory network.

2.5.1 Observer design

In this section, a brief background for the observer design and the methods for linear

and non-linear differential equations are introduced.

Over the last decades, observer design methodology has been used in many fields, es-

pecially in engineering and finance, as well as in biology more recently. Designing an

observer for a linear system is relatively simple due to the fact that observability in the

linear case is independent of the inputs. However, the task of devising one for non-

linear systems proves to be more complex since non-linear observability depends on

the inputs; thus giving rise to singular inputs. Therefore, many studies have been pre-

sented to develop either general or simpler approaches, depending on the structure of
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the nonlinearity as well as on the observability properties of the systems. One particular

class of non-linear systems for which observer design is well-established is the class of

uniformly observable systems [Gauthier et al., 1992, Gauthier and Kupka, 1994]. This

class of systems does not possess any singular inputs; that is, they are observable for all

inputs. As a matter of fact, the systems with which we are dealing with in this study are

uniformly observable. Many different approaches for observer design of non-linear sys-

tems have been proposed in the literature. One such method, the separation approach

consists in dividing the system into a linear part and non-linear perturbations, which

satisfy a boundedness condition.

An observer is basically a software sensor and corresponds to the initial condition prob-

lem, presented in Figure 2.8.

Figure 2.8: Principle of a software sensor.

The main purpose of observer in control theory is to provide an online estimation of

unmeasured state variables from measurements of the inputs and outputs of a given

dynamical system in following non-linear form

.
x(t) = f (x(t), u(t)),

y(t) = h(x(t), u(t)). (2.18)

Here, x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp represent the vector of states, inputs (actuators)

and outputs of the dynamical system, respectively, represented as

x =


x1
...

xn

 ∈ Rn, u =


u1
...

um

 ∈ Rm and y =


y1
...

yp

 ∈ Rp.
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The linear form of a dynamical system can be written as

.
x(t) = Ax(t) + Bu(t)

y(t) = Cx(t), (2.19)

where A, B and C are n × n, n × m and p × n constant matrices, respectively.

Note that p should be less than n to enable the observation of a system. Otherwise,

there is no need for an observer design as all variables are being measured. Therefore,

it is assumed that p < n, and this gives that n − p state variables not being measured in

the system while p state variables are measured. It is also necessary that the dynamical

system should be observable to design its observer. Observability is defined in the

following way.

Definition 2.17. (Observability): A system is said to be observable on a time interval

t ∈ [0,T ] if for any initial state x0 and input (control) u, the current state can be obtained

in this time interval [0,T ] by using only the output signals y(x0, u, t), which correspond

to each initial state. In particular, a (linear or non-linear) system is locally observable

on a time interval [0,T ] if and only if the Jacobian matrix (for linear or non-linear) of

the following map has full rank for a fixed d.

Θ : x→



y = h(x, u)

ẏ = L f h(x, u)
...

yd = Ld
f h(x, u)


,

which means mapΘ is locally invertible at the initial state, x0. Here, L f h(x, u) represents

the Lie derivative of h(x, u) with respect to x along the vector field f , which can be

generally formulated as

Ld
f h(x) :=

∂Ld−1
f h(x)

∂x
f (x),

where
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L0
f h(x) := h(x).

Hence, the Jacobian matrix of the map Θ,

Ω(x) =
dΘ(x)

dx
,

which is also called observability matrix, is required to have full rank at x0,

rank

dΘ(x)
dx

∣∣∣∣∣∣
x=x0

 = n.

For linear and non-linear systems, this condition can be expressed as;

For linear systems (2.19)

rank



C

CA
...

CAn−1


= n

For non-linear systems (2.18)

rank



∇h(x, u)

∇L f h(x, u)
...

∇Ln−1
f h(x, u)
...


= n

.

The observability property does not depend on inputs in linear systems and it is suffi-

cient to consider the sequence {C,CA, · · · ,CAn−1}, which truncates as a consequence

of the Cayley-Hamilton theorem, where the fixed number in the map Θ then can be

obtained as d = n − 1, due to An being expressed in terms of lower powers, An =

f (An−1, An−2, · · · , A0). However, for non-linear systems, the sequence {∇Ln−1
f h(x, u)}

may not truncate, depending on the nonlinearity structure, and the fixed number d in

map Θ cannot be derived like in linear systems since no such theorem exists for non-

linear systems.

Figure 2.9 shows a state estimation process by using input, state and output variables of

a system and as a result of their state variables in an observer.
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Figure 2.9: An example network for a state observer model. Here, u, x and y represent
the input, state and output variables of the system, respectively, and x̂ represents the

state variables of the observer.

For linear systems as given in the form (2.19), the state observer can be written as

.

x̂(t) = Ax̂(t) + Bu(t) + K(y(t) − ŷ(t))

ŷ(t) = Cx̂(t), (2.20)

where K is a constant matrix, called the observer gain matrix, chosen such that the

dynamics of the absolute observer error ε(t) = x(t) − x̂(t) converges exponentially and

asymptotically to 0,

lim
t→∞
‖ε(t)‖ = lim

t→∞
‖x(t) − x̂(t)‖ = 0.

This gives the following error dynamics

.

ε(t) = A(x(t) − x̂(t)) − K(Cx(t) −Cx̂(t))

= (A − KC)ε, (2.21)

which is required to be stable.

This kind of observer is quite simple because it only involves constant matrices and does

not depend on the input and output vectors. The idea here is to choose the gain matrix

K such that the eigenvalues of the matrix (A−KC) lie in the left-half complex plane and

therefore it will be stable while the error signal goes to zero. This kind of observer ways

designed in the early 1960 ’s [Luenberger, 1964] and is known as a linear Luenberger
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observer. The stability of the observer error can be established by using the Lyapunov

stability approach as follows.

Let V(ε(t)) = εT (t)Pε(t) be chosen as an appropriate candidate Lyapunov function,

where P is a symmetric positive definite (SPD) matrix.

Then, the derivative of the Lyapunov function is obtained as

V̇(ε(t)) = ε̇T (t)Pε(t) + εT (t)Pε̇(t)

= εT (t)(A − KC)T Pε(t) + εT (t)P(A − KC)ε(t)

= εT (t)
[
(A − KC)T P + P(A − KC)

]
ε(t). (2.22)

Since (A − KC) is assumed to be stable, there exists a SPD matrix Q such that

(A − KC)T P + P(A − KC) = −Q. (2.23)

This gives,

V̇(ε(t)) = −εT (t)Qε(t) < 0, (2.24)

which proves that the chosen Lyapunov function demonstrates the stability of ε.

A state observer of the non-linear system (2.18) can be written as follows:

.

x̂(t) = f (x̂(t), u(t)) + K(x̂,u,y)(y(t) − ŷ(t))

ŷ(t) = h(x̂(t), u(t)), (2.25)

where the observer gain matrix K is a non-linear function and depends on x̂, u, y. The

function f : Rn → R is non-linear and it is assumed to be continuously differentiable

with respect to x. Moreover, this function is assumed to be globally Lipschitz contin-

uous with respect to x, uniformly in u. Hence, we assume that there exists λu > 0,

dependent on u, such that

‖ f (x, u) − f (x̂, u)‖ ≤ λu‖x − x̂‖, ∀ x, x̂ ∈ Rn, u ∈ Rm.
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The dynamics of the observer errors can be obtained as

.

ε(t) = f (x(t), u(t)) − f (x̂(t), u(t)) − K(x̂,u,y)(y(t) − ŷ(t)), (2.26)

where the gain matrix must be chosen such that the observer and error dynamics are

asymptotically stable. These kinds of systems are more complex and not easy to solve.

Many different methodologies to design an observer in both linear and non-linear sys-

tems have been devised, such as Kalman Filter [Kalman, 1959] and Luenberger [Lu-

enberger, 1964] style, separation principle [Shiriaev et al., 2008], classical high gain

observer [Gauthier et al., 1992], control and non-control affine systems and canonical

forms [Gauthier and Kupka, 1994]. The observer design for special classes of non-linear

systems has been considered in [Busawon et al., 1998a, Busawon and De Leon-Morales,

1999, Gauthier and Kupka, 2001].

There are different kinds of gain matrices which have been introduced for non-linear

systems in the literature. Some of them can be presented as follows.

• A gain matrix for a high gain extended Luenberger observer, introduced by [Gau-

thier et al., 1992, Gauthier and Kupka, 1994], is defined as

K(x̂,u,y) = S −1
θ CT = ∆−1

θ K.

Here, ∆θ = diag
[
1
θ
,

1
θ2 , · · · ,

1
θn

]
is a diagonal matrix and K can be chosen as a

column vector K = col(C1
n,C

2
n, · · · ,C

n
n) where Cp

n =
n!

(n − p)!p!
, while S θ is the

solution of the algebraic equation

−θS θ − AT S θ − S θA + CTC = 0,

for θ large enough, θ ≥ 1.

The explicit solution of the algebraic equation is

S θ(i, j) =
(−1)i+ jC

j−1
i+ j−2

θi+ j−1 , i, j = {1, 2, · · · , n},

where S θ is a symmetric positive definite matrix for every θ > 0. Here, C and the

Brunovsky form A matrices are defined as
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C =

[
1 0 · · · 0

]
∈ Rn and A =



0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0


∈ Rn×n.

In fact, it is not necessary that the gain matrix ∆−1
θ K be equal to S −1

θ CT . The main

aim of the observation problem consists in finding the gain matrix where (A−KC)

is stable so that the observer error ε(t) = x(t) − x̂(t) converges exponentially and

asymptotically towards zero.

• Another gain matrix for a high gain observer, used in [Bououden, 2016, Busawon

et al., 1998b], is given as

K(x̂,u,y) = Ω−1(x̂, u)∆−1
θ K,

where Ω(x̂, u) defines the observability matrix
(
dΘ
dx

)
x=x̂

.

• For an extension of the gain matrix above, an improvement gain matrix for the

high gain observer design is introduced in [Busawon and Leon-Morales, 2000] as

K(x̂,u,y) = Ω−1
1 (x̂, u)[L(x̂, u) + ∆−1

θ K].

For this kind of high gain observer and previous one, the observation problem

consists in finding gain matricesΩ−1
1 (x̂, u)[L(x̂, u)+∆−1

θ K] andΩ−1(x̂, u)∆−1
θ K such

that for both of them (A − KC) is stable, and the observer error ε(t) = x(t) − x̂(t)

converges exponentially and asymptotically towards zero. The column vector L

and lower triangular matrix Ω1 can be obtained by applying the following steps

[Busawon and De Leon-Morales, 1999, Busawon and Leon-Morales, 2000] :

In the first step, a square matrix B(ξ, u) is obtained by using the lower diagonal

(observability) matrix Ω, the Jacobian matrices of f at the point ξ ∈ Rn with

respect to x, and Brunovsky form A as follows

B(ξ, u) = Ω(ξ, u)F(ξ, u)Ω−1(ξ, u) − A =



0 0 · · · 0
...

...
...

...

0 0 · · · 0

b1(ξ, u) b2(ξ, u) · · · bn(ξ, u)


.
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A column vector L(ξ, u) can be constructed by considering the last row of matrix

B(ξ, u) (while the other rows are zero) as

L(ξ, u) = col[bn(ξ, u), · · · , b2(ξ, u), b1(ξ, u)] =



bn(ξ, u)
...

b2(ξ, u)

b1(ξ, u)


,

and this gives a setting matrix Ā(ξ, u)

Ā(ξ, u) = A + L(ξ, u)C =



bn(ξ, u) 1 0
...

. . .

b2(ξ, u) 0 1

b1(ξ, u) 0 · · · 0


,

which is used to construct a lower triangular matrix W(ξ, u)

W(ξ, u) =



H(ξ, u)

H(ξ, u)Ā(ξ, u)
...

H(ξ, u)Ān−1(ξ, u)


,

where H(ξ, u) is the Jacobian matrices of h at the point ξ ∈ Rn with respect to x.

This gives another nonsingular lower triangular matrix

Ω1(ξ, u) = W−1(ξ, u)Ω(ξ, u),

which has diagonal

diag[Ω1(ξ, u)] =

[
1,

∂ f 1

∂x2
(ξ, u), · · · ,

∏n−1
i=1

∂ f i

∂xi+1
(ξ, u)

]
.

This kind of gain matrices bring extremely complex observer systems and their

simulations are not simple in most of the non-linear systems with Matlab Simulink.

In order to prove the asymptotic stability of errors one again uses a Lyapunov stability

approach by choosing a proper Lyapunov function for each observer gain. All details of

the matrices above and stability of the systems can be found in [Busawon and De Leon-

Morales, 1999, Busawon and Leon-Morales, 2000].



Background for mathematical modelling of GRNs 42

2.5.2 Control design theory

Control theory aims to propose a general methodology for designing control laws in

order to modify the behaviour of dynamical systems according to some desired spec-

ifications. In practical terms, the aim of control theory is to build a control panel for

operating a given dynamical system by a controller with a reformative behaviour. The

roles of a controller are given below step by step.

• Monitor the process of a dynamical system by measuring some outputs.

• Comparing this actual behaviour with the desired one.

• Computing reformative operations from output to input of the system based on its

dynamical model.

• Applying the controller to obtain a desired solution.

An essential requirement of the control design is that the dynamical system must be

controllable, and in contradistinction to observability, controllability depends on the

inputs as given following definition.

Definition 2.18. (Controllability): A linear system as given in the form (2.19), is

controllable on a time interval [0,T ] if and only if the controllability matrix, M =[
B AB . . . An−1B

]
has full rank, i.e.

rank
[

B AB · · · An−1B
]

= n.

In biology, the behaviour of a dynamical system with internal variables, which depends

on the external (environmental) conditions, changes over time. In control systems, the

process starts with a reaction triggered by external inputs which then gives back output

signals to their environment. Interactions between (two or more) equations with each

other in a dynamical system indicates a feedback process, such as the one presented in

Figure 2.10.



Background for mathematical modelling of GRNs 43

Figure 2.10: A representative feedback loop

In following Subsection 2.5.2.1, we introduce two different feedback process of a sys-

tem: state and output feedback, and we also introduce a feedback approach based on

the observer system.

2.5.2.1 State and output feedback control

The local behaviour of a system can be formed by using the state feedback of the system.

Controllability helps to understand the necessary feedback approach to be used to design

a system dynamics. It is necessary to remember that the dynamics of the closed loop

system must be stable (bounded) and must have additional desired behaviour.

Firstly, the construction of state feedback control is introduced by considering the state

variables of a system. Then, a second output feedback control is presented, this one

based only on the output variable of a system.

Consider again the linear equation which now includes a state feedback

.
x(t) = Ax(t) + Bu(t). (2.27)

In this case, by defining a control law as,

u(t) = −Kx(t), (2.28)
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which can be replaced in equation (2.27), we find the following closed-loop system

.
x(t) = Ax(t) + B(−Kx(t))

= (A − BK)x(t). (2.29)

The stability of this equation depends on the chosen controller gain K, which has an

effect on the eigenvalues of the matrix (A − BK). The above closed-loop system is

represented in Figure 2.11.

Figure 2.11: State feedback controller for the linear systems

By considering the non-linear systems as given in (2.18) before,

.
x(t) = f (x(t), u(t)), (2.30)

the state feedback can be designed by replacing the input with a control law function

u(x(t)) = ũ(x(t)), which gives a closed loop system as follows:

.
x(t) = f (x(t), ũ(x(t))). (2.31)

The following Figure 2.12 represents the network of the process for non-linear state

feedback control.
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Figure 2.12: State feedback controller for non-linear systems

Remarks 1. The above state feedback controllers cannot be applied in practice if the

state variables x are not measured. For this reasons, sometimes output feedback con-

trollers are preferred. However, output feedback controllers have only a limited region

of stability.

Output feedback controller design is obtained by making use only of the output y(t) of

a system, and not from any other state of the system.

The linear and non-linear output feedbacks can then be obtained by replacing the input

in a system as u(t) = −Ky(t) and u = ũ(y(t)), respectively. This leads to the diagrams

presented in Figure 2.13.

Figure 2.13: Output feedback controller for linear (on the left) and non-linear (on the
right) systems.
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2.5.2.2 Observer-based state and output feedback control

Once the observer is designed, the system can be controlled using an observer-based

control as illustrated in Figure 2.14 and 2.15, respectively. Note that in observer-based

state feedback control design, the controller depends on the estimated state variables x̂;

not on the unmeasured state variables x and in observer-based output feedback control

design, it depends on the estimated output variables ŷ.

The advantage of the observer-based feedback is that the system can be made stable

over the entire state space region, by choosing the gain appropriately. Also, the observer

should be made to operate faster than the controller since the observer needs to estimate

the state before it changes significantly.

Figure 2.14: Observer-based state feedback control design for linear (on the left) and
non-linear (on the right) systems.

Figure 2.15: Observer-based output feedback control design for linear (on the left) and
non-linear (on the right) systems.
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2.6 Conclusion

The flowering time regulation pathway of Arabidopsis Thaliana involves a large com-

plex network. Quantitative models are important to provide an understanding of the

numerical amounts of gene products involved in the interactions and they can capture

important details of complex system behaviour. Continuous variables and dynamical

form of gene regulation can be derived and managed from these models. Therefore, the

background of quantitative and dynamic modelling of GRNs were briefly introduced in

this chapter.

