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Abstract 

The morphological analysis of blood smear slides by haematologists or haematopathologists 

is one of the diagnostic procedures available to evaluate the presence of acute leukaemia. This 

operation is a complex and costly process, and often lacks standardized accuracy owing to a 

variety of factors, including insufficient expertise and operator fatigue.  

This research proposes an intelligent decision support system for automatic detection of acute 

lymphoblastic leukaemia (ALL) using microscopic blood smear images to overcome the 

above barrier. 

The work has four main key stages. (1) Firstly, a modified marker-controlled watershed 

algorithm integrated with the morphological operations is proposed for the segmentation of 

the membrane of the lymphocyte and lymphoblast cell images. The aim of this stage is to 

isolate a lymphocyte/lymphoblast cell membrane from touching and overlapping of red blood 

cells, platelets and artefacts of the microscopic peripheral blood smear sub-images. (2) 

Secondly, a novel clustering algorithm with stimulating discriminant measure (SDM) of both 

within- and between-cluster scatter variances is proposed to produce robust segmentation of 

the nucleus and cytoplasm of lymphocytic cell membranes. The SDM measures are used in 

conjunction with Genetic Algorithm for the clustering of nucleus, cytoplasm, and background 

regions. (3) Thirdly, a total of eighty features consisting of shape, texture, and colour 

information from the nucleus and cytoplasm of the identified lymphocyte/lymphoblast images 

are extracted. (4) Finally, the proposed feature optimisation algorithm, namely a variant of 

Bare-Bones Particle Swarm Optimisation (BBPSO), is presented to identify the most 

significant discriminative characteristics of the nucleus and cytoplasm segmented by the 

SDM-based clustering algorithm. The proposed BBPSO variant algorithm incorporates 

Cuckoo Search, Dragonfly Algorithm, BBPSO, and local and global random walk operations 

of uniform combination, and Lévy flights to diversify the search and mitigate the premature 

convergence problem of the conventional BBPSO. In addition, it also employs subswarm 

concepts, self-adaptive parameters, and convergence degree monitoring mechanisms to enable 

fast convergence. The optimal feature subsets identified by the proposed algorithm are 

subsequently used for ALL detection and classification. The proposed system achieves the 

highest classification accuracy of 96.04% and significantly outperforms related meta-heuristic 

search methods and related research for ALL detection. 
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Chapter 1: Introduction 

1.1 Background 

Cancer is a disease in which malignant tumours (neoplasms), which are characterised by 

uncontrolled growth of abnormal cells, destroy and reduce healthy cells, block body functions, 

take nutrients away from the body tissues and spread to other parts of the body (metastasis) 

(Scott & Fong, 2014). Globally, cancer is the second leading cause of death (the first being 

heart disease) and 12.7 million people were diagnosed with cancer, causing an estimated 7.6 

million deaths, in 2008 (Jemal, Bray, & Ferlay, 2011). In 2012 the World Health Organization 

(WHO) reported an estimated 14 million people with new cancer cases and 8.2 million deaths 

from cancer (American Cancer Society, 2015; Stewart & Wild, 2014).  

According to American Cancer Society reports, in the United States, a total of around 

1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in 2016 (Siegel, 

Miller, & Jemal, 2016). Cancer Research UK states that, in the UK, new cases of cancer were 

around 352,197 in 2013, with 161,823 deaths from cancer in 2012 (CancerResearchUK, 

2016a). As an example of developing countries, the National Cancer Institute of Thailand 

reported that there were about 112,392 new cases of cancer and 63,272 deaths from cancer in 

2012 (National Cancer Institute Thailand, 2015; Thairath, 2014). Additionally, the 

international agency for research on cancer, the GLOBOCAN project, estimates that, in India, 

about 1,000,000 new cancer cases and nearly 700,000 deaths occurred in 2012 (Mallath et al., 

2014). The incidences and mortalities of cancers mentioned above reveal that cancer is a 

severe disease and that both the number of new cancer cases and deaths worldwide are still 

increasing. 

In general, the diagnostic rate of cancer occurrence in developed countries is higher than in 

developing countries (Jemal et al., 2011). Scientific evidence reports that most of the cancers 

are caused by smoking, consuming excess alcohol over a long period of time, infectious agents 

and obesity (CancerResearchUK, 2016b). However, screening test programmes for early 

diagnosis of cancers can offer the opportunity of a complete cure or recovery at an early stage 

in a variety of cancers.  

Leukaemia is a type of blood cancer, which affects the white blood cells (WBCs), an important 

part of the immune system that fights infection in human bodies. People with leukaemia 

produce abnormal and malignant WBCs that accumulate in the bone marrow and enter the 

blood stream. The malignant WBCs prevent the production of other important blood cells, i.e. 

mature WBCs, red blood cells (RBCs), and platelets (Campbell, 2011; Turgeon, 2012). 
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Leukaemia can affect people at any age. In December 2015, Cancer Research UK reported 

that “Leukaemia is the ninth most common cause of cancer death in the UK”. In the year 2012, 

around 4,807 people died from leukaemia in the UK. Worldwide, more than 265,000 people 

died from leukaemia in 2012, with a variation in mortality rate across the world 

(CancerResearchUK, 2015a). The American Cancer Society estimates that, in 2016, there will 

be around 24,400 deaths from leukaemia in the US (Siegel et al., 2016). Additionally, in 

Thailand, new leukaemia cases were estimated at around 43,868 in 2012 (National Cancer 

Institute Thailand, 2015). Also, in India, about 32,632 new cases of leukaemia were predicted 

to occur in 2012 (Mallath et al., 2014). In particular, there are two types of acute leukaemia, 

acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). The severity of 

the acute leukaemia is that, without treatment, people diagnosed with acute leukaemia tend to 

die within a few weeks. The risk of a child under the age of 15 being diagnosed with acute 

lymphoblastic leukaemia by an incidence rate per 100,000 population in the United Kingdom 

during the year 2012 - 2014 is 22.1 or about 1 in 4,525 (CancerResearchUK, 2017). Over 80% 

of children survive for at least five years after receiving treatment and therapy following a 

diagnosis of the most common type of childhood leukaemia - ALL (CancerResearchUK, 

2008). Moreover, Shah et al. (2008) showed that the proportion of children cured of leukaemia 

has increased dramatically because they received a diagnosis at an early stage and received 

appropriate treatment according to the state of the disease; however, the period of excess 

mortality associated with acute lymphoblastic leukaemia has increased because of late relapse, 

secondary malignancy and toxicity from treatment.  

Screening or early stage diagnosis of cancer is a crucial process which can lead to a decreasing 

number in the risk of mortality or the development and spread of the disease into other parts 

in the body (Chamberlain & Moss, 1996). In December 2015, Cancer Research UK reported 

that, currently, they do not have a screening test which is reliable enough to test for ALL and 

AML. Thus, there is no UK screening programme for acute leukaemia cancer 

(CancerResearchUK, 2015b, 2015c). However, early diagnosis of acute leukaemia is essential 

for patient recovery and cure from the disease, especially for children (Putzu, Caocci, & Di 

Ruberto, 2014). Moreover, the screening or early stage detection of acute leukaemia can 

identify individuals suspected of having acute leukaemia and then carry out a further full 

investigation with specific accurate equipment so as to identify sub-types of acute leukaemia, 

after which appropriate treatment can be given to the patient. Therefore, the individual will 

have a high possibility of being cured. 
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Figure 1.1 The screening or early stage diagnosis of acute leukaemia of 

individuals from remote areas in order to receive full diagnosis at an 

advanced clinical laboratory for accurate diagnosis and appropriate 

treatments and therapies 

In fact, it may be very difficult or there may be major barriers for people, particularly in the 

resource-limited regions, to travel to main centres to receive a full investigation or specialised 

tests for an acute leukaemia diagnosis (Yeoh et al., 2013). As shown in Figure 1.1, a 

sustainable and possible approach that people or a community can adopt is go to the local 

health care service and get a screening or early stage diagnosis from the physicians. After the 

screening, if the result shows that the individual has suspected acute leukaemia, the individual 

then has the opportunity to go to a facilitated health care service for a full investigation by an 

advanced clinical laboratory to confirm whether they have acute leukaemia or not. Then, if 

the individual is diagnosed with acute leukaemia, a schedule for early appropriate treatments 

or therapies is applied. Therefore, the chance for an individual diagnosed with acute leukaemia 

to be cured or recovered is high. In particular, people in remote or rural areas that are resource-

poor of health care facilities and expertise, can benefit from the early detection of acute 

leukaemia owing to the barriers to receiving good healthcare at a hospital in the main city, 

such as the long distances, limited transportation services and the expense of travelling.  
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With healthcare costs increasing throughout the world, there is a pressing need to reduce the 

cost and complexity of biomedical devices (Smith et al., 2011). Unfortunately, much of the 

high power light microscopy, especially fluorescent imaging and the opportunity for remote 

consultation and electronic record-keeping, remains inaccessible in rural and developing areas 

owing to the high price of medical equipment and training expense (Breslauer, Maamari, 

Switz, Lam, & Fletcher, 2009). The most reliable test for blood diagnosis in a good facilities 

hospital is the flow cytometer test. This test could make morphological analysis under 

microscopic examination obsolete, but the very high costs of the flow cytometer also means 

that morphological analysis is still required. Especially as, in developing countries or in remote 

and rural areas, most hospitals do not have flow cytometers (Escalante et al., 2012). 

Therefore, a sustainable and cost-effective process of screening or early stage detection of 

acute leukaemia across the globe requires morphological analysis of blood test sample slides 

incorporated with an efficient digital diagnosis system by using the quantitative microscopic 

analysis techniques.  

 

1.2 Research Problems and Motivation 

Morphological analysis of blood smear slides by haematologists or haematopathologists is one 

of the diagnostic procedures available to evaluate the presence of acute leukaemia. This 

operation involves a lengthy processing time to produce the results and is a complex and costly 

process. Furthermore, the present results lack standardised accuracy owing to a variety of 

factors, including insufficient expertise or fatigue or imperfection of the samples (Mohapatra 

& Patra, 2010; Piuri & Scotti, 2004; Scotti, 2005, 2006). Additionally, the variability of report 

results by human manual diagnosis is possible due to the heterogeneous morphology of cells 

and poor-quality or dirty, stained blood smear slides (Turgeon, 2012). To limit manual 

operation problems, a digital diagnosis system is required to analyse microscopic blood smear 

images for disease detection and assist experts in the diagnosis of acute leukaemia. 

In recent years, many researchers have developed digital diagnosis systems to analyse 

microscopic blood images for acute leukaemia detection (Buavirat & Srisa-an, 2008; Nasir, 

Mashor, & Hassan, 2013; Piuri & Scotti, 2004) and some researchers have developed 

automated systems for both blood count (Ongun & Halici, 2001; Sinha & Ramakrishnan, 

2003) and acute leukaemia detection (Agaian, Madhukar, & Chronopoulos, 2014; Escalante 

et al., 2012; Khashman & Abbas, 2013; Madhukar, Agaian, & Chronopoulos, 2012; 

Mohapatra, Patra, & Satpathy, 2014; Putzu et al., 2014; Scotti, 2005). Further investigation is 
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still needed for robust and efficient acute leukaemia detection systems. However, many 

researchers have contributed various techniques in the segmentation of WBCs. The majority 

of segmentation techniques focus on the nucleus or nuclei of WBCs (Huang & Hung, 2012; 

Madhloom, Kareem, & Ariffin, 2012a; Meera & Mathew, 2014; Mohapatra & Patra, 2010; 

Nasir et al., 2013; Singhal & Singh, 2014) and use subsequent steps such as feature extraction 

and feature classification to identify acute leukaemia. Rarely have researchers contributed 

segmentation techniques for white blood cell membranes which have both nucleus and 

cytoplasm in each membrane (Mohapatra, Patra, Kumar, & Satpathi, 2012; Mohapatra et al., 

2014; Mohapatra, Patra, & Satpathy, 2012; Putzu et al., 2014). This segmentation is a more 

difficult and complex process than segmentation of only the nucleus or nuclei from the WBCs. 

Also, accurate clinical diagnosis of acute leukaemia needs both parts of the WBC membrane 

to examine the abnormality of the blood smear samples. 

Subsequently, in the analysis of each segmented WBC membrane image, the segmentation 

between nucleus and cytoplasm also needs a robust and reliable technique to separate them. 

This part is also a challenging task to separate the cell nucleus with regular or irregular shapes 

and with similar colours to the colours of cytoplasm from the cell cytoplasm of the WBC 

membrane. Some research applications provide good techniques and are able to achieve good 

reliable results for nucleus and cytoplasm separation (Jiang, Liao, & Dai, 2003; Mohapatra, 

Patra, Kumar, et al., 2012; Mohapatra et al., 2014; Mohapatra, Patra, & Satpathy, 2012). 

Hence, the robustness of existing works is compromised owing to the limitation of the 

separation algorithms (Kuo & Landgrebe, 2004; Li, Kuo, & Lin, 2011). Therefore, nucleus 

and cytoplasm separation still requires further investigation for a robust and reliable method.  

Most of the acute leukaemia detection applications performed the feature extraction task to 

extract the discriminative characteristics from the segmented cell images. There are four 

common groups of features, including shape-based, texture-based, statistical-based and 

colour-based features. Many researchers have proposed a variety of feature sets that they have 

extracted and used in their work and then used the extracted features for the recognition of 

normal and abnormal acute leukaemia systems (Agaian et al., 2014; Madhukar et al., 2012; 

Piuri & Scotti, 2004; Putzu et al., 2014). Some researchers have used the process of feature 

selection, which is needed to reduce the redundancy of the non-significant features and 

increase the efficiency of the recognition system with the significant features (Escalante et al., 

2012; Madhloom et al., 2012a; Mohapatra et al., 2014). The feature selection part is also 

important, and a more challenging task to select the significant discriminative characteristics 

from the raw feature subsets and then use the selected feature subsets to support the 

recognition for acute leukaemia detection with greater accuracy and robustness.  
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The challenges observed by the aforementioned researchers need to be explored. This research 

study focuses on acute lymphoblastic leukaemia, which is the most common in childhood, 

owing to the chance of children who have screening tests for early detection of this malignant 

blood disease, and to be cured, with high survival rates from the appropriate treatments, as 

previously reported. This has motivated us to develop an intelligent decision support system 

for acute lymphoblastic leukaemia detection using microscopic blood smear images. 

This research is to develop a whole decision support system for early detection of acute 

lymphoblastic leukaemia disease. In terms of computerised diagnosis, it does quantitative 

morphological features on healthy and blast lymphocyte cells samples to differentiate among 

them. Therefore, the quantitative measurements of the lymphocytic cell samples can enable a 

robust and efficient early-computerised diagnosis of ALL. Overall, this research comprises of 

the following key stages for the robust automatic detection of ALL, i.e. (1) segmentation 

method for lymphocyte and lymphoblast cells membranes segmentation, (2) clustering 

algorithm based cell nucleus and cell cytoplasm separation, (3) feature extraction, (4) 

evolutionary algorithm based feature selection, and (5) ALL classification (Figure 3.1 of 

Chapter 3 for further details). 

 

1.3 Research Aims and Objectives 

In this research, the main aim is to develop an intelligent decision support system for 

acute lymphoblastic leukaemia detection using microscopic blood smear images. Moreover, 

we also aim at the robust and efficient computerised early stage diagnosis of ALL.  

In order to achieve this goal, the following objectives are established: 

i. Investigate the existing methods, tools, and techniques in microscopic blood 

images analysis for acute lymphoblastic leukaemia detection. 

ii. Design an effective model of an intelligent decision support system for acute 

lymphoblastic leukaemia detection. 

iii. Develop lymphocyte and lymphoblast cells membranes segmentation method for 

microscopic blood smear images. 

iv. Devise improved clustering approach for cell nucleus and cell cytoplasm 

separation. 

v. Extract shape-based, texture-based, colour-based features in microscopic blood 

smear images and utilise these feature sets to differentiate healthy (mature) and 

unhealthy (blast) lymphocyte cells images. 
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vi. Develop an evolutionary optimisation method for feature selection and robust 

ALL classification 

vii. Test and validate the implemented experiments. 

viii. Evaluate the experiments with the publicly available ALL-IDB2 database. 

 

1.4 Research Contributions 

The contributions to the knowledge of this PhD research include: 

i. White blood cell membranes segmentation using a modified marker-controlled 

watershed method and morphological operations (Chapter 3) 

a. White blood cell membranes segmentation for microscopic blood smear sub-

images, particularly lymphocyte (healthy lymphocyte cell) and lymphoblast 

(unhealthy lymphocyte cell) sub-images, using integration of the modified 

marker controlled watershed method and morphological operations, is 

presented. This method can segment and identify a WBC membrane from a 

noisy background sub-image, which is touching and overlapping with red 

blood cells, and retrieve the original RGB pixels colour of the identified cell 

membrane in the white background sub-image. 

 

ii. The separation of nucleus and cytoplasm of the identified lymphocyte and 

lymphoblast cell membrane using a novel stimulating discriminant measures (SDM)-

based clustering technique and the feature extraction from the separated nucleus and 

cytoplasm (Chapter 4) 

 

a. The novel clustering technique to separate nucleus and cytoplasm of 

lymphocytic (lymphocyte and lymphoblast) cell membrane images, namely 

SDM-based clustering, takes both within- and between-cluster scatter 

variants into consideration, and overcomes the limitation of the objective 

function of conventional Fuzzy C-mean (FCM) clustering, which focuses on 

only within-cluster scatter variance. It also outperforms other clustering 

methods, including Linear Discriminant Analysis (LDA) and Fuzzy 

Compactness and Separation (FCS) (Wu, Yu, & Yang, 2005) for robust 

identification of cell nucleus and cell cytoplasm. This clustering technique 

can also produce robust results of the separation nucleus and cytoplasm of the 

cell images. 
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b. A total of 80 features, which include shape-based features, texture-based Gray 

Level Co-occurrence Matrix (GLCM) features, colour-based CIELAB colour 

space features, and the statistical measurement of these feature sets are used 

to discriminate between healthy and unhealthy lymphocyte cells, as well as 

used for acute lymphoblastic leukaemia screening or an early detection 

system with image processing and artificial intelligent machine learning 

techniques. 

 

c. Diverse single and ensemble classifiers are used in the experimental study for 

lymphocyte and lymphoblast detection. In this research study, Dempster-

Shafer ensemble achieves the highest accuracy of 96.72% for bootstrap 

validation, whereas SVM with Gaussian Radial Basis Kernel (RBF) achieves 

an accuracy of 96.67% for 10-fold cross validation. 

 

iii. The identification of the most significant discriminative characteristics of lymphocyte 

and lymphoblast cells to enable efficient ALL recognition using a proposed 

evolutionary Bare-Bones Particle Swarm Optimisation (BBPSO) variant algorithm 

(Chapter 5) 

a. The proposed BBPSO variant algorithm incorporates two meta-heuristic 

search algorithms, i.e. cuckoo search (CS) and dragonfly algorithm (DA), and 

the following schemes such as convergence speed monitoring mechanisms, 

self-adaptive parameter setting and a subswarm concept to reduce premature 

convergence of the conventional BBPSO. 

 

b. The proposed BBPSO variant algorithm combines the multiple search 

strategies, crossover and mutation techniques, and local and global random 

walk operations and enables them to work in a co-operative manner to balance 

between exploration and exploitation to overcome the local optima. 

 

c. In comparison with advanced and classic nature-inspired and meta-heuristic 

algorithms, e.g. Enhanced Leader Particle Swarm Optimisation (ELPSO), 

PSO, BBPSO, Genetic Algorithm, CS and DA, the proposed BBPSO-based 

feature optimisation algorithm has efficient discriminative capabilities in 

which the significant discriminating feature subsets for lymphocytes and 

lymphoblasts are revealed. 
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1.5 Thesis Layout 

The remainder of this research study is structured as follows: 

Chapter 2: Literature Review. This chapter describes the extensive literature review of 

the biological background of leukaemia, acute lymphoblastic leukaemia, laboratory 

diagnosis of acute lymphoblastic leukaemia and the limitations of traditional methods. 

Additionally, an image analysis on blood smear samples using computer technology and 

image processing is provided to indicate the benefit of using a quantitative microscopic 

image analysis to reduce human operation error and assist the experts in diagnosis of the 

acute lymphoblastic leukaemia. Moreover, this chapter also explains the state-of-the-art 

of development for ALL detection, by organising the related literature review under five 

sequential processes, including image segmentation, image separation of nucleus and 

cytoplasm of the cell membrane images, feature extraction of cell nucleus and cell 

cytoplasm of the segmented cells, feature selection of the extracted descriptors to reduce 

the redundancy of the non-significant features, and acute lymphoblastic leukaemia 

identification. Finally, the scope of this research study is also provided. 

Chapter 3: White Blood Cells Membrane Segmentation Using Marker-Controlled 

Watershed Method and Morphological Operations. This chapter introduces the 

segmentation of white blood cells (leukocytes), particularly lymphocyte and lymphoblast 

cells membrane using the integration of a modified marker-controlled watershed 

algorithm, and morphological operations. The microscopic sub-images from ALL-IDB2 

database is applied in this research. The overall system architecture of this PhD research 

and details of materials used in the experiments and evaluations are explained. 

Subsequently, the identification of the WBCs membrane and retrieval of the segmented 

cells’ membrane on the white background sub-image are described. Finally, the 

simulation and evaluation results are also revealed. 

Chapter 4: The Separation of Nucleus and Cytoplasm Using Stimulating 

Discriminant Measures (SDM). In this chapter, we present the separation of cell nucleus 

and cell cytoplasm of the identified WBCs membrane, in particular the lymphocytic 

(lymphocyte and lymphoblast) cell membranes, using the novel SDM clustering 

technique. Additionally, to overcome the limitation of the conventional FCM algorithm, 

the motivation of the proposed SDM algorithm is presented. Moreover, this chapter 

reveals the simulation and evaluation results of the SDM clustering compared with the 

state-of-the-art clustering techniques using the identified 180 lymphocytic cell membrane 

images. The details of lymphocytic cell features chosen from the literature review and 
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consultation with haematologists are also described. The extraction of 80 features from 

nucleus and cytoplasm of the identified lymphocytic images is described. Finally, the 

classification and evaluation of normal/lymphocyte and abnormal/lymphoblast cases for 

the ALL detection using the extracted features with single and ensemble classifiers are 

presented. 

Chapter 5: The Proposed BBPSO Variant for Feature Optimisation. This chapter 

introduces the proposed feature subsets selection method using an optimisation 

algorithm, namely the BBPSO variant algorithm, to select the significant discriminative 

characteristics of the nucleus and cytoplasm of the identified lymphocytic cell images. 

The proposed BBPSO variant algorithm with the two objective functions for fitness 

evaluation is introduced. Moreover, the details of the proposed different search strategies 

which are combined in the BBPSO variant algorithm are explained. This chapter also 

reveals the simulation and evaluation results of the proposed BBPSO variant algorithm 

compared to the state-of-the-art nature-inspired and meta-heuristic algorithms reported 

in the literature. Finally, the recognition results of normal/lymphocyte and 

abnormal/lymphoblast for the ALL detection using the selected feature subsets from the 

BBPSO variant algorithm and other baseline meta-heuristic algorithms are compared and 

presented in this chapter. 

Chapter 6: Conclusion and Future Work. This chapter provides the concluding 

remarks of this research study. The contribution to knowledge of this research in the field 

of acute lymphoblastic leukaemia detection is presented. Finally, this chapter concludes 

with future directions which contain recommendations to overcome potential deficiencies 

of this research and the other application of this work.  
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Chapter 2: Literature Review  

2.1 Introduction 

This chapter presents previous studies that have been conducted in multidisciplinary areas, 

including biomedical engineering, haematology and computer science. The structure of this 

chapter is as follows: Section 2.2 describes the biological background of human blood, blood-

related diseases in humans (such as acute lymphoblastic leukaemia, i.e. the main target disease 

of this research study), laboratory diagnosis of acute lymphoblastic leukaemia and the 

limitations of the traditional methods. Section 2.3 explains the image analysis on blood smear 

samples using computerised technology and image processing techniques. Moreover, state-

of-the-art related work regarding the development for acute leukaemia detection is also 

discussed as the foundation for this thesis. Finally, the scope of this PhD research is presented. 

2.2 Biology of Leukaemia and Computer-Aided Diagnosis for Blood Smear Samples 

2.2.1.  Human Blood 

In the human body, on average, only five of seventy litres of human body fluid are blood 

(Uthman, 2016). It is the fluid, which flows through the heart, blood vessels and tissues. It 

conveys oxygen and nutrients to the tissues and unwanted products to the lungs, liver and 

kidneys, where they can be removed from the body. Blood cells are composed of various types 

of cells suspended in plasma, which is a transparent and pale yellow coloured fluid (Bain, 

2004). The blood cells are mainly of three types, as shown in Figure 2.1, including Red Blood 

Cells (RBCs), or Erythrocytes, which transport oxygen from the lungs to the tissues of the 

body: White Blood Cells (WBCs), or Leukocytes, which are responsible for protecting the 

body or producing antibodies against infections, e.g. viruses, bacteria and fungi, and 

destroying parasites; and Platelets, or Thrombocytes, which are important in the clotting of 

blood and prevent blood loss at locations of injury (Bain, 2004; Hough, 2015a; Moor, Gary, 

Blann & Knight, 2010). Comparing by respective size, the biggest blood cell type is WBC, 

then RBC and the smallest blood cell type is a platelet. 
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Figure 2.1. The three types of blood cells including RBCs, WBCs and Platelets (Labati, 

Piuri, & Scotti, 2011a) 

All types of blood cell are generated from stem cells in the bone marrow, which is a sponge-

like tissue in the middle of bones. The first stage of the blood cells’ development is from stem 

cells. They have several development stages to form each type of blood cell and then they 

enter into the peripheral blood stream which circulates in the body (Hough, 2015a). 

Leukocytes, or WBCs, work like soldiers in the body. They are responsible for defending the 

human body from attack by microorganisms, e.g. bacteria, viruses and parasites. When the 

body is attacked by microbes, the number of WBCs increase dramatically to destroy and 

absorb the attackers. Increased number of WBCs may be present in a number of conditions, 

such as after surgery, during fever and in cancer (Gary et al., 2010).The peripheral blood 

stream contains healthy or mature RBCs, platelets and WBCs.  

In particular, healthy WBCs have nuclei and cytoplasm. Each WBC membrane contains a 

nucleus and cytoplasm. WBCs can be classified by the size and shape of nucleus, and by the 

presence and absence of granules in the cytoplasm, giving them the names of  

polymorphonuclear leukocytes (granulocytes) and mononuclear leukocytes (agranulocytes), 

respectively. The nucleus contains chromatin, which is the material of the chromosomes of 

organisms consisting of protein, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). 

The chromatin is one of the characteristics of WBC used to differentiate between healthy 

(mature) and unhealthy (immature) cells. Generally, WBCs can be categorised in five different 

types: Neutrophil, Eosinophil, Basophil, Monocyte and Lymphocyte. Their functional 
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characteristics, morphological features and percentage of WBC are depicted as a sample in 

Table 2.1 (Gary et al., 2010; Turgeon, 2012). 

Table 2.1. The five different types of white blood cells and their characteristics 

The type of WBCs 
Functional characteristics, morphological features, and 

percentages in human body 

 

Neutrophil 

This type has the functional characteristic of participation in 

inflammation, absorbing bacteria and yeast into the cell body, 

searching for usable nutrients and removing discarded waste. 

It generally has nucleus with two to five lobes, and light purple 

granules in the cytoplasm when stained with Wright-Giemsa. 

This type represents the majority of white blood cells in range 

of forty to seventy per cent. 

 

Eosinophil 

Eosinophil’s function is to defend against infections of 

parasites, participate in allergic reactions, and the release of 

histamine to the body. It has two large lobes of nucleus and 

with coarse red-brown granules in the cytoplasm when stained 

with Wright-Giemsa. The percentage of this type is between 

one and five. 

 

Basophil 

Basophil take part in hypersensitivity responses and release of 

histamine and heparin. The nucleus of this type has two lobes 

and, specifically, the granules of cytoplasm are dark purple or 

black coloured, which often cover and make the nucleus not 

clear for visualisation. This type is less than one per cent in a 

healthy body. 
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Monocyte 

This cell type has functionality similar to Neutrophil. In 

addition, it acts to release cytokines, participate in haemostasis 

and cooperates with Lymphocyte cells in producing antibodies. 

The Monocyte is the largest of peripheral blood WBCs. The 

nucleus of Monocyte is not balanced in shape (irregular) and 

occupies areas around seventy to eighty per cent of the cell. 

Moreover, it has no granules in cytoplasm, but, in rare cases, 

may have granules occurring in cytoplasm. The percentage of 

Monocyte is in the range of two to seven. 

 

Lymphocyte 

Lymphocyte’s function is to collaborate in and generate 

antibodies, which are very important in the human immune 

system and destroy and absorb the cells infected with viruses. 

This cell nucleus has a round and balanced shape (regular) and 

resides in areas around ninety-five per cent of the cell. In 

addition, the cytoplasm is blue-grey coloured when stained 

with Wright-Giemsa and shows no presence of granules. 

Lymphocyte is often smaller than Neutrophil and slightly 

larger than RBCs. This cell type has between twenty and forty 

per cent in humans. 

 

The normal healthy or mature leukocytes play a crucial role in defending against infections 

by microbes and maintain the immune system in the human body. In addition, the immature 

leukocytes also occur in bone marrow as well as contributing to the generation of the blood 

cells. However, if high numbers of immature WBCs escape from bone marrow and enter the 

bloodstream, it may indicate something anomalous occurring in the body, such as blood 

disorder or blood disease. The next section discusses blood diseases in humans. 

2.2.2.  Blood Disease in Humans 

Blood disease is a disease or disorder of the blood. Haematology is the study of the 

development and diseases of blood (Turgeon, 2012). A medical doctor who has expertise in 

the diagnosis of blood, particularly the disorders of blood, and treats patients with blood 

conditions, is known as a haematologist (Bain, 2004). Neoplastic disorders of the blood mean 

there is an uncontrolled growth of abnormal blood cells, which can be classified as benign or 

malignant disorders. Benign blood disorders mean that the blood disease can resolve 
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completely with treatment and does not affect patients’ whole life. Examples of benign 

disorders are Anaemia, which is insufficient numbers of RBCs and amount of haemoglobin in 

the blood, and Thrombocytopenia, which is low numbers of platelet count. On the other hand, 

malignant blood disorders mean that the blood disease can cause severe problems and threaten 

a patient’s life. Examples of malignant disorders are Leukaemia, which is the number of 

immature WBCs greatly increasing abnormally in the bloodstream; and Multiple Myeloma, 

which is the abnormal multiplying of plasma cells in the bone marrow (Cleveland Clinic, 

2016; Scott & Fong, 2014; St Luke's Cancer Center, 2016). Additionally, malignant disorders 

of WBCs are termed blood cancers. Leukaemia is a blood cancer and is the main focus for this 

research study and details of which are presented in the next section.  

2.2.3.  Leukaemia, Clinical Signs and Symptoms 

Leukaemia is a blood cancer, whereby high numbers of abnormal white blood cells are formed 

in the bone marrow and hence in the blood. It causes the uncontrolled production 

(overproduction) of immature and mature white blood cells in bone marrow. When vast 

numbers of immature white blood cells are increased in bone marrow, they hinder other mature 

cells by replacing red blood cells and platelets (Leonard, 1993; Scott & Fong, 2014). An 

inadequate number of RBCs, platelets and mature WBCs can affect patients with symptoms 

of leukaemia, including anaemia, frequent fever, fatigue, night sweats, and easy bruising and 

bleeding. Leukaemia is classified based on the haematopoietic cell of origin (line production 

of blood cells) as lymphoid (lymphocytic) and myeloid (myelocytic). Moreover, based on 

clinical symptoms, leukaemia is classified as either ‘acute’, which is a rapidly progressing 

disease with high numbers of immature (blastic or blast) WBCs and can threaten patient death 

within a few months if treatment is not received; or ‘chronic’, which represents a slowly 

progressing disease with increased numbers of more mature WBCs. Chronic leukaemia can 

affect patients over a longer period than acute leukaemia and may not cause the patient’s death 

(American Cancer Society, 2016b; Leonard, 1993; Scott & Fong, 2014; Turgeon, 2012). 

Generally, there are four types of leukaemia, as below: 

 Acute Lymphoblastic Leukaemia (ALL), which is the most common type of 

childhood blood cancer and can also affect older people. The survival rates of ALL in children 

over the past 50 years have increased dramatically and around ninety per cent of children with 

ALL have successful treatment (Abbott, 2008; American Cancer Society, 2016a; Campbell, 

2011; Hough, 2015a). 

 Acute Myeloid Leukaemia (AML), which denotes the common type of blood 

cancer in elderly people and is rare in children. In the last two or three years, better treatment 
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can increase the survival rates of AML patients. However, the types of treatment will be 

different depending on individual investigation (Campbell, 2011; Hough, 2015b). 

 Chronic Lymphocytic Leukaemia (CLL), which represents the common type of 

blood malignancy in people over 70 years old, but does not occur in children (Abbott, 2008; 

Agrawal & Deardean, 2014; American Cancer Society, 2016a). 

 Chronic Myeloid Leukaemia (CML), which is the common type of blood cancer 

in elderly people averaging around 60 years old rather than in children (American Cancer 

Society, 2016a; Apperley, 2015). 

In this research, we focus on acute leukaemia, specifically ALL, which is the most common 

in childhood, because of the opportunity of people having screening tests for early detection 

of this malignant blood disease, and to be cured, with high survival rates from the appropriate 

treatments, as reported in many public health organisations (Campbell, 2011; Hough, 2015a). 

More information about ALL and its characteristics are presented in the next section. 

2.2.4.  Acute Lymphoblastic Leukaemia, Its Characteristics and Its Classification 

Systems 

ALL is a malignant blood disease in which the immature lymphocyte white blood cells form 

in the bone marrow; the source of blood cells. The immature lymphocytes, known as 

lymphoblasts, are over produced in bone marrow and replace the mature RBCs and platelets. 

Moreover, they move out from the bone marrow and then spread into the peripheral blood 

stream with an immaturity to defend against any infections. This causes human body weakness 

with common symptoms such as fatigue, weakness, fever, bone or joint pain, and easy 

bleeding and bruising. Body weakness occurs due to insufficient RBCs to carry oxygen and 

nutrients to the body tissues and the low number of platelets for blood clotting can cause death 

within a few months in ALL patients if untreated (American Cancer Society, 2016b; Leonard, 

1993; Scott & Fong, 2014).  

The characteristics of ALL in biological and clinical knowledge can be used to differentiate 

the maturity (immature and mature) of lymphocyte cells, which are both produced from the 

same lymphoid pathway. The predominant characteristics of ALL are used in supporting the 

diagnosis process and referring to the treatment solutions according to the diagnostic results. 

The next paragraph shows the two common classification systems for ALL, which are widely 

used in laboratories and hospitals, including the French-American-British (FAB) cooperative 

group and the World Health Organization (WHO) classifications. The experienced experts, 

such as haematologists, oncologists, haematopathologists and specially trained general 

pathologists, use the cell’s origin to identify and differentiate ALL from other leukocyte cells. 
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The traditional classification of ALL cells, by their morphological characteristics and 

cytochemical studies, was first proposed by the French, American and British (FAB) 

cooperative group in 1976 (Bennett et al., 1976). The FAB system provides clear guidelines 

for uniformity and consistency of diagnosis for haematologists, oncologists and 

haematopathologists worldwide for classification of ALL (Abdul-Hamid, 2011; Bain, 2010). 

The criteria based on the FAB system to classify ALL, particularly the blast or lymphoblast 

cells, includes three subtypes (L1 to L3), which are depicted in Table 2.2 (Abdul-Hamid, 2011; 

Rodak & Carr, 2012). 

Table 2.2. FAB morphological classification of ALL 

FAB Morphological Classification 

Subtype Criteria or features of lymphoblast cells 

L1 Small cells predominant, nuclear shape is regular; round with rare cleft. 

Nuclear contents, such as chromatin, nuclear shape and nucleoli, rarely 

occur. Cytoplasm is small to moderately pale with blue colour 

(basophilia), when stained with Wright or Wright-Giemsa staining 

technique. 

L2 Large and heterogeneous cells with an irregular nuclear shape, usually 

found cleft in the nucleus. One or more large nucleoli are visible. 

Cytoplasm area varies in colour and the nuclear membrane is also 

irregular shape.  

L3 Cells are large and homogeneous in size. Nuclear shape is round or oval. 

In the nucleus area, there are one to three nucleoli and sometimes up to 

five. Cytoplasm is deep blue (basophilia) with vacuoles often clearly 

visible. The deep-blue colour in cytoplasm is visible in every cell, with 

bubbles or vacuoles occurring inside.  

 

In addition, all morphological criteria from the three subtypes can be used to distinguish ALL 

or lymphoblast cells from mature lymphocyte cells. In other words, we can use the integration 

of the three subtypes criteria based on the FAB system to identify unhealthy lymphocyte or 

lymphoblast cells.  
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The second standard for classification of ALL was proposed by WHO in 1997 (Harris et al., 

2000), which added another criteria rather than just morphology to evaluate the lymphoblast 

cells. The WHO standard needs more information of the blast cells from other equipment, 

including flow cytometric immunophenotyping, cytogenetics and molecular analysis, to 

provide more accurate classification of ALL and refers to the specific treatments and therapies 

of ALL patients with high survival rates (Albitar, Giles, & Kantarjian, 2008; Bain, 2010; Craig 

& Foon, 2008). The performance of the flow cytometry machine can provide the specific type 

of leukaemia and its subtypes with high accuracy (Craig & Foon, 2008). In addition, the flow 

cytometer test produces reliable results and can replace the morphological test process. 

However, the high cost of the machine is the main obstacle to hospitals and the medical 

facilities in developing countries and resource-poor regions do not have them. Therefore, the 

morphology and cytochemistry of the blood cell samples are still needed to analyse the 

condition of ALL disease (Escalante et al., 2012). 

Therefore, this research study used the criteria based on the FAB standard by integrating the 

morphological criteria of the three subtypes as the conditions to identify the ALL blast cells 

and differentiate between the healthy (lymphocyte) and unhealthy (lymphoblast) cells for 

early detection, early diagnosis or screening tests for ALL in resource-poor medical facility 

regions and developing countries. 

2.2.5.  Diagnosis of Acute Lymphoblastic Leukaemia 

Diagnosis of ALL is the process of identifying or determining the characteristics and causes 

of the disease based on information from a clinical history of the suspected patients and their 

family, a physical examination, and clinical laboratory studies. Sufficient information from 

all sources of examination is essential to interpret the correct outcome of diagnosis and lead 

to the appropriate treatment programme for the suspected patients. It usually begins with 

clinical suspicion (Bain, 2010). In addition, the personal clinical characteristics of suspected 

patients lead to further investigation and include the presence of symptoms, e.g. fever, bone 

pain, and fatigue, as well as family history, medical history and social history. A suspicion of 

ALL leads the physician to find more incidences by a physical examination, such as unnatural 

lack of colour in the skin (pallor), enlarged liver, palpable spleen and bruising. Furthermore, 

if incidences of suspected patients from their clinical history and physical examination reveal 

a relation to abnormality, a laboratory examination will take place by performing blood count 

and blood film of bone marrow aspiration (Bain, 2010). Moreover, a light microscope is then 

usually used for the process of ALL diagnosis by examination of the peripheral blood smear 

samples and bone marrow aspiration smears. In modern laboratories, the diagnosis of ALL 
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with accurate results is based on the morphology, cytochemistry, immunophenotyping, 

cytogenetic and molecular nature of the suspected patients' blood and bone marrow samples 

(Albitar et al., 2008; Bain, 2010; Kebriaei, Anastasi, & Larson, 2002). However, 

immunophenotypic and genetic analysis, which uses specific machines such as flow 

cytometry, and flow cytogenetics, are high cost (Andrews, Holm, & Myers, 2005; Logan et 

al., 2010; Muslimani et al., 2010) and not available for all medical facilities in developing 

countries and resource-poor regions. Therefore, the need for microscopic examination of 

stained blood smear and bone marrow slides still remains (Zini et al., 2010) and is used as a 

standard method for ALL diagnosis with the FAB classification across the third world and 

resource-poor countries (Bain, 2010). Moreover, the preliminary screening and early detection 

of ALL patients using a human microscopic examination of blood slide samples are the most 

applicable and suitable ways for those regions to screen and then refer suspected patients with 

ALL to receive a full investigation in better medical facilities, with the outcome of a suitable 

treatment plan to cure them of the disease. The importance of preliminary screening and early 

diagnosis is explained in the next section.  

A. Why is Screening or Early Diagnosis Important? 

There are two terms related to early diagnosis of disease: screening or early detection; and 

diagnosis. The former means the process to detect disease in the preclinical phase, when the 

individual or suspected patient has the disease, but doesn’t know it, or during the presence of 

disease before the occurrence of clinical symptoms. In addition, early detection may allow the 

beginning of therapy before the disease increases to an invasive level and becomes 

uncontrolled, which can compromise the effectiveness of chemotherapy (El Rassi, Little, 

Holloway, Roberts, & Khoury, 2012). Whereas, the latter is also the process of checking 

suspected patients who have existing symptoms or show positive results in screening tests, 

with medical and laboratory examination of patients who have specific indication of the 

disease, to determine and confirm whether or not they have the disease and then provide them 

with an appropriate treatment plan for the next stage to cure them of the disease (Lewis, 

Sheringham, Lopez Bernal, & Crayford, 2014).  

For ALL, a report by the American Cancer Society (American Cancer Society, 2016a, 2016b) 

indicated that nowadays there are no special tests recommended for detecting the disease in 

the early stage. Moreover, it suggested that the best way to find the disease early is to report 

any presence of signs and physical symptoms of the disease to the physician as quickly as 

possible. 
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In this research study, we define the meaning of early diagnosis as the process of determining 

suspected patients who have the presence of clinical symptoms related to the physical 

symptoms of ALL and then go through the process of clinical examination, such as complete 

blood count and microscopic examination of blood or bone marrow slide samples, to indicate 

whether the suspected patients have the disease or not in the earliest possible time. Therefore 

further investigation with advanced techniques and modern equipment is needed to confirm 

the disease and design a special treatment plan for each of the ALL patients. 

Therefore, the importance of early diagnosis is that it can detect the presence of ALL in 

suspected patients at an early stage, so that the disease can be managed with appropriate 

treatments before the serious symptoms occur. Furthermore, with the realistic clinical 

examination methods, e.g. microscopic blood or bone marrow samples examination, in the 

medical facilities of resource-poor countries, it can support early diagnosis of ALL patients 

and refer them to receive better medical facilities with the right treatments and therapies. 

B. Peripheral Blood Smear  

A peripheral blood or blood film smear is a thin layer of blood smeared or spread on a glass 

microscope slide. In fact, blood cells are transparent and cannot be recognised when they are 

examined under a microscope. Therefore, a peripheral blood smear is stained with a mixture 

of several methods or dyes (Bain, 2004). The purpose of staining the blood smear is to identify 

blood cells and recognise the morphology of the individual cells under microscopic 

examination (Bain, 2004; Rodak & Carr, 2012). Moreover, a properly prepared blood smear 

is crucial to the accurate examination of blood cell morphology using a microscope. The 

staining technique enhances the colour of RBCs, WBCs and platelets with a variety of colours, 

which enable the detailed structure of the cells to be recognised (Bain, 2004). The Wright or 

Wright-Giemsa stain is the most widely used staining method for peripheral blood and bone 

marrow smears. It contains both eosin and methylene blue and is, therefore, termed a 

polychrome stain. The colours of stained peripheral blood smears vary slightly from 

laboratory to laboratory, depending on the method of staining the smears (Rodak & Carr, 

2012). The characteristics of properly stained blood smear are as follows (Rodak & Carr, 

2012; Turgeon, 2012): 

 The colour of RBCs should be pink to salmon. 

 The colour of nucleus or nuclei is deep blue to purple. 

 The cytoplasm of mature lymphocyte should be blue to grey colour and that of 

immature lymphocyte or blast is deep blue or purple, termed basophilic colour. 

 The colour of cytoplasmic granules of neutrophil is lavender to lilac. 
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 The cytoplasmic granules of basophils are deep blue to black colour. 

 The colour of cytoplasmic granules of eosinophils is red to orange. 

 The area between the cells should be transparent, clean, and free of artefact 

stain. 

 

A properly prepared peripheral blood or bone marrow smear is crucial to the accurate 

diagnosis of ALL under the light microscope. Thus, the next section presents the laboratory 

diagnosis of ALL using microscopic examination. 

 

2.2.6.  Laboratory Diagnosis Using Microscope and Classification of ALL 

A peripheral blood smear is the most helpful addition to the history and physical findings in 

diagnosis of paediatric haematological disorders (Abbott, 2008). The microscopic 

examination of stained peripheral blood or bone marrow smear slides remains a standard 

method for ALL diagnosis, particularly for resource-poor countries and regions around the 

world (Bain, 2010; Zini et al., 2010). The counting of blast cells leads to diagnosis of ALL. 

Patients with leukaemia present with decreased RBCs and elevated WBCs count in 60% to 

70% of cases (Turgeon, 2012). The presence of more than 30% blasts count in a peripheral 

blood smear should be considered as acute leukaemia (Cason et al., 1989; Kebriaei et al., 

2002). Furthermore, in WHO classification criterion, the occurrence of more than 20% blasts 

in the bone marrow or peripheral blood smear is also crucial for the indication of acute 

leukaemia (Kebriaei et al., 2002). Microscopic diagnosis of ALL disease is done by counting 

the blast cells, which distinguish between healthy or mature lymphocyte cells based on the 

morphology of both nucleus and cytoplasm of cells on the blood smear slides. A light 

microscope can assist the haematologists and hematopathologists to examine and differentiate 

the morphology of the immature lymphocyte or lymphoblastic cells and the mature 

lymphocyte cells corresponding to the standard FAB classification. 

However, the standard WHO classification is proposed and produces more accurate 

classification of results compared with the FAB system, owing to it requiring more 

information, including immunophenotyping, cytogenetic and molecular analysis (Abdul-

Hamid, 2011; Albitar et al., 2008; Kebriaei et al., 2002), which are supplemented by flow 

cytometry and flow cytogenetics, in the evaluation of the lymphoblastic cells to confirm the 

subtype of the blast cells and then transfer to the appropriate treatment plans. However, the 

very high costs of advanced equipment, as mentioned above, is an obstacle for medical 

healthcare in developing or resource-poor countries. Therefore, the microscopic examination 
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of stained peripheral blood or bone marrow smear slides is still a common method for 

screening and identifying of ALL. 

2.2.7.  Limitations of Diagnosis of Blood Diseases with The Traditional Method  

The microscopic examination of stained peripheral blood smear slides enables experts, such 

as haematologists and haematopathologists, to investigate the characteristics of healthy and 

unhealthy lymphocyte cells for the diagnosis of ALL. It also provides both manifestations and 

presents visual images of morphological components of blood cells under microscopic 

examination. Moreover, it can assist the experts in the diagnosis process by magnifying the 

morphological and textural content of lymphocyte or lymphoblast cells’ components, 

including nucleus and cytoplasm regions, and then interpreting them to indicate the condition 

of the patients. Therefore, the aforementioned are the benefits of using microscope 

examination of stained blood slides. 

An examination of the peripheral blood smears using a light microscope requires skilled and 

experienced haematologists or haematopathologists. The experts produce and interpret the 

examination results based on their clinical experiences by distinguishing between the healthy 

(mature) and unhealthy (immature) lymphocyte cells corresponding to the FAB standard. 

However, a variety of reports by human manual diagnosis may occur (Argyle, Benjamin, 

Lampkin, & Hammond, 1989; Elsheikh et al., 2008) in all types of haematological disorders 

including ALL cancer. 

The causes of the variability of reports of manual diagnosis may include the heterogeneous 

morphology of cells, the poor-quality or dirty stained blood smear slides (Turgeon, 2012), the 

inconsistency of results, whereby the same slide samples are examined by the same experts 

more than once, known as intraobserver variability, and the various diagnosis outcomes, 

(whereby more than one expert determines the same stained slides) known as interobserver 

variability. According to Browman et al. (1986), who are pioneers regarding observer 

discrepancies in light microscopic examination based on manual diagnosis of ALL, the 

outcomes in evaluating intraobserver and interobserver concordance between two experts 

were 64.8% and 70.5% for the former and 63% and 72% for the latter studies, respectively. 

To reduce the human errors of the aforementioned, quantitative microscopy techniques have 

been developed for microscopic examination in the process of haematology disorder diagnosis 

(Das, Chakraborty, Mitra, Maiti, & Ray, 2013). These use computerised technologies to assist 

human experts in the diagnosis of blood cancer and to reduce human intervention during the 
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diagnosis process. Moreover, it can repeat the investigation process with consistently reported 

results. 

This becomes challenging for researchers to investigate the novel quantitative approaches in 

the field of biomedical engineering, haematology and computer science in order to overcome 

the difficulty of differentiating between mature lymphocyte and lymphoblast cells.  

The image processing technique is a widely used computer algorithm which performs the 

analysis of digital images, particularly medical digital images. It can enable researchers to 

develop crucial quantitative methods, which aim at early detection and accurate diagnosis of 

ALL by integrating image processing techniques with the clinical procedures to analyse the 

disease. The next section illustrates the quantitative analysis of microscopic blood smear 

images for acute leukaemia diagnosis. 

2.3.  Image Analysis on Blood Smear Samples Using Computerised Technology and 

Image Processing Techniques 

As previously stated, the aim of staining blood smears is to identify blood cells and recognise 

the morphology of the individual cells under a light microscope (Bain, 2004; Rodak & Carr, 

2012). Moreover, the variety of colours of the cells that are enhanced by the chemical staining 

techniques, e.g. Wright-Gemsia, Leishman, enables the detailed structure of the blood cells to 

be recognised by haematologists or haematopathologists (Rodak & Carr, 2012). 

The digital images of blood cells, which are taken by a microscope connected to a digital 

camera or a digital microscope, are valuable for the interpretation and evaluation of the 

experts, more than once, to confirm the examination and diagnosis results. It is also the initial 

point of the computerised image analysis of microscopic blood smear images. 

The history of medical imaging started in 1895 when German physicist Wilhelm Roentgen 

invented the X-ray to image the bony interior of his wife's right hand, which was captured on 

an X-ray film (Okada & Blankstein, 2009). In the early 1970s, the first X-ray computed 

tomography (CT) scanner, known as a CT scanner, was developed and used a computer to 

record the scanned data (Dougherty, 2009). Since then, computers have become an important 

element of many medical imaging modalities, including ultrasound, CT, radionuclide imaging 

and magnetic resonance imaging (Okada & Blankstein, 2009). Nevertheless, without using X-

rays as the main device for medical imaging, in the late 1950s, a microscopic image was first 

applied using computing technology in an attempt to automate screening for gynaecological 

cancer (Cooper et al., 2012). Also, in the early 1950s, the first evidence of using a computer 

in a medical laboratory for processing data was published (Park et al., 2013).  
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Image processing is a method to perform some operations, i.e. computer operations or 

mathematical operations, on either an image or series of images in order to achieve an 

enhanced image or to segment/isolate the interesting object from the background or to extract 

some useful information, i.e. a set of characteristics and parameters related to the image 

(Gonzalez, Woods, & Eddins, 2004). Moreover, with the advantage of using computer 

hardware incorporated with image processing, techniques in various medical applications 

have been developed to imitate expert diagnosis procedures for a variety of blood 

disorders/blood cancers, such as an analysis of nuclear stained cells (Held & Banks, 2013), an 

image processing application for the localisation and segmentation of lymphoblastic cells 

using peripheral blood images (Madhloom, Kareem, & Ariffin, 2012b). In the analysis 

procedures of blood cancer diagnostic applications, the stained blood smear slides are placed 

under the digital microscope or light microscope attached to a digital camera for scanning the 

target cells and, then, the microscopic images or digital images of the field of view targeting 

cells are obtained. Consequently, the digital images or scanned microscopic images are passed 

through the process of quantitative analysis by the processes of a digital image processing-

based system for blood disease detection, generally including four stages: image pre-

processing and enhancement, image segmentation, image feature extraction, and feature 

classification/detection. 

The aim of the image pre-processing and enhancement stage is to remove artefacts and noises 

from the input image and to adjust image quality to benefit the segmentation stage. Next, the 

image segmentation stage is processed to isolate the interesting objects for analysis, such as 

WBCs or RBCs, from the noisy background with other objects in the image. It also is a crucial 

and difficult stage in the image analysis owing to the segmented targeting cells influencing 

the accuracy of diagnostic results. An image feature extraction stage is processed to 

extract/measure the interesting characteristics or features of the segmented cells into 

quantitative data representation, such as textures, colours or intensities, and the morphological 

shape of each segmented cell image. Finally, an image feature classification/detection is 

computed to recognise the cell features of both normal and abnormal conditions of the sample 

cell images. In addition, the aim of feature detection is to distinguish between normal/healthy 

and abnormal/unhealthy lymphocyte cells in the new unseen or testing cell samples. 

Since image analysis and computer technology have become essential in a digital diagnosis 

system, the next section illustrates the state-of-the-art developments for a digital acute 

leukaemia diagnosis system using microscopic blood images. This research study reviews and 

categorises the literature review of the state-of-the-art developments for a digital acute 

leukaemia diagnosis system into five stages, including image segmentation for leucocytes and 
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separation of nucleus and cytoplasm techniques for the identified cell membrane images, 

image feature extraction, image feature selection and image feature detection/classification, 

as follows.  

2.4.  Image Segmentation for Leukocytes and Image Separation of Nucleus and 

Cytoplasm Techniques for the Identified Cell Membrane Images 

This section indicates the literature review of leukocytes, known as WBCs, image 

segmentation and image separation of cell nucleus and cell cytoplasm techniques for the 

identified cell membrane images. There have been active researches in the field of blood cell 

segmentation and various methods have been proposed. They are usually not only based on a 

single image processing technique, but also the integration of as many of them as can 

contribute benefits for an accurate blood cell segmentation and separation of its cell elements, 

i.e. nucleus and cytoplasm, into the acute leukaemia detection system. 

From the review of literature, the group of common techniques adopted for segmentation of 

blood cells elements, such as only nucleus or nucleoli and both nucleus and cytoplasm or cell 

membrane, from microscopic blood cell images, include threshold-based, region-based, edge-

based, clustering-based, and morphology-based approaches (Fatma, 2014; Gautam, 

Bhadauria, & Singh, 2014). The information of each group of common segmentation 

techniques is described as follows. 

2.4.1.  Threshold-based Segmentation Techniques 

The threshold method is widely used and is claimed to have a fast performance in the 

segmentation of microscopic blood images. The underlying principle of this method is that the 

cells or objects and their background are at different intensity levels. Some researchers have 

chosen to keep a fixed threshold value while others employed adaptive values. For examples, 

Otsu’s global thresholding method was employed by Scotti (2005) to separate nucleus from 

cytoplasm for an automated classification of normal and abnormal lymphocytes in greyscale 

blood smear images. Abbas and Mohamad (2014), Gautam et al. (2014) and Kulkarni et al. 

(2014) also applied Otsu’s thresholding method for nucleus or nuclei segmentation of 

leucocytes. The binary image of the segmented nucleus, which is a result of the Otsu 

segmentation method, is then further processed with the morphological operations to clean 

and remove artefacts, which are not the WBCs, in the image. Liao and Deng (2002) proposed 

a WBC image segmentation using both a simple thresholding approach combined with 

mathematical morphology operations and contour identification. The algorithm is based on 

prior information and assumption that the blood cells are round boundaries. Dorini et al. 
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(2007) introduced an algorithm based on size distribution information of RBCs to segment a 

cytoplasm of WBC using Otsu’s thresholding method and morphological operation. 

Moreover, the nucleus of the WBC was segmented using the watershed transform base on the 

image forest transform. Furthermore, Khasman and Abbas (2013) proposed a fast and cost-

effective method for ALL identification, which applied Otsu’s thresholding, Canny edge 

detection and pattern averaging kernel are used in order to achieve the boundary of single 

white blood cell images for their classification system. However, the threshold method is not 

able to perform well when the segmentation clusters have very small variances. 

2.4.2.  Region-based Segmentation Techniques  

Region-based segmentation methods are the process of finding connected regions of objects 

or cells based on similar properties, e.g. brightness, colour, texture of pixels and then 

combining them together, as the same region, to increase their connected region, if they have 

similar properties corresponding to the defined criteria (Dougherty, 2009; Marques, 2011). 

For example, Halim et al. (2011) used the S-component of the Hue-Saturation-Intensity (HSI) 

colour space and set the fixed threshold value as 100 to segment the nucleus of the lymphocyte 

cell images followed by median filter and region growing techniques to obtain the region area 

of nucleus in pixels. Owing to the variations that could arise from different medical 

microscopic imaging databases, the parameter setting of their proposed approach might fail to 

provide a consistent performance for images across databases.  

2.4.3.  Edge-based Segmentation Techniques 

Edge-based segmentation or deformable models or boundary-based segmentation methods are 

the process of finding pixel differences along the closed boundaries of foreground objects or 

cells, known as an inside/internal boundary, and the background, known as an outside/external 

boundary (Dougherty, 2009). Moreover, in deformable models, e.g. active contours, or snakes, 

the finding of boundaries of the interesting objects or cells is processed by evolving the 

contours or surfaces that are guided by internal and external energy to fit the object boundaries, 

which are satisfied by minimising the energy of the contours as a summation of internal and 

external energy (Kass, Witkin, & Terzopoulos, 1988). For example, Kumar et al. (2002) 

introduced a Teager energy operator for edge detection in nuclei segmentation of leucocyte 

sub-images, whereas Piuri and Scotti (2004) employed Canny’s edge detection technique 

along with morphological operations to segment leucocyte cell membrane. Although image 

edges could provide rich information for recognition of image characteristics, edge detection 

methods tend to be sensitive to the image quality and noise (Lakshmi & Sankaranarayanan, 

2010). As such, a good background and foreground contrast is important for enhancing the 
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detection performance (Joshi, Karode, & Suralkar, 2013). Furthermore, Ongun et al. (2001) 

used an active contours method with balloons algorithms to segment leucocyte cell 

membranes. In contrast, the contours are difficult to initialise around the region of interest of 

objects. Sadeghian et al. (2009) used the gradient vector flow algorithm, which is an extension 

of the active contours method that converge to concavities and also does not need to be 

initialised close to the boundaries of objects, to segment nucleus, employing Zack thresholding 

to segment cytoplasm of lymphoblast cell images. 

2.4.4.  Morphological-based Segmentation Techniques 

Morphological-based segmentation is the process of finding the object’s region by employing 

mathematical morphological operations, e.g. erosion, dilation, opening, closing, etc., and 

morphological tools, e.g. watershed transformation, morphological gradient, distance 

function, etc., in the process of segmentation (Beucher & Meyer, 1992; Soille, 2004). 