Dynamics of internal changes in real life systems can be analysed with deterministic

approaches. Moreover, stochastic models are also required to understand the systems

in a more realistic perspective by incorporating random fluctuations due to external

changes. The features of both deterministic and stochastic differential systems, which

were constructed using Hill functions, were given in this chapter. Furthermore, Hill

functions and their importance within activation–inhibition networks were introduced.

In addition to this, relevant techniques such as Lyapunov and Lasalle stability principles,

which are used to characterise the dynamical system behaviour, were given for both

deterministic and stochastic systems.

Finally, the necessary background for the observer and control design has been dis-

cussed. The class of uniformly observable systems for well-established observer design

methods was briefly presented. In turn, the basic theory for state and output feedback

control of dynamical systems was also described.



Chapter 3

Mathematical models of the

Arabidopsis flowering gene

regulatory networks

3.1 Introduction

Arabidopsis Thaliana is a small, annual flowering plant in the Brassicaceae (mustard)

family which is a favourite model organism for plant biology research due mainly to

its small size, simple genome and rapid life cycle. The life cycle of this plant can be

observed to last around six to eight weeks. The transition from vegetative to reproduc-

tive development, which is an initiation of flower growth (see Figures 3.1 and 3.2), is

crucial for the life cycle of any angiosperm plant like Arabidopsis Thaliana [Krizek and

Fletcher, 2005, Ó’Maoiléidigh et al., 2014, Wang et al., 2014]. This is because flower-

ing on time is a key factor to achieve reproductivity of these plants. Physiological and

environmental conditions of the plant regulate the timing of mutation for the optimal

reproductive achievement and their reactions are integrated into a complex GRN which

monitors and regulates this transition [Kardailsky et al., 1999, Levy and Dean, 1998,

Wellmer and Riechmann, 2010].

48
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Figure 3.1: Figure taken from [Krämer, 2015], showing the process of Arabidopsis
Thaliana life cycle. From seed (initial step) to vegetative growth takes 39 days. The
flowering process occurs from vegetative (39 days) to end of reproductive growth (59

days), which starts after 45 days.

Figure 3.2: Figure taken from [Staveley, 2016], showing the life cycle of Arabidopsis
Thaliana under the condition of 25◦C.
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Genes and their regulatory interactions are significant factors in biological systems at

the molecular level since the understanding of their impact on each other’s regulation

and the level of these impacts on one another is crucial to comprehend the response

of gene disturbances on flowering time. Therefore, in this work, a deterministic delay

differential equation model, introduced by Valentim et al. [2015], is studied to explain

the interactions of the concentrations in Arabidopsis flowering GRN and devise more

targeted subsystems.

This chapter is organized as follows. In Section 3.2, a dynamic model of Arabidopsis

flowering is presented. The steady state of the full system is investigated analytically

and numerically in Section 3.3. A theorem for the local stability of the full system is for-

mulated, and the corresponding analysis is given in Section 3.4. Finally, our concluding

remarks are given in Section 3.5.

3.2 The dynamical model

Numerous genes appear to be acting as flowering time regulators of Arabidopsis Thaliana

[Ryan et al., 2015] and different pathways have been constructed to reveal the flowering

process of this plant [Amasino, 2010, Greenup et al., 2009, Kardailsky et al., 1999, Yant

et al., 2009] as seen in Figure 3.3.
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Figure 3.3: Flowering time pathway of the Arabidopsis Thaliana, taken from
[Hanumappa et al.].

This complex network of many interacting genes can be dynamically modelled using

systems with a large number of equations [Jaeger et al., 2013, Valentim et al., 2015,

van Mourik et al., 2010, Wang et al., 2014]. In this chapter, we consider the deter-

ministic dynamic model of delay-differential equations describing the flowering of the

Arabidopsis species proposed by Valentim et al. [2015]. This model involves core set

of gene-regulator interactions while protein-protein interactions are not explicitly in-

cluded. The model is based on a feedback loop, constructed with eight genes, where six

of them are internal: Apetala1 (AP1), Lea f y (LFY), S uppressor o f Overexpression

o f Constants1 (S OC1), Agamous − Like24 (AGL24), Flowering Locus T (FT ) and

FD. The other two genes are considered as external inputs: S hort Vegetative Phase

(S VP) and Flowering Locus C (FLC). The model is represented schematically in Fig-

ure 3.4.
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Figure 3.4: Flowchart of the model. Green and black labels represent expression in
leaf and meristem tissues, respectively. Direction arrows represent activation with γ
(Hill) functions where squares describe the dynamic variables, blocked ones inhibition
with κ functions and parallelograms describe the input variables. Dashed arrows show
the delayed transport and action of FT onto AP1 and S OC1. Junction symbol next to

AP1 shows the multiple interactions from LFY to AP1.

The deterministic model proposed in [Valentim et al., 2015] for the network in Figure

3.4 is given by a system of six differential equations with one delay. It is formulated as

follows:

ẋ1 = β1γ
n
1(x2) + β2γ2(x4) + β3γ3(x6(t − τ)) − d1x1,

ẋ2 = β4γ4(x1) + β5γ5(x3) + β6γ6(x5) − d2x2,

ẋ3 =
[
β7γ7(x3) + β8γ8(x5) + β9γ9(x4)γ10(x6(t − τ))

]
κ11(x7)κ12(x8) − d3x3,

ẋ4 = β10γ13(x2) − d4x4,

ẋ5 = β11γ14(x3) − d5x5,

ẋ6 = β12κ15(x9)κ16(x10) − d6x6, (3.1)

where the functions are defined as

γn
j (xi) =

xn
i

xn
i + Kn

j
, γ j(xi) = γ1

j (xi), κ j(xi) =
K j

xi + K j
, i = 1, . . . , 10, j = 1, . . . , 16.
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Here the variables xi are concentrations of gene expressions, which depend on time t

and represent the genes as follows:

AP1→ x1, LFY → x2, S OC1→ x3, FD→ x4, AGL24→ x5, FT → x6,

S VPm → x7, FLCm → x8, S VPl → x9 and FLCl → x10,

and their initial values are averagely estimated using polynomial data fitting method by

[Valentim et al., 2015] as 0.00056nM, 0.68nM, 33.3nM, 0.431nM, 27.69nM, 0.00056nM,

3.507nM, 0.423nM, 156.947nM and 1.047nM, respectively.

The transcription of FT is controlled by S VP and FLC in the leaves as shown in Fig-

ure 3.4. After FT is created in the leaves, it transfers to the meristem to interact with

FD. They activate the S OC1 expression together and AP1 individually [Valentim et al.,

2015, Wang et al., 2014]. S OC1 is activated by FT/FD, AGL24 and itself. Moreover,

the expression of S OC1 is repressed by S VP and FLC in the meristem. LFY is as-

sumed to move through a positive feedback loop with the dimerization of AGL24 and

S OC1. LFY is also a positive regulator of FD and AP1. The progression to flowering is

determined by a direct positive input interaction among LFY and AP1. When the AP1

expression is started, the transcription variable AP1 arranges the floral transition by

identifying the status of floral meristem and regulating the gene expressions comprised

in flower progress [Kaufmann et al., 2010, Valentim et al., 2015]. Following Valentim

et al. [2015], protein and RNA levels are assumed to be linearly correlated with each

other. S VPl and FLCl represent the gene expression of S VP and FLC in the leaves and

S VPm and FLCm in the meristem. These four components, S VPl, FLCl, S VPm and

FLCm, are independent input variables for the system which are linearly interpolated

from the experimental data.

The delayed time τ = t−∆ appears in the equations for x1 and x3. The reason for this is

that FT occurs in the leaves and then moves to the meristem with some time delay ∆,

which is assumed to take less than 24 hours [Valentim et al., 2015]. The Hill functions

γ j and κ j represent activation and inhibition kinetics, respectively. The coefficient n of

the Hill function γ1 represents the cooperativity in the regulation of AP1 by LFY and

is assumed to be a positive integer. The meaning of the other coefficients is provided in
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Table 3.1. Their values, estimated from experimental data using polynomial data fitting

in [Valentim et al., 2015], are given in Table 3.2.

Parameters Description Range

βi, (i = 1, 2, ..., 12) The maximum transcription rate [0.001, 200] nM∗min−1

Ki, (i = 1, 2, ..., 16) The abundance at half maximum [0.001, 2000] nM

transcription rate

di, (i = 1, 2, ..., 6) The gene products degradation rate [0.001, 1] min−1

∆ Delay [0, 1] days

Table 3.1: Description and range for the parameters in the dynamic model.

Para- Estimated Para- Estimated Para- Estimated

meters Values meters Values meters Values

β1 99.8 nM∗min−1 K1 9.82 nM K13 7.9 nM

β2 5 nM∗min−1 K2 700 nM K14 125 nM

β3 10 nM∗min−1 K3 10.1 nM K15 0.63 nM

β4 22 nM∗min−1 K4 346 nM K16 985 nM

β5 2.4 nM∗min−1 K5 842 nM d1 0.86 min−1

β6 0.79 nM∗min−1 K6 1011 nM d2 0.017 min−1

β7 64 nM∗min−1 K7 695 nM d3 0.11 min−1

β8 0.52 nM∗min−1 K8 1182 nM d4 0.0075 min−1

β9 189 nM∗min−1 K9 2.4 nM d5 0.001 min−1

β10 8.5 nM∗min−1 K10 4.8 nM d6 0.1 min−1

β11 100 nM∗min−1 K11 909 nM ∆ 0.5 day

β12 51 nM∗min−1 K12 501 nM

Table 3.2: Model parameters, estimated from experimental gene expression data using
a polynomial regression fitting [Valentim et al., 2015].

The behaviour of system (3.1) is simulated in Figure 3.5 using the parameters in Table

3.2 and the experimental data used in [Valentim et al., 2015]. The initial conditions
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are taken from experimental data. The sharp rise in AP1 from 13 to 17 days after

germination can be interpreted as a predictor of flowering [Valentim et al., 2015].

Figure 3.5: Numerical simulation of the system (3.1) after germination. The initial val-
ues for FT , AGL24, S OC1, LFY , AP1 and FD are taken from [Valentim et al., 2015]
as 0.00056nM, 27.69nM, 33.3nM, 0.68nM, 0.00056nM and 0.431nM, respectively.

As it is known from laboratory experiments (see [Krämer, 2015, Staveley, 2016]),

Arabidopsis Thaliana is an annual plant and its flowering is limited to approximately

two to four weeks after germination. In this context, a non-trivial stable steady state

can be seen as an attracting point for the flowering process. Hence, in the next sec-

tion, we turn to the analysis of the steady state of the flowering model to determine

its behaviour, give conditions on its initiation and investigate the terminal stages of the

flowering process.

3.3 Steady state and stability analysis of the

deterministic model

The steady states of the system represent the equilibrium points about which the dy-

namics can be studied using linear stability analysis. It helps to describe the behaviour

of a delayed system solution by considering the trajectories in a phase space of all de-

pendent variables. The state is locally asymptotically stable when all sufficiently close
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trajectories converge to the steady state as t → ∞, and unstable if they deviate from the

fixed point (see e.g. [Lakshmanan and Senthilkumar, 2011]). As mentioned previously,

we interpret a stable steady state as an attractor for the flowering process. Therefore,

if the Arabidopsis flowering is successful, then there exists at least one strictly positive

stable steady state.

Hence, for DDEs of the form (3.1), which can be presented as

dxi

dt
= fi(x1, x2, ..., x5, x6, x6(τ)), i = 1, 2, .., 6, (3.2)

the equilibrium points X̄ = (x̄1, x̄2, . . . , x̄5, x̄6) can be found by considering the equations

fi(x̄1, x̄2, ..., x̄5, x̄6, x̄6) = 0, i = 1, 2, .., 6,

where fi represent the functional form of the right-hand side of the system. Since at the

equilibrium, variables do not change with respect to time, x6(τ) is also set as x̄6(τ) = x̄6

in this system.

In our further considerations, we assume that the independent input variables x7, ..., x10

in system (3.1) are constant and equal to their initial values as given in Table 3.3, to

derive the steady states.

Input variables Described in the model Initial values

SVP −meristem S VPm → x7 3.507 nM

FLC −meristem FLCm → x8 0.423 nM

SVP − leaves S VPl → x9 156.947 nM

FLC − leaves FLCl → x10 1.047 nM

Table 3.3: Input variables with the initial values
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This results into the following set of equations

x̄1 =
β1γ

n
1(x̄2) + β2γ2(x̄4) + β3γ3(x̄6)

d1
, (3.3a)

x̄2 =
β4γ4(x̄1) + β5γ5(x̄3) + β6γ6(x̄5)

d2
, (3.3b)

x̄3 =
[β7γ7(x̄3) + β8γ8(x̄5) + β9γ9(x̄4)γ10(x̄6)] × κ11(x7)κ12(x8)

d3
, (3.3c)

x̄4 =
β10γ13(x̄2)

d4
, (3.3d)

x̄5 =
β11γ14(x̄3)

d5
, (3.3e)

x̄6 =
β12κ15(x9)κ16(x10)

d6
= u, (3.3f)

where u is a constant.

3.3.1 Derivation of steady state and numerical simulation

As system (3.1) is underdetermined, the contribution of the input variables is considered

constant and we take into account its effect on the equilibrium for the value n = 3, which

is the value obtained by Valentim et al. [2015] by fitting experimental data. To find all

equilibrium points using the assumption above, we follow the steps:

• From (3.3a), by substituting x̄4 and x̄6 from (3.3d) and (3.3f), respectively, we

find;

x̄1 =
β1 x̄3

2

d1K3
1 + d1 x̄3

2

+
β2β10 x̄2

d1d4K2K13 + (d1d4K2 + d1β10)x̄2
+

β3u
d1(K3 + u)

=
β1 x̄3

2

z1 + d1 x̄3
2

+
z2 x̄2

z3 + z4 x̄2
+ U1 (3.4)

where all U1, z1, z2, z3 and z4 are constants defined by

z1 = d1K3
1 , z2 = β2β10, z3 = d1d4K2K13, z4 = (d1d4K2 + d1β10) and

U1 =
β3u

d1(K3 + u)
.
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Equation (3.4) can be rearranged

x̄1 =
p1 x̄4

2 + p2 x̄3
2 + p3 x̄2 + p7U1

p4 x̄4
2 + p5 x̄3

2 + p6 x̄2 + p7
, (3.5)

where the constants are defined by,

p1 = (d4K2 + β10)(β1 + d1U1) + β2β10, p2 = d4K2K13(β1 + d1U1),

p3 = K3
1(β2β10 + d1U1(d4K2 + β10)), p4 = d1(d4K2 + β10), p5 = d1d4K2K13,

p6 = d1K3
1(d4K2 + β10), p7 = d1d4K3

1 K2K13 and U1 =
β3u

d1(K3 + u)
.

Equation (3.5) establishes the link between x̄1 and x̄2.

• From (3.3b), by substituting x̄1 from (3.5) and x̄5 from (3.3e), we find;

x̄2 =
β4 x̄1

d2(x̄1 + K4)
+

β5 x̄3

d2(x̄3 + K5)
+

β6 x̄5

d2(x̄5 + K6)

=
β4 p1 x̄4

2 + β4 p2 x̄3
2 + β4 p3 x̄2 + β4 p7U1

d2(K4 p4 + p1)x̄4
2 + d2(K4 p5 + p2)x̄3

2 + d2(K4 p6 + p3)x̄2 + d2 p7(K4 + U1)

+
(β6β11 + d5β5K6 + β5β11)x̄2

3 + (β6β11K5 + d5β5K6K14)x̄3

d2(d5K6 + β11)x̄2
3 + d2(d5K5K6 + β11K5 + d5K6K14)x̄3 + d2d5K5K6K14

.

(3.6)

Equation (3.6) can be rewritten as

s10 x̄5
2 + (s11 − s6)x̄4

2 − s7 x̄3
2 + s12 x̄2

2 + (s13 − s8)x̄2 − s9

(s10 x̄4
2 + s11 x̄3

2 + s12 x̄2 + s13)
=

s1 x̄2
3 + s2 x̄3

(s3 x̄2
3 + s4 x̄3 + s5)

, (3.7)

where the constants si are given by

s1 = β6β11 + d5β5K6 + β5β11, s2 = β6β11K5 + d5β5K6K14, s3 = d2(d5K6 + β11),

s4 = d2(d5K5K6 + β11K5 + d5K6K14), s5 = d2d5K5K6K14, s6 = β4 p1, s7 = β4 p2,

s8 = β4 p3, s9 = β4U1 p7, s10 = d2(K4 p4 + p1), s11 = d2(K4 p5 + p2),

s12 = d2(K4 p6 + p3) and s13 = d2 p7(K4 + U1).
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• From (3.3c), by substituting x̄4, x̄5 and x̄6 from (3.3d), (3.3e) and (3.3f), respec-

tively, we obtain;

x̄3 =
m1 x̄3

d3 x̄3 + m2
+

m3 x̄3

m4 x̄3 + m5
+

m6 x̄2

m7 x̄2 + m8
(3.8)

where the constants are represented by

m1 = β7κ11(x7)κ12(x8), m2 = d3K7, m3 = β8β11κ11(x7)κ12(x8),

m4 = d3(d5K8 + β11), m5 = d3d5K8K14, m6 = u1β9β10κ11(x7)κ12(x8),

m7 = d3(d4K9 + β10)(K10 + u1), m8 = d3d4K9K13(K10 + u1).