Watershed transform is one of the main morphological tools (Beucher & Meyer, 1992) to 

segment objects in greyscale image into the region of interest, which is indicated by its label 

number, and is adaptable to apply to different types of image objects, and is also capable of 

distinguishing extremely complex objects (Gonzalez & Ballarin, 2009). It has been used in 

many fields, such as medicine, biomedicine, industry, computer vision, remote sensing, 

computer-aided design, video coding and more (Pan, Zheng, & Wang, 2003; Sun & Luo, 

2009). There are some active researches employing watershed transform for leucocyte 

segmentation. For example, Madhloom, Kareem and Ariffin (2012b) proposed an algorithm 

based on morphological reconstruction to localise and segment the whole cell of WBCs from 

the microscopic blood smear image for the diagnosis of acute lymphoblastic leukaemia. 

Srisukkham et al. (2013) introduced a method to segment the WBC membranes using 

integration of modified marker-controlled watershed transform with morphological 

operations. Additionally, this method can segment WBC membrane using microscopic blood 

smear sub-image and then isolates and places it on a white background. Moreover, Pan et al. 

(2003) proposed the robust Hue-Saturation-Values (HSV) based on colour image 

segmentation of leukocyte cells employing mean shift procedure and marker-controlled 

watershed algorithm. Jiang et al. (2003) applied a scale-space filtering technique to extract 

nucleus region from WBC sub-images, which was followed by watershed clustering to extract 

the cytoplasm region for the segmentation of WBC sub-images. However, although watershed 

segmentation was able to produce boundaries with closed and connected regions, over-

segmentation could occur (Amoda & Kulkarni, 2013; Pan et al., 2003), as a common problem 

in the traditional watershed segmentation, if image information and a priori knowledge are not 

fully utilised for the process of watershed operation (Pan et al., 2003). 
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2.4.5.  Clustering-based Segmentation Techniques 

Clustering-based methods, as the name suggest, are the unsupervised classification of image 

pixels or feature vectors into different groups, known as clusters or classes (Jain, Murty, & 

Flynn, 2000). It is categorised into two main types: hard clustering, known as exclusive 

clustering, wherein one data sample belongs to only one cluster, and soft clustering, known as 

fuzzy clustering, wherein one data sample belongs to one or more than one cluster (Jain et al., 

2000). K-means algorithm is one of the hard clustering methods and clusters data samples into 

k clusters based on similarity, by measuring the distance between the data sample and the 

cluster centres (Jain, et al., 2000; Nilima, Dhanesh, & Anjali, 2013). Fuzzy c-means (FCM) is 

one of the soft clustering algorithms and assigns/clusters a membership to each data sample. 

In addition, a data sample can belong to multiple clusters (Bezdex, 1981; Jain et al., 2000; 

Naz, Majeed, & Irshad, 2010). There are active researchers who have applied clustering 

methods in microscopic blood images segmentation. For example, several clustering 

techniques have been investigated by Mohapatra and his fellow researchers (Mohapatra, Patra, 

& Kumar, 2012; Mohapatra, Patra, & Satpathi, 2010; Mohapatra & Patra, 2010; Mohapatra et 

al., 2014). As an example, Mohapatra et al. (2012) employed hard clustering techniques, 

including K-means, K-Medoid, and fuzzy clustering methods, such as FCM, Gustavson 

Kessel and Fuzzy Possibilistic C-means, for locating the nucleus of WBC images in ALL 

detection. Kernel Induced Rough C-means clustering (Mohapatra, Patra, Kumar, et al., 2012) 

and shadowed C-means (Mohapatra et al., 2014) were applied to segmentation of nucleus and 

cytoplasm, and identification of lymphocyte cell images. In addition, Nasir et al. (2011) 

employed K-means clustering on the H and S components of the HSI colour space for 

segmentation of nucleus and membrane of WBCs. Pronab et al. (2014) proposed the WBC 

segmentation employing FCM algorithm followed by morphological operations, i.e. erosion 

and dilation, as post-processing, to identify white blood cells from the blood images. Since 

clustering techniques rely heavily on the principles of intra-class similarity and inter-class 

separability to perform grouping, these similarity and separability measures play significant 

roles in determining the resulting cell segmentation quality (Patil & Deore, 2013). 

In addition to the separation of nucleus and cytoplasm of the WBC membrane, pastel blue and 

non-granular cytoplasm with closed and clumped nucleus chromatin are usually observed in 

mature lymphocytes (Rodak & Carr, 2012; Turgeon, 2012). For the blasts or unhealthy 

lymphocyte cells, variations in terms of nucleus to cytoplasm ratio, existence of nucleoli and 

vacuoles, nucleus and cytoplasm colour as well as chromatin patterns are observed. Therefore, 

discrimination of cell nucleus from cell cytoplasm and the characteristics of nucleus and 

cytoplasm play significant roles in accurate diagnosis of normal and abnormal lymphocytes. 
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Moreover, according to Rezatofighi and Soltanian-Zadeh (2011), improvement of nucleus and 

cytoplasm segmentation is the most challenging step that consumes most research efforts. In 

one of the main tasks of this research study, we have studied and focused on the robust 

separation of nucleus and cytoplasm of the white blood cell membrane, particularly the healthy 

and unhealthy lymphocyte cells (Chapter 4 for further details), for a robust ALL detection 

system.  

2.5. Image Feature Extraction 

Feature extraction is the process that measures certain properties, known as features, or 

converts the segmented images/objects into quantitative data representation, known as 

alphanumeric data, which include either letters or numerals (Dougherty, 2009; Marques, 

2011). Moreover, feature extraction is another major step in contributing to accurate 

recognition of normal and blast lymphocyte cells. Features or descriptors, which are 

commonly extracted/measured from the segmented microscopic white blood cell image, 

include shape, colour, texture and statistical-based information. In general, shape-based 

features are related to geometric information, such as area, compactness, centroid, form factor, 

major and minor axis lengths, orientation, perimeter, elongation, and eccentricity, while 

colour-based features refer to the type of colour space information, such as RGB, CIE L*a*b* 

(CIELAB) and HSI. For texture-based features, Gray Level Co-occurrence Matrix (GLCM) 

provides information such as homogeneity, contrast, energy, correlation, cluster shade, cluster 

prominence and entropy. As for statistical-based features, information such as mean and 

standard deviation is often used, particularly for calculation of mean and standard deviation 

in colour and texture based features (Amnis Corporation, 2010; Nixon & Aguado, 2008). 

There are active researches that have extracted features from segmented cell images, i.e. 

WBCs, and employed them in their recognition/classification systems. For example, Ongun 

et al. (2001) adopted affine invariants, the CIELAB colour space, colour histogram and shape-

based features, from the heuristic reasoning of a haematologist to form a total of 57 features 

for classification of 12 types of blood cells, such as monocyte, neutrophil, myelocyte, plasma, 

etc. Putzu et al. (2014) focused on the detection of abnormality for lymphocyte images. A total 

of 30 shapes, 21 colours, and 80 GLCM-based texture descriptors were extracted from the 

normal and abnormal lymphocyte cell sub-images. Moreover, Rawat et al. (2015) introduced 

a computer aided diagnostic system to differentiate lymphoblast (abnormal lymphocyte) cells 

from normal lymphocyte images employing 26 GLCM texture features of nucleus and 

cytoplasm and 11 shape-based features of nucleus for their recognition system. Besides the 

GLCM textural and shape-based features, some researchers employed different methods to 
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interpret textural information from the segmented cell images. As an example, Local Binary 

Pattern (LBP) textural extraction was proposed by Singhal and Singh (2014) for detection of 

lymphocytes and lymphoblasts, while Rezatofighi and Soltanian-Zadeh (2011) employed LBP 

features of the segmented WBC images for an automated WBCs recognition. In addition, 

Hausdorff Dimension (HD) was adopted by Mohapatra et al. (2014) to extract roughness of 

the nucleus boundary pertaining to lymphocytes and lymphoblasts for an automated 

recognition of the lymphoblasts system. Meanwhile, Madhukar et al. (2012) proposed a 

decision support system for ALL classification and employed shape-based, texture-based and 

HD features, which extracted the segmented nuclei images, to distinguish normal and blast 

cell images. 

In this research study, we form a set of 80 descriptors that are utilised in the subsequent steps, 

i.e. feature selection and ALL detection. The details of all features for this thesis are described 

in Chapter 4, Section 4.4. 

2.6 Image Feature Selection  

In the field of acute leukaemia detection, several researches have undertaken the process of 

feature selection that is needed to reduce the redundancy of the non-significant features and 

increase the efficiency of the recognition system with the significant features (Escalante et al., 

2012; Madhloom et al., 2012a; Mohapatra et al., 2014). A feature selection task is also a 

crucial and more challenging task that selects the significant discriminative characteristics 

from the raw features and then employs the selected ones to support the recognition process 

for a highly accurate and robust acute leukaemia detection system. 

The available data for an analysis task may comprise more numbers of irrelevant or redundant 

features. A relevant feature can influence the learning task to achieve high classification 

accuracy. Alternatively, a redundant feature is highly correlated with other features and can 

reduce the performance of the learning task to perform low recognition accuracy. Therefore, 

a good feature subset comprises features, that are highly relevant to the learning task, i.e. 

highly correlated to a decision variable and uncorrelated to other features (de la Iglesia, 2013). 

Moreover, the selection of feature subsets influences the performance of classification results. 

In terms of techniques of feature subset selection, there are three major techniques: filter, 

wrapper and embedded techniques, and their details are as follows. The filter techniques 

implement the feature selection by working on the general characteristics of training data 

without interaction with a classifier, which affords this method low computational cost. The 

wrapper techniques employ a classifier in the feature selection process to achieve the optimal 

feature subsets; however, wrapper methods are computationally expensive owing to they have 
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to interact with a classifier many times to achieve the quality of selected feature subsets. 

Moreover, the embedded techniques conduct the feature selection in the process of training, 

which interacts with a classifier and its learning algorithm, and these methods have 

computational cost in-between the filter and the wrapper methods (Bolón-Canedo, Sánchez-

Maroño, & Alonso-Betanzos, 2013; Tang, Alelyani, & Liu, 2014). 

As mentioned above, some researchers in the field of acute leukaemia recognition and 

detection have employed feature selection methods in their works. For example, Escalate et 

al. (2012) applied PSO algorithm, which is one of the evolutionary computation methods, to 

guide the search population and select the classification models to build ensemble classifiers 

automatically for acute leukaemia types or subtypes classification. Their research used Relief 

technique, which is categorised in filter methods, for the feature selection process. 

Furthermore, Madhloom et al. (2012a) employed Fisher’s discrimination ratio (FDR), which 

is one of the filter methods, for their feature selection. The FDR inputs thirty features into 

account and uses cross correlation among all features to rank and select the top seven features 

for the recognition process in order to differentiate between normal and abnormal lymphocyte 

cell images. On the other hand, Mohapatra et al. (2014) conducted an independent-sample t 

test, which is one of the filter methods, to evaluate the raw input of 44 features, and then 

employed the selected 32 features, which had statistically significant value, for the ALL early 

diagnosis. Furthermore, Huang and Hung (2012) proposed principal component analysis 

(PCA) to reduce the dimensions of features from 85 to seven in leucocyte recognition. PCA 

is an approach for dimension (feature) reduction, that searches for k of n-dimensional 

orthogonal vectors that can best be employed to represent the data or have high variance 

among the data, where k ≤ n (Han, Kamber, & Pei, 2012). In addition, Rezatofighi and 

Soltanian-Zadeh (2011) further proposed sequential forward selection along with FDR for the 

recognition of five types of WBCs. Despite the popularity of the filter-based feature selection 

approach, Osowski et al. (2009) proposed an embedded approach for recognition of 11 types 

of blood cells (e.g. basophilic erythroblast, neutrophilic myelocyte, lymphocyte, etc.) with the 

integration of the GA to fine tune the feature subsets corresponding to the SVM performance 

during the training stage. 

Moreover, there are many feature selection and dimension reduction techniques, such as 

mutual information (MI), minimum-redundancy-maximum-relevance criterion (mRMR), gain 

ratio, and evolutionary computation methods, such as GA, genetic programming, and PSO, 

etc. Furthermore, the meta-heuristic optimisation algorithms, for instance, DA, CS, and those 

related to PSO variants algorithms, e.g. enhanced leader particle swarm optimisation (ELPSO) 

and BBPSO, have become popular and useful for solving a variety of optimisation problems 
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and for feature subset optimisation as well. Details of the aforementioned algorithms, which 

are usually used for the feature selection and dimension reduction, are as follows: 

MI is an information-based feature selection algorithm that measures how much information 

the presence/absence of a selected feature contributes to making a correct classification 

decision on the target groups/classes (Manning, Raghavan, & Schütze, 2008). In addition, it 

is also able to maximise information in a group/class (Zhang, Zhang, & Hossain, 2015c). 

The mRMR, as proposed by Peng et al. (2005), aims to minimise the mutual information, (i.e. 

a redundancy) among the selected feature subset and to maximise the mutual information, (i.e. 

a relevance) between the selected features and the targeted output (Zhang, Zhang, & Hossain, 

2015c). 

Gain ratio is an extension to information gain or the modification version of information gain, 

which attempts to reduce its bias. When choosing an attribute/feature, gain ratio takes number 

and size of branches into consideration. It modifies information gain by taking the intrinsic 

information of a split information into account. Intrinsic information is an entropy of 

distribution of instances into branches, i.e. how much information do we need to tell which 

branch an instance belongs to. Gain ratio value of an attribute/feature decreases as intrinsic 

information gets larger (Han et al., 2012; Priyadarsini, Valarmanthi, & Sivakumari, 2011). 

GA is the most classic and widely used evolutionary algorithm. It draws inspiration from the 

Darwinian evolution theory, in survival of the fittest in human or animal societies. In the 

process of GA, each individual has its information chain, which is a fixed-length binary array 

or binary string, e.g. ‘101101001101’, as its genotype. Then, the fitness of each individual is 

calculated for the selection process. The algorithm then processes to select parents for one-

point crossover to produce offspring individuals, which subsequently undergo mutation 

operations. The offspring individuals become the population in the next generation. A 

termination of the GA occurs when the fittest reaches satisfaction or the maximum number of 

generations is achieved (Bäck & Schwefel, 1993; Wong, 2016; Zhang et al., 2015d). 

PSO was inspired by the behaviour of bird flocking. It was devised by Kennedy and Eberhart 

(1995) and has been widely used to solve optimisation problems in many fields. In the process 

of PSO, it uses two main variables, which are personal best position, known as pbest, and 

global best position, known as gbest, in its search mechanism, to move the position of particles 

(solutions) in search spaces towards the optimal solution(s). Moreover, the PSO needs to 

adjust many parameters, such as velocity and weight inertia, to initialise the algorithm and 
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incorporate with pbest and gbest to move the particles in search spaces (Section 5.3.1 in 

Chapter 5 for further details). 

BBPSO algorithm is one of the PSO variants and is a compact and parameter-free algorithm. 

It was invented by Kennedy (2003), who was one of the PSO inventors. The BBPSO employs 

Gaussian distribution instead of velocity in the PSO and also incorporates with pbest and gbest 

to move the particles in search spaces towards the optimal solution(s) as well (Section 5.3.1 

in Chapter 5 for further details). 

DA is a nature-inspired meta-heuristic optimisation algorithm and was proposed by Mirjalili 

(2015). In the process of DA, the dragonflies move/swarm for only two specific purposes, 

including hunting, known as static (feeding) move, and migrating, known as dynamic 

(migratory) move, towards the best food source(s) or optimal solution(s). These static and 

dynamic moving behaviours cause the DA to be different from the PSO and other meta-

heuristic optimisation algorithms (Section 5.3.3 in Chapter 5 for further details). 

CS is a meta-heuristic searching algorithm for continuous optimisation, which was proposed 

by Yang and Deb (2009). This algorithm is also a nature-inspired optimisation algorithm. The 

search mechanism of this algorithm is based on an interesting reproduction strategy, such as 

the brood parasitism of cuckoo birds (Yang & Deb, 2009). In particular, it integrates with 

Lévy flight behaviours and has been applied to optimisation and optimal search with 

promising results in the field of science and engineering. Furthermore, research reveals the 

performance of CS is far more efficient and can outperform other meta-heuristic algorithms, 

i.e. PSO, GA, for many optimisation problems (Ljouad, Amine, & Rziza, 2014; Yang & Deb, 

2010) (Section 5.3.2 in Chapter 5 for further details). 

Jordehi (2015) proposed an ELPSO algorithm, which employs successive mutation strategies, 

such as Gaussian, Cauchy, opposition-based and differential evolution-based mutation, to 

further enhance the swarm leader to search in search spaces towards the optimal solution(s). 

Evaluation results indicate its efficiency in terms of accuracy and scalability. 

Zhang et al. (2015b) proposed a binary BBPSO-based feature selection algorithm. Their work 

used a reinforced memory strategy for personal best updating of each particle to retain particle 

diversity. In addition, it also used a uniform combination to diversify the swarm, when 

stagnation1 occurred. The effects of uniform combination were strengthened along with the 

                                                           
1 Stagnation is the situation wherein the search algorithm finds no improvement of fitness value of the 

global best solution from iteration to iteration. 
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increase of stagnant iterations. The binary BBPSO showed competitive performance in terms 

of classification accuracy and convergence rate.  

2.7 Feature Detection/Classification 

In an acute leukaemia recognition and classification system, one of the main tasks is the 

recognition of normal and abnormal lymphocytes that employs a classifier for learning 

knowledge from microscopic blood image samples. In this section, we describe the classifier 

techniques employed for the acute leukaemia detection. Details of the related research are as 

follows. 

2.7.1 Multi-layers Perceptron (MLP) 

MLP is one of the most popular supervised neural networks modelling techniques and has 

been widely used in pattern recognition, computer vision, bioinformatics and control systems 

(Howard & Mark, 1998; Mohapatra et al., 2014). It has also been applied to WBC 

identification and classification systems in related works. For example, Piuri and Scotti (2004) 

proposed the leucocytes classification system using the morphology of the microscopic blood 

cell images as a set of features for the recognition system to classify five types of white blood 

cells. In addition, three types of classifiers, i.e. k-Nearest Neighbour (kNN), feed-forward 

neural networks (FF-NN) and radial basis function neural networks (RBFN), are employed in 

the classification process and the parallel of five FF-NNs provides the highest recognition 

accuracy in their research. Mohapatra, Patra and Stpathy (2014) introduced a multiple 

classifiers system for early ALL detection using microscopic blood images. They employed 

the combination of classifiers, i.e. kNN, MLP and SVM, to the classification system and 

performs experimental results with higher accuracy compared with the results of the single 

classifiers, which are produced from a single classifier of kNN and MLP, except a single SVM 

classifier. Moreover, Teera-Umpon and Dhompongsa (2007) presented an automatic WBCs 

classification employing morphological granulometric features of only the cell nucleus of 

microscopic bone marrow images. Their classification results show that the neural networks 

classifier performs with the highest classification accuracy against Bayes and Decision Trees 

(DT) classifiers. In addition, Khasman and Abbas (2013) proposed a fast and cost-effective 

method for ALL identification that employed the extracted pixels of the boundaries of each of 

segmented white blood cell images as the inputs for classification using MLP. Three learning 

strategies with different ratios of training and testing sets (a percentage of training/a 

percentage of testing), i.e. 75%:25%, 50%:50% and 25%:75%, respectively, were employed 

to evaluate their system performance. The ratio of 75%:25% learning strategy produced the 
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highest classification with accuracy of 90%, as compared with those from other schemes in 

their work.  

2.7.2 Support Vector Machine (SVM) 

SVM is a kernel-based classification technique. The basic idea of SVM is to compute a linear 

function in a higher dimensional feature space, where the lower dimensional input data are 

mapped using a kernel function (Basak, Pal, & Patranabis, 2007). It possesses strong 

regularisation properties that are able to produce generalised models for any new datasets 

(Agaian et al., 2014). In SVM, a hyperplane is constructed in a high-dimensional feature space 

to classify data based on a set of support vectors that are members of the training samples. The 

hyperplane with the largest functional margin to the nearest training sample of any class 

usually produces lower generalisation error and gives better separation between classes (Jain, 

Duin, & Mao, 2000). Moreover, SVM has been adopted to leukocytes/WBCs recognition and 

classification applications. For example, Ongun et al. (2001) proposed an automated WBCs 

counter for a differential blood count system, which used extracted features for the recognition 

process with variety of classifiers, i.e. kNN, linear vector quantisation, MLP and SVM. Their 

evaluation results showed that the SVM performs with the highest classification accuracy 

compared to other baseline classifiers. Furthermore, Putzu, Caocci and Di Ruberto (2014) 

proposed an automated WBCs classification and identification for ALL detection using 

microscopic images. The SVM, Naïve Bayes and DT classifiers were employed for the 

recognition process to identify lymphocyte and lymphoblast cell images. In evaluation results 

of their work, a single SVM with Gaussian radial basis function (RBF) kernel achieved the 

highest recognition accuracy against the other classifiers. Madhukar, Agaian and 

Chronopoulos (2012) introduced a new decision support tool for ALL classification 

employing microscopic blood smear images. They used a SVM classifier for learning about 

the microscopic blood image samples, that each image contained multiple nuclei, to identify 

ALL. 

2.7.3 Ensemble Classifier 

Ensemble classifier is the integration of classifiers with the combination rules, which aims to 

improve classification performance (Rokach, 2010). There are nine weighting strategies, 

known as combination rules, which are usually used in the combination outputs of classifiers, 

known as classifiers fusion or ensemble classifiers, to obtain the final classification result, 

including majority voting, minimum and maximum probability, distribution summation, 

average of probabilities, product of probabilities, Bayesian combination, decision templates 
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and Dempster-Shafer. Brief information regarding the aforementioned combination rules is as 

follows: 

A. Majority Voting 

This combination rule uses the output labels of classifiers to process the final classification or 

prediction result by either all classifiers predicting with the same class, known as unanimous 

voting, or at least one more than half of the number of classifiers predicting the same class, 

known as a simple majority vote, or the highest number of classifiers predicting for the class 

(the most frequent class), known as the plurality vote, which can process even when the 

highest number of votes is less than half the number of classifiers (Kuncheva, 2014; Polikar, 

2006; Rokach, 2010).  

B. Minimum, Maximum, Average and Product Probabilities 

These combination rules mainly use the continuous output values in range [0,1] of the 

individual classifiers, which are estimates or predictions of the posterior probability by the 

classifier as the degree of support for a given input sample to each class in the system, to 

obtain the final classification for each class by using algebraic functions, i.e. minimum, 

maximum, average or mean, and product, with the supported results from the individual 

classifiers, which are stored in the decision profile matrix (DP) (Kuncheva, 2014; Polikar, 

2006). Kuncheva et al. (2004;2014) defined the DP, which represents the outputs degree of 

support given by the classifier to each class in the system, for the combination rules, which 

use continuous values of the posterior probability output from classifiers, to obtain the final 

decision output. The DP consists of two elements, including each row, which represents the 

output given by a single classifier to each of the classes, and each column, which denotes the 

estimated output received by a particular class from all classifiers (Polikar, 2006). To obtain 

the final classification result of these combination rules, for example, using minimum function 

as the algebraic combiners to classify one input sample, after creating the DP, each column of 

class finds one minimum posterior probability value from all classifiers and then the class that 

has a maximum of minimum posterior probability value of each class is the final assigned 

classification class for that input sample. 

C. Distribution Summation 

The distribution summation combination rule combines a posterior probability of the 

individual classifiers from the DP that supports the same class and then the class that has a 

maximum of total summation values is the final decision class to assign for each input sample 

(Rokach, 2010). 
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D. Bayesian Combination 

The Bayesian combination rule adopts the method where a posterior probability classification 

results in range [0,1] of each individual classifier given the training sample dataset, known as 

weight, multiplied to the probability of support of that class given an input test sample. Then 

the class that has the maximum result is the final assigned class label for that input test sample 

(Rokach, 2010). 

E. Decision Templates 

Kuncheva et al. (2004) proposed the decision templates combination rule, which calculates 

the mean of the decision profiles (DP) of all members of each class from the training dataset, 

known as the most typical decision profile (Kuncheva, 2014), and then brings it to compare 

with the current decision profile of an input test sample using similarity measure techniques, 

i.e. Euclidean distance. Finally, the class that has the smallest distance, known as closest 

match, will assign the label of that class to the input sample (Polikar, 2006). 

F. Dempster-Shafer 

The Dempster-Shafer combination method is inspired by data fusion, which is a subject area 

of data analysis mainly involved in combining elements of evidence that are provided by 

different sources of data. Data fusion is based on the Dempster-Shafer theory of evidence, 

which employs belief function (instead of probability) to measure the quantity of the evidence 

(the output of a classifier) by the source that generated the training data (Kuncheva, 2004; 

Polikar, 2006). Once the belief values are obtained for each classifier, known as source, they 

can be fused or combined by Dempster’s rule of combination, which basically states that the 

evidence (belief values) from each source (classifier) should be multiplied to obtain the final 

support for each class (Polikar, 2006). Finally, the class that has maximum support values 

(degree of belief) in range [0,1] is then assigned to the input sample (Kuncheva, 2004). 

2.8 Scope of the Research 

This research study focuses on acute lymphoblastic leukaemia, which is the most common in 

childhood, owing to the chance of children who have screening tests for early detection of this 

malignant blood disease, and to be cured, with high survival rates from the appropriate 

treatments, as reported in Section 1.1 of Chapter 1 and Section 2.2 of Chapter 2. This has 

motivated us to develop an intelligent decision support system for ALL detection using 

microscopic blood smear images. 
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2.9 Chapter Summary 

This chapter has described the extensive literature review of the relevant background in the 

field of biomedical engineering and haematology, including human blood, neoplastic 

disorders of blood, particularly leukaemia, and the laboratory diagnosis of ALL, past and 

present, through to using computerised technology to assist the experts, e.g. haematologists 

and haematopathologists, in diagnosis of the disease. In addition, the related works of the 

state-of-the-art research in the field of computer science involved in the quantitative analysis 

of microscopic blood smear images for acute leukaemia detection/classification have been 

presented. Moreover, the existing related researches in the development for ALL 

detection/classification under five sequential stages, including image segmentation and 

separation of the white blood cell membrane images, feature extraction of the 

segmented/labelled cells, feature selection of the extracted descriptors to reduce the 

redundancy of the non-significant features, and ALL identification, have also been explained. 

As observed in the related works, there are still challenging tasks for improvement of these 

successive stages for the quantitative analysis of ALL detection/classification. The next 

chapter describes the first key stage of this PhD research for an intelligent decision support 

system for ALL detection, namely the segmentation of the white blood cell membranes 

images. 
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Chapter 3: White Blood Cells Membranes 

Segmentation Using Marker-Controlled Watershed 

Method and Morphological Operations 

 

3.1. Introduction 

The first key stage of this research study for acute lymphoblastic leukaemia detection is the 

segmentation of the white blood cell membranes, specifically for the lymphocyte 

segmentation, which is the major white blood cell type for acute lymphoblastic leukaemia 

diagnosis. The aim of this stage is to isolate the lymphocyte/lymphoblast cell membrane from 

touching and overlapping of the red blood cells, platelets and artefacts of the microscopic 

peripheral blood smear sub-images and then further analyse the segmented cell membrane 

with the proposed quantitative image analysis methods, as presented in Chapter 4 and Chapter 

5, to identify whether the segmented cell is healthy or unhealthy. 

The watershed segmentation is the powerful segmentation technique, which is employed 

successfully in many domains, such as medical image analysis, computer vision etc. This 

technique can isolate the target objects in the complex image close to the boundary of these 

objects. However, the traditional watershed segmentation still has the problem of over-

segmentation. The challenge to overcome the aforementioned problem is about how to create 

the good markers for the watershed transform to segment objects in a specific domain, i.e. 

white blood cell membrane segmentation, to achieve the high accurate segmentation results. 

This chapter presents the segmentation of white blood cell (leukocyte) membranes, 

particularly lymphocyte and lymphoblast cell types, based on the extension of our previous 

study (Srisukkham et al., 2013), using the microscopic sub-images of ALL-IDB2 database 

(Labati, Piuri, & Scotti, 2011a). Overall, it proposes a modified marker-controlled watershed 

algorithm integrated with the morphological operations, as shown in the top-right green 

rectangle dashed-line of Figure 3.1, for the segmentation of the membrane of lymphocyte and 

lymphoblast cell images. The structure of this chapter is as follows. Section 3.2 describes the 

overall system architecture of this research study, while Section 3.3 presents the details of the 

microscopic blood smear image database and the consultation with the haematologists to 

provide information about the materials and the ground truths of the microscopic blood image 

dataset for the experiments and evaluations in this research. Furthermore, Section 3.4 explains 

the proposed algorithm, i.e. the modified marker-controlled watershed algorithm, for the 
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lymphocytic membranes segmentation. Finally, the evaluation and discussion of the proposed 

segmentation method are illustrated in Section 3.5. 

3.2. The Overall System Architecture of This PhD Research 

The system architecture of this research study is given in Figure 3.1. It comprises five main 

stages: (1) the lymphocytic cell membranes segmentation and identification from microscopic 

blood smear sub-images; (2) the separation of nucleus and cytoplasm of each lymphocytic cell 

membrane; (3) the feature extraction; (4) the feature selection; and (5) the healthy/lymphocyte 

and unhealthy/lymphoblast cell detection. 