By moving occurrences of x̄3 to the left hand side, we find

n1 x̄3
3 + n2 x̄2

3 + n3 x̄3

n1 x̄2
3 + n4 x̄3 + n5

=
m6 x̄2

m7 x̄2 + m8
, (3.9)

where the constants are

n1 = d3m4, n2 = d3m5 + m2m4 − d3m3 − m1m4, n3 = m2m5 − m1m5 − m2m3,

n4 = d3m5 + m2m4, n5 = m2m5.

Eliminating x̄2 from (3.7) and (3.9), we obtain a generic 17th degree polynomial equa-

tion for x̄3 which we do not reproduce here. Our analysis of the equilibrium shows

that x̄6 is obtained directly from the input concentrations while x̄1, x̄2, x̄3, x̄4 and x̄5 are

non-linearly linked with each other.

Since the concentrations are positive, we are only interested in positive roots of this

polynomial. Using values for the independent input variables (Table 3.3) and estimated

parameters (Table 3.2), it can be seen numerically that there exists a unique positive

steady state, given in Table 3.4.

x̄1 x̄2 x̄3 x̄4 x̄5 x̄6

121.567 452.395 827.835 1113.882 86881.258 2.037

Table 3.4: Unique positive steady state for concentrations (in nM), obtained by using
the parameters in Table 3.2 and initial values in Table 3.3.
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Numerical simulation of system (3.1), with Matlab R2015b, showing convergence to

the steady state, is presented in Figure 3.6. The time for which AP1 sees a sharp rise is

in agreement with the time at which the most dramatic part of flowering takes place, and

the time for which AP1 reaches its steady state is in agreement with the ending of flow-

ering process, which has been observed between two to four weeks in lab experiments

[Krämer, 2015, Sanda et al., 1997, Staveley, 2016, Valentim et al., 2015]. Moreover,

AGL24 and FD may have a less crucial role in the initiation of flowering of Arabidop-

sis, as the latter has already happened before these two variables reach the steady state.

Our simulations show that the main features of the system behaviour would not change

for different values of the input variables, apart from a slight variation in the numerical

values of the steady state concentrations.

Figure 3.6: Numerical solution of the system (3.1) showing the asymptotic stability of
the steady state. The initial values are as in Figure 3.5.

3.4 Linear stability analysis of the dynamical model

Linearisation of the non-linear system (1) is helpful to analyse the local stability of this

dynamic model around a steady state point x̄ = (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6). Stability analysis

is used to establish threshold conditions on the model parameters for the flowering of
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the plant. Therefore, in this Section, the linear stability of the model is analysed in

detail, and explicit conditions for local stability are formulated using the Routh-Hurwitz

criterion.

To linearise the system with time delay, the following equation is introduced

Ẋ = J0X + JτXτ, (3.10)

to describe the behaviour in a neighbourhood of the steady state point, where X =

(x1, x2, x3, x4, x5, x6), Xτ = (x1(t − τ), x2(t − τ), x3(t − τ), x4(t − τ), x5(t − τ), x6(t − τ)).

In this equation, J0 and Jτ are Jacobians of the system with respect to non-delayed and

delayed variables,

J0 =

(
∂ fi

∂x j

) ∣∣∣∣∣∣
X=Xτ=x̄

and Jτ =

(
∂ fi

∂x j(t − τ)

) ∣∣∣∣∣∣
X=Xτ=x̄

,

respectively. The matrix form of the linearised system (3.10) is given as



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



−d1 A 0 B 0 0

C −d2 D 0 E 0

0 0 F − d3 G H 0

0 K 0 −d4 0 0

0 0 L 0 −d5 0

0 0 0 0 0 −d6

︸                                            ︷︷                                            ︸
J0



x1

x2

x3

x4

x5

x6


+



0 0 0 0 0 M

0 0 0 0 0 0

0 0 0 0 0 N

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

︸                    ︷︷                    ︸
Jτ



x1(τ)

x2(τ)

x3(τ)

x4(τ)

x5(τ)

x6(τ)


,

(3.11)

where the following notation is used,

A = β1γ
3
1
′(x̄2), B = β2γ2

′(x̄4), C = β4γ4
′(x̄1), D = β5γ5

′(x̄3), E = β6γ6
′(x̄5),

F = β7γ7
′(x̄3)κ11(x7)κ12(x8), G = β9γ9

′(x̄4)γ10(x̄6)κ11(x7)κ12(x8),

H = β8γ8
′(x̄5)κ11(x7)κ12(x8), K = β10γ13

′(x̄2), L = β11γ14
′(x̄3), M = β3γ3

′(x̄6), and

N = γ10
′(x̄6)γ9(x̄4)κ11(x7)κ12(x8).

Here, γ j
′(x̄i), for j = 1, ..., 16 and i = 1, ..., 6 denote derivatives of γ j with respect to xi at

the steady state points. The determinant below is introduced to obtain the characteristic
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equation,

det(J0+e−λτJτ−λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1 − λ A 0 B 0 Me−λτ

C −d2 − λ D 0 E 0

0 0 F − d3 − λ G H Ne−λτ

0 K 0 −d4 − λ 0 0

0 0 L 0 −d5 − λ 0

0 0 0 0 0 −d6 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(3.12)

where I is an identity matrix. This gives the following characteristic equation,

P1(λ) = (d6 + λ)P2(λ), (3.13)

where

P2(λ) =
[
(d3 + λ − F)(d5 + λ) − HL

][
(d1 + λ)(d2 + λ)(d4 + λ) − (d4 + λ)AC − BCK

]
−
[
(d1 + λ)GK((d5 + λ)D + EL)

]
= 0. (3.14)

It is clear that λ = −d6 < 0 is a root of this characteristic equation. Thus, we now only

focus on the stability of P2(λ) by using the Routh-Hurwitz stability criterion (see e.g.

[Gantmacher et al., 1960]). This gives the following Theorem.

Theorem 3.1. A steady state of the non-linear system (3.1) is locally asymptotically

stable iff all the roots of the polynomial

P2(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5, (3.15)

have negative real parts, that is iff the following conditions are satisfied,

ai > 0, i = 1, ..., 5,

a1a2a3 + a1a5 > a2
3 + a2

1a4, and

(a1a4 − a5)(a1a2a3 + a1a5 − a2
3 − a2

1a4) > a5(a1a2 − a3)2,

where
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a1 = d1 + d2 + d3 + d5 − F,

a2 = −HL − d5F + d3d5 + (d3 + d5 − F)(d1 + d2 + d4) − AC + d1d2 + d1d4 + d2d4,

a3 = −(d1 + d2 + d4)(HL + d5F − d3d5) − (d3 + d5 − F)(AC − d1d2 − d1d4 − d2d4) −

(d4AC + BCK + DGK − d1d2d4),

a4 = (HL + d5F − d3d5)(AC − d1d2 − d1d4 − d2d4) − (d3 + d5 − F)(d4AC + BCK −

d1d2d4) − (EGKL + (d1 + d5)DGK),

a5 = (d4AC + BCK − d1d2d4)(HL + d5F − d3d5) − (d1d5DGK + d1EGKL).

Otherwise, the steady state of the system is unstable.

For the stability condition, all roots of P2(λ) must have negative real part. By using

the Routh-Hurwitz scheme [Saeed, 2008] for the 5-th degree characteristic polynomial

P2(λ),

Table 3.5: 5-th degree Routh-Hurwitz scheme.

λ5 λ4 λ3 λ2 λ1 λ0

1 a1 b1 c1 d1 e1

a2 a3 b2 c2 0 0

a4 a5 0 0 0 0

where b1, b2, c1, c2, d1 and e1 are as follows:

b1 =
a1a2 − a3

a1
, b2 =

a1a4 − a5

a1
, c1 =

b1a3 − a1b2

b1
, c2 =

b1a5

b1
= a5,

d1 =
c1b2 − b1c2

c1
, e1 =

d1c2

d1
= c2 = a5.

All roots will have negative real part iff the coefficients ai, (i = 1, .., 5), b1, b2, c1, c2, d1

and e1, are all bigger than zero. Assuming ai > 0, (i = 1, .., 5), the stability conditions

of P2(λ) can be derived as

a1a2 > a3, a1a4 > a5, a1a2a3 + a1a5 > a2
3 + a2

1a4, and

(a1a4 − a5)(a1a2a3 + a1a5 − a2
3 − a2

1a4) > a5(a1a2 − a3)2.
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These conditions show the validity of Theorem 3.1. For the parameters given in Table

3.2 and the initial input values in Table 3.3, the steady state (3.4) of the non-linear

system (3.1) satisfies all conditions of Theorem 3.1;

where a1 = 0.9764, a2 = 0.1026, a3 = 0.0021, a4 = 1.2003e− 05, a5 = 9.9659e− 09,

a1a2 − a3 = 0.098, a1a4 − a5 = 1.171e − 05, a1a2a3 + a1a5 − a2
3 − a2

1a4 = 1.9817e − 04

and (a1a4 − a5)(a1a2a3 + a1a5 − a2
3 − a2

1a4) − a5(a1a2 − a3)2 = 2.2247e − 09.

3.5 Conclusion

In this chapter, we considered a dynamic model of Arabidopsis flowering introduced

by Valentim et al. [2015]. This model is reconstructed with Hill functions to emphasise

the importance of these functions and their effects on the concentrations. An analytical

study of the steady state for the full system was performed. The steady states are calcu-

lated numerically with the estimated parameters taken from [Valentim et al., 2015]. The

analysis results have shown that the system has only one positive stable steady state and

that the time for which AP1 reaches the steady state is an agreement with the observed

flowering has been finalised within the time around a month. The Routh-Hurwitz crite-

rion has been used to provide local stability conditions which characterise the existence

of this stable steady state.

In summary, the conditions in Theorem 3.1 show that the local stability of system (3.1)

at the steady state depends on values of parameters and concentrations. Although ex-

plicit conditions for the presence of a stable steady state can be formulated, the task of

identifying ranges on parameters where stability can occur remains difficult. To solve

this issue, we now introduce a simpler system which reproduces the essential behaviour

of system (3.1). For this purpose, we consider subsystems and analyse their stabilities

in order to understand the behaviour of system (3.1).



Chapter 4

Deterministic model of the

simplified Arabidopsis flowering

GRNs

4.1 Introduction

Our stability analysis for system (3.1) produces conditions which include many biologi-

cal parameters. Such parameters are difficult to determine from experiments and one of

our objective is to provide specific ranges for individual coefficients that secure stable

solutions. To overcome this issue of complexity, simplifying the system of differential

equations by reducing the number of state variables is necessary to obtain more tar-

geted regulatory networks. A simplified model then permits to better comprehend the

functionality of gene expression in the regulatory system.

The most common and independent functions in floral transition are dominated by AP1,

LFY , S OC1 in Arabidopsis Thaliana (see Figure 4.1) [Blázquez et al., 2001, Blázquez

and Weigel, 2000, Welch et al., 2004, Yeap et al., 2014]. Indeed, it is known that the

floral meristem identity genes have an important role to control the floral meristem spec-

ification while the flower development process is starting [Irish, 2010, Levy and Dean,

65
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1998, Simon et al., 1996]. Thus, the minimal regulatory networks must consist of the

main floral meristem identity genes of Arabidopsis Thaliana: AP1 and LFY , and the

input variables of the meristem: FT and FD, where AP1 is the dominant regulatory con-

centration of floral initiation with LFY in Arabidopsis Thaliana [Irish, 2010, Wellmer

and Riechmann, 2010]. Furthermore, AP1 has a key role between floral induction to

flower formation, and it is being a junction of flowering in the GRN [Kaufmann et al.,

2010]. On the other hand, FT induces flowering of Arabidopsis as an inhibitor and

moves similar with LFY . Additionally, activation tagging isolates it [Kardailsky et al.,

1999]. Moreover, FT and transcription factor FD affect each other in the meristem as

a combined activator [Wang et al., 2014].

By considering the features of these floral meristem identity genes, we initially start

reducing the six differential equations system by decoupling the external input variables

S VP and FLC in the system (3.1) by using their initial values. Therefore, one of the

main concentration, FT , will stay as a constant external input of the system as given in

(3.3f). After this, we apply a further decoupling on AGL24 and FD on the network and

we use their steady state values given in (3.3e) and (3.3d), respectively.

Finally, we need to apply this approach on S OC1 to obtain a differential equation sys-

tem, depend on only AP1 and LFY . Unfortunately, this approach cannot be applied to

reduce the system in two differential equations because of the complexity of the S OC1

equation. Therefore, we initially analyse the stability of three equations system with the

concentrations AP1, LFY and S OC1.

Analytically, decoupling is possible to apply from six to three differential equations

for the system (3.1). Therefore, we simplify the new system by using network mo-

tifs that capture essential characteristics of the floral transition. Examples of simplified

Arabidopsis Thaliana GRN’s can be seen in the study of Pullen et al. [2013], where

a complex flowering time pathway included in the model of Jaeger et al. [2013] was

simplified by focusing on essential flowering genes. Following these papers, we pro-

duce subsystems of the dynamic model of our network with two differential equations

in three different motifs. The aim of these motifs is to construct parameter dependent

stability conditions that reflect essential behaviour of the complex networks.
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Figure 4.1: Figures, taken from [Yeap et al., 2014], [Blázquez et al., 2001] and [Welch
et al., 2004], respectively, showing the important concentrations and their roles for the

flowering of Arabidopsis Thaliana.

This chapter is organized as follows. Section 4.2 provides a decoupling approach to re-

duce the system (3.1) from six to three differential equations and introduces the numer-

ical comparison of both systems. Then, simplified subsystems (motifs) of Arabidopsis

Thaliana network with two equations are introduced. Steady states of the subsystems

are analysed in section 4.3.1. In Section 4.3.2 and 4.3.3, numerical and analytical inves-

tigations of the steady state and stability of the simplified subsystems are introduced.

Finally, this chapter is concluded in Section 4.4.
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4.2 Deterministic model of the simplified network

As system (3.1) corresponds to a complex large regulatory network, it can be simplified

while still saving its core structure. By decoupling some concentrations, it is possible

to reduce the number of differential equations of the large system. One can see from

the analysis of system (3.1) in the previous section that the main contribution to the

dynamics is from concentrations S OC1, LFY and AP1. Hence, by considering
dxi

dt
= 0

for i = 4, 5 and 6, the following system of differential equations can be obtained for the

variables x1, x2 and x3:

ẋ1 =
V1x3

2

x3
2 + S 3

1

+
V2x2

S 2x2 + S 3
+ U1 − d1x1

ẋ2 =
V3x1

x1 + S 4
+

V4x3

x3 + S 5
+

V5x3

S 6x3 + S 7
− d2x2

ẋ3 =
V6x2U2

S 8x2 + S 9
+

V7x3

x3 + S 10
+

V8x3

S 11x3 + S 12
− d3x3. (4.1)

where the parameters are defined by

V1 = β1, V2 = β2β10, V3 = β4, V4 = β5, V5 = β6β11, V6 = β9β10κ11κ12, V7 = β7κ11κ12,

V8 = β8β11κ11κ12, S 1 = K1, S 2 = β10 + d2K2, S 3 = d2K2K13, S 4 = K4, S 5 = K5,

S 6 = β11 + d5K6, S 7 = d5K6K14, S 8 = β10 + d4K9, S 9 = d4K9K13, S 10 = K7,

S 11 = β11 + d5K8, S 12 = d5K8K14.

Here, x4, x5 and x6 remain constant in time, the constants u and U1 at the steady state are

defined in (3.3) and (3.4), respectively, and U2 = u(u + K10)−1. The scalar u represents

the constant value of the FT concentration at the steady state, and U1 and U2 determine

the effect of FT and FT -FD combination on AP1 and S OC1, respectively.



Deterministic model of the simplified Arabidopsis flowering GRNs 69

Figure 4.2: Flowchart of the system (4.1). Direction arrows represent activation or
self-activation of dynamic input variables (in black) while dashed arrows illustrate the
inhibition effect of the external input variables (in green). Junction symbols next to
AP1, LFY and S OC1 show the multiple interactions from LFY to AP1, S OC1 to LFY

and S OC1 to S OC1, respectively.

The network of system (4.1) is described in Figure 4.2. The difference with the model in

Figure 3.4 is that AGL24 is not involved with the external input variables S VP and FLC

as they are decoupled. This network consists of three internal state variables S OC1,

LFY and AP1, which determine the main dynamics of system (4.1), and two exter-

nal input variables FT and FT -FD combination which are assumed constant, can be

obtained from the steady state values.

The numerical solution of the non decoupled variables S OC1, LFY and AP1 in system

(4.1) is compared with the numerical solution of system (3.1) in Figure 4.3. This result

shows that decoupling some concentrations on the system can still capture the essential

behaviour of complex network for these non-constant variables. On the other hand,

the flowering time process for the reduced model is shorter than in full system and

the desired time period can be increased or decreased with a feedback control design

approach which will be given in Chapter 6.
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Figure 4.3: Comparison of the numerical solutions for steady state of the system (3.1)
and (4.1) after decoupling. The figure on the left shows the numerical solutions of
system (3.1) for one year where only FT is constant. The figure on the right represents
the numerical solution of (4.1) for one year after decoupling of AGL24 and FD where

they are constant with FT . The initial conditions are as in Figure 3.5.