 

Figure 3.1 System architecture of this research study 

Firstly, we used 180 sub-images of lymphocytic (healthy and blast lymphocyte) cells from 

ALL-IDB2 database (Labati et al., 2011a), including 120 unhealthy (blast) and 60 healthy 

lymphocyte cell sub-images, which were annotated by haematologists, to the lymphocytic 

membrane segmentation and identification as stage 1 and as presented in this chapter. This 

stage aims to segment the lymphocytic white blood cell membrane of input sub-images using 

the integration of modified marker-controlled watershed algorithm and morphological 

operations, and then identify each lymphocytic cell membrane with the retrieval of the 

identified one placed on the white background sub-image. Then, the separation of nucleus and 

cytoplasm of each identified lymphocytic membrane, as stage 2, is processed, as described in 

Chapter 4. The cropped images of the identified cell membranes are used as the input for the 

separation of the nucleus and the cytoplasm of each cell membrane using the proposed 

stimulating discriminant measure (SDM) clustering algorithm (Neoh et al., 2015), which is 

robust in terms of discriminating cell nucleus from cell cytoplasm of the identified 

lymphocytic membrane images with diverse irregular morphology. The results of this stage 

are the separated cell nucleus and cell cytoplasm images of each identified lymphocytic 

membrane of 180 sub-images. Subsequently, the feature extraction as stage 3 is also employed 
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to extract the significant discriminant characteristics of the separated nucleus and cytoplasm 

images of each identified lymphocytic membrane. Furthermore, the shape-based descriptors, 

texture-based GLCM descriptors, colour-based CIELAB colour space descriptors, and the 

statistical calculation of those descriptors are extracted according to the consultation with the 

haematologists and the state-of-the-art existing researches. Hence, we achieved 80 features 

for all identified 180 lymphocytic cells from this stage. Subsequently, the feature selection, as 

stage 4, as presented in Chapter 5, is used to select the significant discriminant characteristics 

of the extracted features for the robust and efficient lymphocyte and lymphoblast cell 

identification. We also proposed a novel feature selection algorithm, namely the BBPSO-

based feature optimisation. This BBPSO variant algorithm uses the 80 extracted descriptors 

as the input features and then computes the results, which are the most significant feature 

subsets. Finally, the classifiers, i.e. SVM, MLP and ensemble of classifiers, use the feature 

subsets for the robust and efficient recognition process for the healthy and unhealthy (blast) 

lymphocyte cell detection. 

3.3. Microscopic Blood Images from ALL-IDB Database and the Consultation with the 

Haematologists 

This research study uses the public microscopic stained blood smear images database, namely 

the acute lymphoblastic leukaemia image database, for image processing: ALL-IDB (Labati 

et al., 2011a). The database was published by the department of Information Technology, 

UniversitàdegliStudi di Milano, Italy (Labati, Piuri, & Scotti, 2011b). The ALL-IDB database 

has high quality microscopic peripheral blood sample images of healthy volunteers and ALL 

patients. The image dataset has been collected by experts of M. Tettananti Research Center 

for childhood leukaemia and haematological diseases, Monza, Italy, and was captured with 

optical laboratory microscopes coupled with both Canon PowerShort G5 and Olympus 

C2500L digital cameras. Additionally, the various magnifications, ranging from 300 to 500 

times, are applied when the images are taken in Red, Green, Blue (RGB) colour. In addition, 

the database provides the ground truth of healthy and unhealthy (suffering from ALL or blast) 

with a label annotation on each image as named by expert oncologists. The ALL-IDB has two 

distinct versions of dataset, ALL-IDB1 and ALL-IDB2. The ALL-IDB1 dataset is composed 

of 108 whole blood sample images. Furthermore, the ALL-IDB2 dataset is a group of 260 

sub-images which have one white blood cell in each sub-image, which is cropped area of 

interest of normal and blast cells from the ALL-IDB1 dataset. In this research study, the 

dataset of microscopic blood smear sample images is collected from ALL-IDB2 dataset, the 

180 sub-images, which comprise of 60 lymphocyte cells and 120 lymphoblast cells images, 
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are taken into consideration. The sub-images are selected according to the consultation with 

the haematologists.  

A meeting was conducted in consultation with the haematologists in the Royal Victoria 

Infirmary (RVI Hospital at Newcastle-Upon-Tyne, United Kingdom) to identify the criteria 

for clinical diagnosis of ALL. The haematologists categorised the criteria for diagnosing ALL 

in three groups including: (i) outside information criteria, i.e. low numbers of haemoglobin 

(Anaemia), low numbers of platelets (Thrombocytopenia), enlarged liver, fever, loss of 

weight, childhood age and bone pain; (ii) general information from the blood film criteria, i.e. 

the shape of RBCs not round as in doughnut-shaped (Anaemia), the presence of RBC teardrop 

poikilocytes, and the shape and size of platelets larger than normal, which are similarly the 

size of small lymphocyte cells (Thrombocytopenia); and (iii) specific features of lymphocytes 

(healthy cell) criteria, i.e. the size larger than normal lymphocyte, high ratios between nucleus 

and cytoplasm of each lymphocyte cell membrane, deeply basophilic cytoplasm, and open or 

fine chromatin. However, as the presence of only one criterion of each group is not enough to 

identify ALL, all criteria of all the groups will be integrated together for the diagnosis of ALL. 

According to the consultation with the haematologists and with the clinical diagnosis criteria 

based on haematologists’ experiences, most consultation information is similar to the clinical 

diagnosis of ALL, as described in Chapter 2, Section 2.2. Moreover, the valuable information 

from clinical diagnosis criteria and the significant descriptors of the lymphocytic cells for the 

quantitative image analysis from the state-of-the-art researches, as aforementioned in Chapter 

2, Section 2.6, is selected to use in the feature extraction stage of this research. Additionally, 

the sub-image samples of the lymphocytic cells with the ground truths and annotations from 

the haematologists that are employed in this research are depicted in Figure 3.2. 

The samples of ground truths and annotations of the lymphocytic sub-images, as depicted in 

Figure 3.2, are used in the evaluation step of this chapter, as presented in Section 3.5. The 

ground truths of lymphocytic membrane are used in the comparison with the segmented cell 

membranes results of the modified marker-controlled watershed and the traditional marker-

controlled watershed algorithms by employing the two-dimensional correlation coefficient as 

the comparison technique. 

3.4. The Proposed Modified Marker-Controlled Watershed Algorithm for the 

Lymphocytic Membranes Segmentation 

In this section, we present proposed segmentation algorithm, which is the integration of the 

modified marker-controlled watershed transform and the morphological operations, to 
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segment the lymphocytic cell membrane images. As aforementioned in Chapter 2, Section 2.4, 

watershed transform is a powerful morphological tool that is adaptable to apply to different 

types of image objects and is also capable of distinguishing extremely complex objects 

(Gonzalez & Ballarin, 2009). It has been used in many fields, such as medicine,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The sub-image microscopic blood samples of the lymphocytic 

cells with ground truths and annotations from the haematologists 
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biomedicine, industry, computer vision, remote sensing, computer-aided design, video coding 

and more (Pan, Zheng, & Wang, 2003; Sun & Luo, 2009). However, the drawback to the 

watershed transform is over-segmentation, which may occur as a common problem in the 

traditional watershed segmentation if image information and a priori knowledge are not fully 

utilised for the process of watershed operation (Pan et al., 2003). Therefore, a marker for each 

object of interest in the image has to be created before being applied to the watershed transform 

to overcome or avoid the over-segmentation (Gonzalez & Ballarin, 2009). The attractive 

performance of the watershed transformation motivates us to employ it as the base 

segmentation method in this research study. 

In the operation of watershed transform, we assume that an input grayscale image can be 

converted as a topographic of landscape surface with three different local minimum areas, 

known as basins, as shown in Figure 3.3 (b). We drill holes at each local minimum area, as 

the starting point of water coming through the basin, and then we immerse this landscape 

surface into a lake. The water entrance into the holes and flood the surface where the water 

coming from two or more different minima or basins would meet, when the water level 

increases from level i to j, as shown in Figure 3.3 (a), and over flooding is caused by overflow 

the ridge to the walls of another catchment basin. Thus, a dam is built on the points of the 

landscape surface to avoid the merging of different floods, as shown in Figure 3.3 (a).  

 

Figure 3.3 The watershed transform (a) Flooding of the surface, water levels: i and j and 

dam building; (b) Top view shows catchment basins, watershed lines and minimum areas: 

M1, M2, M3 (Beucher & Meyer, 1992). 
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The process of flooding is stopped and only the dams become apparent when the water level 

reaches the highest point of the landscape surface. Therefore, the dams, or lines, known as 

watersheds or watershed lines, separate the landscape surface into various regions according 

to the different catchment basins, in which each one contains only one minimum, as shown in 

Figure 3.3 (b) (Beucher & Meyer, 1992; Vincent & Soille, 1991).  

The marker-controlled watershed segmentation is the watershed segmentation algorithm that 

needs some additional information, called markers, wherein the minima correspond to the 

objects and to the background, to be identified before the flooding process. Otherwise, the 

process of flooding and the building of dams are the same as the previously mentioned 

watershed transform. In addition to the building of dams in marker-controlled watershed 

algorithm, a dam is built only for separating floods which originate from different holed 

minima (Beucher & Meyer, 1992). Therefore, the good markers, which depend on specific 

application, are important for the marker-controlled watershed algorithm to perform the 

accurate segmentation results. 

In this research study, we proposed the integration of the modified marker-controlled 

watershed algorithm and the morphological operations to segment the lymphocytic white 

blood cell membranes using the microscopic blood smear sub-images from the ALL-IDB2 

database. The procedure of this proposed method involves the following steps and the image 

results of each step are shown in Figure 3.4. 

From Figure 3.4, first, conversion of an input original RGB lymphocytic image to grayscale 

is conducted. An image filtering technique is deployed to remove noise and then enhance the 

quality of images with contrast enhancement technique, as a pre-processing and image 

enhancement step. In order to avoid over-segmentation of the watershed transform, the 

integration of morphological operations with gradient magnitude, distance transform and 

assignment of infinity values to background is used to produce good seed markers, including 

foreground and background markers, for the watershed segmentation. In addition to 

segmenting complex image, the watershed transform also assigns a labelled indexing value to 

each segmented object. The most frequently labelled indexing value in the square area size of 

10x10 pixels from the centre of the image is used to identify the lymphocytic membrane, and 

then only the binary pixels corresponding to the identified lymphocytic membrane are selected 

as a binary mask. The binary mask is subsequently used in the retrieval process of the original 

RGB pixels of the identified lymphocytic membrane. The details of each procedure according 

to the flow chart diagram of the proposed method are explained in subsequent steps as follows: 
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Figure 3.4 (a) Overview of the proposed method; (b) Image results of each 

step derived from the original RGB lymphocytic sub-image until the final 

result of RGB lymphocytic membrane on a white background. 
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3.4.1.  Pre-processing with Filtering Technique and Image Enhancement 

In this section, we introduce the pre-processing and image enhancement step applied to the 

input microscopic images for the segmentation process. The pre-processing step is a necessity 

for the segmentation task in this research study due to the presence of noise and acquisition of 

microscopic blood sample images under uneven lighting conditions, i.e. the variation of 

contrast in image. The watershed transform is sensitive to the noise in the image, as it can 

easily detect any noise to a catchment basin during the flooding process. Filtering helps to 

reduce noise in the image before applying the segmentation algorithm. In this research study, 

the noise in the input microscopic images is reduced by an operation of Gaussian low-pass 

filter technique, which was efficient and useful to reduce noise in images of our previous study 

(Srisukkham et al., 2013) and many other state-of-the-art researches (Scotti, 2006; Sun & Luo, 

2009) to achieve promising segmentation results. For an uneven lighting condition of the input 

images, we employ the image contrast enhancement operation, i.e. the contrast limited 

adaptive histogram equalisation (CLAHE) technique (Zuiderveld, 1994), to resolve the 

variation of contrast and illumination of the input images, which usually occur in the image 

database. First, we convert the input microscopic image, which is in RGB colour space, into 

grayscale. The conversion of an RGB image to grayscale of this research study is conducted 

by using the method of Rec. 601 nonlinear luma component (Y') (MathWorks, 2016; Poynton, 

1996). The conversion starts by multiplying coefficient matrix A, which is [0.299, 0.587, 

0.114], with the colour components of RGB image or RGB matrix. Then, simplifying Y' = 

A(1) R' + A(2) G' + A(3) B', where Y' is the grayscale image matrix with R' as Red colour 

component matrix, G' as Green colour component matrix and B' as Blue colour component 

matrix. Then, the grayscale image is applied by the CLAHE technique and the Gaussian low 

pass filter size 5x5 with standard deviation (𝜎) of 0.5, respectively, as shown in Figure 3.5. 

This step can help to adjust the quality of input microscopic images before doing the image 

analysis tasks. The next section presents the process of creating the markers as the good seeds 

for the watershed segmentation. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.5 The sample of images before and after being conducted with the pre-

processing and image enhancement: (a) the original RGB image; (b) the result after 

conversion to grayscale image; (c) the result after applied the CLAHE; and (d) the 

result after employing Gaussian low-pass filter.  

 

3.4.2.  Marker Generation for the Watershed Algorithm 

In this section, one of the important tasks for the lymphocytic white blood cell membrane 

segmentation with the marker-controlled watershed transform is presented. Before the 

explanation of the method of generating the markers for this research study, we introduce the 

mathematical morphological operations which are employed in the process of creating the 

good seed markers of this research.  

The mathematical morphology is a powerful image analysis technique and a widely used tool 

in image processing for representing, describing and analysing shapes and form of objects or 

images (Marques, 2011; Soille, 2004). The concept of mathematical morphology is the 

extraction of geometrical and topological information from an image or object through 

transformations using operations, known as morphological operations, with another set of 

known shapes, termed the structuring element (SE). Moreover, the design of SEs, i.e. the shape 

and size of SE, in morphological image processing is essential to the success of the 

morphological operations that employ them (Marques, 2011; Soille, 2004). In this research 
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study, we utilise morphological operations, including SE, dilation, erosion, area opening, 

closing, opening and reconstruction, in the process of creating the good markers. These 

operations and descriptions are as follows. 

SE is a shape, matrix of pixels of binary numbers, which determines the effect of 

morphological operations, i.e. dilation and erosion, in an image. The SE forms pattern relative 

to the origin. The origin can be any of its pixels, but can also be outside the SE. Examples of 

SE patterns, or shapes, are ‘disk’ and ‘diamond’, as shown in Figure 3.6.  

Dilation is a morphological operation that adds pixels to the object boundary or edge of an 

image and dilates it with respect to the shape and size of the structuring element. Dilation of 

an image 𝐴 by structuring element 𝑆 is written in Eq (3.1) as follows: 

𝐴 ⨁ 𝑆 =  ⋃{𝑆 + 𝑎: 𝑎 ∈ 𝐴}                       (3.1) 

Erosion is a morphological operation that removes pixels from the boundaries of an object and 

shrinks it with respect to the shape and size of the structuring element. If an image 𝐴 is eroded 

by using structuring element 𝑆, it is denoted in Eq (3.2) as follows: 

𝐴 ⊖ 𝑆 =  ⋂{𝑆 − 𝑎: 𝑎 ∈ 𝐴}                      (3.2) 

Where ⋃ and ⋂ is the set union and intersection, respectively, and a is pixel of image 𝐴. 

 

(a) 

 

(b) 

Figure 3.6 The example of SE shapes (a) Disk shape and (b) Diamond shape. 

 

In addition, Figure 3.7 shows the examples of the variation in an image due to erosion, dilation 

and area opening. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.7 The examples of the variation in the images due to morphological operations: (a) 

binary image; (b) area opening image with size 10 pixels; (c) dilation by SE ‘Disk’ shape 

r=5; (d) area opening image with size 200 pixels; (e) erosion by SE ‘Disk’ shape r=5; 

 and (f) area opening image with size 300 pixels. 

Area opening, or morphological binary open, is often referred to as size filter, and filters out 

foreground objects from a binary image that are smaller in area than the size provided (𝜆) in 

the Matlab bwareaopen function, i.e. bwareaopen (binary_image,size). It is an essential 

function to remove noises or artefacts from the binary image. If an image 𝐴 is applied to area 

opening with connected component area size 𝜆, 𝜆 ∈ ℕ, it is written in Eq (3.3) as follows: 

𝐴𝑟𝑒𝑎𝑂𝑝𝑒𝑛𝑖𝑛𝑔(𝐴, 𝜆) = {𝐴 − 𝑎|𝐴𝑟𝑒𝑎(𝐶𝑎(𝐴)) <  𝜆, 𝑎 ∈ 𝐴}          (3.3) 

Where 𝐴𝑟𝑒𝑎(⋅) is the union of the connected pixels wherein each pixel has intensity level 

more than zero, whereas 𝐶𝑎(⋅) is the connected pixels of object in image 𝐴.  

The morphological closing and opening operations, derived from the dilation and erosion, are 

described as follows: 

Closing is a dilation operation followed by an erosion operation. After applying the image 

with this operation, the objects in the image tend to remain their original size. The closing 

operation is useful to clean up images with object holes and other small particles or artefacts. 

If an image, 𝐴, is closing by using structuring element 𝑆, it is written in Eq (3.4) as follows: 

binary image of WBC morphologically binary open image with size 10 pixels dilation by SE "disk" shape size 5

morphologically binary open image with size 200 pixels erosion by SE "disk" shape size 5 morphologically binary open image with size 300 pixels
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𝐴  𝑆 = ((𝐴 ⨁ 𝑆) ⊖ 𝑆)                                        (3.4) 

Opening is an erosion operation followed by dilation operation. After employing the image 

with this operation, the objects in the image also tend to remain their original size. The opening 

operation is useful to clean up images with noise and other small particles or artefacts. If an 

image, 𝐴, is opening by using structuring element 𝑆, it is written in Eq (3.5) as follows: 

𝐴 ∘ 𝑆 =  ((𝐴 ⊖ 𝑆)⨁ 𝑆)                                       (3.5) 

Reconstruction is a very useful image morphological operator used to extract meaningful 

information about objects, i.e. blood cells, in an image (Gonzalez, Woods, & Eddins, 2004). 

It can also be used to extract the marked objects, i.e. foreground objects, in the grayscale image 

of this research study. In addition to the process of the reconstruction operator, it makes 

iterating grayscale dilation of a marker image, 𝐽, in i times until the contour or edge of the 

marker image has stability under a mask image, 𝐼. It is written in Eq (3.6) as follows (Vincent, 

1993): 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝐼, 𝐽) =  𝑅𝐼
𝛿( 𝐽) =  ⋁ 𝛿𝐼

(𝑖)
( 𝐽)𝑖≥1                    (3.6) 

where 𝛿𝐼
(1)

( 𝐽) = ( 𝐽 ⨁ 𝑆 ) ∧ 𝐼, 𝐽 ⨁ 𝑆 is the grayscale dilation of image J  by structuring 

element S and ∧ is the pointwise minimum. 

For example, we employ the reconstruction operator to the grayscale image I as mask using 

the grayscale image J as marker. As a result, the new reconstructed image I has the maximum 

intensity levels extracted from the connected components of the mask image, I, which are 

marked by the marker image, J, as shown by its transformation in Figure 3.8. 

 

Figure 3.8 The grayscale reconstruction of the mask image, I, from the marker image, J 

(Vincent, 1993). 
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In creating markers for the proposed method, first, we compute the gradient magnitude of the 

grayscale image from the previous step. The gradient magnitude is used to mark the shape of 

objects in the grayscale image, which will be segmented, as high intensity at the borders or 

edges of the objects and low intensity inside the objects, as shown in Figure 3.9. After 

computing the gradient magnitude, we can see the contrast variation clearly between the 

objects’ borders and the background; also, it appears many catchment basins have appeared 

in the image. However, we could not apply the watershed transform to segment the objects 

using purely the gradient magnitude image, owing to the image having considerable variation 

contrast, i.e. local minima, in the image. If we applied the watershed transform to it, over-

segmentation would occur. Hence, the foreground and background markers are created in the 

following steps and will be combined with the result of gradient magnitude image as good 

seeds before being employed with the watershed transform. Next, the morphological 

operations are employed to create the foreground marker.  

The foreground markers are the connected blobs of pixels inside each object of the foreground 

image, i.e. the blood cells, as local minimum area of each basin. This research study uses 

morphological operations to obtain the foreground markers for the watershed algorithm. Two 

sequence steps, erosion followed by reconstruction and dilation followed by reconstruction, 

are employed to make the grayscale image cleaned, particularly, the foreground objects, a 

smooth and fine intensity covering the object areas and also the image background, as shown 

in Figure 3.10 (a). Moreover, at this point, the edges or boundaries of the foreground marker 

blobs are cleaned and shrunk by the sequence of the morphological operations without 

changing the overall shape of the cells. 

 

  

(a) 

 

(b) 

Figure 3.9 (a) the input grayscale image before and (b) after computing gradient 

magnitude, respectively. 
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Next, we compute the regional maxima of the previous result, from the applied two sequence 

steps, to obtain the foreground object blobs as good foreground markers. As such, the results 

from applied regional maxima are the black foreground object blobs in the white background, 

as shown in Figure 3.10 (b). The important thing is that the boundaries of the foreground 

objects are preserved, especially the large object in the centre of image, which is the targeted 

lymphocytic cell membrane. Moreover, at this point, we can see the minima of each basin 

clearly. To complete creating the foreground markers, we clean up the good foreground object 

blobs from the previous step using a morphological closing and then remove the isolated small 

pixels or artefacts, usually present in the image, using an area opening operation, which is the 

bwareaopen function in Matlab, as shown in Figure 3.10 (c). Now, the binary foreground 

markers, as good seeds, are completed, as shown in Figure 3.10 (d). 

The background markers in this research study are created to incorporate with foreground 

markers and gradient magnitude image, controlling the watershed transform to achieve the 

segmentation results more accurately. By observation and trial and error in our experiment, 

the a priori knowledge from the grayscale image is the nucleus of the lymphocytic cell 

membrane, which has darkest intensity in the cleaned grayscale image, from the resultant after 

applying two sequence steps in creating foreground markers, as shown in Figure 3.11 (a). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.10 (a) result after applied two sequence steps; (b) after computed regional 

maxima; (c) after applied closing and area opening; and (d) the foreground markers. 

Opening-closing by reconstruction (Iobrcbr) Regional maxima of opening-closing by reconstruction (fgm)

foreground marker(fmarker) foreground marker(fmarker)
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However, the nucleus of the lymphocytic cell in the grayscale image is not an appropriate seed 

for the watershed transform to achieve the accurate segment result of the blood cell membrane, 

including nucleus and cytoplasm. Therefore, this research study uses this a priori knowledge 

to produce the background markers which have subsequence steps as follows. The cleaned 

grayscale image, from the resultant after applying two sequence steps in creating foreground 

markers, is used in its conversion to binary image, namely “bw”, using global thresholding 

technique, Otsu’s method, as shown in Figure 3.11 (b). Next, we create the drainage region in 

the area of the objects in the bw image as well as creating the catchment basins of the objects 

in the bw image using the distance transform applied to the bw image; the result of this step is 

“D”. The result of distance transform, D, is then assigned to D1 as D1= -D. The D1 is 

superimposed with assigned negative infinity values to the pixel areas of D1 corresponding to 

the white pixel areas, uninteresting areas, of the bw image as D1(bw) = -Inf. The result of this 

earlier operation is shown in Figure 3.11 (c). This step has been modified to give better 

segmentation results of watershed transform in this study. Then, we employ the watershed 

transform to the D1 to obtain the watershed line of the bw image. Now, only the watershed 

line of the bw image is used as the background markers, as shown in Figure 3.11 (d). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.11 (a) result after applying two sequence steps; (b) binary image after 

applied global thresholding to the grayscale image; (c) result after assigning the 

negative infinity values to the pixel areas of the distance transform of the bw 

image; (d) the background marker. 

Opening-closing by reconstruction (Iobrcbr)
Thresholded opening-closing by reconstruction (bw)

show D1 modified to make region out of object more different background marker(bgmarker)
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 Figure 3.12 The modified gradient magnitude image, as good seeds, for marker-

controlled watershed segmentation 

Before segmenting the input grayscale image with the watershed transform, the final process 

of generating the markers to be good seeds for the watershed algorithm is described as follows. 

We compute regional minima to the gradient magnitude image by using the combination of 

two markers, foreground and background, as a marker to the regional minima operation. As a 

result, the earlier gradient magnitude image has minimum areas, according to both markers, 

called modified gradient magnitude, as shown in Figure 3.12, which are ready to process with 

the watershed transform in the next section. 

3.4.3.  Segmentation with Watershed Transform 

The modified gradient magnitude image, which has the markers embedded inside to mark the 

minima in the gradient magnitude image from the previous step, is ready to become good 

seeds for the watershed segmentation. In this section, we employ the watershed transform to 

compute the modified gradient magnitude image. The segmentation result from the watershed 

transform is kept in the labelled matrix and each region corresponding to the separated regions 

by the watershed lines, as shown in Figure 3.13 (a), has its own labelled indexing number, 

starting from the first region, as labelled number 1, to the last region. Figure 3.13 (b) shows 

the examples of the labelled matrix result of the watershed transform in colour, wherein each 

colour represents a different segmented region corresponding to its labelled number.  

3.4.4.  Lymphocytic Cells Membrane Identification and Retrieval 

This section presents the identification of the targeted lymphocytic cell membrane from the 

labelled matrix of the watershed segmentation and the retrieval of the original RGB pixels of 

the identified lymphocytic membrane and places them on the white background corresponding 

to the same size, width and height, as the original image. 

 

 

gradmag final
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(a) 

 

(b) 

Figure 3.13 The result of watershed segmentation: (a) the watershed lines and (b) the 

various colours represent each segmented region corresponding to the labelled matrix 

from the watershed segmentation. 

 

In practice, the labelled matrix from the watershed transform is the same as the grayscale 

image matrix, wherein each pixel is represented with a label number corresponding to the 

segmented regions, which are assigned label indexing numbers from the watershed algorithm, 

instead of its gray level value. Moreover, in observation, the microscopic blood sub-images 

are usually present in the centre of the image as the interesting object in the image acquisition 

stage. Therefore, we identify the lymphocytic cell membrane by calculating from the centre 

of the labelled matrix and then finding the most frequently labelled indexing value with the 

square size of 10x10 pixels from the centre of the labelled matrix to isolate only the labelled 

indexing value of the identified lymphocytic membrane, as shown in Figure 3.14. 

 

 

 

Figure 3.14 Most frequently labelled indexing value with the square size 10x10 pixels (red 

square box at the middle) is number 3, used to identify and select only labelled region 

number 3 (the lymphocytic cell membrane) from the labelled indexing matrix. 

finally segmented ridge line(L)
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In order to retrieve the original RGB pixels of the identified lymphocytic cell membrane, a 

binary mask image of the identified cell membrane is created by setting the pixel to ‘1’, or 

white colour, which has a labelled indexing number corresponding to the label of the identified 

cell membrane, otherwise set to ‘0’, or black colour. Finally, the RGB pixels of the selected 

index value are retrieved on the white background with the same size as the original image. 

The procedure and the result of this stage are shown in Figure 3.15. 

3.5. Evaluation and Discussion 

In this section, we employ the 180 lymphocytic sub-images, from the ALL-IDB2 database, 

for the evaluation of this work. In order to test the performance of the proposed modified 

marker-controlled watershed segmentation, the experiments were carried out, including the 

proposed method and the traditional marker-controlled watershed transformation, with and 

without employing the Gaussian low-pass filter. In addition, the SE for the experiments is 

‘disk’ shaped, as was used in our previous study (Srisukkham et al., 2013). Moreover, all 

experiments are implemented based on MATLAB software version 7.12 (R2011a) and using 

a CPU AMD Athlon II 3.0 GHz personal computer with 4 GB memory running on Microsoft 

Windows 7 Enterprise operating system. 

 

 

Figure 3.15 The procedures of retrieving the original RGB lymphocytic cell 

membrane placed on the white background by using binary image (Mask). 
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As aforementioned in Section 3.3, the ground truth of the 180 sub-images has been found 

based on the database annotations and in further consultation with the haematologists from 

the Royal Victoria Infirmary (RVI) Hospital at Newcastle-Upon-Tyne, United Kingdom, and 

examples are shown in Figure 3.16, column three from the left hand-side. The ground truths 

and annotations of the lymphocytic membrane manually segmented only the targeted cell 

membrane, lymphocyte and lymphoblast cells, and placed these on the white background 

corresponding to the same position and same size of the original images. The reason why we 

created the ground truth lymphocytic membranes with the size of the image, as well as the 

original image and with the white background, is that we will further conduct an automated 

comparison between the ground truth images and the identified lymphocytic membrane, from 

both the proposed methods and the compared methods, using the two-dimensions correlation 

coefficient, 𝐶𝑜𝑟𝑟 , as the comparison technique depicted in Eq (3.7), without human 

intervention. The 𝐶𝑜𝑟𝑟 value varies from -1 to 1 which indicates that values closer to 1 have 

greater conformity with the segmented images of the proposed method, and vice versa. 

𝐶𝑜𝑟𝑟 =
∑ ∑ (𝑌𝑟𝑠−𝑌̅)𝑠𝑟 (𝑇𝑟𝑠−𝑇̅)

√(∑ ∑ (𝑌𝑟𝑠−𝑌̅)2
𝑠𝑟 )(∑ ∑ (𝑇𝑟𝑠−𝑇̅)2

𝑠𝑟 )
                         (3.7) 

where r and s refer to the row and column pixels, while 𝑌̅ and 𝑇̅ refer to the mean of matrix 

elements (pixels) in images Y and T, respectively. 

In addition to the comparison using the correlation coefficient, we conduct the automated 

categorisation of the segmented lymphocytic cell membranes into four groups, including 

completely segmented: accurate (A), those that can be used for subsequence steps: usable (U), 

a few pixels missing: partial (P) and no segmentation (N), according to the qualitative manner 

by human visual inspection. Moreover, the criterion condition of each group is as follows: 

group A: 𝐶𝑜𝑟𝑟 ≥ 0.9, group U: 0.8 ≥ 𝐶𝑜𝑟𝑟 ≥ 0.89, group P: 0.7 ≥  𝐶𝑜𝑟𝑟 ≥ 0.79, and group N: 

𝐶𝑜𝑟𝑟 < 0.69. 

The experiments indicate that the proposed method, modified marker-controlled watershed 

segmentation, with and without using the Gaussian low-pass filter, achieves more promising 

results than the traditional marker-controlled watershed methods in the comparison, as 

illustrated in Figure 3.16. The proposed method provides better results in terms of the 

complete or accurate segmentation of the whole cell membrane, cell with nucleus and 

cytoplasm, of the lymphocytic cell image.  
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Figure 3.16 The comparison of the segmented lymphocytic cell membrane between 

the proposed method and the traditional marker-controlled watershed segmentation. 
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In order to validate the segmentation results of the lymphocytic cell membrane, a correlation 

coefficient, as shown in Eq (3.7), is employed to measure the degree of similarity compared 

with the manually-segmented lymphocytic cell membrane obtained in consultation with the 

haematologists. The average correlation coefficient of each compared method is revealed in 

Table 3.1. From the experimental results, the proposed modified marker-controlled watershed 

method with Gaussian low-pass filter performs the best, with highest correlation to human 

segmentation results corresponding to the ground truth lymphocytic cell membranes. 

Moreover, the proposed method with Gaussian low-pass filter performs better than the 

proposed method without the filter. This indicates that using the filter in the pre-processing 

stage before the subsequence steps in segmentation can help the segmentation process to 

achieve better accuracy in segmentation of the lymphocytic cell membranes. Also, the 

proposed method with the good seed markers incorporates with the watershed transform to 

achieve the best segmentation compared to the traditional marker-controlled watershed 

algorithm. 

However, there are some lymphocytic cell images that the proposed modified marker-

controlled watershed segmentation performs with inaccurate segmented results, in a usable 

group, as shown in Figure 3.17, owing to the cytoplasm in the images being very transparent 

and very close to the background colour of the image. The transparency colour of the 

cytoplasm of the cell membrane image is still challenging for the white blood cell membrane 

segmentation algorithm, which needs future research for investigation and improvement for 

an accurate or complete cell membrane segmentation. Overall, the proposed modified marker-

controlled watershed segmentation is able to produce promising segmentation results of the 

whole lymphocytic cell membrane, including nucleus and cytoplasm, and is of benefit for the 

further step of an intelligent decision support system for acute lymphoblastic leukaemia 

detection. 

Table 3.1 The correlation coefficient values (Corr) of the segmented cell membranes 

between the proposed method and the traditional marker-controlled watershed method 

in comparison to the ground truth manual segmented images for 180 sub-images. 

Methods Average of Corr 

Traditional WT method without filter 0.8556 

Traditional WT method with filter 0.8753 

Proposed method without filter 0.9153 

Proposed method with filter 0.9374 
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Figure 3.17 A sample of lymphocyte cell images with inaccurate segmented result, in a 

usable group, from the proposed method with Gaussian low-pass filter. 

 

3.6. Chapter Summary  

This chapter has presented the proposed algorithm of the modified marker-controlled 

watershed segmentation for the segmentation of the lymphocytic cell membrane images. The 

unique contribution of this chapter is a novel combination of existing techniques, i.e. 

watershed transform and morphological operations, and the proposed method of generating 

the good markers for watershed transform to segment the lymphocytic cell membranes with 

promising results using microscopic blood smear sub-images. The proposed method with 

Gaussian low-pass filter performs segmentation of the lymphocytic cell membrane with 

highest correlation to the ground truth images compared with the traditional marker-controlled 

watershed algorithm. Moreover, this chapter has introduced the overall system architecture of 

this PhD research. The details of the microscopic stained peripheral blood smear image 

database used in this study are also explained. In addition, the ground truths and annotations 

of the lymphocytic cell images and clinical diagnosis criteria, according to the consultation 

with the haematologists, are revealed.  

Overall, the proposed modified marker-controlled watershed segmentation is able to produce 

promising segmentation results of the whole lymphocytic cell membrane, including nucleus 

and cytoplasm. It is of benefit for the subsequent nucleus-cytoplasm separation using the 

proposed SDM-based clustering algorithm, which is presented in Chapter 4, for robust ALL 

detection with high accuracy. 
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Chapter 4: The Separation of Nucleus and 

Cytoplasm Using Stimulating Discriminant 

Measures (SDM) 

 

4.1. Introduction 

In this chapter, a novel clustering algorithm with stimulating discriminant measure (SDM) of 

both within- and between-cluster scatter variances is proposed to produce robust segmentation 

of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-

cluster evaluation is formulated based on the trade-off of several between-cluster measures of 

well-known feature extraction methods. The SDM measures are used in conjunction with GA 

for the clustering of nucleus, cytoplasm, and background regions. Overall, the key steps of 

this study as shown in the green rectangle dashed-line in Figure 4.1 include: SDM-based 

nucleus-cytoplasm separation, features extraction of the separated nucleus and cytoplasm and 

the classification of the healthy and unhealthy (blast) lymphocyte cell images. The structure 

of this chapter is as follows: Section 4.2 explains the reason why the separation of nucleus and 

cytoplasm of the identified lymphocytic cell membrane images is required. Next, the proposed 

SDM-based clustering method for the separation of nucleus and cytoplasm of the cell 

membranes is introduced in Section 4.3. The feature extraction of the separated nucleus and 

cytoplasm sub-images as a raw feature subset for this research is illustrated in Section 4.4.  

    

Figure 4.1 The proposed SDM-based clustering algorithm for robust ALL detection. 
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The ALL detection and classification is explained in Section 4.5. Finally, the evaluation and 

discussion of the proposed SDM-based clustering method in comparison with the results of 

the state-of-the-art algorithms in the literature are shown in Section 4.6.  

4.2. Why the Separation of Nucleus and Cytoplasm of the Identified Lymphocytic Cell 

Membrane Images is required? 

In the clinical diagnosis of ALL with the morphology of blood smear slides under the light 

microscopic examination, the components of a white blood cell membrane include nucleus 

and cytoplasm. Both parts have the information and characteristics and play an important role 

in the diagnostic abnormality of the lymphocyte cells for a haematologist or a 

haematopathologist to identify ALL more accurately. Some digital diagnosis systems were 

developed to analyse microscopic peripheral blood smear images for ALL detection. 

Conversely, they suffered from a number of limitations, in particular an accurate diagnosis of 

ALL requires discrimination of one individual cell type from another, and of cell nucleus from 

cell cytoplasm (Abdul-Hamid, 2011). More particularly, the separation of lymphocytic cell 

nucleus with diverse complex irregular morphology from cell cytoplasm is a challenging task. 

In addition, only a few existing clustering methods are able to achieve good adaptively 

processes for reliable separation of nucleus and cytoplasm (Mohapatra, Patra & Kumar, 2012; 

Mohapatra et al., 2012; Mohapatra et al., 2014). Therefore, the robustness of the existing 

approaches is compromised owing to the limitation of the existing clustering algorithms (Kuo 

& Landgrebe, 2004; Li et al., 2011). In this research study, we aim to overcome the previously 

mentioned challenges, and to develop an intelligent decision support system for ALL detection 

using microscopic peripheral blood smear images. Next section presents the SDM-based 

clustering algorithm, as follows. 

4.3. The Separation of Nucleus and Cytoplasm with Stimulating Discriminant Measure 

(SDM) Technique 

In this section, we discuss classical and state-of-the-art clustering algorithms and introduce 

the proposed SDM-based clustering with the consideration of both within- and between-

cluster assessments for the separation of nucleus and cytoplasm in detail. 

4.3.1.  Clustering, Discriminant Analysis and Their Limitations 

Clustering analysis is widely used to assess the hidden patterns of datasets and organise 

samples into different categories according to the quantitative measurement of distinctiveness 

(Naz, Majeed & Irshad, 2010). There are two types of clustering: hard and soft clustering. 

Hard clustering is normally applicable when there are significant differences between clusters 
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and each object in the dataset belongs to exactly one cluster. K-means is a popular example of 

hard clustering algorithms that find the centre of each cluster based on the minimization of 

𝐽𝐾𝑀, the sum of the square of the distances between sample points in each cluster and their 

centre: 

𝐽𝐾𝑀 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑥𝑖∈𝐶𝑗
𝐶
𝑗=1 , 𝐶 > 1                              (4.1) 

where cj indicates the centre of the cluster j where j=1, 2, C and xi 
(j) refers to the data point, 

i, in cluster j. Even though K-means clustering is simple to implement for a large dataset, it is 

highly sensitive to the initial clustering centres (Nilima, Dhanesh & Anjali, 2013). 

In contrast to hard clustering like K-means, FCM is a soft clustering algorithm that assigns a 

membership to each data sample. The key difference here is that a data sample can belong to 

multiple clusters, and the minimisation function employed by FCM is as follows: 

𝐽𝐹𝐶𝑀 = ∑ ∑ (𝜇𝑖𝑗)
𝑚

‖𝑥𝑖 − 𝑐𝑗‖
2𝑁

𝑖=1
𝐶
𝑗=1 ,𝐶 > 1, 𝑚 ∈ (1, ∞)                     (4.2) 

where 

𝜇𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2
𝑚−1

𝐶
𝑘=1

                                                (4.3) 

𝜇𝑖𝑗 represents the membership degree of data sample i with respect to cluster j, whereas m is 

a real value weighting component, which is greater or equals to 1. Notice that 𝜇𝑖𝑗 is inversely 

related to the distance between the data sample and the cluster centre. 

Even though the soft partitioning of FCM through 𝜇𝑖𝑗  is sometimes more practical for 

segmenting objects that do not have significant boundaries in an image, FCM is not suitable 

for non-convex shapes, i.e. noisy data, such as very large and very small values that could 

skew the mean (Wang, 2010). 

Apart from clustering algorithms, data classification techniques such as LDA are generally 

applied to classify data samples. In LDA, classification is conducted based on two 

discriminant measures: within-class scatter matrix, 𝑆𝑊𝐿𝐷𝐴  (Eq (4.4)) and between-class 

scatter matrix, 𝑆𝐵𝐿𝐷𝐴 (Eq (4.5)).  

𝑆𝑊𝐿𝐷𝐴 = ∑ ∑
1

𝑁
(𝑥𝑖

(𝑗)
− 𝑐𝑗)

𝑁𝑗

𝑖=1
𝐶
𝑗=1 (𝑥𝑖

(𝑗)
− 𝑐𝑗)

𝑇
                   (4.4) 

𝑆𝐵𝐿𝐷𝐴 = ∑
𝑁𝑗

𝑁
(𝑐𝑗 − 𝑐)𝐶

𝑗=1 (𝑐𝑗 − 𝑐)
𝑇

                                   (4.5) 
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where 𝑐 =
1

𝑁
∑ ∑ 𝑥𝑖

(𝑗)𝑁𝑗

𝑖=1
𝐶
𝑗=1  and N is the number of samples with Nj representing the number 

of training samples in cluster j.  

As explained in Theodoridis and Koutroumbas (2006) and Li et al. (2011), the criterion of 

𝐽𝐹𝐶𝑀 is similar to the trace of the fuzzy within-cluster scatter matrix, 𝑆𝑊𝑓𝑐𝑚 shown in Eq (4.6). 

𝑆𝑊𝑓𝑐𝑚 = ∑ ∑ (𝜇𝑖𝑗)
𝑚

(𝑥𝑖 − 𝑐𝑗)
𝑁𝑗

𝑖=1
𝐶
𝑗=1 (𝑥𝑖 − 𝑐𝑗)

𝑇
              (4.6) 

The equation of 𝑆𝑊𝑓𝑐𝑚 is closely related to the within-cluster scatter matrix of LDA shown 

in Eq (4.4). As a result, FCM is claimed to consider only the within-class similarity measure 

(Li et al., 2011). In other words, the exclusion of between-class discriminant measure reveals 

the limitation of conventional FCM. In addition, the same issue applies to K-means clustering 

in that the between-cluster criterion is not taken into consideration in the discriminant 

measure. 

Motivated by the between-class discriminant measure, FCS was proposed by Wu et al. (2005) 

to minimise the within-cluster compactness and maximise the between-cluster separation. As 

explained in Li et al. (2011), fuzzy between-cluster matrix (𝑆𝐵𝐹𝐶𝑆), shown in Eq (4.7), and 

within-cluster scatter matrix (𝑆𝑊𝐹𝐶𝑆), shown in Eq (4.8), are defined as follows: 

𝑆𝐵𝐹𝐶𝑆 = ∑ ∑ 𝜂𝑗(𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚𝑁
𝑖=1 (𝑥𝑖 − 𝑐)𝐶

𝑗=1 (𝑥𝑖 − 𝑐)𝑇         (4.7) 

𝑆𝑊𝐹𝐶𝑆 = ∑ ∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚𝑁
𝑖=1 (𝑥𝑖 − 𝑐𝑗)𝐶

𝑗=1 (𝑥𝑖 − 𝑐𝑗)
𝑇

          (4.8) 

where j=1,2,…C represents the jth cluster, and 𝑥𝑖 ∈ 𝑋𝑗 with 𝑋𝑗 as a set of data samples in the 

jth cluster that consists of N samples. Note that 𝜂𝑗 is a weighting parameter as follows: 

𝜂𝑗 =
(

𝛽
4⁄ )𝑚𝑖𝑛𝑗′≠𝑗‖𝑐𝑗−𝑐𝑗′‖

2

𝑚𝑎𝑥𝑘‖𝑐𝑘−𝑐‖2 , 0 ≤ 𝛽 ≤ 1.0                      (4.9) 

With 𝑆𝐵𝐹𝐶𝑆 and 𝑆𝑊𝐹𝐶𝑆, the objective function of FCS (𝐽𝐹𝐶𝑆) or called FCS1 in this research 

study is defined as the difference between the trace 2  of the matrices 𝑆𝑊𝐹𝐶𝑆  and 𝑆𝐵𝐹𝐶𝑆 

reported in Li et al. (2011). It is derived as: 

 𝐽𝐹𝐶𝑆 = tr(𝑆𝑊𝐹𝐶𝑆) − tr(𝑆𝐵𝐹𝐶𝑆)                                (4.10)  

 𝐽𝐹𝐶𝑆 = ∑ ∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚
‖𝑥𝑖 − 𝑐𝑗‖

2
−𝑁

𝑖=1
𝐶
𝑗=1 ∑ ∑ (𝜂𝑗)(𝜇𝑖𝑗𝐹𝐶𝑆

)
𝑚

‖𝑥𝑖 − 𝑐‖2𝑁
𝑖=1

𝐶
𝑗=1      (4.11) 

                                                           
2 The trace of a square matrix is defined as the summation of its diagonal elements.  
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Additionally, cj and c indicate the centre of the cluster j and the mutual centre of all clusters, 

respectively, while 𝜇𝑖𝑗𝐹𝐶𝑆
 refers to the membership function of FCS (Li et al., 2011). 

Furthermore, the equations of cj, c, and 𝜇𝑖𝑗𝐹𝐶𝑆
 are defined in Eq (4.12), Eq (4.13) and Eq 

(4.14), respectively, as follows: 

𝑐𝑗 =
∑ (𝜇𝑖𝑗𝐹𝐶𝑆

)
𝑚

𝑥𝑖
𝑁
𝑖=1 −𝜂𝑗 ∑ (𝜇𝑖𝑗𝐹𝐶𝑆

)𝑁
𝑖=1

𝑚
𝑐

∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚
𝑁
𝑖=1 −𝜂𝑗 ∑ (𝜇𝑖𝑗𝐹𝐶𝑆

)𝑁
𝑖=1

𝑚                              (4.12) 

𝑐 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                               (4.13) 

𝜇𝑖𝑗𝐹𝐶𝑆
=

(‖𝑥𝑖−𝑐𝑗‖
2

−𝜂𝑗‖𝑐𝑗−𝑐‖
2

)
−1

(𝑚−1)⁄

∑ (‖𝑥𝑖−𝑐𝑘‖2−𝜂𝑘‖𝑐𝑘−𝑐‖2)
−1

(𝑚−1)⁄𝐶
𝑘=1

                         (4.14) 

In reference to Wu et al. (2005), fuzzy within-cluster scatter matrix ( 𝑆𝑊𝐹𝐶𝑆_𝑊𝑢 ) fuzzy 

between-cluster scatter matrix (𝑆𝐵𝐹𝐶𝑆_𝑊𝑢), developed on the basis of the fuzzy sample mean, 

aj, is given as follows: 

𝑆𝑊𝐹𝐶𝑆_𝑊𝑢 = ∑ ∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚𝑛
𝑖=1 (𝑥𝑗 − 𝑎𝑗)𝐶

𝑗=1 (𝑥𝑗 − 𝑎𝑗)
𝑇

              (4.15) 

𝑆𝐵𝐹𝐶𝑆_𝑊𝑢 = ∑ ∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚𝑛
𝑖=1 (𝑎𝑗 − 𝑐)𝐶

𝑗=1 (𝑎𝑗 − 𝑐)
𝑇

                (4.16) 

where 𝑎𝑗 =
∑ 𝜇𝑖𝑗𝐹𝐶𝑆

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝜇𝑖𝑗𝐹𝐶𝑆
𝑚𝑁

𝑖=1

. 

Hence, the proposed objective function of Wu et al. (2005), 𝐽𝐹𝐶𝑆_𝑊𝑢, termed FCS2 in this 

research, is defined as the difference between the trace of the matrices 𝑆𝑊𝐹𝐶𝑆_𝑊𝑢 and 

𝑆𝐵𝐹𝐶𝑆_𝑊𝑢. It is derived as follows: 

 𝐽𝐹𝐶𝑆_𝑊𝑢 = tr(𝑆𝑊𝐹𝐶𝑆_𝑊𝑢) − tr(𝑆𝐵𝐹𝐶𝑆_𝑊𝑢)                          (4.17) 

𝐽𝐹𝐶𝑆_𝑊𝑢 = ∑ ∑ (𝜇𝑖𝑗𝐹𝐶𝑆
)

𝑚
‖𝑥𝑖 − 𝑎𝑗‖

2
−𝑁

𝑖=1
𝐶
𝑗=1 ∑ ∑ (𝜂𝑗)(𝜇𝑖𝑗𝐹𝐶𝑆

)
𝑚

‖𝑎𝑗 − 𝑐‖
2𝑁

𝑖=1
𝐶
𝑗=1    (4.18) 

with some slight modifications on 𝑎𝑗, as follows: 

𝑎𝑗 =
∑ 𝜇𝑖𝑗𝐹𝐶𝑆

𝑚𝑥𝑖−𝜂𝑗 ∑ 𝜇𝑖𝑗𝐹𝐶𝑆
𝑚𝑐𝑁

𝑖=1
𝑁
𝑖=1

∑ 𝜇𝑖𝑗𝐹𝐶𝑆
𝑚−𝜂𝑗 ∑ 𝜇𝑖𝑗𝐹𝐶𝑆

𝑚𝑁
𝑖=1

𝑁
𝑖=1

                           (4.19) 

From Eq (4.18), when 𝜂𝑗 = 0, 𝐽𝐹𝐶𝑆_𝑊𝑢 will be equivalent to 𝐽𝐹𝐶𝑀. Conversely, when 𝜂𝑗 = 1, 

𝐽𝐹𝐶𝑆_𝑊𝑢 will be equivalent to the validity index of Fukuyama-Sugeno index (Fukuyama & 

Sugeno, 1989).  
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Although between-cluster variations have been embedded into FCS, it is essential to note that 

the membership function, 𝜇𝑖𝑗𝐹𝐶𝑆
 (Eq 4.14), can be negative when ‖𝑥𝑖 − 𝑐𝑗‖

2
≤  𝜂𝑗‖𝑐𝑗 − 𝑐‖

2
. 

A negative membership value poses an issue to determine the ownership of a data sample in 

a particular cluster. Wu et al. (2005) made a restriction for tackling this issue by proposing 

𝜇𝑖𝑗𝐹𝐶𝑆
= 1, and 𝜇𝑖𝑗′

𝐹𝐶𝑆
= 0, for all 𝑗′ ≠ 𝑗, when a negative value is obtained. The assumption 

is made such that the data sample belongs to cluster j completely with 𝜇𝑖𝑗𝐹𝐶𝑆
= 1, when 

‖𝑥𝑖 − 𝑐𝑗‖
2

≤  𝜂𝑗‖𝑐𝑗 − 𝑐‖
2
. However, such an assumption may not be always correct because 

data samples at the boundary of one cluster can easily be misclassified into another cluster, 

especially when the distribution of data samples along the boundaries of two clusters is close 

to one another. Figure 4.2 shows an example of such a condition where two clusters are 

compact, but not well separated. In this case, the distance between the red-coloured point of 

interest and the centre of cluster 1(c1), which is indicated by D2, is smaller than the distance 

(D1) between c1 and the mutual centre of the two clusters (c). According to Wu et al. (2005), 

this data sample should belong to cluster 1. However, the ground truth indicates that it belongs 

to cluster 2. 

In this research, such condition can be observed during the segmentation of nucleus and 

cytoplasm of the identified lymphocyte/lymphoblast cell membrane images. When the colour 

and pixel intensity of the nucleus and cytoplasm are close to each other, as shown in Figure 

4.3, the data samples in the boundary of the nucleus cluster get very close to the data samples 

in the boundary of the cytoplasm cluster. Therefore, the assumption of Wu et al. (2005) can 

mislead the separation of cytoplasm and nucleus where similar cluster distribution situations, 

as shown in Figure 4.2, occur. 

 

Figure 4.2 Compact, but not well separated clusters (Left: Cluster 1, Right: Cluster 2). 

Cluster 1 Cluster 2 



 

86 

 

  

Figure 4.3 Example of lymphocyte sub-images with very similar colour and pixel    

intensity in both nucleus and cytoplasm. 

Thus, FCS proposed by Wu et al. (2005) sometimes has comparatively less robustness and 

adaptivity for the segmentation of nucleus and cytoplasm with very close cluster scatter 

measures. 

In practice, the distribution of data samples (with very large or very small values) in a cluster 

affects the position of the cluster centre; therefore, the distances between a data sample to the 

centre of different clusters may be varied. In addition, a cluster can consist of multiple 

dimensional data that may lead to larger variances to shift the position of the cluster centre. 

Furthermore, the setting of parameter 𝜂𝑗 in Eq (4.14) plays a significant role in separating the 

clusters. However, the optimised setting of 𝜂𝑗 is subject to different application domains and 

may be computationally costly to obtain.  

In this research, a novel discriminant measure, namely SDM, is proposed to stimulate robust 

clustering and segmentation of cell nucleus and cell cytoplasm of the identified 

lymphocyte/lymphoblast cell membrane images. Considering the lack of between-cluster 

evaluation in FCM, both within- and between-cluster assessments are taken into account for 

the development of SDM. As an example, an improved clustering process that integrates 

SDM, FCM and the GA is introduced to obtain the optimum threshold for the separation of 

nucleus, cytoplasm and the background of each identified cell image. The developed SDM-

based clustering is compared with FCM, LDA and FCS. In the next section, we introduce the 

design of SDM-based clustering. 

4.3.2.  Stimulating Discriminant Measures (SDM) 

In this section, the novel SDM with both within-cluster and between-cluster assessments are 

introduced. As observed in Eq (4.4), Eq (4.6) and Eq (4.8), i.e. the within-cluster evaluation 

from LDA, FCM and FCS is dependent on the summation of (𝑥𝑖 − 𝑐𝑗) from all data samples 

in each cluster. Since the centre of each cluster is calculated based on the mean of all samples 
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in the cluster, those that are not normally distributed skew the value of the within-cluster 

evaluation. For example, when a cluster contains ninety-five data samples with very small 

values of (𝑥𝑖 − 𝑐𝑗) and only five with significantly large values of (𝑥𝑖 − 𝑐𝑗), the use of 

summation will tend to bias towards smaller within-cluster variations. In fact, the data sample 

with the largest value of (𝑥𝑖 − 𝑐𝑗) indicates the largest variation from the mean of samples, 

which indicates that there are no other data samples within the cluster that exceed such a limit. 

Therefore, in this research study, the argument with the maximum value of (𝑥𝑖 − 𝑐𝑗), qj , 

shown in Eq (4.20), is used to indicate the maximum variation per cluster and the total within-

cluster scatter matrix, 𝑆𝑊𝑆𝐷𝑀  shown in Eq (4.21), is defined as follows: 

𝑞𝑗 =  ‖𝑥𝑖 − 𝑐𝑗‖𝑥𝑖∈𝑋𝑗

arg max
                                            (4.20) 

 𝑆𝑊𝑆𝐷𝑀 = ∑ (𝑞𝑗 − 𝑐𝑗)𝐶
𝑗=1 (𝑞𝑗 − 𝑐𝑗)

𝑇
                             (4.21) 

where 𝑐𝑗 =
1

𝑁𝑗
∑ 𝑥𝑖𝑥𝑖∈𝑋𝑗

. 

As for the between-cluster evaluation shown in Eq (4.5), Eq (4.7) and Eq (4.16), LDA and 

FCS take the distance between the centre of a particular cluster and the mutual centre of all 

clusters, (𝑐𝑗 − 𝑐), into consideration. Even though the cluster centres are normally used to 

give a global view of a specific cluster location with respect to another cluster of interest, the 

separation between two clusters relies more on the boundary data samples in both clusters. 

Figure 4.4 shows the relationship of two non-compact clusters.  

In Figure 4.4, it is possible that the mutual centre of clusters A and B falls at the location where 

the two clusters have the larger separation. In this case, the distances (𝑐𝐴 − 𝑐) and (𝑐𝐵 − 𝑐) 

do not provide enough information pertaining to the closest separation between these two 

clusters, which is highlighted in the yellow circle dashed-line. In fact, the closest separation is 

the most accurate indicator of the separability between the clusters. As a result, 

 

Figure 4.4 The two non-compact clusters. 
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the boundary of one cluster that is closer to that of the other cluster reveals more information 

about the separation between both clusters, A and B. In addition, Kuo and Landgrebe (2004) 

pointed out the importance of using boundary points for evaluating the scatter matrix in their 

nonparametric weighted feature extraction (NWFE) method. The between-cluster scatter 

matrix, 𝑆𝐵𝑁𝑊𝐹𝐸 , defined by Kuo and Landgrebe (2004), is as follows: 

𝑆𝐵𝑁𝑊𝐹𝐸 = ∑ 𝑃𝑗 ∑ ∑
𝜆𝑖

(𝑗,𝑙)

𝑁𝑗
∙

𝑁𝑗

𝑖=1
𝐶
𝑙=1 (𝑥𝑖

(𝑗)
− 𝑀𝑙 (𝑥𝑖

(𝑗)
))𝐶

𝑗=1 (𝑥𝑖
(𝑗)

− 𝑀𝑙 (𝑥𝑖
(𝑗)

))
𝑇

, 𝑗 ≠ 𝑙   (4.22) 

where 

𝑀𝑙 (𝑥𝑖
(𝑗)

) = ∑ 𝑤𝑖𝑘
(𝑗,𝑙)

𝑥𝑘
(𝑙)𝑁𝑙

𝑘=1                                          (4.23) 

𝜆𝑖
(𝑗,𝑙)

=
dist(𝑥𝑖

(𝑗)
, 𝑀𝑙(𝑥𝑖

(𝑗)
))

−1

 

∑ dist(𝑥𝑧
(𝑗)

, 𝑀𝑙(𝑥𝑧
(𝑗)

))
−1𝑁𝑗

𝑧=1

                              (4.24) 

𝑤𝑖𝑘
(𝑗,𝑙)

=
dist(𝑥𝑖

(𝑗)
, 𝑥𝑘

(𝑙)
)

−1
 

∑ dist(𝑥𝑞
(𝑗)

, 𝑥𝑘
(𝑙)

)
−1𝑁𝑙

𝑞=1

                                   (4.25) 

Let j and l indicate different clusters. Nj is data sample size of cluster j, where Pj is the prior 

probability of cluster j. The 𝑤𝑖𝑘
(𝑗,𝑙)

 (ranging from 0 to 1), is a weight value given according to 

the euclidean distance between data samples 𝑥𝑖
(𝑗)

 and 𝑥𝑘
(𝑙)

 where the smaller the distance, the 

closer is the weight to 1. The summation of the multiplication of 𝑤𝑖𝑘
(𝑗,𝑙)

 and 𝑥𝑘
(𝑙)

 gives the 

weighted mean of 𝑥𝑖
(𝑗)

in cluster j, which is denoted as 𝑀𝑙 (𝑥𝑖
(𝑗)

). Then, based on the euclidean 

distance between the weighted mean and the data samples in cluster j, a second weighting 

function, 𝜆𝑖
(𝑗,𝑙)

 (ranging from 0 to 1), is introduced to the data sample, 𝑥𝑖
(𝑗)

 in cluster j. In this 

case (Eq (4.24)), the smaller the distance to the weighted mean, the closer the value of 𝜆𝑖
(𝑗,𝑙)

to 

1, which indicates the data sample 𝑥𝑖
(𝑗)

 is closer to the boundary of cluster l. As a result, 

𝑆𝐵𝑁𝑊𝐹𝐸 emphasises the cluster boundaries rather than the mutual centre for the evaluation of 

cluster separation based on complicated point-to-point distance weighting assignment.  

Although 𝑆𝐵𝑁𝑊𝐹𝐸 shows a significantly more thorough measurement of cluster separation 

based on the weighted mean distance, the requirement for twice weighting assignments (𝑤𝑖𝑘
(𝑗,𝑙)

 

and 𝜆𝑖
(𝑗,𝑙)

) and the necessity to check distance from each data sample of cluster j to each data 

sample of cluster l can be computationally heavy when a large size of data samples is involved 

in both clusters. For example, if thousands of pixels in an identified lymphocyte/lymphoblast 
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image were to be represented as the data samples during the between-cluster evaluation of 

hundreds of possible separations of nucleus and cytoplasm, the computational complexity is 

significantly high.  