4.3 Deterministic models of motifs

To further reduce the complexity of system (3.1), we use the approach in [Pullen et al.,

2013], and reduce the system (4.1) from three to two equations to understand the es-

sential characteristics of the floral transition by considering the two components, LFY

and AP1, which constitute the minimal set for enabling the transition to floral meristem

[Mandel et al., 1992]. Here, we model minimal regulatory networks of core compo-

nents consisting of the concentrations LFY , AP1, FT and FD. We consider the simpli-

fied subsystem proposed in Figure 1(b) in [Pullen et al., 2013] to establish the essential

characteristics of the floral transition. It can be obtained from system (4.1), represented

in Figure 4.2, by considering constant S OC1 concentration (ẋ3 = 0). The reason we

use these four genes is: AP1 and LFY are key floral meristem identity genes in the
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network of Arabidopsis flowering [Irish, 2010, Wellmer and Riechmann, 2010] and FT

induces flowering through the activation of these two genes in a feed-forward circuit

[Kardailsky et al., 1999] where FD has a significant role for FT signalling in meristem.

AP1 and LFY activate each other in the integration of flowering signals where they are

mutual transcriptional activators [Liljegren et al., 1999]. As these concentrations are

key floral meristem identity genes in the network, the subsystem is based on these two

genes and takes into account the importance of the network activators and inhibitors.

Additionally, we incorporate the action of FT -FD as a combined activator/inhibitor

in meristem, as suggested in [Wang et al., 2014] and [Pullen et al., 2013]. Ignoring

the change in S OC1 concentration in the network in Figure 4.2, we can redefine the

simplified network as shown in Figure 4.4, where LFY and AP1 represent the main

dynamics of this system. Furthermore, FT -FD and FT are the external input variables

of meristem and leaves, respectively.

Figure 4.4: Flowchart of the simplified system (4.2). Direction arrows represent main
activation where black labels describe the dynamic (internal) input variables, dashed
ones inhibition/activation where the green labels represent the external input variables.

Junction symbol next to AP1 shows the multiple interactions from LFY to AP1.

The analysis of the subsystem in Figure 4.4 allows us to investigate the activation and in-

hibition processes and provides ranges for input parameters which lead to the existence

of stable solutions. Here, the inhibiting and activating effect of FT -FD in meristem and

FT in leaves are described by F1 for LFY and F2 for AP1 in the system, respectively.
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This gives the system

dx1

dt
= β1

(
x2

n

x2
n + K1

n

)
F2 − d1x1,

dx2

dt
= β4

(
x1

x1 + K4

)
F1 − d2x2. (4.2)

Here, F1 and F2 are joint inhibiting (when Fi < 1) and activating (when Fi > 1) con-

stants, {i = 1, 2}. The variables x1 and x2 represent AP1 and LFY respectively, as

defined before, and the parameters β1, β4, K1, K4, d1 and d2 are the same as previously

(Table 3.2). We analyse subsystem (4.2) in three cases representing different AP1-LFY

activation pathways. The first one shows the inhibition and activation of FT effect on

AP1 while F1 = 1; the second one, FT -FD effect on LFY while F2 = 1. The third

case shows the equal inhibition or activation effect of FT -FD and FT on LFY and AP1

(F1 = F2), respectively. The three realisations of the FT -FD and FT actions are given

in Figure 4.5.

Figure 4.5: Effect of FT and combined effect of FT -FD inhibitor/activator actions
on AP1 and LFY represented with F2 and F1 functions, respectively. Squares describe
the floral meristem identity genes, LFY and AP1, which are the dynamic variables, and
parallelograms describe the combination of external input variables, FT and FT -FD,
which are repressor/activator of AP1 and LFY . Junction symbol next to AP1 shows
the multiple interactions from AP1 and LFY , and γ1 and γ4 (Hill) functions are as in
system (3.1). Subsystem 1, the action is on AP1 only (F1 = 1, F2 , 1), Subsystem 2,
the action is on LFY only (F2 = 1, F1 , 1), and Subsystem 3, the action is on both

AP1 and LFY .

The aim of the first and second subsystems is to analyse the effect of input variables

on AP1 and LFY , respectively while one of them is exist but other one is not. The

third subsystem is aimed to obtain the effect of input variables when they have an equal

action on both main concentrations. The parameters in Table 3.2 are used to investigate
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the behaviour of the input variables whether they play an inhibitor or an activator role.

Note that the initial values of the concentrations are unknown in this system (4.5), and

they can be obtained numerically from the steady state results by using the parameter

values.

4.3.1 Steady states of motifs

The steady states (x̄1, x̄2) of system (4.2) are found by considering the right-hand side

of the equations equal to zero:

β1

(
x̄n

2

x̄n
2 + Kn

1

)
F2 − d1 x̄1 = 0,

β4

(
x̄1

x̄1 + K4

)
F1 − d2 x̄2 = 0. (4.3)

Here, it is easily shown that the trivial solution (x̄1, x̄2) = (0, 0) is a stable steady state

of the system (4.2). Although gene concentrations cannot formally be zero due to their

biological meaning, the trivial steady state corresponds to a state where only small quan-

tities are present due to non-modelled or stochastic effects. Hence we now focus on the

non-trivial positive steady states of system (4.2), which can be obtained through the

following process, where x̄1 > 0 and x̄2 > 0.

• From the first equality (4.3), we have

x̄1 =
β1F2

d1

(
x̄n

2

x̄n
2 + K1

n

)
. (4.4)

• From the second equality (4.3), we have

x̄2 =
β4F1

d2

(
x̄1

x̄1 + K4

)
, (4.5)

or equivalently

x̄1 =
d2K4 x̄2

(β4F1 − d2 x̄2)
, (4.6)
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where β4F1 − d2 x̄2 > 0 as we only consider positive concentrations. This gives an

upper bound for existence of x̄2 for all parameter values,

x̄2 <
β4F1

d2
. (4.7)

Eliminating x̄1 from the equations (4.4) and (4.6),

β1F2 x̄n
2

d1

(
x̄n

2 + K1
n
) =

d2K4 x̄2

(β4F1 − d2 x̄2)
, (4.8)

we find the following polynomial equation in order to obtain all other non-trivial steady

states of subsystem (4.2) for x̄2:

(ω1 + ω2F2)x̄n
2 − ω3F1F2 x̄n−1

2 + ω4 = 0. (4.9)

where ω1 = d1d2K4, ω2 = d2β1, ω3 = β1β4, ω4 = d1d2Kn
1 K4.

We focus only on positive solutions of x̄1 and x̄2 as they represent concentrations. These

can be obtained by analysing the discriminant of the equation (4.9) which provides con-

ditions on the roots. Descartes’ rule of signs [Alina and Ionela-Rodica, 2011] indicates

that for n ≥ 2, equation (4.9) possesses either zero or two real positive roots due to two

sign changes in the sequence of coefficients, while others are complex or negative.

As a consequence, system (4.2) has either zero or two positive steady states. We will

analyse the conditions for positive real roots in further sections by using the parameter

values in Table 3.2.

4.3.2 Deterministic stability of motifs

The dynamical subsystem (4.2) must have at least one stable steady state to represent

the behaviour of the Arabidopsis flowering. In order to determine whether the positive

equilibrium points (x̄1, x̄2) are locally stable, we need to compute the eigenvalues of the

Jacobian matrix evaluated at the equilibrium points.



Deterministic model of the simplified Arabidopsis flowering GRNs 75

The Jacobian matrix of the systems (4.2) is given as,

J(x̄1,x̄2) =


−d1

nβ1Kn
1 F2 x̄n−1

2

(x̄n
2 + Kn

1)2

β4K4F1

(x̄1 + K4)2 −d2

 , (4.10)

which gives the following characteristic equation,

P(λ) = λ2 + (d1 + d2)λ + d1d2 −
nd1d2Kn

1 K4

(x̄1 + K4)(x̄n
2 + Kn

1)
, (4.11)

where F1 =
d2 x̄2(x̄1 + K4)

β4 x̄1
and F2 =

d1 x̄1(x̄n
2 + Kn

1)
β1 x̄n

2
are calculated from the equations

(4.5) and (4.4), respectively.

If λ1 and λ2 are eigenvalues of J, we have

P(λ) = (λ − λ1)(λ − λ2).

Thus, we have the trace and determinant,

tr(J) = λ1 + λ2 = −(d1 + d2), det(J) = λ1λ2 = d1d2 −
nd1d2Kn

1 K4

(x̄1 + K4)(x̄n
2 + Kn

1)
.

For asymptotic stability, we require that Reλ < 0. Therefore, the necessary and suffi-

cient conditions for local stability are, tr(J) < 0 and det(J) > 0. The first condition is

automatically satisfied while the second one gives

det(J) = d1d2 −
nd1d2Kn

1 K4

(x̄1 + K4)(x̄n
2 + Kn

1)
> 0. (4.12)

If we substitute x̄1 from equation (4.4) into inequality (4.12), we find

x̄n
2 >

(n − 1)d1Kn
1 K4

(d1K4 + β1F2)
. (4.13)
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By substituting x̄n
2 from the equation (4.9), we obtain,

x̄n
2 =

β1β4F1F2 x̄n−1
2 − d1d2Kn

1 K4

d2(d1K4 + β1F2)
. (4.14)

By comparing the inequality (4.13) and equation (4.14), we obtain the necessary and

sufficient condition for stability,

xn−1
2 >

nd1d2Kn
1 K4

β1β4F1F2
. (4.15)

Combined with the inequality (4.7), a given steady state point x̄2 must satisfy the fol-

lowing ranges,

x̄2 <
β4F1

d2
and x̄n−1

2 >
nd1d2Kn

1 K4

β1β4F1F2
,

in order to be stable. The significance of this result is that the stability range is obtained

in terms of the parameters of the system and the Hill coefficient n.

4.3.3 Numerical results for deterministic steady states and stability

of the motifs

Steady states are explicitly important because they offer vital knowledge on the flower-

ing state. They can be identified by the intersection of nullclines obtained from equa-

tions (4.4) and (4.6), leading to equation (4.8). They are plotted in (x̄1, x̄2) space for

the parameters in Table 3.2 and n = 3. The results for subsystem 1 and 2 are shown in

Figures 4.6 and 4.7. In the graphs, reference points in the plane represent the values of

AP1 and LFY for specific interactions. Points where the nullclines intersect represent

the steady states of the system. The lack of intersection of the equations (4.4) and (4.6)

indicates that there is no single steady state for the system (4.2) for the given values of

F1 and F2.
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Figure 4.6: The nullclines (4.8) for subsystem 1 (F1 = 1) with different values of F2.
The red curve represents LHS of (4.8), the other colours represent the RHS of (4.8).
Intersections between red curve and other curves correspond to steady states. F2 = 0.02
in black, shows there is no steady state point except trivial one (0, 0). F2 = 0.04317 in
blue, corresponds to the lower bound for the existence of the steady state. F2 = 0.8,
F2 = 1 and F2 = 1.2 in green, cyan and magenta, respectively, each showing two
steady states. The thick light blue line on the right of the figure represents the numerical

solution of LFY and AP1 in (3.4), calculated in the steady state of system (3.1).

Figure 4.7: The nullclines (4.8) for subsystem 2 (F2 = 1) with different values of F1.
The red curve represents RHS of (4.8), the other colours represent the LHS of (4.8).
Intersections between red curve and other curves indicate steady states. F1 = 0.02 in
black, shows there is no steady state point except trivial one (0, 0). F2 = 0.05185 in
blue, corresponds to the lower bound for the existence of the steady state. F2 = 0.8,
F2 = 1 and F2 = 1.4 in green, cyan and magenta, respectively, each showing two
steady states. The thick light blue line on the right of the figure represents the numerical

solution of LFY and AP1 in (3.4), calculated in the steady state of system (3.1).
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Here, we analyse the occurrence of the steady states, and the condition for their con-

vergence to the stable steady state. Let us now examine the stability of steady states of

LFY and AP1 for the case n = 3, for which equation (4.9) becomes

(ω1 + ω2F2)x̄3
2 − ω3F1F2 x̄2

2 + ω4 = 0. (4.16)

Remembering that all coefficients ω j and Fi, { j = 1, · · · , 4}, {i = 1, 2}, are strictly

positive, it is readily seen from Viete’s formulae that equation (4.16) always possesses

a negative root along with either two strictly positive or complex roots. Therefore, to

obtain strictly positive roots, the discriminant ∆3 of the cubic (4.16) must be positive

∆3 = ω4

[
4(ω3F1F2)3 − 27(ω1 + ω2F2)2ω4

]
≥ 0. (4.17)

As values of ω j can be calculated from the parameters in Table 3.2, the discriminant

only depends on the unknown values of the external input variables Fi, which represent

the inhibiting (Fi < 1) or activating (Fi > 1) actions of FT and FT/FD. From the

minimum condition of discriminant (∆3 = 0), we find the critical values of Fi for the

existence of such roots. The plot in the (F1, F2) space given in Figure 4.8 represents the

region for the existence of positive steady states, delimited by the degeneracy condition

∆3 = 0 which gives rise to double roots.



Deterministic model of the simplified Arabidopsis flowering GRNs 79

Figure 4.8: Minimum condition for steady states of simplified system (4.2) represented
with red line which separates the region in white where steady states exist from the

region in grey where there are no positive real steady states.

The points (1, 0.05185) and (0.04317, 1) given in Figure 4.8 indicate the lower bound

for steady states of subsystem 1 on F2 direction and subsystem 2 on F1 direction, re-

spectively, which are discussed in more details as follow.

1. For subsystem 1, F1 = 1. (The changes in concentrations x̄1 and x̄2 in (4.4) depend on

F2, inhibition (F2 < 1) and activation (F2 > 1) actions of FT on AP1). Figure 4.6 shows

the presence of a double root at F2 = 0.04317 from which two distinct strictly positive

equilibria emanate for 0.04317 < F2 ≤ max{F2}. Hence, when no action of FT -FD on

LFY is present, the inhibition of FT on AP1 starts at the value of F2 = 0.04317 and

activation can be seen for F2 > 1. Moreover, the behaviour of subsystem 1 is similar to

system (3.1) for F2 ≥ 0.04317. The best match with the numerical solution of system

(3.1) occurs for F2 > 1, indicating an activation of FT on AP1. This result shows that

F2 can be considered as an activator of the system (4.2) instead of being inhibitor.

2. For subsystem 2, F2 = 1. (The concentrations x̄1 and x̄2 in (4.6) depend on the F1,

inhibition (F1 < 1) and activation (F1 > 1) actions of FT -FD on LFY). A similar situ-

ation is seen in this case (Figure 4.7). The numerical result for this subsystem indicates
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that in the absence of action of FT on AP1, the inhibition of FT -FD on LFY starts at

the double root F1 = 0.05185, from which originate one stable and one unstable positive

steady states. The behaviour of subsystem 2 is similar to system (3.1) for F1 ≥ 0.05185,

while the best match with the numerical solution of system (3.1) can be seen in the ac-

tivation of FT -FD on LFY for F1 > 1. In the view of such information, we use F1 and

F2 external input variables as an activator of the LFY and AP1 in subsystem (4.2) to be

able to obtain a compatible behaviour with system (3.1).

3. For subsystem 3, we distinguish two cases. In the first case, FT -FD and FT

are assumed equally inhibit/activate LFY and AP1 by using the same maximum tran-

scription rate (F1 = F2). The minimal value of the bifurcation parameter occurs at

F1 = F2 = 0.21156, hence two distinct positive steady states for F1 > 0.21156, as illus-

trated in Figures 4.9. The numerical solutions confirm that the actions of FT on AP1

and FT -FD on LFY do not start any interaction for the flowering of Arabidopsis until

the inhibition value of F1 = 0.21156. This situation is represented in the left-hand side

of the trajectory line in Figure 4.9 where there is no steady state (the solutions of (4.16)

for x̄2 are complex). The right-hand side of the trajectory line on this figure shows the

stable and unstable steady states indicating that the Arabidopsis flowering is in process.

This subsystem can capture the behaviour of the system (3.1) after the steady state oc-

curs. The best match with the numerical solution of system (3.1) is estimated after FT

and FT -FD start to activate AP1 and LFY , respectively. Details of stable and unstable

steady states are given in second and third sub-figures of Figure 4.9.
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Figure 4.9: LFY and AP1 with values of Fi from 0 to 2 and (F1 = F2) in equation (4.8).
The trajectory line, which is for F1 = 0.21156, divides the existence of steady states
into two regions. Two steady states occur right of the trajectory line for each value of
F where one of them is a stable state, shown with solid line, and others are unstable,
shown with dashed line. There are no positive steady states on the left of the trajectory
line. The black points on the trajectory line show the degenerated stable steady state
values of LFY and AP1. The details of unstable steady states and non-trivial stable

ones can be seen in second and third Figures.



Deterministic model of the simplified Arabidopsis flowering GRNs 82

In the second case, we assume F1 and F2 may be different from each other. In this cir-

cumstance, the best match with system (3.1) is for F1 = 1.3445 and F2 = 1.0476. These

results are obtained from (4.6) and (4.4) by using the estimated parameters from Table

3.2 and matching the steady state values of x1 and x2 from Table (3.4). Comparison with

the solution of system (3.1) is given in Figure 4.10, showing that subsystem 3 captures

well the behaviour of the full model (3.1) after FT -FD and FT start activating LFY and

AP1, respectively. In this case, by considering the direction of the flow
(

dx1
dt ,

dx2
dt

)
in the

(x1, x2) phase plane of the system (4.2) for the obtained value F1 and F2 (Figure 4.11),

it can be explicitly seen that the trivial and non-trivial upper steady states are stable,

while the lower non-trivial one corresponds to a saddle node.

Figure 4.10: Intersection of nullclines (4.6) and (4.4) showing stable steady state for
F1 = 1.3445 and F2 = 1.0476. Comparison with numerical solution of system (3.1) is

also given in blue dashed line.
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Figure 4.11: Phase plane of the AP1(x1) and LFY(x2) for the obtained values F1 =

1.3445 and F2 = 1.0476 in system (4.2). Black dots represent the steady states, and
blue dots on the x-axis and y-axis represent the initial conditions (AP1, LFY = 0) and
(AP1 = 0, LFY) for the coloured lines, respectively. Light blue and dark yellow lines
show the eigenvectors of the unstable point (saddle nodes). Below and above these
two lines the trivial and non-trivial stable steady states are reached, respectively. The
curves with red and black colours show trajectories of the system, where their arrows

represent the direction of the phase flow.

The unstable steady state can be regarded as the threshold values of the concentrations

for the flowering of Arabidopsis Thaliana. As a consequence, if flowering is processing

for some time which means the concentrations have already reached their threshold

values for the flowering, then the concentrations can move away from an unstable steady

state and converge to a non-trivial stable one.

In view of the control problem which will be developed in Chapter 6, the role of the

components AP1, LFY and S OC1 can be summarised as in Table 4.1.
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Components Role of the components Threshold

AP1 Floral meristem identity regulator. 0.24 nM

(Has key role between floral induction to flower formation)

LFY Floral meristem identity regulator. 1.24 nM

(Positive regulator of AP1)

S OC1 Floral pathway integrator. (Activates LFY)

Table 4.1: The role of the components AP1, LFY and S OC1. Threshold values of AP1
and LFY in the motifs (4.2) are obtained by using the parameter values in Table (3.2)

and input values (F1 = 1.3445 and F2 = 1.0476).

4.4 Conclusion

In this chapter, we produced some simplified dynamical models of the full system of

Arabidopsis flowering time GRN. Given the complexity of the system, more precise

conditions have been formulated by considering subsystems which focus on the dy-

namics of essential elements. According to our analysis for the full system, three genes,

S OC1, LFY and AP1, have a strong effect on the flowering of Arabidopsis. Therefore,

decoupling for the other concentrations has been applied to simplify the system based on

these three genes. Analytical solution of the simplified system is still difficult, however

it illustrates specific pathways of inhibition and activation. By using these pathways, we

reconstruct three different subsystems suggested in Pullen et al. [2013] and Jaeger et al.

[2013]. This allowed us to derive necessary and sufficient conditions for the existence

of the positive steady states of these subsystems with generalized expressions for Hill

functions that represent the dynamics and cooperativity of the Arabidopsis flowering

time regulation system. The most important floral identity genes, AP1 and LFY , are

used to investigate the flowering where they are regulating each other, and the results

are confirmed by experiments [Liljegren et al., 1999]. The necessary and sufficient con-

ditions for the local stability have then been determined analytically and the stability

ranges are established with the estimated parameters and compared with the numerical

solutions. The numerical results have confirmed that these subsystems can capture the
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essential behaviour of the full model by estimating the FT -FD and FT inhibition/acti-

vation effects on the concentration of LFY and AP1, respectively.

Our analyses, being in a good agreement with the experimental findings, bring further

insights into the roles of LFY and AP1 and provide the opportunity to explore different

pathways for flowering.



Chapter 5

Stochastic motifs

5.1 Introduction

The aim of this chapter is to investigate and compare the stability properties of simpli-

fied mathematical models of Arabidopsis flowering developed with stochastic perturba-

tions. The motifs are reflecting the essential behaviour of the complex network and can

capture the significant features of the full Arabidopsis flowering model. The advantage

of this approach is based on the realistic description of gene effects and their interac-

tions on flowering of Arabidopsis. New sufficient conditions of mean square stability

are obtained analytically for this simplified model using Lyapunov function. Analyt-

ical and numerical investigations of the stability are performed with respect to gene

concentration and noise term by using Ito stochastic formula within both additive and

multiplicative white noise. For numerical implementations, Euler-Maruyama method is

used to solve Ito SDEs systems.

5.2 Stochastic stability of motifs

In real life, most of the time-series behaviour of biological systems are not deterministic.

To obtain more realistic representations of their behaviour, it is appropriate to work with
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stochastic differential equations (SDEs), which can be obtained by incorporating noise

terms into deterministic models. The aim of this section is to introduce and study for

the first time SDEs for the behaviour of Arabidopsis flowering.

There are several ways for obtaining a SDEs model. Manninen et al. [2015, 2006] intro-

duced a few different approaches in their papers for incorporating stochasticity into the

deterministic models. For example, stochasticity can be incorporated into reaction rates,

rate constants or into concentrations by using the chemical Langevin equation. In this

study, we consider integrating stochasticity into reaction rates by taking into account

both additive (stochasticity into rate of each variable) and multiplicative (stochasticity

into each reaction rate) white noise by following Mackey and Nechaeva [1994].

Starting from the following general form of deterministic non-linear differential equa-

tions,

dX(t) = F(t, X(t))dt, (5.1)

and, incorporating additive and multiplicative white noise into equations (5.1), we ob-

tain two type of stochastic differential systems which will be studied in Subsections

(5.2.1) and (5.2.2), respectively. The Ito forms of these SDEs systems are also intro-

duced in these subsections.

5.2.1 Stochastic motifs with additive white noise

A general Ito formulation of a system of stochastic differential equations with additive

white noise form can be written as

dX(t) = F(t, X(t))dt + GdW(t), (5.2)

where the stochastic component GdW is added into the rate of each variable in deter-

ministic model (5.1). Here, G = diag[σ1, · · · , σm] describes non-negative real constant

diagonal matrix with standard deviation parameters σ j, j = 1, . . . ,m, and W(t) is a
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random variable which represents m-dimensional standard Brownian motion or Wiener

process over t ∈ [0,T ].

The general solution of equations (5.2) can be written as

X(t) = X(0) +

∫ t

0
F(s, X(s))ds +

m∑
j=1

∫ t

0
G jdW j(s),

where X(0) is the initial condition of the system and t is taken in the interval [0,T ]. By

modifying system (4.2), we obtain the following stochastic differential equations,

dx1(t) =
[
f1(x2(t)) − d1x1(t)

]
dt + σ1dW1(t),

dx2(t) =
[
f2(x1(t)) − d2x2(t)

]
dt + σ2dW2(t), (5.3)

where σ1, σ2 are real constants and, W1 and W2 are independent standard Wiener pro-

cesses with increments dWi(t) = Wi(t + ∆t) − Wi(t), i = 1, 2, and each independent

random variables satisfy dWi ∼
√
∆tN(0, 1). Hill functions f1 and f2 are defined as

f1(x2) =
β1F2x3

2

x3
2 + K3

1

, f2(x1) =
β4F1x1

x1 + K4
,

and the parameters are the same as in previous sections. For numerical implementations

with additive white noise, the Euler-Maruyama method with fixed time step ∆t is used

to solve this Ito SDEs model,

xi(t + ∆t) = xi(t) + Fi(t, x(t))∆t + σidWi. (5.4)

The deterministic model of system (4.2) has three steady states: two of them are stable

with a trivial and a non-trivial solution, and one is an unstable, trapped between these

two stable steady states. The behaviour of this system depends on the initial conditions

of the concentrations. If their initial values are lower than the unstable steady state

(sub-threshold value of the system (4.2) for flowering of Arabidopsis), then system will

certainly reach the trivial solution which means values are insufficient for triggering

process of Arabidopsis flowering. Therefore, flowering of the Arabidopsis will not

occur. If their initial values are larger than the unstable steady state, the flowering
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of this seed will proceed, being attached by the non-trivial stable steady states of the

concentrations.

On the other hand, the behaviour of the stochastic model for system (4.2), which is

given in (5.3), is more complex and depends on the initial conditions and the amount of

noise in each of the concentrations. So, it is not certain whether it reaches non-trivial

(passing the sub-threshold for the flowering) or trivial (non-flowering) stable equilibria.

This is a random process and this kind of behaviour is known as ”stochastic switching”

[Ullah and Wolkenhauer, 2011]. We show the behaviour of stochastic model (5.3) with

a time-varying histogram to see the changes of the behaviour. The initial values are

fixed as (0.2, 1.2), which lie between unstable and trivial stable steady states for the

parameter values from Table 3.2. The implementation has been performed 100 times

with a fixed constant noise of 5% (σi = 0.05).

As can be seen from Figures 5.1 and 5.2, stochasticity can change the behaviour of

the system. The solutions are initially concentrated around the initial values and then

diverted to two different directions. At the end, they converged around either trivial or

non-trivial stable solutions with a considerable proportion. This shows that successful

solutions for the Arabidopsis flowering can be obtained by using stochastic equations

system even if the initial values are under the threshold value.

We also consider the effect of the different σ values on the stochastic system (5.3). If

we look at the initial values of the concentrations (xinit) around the unstable steady state

within 5% range, 0.95x̄ < xinit < 1.05x̄, we obtain the results presented in Figure 5.3.
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Figure 5.1: Temporal histogram progress for the Arabidopsis flowering stochastic
model for AP1.

Figure 5.2: Temporal histogram progress for the Arabidopsis flowering stochastic
model for LFY .
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Figure 5.3: Proportion of successful solutions (Nb) of the SDEs of Arabidopsis flow-
ering model (5.3) with random initial condition within 5% of the unstable solution,
depending on the noise parameter σi. Blue, green and yellow dots represent success
rations of the flowering process for less than 50%, between 50% and 70%, and more

than 70%, respectively.
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5.2.2 Stochastic motifs with multiplicative white noise

In contrast with the previous subsection, where the possibility of successful flowering

was depending only on the amount of noise terms and initial values of the concen-

trations, here we assume that the amplitude of noise also depends on the state of the

system. The aim of this study is to determine the flowering and non-flowering domain

of the stochastic motifs with multiplicative white noise. These can be obtained by using

a Lyapunov function approach, centered at the origin or at a non-trivial steady state of

the system. This allows to obtain necessary stability conditions which depend on the

noise parameters σi.

First, we start by introducing the Ito formula of a system of stochastic differential equa-

tions with multiplicative white noise in the form

dX(t) = F(t, X(t))dt + G(t, X(t))dW(t). (5.5)

This can be obtained by integrating the stochastic component G(X)dW into each re-

action rate of the deterministic model (5.1), where F(t, X(t)) = (Fi(t, X(t))) ∈ Rn,

G(t, X(t)) = (Gi j(t, X(t)) ∈ Rn×m, is a matrix of measurable functions, and W(t) =

(Wi(t)) ∈ Rm is an m-dimensional independent Wiener process, or equivalently an m-

dimensional vector of standard Brownian motions.

The solution X(t) of the SDE can be obtained after the integration of equation (5.5) as

X(t) = X(0) +

∫ t

0
F(s, X(s))ds +

m∑
j=1

∫ t

0
G j(s, X(s))dW j(s),

for j = 1, · · · ,m and 0 ≤ t ≤ T .

More precisely, stochastic perturbations of the variables around their equilibrium values

are assumed to be of white noise type and proportional to the distances of AP1(x1) and

LFY(x2) from the steady state values x̄1 and x̄2. The question whether the dynamical

behaviour of model (4.2) is influenced by stochastic effects is investigated by looking

at the asymptotic stochastic stability of equilibrium points. By considering an explicit

stochasticity in the deterministic differential equations system (4.2), we obtain an Ito
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stochastic differential equations system of the Arabidopsis flowering with the stochastic

perturbations of x1 and x2 from the equilibrium point (x̄1, x̄2), given by

dx1(t) =
[
f1(x2(t)) − d1x1(t)

]
dt + σ1(x1(t) − x̄1)dW1(t),

dx2(t) =
[
f2(x1(t)) − d2x2(t)

]
dt + σ2(x2(t) − x̄2)dW2(t), (5.6)

where again σi are positive constants and Wi are independent standard Wiener process

components with increments ∆Wi(t) = Wi(t +∆t)−Wi(t), i = 1, 2, and Gaussian random

variables dWi ∼ ∆(t)N(0, 1). As mentioned before, xi, x̄i ∈ R+
0 are non-negative real

numbers.

Let us investigate that the trivial solution x(t) = 0 of system (5.6) is locally asymptoti-

cally stable in probability while there exists a domain which is neighbourhood of x̄ ≡ 0.

The importance of this domain is being the non-flowering domain of the Arabidopsis

Thaliana GRN for system (5.6).

Theorem 5.1 (Barbashin-Krasovskii theorem for stochastic differential equations [Ig-

natyev and Mandrekar, 2010]). Let the origin x = 0 be an equilibrium point for a

stochastic differential equation system of the form

dX(t) = f (X)dt +
∑n

i=1 gi(X)dWi(t), X ∈ Rn, f (0) = gi(0) = 0,

where f , gi ∈ R
n satisfy Lipschitz conditions and Wi(t) are independent Wiener pro-

cesses. Let V : D −→ R be a continuously differentiable positive definite function on

a domain D ⊂ Rn containing the origin, such that LV(x(t)) ≤ 0 in D, where L is a

differential operator acting on the function V as

LV(x(t)) =

n∑
i=1

fi
∂V
∂xi +

1
2

n∑
i, j=1

Gi j
∂2V
∂xix j , Gi j =

k∑
i=1

gimg jm. (5.7)

Let S = {x ∈ D : LV(x) = 0} be set of all points where LV = 0 and suppose that no

other solution can stay in S , other than the trivial solution x(t) ≡ 0. Then the origin is

locally asymptotically stable in probability.

Theorem 5.2. The equilibrium point x̄ = 0 of system (5.6) is locally asymptotically

stable in probability if the conditions
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• 0 ≤ σi <
√

2di, i = 1, 2,

are satisfied.

Proof. 5.2. Let x̄ = 0 ∈ D ⊂ R2 be an equilibrium point of the stochastic differential

equations system (5.6) where D is defined as a positive neighbourhood of this point. Let

us define a positive definite function V with a strictly positive arbitrary constant θ such

that

V(x) =
1
2

(θx2
1 + x2

2), θ > 0, (5.8)

where V : D −→ R is a continuous differentiable and satisfies that V(0) = 0 for only

x = 0 and V(x) > 0 for all x ∈ D \ {0}.

Applying the L operator (5.7) to V(x) in (5.8) gives the following expression for system

(5.6),

LV(x) = θx1( f1(x2) − d1x1) + x2( f2(x1) − d2x2) +
1
2

(θσ2
1(x1 − x̄1)2 + σ2

2(x2 − x̄2)2),

= θx1( f1(x2) − d1x1) + x2( f2(x1) − d2x2) +
1
2

(θσ2
1x2

1 + σ2
2x2

2), (5.9)

where x̄1 = x̄2 = 0. It is clear that x = 0 is a solution of LV(x) = 0. Hence, it is

necessary to find a domain D around a positive neighbourhood of x = 0, which satisfies

LV < 0 and LV = 0 for only x = 0 that means there is no other solution except the zero

one while LV = 0.

Taking a second-order Taylor series in some positive neighbourhood around (x1, x2) =

(0, 0) for LV(x) in (5.9) gives

LV(x) ≈ −
θ(2d1 − σ

2
1)

2
x2

1 −
(2d2 − σ

2
2)

2
x2

2 +
β4F1

K4
x1x2. (5.10)

Using Young’s inequality in (5.10), for any sufficiently small constant ε > 0,

±x1x2 ≤
1
2

(εx2
1 +

1
ε

x2
2),
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we obtain,

LV(x) ≤ −
θ(2d1 − σ

2
1)

2
x2

1 −
(2d2 − σ

2
2)

2
x2

2 +
β4F1

K4

1
2

(
εx2

1 +
1
ε

x2
2

)
. (5.11)

By grouping x2
1 and x2

2 for θ > 0, we find

LV(x) ≤ −x2
1

[
(2d1 − σ

2
1)θ

2
−
β4F1

2K4
ε

]
− x2

2

[
(2d2 − σ

2
2)

2
−
β4F1

2K4ε

]
.

(5.12)

This is locally and asymptotically stable in probability if LV(x) < 0, therefore, the

following inequalities are required,

(
2d1 − σ

2
1

)
θ −

(
β4F1

K4

)
ε > 0 (5.13)

(2d2 − σ
2
2)ε −

(
β4F1

K4

)
> 0, (5.14)

In particular, this implies that

σ2
1 < 2d1 and σ2

2 < 2d2,

where θ, ε and parameter values are all positive.