Motivated by the boundary separation of 𝑆𝐵𝑁𝑊𝐹𝐸  and considering the necessity to reduce the 

computational complexity, a new between-cluster scatter matrix is defined for SDM in this 

research study. If there are R clusters, two clusters out of R are evaluated at a time for the 

separation between clusters. Therefore, the number of possible permutations, Perm, from R 

clusters is : 

Perm = 𝑃𝑅,2 =
𝑅!

(𝑅−2)!
                                           (4.26) 

By taking two clusters, j and l, at a time, let 

 𝐶𝑜𝑚𝑗,𝑙 = min (dist (𝑐𝑙 , 𝑥𝑖
(𝑗)

)) , ∀𝑖 ∈ {1,2, … , 𝑁𝑗}            (4.27) 

and 

 𝐶𝑜𝑚𝑙,𝑗= min (dist (𝑐𝑗, 𝑥𝑘
(𝑙)

)) , ∀𝑘 ∈ {1,2, … , 𝑁𝑙}           (4.28) 

where 𝐶𝑜𝑚𝑗,𝑙 , 𝐶𝑜𝑚𝑙,𝑗 ∈ 𝑃𝑒𝑟𝑚, 𝑗 ≠ 𝑙, then 

 𝑆𝐵𝑆𝐷𝑀 = ∑ min (𝐶𝑜𝑚𝑗,𝑙 ,  𝐶𝑜𝑚𝑙,𝑗) 𝑃𝑒𝑟𝑚
𝑧=1 , ∀𝑧 ∈ {1,2, … , 𝑃𝑒𝑟𝑚}      (4.29) 

Figure 4.5 depicts the relationship of data samples in cluster j to the centre of cluster l and vice 

versa. In this figure, the minimum distance between the data sample in cluster j and the centre 

of the other cluster (e.g. cluster l ) is used to estimate the nearest point of the respective cluster 

to the centre of the other cluster. In this way, both pairs of minimum distances (𝐶𝑜𝑚𝑗,𝑙 and 

 𝐶𝑜𝑚𝑙,𝑗) are compared to obtain the closest possible distance between two clusters. 

Additionally, this process is repeated for Perm times depending on the number of cluster 

combinations. Although the boundary is not uniformly separated, the minimum distance 

obtained indicates that there are no other segments of the boundary that have a narrower 

separation based on the estimation towards the centre of the other cluster. The proposed 𝑆𝐵𝑆𝐷𝑀 

measure avoids tedious point-to-point distance calculation between clusters in 𝑆𝐵𝑁𝑊𝐹𝐸 that 

can exponentially increase the computational complexity during the segmentation. It provides 

a closer estimation pertaining to the cluster separation than the conventional between-cluster 

evaluation, which is purely based on the distance of the cluster centre towards the mutual 

centre of all clusters (𝑐𝑗 − 𝑐), as shown in FCS (Wu et al., 2005) and LDA.  
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Figure 4.5 The distance of data samples (the yellow lines) to the centre of the other cluster, 

the red  symbols are centre of each cluster, and the  symbols represents data samples. 

 

4.3.3.  SDM-based Clustering for the Segmentation of Nucleus and Cytoplasm of 

Lymphocyte and Lymphoblast Cell Image 

In this research, SDM is embedded into the GA to improve the FCM approach in separating 

the nucleus and cytoplasm from the identified lymphocyte/lymphoblast images obtained from 

ALL-IDB2. From the literature review in Chapter 2, Section 2.5, different researchers have 

applied different colour spaces for the segmentation of nucleus and cytoplasm of lymphocyte 

and lymphoblast cell images. For example, Putzu et al. (2014) used the combination of the 

green component of RGB colour space and a* component of CIELAB colour space for the 

selection of nucleus and cytoplasm via threshold operation. Mohapatra et al. (2014) proposed 

the use of a* and b* components of CIELAB colour space to segment nucleus and cytoplasm 

using shadow C-means (SCM), whereas Madhloom et al. (2012b) claimed that the S-

component of the HSV made the nucleus of lymphoblasts become the brightest objects during 

segmentation. 

 In this study, the clustering algorithm is performed on the L* component of CIELAB colour 

space, because the L* component is able to show more differences between nucleus and 

cytoplasm whereby nucleus is normally darker owing to the existence of chromatin, whereas 

cytoplasm is relatively brighter. Although the luminance across images varies, the luminance 

in a particular image during clustering creates a difference between nucleus and cytoplasm.  

The proposed SDM-based clustering embedded into the GA for segmentation of nucleus, 

cytoplasm and background of lymphocytic cell image is illustrated in Algorithm 4.1. It aims 

to improve the segmentation capability of conventional FCM. The algorithm starts with a 

random initialisation of population, P, which consists of chromosomes, Si, where i=1,2,…k, 

that represents the threshold value of three clusters: nucleus, cytoplasm and the background. 
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During the initialisation, one of the chromosomes, Sm, is obtained as a seed from the converged 

solution of FCM to accelerate the process of optimisation, where 𝑆𝑚 ∈ 𝑃. By referring to the 

threshold value represented by each chromosome, all pixels in the original image are grouped 

into three clusters, i.e, A, B, and C, which represent clusters of cytoplasm, nucleus and the 

background, respectively. In this case, each pixel represents a data sample in a cluster, and a 

pixel can only belong to one cluster at a time. After separating the pixels, the next step of this 

algorithm is chromosome evaluation, whereby the chromosome fitness function, 𝐹(𝑆𝑖), is 

obtained based on 𝑆𝐵𝑆𝐷𝑀 and 𝑆𝑊𝑆𝐷𝑀, defined as follows: 

 

𝐹(𝑆𝑖) = {

𝑆𝑊𝑆𝐷𝑀

𝑆𝐵𝑆𝐷𝑀
+ 𝛼, If constraints not satisfied 

𝑆𝑊𝑆𝐷𝑀

𝑆𝐵𝑆𝐷𝑀
, Otherwise 

                       (4.30) 

 

 

Algorithm 4.1: The SDM-based clustering embedded into the GA for segmentation of nucleus, 

cytoplasm and background of lymphocytic cell image. 

1. Input: 

2.       Iin : Cropped identified lymphocyte/lymphoblast sub-image; 

3. Output: 

4.      The best proposed clustering threshold for separating nucleus, cytoplasm and  

5.      background 

6. Begin 

7.    //initialisation 

8.          IL = a luminance component of CIELAB colour space of input image Iin; 

9.     //initialisation seeds from the converged solution of conventional 

10.     //FCM, where ~ are ignored return data from the FCM and 𝑃(𝑆1, 𝑆2, … , 𝑆𝑘). 

11.    ( ~, 𝑃, ~)  = 𝐹𝐶𝑀( 𝐼𝐿 , 3);  
12.     For each 𝑆𝑖 ∈ 𝑃 

13.         Divide pixels into three clusters according to 𝑆𝑖; 

14.         Evaluate within-cluster and between-cluster variation using SDM;  

15.         //Determine fitness, F(Si). 

16.      End for 

17.      While maximum iteration not reached 

18.          Rank P; 

19.          SE = select (P); //Select chromosomes based on stochastic universal sampling 

20.          OF = crossover (SE); // Crossover operation to generate offspring 

21.          OF = mutation (OF); //Mutation operation to generate offspring 

22.          Evaluate each 𝑆𝑖 ∈ 𝑂𝐹; //Determine fitness, F(Si), for each new 𝑆𝑖 in OF 

23.          P = merge (P, OF); 

24.       End while 

25.       Return new updated P; 

26. End. 



 

92 

 

We aim to obtain smaller 𝑆𝑊𝑆𝐷𝑀 and larger 𝑆𝐵𝑆𝐷𝑀, which indicate a higher degree of 

similarity for within-cluster evaluation and larger separation between clusters, respectively.  

Given the aim, the smaller the fitness of the chromosome, 𝐹(𝑆𝑖), the better the solution is. As 

mentioned previously and demonstrated in Figure 4.3, there are cases where the pixel 

intensities of nucleus and cytoplasm get very close to each other, therefore, implying a greater 

degree of difficulty to separate both clusters. In this situation, two constraints are used to assist 

the segmentation process, as follows: (i) the nucleus/cytoplasm area should not be less than 

10% of the corresponding cytoplasm/nucleus area; (ii) the background area should not be 

larger than the area of the whole membrane (nucleus area + cytoplasm area). If the constraints 

are not satisfied, a penalty value, 𝛼, is applied to increase the fitness of the chromosome, 

𝐹(𝑆𝑖).  

After evaluating 𝐹(𝑆𝑖), the chromosomes are ranked according to their fitness. Then, a 

stochastic universal sampling technique is used to avoid bias during the selection of 

chromosomes for reproduction. The smaller the value of 𝐹(𝑆𝑖), the higher is the chance to be 

selected. In this study, single-point crossover and mutation are used as the genetic operators 

to produce new offspring with the probability of 0.7 and 0.3 respectively. The newly-generated 

offspring are used to divide the pixels into separated clusters (i.e. nucleus, cytoplasm and 

background). Based on the division of data samples, each offspring is further evaluated with 

the fitness function, 𝐹(𝑆𝑖), as shown in Eq (4.30). Then, with a generation gap of 0.9, offspring 

and parent solutions are merged into the new generation. Based on several trials, the GA is 

able to converge to a good separation between nucleus and cytoplasm when the maximum 

number of generation is set to 100. Therefore, the processes of evaluation, crossover and 

mutation are repeated until the maximum number of generations (i.e. 100) is achieved.  

This research employs SDM as the objective function to guide the search towards a better 

segmentation performance. In order to evaluate the discriminant capability of SDM, the 

segmentation results are compared with those obtained using LDA, FCM and FCS. For a fair 

comparison, LDA-based clustering and SDM-based clustering use the same GA parameter 

settings. The only difference in LDA is that 𝑆𝑊𝐿𝐷𝐴 and 𝑆𝐵𝐿𝐷𝐴, as shown in Eq (4.4) and Eq 

(4.5), are used instead of 𝑆𝑊𝑆𝐷𝑀  and 𝑆𝐵𝑆𝐷𝑀. Two types of FCS evaluations are implemented 

in this research study: (i) FCS1 based on Li et al. (2011) according to Eq (4.7) and Eq (4.8); 

(ii) FCS2 based on Wu et al. (2005) according to Eq (4.15) and Eq (4.16). In order to avoid 

negative membership values for FCS, as mentioned in Section 4.3.1, Eq (4.14) is modified 

according to the traditional FCM membership calculation shown in Eq (4.3). This ensures the 



 

93 

 

range of membership values lies within [0, 1]. The revised membership function of FCS is 

defined as follows: 

𝜇𝑖𝑗𝐹𝐶𝑆
=

(‖𝑥𝑖−𝑐𝑗‖−𝜂𝑗‖𝑐𝑗−𝑐‖)
−2

(𝑚−1)⁄

∑ (‖𝑥𝑖−𝑐𝑘‖−𝜂𝑘‖𝑐𝑘−𝑐‖)
−2

(𝑚−1)⁄𝐶
𝑘=1

                             (4.31) 

 

On the subject of 𝜂𝑗, due to the large variation of tuning, the setting of 𝜂𝑗 =
1

(𝐶(𝐶−1))
 in Yin et 

al. (2006) is adopted, where C is the number of clusters (Li et al., 2011).  

Overall, this study compares SDM-based clustering with LDA-based clustering, FCM, FCS1 

and FCS2 qualitatively and quantitatively. Qualitative comparison is based on visual 

inspection of the segmented nucleus and cytoplasm, whereas quantitative evaluation is based 

on a 2-dimensional correlation coefficient between automatic segmentation and ideal 

segmentation from manual cropping in consultation with haematologists, as shown in Section 

4.6.1. Eq (4.32) depicts the formula of the correlation coefficient, 𝐶𝑜𝑟𝑟. 

𝐶𝑜𝑟𝑟 =
∑ ∑ (𝑌𝑟𝑠−𝑌̅)𝑠𝑟 (𝑇𝑟𝑠−𝑇̅)

√(∑ ∑ (𝑌𝑟𝑠−𝑌̅)2
𝑠𝑟 )(∑ ∑ (𝑇𝑟𝑠−𝑇̅)2

𝑠𝑟 )
                    (4.32) 

where r and s refer to the row and column pixels, while 𝑌̅ and 𝑇̅ refer to the mean of matrix 

elements (pixels) in images Y and T, respectively.  

The separation results of nucleus, cytoplasm and the background are discussed in Section 4.6. 

Empirical results indicate that SDM-based clustering outperforms other algorithms in terms 

of nucleus and cytoplasm selection. It is observed that there are high numbers of mis-clustered 

pixels in the segmented images when the existing clustering algorithms are applied. The 

proposed SDM-based method, however, only shows very small numbers of mis-clustered 

pixels (i.e. the so-called “salt and pepper” conditions) in the segmented regions; for example, 

the pixels belonging to nucleus have been clustered into cytoplasm or vice versa. Such “salt 

and pepper” conditions can easily be solved by further conducting simple morphological 

operations focusing on nucleus/cytoplasm to identify small hole areas in nucleus/cytoplasm, 

fill the holes, and remove the filled pixels from the corresponding cytoplasm/nucleus cluster. 

Matlab functions “imfill” and “bwareaopen” are used for these morphological operations. The 

results of SDM-based clustering, with and without morphological improvement, are compared 

and discussed in Section 4.6. After the identified lymphocytic images have separated nucleus 

and cytoplasm by the proposed SDM-based clustering technique, the features extraction of 
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both nucleus and cytoplasm images of each identified lymphocyte and lymphoblast image is 

processed. The detail of the extracted feature sets is explained in the next section. 

4.4. Feature Extraction from the Separated Nucleus and Cytoplasm Images 

According to Meer et al. (2007), cell size, amount and colour of cytoplasm, shape and 

chromatin structure are important to characterise lymphocytes. Also, the consultation with 

haematologists at the Royal Victoria Infirmary (RVI Hospital at Newcastle-Upon-Tyne, 

United Kingdom) about the criteria for diagnosis of ALL in terms of clinical diagnosis and 

haematologist experiences was probed. We found that most of the consultation information is 

similar to the clinical diagnosis of acute lymphoblastic leukaemia, as described in Chapter 2, 

Section 2.2. Then, we incorporate the consultation information with the descriptors of cell 

image analysis for the ALL detection from state-of-the-art researches (as mentioned in 

Chapter 2, Section 2.6) as crucial information to form a set of descriptors for this research 

study. In order to differentiate normal and abnormal lymphocyte cells, 80 features that 

comprise 16 shape, 54 texture, and 10 colour-based descriptors are extracted from the 

segmented nucleus and cytoplasm. The 16 shape-based descriptors are: cytoplasm area, 

nucleus area, nucleus to cytoplasm ratio, length to diameter ratio, major axis length, 

orientation, filled area, perimeter, solidity, eccentricity, minor axis length, convex area, form 

factor, compactness1 based on Mohapatra et al. (2014), compactness2 based on Mohapatra et 

al. (2010) and roundness of nucleus region. These features mainly aim to extract information 

on the cell size, nucleus size, nucleus shape and amount of cytoplasm. As for the 54 texture-

based features, 13 descriptors from the GLCM matrix, including correlation, sum of variance, 

normalised inverse difference moment, sum of average, contrast, difference variance, entropy, 

cluster prominence, cluster shade, dissimilarity, energy, homogeneity, and normalised inverse 

difference are computed in four different angles (i.e. 0, 45, 90 and 135). In addition to the 

GLCM features, skewness and kurtosis are included in the texture-based descriptors. 

Chromatin pattern and the existence of nucleoli and vacuole will change the textural 

information in GLCM. Therefore, these texture descriptors are used to distinguish normal and 

unhealthy lymphocyte cells. Finally, 10 colour-based features that involve mean and standard 

deviations of the a* and b* components of the CIELAB colour space are evaluated for both 

nucleus and cytoplasm, with two descriptors referred to the ratio of the mean of a* and b* 

components between cytoplasm and nucleus. The summary of all features used in this research 

study is shown in Table 4.1. 
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Table 4.1 Summary of all 80 features in this research. 

Groups of 

feature 

Number of 

features 
Feature details 

Shape-based 

features 

16 Cytoplasm: cytoplasm area 

Nucleus: nucleus area, ratio of nucleus to cytoplasm, 

major axis length, minor axis length, ratio of length 

(major axis length) to diameter (minor axis length), 

orientation, filled area, perimeter, solidity, 

eccentricity, convex area, form factor, compactness1, 

compactness2 and roundness of nucleus region 

Texture-based 

features 

54 Texture from GLCM matrix angle 0 degree:  

correlation, sum of variance, normalised inverse 

difference moment, sum of average, contrast, different 

variance, entropy, cluster prominence, cluster shade, 

dissimilarity, energy, homogeneity, normalised 

inverse difference, skewness and kurtosis 

Texture from GLCM matrix angle 45, 90, 135 

degrees: 

correlation, sum of variance, normalised inverse 

difference moment, sum of average, contrast, different 

variance, entropy, cluster prominence, cluster shade, 

dissimilarity, energy, homogeneity and normalised 

inverse difference 

Colour-based 

features 

10 convert images to CIELAB or CIE L*a*b* colour 

space 

Cytoplasm: mean of a* and b*components, standard 

deviation of a* and b* components and ratio of mean 

a* to mean b* components 

Nucleus: mean of a* and b*components, standard 

deviation of a* and b* components and ratio of mean 

a* to mean b* components 

  

4.5. ALL Detection and Classification 

4.5.1.  Feature Dataset for Training and Testing All Classifiers 

The dataset for this research study includes 180 lymphocytic sub-images, which are 60 

lymphocyte (normal or healthy) and 120 lymphoblast (abnormal or unhealthy) images. We 

categorise a dataset for training and testing samples randomly with a balanced number of 
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lymphocytes and lymphoblasts in both training and testing images. Therefore, this dataset, 

which is used for all experiments in this chapter, includes 90 training (i.e. 30 healthy and 60 

unhealthy lymphocytes) and 90 testing (i.e. 30 healthy and 60 unhealthy lymphocytes) sample 

images. 

4.5.2.  Finding the Optimal Configuration Parameters for Classifiers 

In this research study, we employ a number of classifiers, i.e. MLP, SVM, and ensembles with 

diverse weighting combination methods, for classifying normal and abnormal lymphocyte 

cells. Before classification, the 80 features, comprising texture, colour and shape-based 

information, as mentioned in Section 4.4, are scaled into the range of [-1, 1]. These scaled 

features are then used as the inputs of each classifier for recognising normal and abnormal 

lymphocyte cells. Moreover, all experiments are implemented based on MATLAB software 

versions 8.1 (R2013a) and using CPU Intel Core i7 3.6 GHz personal computer with memory 

16 GB running on Microsoft Windows 7 Enterprise operating system. 

For the MLP classifier, we first conduct a test to find the optimal network topology in order 

to achieve a good classification rate. Input data normalisation is also performed to avoid the 

dominance of large input values to the learning process. A logarithmic sigmoid transfer 

function is used as the activation function for the hidden layer, while a linear transfer function 

is used for the output layer. The Lavenberg-Marquardt algorithm is also used to train the MLP. 

We are setting the variation of hidden nodes for each hidden layer of the MLP models as 

follows: the model of one hidden layer, the number of hidden nodes, is ranged in 2 to 70 nodes; 

the model of two hidden layers, the number of hidden nodes of each hidden layer, is ranged 

in 2 to 50; the model of three hidden layers, the number of hidden nodes for each hidden 

layers, is ranged in 2 to 10. The model of MLP for this research study is shown in Figure 4.6.  

For the SVM classifier, the RBF kernel is used, since it supports non-linear mapping of data 

samples and possesses fewer hyper-parameters (Chih-Wei Hsu, Chih-Chung Chang, 2008). In 

order to achieve a good setting of the RBF kernel, the scaling factor, 𝛾, and the soft margin 

constant, Co, are determined using the grid search method (Chih-Wei Hsu, Chih-Chung 

Chang, 2008). By using exponentially growing sequences, the ranges from 2−5 to 215 and 

2−10 to 25 are searched for 𝐶𝑜 and γ, respectively. 
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Figure 4.6 The MLP model to find the optimal network topology for one hidden layer, 

two hidden layers and three hidden layers. 

 

In addition to single MLP and single SVM classifiers, the ensemble classifiers are 

implemented with the aim to improve classification accuracy. In this research study, a series 

of ensembles with nine weighting strategies are employed, i.e. majority voting, minimum and 

maximum probability, distribution summation, average of probabilities, product of 

probabilities, Bayesian combination, decision templates and Dempster-Shafer (Kuncheva, 

2004, 2014; Polikar, 2006; Rokach, 2010). To make a feasible comparison study, all these 

weighting strategies are implemented using the same number of base classifiers with the same 

setting for each base model, as shown in Figure 4.7.  

 

Figure 4.7 The ensemble model built with MLP base classifiers. 
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Empirical results indicate that the best accuracy is achieved by Dempster-Shafer, followed by 

majority voting. Therefore, the results from the Dempster-Shafer ensemble and two single 

classifiers (i.e. MLP and SVM) are presented and discussed in Section 4.6. 

Two case studies are conducted in this chapter as follows: 

(i) The 80 lymphocytic images for comparison with the work of Khashman and Abbas 

(2013).  

(ii) The 180 lymphocytic images for the overall performance evaluation. The best 

setting of each classifier for different case studies is given below. 

In the first case study, three evaluation schemes, comprising different training and testing data 

ratios, i.e. 75%:25%, 50%:50% and 25%:75%, are used for evaluating a total of 80 

lymphocytic sub-images extracted from ALL-IDB2, respectively. 

The MLP has the following settings, i.e. two hidden layers, each layer with 8 and 43 hidden 

nodes for the first and second evaluation schemes; and one hidden layer with 13 hidden nodes 

for the third evaluation strategy. 

As for the SVM, the best parameter settings of tuple values (i.e. scaling factor (𝛾), soft margin 

constant (Co)) obtained from grid search are (8, 0.5), (8, 4) and (16, 32) and, for Dempster-

Shafer ensemble, there are 10, 11 and 10 MLP base models employed for the first, second and 

third schemes, respectively. In particular, such ensembles are constructed based on the best 

trade-off between computational complexity and system performance. 

In the second case study, two types of validation methods are used: (i) 10-fold cross validation 

and (ii) 500 bootstrap sampling validation. We employ 10-fold cross validation for evaluating 

180 images segmented using the proposed SDM clustering and morphological operations with 

SVM for ALL classification. In the experiments of this research study, 90 images are used for 

training with the remaining independent 90 images for testing, as mentioned previously. 

The settings of SVM are tuned by conducting grid search based on 10-fold cross validation 

purely on the training set of 90 images. The optimum values of the scaling factor, 𝛾, and the 

soft margin constant, Co, are identified, respectively, as 𝛾 = 8, Co = 8. Subsequently, these 

settings are applied to 90 unseen test images for evaluation.  

Although 10-fold cross validation is widely used, over-fitting can occur in some cases, since 

cross validation may over-estimate a classifier’s performance. In order to provide more 

reliable performance using a more comprehensive evaluation strategy, bootstrap sampling 
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validation is further employed for performance comparison using the MLP, SVM and 

Dempster-Shafer ensemble. In this research study, we employ .632 bootstrap (Han, Kamber 

& Pei, 2012), with the dataset sampled 500 times with replacement. For each bootstrap 

sampling, we obtain a training set of 180 lymphocytic images, where some images in the 

original dataset can occur more than once (because of sampling with replacement). The 

remaining data samples that are not included in the training set form the test set (Han et al., 

2012).  

Finally, the overall accuracy of the bootstrap model, 𝐶, is calculated as shown in Eq (4.33).  

𝐴𝑐𝑐(𝐶) =
1

𝑛
∑ (0.632 × 𝐴𝑐𝑐(𝐶𝑖)𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 + 0.368 × 𝐴𝑐𝑐(𝐶𝑖)𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡)

𝑛

𝑖=1
    (4.33) 

where 𝐴𝑐𝑐(𝐶𝑖)𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 and 𝐴𝑐𝑐(𝐶𝑖)𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡 represent the accuracy rates of the model obtained 

with bootstrap sample i when it is tested using test set i and the original dataset of 180 images 

(Han et al., 2012), respectively. In this research study, the 𝑛 = 500 represents 500 times of 

sampling with replacement.  

In order to ensure a similar parameter tuning procedure is used for all the classifiers in 

bootstrap validation, 10-fold validation tuning as used for the single SVM is employed to 

identify optimal settings of the single MLP and Dempster-Shafer ensemble. Based on the 

results, the MLP has two hidden layers with 16 and 30 hidden nodes, respectively, in the first 

and second layers. For the Dempster-Shafer ensemble, the five MLP base models are 

identified. Both single MLP and each base model of the Dempster-Shafer ensemble share the 

same topology setting and use a learning rate of 0.1, a momentum rate of 0.8 and a termination 

error of 0.01, to achieve a balance between accuracy and generalisation performance. 

4.6. Evaluation and Discussion 

We employ the microscopic sub-image database, ALL-IDB2, for the evaluation of this 

research study. In order to test the discriminant capability of SDM, experiments have been 

conducted in comparison to other classic and advanced clustering algorithms, including LDA, 

FCM and FCS. The 80 features have also been extracted for single and ensemble classifiers 

to test the robustness and efficiency of the proposed clustering algorithm. Experiments 

indicate that the proposed system in this chapter outperforms typical methods and related 

research reported in the literature.  

 

 



 

100 

 

4.6.1.  Evaluation of the Proposed SDM-based Clustering 

As mentioned previously in Section 4.5.1, the system evaluation experiments of this research 

study use 180 sub-images of 60 lymphocyte (healthy) and 120 lymphoblast (unhealthy) cells 

extracted from ALL-IDB2. The ground truth of these selected images has been established 

based on the database annotation in further consultation with haematologists from the Royal 

Victoria Infirmary (RVI) Hospital, Newcastle-Upon-Tyne, United Kingdom, as shown in 

some examples in Figure 4.8. The ground truths and annotations of the lymphocytic sub-

images as depicted in Figure 4.8, particularly the cell nucleus and cell cytoplasm columns of 

each of the lymphocytic cell sub-images, are utilised in the evaluation of the separation 

nucleus and cytoplasm results of the novel SDM algorithm and other base line algorithms 

using the two-dimensional correlation coefficient. Figure 4.9 shows the example results of the 

segmented nucleus (N) and cytoplasm (C) of the lymphocytic membrane samples obtained 

from ALL-IDB2 using different clustering techniques. 

The separation of nucleus and cytoplasm by the proposed SDM clustering and SDM with 

morphological operations has the best accuracy as compared with those obtained from other 

prevalent methods. The SDM-based clustering gives better results in terms of complete 

separation of nucleus and cytoplasm, as well as recognition of the chromatin texture in the 

segmented nucleus. In particular, the chromatin texture is one of the important features in the 

nucleus and possesses a similar colour to that of the cytoplasm (e.g. the first and third blast 

cells in Figure 4.9); therefore, the extraction of nucleus becomes very difficult because the 

chromatin texture tends to be mis-clustered as the cytoplasm by FCS1 (Li et al., 2011), FCS2 

(Wu et al., 2005), LDA and FCM clustering algorithms. In comparison with these methods, 

the proposed SDM-based clustering is able to identify most of the chromatin texture in the 

nucleus with relatively less mis-clustered pixels (“salt and pepper” conditions). To further 

improve the segmentation from SDM-based clustering, simple morphological operations are 

conducted on the segmented nucleus and cytoplasm in a vice versa manner to identify small 

hole areas in nucleus/cytoplasm, fill the holes and remove the filled pixels from the 

corresponding cytoplasm/nucleus cluster. As can be observed in the last column of Figure 4.9, 

combining the SDM-based clustering with the morphological operations manages to produce 

clean and precise separation results.  

In order to validate the separation results of nucleus and cytoplasm in a quantitative manner, 

a correlation coefficient, as shows in Eq (4.32), is used to measure the degree of similarity 

against manually segmented nucleus and cytoplasm obtained in consultation with 

haematologists, as shown in some examples in Figure 4.8.  
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Figure 4.8 The sub-image samples of the lymphocytic cells with ground truths and 

annotations from the haematologists. 
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Figure 4.9 Comparison of the separation of nucleus and cytoplasm between the 

proposed SDM clustering and other clustering methods. 
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The average correlation coefficient of each compared method is shown in Table 4.1. From the 

results, the proposed SDM method with morphological operations performs the best with the 

highest correlation to human segmentation results relating to both nucleus and cytoplasm 

selection. Moreover, the SDM achieves better correlation results for both nucleus and 

cytoplasm and outperforms other compared segmentation methods. It is also interesting to 

note that, although FCM does not include between-cluster scatter evaluation, its robust 

membership function based on within-cluster scatter is able to produce comparable results to 

those of LDA, which employs both within- and between-cluster matrices, but without the 

implementation of any fuzzy membership. Even though efforts have been made to include 

between-cluster scatter, together with fuzzy membership, in the proposal of FCS, the 

developed fuzzy membership of FCS requires subjective tuning of the parameter 𝜂𝑗. As a 

result, FCS does not seem to perform well in the segmentation when 𝜂𝑗 is fixed. 

However, FCS2 (Wu et al., 2005) performs slightly better than FCS1 (Li et al., 2011) owing 

to the consideration of (𝑎𝑗 − 𝑐) instead of (𝑥𝑖 − 𝑐) in the between-cluster scatter evaluation, 

where 𝑎𝑗 represents the fuzzy sample mean for jth cluster, while 𝑥𝑖 indicates the corresponding 

data sample and 𝑐 represents the mutual centre of all clusters. The reason is mainly owing to 

the involvement of all data samples (i.e. all 𝑥𝑖) in FCS1 (Li et al., 2011), where very large and 

very small values can affect the evaluation of between-cluster evaluation. The proposed SDM-

based clustering does not employ any fuzzy membership; therefore, it is not restricted to 

subjective tuning of parameter 𝜂𝑗. Overall, the proposed SDM is able to produce more 

promising segmentation results of nucleus and cytoplasm with a higher correlation coefficient 

as compared with those from other clustering algorithms.  