It is clear that if the ranges (5.13) and (5.14) are satisfied than LV(x) in (5.12) equals to

zero for only x = 0.

Combining the inequalities (5.13) and (5.14), we find,

β4F1(
2d2 − σ

2
2

)
K4

< ε <
θK4

(
2d1 − σ

2
1

)
β4F1

. (5.15)

To obtain the sufficient conditions for the mean square stability, we consider the left and

right hand-sides of the inequality (5.15) while all parameters are positive. Multiplying

and dividing both of side by β4F1 and K4

(
2d1 − σ

2
1

)
, respectively, gives the following
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conditions,

θ >

(
β4F1

K4

)2 1(
2d1 − σ

2
1

) (
2d2 − σ

2
2

) > 0, (5.16)

which shows that for any σ1, σ2 satisfying σi <
√

2di one can choose a suitable positive

value of θ such that V is a local Lyapunov function of the system. Thus, the origin is

locally asymptotically stable in probability.

�

Sufficient conditions for the mean square stability of the stochastic differential equations

system (5.6) with a defined Lyapunov function (5.8) around trivial stable state have

been obtained from the Theorem 5.2. The result represents the stability domain of the

system around origin which gives non-flowering area of it depends on noise. As a

result, stability of the non-negative equilibrium not only depend on concentrations and

the parameters of the system but also depend on the noise terms. By using the parameter

values in Table 3.2, the minimum θ value has been obtained as θ > 0.125, which means

Lyapunov function (5.8) satisfies stability of the trivial solution of stochastic system

(5.6) if θ is chosen larger than 0.125.

5.3 Conclusions

In this chapter, stochastic motif was initially studied around the unstable steady state

with an additive white noise to show how the flowering and non-flowering process can

change with the effect of the noise term. Numerical simulations of the Ito stochastic

differential equations system (5.3) was performed with fixed initial values and constant

noise in the time-varying histogram. Moreover, it was simulated with different initial

values around the unstable steady state within 5% range and different noise within 20%

range, and the possibilities of the successful flowering process was illustrated.

Then, stability of the stochastic motif was studied around trivial stable steady state

with a multiplicative white noise to obtain sufficient conditions of mean square stability
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by using Lyapunov function for non-flowering domain. The Ito stochastic differential

equations system (5.6) was performed to investigate analytical and numerical solutions.

The sufficient conditions for non-flowering stability area was investigated around the

origin within a range depends on the noise terms and defined Lyapunov function (5.8).

As a result of both approaches, it is demonstrated that the stochasticity can change the

behaviour of the stability region which cannot be obtained in the case of deterministic

model of the Arabidopsis.



Chapter 6

Control theory and observer

design of Arabidopsis flowering

GRN

6.1 Introduction

In previous chapters, the stability analysis and behaviour of the motif models have been

studied within the deterministic and stochastic perspectives. However, the stability anal-

ysis of the full model and simplified one is not an easy task analytically. Moreover,

similar behaviour of the full model can be observed in the simplified model, which is

obtained by decoupling some concentrations, but some of the concentrations cannot be

exactly measured in the simplified model. Therefore, an observer has to be designed

and applied numerically to estimate these unmeasured variables by using the measured

ones (inputs and outputs). Furthermore, by doing some modifications on the simpli-

fied model, feedback control laws can be designed and the behaviour of this model can

be regulated by controlling the input of the system related to reference value of output

[Dibiasio et al., 1978, Ma et al., 2016, Oyarzún and Chaves, 2015].

98
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In this chapter, observability and controllability of the dynamical models of Arabidop-

sis flowering is studied. The simplified dynamic model of Arabidopsis flowering time

GRN system constructed with three differential equations based on S OC1, LFY and

AP1 is considered. The validity of this simplified system, which is obtained by decou-

pling some concentrations in the original model, is controlled by using control feedback

theory, and this system is regulated by controlling the inputs to obtain the desired be-

haviour. Recall that the simplified system with three equations is still complex and

cannot be reduced directly into the system with two differential equations by decou-

pling S OC1 or LFY , which are not measurable variables. For this reason, the observer

design of this system is employed in two different gain observer examples; constant and

high gain observer. The constant gain observer approach is an easy task and does not

depend on the state variables. On the other hand, high gain observer depends on the

state variable and estimation of this observer is more difficult than the constant one.

In the simplified system of equations, AP1 represents an output measured concentration

while estimated of the variables S OC1 and LFY are non-measured. We have a single

input variable FT , which is given as u in U1 and U2 input functions. We recall that the

three equation system was given in system (4.1) as

ẋ1 = f1(x2) + U1(u) − d1x1

ẋ2 = f2(x1) + f3(x3) − d2x2

ẋ3 = f4(x2)U2(u) + f5(x3) − d3x3,

y = x1, (6.1)

where the f functions are defined as

f1(x2) =
V1x3

2

x3
2 + S 3

1

+
V2x2

S 2x2 + S 3
, f2(x1) =

V3x1

x1 + S 4
, f3(x3) =

V4x3

x3 + S 5
+

V5x3

S 6x3 + S 7
,

f4(x2) =
V6x2

S 8x2 + S 9
, f5(x3) =

V7x3

x3 + S 10
+

V8x3

S 11x3 + S 12
,

and the input functions U1(u) =
β3u

d1(K3 + u)
and U2(u) =

u
K10 + u

were given in (3.3)

and (4.1) before, respectively. These input functions consist of a single input u and

constant parameters. Here, x1, x2 and x3 represent AP1 , LFY and S OC1 concentrations,
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respectively. The constants are the same as in system (4.1). The network of the system

is illustrated in Figure 6.1.

Figure 6.1: Gene regulatory network of the Arabidopsis flowering. FT is the input of
system as (6.1), also through a combined action with FD, with an effect on S OC1 and

AP1, as shown with dashed lines.

6.2 Observer design for the dynamic model of

Arabidopsis flowering

System (6.1) is represented in the following form

h(x) = x1, f (x, u) =


f 1(x1, x2, u) = f1(x2) + U1(u) − d1x1

f 2(x1, x2, x3, u) = f2(x1) + f3(x3) − d2x2

f 3(x, u) = f4(x2)U2(u) + f5(x3) − d3x3

 ,

which can be formulated by setting x = [x1 x2 x3]T and y = x1 as

.
x(t) = f (x(t), u(t))

y(t) = h(x(t)) = x1. (6.2)

In the first part of this section, we aim to design constant and state-dependent high gain

observers for the system (6.2). To achieve this, the f and h functions must be smooth
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and continuously differentiable with respect to x, and they must satisfy a Lipschitz con-

tinuity condition which is given in the following assumption.

Assumptions 1. f (x, u) is Lipschitz with respect to the state x, uniformly in the control

u, that is, there exists a Lipschitz constant λu > 0 such that

‖ f (x, u) − f (x̂, u)‖ ≤ λu‖x − x̂‖ for any x, x̂ ∈ Rn, u ∈ Rm.

Unfortunately, for the system (6.2), the expression of the gain is very complicated. The

complexity comes from the Hill functions which are non-linear and not globally Lips-

chitz continuous. To overcome this issue, we replace these functions with exponential

ones by using Pade approximation up to some adjustment to satisfies the Lipschitz con-

dition. Then, we compare the observer results of the systems with Hill and exponential

functions to see the differences and similarities. The following remarks will be used to

convert the systems from Hill functions to exponential ones in Pade form.

Remarks 2. Assume that a Hill function is of the form

f (x) =

(
V xn

S 1xn + S 2

)
,

where V and S i are positive constants and n is positive integer. This function can be

written as

f (x) = γ1 −

(
γ1

γ2xn + 1

)
,

where γ1 =
V
S 1

and γ2 =
S 1

S 2
.

Remarks 3. Assume that a Hill function is of the form

f (x) =

(
γ1

γ2xn + 1

)
,

This kind of function can be approximated by using the following Pade approximants.

For all i, j > 0 and positive integer n,

(
γi

γ jxn + 1

)
≈ γie−γ j xn

.



Control theory and observer design 102

In practice, we want to design an observer that is as simple as possible for implemen-

tation purposes. Therefore, we reconstruct the equations system (6.1) by using the

Remark (2) to write a simpler system as given below,

ẋ1 = −d1x1 −

(
γ1

γ2x2
3 + 1

)
−

(
γ3

γ4x2 + 1

)
+ U1 + γ1 + γ3,

ẋ2 = −d2x2 −

(
ν1

ν2x1 + 1

)
−

(
ν3

ν4x3 + 1

)
−

(
ν5

ν6x3 + 1

)
+ ν1 + ν3 + ν5,

ẋ3 = −d3x3 −

(
α1U2

α2x2 + 1

)
−

(
α3

α4x3 + 1

)
−

(
α5

α6x3 + 1

)
+ α1U2 + α3 + α5,

y = x1, (6.3)

where the parameters are

γ1 = V1, γ2 =
1

S 3
1

, γ3 =
V2

S 2
, γ4 =

S 2

S 3
,

ν1 = V3, ν2 =
1

S 4
, ν3 = V4, ν4 =

1
S 5

, ν5 =
V5

S 6
, ν6 =

S 6

S 7
,

α1 =
V6

S 8
, α2 =

S 8

S 9
, α3 = V7, α4 =

1
S 10

, α5 =
V8

S 11
, α6 =

S 11

S 12
.

System (6.3) with Hill functions has a unique stable steady state solution which is ob-

tained as (x̄1, x̄2, x̄3) = (120.7, 450.63, 827.83) for the parameter values in Table A.1

(see Appendix A). By using Remark (3), the Hill functions can be replaced with the

Pade approximation and xi with ωi, {i=1,2,3},

ω̇1 = −d1ω1 − γ1e−γ2ω
3
2 − γ3e−γ4ω2 + U1 + γ1 + γ3,

ω̇2 = −d2ω2 − ν1e−ν2ω1 − ν3e−ν4ω3 − ν5e−ν6ω3 + ν1 + ν3 + ν5,

ω̇3 = −d3ω3 − α1U2e−α2ω2 − α3e−α4ω3 − α5e−α6ω3 + α1U2 + α3 + α5,

y = ω1, (6.4)

where the new steady state is obtained as (ω̄1, ω̄2, ω̄3) = (120.7, 522.22, 943.064).
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Figure 6.2: Comparison of the exponential (with dashed lines) and Hill functions.

By writing ω1 = ρ1x1, ω2 = ρ2x2 and ω3 = ρ3x3, we obtain the following equations

system:

ẋ1 = −d1x1 −
γ1

ρ1
e−γ2ρ

3
2 x3

2 −
γ3

ρ1
e−γ4ρ2 x2 +

U1

ρ1
+
γ1

ρ1
+
γ3

ρ1
,

ẋ2 = −d2x2 −
ν1

ρ2
e−ν2ρ1 x1 −

ν3

ρ2
e−ν4ρ3 x3 −

ν5

ρ2
e−ν6ρ3 x3 +

ν1

ρ2
+
ν3

ρ2
+
ν5

ρ2
,

ẋ3 = −d3x3 −
α1U2

ρ3
e−α2ρ2 x2 −

α3

ρ3
e−α4ρ3 x3 −

α5

ρ3
e−α6ρ3 x3 +

α1U2

ρ3
+
α3

ρ3
+
α5

ρ3
,

y = ρ1x1, (6.5)

where ρ1, ρ2, and ρ3 are found such that, ρ1 =
ω̄1

x̄1
= 1, ρ2 =

ω̄2

x̄2
= 1.15911, ρ3 =

ω̄3

x̄3
=

1.13919.
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Figure 6.3: Comparison of the exponential (with dashed lines) and Hill functions after
modification.

As a result, it is found that the exponential functions, which are obtained as Pade ap-

proximants, make the process faster than Hill functions. This also means that the error

using exponential functions goes to zero faster than for Hill functions.

The system (6.5) can be represented in the form :

.
x(t) = g(x(t), u(t)) + ϕ(u(t)) + R,

y(t) = h(x(t)) = C̄x(t), (6.6)

where C̄ = [ρ1 0 0] is a vector matrix, and f (x(t), u(t)) in system (6.2) is represented

as f (x(t), u(t)) = g(x(t), u(t)) + ϕ(u(t)) + R. Here, R is a constant vector of appropriate

dimension, and ϕ(u) is the input vector, represented as

R =


(γ1 + γ3)/ρ1

(ν1 + ν3 + ν5)/ρ2

(α3 + α5)/ρ3

, ϕ(u) =


U1/ρ1

0

α1U2/ρ3

,

and g(x, u) is defined as
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g(x, u) =


g1(x1, x2)

g2(x1, x2, x3)

g3(x2, x3, u)

 =


−d1x1 − (γ1e−γ2ρ

3
2 x3

2 + γ3e−γ4ρ2 x2)/ρ1

−d2x2 − (ν1e−ν2ρ1 x1 + ν3e−ν4ρ3 x3 + ν5e−ν6ρ3 x3)/ρ2

−d3x3 − (α1U2e−α2ρ2 x2 + α3e−α4ρ3 x3 + α5e−α6ρ3 x3)/ρ3

.

As mentioned before, to design a high gain observer, it is necessary that the functions, f

(now we consider g) and h, must be smooth and continuously differentiable with respect

to x, and they must be Lipschitz continuous which means they are globally Lipschitz

with respect to x uniformly in u. Moreover, their partial and respective time derivatives

must be bounded and the following assumption and notation, taken from the papers

[Busawon et al., 1998a, Busawon and De Leon-Morales, 1999], must be considered:

Assumptions 2. There exists positive constants a, b, {0 < a ≤ b < ∞} such that for all

z ∈ Rn and u ∈ R:

0 < a ≤

∣∣∣∣∣∣∂gi(x, u)
∂xi+1

∣∣∣∣∣∣
x=z

,
∣∣∣∣∣∂h(x)
∂xi

∣∣∣∣∣
x=z
≤ b < ∞, i = 1, . . . , n − 1.

Notations 1. Let denote the Jacobian matrices of g and h calculated at the point z ∈ Rn

with respect to x as
∂g
∂x

(z, u) and
∂h
∂x

(z), respectively. By using them, the observability

(Jacobian) matrix Ω(z, u) can be represented as follows

Ω(z, u) =

dΘ(x, u)
dx

∣∣∣∣∣∣
x=z

 =



∇h(x, u)

∇Lgh(x, u)
...

∇Ln−1
g h(x, u)
...



∣∣∣∣∣∣
x=z

.

By defining G(z, u) and H(z) as Gi j(z, u) =
∂gi

∂x j
(z, u) and Hi(z) =

∂h
∂xi

(z), i, j = 1, . . . , n,

the observability matrix can be written as

Ω(z, u) =



H(z, u)

H(z, u)G(z, u)
...

H(z, u)Gn−1(z, u)
...


.
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Note that the function g(x, u), which is consisted with Pade approximants, is globally

Lipschitz (see Appendix B).

Before starting the observer design, it is necessary to show that this non-linear system

satisfies the observability condition, which means the Jacobian matrix must be of full

rank. By considering the Notation (1), the following matrices can be obtained,

H(z) = C̄ = ρ1

[
1 0 0

]
, G(z, u) =


G11 G12 0

G21 G22 G23

0 G32 G33

,

where the defined G functions are calculated as

G11 = −d1, G12 =
(
3γ1γ2ρ

3
2z2

2e−(γ2ρ
3
2z3

2) + γ3γ4ρ2e−(γ4ρ2z2))/ρ1,

G21 = (ν1ν2ρ1e−(ν2ρ1z1))/ρ2, G22 = −d2, G23 =
(
ν3ν4ρ3e−(ν4ρ3z3) + ν5ν6ρ3e−(ν6ρ3z3))/ρ2,

G32 =
(
α1α2U2ρ2e−(α2ρ2z2))/ρ3, G33 = −d3 +

(
α3α4ρ3e−(α4ρ3z3) + α5α6ρ3e−(α6ρ3z3))/ρ3.

The observability (Jacobian) matrix can be written as

Ω(z, u) =


H(z)

H(z)G(z, u)

H(z)G2(z, u)

 = ρ1


1 0 0

G11 G12 0

G2
11 + G12G21 (G11 + G22)G12 G12G23

,

where Ω(z, u) is a lower triangular matrix and nonsingular for all z ∈ R3 and u ∈ R

which means it is full rank and invertible matrix. Therefore, the system (6.5) is said to

be uniformly observable with a single output.

A high gain observer of the system (6.6) can be written as

.

x̂(t) = g(x̂(t), u(t)) + ϕ(u(t)) + R + Kθ(y(t) − ŷ(t))

ŷ(t) = h(x̂(t)) = C̄ x̂(t) = ρ1 x̂1(t). (6.7)

In the observer system (6.7), x̂ denotes the estimate of state x, and the gain matrix Kθ

can be chosen in many different ways. In this study, we apply and compare two different

high gain matrices, namely constant and state-dependent.
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The first one is, Kθ = S −1(θ)C̄T , which can also be defined in the form Kθ = ∆−1
θ K,

where the ∆θ is block-diagonal as ∆θ = diag
[
1
θ
,

1
θ2 ,

1
θ3

]
and K is chosen a column

vector as K = col(C1
3,C

2
3,C

3
3), as defined in Subsection 2.5.1. A symmetric positive

definite matrix S θ, which is the solution of the algebraic equation,

−θS θ − AT S θ − S θA + CTC = 0,

for θ large enough, θ ≥ 1, is of the same format as given in Subsection 2.5.1.

Note that the vector K does not have to be of the form defined above. However, the

selected vector K should ensure the stability of the matrix (A − KC̄), where C̄ and A

matrices are

C̄ = ρ1

[
1 0 0

]
and A =


0

∂g1

∂x2
0

0 0
∂g2

∂x3

0 0 0


=


0 G12 0

0 0 G23

0 0 0

.

By choosing the column vector K as K = col(C1
3,C

2
3,C

3
3) and θ = 3, we obtain the

simulations as shown in Figure 6.4 and 6.5.

Figure 6.4 shows that high gain observer system (6.7) with a constant gain can capture

behaviour of both systems (6.1) and (6.5), which means that systems with Hill and

exponential functions behave similarly. The concentrations AP1 and LFY and their

observers are compared in Figure 6.5, where the convergence time of the observers can

be seen in detail.
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Figure 6.4: Observer design of AP1, LFY and S OC1 in system (6.1) on the left and
(6.5) on the right.
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Figure 6.5: Observer design of AP1 and LFY in system (6.1) on the left and (6.5) on
the right.

Indeed, the observer error ε(t) = x(t) − x̂(t) is calculated as

.
ε =

.
x −

.

x̂ =g(x, u) − g(x̂, u) − Kθ(y − ŷ)

=g(x, x̂, u) − ∆−1
θ KC̄ε, (6.8)

where g(x, x̂, u) = g(x, u) − g(x̂, u), (y − ŷ) = (h(x) − h(x̂)) = C̄(x − x̂) and the observer

error converges exponentially and asymptotically towards zero.

Now, we show that system (6.7) is an exponential observer for the system (6.6)

Theorem 6.1. Assume that system (6.6) is bounded and satisfies the Lipschitz condition.

Then, system (6.7) is an exponential observer for the system (6.6) for θ large enough.
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Proof. By setting, ε = (x − x̂) and considering the assumption (2), we have

gi(x, x̂, u) = gi(xi+1, zi, u) − gi(x̂i+1, ẑi, u)

= gi(xi+1, zi, u) − gi(x̂i+1, zi, u) + gi(x̂i+1, zi, u) − gi(x̂i+1, ẑi, u)

=
∂gi

∂xi+1
(δi, zi, u)(xi+1 − x̂i+1) + gi(x̂i+1, zi, u) − gi(x̂i+1, ẑi, u)

= Aε + Ḡ, i = {1, 2}, (6.9)

where g is continuous on [x̂, x] and differentiable on Co(x̂, x) defines the convex hull of

the set {x̂, x} as

z ∈ Co(x̂, x) = {x̂ + δε, δ ∈ [0, 1]},

which means limx̂→x δ = 0. Here,A and Ḡ are the form

A =


0

∂g1

∂x2
0

0 0
∂g2

∂x3

0 0 0


and Ḡ =


h(x̂1, z0, u) − h(x̂1, ẑ0, u)

g1(x̂2, z1, u) − g1(x̂2, ẑ1, u)

g2(x̂3, z2, u) − g2(x̂3, ẑ2, u)

.

By substituting this result into equation (6.8), we find

.
ε =Aε + Ḡ − ∆−1

θ KC̄ε

=(A− ∆−1
θ KC̄)ε + Ḡ. (6.10)

Transforming the error term as ε̄ = ∆θε, which yields

.
ε̄ =∆θ

.
ε = ∆θ(A− ∆−1

θ KC̄)∆−1
θ ε̄ + ∆θḠ, (6.11)

where, ε = ∆−1
θ ε̄. Since, ∆θA∆−1

θ = θA and C̄∆−1
θ = θC̄, we find

.
ε̄ =θ(A− KC̄)ε + ∆θḠ. (6.12)

Since K is selected for (A− KC̄) to be Hurwitz, there exists a SPD matrix P such that
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(A− KC̄)T P + P(A− KC̄) = −I.

If we consider a Lyapunov function V(ε̄) = ε̄T P
.
ε̄, we find

.

V(ε̄) =
.
ε̄

T
Pε̄ + ε̄T P

.
ε̄ = 2ε̄T P

.
ε̄

= − θ‖ε̄‖2 + 2ε̄T P(∆θḠ). (6.13)

From the assumption (2), it is known that the matrix Ḡ is bounded . Hence for θ large

enough, there exist a positive constant c0, independent of θ such that

‖∆θḠ‖ ≤ c0ε̄,

which gives,

.

V(ε̄) ≤ − θ‖ε̄‖2 + 2c0λmax(P)‖ε̄‖2

= (2c0λmax(P) − θ)‖ε̄‖2, (6.14)

where λmax(P) is assumed to be the largest eigenvalue of P. By choosing 2c0λmax(P) <

θ, we find
.

V(ε̄) < 0, which verifies the assertion that system (6.7) is an exponential

observer for system (6.6), with Kθ = ∆−1
θ K. �

The following simulations are obtained by considering the observer errors (6.8) of sys-

tem (6.5) and comparison with the errors of system (6.1) for the concentrations AP1,

LFY and S OC1.
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Figure 6.6: Observer error of AP1, LFY and S OC1 in system (6.1) on the left and (6.5)
on the right. The magnitute of errors are in nM.

As can be seen in Figure 6.6, errors between systems and their observers converge to

zero around 1.5 days for both Hill and exponential functions of the variable AP1 and

LFY , but the convergence takes around 60 days for the variable S OC1. This results,
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obtained with a constant high gain observer, will be compared with the state-dependent

high gain observer.

The second type of gain matrix Kθ, which gives a state-dependent high gain observer,

can be chosen as

Kθ = Ω−1(x̂, u)∆−1
θ K,

where the Ω−1(x̂, u) is the inverse of the observability matrix. This gives a new observer

error of the system (6.6) as

.
ε =g(x, u) − g(x̂, u) − Kθ(y − ŷ)

=g(x, x̂, u) − Ω−1(x̂, u)∆−1
θ KHε

=(G(x̂, u) + r − Ω−1(x̂, u)∆−1
θ KH)ε, (6.15)

where this observer error must also converges exponentially and asymptotically towards

zero. Here, G(x̂, u) and r are obtained as

g(x, u) − g(x̂, u) =g(x, x̂, u)

=G(z, u)ε −G(x̂, u)ε + G(x̂, u)ε

=rε + G(x̂, u)ε,

where G(z, u) comes from the differential mean value theorem,

g(x, x̂, u) = g′(z, u)ε = G(z, u)ε.

Note that g is continuous on [x̂, x] and differentiable on Co(x̂, x) defines the convex hull

of the set {x̂, x}

z ∈ Co(x̂, x) = {x̂ + rε, r ∈ [0, 1]},

which means limx̂→x r = 0 for r = G(z, u) −G(x̂, u).
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Let us show that the system (6.7) is an exponential observer for the system (6.6) while

Kθ = Ω−1(x̂, u)∆−1
θ K. Transforming the error term as ε̄ = ∆θΩε, the new error can be

written as

.
ε̄ = ∆θ

.

Ω(x̂, u)ε + ∆θΩ(x̂, u)
.
ε

= ∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ ε̄ + ∆θΩ(x̂, u)G(x̂, u)Ω−1(x̂, u)∆−1

θ ε̄

+ ∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ ε̄ − KHΩ−1(x̂, u)∆−1

θ ε̄

= ∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ ε̄ + ∆θA∆−1

θ ε̄ + ∆θB(x̂, u)∆−1
θ ε̄

+ ∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ ε̄ − KC̄∆−1

θ ε̄,

where Ω(x̂, u)G(x̂, u)Ω−1(x̂, u) = A + B(x̂, u) and HΩ−1(x̂, u) = C̄.

Since, ∆θA∆−1
θ = θA and C̄∆−1

θ = θC̄, we find

.
ε̄ = θ(A− KC̄)ε̄ + ∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ ε̄ + ∆θB(x̂, u)∆−1

θ ε̄

+ ∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ ε̄.

Remember that (A − KC̄) is Hurwitz and therefore, there exists a SPD matrix P such

that

(A− KC̄)T P + P(A− KC̄) = −I.

Now, if we consider a Lyapunov function V(ε̄) = ε̄T P
.
ε̄, we find

.

V(ε̄) =
.
ε̄

T
Pε̄ + ε̄T P

.
ε̄ = 2ε̄T P

.
ε̄

= − θ‖ε̄‖2

+ 2ε̄T P
(
∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ + ∆θB(x̂, u)∆−1

θ + ∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ

)
ε̄

≤ − θ‖ε̄‖2

+ 2‖Pε̄‖
(
‖∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ ‖ + ‖∆θB(x̂, u)∆−1

θ ‖ + ‖∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ ‖

)
‖ε̄‖.

(6.16)
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The matrices
.

Ω(x̂, u)Ω−1(x̂, u) and Ω(x̂, u)rΩ−1(x̂, u) are lower triangular. Therefore,
.

Ω(x̂, u)Ω−1(x̂, u) + Ω(x̂, u)rΩ−1(x̂, u) is also lower triangular. Moreover, B(x̂, u) and
.

Ω(x̂, u) are bounded. Hence, by assuming θ ≥ 1, there exist a positive constant c1,

independent of θ such that

‖∆θ

.

Ω(x̂, u)Ω−1(x̂, u)∆−1
θ ‖ + ‖∆θB(x̂, u)∆−1

θ ‖ + ‖∆θΩ(x̂, u)rΩ−1(x̂, u)∆−1
θ ‖ ≤ c1.

This gives,

.

V(ε̄) ≤ − θ‖ε̄‖2 + 2c1‖Pε̄‖‖ε̄‖

≤ − θ‖ε̄‖2 + 2c1λmax(P)‖ε̄‖2, (6.17)

where λmax(P) is assumed to be the largest value of P. While Kθ = Ω−1(x̂, u)∆−1
θ K, the

system (6.7) is an exponential observer for system (6.6) if and only if the inequality

above is less than zero, which can be obtained by assuming 2c1λmax(P) < θ.

Figure 6.7: Observer design of AP1, LFY and S OC1 in system (6.5) and error results
while gain matrix is defined as Kθ = Ω−1(x̂, u)∆−1

θ K with θ = 3. The magnitute of all
concentrations and errors are in nM.
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Simulations in Figure 6.7, obtained by using Matlab Simulink, shows that the state-

dependent high gain observer design can capture the desired behaviour faster than the

previous observer design (constant high gain observer), especially for S OC1 variable

which is almost 20 times faster.

6.3 Control design of the Arabidopsis flowering GRN

The behaviour of biological systems can be controlled by changing inputs, which are

the certain physical quantities of systems and measuring the outputs, which are the

physical variables of systems and represent the behaviour of systems. It is necessary

that an input has direct effect on an output. In other words, an output of a system must

be described with a function of the state where the input must be incorporated in this

function [Kalman, 1959]. In our dynamical model AP1 is the output of the system

which is controlled by input FT .

The behaviour of flowering process can be represented with differential equations mod-

els as given in system (3.1), (4.1) and (4.2), and exact time period of the flowering can

be controlled with a state feedback control design. As mentioned before, the flowering

process of Arabidopsis thaliana starts with initial (sub-threshold) value of AP1 and ends

while AP1 reaches its non-trivial stable steady state value.

The main aim of this section is to obtain a desired AP1 values depending on time by

regulating it to a reference value AP1re f while the other variables are bounded. To

obtain a desired solution for AP1, it is needed to design the controller FT , which is the

input factor of the system, such that the output goes to its steady state value while time

goes to infinity, that is,

y = x1(t)→ x̃1 when limt→∞ |x1(t) − x̃1| = 0 while x2 and x3 are bounded.

It is clear that x̃1, which refers to the reference point, AP1re f , in the network, also rep-

resents the steady state value of x1, characterized as x̄1 before. In accordance with this
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purpose, state feedback controllers are designed for the simplified models of Arabidop-

sis Flowering GRN, given in system (6.5), which was constructed by transforming Hill

functions in system (4.1) into exponential ones as

ẋ1 = g1(x1, x2, u) = −d1x1 − g1(x2) + ϕ1(u) + R1,

ẋ2 = g2(x1, x2, x3, u) = −d2x2 − g2(x1) − g3(x3) + R2,

ẋ3 = g3(x, u) = −d3x3 − g4(x2)U2(u) − g5(x3) + ϕ2(u) + R3, (6.18)

where the input, constant and exponential g functions are defined as

ϕ1(u) =
U1(u)
ρ1

=
β3u

ρ1d1(K3 + u)
, ϕ2(u) =

α1U2(u)
ρ3

,

R1 = (γ1 + γ3)/ρ1, R2 = (ν1 + ν3 + ν5)/ρ2, R3 = (α3 + α5)/ρ3,

g1(x2) = (γ1e−γ2ρ
3
2 x3

2 + γ3e−γ4ρ2 x2)/ρ1, g2(x1) = (ν1e−ν2ρ1 x1)/ρ2,

g3(x3) = (ν3e−ν4ρ3 x3 + ν5e−ν6ρ3 x3)/ρ2, g4(x2) = (α1e−α2ρ2 x2)/ρ3,

g5(x3) = (α3e−α4ρ3 x3 + α5e−α6ρ3 x3)/ρ3.

Here, U1, U2 input functions and the other constant variables are the same as in previous

sections.

If we consider the first equation of system (6.5) at the steady state, the input function

that can be written depends on AP1re f (x̃1) as

˙̃x1 = −d1 x̃1 − g1(x2) + ϕ1(u) + R1 = 0, (6.19)

and it can be represented as a function of x2 by the following calculation results.

ϕ1(u) =
U1(u)
ρ1

=
β3u

ρ1d1(K3 + u)
= g1(x2) + d1 x̃1 − R1.

which gives,

ũ(x2) =
d1ρ1K3[g1(x2) + d1 x̃1 − R1]
β3 − d1ρ1[g1(x2) + d1 x̃1 − R1]

.
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Figure 6.8: State feedback control design for system (6.5) where x, u, x̄ and ũ represent
the state, input, reference value of output and controlled input variables, respectively.

It is necessary to be ensure that ϕ1(u) should be less than d1 x̃1 due to x2 and x3 remaining

bounded, otherwise the controller will move to infinity.

By replacing ũ into system (6.18), we find

ẋ1 = −d1x1 − g1(x2) + ϕ1(ũ(x2)) + R1,

ẋ2 = −d2x2 − g2(x1) − g3(x3) + R2,

ẋ3 = −d3x3 − g4(x2)U2(ũ(x2)) − g5(x3) + ϕ2(ũ(x2)) + R3, (6.20)

where

ϕ1(ũ(x2)) =
U1(ũ(x2))

ρ1
, and ϕ2(ũ(x2)) =

α1U2(ũ(x2))
ρ3

,

with

U1(ũ(x2)) =
β3ũ(x2)

d1(K3 + ũ(x2))
and U2(ũ(x2)) =

α1

ρ3

d1K3U1(ũ(x2))
[β3K10 + d1(K3 − K10)U1(ũ(x2))]

.

This system and the effect of control action ũ on the input u can be simulated by using

Matlab Simulink as in Figure 6.9. The control action can obtain the necessary input

variable around 3 days even if it is initially unknown.
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Figure 6.9: Simulation results of state feedback control design in system (6.5) for AP1,
LFY , S OC1 and the effect of control action on the input (u) FT , respectively.

A representative diagram of the high gain observer-based state feedback control design

for system (6.20) with gain matrix Kθ = Ω−1(x̂, u)∆−1
θ K is shown in Figure 6.10.

Figure 6.10: High gain observer-based state feedback control design of the system
(6.20) where the input u represents FT .
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The simulation results of this system while θ = 3, are obtained with Matlab Simulink

as in following Figure 6.11.

Figure 6.11: Simulation results of observer-based state feedback control design of the
system (6.20).
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6.4 Conclusion

In conclusion, the observer model of the simplified system was designed with constant

and state-dependent high gain observers to estimate the unmeasured variables S OC1

and LFY by using the measured input, FT , and output, AP1, variables. To obtain an

observable system where the functions are globally Lipschitz, the Hill functions in the

simplified system was translated to exponential ones with Pade approximants. This

is because, simplified systems with Hill functions are locally Lipschitz, not globally.

The results of constant and state-dependent high gain observers were compared with

both Hill and exponential functions. The constant gain observer, which is obtained

independent from the state variables, shows that it can capture the simplified model, but

this comes in a long time for S OC1 variable around 60 days while AP1 and LFY can

be captured in a day. On the other hand, high gain observer, which depends on the state

variable, can estimate the simplified model shorter than the constant gain. For example,

S OC1 variable is estimated 20 times faster than constant gain, which is around 3 days.

The comparison of the results can be seen in Figures 6.6 and 6.7.

In the second part of this chapter, a state feedback controller was designed for the sim-

plified system (6.5) to regulate the output, AP1, variable with a specific (steady state)

reference value AP1re f by controlling the input, FT , variable. Moreover, simulation

results of observer-based state feedback control design of this system was performed.