Table 4.1. The correlation coefficient values of the proposed and several selected 

clustering methods in comparison to manual separation of nucleus (CorrN) and 

cytoplasm (CorrC) for 180 sub-images. 

 

Methods CorrN CorrC 

FCS1 0.627 0.624 

FCS2 0.633 0.627 

LDA 0.773 0.705 

FCM 0.774 0.706 

SDM 0.841 0.744 

SDM + morphological operation 0.865 0.756 
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4.6.2.  Evaluation of ALL Detection  

In this study, we employ the MLP, SVM and Dempster-Shafer ensemble for ALL 

classification. Several evaluation strategies are applied to assess the system efficiency. We 

compare our research with other related work in the literature. To the best of our knowledge, 

Khashman and Abbas (2013), Putzu et al. (2014) and Madhukar et al. (2012) have achieved 

high recognition performances using the same ALL-IDB database. First of all, we analyse the 

results from our work and those from Khashman and Abbas (2013) because of their impressive 

system performance. Khashman and Abbas (2013) employed three different schemes of the 

training and testing data ratios for evaluating a total of 80 normal and abnormal lymphocyte 

images extracted from ALL-IDB2, i.e. 75%:25%, 50%:50% and 25%:75%. In each scheme, 

a balanced number of normal and abnormal samples in the training and testing sets were used. 

In order to have a fair comparison, we also employ the same three schemes of training and 

testing data ratios to evaluate our system performance using 80 randomly selected 

lymphocytic images from the ALL-IDB2 database. The details of comparison results are 

shown in Table 4.2. It can be clearly observed that SDM+SVM/MLP/Dempster-Shafer in this 

research significantly outperforms those of Khashman and Abbas (2013). The Dempster-

Shafer results are better by 10%, 18.33% and 19.9% for the first, second and third schemes, 

respectively. Since the MLP is applied in both the work of this research study and that of 

Khashman and Abbas (2013), the MLP results achieved across the three schemes also clearly 

reveal the strength of the proposed SDM-based method, which provides more efficient 

nucleus-cytoplasm separation to achieve high ALL classification rates.  

Table 4.2 Comparison of the recognition accuracy according to the three testing 

strategies used in Khashman and Abbas (2013) (N: Normal, A: Abnormal). 

 

Training &Testing Split 

ALL Detection Accuracy 

Khashman and 

Abbas (2013) 

(%) 

SDM+SVM 

(%) 

SDM+MLP 

(%) 

SDM+ 

Dempster-

Shafer (%) 

Training 75% (30(N):30(A)) 

Testing 25% (10(N):10(A)) 
90 90 95 100 

Training 50% (20(N):20(A)) 

Testing 50% (20(N):20(A)) 
80 100 96.75 98.33 

Training 25% (10(N):10(A)) 

Testing 75% (30(N):30(A)) 
75.1 86.67 91 95 
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Madhukar et al. (2012) and Putzu et al. (2014) are another two related studies in ALL 

diagnosis. Putzu et al. (2014) achieved 93.2% accuracy using SVM with RBF based on 10-

fold cross validation, whereas Madhukar et al. (2012) achieved 93.5% accuracy with SVM 

using leave-one-out cross validation. Since SVM was used in both studies, and 10-fold cross 

validation is a better bias-variance trade-off method as compared with leave-one-out cross 

validation, we employ 10-fold cross validation for evaluating 180 lymphocytic images 

segmented using the proposed SDM clustering and morphological operations with SVM for 

ALL classification. Based on the experimental setting given to find the optimal configuration 

parameters for classifiers in Section 4.5.2, we achieve an accuracy rate of 96.67% for 10-fold 

cross validation using SVM classifier.  

Even though 10-fold cross validation is widely implemented, it is undeniable that cross 

validation might over-estimate classifier performance owing to the issue of over-fitting. As a 

result, a more comprehensive evaluation, i.e. bootstrap sampling validation, is further 

conducted across MLP, SVM and Dempster-Shafer in this research study and the results of 

bootstrap validation are shown in Table 4.3. 

Table 4.3 Comparison of ALL detection accuracy using the bootstrap validation method. 

Validation Method 
Classifiers 

MLP (%) SVM (%) Dempster-Shafer (%) 

Bootstrap Validation  95.96 95.61 96.72 

 

 

Table 4.3 depicts the classifier performances for the original dataset of 180 images for 

bootstrapping. As can be observed, the Dempster-Shafer produces the highest accuracy of 

96.72%, followed by the single MLP and SVM with 95.96% and 95.61% accuracies, 

respectively. Figure 4.10 shows the boxplot for 500 bootstrap sampling validation for each 

classifier. It can be seen that the Dempster-Shafer shows a better accuracy distribution with 

comparatively smaller variations between the 25% and 75% percentiles, as compared with 

those from the single SVM and MLP classifiers. Even though there are slight differences in 

terms of classification rate across different classifiers, significant ALL recognition is observed 

in both 10-fold cross validation and 500 bootstrap sampling validation. Overall, the proposed 

SDM clustering segmentation works well, and is able to produce high accuracy for normal 

and abnormal lymphocytes detection. 
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Figure 4.10 The boxplot evaluation for 500 bootstrap sampling validation. 

4.7. Chapter Summary 

This chapter has introduced the design and development of the novel clustering algorithm with 

stimulating discriminant measures of both within- and between-cluster scatter variances for 

the robust separation of nucleus and cytoplasm of the lymphocyte/lymphoblast cell membrane 

images. The SDM-based clustering overcomes the limitations of classical FCM, which only 

considers the within-cluster scatter variance. The between-cluster scatter criteria are designed 

based on the trade-off pertaining to several between-cluster measures ( 𝑆𝐵𝑁𝑊𝐹𝐸 and 𝑆𝐵𝐿𝐷𝐴) 

through the application of the GA. The SDM-based clustering method achieves the highest 

correlation coefficient scores for the selection of nucleus and cytoplasm and outperforms 

LDA, FCM and FCS. A total of 80 feature descriptors are extracted from the segmented 

nucleus and cytoplasm. These features are used for the experiments in this chapter as the inputs 

to the MLP, SVM and Dempster-Shafer for lymphocyte and lymphoblast identification.  

For comparison with the work of Khashman and Abbas (2013) using three evaluation 

schemes, the proposed SDM-based clustering integrated with Dempster-Shafer ensemble 

achieves the best accuracy rates of 100%, 98.33% and 95% and outperforms the results in 

Khashman and Abbas (2013) by 10%, 18.33% and 19.9%, corresponding to the three 

evaluation schemes, as has been shown in Section 4.6.2. 

To provide a comprehensive evaluation study on the proposed SDM-based clustering method 

with feature extraction and recognition techniques, another case study is carried out using 180 

lymphocytic images, as has also been revealed in Section 4.6.2. The results show that 10-fold 

cross validation, together with SVM, is able to produce an accuracy rate of 96.67%. In order 

to prevent over-estimation of the classifier performance, 500 bootstrap sampling validation is 
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further conducted using the SVM, MLP and Dempster-Shafer ensemble classifiers. The 

Dempster-Shafer ensemble achieves the highest accuracy rate of 96.72%.  

Overall, the SDM-based clustering algorithm with a total of 80 features incorporated with 

single SVM, single MLP and Dempster-Shafer ensemble classifiers achieves better 

recognition accuracy in distinguishing normal and blast lymphocyte cells as compared with 

reported results in the literature. 
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Chapter 5: The Proposed BBPSO Variant for 

Feature Optimisation 

 

5.1 Introduction 

In this chapter, we propose a feature optimisation algorithm, namely a variant of Bare-Bones 

Particle Swarm Optimisation (BBPSO), to identify the most significant discriminative 

characteristic of the cell nucleus and cell cytoplasm segmented by the SDM-based clustering 

algorithm. The goal of this chapter is that we try to achieve the improvement of classification 

accuracy in terms of the performance of classifier, e.g. SVM, which employed the best-

selected feature subsets from the extracted raw 80 features in Chapter 4 and then compare the 

obtained classification accuracy to the baseline algorithms and the existing researches. In 

addition, we aim at the development of a novel algorithm to find the most relevant features 

for the highly accurate and robust acute lymphoblastic leukaemia detection. The proposed 

BBPSO variant algorithm incorporates cuckoo search, dragonfly algorithm, BBPSO, and local 

and global random walk operations of uniform combination and Lévy flights, to diversify the 

search and mitigate the premature convergence problem of conventional BBPSO. It also 

employs subswarm concepts, self-adaptive parameters, and convergence degree monitoring 

mechanisms to enable a fast convergence rate. The several proposed strategies above work in 

a co-operative manner to guide the search to the global optima. For the evaluation of the 

proposed method, we conduct experiments for the ALL detection and classification using the 

SVM classifier with the identified optimal feature subsets, as shown in the green rectangle 

dashed-line in Figure 5.1. The reason of using SVM classifier for the evaluation of the 

proposed method owing to we aim to compare the outcome of the proposed BBPSO variant 

algorithm to the state-of-the-art researches. 

This chapter is organised in the following way. Section 5.2 introduces the background and 

knowledge of the evolutionary algorithms. Section 5.3 presents the proposed BBPSO variant 

algorithm. The ALL detection and classification using SVM are discussed in Section 5.4. 

Evaluation and discussion of the proposed algorithm in comparison with other baseline 

optimisation methods using the ALL-IDB2 database (Labati et al., 2011a) are presented in 

Section 5.5. Finally, the summary of this chapter is described in Section 5.6. 
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Figure 5.1 The proposed BBPSO variant algorithm for robust ALL detection. 

5.2 Evolutionary Algorithms 

This section introduces the background and knowledge of the evolutionary algorithms, which 

are employed in this research study. According to Eiben and Rudolph (1999) and Iglesia 

(2013), evolutionary algorithms have been developed to solve optimisation problems based 

on the iterative evolution of a population of solutions that mimics principles of biological 

evolution. Moreover, the function optimisation capability of the evolutionary algorithms is 

emphasised owing to its high adaptability to different problems and to which researchers 

cannot apply traditional optimisation techniques (Wong, 2016). 

In the general process of an evolutionary algorithm, it starts with a randomly initialised 

population. In addition, the population, which has a variety of solutions, then evolves across 

several generations. In each generation, the fittest individuals or solutions are selected to 

become parents of other individuals. Next, they crossover with each other to generate new 

individuals called offspring. The new offspring individuals are randomly selected and then 

mutated at particular point. Afterwards, the algorithm selects the strong individuals or optimal 

solutions for survival to the next generation according to the method of survival selection, 

which is designed in advance, i.e. the overlapping condition of parents. The selected surviving 

individuals, parents, are employed to reproduce offspring for the next generation. Such a 

process is repeated until a satisfaction condition or a termination condition is met. Finally, the 

strongest individual or optimal solution is achieved (Wong, 2016), as illustrated in Algorithm 

5.1. 
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The design of an evolutionary algorithm combines with several components, including 

representation, parent selection, crossover operator, mutation operator, survival selection and 

termination condition. Examples of evolutionary algorithms are Swarm Intelligence (SI) 

algorithms such as GA, and their details are as follows.  

SI is a special class of evolutionary algorithm, which was first introduced by Beni and Wang 

(1993). It is the artificial simulation or implementation of the collective behaviour and social 

behaviour intelligence of a group of animals in nature (Bonabeau, Dorigo, & Theraulaz, 1999). 

Moreover, the local rules for interaction between the individuals in social intelligence are 

decentralised controllers, such that the simulation of the social behaviour of the population 

can help to find the simple rules between them (Bonabeau et al., 1999; Mirjalili, 2015). In the 

process of SI, it maintains fixed-size population of individuals for search across generations. 

After each generation, the individuals have to evaluate their fitness, which is recorded and 

used to adjust the search strategy in the next generation. The search process stops when it finds 

the best individual or the maximum generation is reached (Wong, 2016). 

As aforementioned in Section 2.3.3 in Chapter 2, GA is the most classic evolutionary 

algorithm. It draws inspiration from the Darwinian evolution theory, i.e. the concept of 

survival of the fittest in human or animal societies. In the GA, each individual has an 

information chain, which is a fixed-length binary array or bit string or binary string, as its 

genotype. Then the fitness of each individual is calculated for the selection process. After that, 

the algorithm then processes to select parents for one-point crossover to produce offspring, 

which subsequently undergo mutation operations. The offspring individuals become the 

population in the next generation. The process stops when the fittest reaches satisfaction or 

Algorithm 5.1: A Typical Evolutionary Algorithm 

1. Choose suitable representation methods; 

2.   P(t): Parent population at time t 

3.  O(t): Offspring population at time t 

4.  
5.  t  0; 

6.  Initialise P(t); 

7.  While not termination condition do 

8.   {   temp = Parent Selection from P(t); 

9.         O(t+1) = Crossover in temp; 

10.         O(t+1) = Mutate O(t+1); 

11.               If overlapping then 

12.                     P(t+1) = Survival Selection from O(t+1) ∪ P(t); 

13.               Else 

14.                     P(t+1) = Survival Selection from O(t+1); 

15.               End if 

16.           t  t+1; 

17.      }End while 

18.  Good individuals can then be found in P(t); 
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the maximum number of generations is achieved (Bäck & Schwefel, 1993; Wong, 2016; 

Zhang et al., 2015d). 

5.3 The Proposed BBPSO Variant Algorithm 

In this research, we propose a BBPSO variant algorithm for feature optimisation, which 

mitigates the premature convergence problem of conventional BBPSO. The proposed 

algorithm incorporates multiple search strategies such as BBPSO, CS and DA to diversify the 

search in the primary and subswarms, respectively. An adaptive mechanism is also applied to 

identify stagnant situations and convergence degrees of each of the search algorithms 

employed. The proposed BBPSO variant employs Lévy flights and the uniform combination 

to increase particle swarm diversity if the primary or subswarm based search stagnates. In 

particular, the search strategies of the CS and DA algorithms possess two search capabilities, 

i.e. local and global search. CS employs Lévy flights and a discovery probability to control 

global (3/4 of the lifetime of CS) and local search (1/4 of the lifetime of CS) to satisfy global 

convergence requirements (Yang & Deb, 2009) whereas the DA employs static and dynamic 

swarming behaviours of dragonflies and models their social interaction behaviours (in search 

for food and evading enemies etc.) to balance between exploitation and exploration. Therefore, 

CS and DA are selected to extend the global and local search capabilities of conventional 

BBPSO and applied to the subswarms, respectively, to guide the search of global optimum. In 

particular, the discovery probability of CS is also dynamically adjusted in our algorithm as the 

number of iterations increases to adjust its effect and make initial attempts to overcome 

drawbacks of constant parameter setting in traditional CS to improve performance. Overall, 

BBPSO, CS, DA, Lévy flights and the uniform combination work collaboratively to drive the 

search out of local optimum trap and find the global optimal solutions. For example, if any of 

the above search strategies fail to increase global best solutions for a number of iterations and 

stagnate, other algorithms are used to escalate search and population diversity to enable the 

proposed approach to escape from local optimum trap. The proposed BBPSO variant 

algorithm is illustrated in Algorithm 5.2. Additionally, the flowchart of the algorithm is shown 

in Figure 5.2. We introduce the proposed algorithm in detail as follows. 

As illustrated in Algorithm 5.2, the algorithm first of all performs a conventional BBPSO for 

N number of iterations to identify a global best solution, gbest_bbpso. A combination 

probability, 𝑝𝐵𝐵𝑃𝑆𝑂, is also embedded in BBPSO to observe its convergence rate and stagnant 

situations. If 𝑝𝐵𝐵𝑃𝑆𝑂 > a random value to indicate stagnation occurred in BBPSO in the 

primary swarm, then Lévy flights are applied to the current primary swarm to increase particle 

swarm diversity. Moreover, this newly generated diversified swarm using Lévy flights is then  
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Algorithm 5.2: Pseudo-code of the Proposed BBPSO Variant Algorithm 

1. Start 

2. Initialise the position of each particle in the swarm; 

3.  

4. Repeat { 

5.     Repeat{//perform original BBPSO operation 

6.           For each particle in the overall population do   

7.            { 

8.              Evaluate each particle by the defined fitness function; 

9.              Update the position of each particle; 

10. Update the individual best particle pbest and the best particle 

gbest_bbpso in the overall population; 

11.             }End for 

12. Update the combination probability 𝑝𝐵𝐵𝑃𝑆𝑂; //to observe stagnation 

in BBPSO 

13.    }Until (stopping condition); 

14.    If BBPSO stagnates (i.e 𝑝𝐵𝐵𝑃𝑆𝑂> rand) 

15.       Apply Lévy flights to the overall swarm; 

16.    End if 

17.    Divide the population into two subswarms s1 and s2; 

18.  

19.     //perform CS in subswarm s1 

20.     Repeat{   

21.        Perform CS as illustrated in Algorithm 5.3 in subswarm s1; 

22.        Update the global best solution, gbest_cs; 

23.        Update the combination probability, 𝑝𝐶𝑆; //to observe stagnation in CS 

24.      }Until (stopping condition); 

25.  

26.      //perform DA in subswarm s2 

27.      Repeat  

28.      { 

29.         Perform DA as indicated in Algorithm 5.4 in subswarm s2; 

30.  Update the global best solution, gbest_da 

31.  Update the combination probability, 𝑝𝐷𝐴; //to observe stagnation in 

DA 

32.       }Until (stopping condition);   

33.  

34.       Compare the fitness of gbest_bbpso, gbest_cs, and gbest_da and assign 

the best leader to gbest. 

35. If CS stagnates (i.e. 𝑝𝐶𝑆> rand)  

36.      Conduct uniform combination as shown in Algorithm 5.5 to s1; 

37.        End if  

38.        If DA stagnates (i.e. 𝑝𝐷𝐴> rand)  

39.   Conduct uniform combination as shown in Algorithm 5.5 to s2; 

40.        End if 

41.        

42.       Discard the worst leader among gbest_bbpso, gbest_da, and gbest_da 

and combine s1 and s2 into one whole population again;  

43.       Reinsert gbest into the updated population as the swarm leader;  

44. }Until (stopping condition); 

45. Return the most optimal solution(s); 

46. End. 
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Figure 5.2 The flowchart of the proposed BBPSO variant algorithm. 

 

 

Y 

Y 

N 

N 

N 

Y 

Termination 

𝑝𝐷𝐴> rand 

𝑝𝐶𝑆> rand 

 

  

 

 

 

 

  

 

Y 

t < MaxT? t < MaxT? 
  

 

 

 

 

 

 

 

 

N 

Y 

N 

N 

Y 

N 

Y 

𝑝𝐵𝐵𝑃𝑆𝑂> rand 

 

 

 

 

 

  

 

 

 

Start 

Initialisation 

t < MaxT? 

Perform BBPSO to the swarm 

Update the global best solution gbest_bbpso 

Update combination probability 𝑝𝐵𝐵𝑃𝑆𝑂 

t = t+1 

Apply Lévy flights to the swarm  

Divide the swarm into two subswarms s1and s2 

Perform DA in subswarm s2 

Update the global best solution, gbest_cs  

Perform CS in subswarm s1 

t = t+1 

Update the combination probability, 𝑝𝐶𝑆 Update the combination probability, 𝑝𝐷𝐴 

t = t+1 

Update the global best solution, gbest_da 

Compare the fitness of gbest_bbpso, gbest_cs, and gbest_da 

and assign the best leader to gbest 

Conduct uniform combination to s1 

Conduct uniform combination to s2 

Output gbest 

Reinsert gbest into the updated swarm as the leader 

Discard the worst leader among gbest_bbpso, gbest_cs, 

and gbest_da and combine s1 and s2 

End 



 

114 

 

divided into two subswarms, s1 and s2. We employ CS and DA in each of the subswarm based 

search, respectively. After N number of iterations, the global best solutions, gbest_cs and 

gbest_da, are identified by CS and DA, respectively, in each subswarm. Then the three optimal 

solutions, i.e. gbest_bbpso, gbest_cs and gbest_da, obtained from BBPSO, CS and DA, 

respectively, are compared with each other and the one with the highest fitness value is 

assigned as the global best solution, i.e. gbest, whereas in the meantime, the worst leader 

among the three is discarded.  

Furthermore, as illustrated in Algorithm 5.2, we also observe stagnant iterations of CS and 

DA by including combination probabilities, 𝑝𝐶𝑆  and 𝑝𝐷𝐴 , in the subswarm based search, 

respectively. If CS or DA stagnates (i.e. 𝑝𝐶𝑆  or 𝑝𝐷𝐴  is more than a random value), then 

uniform combination integrated with opposition-based mutation is used to diversify the 

population of the subswarms. Subsequently, the two updated subwarms by the uniform 

combination are merged to form an overall swarm. This newly formed primary swarm and the 

most recently identified gbest are subsequently passed on to the next generation for the search 

of global optimal solution(s). The search process iterates until the termination criteria are met, 

i.e. (1) the number of generations reaches 200, or (2) the fitness value of the identified global 

best solution equals to or is more than 0.98. The best solution, i.e. the selected feature subset, 

is obtained when either termination criteria is satisfied.  

Most importantly, the three search strategies of BBPSO, CS, and DA, and the long and short 

jump mutation mechanisms of Lévy flights and uniform combination work in a collaborative 

manner to drive the search out of local optimum trap. For example, if BBPSO fails to generate 

a fitter leader and stagnates, Lévy flights are used to diversify the population of the primary 

swarm, which may further enhance subsequent CS and DA based search in each subswarm to 

avoid local optimum trap. Moreover, the BBPSO algorithm is also able to contribute to the 

retrieval of fitter global optimal solutions in a scale of the overall swarm to reduce the 

probability of premature convergence when the subswarm based search using CS or DA or 

both stagnate.  

Furthermore, if the subswarm based search using CS stagnates, empirical results indicate that 

the DA-based search in the other subswarm employs static and dynamic swarming behaviours 

of dragonflies and is capable of achieving dramatic fitness improvement in comparatively later 

stage of iterations to identify a fitter leader and drive the search out of local optimum, whereas 

if the DA stagnates, results indicate that the CS algorithm with either a fixed or a dynamically 

changing discovery probability shows great capabilities to reach global optimality and guide 

the search to escape from local optimum. The diversified updated subswarms using the 
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uniform combination, incurred by the stagnation of CS or DA, may also enable the BBPSO-

based search in the primary swarm in the next generation to achieve global optimality. Overall, 

the above co-operative strategy of the proposed algorithm enables primary and subswarm 

based search mechanisms, and the local (uniform combination) and global (Lévy flights) 

random walk operations to work in a collaborative manner to retain the population diversity, 

increase local exploitation and global exploration, overcome premature convergence of 

conventional BBPSO and guide the search to the ultimate global optima. Subsequently, each 

strategy of the proposed algorithm is introduced in detail as follows. 

5.3.1 Bare-Bones Particle Swarm Optimisation (BBPSO) 

PSO is proposed by Kennedy and Eberhart (Kennedy & Eberhart, 1995) and has been widely 

used as an efficient technique for feature selection. In PSO, each particle has a position in the 

search space represented by a vector xi = (xi1, xi2, ..., xiD) and a velocity denoted as vi = (vi1, 

vi2, …, viD), where D denotes the dimensionality of the search space. Particles move in the 

search space in order to search for the optimal solution(s). Additionally, in PSO, the best 

position ever achieved by a particle, i.e. the personal best, pbest, and the best position of the 

overall swarm, i.e. the global best, gbest, are used to update the velocity and position of each 

particle. Eq (5.1) and Eq (5.2) define the velocity and position updating in PSO. 

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡 )  (5.1) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1    (5.2) 

where w indicates the inertia weight and c1 and c2 denote acceleration constants with r1 and r2 

as random values uniformly distributed within [0, 1], d ∈ D denotes the dth dimension of the 

particle while t represents the iterations. pid and pgd refer to the elements of pbest and gbest in 

the dth dimension, respectively.  

 

Furthermore, BBPSO is a PSO variant (Kennedy, 2003). Compared with conventional PSO, 

it does not consider the velocity, but only updates the positions of particles. Gaussian 

distribution is employed for position updating in BBPSO, as illustrated in Eq (5.3).  

 

𝑥𝑖𝑑
𝑡+1 = 𝜙(

𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 + 𝑔𝑏𝑒𝑠𝑡𝑑

𝑡  

2
, |𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑑
𝑡 |)                                   (5.3) 

 

where 𝜙 denotes Gaussian distribution and 
𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑡 + 𝑔𝑏𝑒𝑠𝑡𝑑
𝑡  

2
  represents the mean or expectation 

of the distribution with |𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 −  𝑔𝑏𝑒𝑠𝑡𝑑

𝑡 | as the standard deviation. Using Eq (5.3), the 
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new position of a particle is distributed according to Gaussian distribution, although other 

distribution techniques other than Gaussian could also be applied. Compared with 

conventional PSO, BBPSO does not require any operating parameters, is more efficient and 

has also been extensively applied to real-world single and multi-objective optimisation 

problems (Zhang, Gong, & Ding, 2012a).  

 

In this research, the following settings are employed for the proposed BBPSO algorithm. We 

set the initial swarm with a population size of 50 and the maximum number of overall 

(external) generations is 5 with another 10 iterations employed for each internal search 

algorithm (i.e. CS, BBPSO and DA). As illustrated in Algorithm 5.2, at the initial stage of the 

algorithm, we employ 10 iterations for BBPSO to obtain the initial swarm leader. In order to 

observe the convergence degree of BBPSO, the algorithm includes a combination probability, 

pBBPSO. Motivated by Zhang et al. (2015d), this combination probability is defined in Eq (5.4) 

and can be adjusted dynamically based on the number of stagnant iterations.  

 

𝑝𝐵𝐵𝑃𝑆𝑂 =
0.2

1+𝑒(5−𝑛𝑢𝑚_𝑏𝑏𝑝𝑠𝑜)                                           (5.4) 

 

where 𝑛𝑢𝑚_𝑏𝑏𝑝𝑠𝑜 represents the number of stagnant iterations in BBPSO. If the fitness of 

the gbest identified by BBPSO does not show obvious improvement between two successive 

iterations, 𝑛𝑢𝑚_𝑏𝑏𝑝𝑠𝑜 is incremented by 1. When this combination probability, pBBPSO, is 

more than a random value, Lévy flights defined in Eq (5.5) are applied to diversify the overall 

population. 

 

𝑥𝑖𝑑
𝑡+1 =  𝑥𝑖𝑑

𝑡 + (𝑥𝑚𝑎𝑥
𝑑 −  𝑥𝑚𝑖𝑛

𝑑 ) × 𝜓(𝜆)                           (5.5) 

 

where 𝜓 represents Lévy flights with 𝜆 as the random step length. 𝑥𝑚𝑖𝑛
𝑑  and 𝑥𝑚𝑎𝑥

𝑑  represent 

the minimum and maximum values in the dth dimension, respectively. According to Eq (5.4), 

pBBPSO is increased from 0 to 0.2 along with the increase of the number of stagnant iterations, 

𝑛𝑢𝑚_𝑏𝑏𝑝𝑠𝑜 (pBBPSO approaches 0.2 when 𝑛𝑢𝑚_𝑏𝑏𝑝𝑠𝑜 ≥10). Therefore, the global random 

walk of Lévy flights is more likely to be activated when stagnation iterations increase in 

BBPSO. Then we divide the primary swarm into two subswarms, as illustrated in Algorithm 

5.2. CS and DA are used to guide the search in each subswarm, respectively. A combination 

probability is embedded in CS and DA as well to observe stagnation in each algorithm. A local 

random walk operation (i.e. uniform combination) will be activated to increase particle swarm 

diversity to overcome local optimum when CS or DA stagnates. 
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In this research, the following fitness function, commonly applied to many other related 

applications (Zhang et al., 2015d), defined in Eq (5.6) is used to evaluate the proposed 

algorithm and other comparable optimisation methods.  

 

fitness(𝐶) = 𝜇 ∗ accuracy𝐶 + (1 − 𝜇) ∗ (number_features𝐶)−1 (5.6) 

In Eq (5.6), 𝜇 and 1 − 𝜇 denote the weights for classification accuracy, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐, and the 

number of selected features, 𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑐, respectively. Since the classification 

accuracy is regarded as more important than the number of selected features, 𝜇 is assigned a 

higher value than that of 1 − 𝜇. 

 

 

5.3.2 Cuckoo Search Algorithm (CS) 

The CS algorithm is initially proposed by Yang and Deb (Yang & Deb, 2009). Theoretical 

studies indicated that CS possesses local and global search mechanisms to fulfil global 

convergence. Research also indicated that CS is far more efficient and outperforms other meta-

heuristic algorithms (such as GA, PSO, etc.) (Ljouad et al., 2014; Yang & Deb, 2010). 

Therefore, it is selected to guide the subswarm search in this research study. 

The CS algorithm employs the following three main principle rules for the search of the global 

optimal solutions. Firstly, each cuckoo lays one egg (solution) at a time which is discarded in 

a randomly chosen nest. Secondly, the best nests with high-quality eggs are selected for the 

next generations. Thirdly, the host bird discovers the egg laid by a cuckoo with a probability, 

pa. For example, a fraction pa of worse nests will be abandoned and replaced by new nests. In 

CS, the number of available host nests is also usually set to a constant number during the 

search. The algorithm aims to replace not-so-good solutions in the nests with new and 

potentially better solutions. The pseudo-code of CS is provided as Algorithm 5.3 (Yang & 

Deb, 2009).  