Chapter 7

Conclusions, results and future

works

7.1 Introduction

This thesis focused on analysing the behaviour of Arabidopsis Thaliana flowering GRN

by considering steady states and their stability in mathematical models consisting of a

large deterministic delay differential equations system and its simplified deterministic

and stochastic versions. One of the deterministic simplified model was redesigned with

an observer to estimate non-measured variables in the system. The behaviour of the

system was then modified by controlling the input variable which ensures a target output

value is obtained and that flowering conditions for Arabidopsis are met.

This chapter summaries the methods applied in the thesis as well as the presented results

and gives possible future works.

122



Conclusion 123

7.2 Conclusions and summary of results

The thesis started by introducing the importance of system biology and gene regula-

tory networks. Initially, the background of gene regulatory networks and the necessary

mathematical techniques, used to obtain the results, were introduced. Then, a review

of the mathematical models and some of the important methods used to understand the

behaviour of a gene regulatory network were given in Chapter 2.

In Chapter 3, a general review for the flowering process of Arabidopsis Thaliana was

provided. The complexity of the Arabidopsis Thaliana flowering GRN and the impor-

tant genes for the flowering processes were introduced. Moreover, an existing dynamic

model of Arabidopsis flowering time GRN, introduced by Valentim et al. [2015] with

delay differential equations, was considered to analyse the behaviour of the network

mathematically. The steady state estimation of this deterministic model was analyti-

cally studied and as a results of this study, a 17th degree polynomial was obtained. The

steady states were numerically calculated using the estimated parameters, obtained by

[Valentim et al., 2015] with polynomial data fitting method in Matlab. The analysis

has shown that the system has a unique positive stable steady state and that the time

for which AP1 reaches the steady state is an agreement with the observed flowering

time between 20 and 30 days. The linear stability analysis of the dynamical model was

performed, and the Routh-Hurwitz stability criterion was used to provide local stability

conditions which characterise the existence of this stable steady state. As a result, the

local stability of the dynamic model at the steady state depends on its parameter and

concentration values. However, it does not depend on the initial values. The thresh-

old values of the concentrations and identification of the parameter ranges for stability

cannot be obtained directly from this dynamic model.

Chapter 4 focused on the deterministic simplified versions of the full dynamic model of

Arabidopsis flowering GRN. In this chapter, the simplifications of the model were pro-

posed based on decoupling of the original GRN to motifs, and they were described with

three and two differential equations. Stability analysis of these simplified models were

studied to investigate the parameter ranges for necessary and sufficient stability condi-

tions and obtain threshold values of concentrations for the flowering process. Initially,
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the genes AP1, LFY (important floral meristem identity genes) and S OC1 (transcription

factor), which have the most important effect for the flowering process, were introduced.

By decoupling the possible concentrations in the full model, a simplified system with

three differential equations, which contains the concentrations AP1, LFY and S OC1,

was obtained. The importance of these concentrations for the flowering process was

confirmed with numerical calculations. Unfortunately, the same complexity of the full

model was seen in this simplified system. Therefore, further model simplifications were

performed to obtain a system of two differential equations which contains the dynam-

ics of key floral meristem identity genes AP1 and LFY . These were introduced within

network motifs to understand the essential characteristics of the floral transition. The

effects of the input variables on both AP1 and LFY and also separately on one of them

were analysed. Parameter ranges of necessary and sufficient conditions for the existence

of positive steady states and stability were estimated. The best matching input variables

in the motifs with full models were obtained by considering the parameters given in

Table 3.2 and the derived steady state values in Table 3.4, which are identical to that of

the full model. The results were used for the numerical investigation of the stability and

steady states solutions. Analytical and numerical solutions gave us three equilibrium

points for the motif, where one of them is trivial and was not considered for stability

analysis due to its lack of biological meaning in terms of concentrations. The other two

of them were non-trivial steady states, found as unstable (lower threshold value) and

stable (upper threshold value). The range from trivial stable to unstable solution gives

us the non-flowering process of Arabidopsis. This shows that the flowering process of

the plant can be seen while the sufficient environmental conditions were satisfied. In

other words, flowering of this plant can be seen after the concentration values reach

their sufficient levels. As a result, while the full model was introduced to analyse the

flowering process of Arabidopsis, motifs were constructed to obtain the necessary ini-

tial conditions (lower threshold values) of the concentrations for triggering the process.

This information cannot be obtained from the full model.

Stochastic motifs, which were extended from the deterministic ones by adding additive

and multiplicative white noise terms, were developed to obtain a more realistic descrip-

tion of gene effects and their interactions on the behaviour of Arabidopsis flowering in
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Chapter 5. The effects of stochasticity on the steady state regimes were observed. The

importance of this study is that it represents the first stochastic analysis of the behaviour

of Arabidopsis flowering GRN.

In the first part of Chapter 5, the additive white (constant) noise was integrated into reac-

tion rates by taking into account the rate of each variable. The changes of behaviour in

this stochastic motif were presented with a fixed constant noise of 5% on a time-varying

histogram. This histogram was constituted by performing 100 times implementation

around unstable steady state points. The numerical solutions were obtained using the

Euler-Maruyama method. They show that the flowering behaviour of the system does

not only depend on the initial values but also on the amount of noise. The noise can

change the behaviour of the stability region from non-flowering to flowering through a

stability switch, even if the initial values are lower than the threshold values. Success-

ful flowering results were illustrated numerically by varying the amount of noise in the

0 − 20% range. This illustrates the appropriateness of stochastic models for biological

systems and demonstrates the ability and necessity of studying stochastic models for

Arabidopsis flowering.

In the second part of Chapter 5, the multiplicative white (state depend) noise was inte-

grated into each reaction rate by assuming that while the behaviour of stochastic system

depends on the noise, the amplitude of the noise also depends on the state of system.

The stability properties of stochastic motif (5.6), constructed with the multiplicative

white noise, was investigated and compared with the deterministic one. The necessary

conditions (range of noise and concentrations) of this stochastic motif were analytically

determined with the help of Barbashin-Krasovski theorem. In this study, Lyapunov

function method was used and stability domain of the trivial solution, which is non-

flowering area of the stochastic model, was considered. Numerical simulations of this

stochastic motif were presented. The relation of non-flowering domain with the concen-

tration LFY and noise was illustrated. As a result of this chapter, it can be concluded

that the stability of non-negative equilibriums depend on concentrations, noise terms

and parameters of the stochastic system.
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In Chapter 6, observer and control design of the simplified deterministic model with

three equations was studied. In the observer design section, the simplified system with

Hill functions, which are locally Lipschitz, was reconstructed with exponential func-

tions, which are globally Lipschitz continuous, by using Pade approximants. It was

shown that the simplified system with exponential functions satisfies the observable

condition. Two different observers (constant and state-dependent) were designed to es-

timate the unmeasured variables by using measured (input and output) ones, and their

results were compared. Their stability conditions were obtained by using the Lyapunov

function method. It was shown that state-dependent high gain observer can capture the

system behaviour faster than constant high gain observer. In control design section, a

state feedback controller of the simplified system with exponential functions was de-

signed to obtain its controlled version, which helps to regulate the output variable to

obtain a desired (reference) output by controlling the input variable depending on the

states of the system. The reference value of the system was considered as the steady

state value of the output to obtain the numerical simulations. Moreover, simulation re-

sults of an observer-based state feedback control design was also given at the end of the

chapter.

7.3 Future works

In this study, the stochastic differential equation approach was applied only on motifs.

This is because, the initial values of the deterministic system were estimated from ana-

lytical calculations and the behaviour of the motifs can be switched depending on both

initial and noise values. On the other hand, it was not the case in full and simplified

deterministic models due to there being only one positive steady state in these systems,

which only represents the flowering of Arabidopsis and independent from the environ-

mental conditions. However, we know that these conditions, which have an effect on the

initiation of the flowering (inputs), are also important for the flowering of the Arabidop-

sis. Therefore, the necessary conditions (threshold values) for the successful flowering

should be estimated. As a result, the full and simplified models were only constructed

with the initial values, which are required for flowering. Here, the stochastic switching
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is not a case for these models. Therefore, we assume that it is not necessary to obtain

stochastic models for the full and simplified models. On the other hand, the simplified

model and its motifs are constructed with ODEs. These models can also be constructed

with DDEs by using the input delay as used in full model.

Furthermore, after having a delayed motif model, this can be transformed to the stochas-

tic delay differential equations (SDDEs) by incorporating noise terms into the determin-

istic systems, and the behaviour of these SDDEs can be observed and be compared with

stochastic ODEs.

In this study we studied an observer and control design of the simplified determinis-

tic model with three differential equations. The full delay differential equations model

(3.1) and its ODE version can be designed with an observer and control theory method

by considering the outputs as AP1 and LFY or only AP1 to estimate the other concen-

trations while the input is FT . Observer and control design of motifs with deterministic

and stochastic differential equations are still an open area for future works. Finally,

the simplified model with delay differential equations and both the deterministic and

stochastic motif models with delay and without delay versions can also be designed

with an observer and control theory method as shown in Table 7.1.

Models Deterministic Stochastic Observer and Control
design

Full ODE Has been studied Not necessary Open for future work
Full DDE Has been studied Not necessary Open for future work

Simplified ODE Has been studied Not necessary Has been studied
Simplified DDE Open for future work Not necessary Open for future work

Motif ODE Has been studied Has been studied Open for future work
Motif DDE Open for future work Open for future work Open for future work

Table 7.1: The studies, which have been studied to analyse behaviour of the Arabidop-
sis flowering GRN, are represented with yellow colour. The green colours represent
possible future work. The red colour indicates steps which are unnecessary given the

purpose of the full and simplified models.

The work in this thesis gives an opportunity to develop the idea of observing the be-

haviour of the Arabidopsis Thaliana flowering regulatory network with many different

ways by modifying the given dynamical models. In the following subsections, some of
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the modelling methods will be introduced for future studies, where these can be applied

to observe behaviour of the Arabidopsis flowering.

7.3.1 Deterministic simplified models and motifs with delay

differential equations

In this study, the simplified model (4.1) was constructed by decoupling of some concen-

trations, and the input variable FT was considered already in the meristem of Arabidopsis

Thaliana, which means no time delay was considered for the input variable. In other

words, we assumed that the input variable FT does not have to move from leaf to meris-

tem. However, it can also be considered that the input variable FT comes from leaf to

meristem of the plant as used in the full model (3.1). Therefore, the simplified model

can be reconstructed by considering the delay inputs to design within a delay differen-

tial equations system. This system can be represented by considering the dashed arrows

in Figure 4.2 as delay representation of the simplified network and can be reformulated

by considering the delay input functions as

U1 =
β3u(t − τ)

d1(K3 + u(t − τ))
and U2 =

u(t − τ)
u(t − τ) + K10

.

Similarly, the motifs can also be reconstructed with delay differential equations by tak-

ing inconstant input variables into account. They are represented using delayed func-

tions as

F1 =
u(t − τ)

Ki + u(t − τ)
and F2 =

βu(t − τ)
K j + du(t − τ)

,

and can be seen with the dash lines in Figure 4.4. Here, Ki, K j, β and d are constant

variables.
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7.3.2 Stochastic motifs with delay differential equations

It was obtained from the numerical calculations that there exists only one positive

steady state in the full system (3.1), which is stable, and this shows that the flower-

ing of Arabidopsis Thaliana gene regulatory network does not depend on the initial or

threshold values of the concentrations. This means that the dynamical model represents

only the flowering of the plant with given initial values, where they are assumed to have

enough value to observe the flowering process. Similarly, the simplified version of the

full model, given in (4.1), was constructed with the same assumption and initial values.

However, in the reality, flowering of all plants depend on the environmental conditions.

The flowering process can be observed while all the concentrations have enough values,

and they can be obtained with the interaction of the input variable FT in the meristem.

The flowering of Arabidopsis Thaliana depends on the location, light, heat and weather

conditions, etc. After all environmental conditions are satisfied, it can be seen that the

leaf of the Arabidopsis starts growing and the FT concentration can be observed in

the leaf. After FT reaches its threshold value in the leaf, it starts to move through the

meristem. This process is assumed almost a half day in the full model [Valentim et al.,

2015]. When it reaches to there, the flowering process starts associated with the inter-

action between FT and other genes. Here, obtaining this threshold value of FT in the

meristem is critically important to determine the threshold value of other genes. With

in this idea, the motifs, constructed with two ordinary differential equations, were ob-

tained. We studied a specific motif (4.2) which has the best matching input variable for

the full system. This motif was analysed in both deterministic and stochastic perspec-

tive. However, this motif can also be analysed with using a delayed input variable in

both perspective, as introduced introduced the previous subsection.
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Appendix A

Table of simplified system

parameters

Regulatory interaction Reaction Parameters Value/Unit Parameters Value/Unit

V1 99.8 nM∗min−1 S 1 9.82 nM

LFY → AP1 ν1 − ν2 V2 42.5 nM∗min−1 S 2 20.4 nM

S 3 94.01 nM

FT → AP1 U1 β3 10 nM∗min−1 K3 10.1 nM

AP1→ LFY ν1 V3 22 nM∗min−1 S 4 346 nM

V4 2.4 nM∗min−1 S 5 842 nM

S OC1→ LFY ν4 − ν5 V5 79 nM∗min−1 S 6 101.011 nM

S 7 126.375 nM

LFY → S OC1 ν6 V6 1598.976 nM∗min−1 S 8 8.518 nM

S 9 0.1422 nM

FT − FD→ S OC1 U2 K10 4.8 nM

V7 63.7003 nM∗min−1 S 10 695 nM

S OC1→ S OC1 ν7 − ν8 V8 51.7565 nM∗min−1 S 11 101.182 nM

S 12 147.75 nM

AP1 d1 0.86 min−1

LFY d2 0.017 min−1

S OC1 d3 0.11 min−1

Table A.1: Model parameters, calculated from decoupling.
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Global Lipschitz condition of

Pade approximants

Here, we show that a function g(x, u), which is consisted with Pade approximants, sat-

isfies the global Lipschitz condition, is defined in Assumption (1).

Theorem B.1. Let g(x, u) = exm
be a Lipschitz function with a positive integer m. For

any |x|, |x̂|, r ∈ R with |x|, |x̂| ≤ r, we have

|g(x, u) − g(x̂, u)| ≤ λ |x − x̂|,

where λ =
derm

dr
is the Lipschitz constant.

Proof. Remember that a Lipschitz function g(x, u) with a Lipschitz constant λ =
derm

dr
can be defined as

|g(x, u) − g(x̂, u)| ≤ λ |x − x̂| =
derm

dr
|x − x̂|.

If we use the identity,

ex =

∞∑
k=0

xk

k!
,
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for any x ∈ R and positive integer k, we have

|g(x, u) − g(x̂, u)| =
∣∣∣exm
− ex̂m ∣∣∣ =

∣∣∣∣∣∣∣
∞∑

k=0

(xm)k

k!
−

∞∑
k=0

(x̂m)k

k!

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑

k=1

(xm)k − (x̂m)k

k!

∣∣∣∣∣∣∣ .
For any x, y ∈ R and positive integer k, the identities below∣∣∣∣∣∣∣

∞∑
k=1

xk − yk

∣∣∣∣∣∣∣ ≤
∞∑

k=1

∣∣∣xk − yk
∣∣∣ and xk − yk =

k∑
i=1

(x − y)xi−1yk−i,

satisfies that ∣∣∣∣∣∣∣
∞∑

k=1

(xm)k − (x̂m)k

k!

∣∣∣∣∣∣∣ ≤
∞∑

k=1

∣∣∣∣∣∣ (xm)k − (x̂m)k

k!

∣∣∣∣∣∣ =

∞∑
k=1

∣∣∣∣∣∣∣ 1
k!

k∑
i=1

(xm − x̂m)(xm)i−1(x̂m)k−i

∣∣∣∣∣∣∣ =

∞∑
k=1

∣∣∣∣∣∣∣ 1
k!

k∑
i=1

(xm)i−1(x̂m)k−i
m∑

i=1

(x − x̂)xi−1 x̂m−i

∣∣∣∣∣∣∣ ≤
|x − x̂|

∞∑
k=1

1
k!

k∑
i=1

∣∣∣(xm)i−1(x̂m)k−i
∣∣∣ m∑

i=1

∣∣∣xi−1 x̂m−i
∣∣∣ .

It is clear that while |x|, |x̂| ≤ r, we have

m∑
i=1

∣∣∣xi−1 x̂m−i
∣∣∣ ≤ m∑

i=1

ri−1rm−i =

m∑
i=1

rm−1 = mrm−1,

and
k∑

i=1

∣∣∣(xm)i−1(x̂m)k−i
∣∣∣ ≤ k∑

i=1

(rm)i−1(rm)k−i =

k∑
i=1

(rm)k−1 = k(rm)k−1.

Therefore,

|x − x̂|
∞∑

k=1

1
k!

k∑
i=1

∣∣∣(xm)i−1(x̂m)k−i
∣∣∣ m∑

i=1

∣∣∣xi−1 x̂m−i
∣∣∣ ≤ |x − x̂|

∞∑
k=1

1
k!

k(rm)k−1mrm−1 =

|x − x̂|mrm−1
∞∑

k=1

(rm)k−1

(k − 1)!
= |x − x̂|mrm−1erm

= |x − x̂|
derm

dr
,

which verify that

|g(x, u) − g(x̂, u)| ≤ λ |x − x̂| =
derm

dr
|x − x̂| .
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