In this research, the initial population of CS has 25 randomly selected particles (i.e. half of the 

original swarm). In each generation, a global random walk strategy using Lévy flights defined 

in Eq (5.7) is applied in order to generate a new solution, 𝑥𝑖
𝑡+1.  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝛼 × 𝜓(𝜆)                                            (5.7) 

where 𝑥𝑖
𝑡+1 and 𝑥𝑖

𝑡 denote the ith solution in t+1 and t generations, respectively. 𝜓 represents 

Lévy flights operation with λ as the random step length (1 <λ ≤ 3) and 𝛼 is the step-size scaling 

factor. Lévy flights perform a random walk where their random step-lengths are distributed 

based on a Lévy probability distribution. Lévy flights thus enable an offspring solution to 
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jump further away from its parent solution to increase global exploration and avoid local 

optimum trap (Hakli & Uğuz, 2013; Levy, 1954).  

Algorithm 5.3: Pseudo-code of Cuckoo Search 

1. Start 

2. Initialise a population of n host nests xi (i = 1, 2, …, n); 

3.  

4. While (termination criteria are not met) 

5. {   

6.     Get a cuckoo i randomly by Lévy flights (using Eq (5.7)); 

7.     Evaluate the fitness fi of the solution; 

8.     Choose a nest j among n randomly ( 𝑗 ∈ {1,2, … , 𝑛} ); 

9.         If (fi > fj) 

10.               Replace j by the new solution i; 

11.         End if 

12.     Abandon a fraction (pa) of worse nests and build new nests (using Eq (5.8)); 

13.     Keep best solutions (i.e. nests); 

14.     Rank the solutions and find the current best; 

15. }End while 

16. End 

 

 

Moreover, a fraction of worse nests in CS is discovered with a probability pa, which will be 

replaced by new nests (solutions). The following local random walk operator, defined in Eq 

(5.8), is applied to generate new solutions. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝛼𝑠 × 𝐻(𝑝𝑎 −  𝜀)  × (𝑥𝑘
𝑡 − 𝑥𝑙

𝑡)                           (5.8) 

where 𝑥𝑘
𝑡  and 𝑥𝑙

𝑡 denote solutions selected randomly by random permutation, 𝑠 denotes the 

step size and H(v) represents a Heaviside function3 while ε is a random number drawn from a 

uniform distribution. This new solution, 𝑥𝑖
𝑡+1, is accepted as a new solution if it has a better 

fitness value than that of 𝑥𝑖
𝑡. This random walk strategy defined in Eq (5.8) increases the local 

exploitation capability of the CS algorithm. Also, the population diversity in CS is determined 

by the discovery probability, pa. For example, a higher value of the parameter, pa, leads to the 

increase of population diversity and thus fast convergence speed whereas a lower value of the 

parameter may lead to premature convergence and a slow convergence rate. As illustrated in 

Eq (5.7) and Eq (5.8), the CS algorithm employs both local and global search mechanisms, 

controlled by a switching/discovery probability, to achieve global convergence.  

                                                           
3 Heaviside function is a discontinuous function whose value is zero, ‘0’, for negative argument and 

one, ‘1’, for positive argument, i.e. H(-1) = 0; H(3) = 1. 
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Also existing research indicates that the setting of pa and 𝛼 plays very important roles in      

fine-tuning the solution vectors and adjusting the convergence rate of CS (Valian, Tavakoli, 

Mohanna, & Haghi, 2013). In particular, the search process will require large values for both 

of these parameters at the beginning stage of iterations to increase global search capabilities 

and comparatively smaller values for these parameters to fine-tune potential solution vectors 

in final iterations. Therefore, constant parameter setting in CS may have limitations. For 

example, existing research indicates that the fixed settings for both pa and 𝛼 may lead to either 

increased iterations (e.g. when both values are small) or incapability in exploiting in local 

search space efficiently to find the best solution(s) (e.g. when both values are large) (Valian 

et al., 2013). Therefore, in this research, we make initial attempts and propose a self-adaptive 

parameter tuning strategy defined in Eq (5.9) to dynamically adjust the discovery probability, 

pa, which changes as the number of generation increases during the execution of CS in the 

proposed algorithm. 

𝑝𝑎
𝑡+1 = 𝑝𝑎

𝑡 − 
1

𝑀𝑎𝑥𝑇
                                              (5.9)  

 

where MaxT represents the maximum number of iterations for CS and 𝑝𝑎
𝑡+1 and 𝑝𝑎

𝑡  represent 

the discovery probability  in t+1 and t iterations, respectively. In this way, pa is decreased as 

the number of iterations increases which enables CS to start the search with a comparatively 

larger value of pa to increase search and population diversity and apply a much smaller pa to 

fine-tune the identified solution vectors in the final stage to identify the most optimal solutions. 

In this research, experiments have been conducted using both a fixed and self-adaptive pa 

within CS in the proposed algorithm in order to identify the effect of a dynamic changing pa 

under different experimental settings. The initial parameter setting of CS in the proposed 

algorithm is illustrated as below, which is recommended by our experimental trials and other 

research (Yang & Deb, 2009). 

n (i.e. the number of host nests) = 25; pa (i.e. initial discovery probability) = 0.3; 𝜆 (i.e. the 

random step length for Lévy flights) = 1.5; 𝛼 (i.e. the step-size scaling factor) = 0.08;  

Furthermore, as indicated in Algorithm 5.2, similar to BBPSO, we also include a combination 

probability, pCS, defined in Eq (5.10) in CS to observe its convergence degree.  

 

𝑝𝐶𝑆 =
0.2

1+𝑒(5−𝑛𝑢𝑚_𝑐𝑠)                                               (5.10) 

 

where 𝑛𝑢𝑚_𝑐𝑠 represents the number of stagnant iterations in CS. When the combination 

probability, pCS, is more than a random value, instead of using Lévy flights as in BBPSO, 
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uniform combination integrated with opposition-based mutation is applied to increase the 

population diversity of CS. Subsequently, we introduce the DA based search in the other 

subswarm as follows. 

 

5.3.3  Dragonfly Algorithm (DA) 

The DA is proposed by Mirjalili (2015). It simulates and implements static and dynamic 

swarming behaviours of dragonflies to balance between global exploration and local 

exploitation. The search process of the DA employs five social interaction behaviours of 

dragonflies, including separation, alignment, cohesion, attraction (towards food) and 

distraction (outwards enemies), which distinguishes DA from PSO and other SI algorithms. 

The swarming factors (i.e. weights) associated with each of these five social behaviours play 

important roles in affecting exploration and exploitation capabilities of the algorithm in the 

search space. Experimental results of DA in this research study also indicate its tendency of a 

performance surge in final generations when more neighbouring dragonflies are gathered. 

Because of its impressive performance and satisfying global convergence requirement, it is 

selected in this research to guide the subswarm search. 

We introduce the modelling of the five social interaction behaviours of dragonflies as follows. 

Firstly, the separation behaviour, denoted as 𝑆𝑖, indicates the static collision avoidance of the 

individuals from other neighbourhood individuals, which is defined in Eq (5.11) (Mirjalili, 

2015).  

 

𝑆𝑖 = − ∑  𝑥 − 𝑥𝑘
𝑛
𝑘=1                                       (5.11) 

 

where 𝑥 and 𝑥𝑘 denote the positions of the current individual and the kth neighbourhood 

artificial dragonfly, respectively, while n represents the number of individuals in the 

neighbourhood. 

 

The alignment behaviour, represented as 𝐴𝑖, is calculated using Eq (5.12), which refers to the 

velocity matching among neighbourhood individuals (Mirjalili, 2015). 

 

𝐴𝑖 =
∑  𝑉𝑘

𝑛
𝑘=1

𝑛
                                                          (5.12) 

 

where 𝑉𝑘 denotes the velocity of the kth neighbourhood individual.  
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Cohesion, 𝐶𝑖, is defined in Eq (5.13), which models the inclination of individuals to travel 

towards the centre of the mass of the neighbourhood (Mirjalili, 2015).   

 

𝐶𝑖 =
∑  𝑥𝑘

𝑛
𝑘=1

𝑛
− 𝑥                                                   (5.13) 

Motivated by survival tactics, dragonflies are attracted towards a food source, 𝐹𝑖, and flee 

away from an enemy, 𝐸𝑖, which are simulated using Eq (5.14) and Eq (5.15), respectively 

(Mirjalili, 2015).  

𝐹𝑖 = 𝑥∗ − 𝑥                                                        (5.14) 

𝐸𝑖 = 𝑥𝜖 + 𝑥                                                        (5.15) 

where 𝑥∗ in Eq (5.14) and 𝑥𝜖 in Eq (5.15) represent the positions of a food source and an 

enemy, respectively.  

Similar to the PSO algorithm, the movement of artificial dragonflies in the search space is 

carried out by updating the step/velocity and position vectors, which are defined in Eq (5.16) 

and Eq (5.17), respectively (Mirjalili, 2015).  

∆𝑥𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 +  𝑐𝐶𝑖 +  𝑓𝐹𝑖 +  𝑒𝐸𝑖) +  𝑤∆𝑥𝑡            (5.16) 

In Eq (5.16), s, a, c, f, and e represent the swarming weights/factors for separation, alignment, 

cohesion, attraction (towards food) and distraction (outwards enemies), respectively, with w 

as the inertia weight whereas ∆𝑥𝑡+1 and ∆𝑥𝑡 represent the step/velocity vector in t+1 and t 

iterations, respectively. Eq (5.17) shows the position updating based on the step vector 

calculated by Eq (5.16). 

𝑥𝑡+1 =  𝑥𝑡 + ∆𝑥𝑡+1                                           (5.17) 

where 𝑥𝑡+1 and 𝑥𝑡  indicate the positions of an individual in t+1 and t iterations, respectively. 

Eq (5.16) and (5.17) simulate social behaviours of an artificial dragonfly when it has at least 

one neighbouring individual (Mirjalili, 2015). However, in order to increase global 

exploration of the DA, a random walk such as Lévy flights is applied to model its flying around 

behaviour in the search space when there is no neighbouring solution (dragonfly) available. 

Eq (5.18) shows the random walk behaviour using Lévy flights (Mirjalili, 2015). 

𝑥𝑡+1 = 𝑥𝑡 + 𝑥𝑡 × 𝜓(𝑑)                               (5.18) 

where 𝜓 represents Lévy flights with d as the dimension of the position vectors. 

The pseudo-code of the DA algorithm is provided in Algorithm 5.4 (Mirjalili, 2015). In this 

study, the algorithm starts with the initialisation of a set of 25 random solutions (i.e. half of 

the overall swarm). The position and velocity vectors are also assigned with random values 
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within the lower and upper bounds of the variables initially. Eq (5.16) - Eq (5.17) or Eq (5.18) 

is used to update the velocity/step and position vectors, respectively, in each iteration. Since 

the DA simulates not only a dynamic swarm where alignment for flying is high while 

maintaining proper separation and cohesion, but also a static swarm where alignment is low 

and cohesion is high while attacking prey, the swarming factors a and c are adjusted 

accordingly to enable the effective exploring and exploiting of the search space. Furthermore, 

the five swarming factors, s, a, c, f, and e, also enable different global and local search 

behaviours to be achieved during optimisation in DA. The above position updating process 

continues until the termination criteria are fulfilled. 

 

Algorithm 5.4: Pseudo-code of Dragonfly Algorithm 

1. Start 

2. Initialise a population of n dragonflies xi (i = 1, 2, …, n); 

3. Initialise step vectors ∆𝑥𝑖 (i = 1, 2, …, n); 

4. While (termination criteria are not met) 

5. {   

6.     Evaluate the fitness of all dragonflies; 

7.     Update the food source and enemy; 

8.     Update the swarming factors, i.e. w, s, a, c, f, and e 

9.     Generate S, A, C, F and E (using Eq (5.11)-(5.15));  

10.     Update neighbouring radius; 

11.        If (there is at least one neighbouring dragonfly to the current individual) 

12.               Update velocity and position vectors (using Eq (5.16)-(5.17)); 

13.        Else 

14.                Update position vector (using Eq (5.18)); 

15.        End if 

16.     Correct the new positions based on the boundaries of variables if required. 

17. }End while 

18. End 

 

 

Furthermore, as discussed earlier and indicated in Algorithm 5.2, we have also embedded a 

combination probability, pDA, in DA to observe its convergence, which is defined in Eq (5.19).  

𝑝𝐷𝐴 =
0.2

1+𝑒(5−𝑛𝑢𝑚_𝑑𝑎)                                                 (5.19) 

 

where 𝑛𝑢𝑚_𝑑𝑎 represents the number of stagnant iterations in DA. Similar to the case for CS 

and BBPSO, when the combination probability, pDA, is more than a random value, uniform 

combination integrated with opposition-based mutation is applied to diversify the subswarm 

in order to enable the search to escape from local optimum. As the cases for BBPSO and CS, 
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the influence of uniform combination is strengthened when more stagnation iterations occur 

in DA. We introduce the random walk mechanism for population diversity preservation using 

uniform combination in the next section. 

5.3.4  Uniform Combination 

When CS and DA in subswarm based search stagnate, uniform combination is activated to 

increase population diversity to overcome premature convergence. In this research, this local 

random walk operator combines opposition-based mutation to diversify the particles. 

In uniform combination, firstly, we select a range of elements from a particle, UCn, based on 

the combination probability of CS and DA. Then we randomly identify a starting point, l, 

where the combination process starts. For each element of a particle from the starting point, l, 

to the dynamically adjusted range, UCn, the opposition-based mutation illustrated in Eq (5.20) 

is applied. For example, this opposition-based mutation is applied separately to the specific 

dimensions of each particle to increase its diversity. 

𝑥𝑖𝑗
𝑡+1 = 𝑥𝑚𝑖𝑛

𝑗
+  𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑖𝑗

𝑡                                     (5.20) 

 

where j ∈ [l, l+UCn] denotes the jth dimension of the ith particle while 𝑥𝑚𝑖𝑛
𝑗

 and 𝑥𝑚𝑎𝑥
𝑗

 represent 

the minimum and maximum values in the jth dimension, respectively. The pseudo-code for 

uniform combination is illustrated in Algorithm 5.5. 

 

 

Algorithm 5.5: Pseudo-code of the Proposed Uniform Combination 

1. Start 

2. //N_sub: the size of the subswarm. D_s: the size of dimensions for each 

//particle. pc: the combination probability which is replaced by pCS or pDA 

//accordingly for each subswarm.  

3. For (i=1 to N_sub) 

4. {   

5.     If (pc> rand)) //rand generates a random number within [0, 1] 

6.      {     

7.          UCn = [pc *  D_s]; //calculate the range 

8.          l = rand(D_s - UCn , 1); //select a starting point randomly 

9.             For (j = l to (l+UCn)) 

10.                    𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛
𝑗

+  𝑥𝑚𝑎𝑥
𝑗

−  𝑥𝑖𝑗; //apply opposition-based mutation  

11.             End for 

12.       }End if 

13.   }End for 

14.   Output the new subswarm; 

15. End 
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Empirical results indicate that the uniform combination with opposition-based mutation 

increases the subswarm population diversity and enables the proposed algorithm to overcome 

local optimum. Subsequently, the identified discriminative feature subsets for healthy and 

blast cells are used for the detection of lymphocytes and lymphoblasts. We have also compared 

the proposed algorithm with other state-of-the-art PSO variants and advanced and 

conventional search methods to identify its efficiency. Empirical results indicate the 

superiority of the proposed BBPSO variant algorithm in comparison to other methods. 

Detailed evaluation results are discussed in Section 5.5. 

5.4 The ALL Detection and Classification  

5.4.1 Evaluation Datasets 

The dataset for this study includes 180 lymphocytic sub-images, which contain 60 lymphocyte 

(normal or healthy) and 120 lymphoblast (abnormal or unhealthy) images extracted from the 

ALL-IDB2 (Labati et al., 2011a) in consultation with the haematologists, as aforementioned 

in Chapter 3, Section 3.3, and also as utilised in the experiments in Chapter 4. Furthermore, 

we categorise two datasets for all experiments in this chapter. The details of each dataset are 

as follows. The first dataset, which is as well as used in Chapter 4, contains a balanced number 

of lymphocytes and lymphoblasts for both training and testing. Therefore, the first dataset, 

known as first experiment setting, includes 90 training (30 healthy and 60 unhealthy 

lymphocytes) and 90 (30 healthy and 60 unhealthy lymphocytes) unseen testing sample 

images. Moreover, for the second dataset, the training samples include a balanced number of 

lymphocyte and lymphoblast cell images, while the test samples are the remaining unseen 

images. Therefore, the second dataset, known as the second experiment setting, includes 100 

training (50 healthy and 50 unhealthy) images, and 80 (10 healthy and 70 unhealthy) unseen 

test sample images. 

5.4.2  Finding the Optimal Configuration Parameters for a Classifier 

In this research study, we employ an SVM for classifying normal and abnormal lymphocyte 

cell images. Before classification, we conduct normalisation to the selected feature subsets, 

which are scaled into the range of [-1, 1]. These scaled features are then used as the inputs of 

a classifier for recognising normal and abnormal lymphocyte cell images. Moreover, all 

experiments are implemented based on MATLAB software versions 8.5 (R2015a) and using 

CPU Intel Core i7 3.6 GHz personal computer with memory 16 GB running on Microsoft 

Windows 7 Enterprise operating system.  
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In order to recognise normal and abnormal lymphocyte cell images, the SVM with radial basis 

function kernel (RBF) is employed in this research due to the fact that it supports nonlinear 

mapping of samples and has fewer hyper-parameters (Hsu & Chang, 2008). Moreover, the 

kernel parameter setting plays a very important role in achieving optimal classification 

performance (Ding & Chen, 2010). In this research, we employ grid search method (Hsu & 

Chang, 2008) to determine the scaling factor, , and the soft margin constant, Co, to make 

SVM achieve optimal performance based on RBF kernel. By using exponentially growing 

sequences, the ranges from 2−5 to 215 and 2−10 to 25 are searched for 𝐶𝑜 and 𝛾, respectively. 

Furthermore, a 10-fold cross validation has been conducted in order to find the best 

combinations of parameters, known as tuple value (i.e. scaling factor (𝛾), soft margin constant 

(Co)), and also to avoid overfitting for the SVM. Additionally, the parameter settings, which 

achieve the best performance from the training dataset, are employed for the evaluation of the 

unseen testing images at the test stage for the proposed algorithm and other comparable 

baseline optimisation algorithms. 

In this study, we conduct two experiments according to the two fitness functions, i.e. the 

fitness function 1 defined in Eq (5.6) and the fitness function 2 written in Eq (5.21), as below. 

The fitness function 1 illustrated in Eq (5.6) indicates stronger focus on classification accuracy 

in comparison to the emphasis given to the number of selected features. We have also provided 

the fitness function 2, as defined in Eq (5.21), which indicates a comparatively more balanced 

trade-off between classification accuracy and the number of selected features.  

fitness2(𝐶) = 𝜇 ∗ accuracy𝐶 + (1 − 𝜇) ∗ (1 −  
numberfeatures𝐶

numberall
)        (5.21) 

where 𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑙𝑙 and 𝑛𝑢𝑚𝑏𝑒𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐶
 indicates the overall number of raw features (i.e. 80) 

and the number of selected features, respectively. The second part of the above equation 

focusing on the number of selected features has more influence on the overall fitness 

calculation than the corresponding part of the original fitness function defined in Eq (5.6). In 

addition, the same weight settings of 𝜇 and 1 − 𝜇 as those used in Eq (5.6) are also applied to 

this newly defined fitness function.  

Furthermore, as mentioned earlier, in each experiment, we also conduct two experiment 

settings to evaluate the performance of the proposed method and the comparable baseline 

optimisation methods as following: (i) the first experiment setting, which uses the 90 

unbalanced training images, i.e. 60 unhealthy and 30 healthy lymphocyte cell images, and 90 

unseen testing images and (ii) the second experiment setting, which employs the 100 balanced 
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training images, i.e. 50 unhealthy and 50 healthy lymphocyte cell images and 80 unseen testing 

images, i.e. 70 unhealthy and 10 healthy lymphocyte cell images. 

5.5 Evaluation and Discussion 

In order to compare the proposed method with other comparable baseline algorithms, we have 

implemented the following optimisation methods, including binary BBPSO (Zhang et al., 

2015d), ELPSO (Jordehi, 2015), conventional BBPSO, CS, DA, PSO and GA for the 

comparison. The 180 lymphocytic images under the abovementioned two experiment settings 

are employed to evaluate the efficiency of the proposed BBPSO algorithm and compared to 

all other methods. Since the proposed method and the other baseline optimisation methods are 

all stochastic algorithms, we also employ 30 independent experiment runs for each algorithm 

to identify discriminative feature subsets and use the average of 30 trials for comparison. 

Moreover, the proposed method with both a fixed and a self-adaptive pa within the CS is 

tested under the two experiments. The evaluation results of all experiments are as follows. 

5.5.1  Experiment 1 Using Fitness Function 1 

In experiment 1, first, we compare convergence rates of all algorithms at the training stage for 

both experiment settings, i.e. 90 unbalanced and 100 balanced training images, owing to a 

convergence rate being of practical importance for an iterative method, which is the speed at 

which an optimisation sequence approaches its limit. Thus, this experiment illustrates the 

convergence rates, known as convergence curves, of all algorithms, which employed the 90 

unbalanced and 100 balanced training datasets, as depicted in Figure 5.3 and Figure 5.4, 

respectively. In addition, a higher convergence rate means that an optimisation algorithm 

requires fewer iterations to produce a useful approximation of the problem domain, whereas 

a lower convergence rate means that an optimisation algorithm needs more iterations to 

produce a useful approximation solution. Figures 5.3 and 5.4 show the averaged convergence 

curves of all algorithms over 30 experiment runs employing the 90 unbalanced and 100 

balanced training lymphocytic cell images, respectively. In particular, when trained with the 

100 balanced images, the proposed method embedded with a self-adaptive (or changing) pa 

balances well between global exploration and exploitation, as indicated in Figure 5.4, and has 

the fastest convergence rate in comparison with the one that embedded a fixed pa in the CS, 

and vice versa when trained with the 90 unbalanced images, as shown in Figure 5.3. On the 

other hand, in comparison to the other baseline algorithms, the proposed method embedded 

with both a fixed and a self-adaptive pa shows the efficient exploration and exploitation 

capabilities and achieves the superior and fastest convergence rate. Overall, the proposed 

method has a comparatively higher convergence rate with a fewer number of iterations needed 
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to achieve a useful approximation of healthy and unhealthy lymphocyte cell images, whereas 

the other comparable baseline methods illustrate comparatively lower convergence rates with 

more iterations required to reach a useful approximation of the lymphocytic cell images. 

 

Figure 5.3 The convergence curve of the proposed algorithm over 30 experiment runs 

using 90 unbalanced training lymphocytic cell images. 

 

Figure 5.4 The convergence curve of the proposed algorithm over 30 experiment runs 

using 100 balanced training lymphocytic cell images. 
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By observation of both experimental settings, the convergence rates of the proposed methods 

are the best, followed by those of comparable methods, advanced and conventional search 

algorithms, such as the CS, DA, ELPSO, BBPSO, binary BBPSO, PSO and GA, respectively. 

The performance differences between balanced and unbalanced training sets as shown in 

Figure 5.3 and Figure 5.4, respectively, are summarised in the following two points. First, the 

fitness value of a balanced training set tends to be higher than the one obtained using an 

unbalanced training set, which means that training with a balanced training set can support the 

optimisation algorithm to find the best solution (a set of best-selected features), which satisfies 

the objective function indicating the high fitness values close to 1. Secondly, the trend of 

convergence rates of all algorithms in Figure 5.4 tend to be faster in fewer iterations when 

training with a balanced training set compared with an unbalanced training set. In order to 

fairly compare the proposed method to those baseline search strategies, the iterations in both 

Figure 5.3 and Figure 5.4 are the real iteration numbers for comparison of all search strategies. 

In particular, the real iteration numbers of the proposed method, which includes both the 

external loop, i.e. the repeat-until loop controlling the iteration variable, and the internal loop, 

i.e. the for-loop controlling the t variable of each search strategies, as depicted in Algorithm 

5.2, are indicated in both Figure 5.3 and Figure 5.4. E.g. the iteration number 30 is calculated 

from the multiplication of the number of external loops, i.e. 1, and the summation of the three 

internal loops, i.e. 30 is the summation of the three search strategies that each search has 

defined as 10 maximum iterations of its for-loop. The convergence curves of the proposed 

method have already achieved the highest average fitness value over 30 experiment runs at 

iteration 30 in both Figure 5.3 and Figure 5.4 for both experimental settings compared to the 

advanced baseline comparable methods, which take at least approximately a further 30, 60 

and 100 iterations for the CS, DA and ELPSO, respectively, to have performance 

improvements or to reach the similar fitness values of the proposed method. Moreover, when 

observing the convergence rate of the CS, BBPSO and DA algorithms, we found that the CS 

and BBPSO have fast convergence at the initial iterations owing to their local and global 

searching strategies, whereas the DA improves its performance quickly at the final iterations 

because the searching mechanism has benefits during the swarming/moving of each dragonfly 

in their population towards the best food sources (solutions), when taking more 

neighbourhoods of dragonflies into account. Therefore, the compatible combination of the 

BBPSO and CS, which have the fastest convergence rate, and DA, which has the static and 

dynamic social behaviours, with surge in performance to achieve more mature iterations, 

benefits the efficient convergence speed and strong exploration and exploitation capabilities 

of the proposed algorithm. 
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In addition to the above convergence experiment, we then employ the first experimental 

setting, i.e. 90 unbalanced training and 90 unseen testing images, for testing. Moreover, we 

have compared the proposed methods with both embedded fixed and self-adaptive (or 

changing) pa in the CS to the baseline state-of-the-art PSO variants and meta-heuristic 

optimisation methods over 30 experiment runs. The SVM-based RBF kernel is employed for 

training the 90 unbalanced dataset and evaluating with the unseen 90 lymphocytic cell images. 

Table 5.1 depicts the average empirical results of each algorithm over 30 trials. In order to 

identify the efficiency of the feature optimisation processes, the classification result of 

employing the 80 raw features without using feature optimisation process is taken into account 

for comparison with other feature optimisation methods and illustrated in the last row of Table 

5.1. 

 

Table 5.1 The average classification performance of each optimisation algorithm 

utilising the fitness function 1, as defined in Eq (5.6), over 30 experiment runs and using 

90 unseen testing images as well as the classification result employing the entire set of 

80 raw features. 

Methods 
Number of selected 

features 

SVM 

(10-fold) 

GA 26-46 0.8115 

PSO 20-43 0.8267 

DA 22-41 0.8722 

CS 19-41 0.8889 

BBPSO 25-44 0.8981 

ELPSO 27-46 0.8922 

Binary BBPSO 35-58 0.9007 

The proposed BBPSO 

(fixed pa) 
6-27 0.9393 

The proposed BBPSO 

(changing pa) 
9-33 0.9356 

80 raw features 

(entire set) 
- 0.9089 

 

As shown in Table 5.1, the proposed method embedded with either a fixed or a self-adaptive 

(or changing) pa achieves the highest average classification accuracy of 93.93% and 93.56%, 

respectively, and outperforms all comparable baseline methods. Moreover, the proposed 

BBPSO variant algorithm is able to converge within 100 to 120 iterations, on average, over 
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30 experiment runs with the number of selected feature subsets of 6-27, when employing a 

fixed pa, or 9-33, when using a self-adaptive pa, respectively; whereas the other comparable 

baseline methods reach convergence within 130 to 200 iterations with comparatively larger 

identified feature subsets, for example, 22-41 for the DA, 19-41 for the CS, 25-44 for the 

BBPSO, 27-46 for the ELPSO, 35-58 for the binary BBPSO, 20-43 for the PSO, and 26-46 

for the GA. Overall, the proposed method compares favourably with the comparable baseline 

methods and outperforms the DA, CS, BBPSO, ELPSO, binary BBPSO, PSO and GA by 

6.71%, 5.04%, 4.12%, 3.86%, 11.26% and 12.78%, respectively, on average of SVM 

classification accuracy over 30 experiment runs, when a fixed pa is employed, and by 6.34%, 

4.67%, 3.75%, 4.34%, 3.49%, 10.89% and 12.41%, respectively, when embedded with a self-

adaptive pa. In addition to comparison with the SVM classification of using original 80 raw 

features, the proposed method embedded with either a fixed or a self-adaptive pa outperforms 

that employing the 80 raw features without any feature selection process, whereas, under the 

same experimental setting, i.e. using 90 unbalanced training and 90 unseen testing datasets, 

the classification accuracies of all other baseline algorithms are comparable to, or sometimes 

lower than, the classification performance obtained utilising the original 80 raw features. 

In terms of the clinical perspective, the important characteristics of lymphocytic cell images 

for ALL diagnosis include nucleus area, cytoplasm area, ratio of nucleus area to cytoplasm 

area, form factor and compactness (supporting the diagnosis in terms of an irregularity of cell 

shape in the nucleus region), perimeter, texture changes related to open or close of the 

chromatin pattern in the nucleus, eccentricity, etc. By inspection of the experimental results 

of the proposed method embedded with either a fixed or a self-adaptive pa, it indicates that 

the important characteristics of lymphocytic cell image, as mentioned previously, for ALL 

diagnosis are commonly included in the selected feature subsets. However, a few of the 

clinical important features of the lymphocytic cell image, as aforementioned, such as nucleus 

area and ratio of nucleus area to cytoplasm area, are often missed out or not co-existing in the 

selected feature subsets by the other comparable baseline optimisation methods; in fact, they 

sometimes select comparatively more features, which may be redundant for the training 

process of the classifier and cause the classification performance to decline. 

Furthermore, we have conducted a boxplot diagram for comparison between the proposed 

method, embedded with either a fixed or a self-adaptive (or changing) pa and the comparable 

based-line optimisation methods, which depicts the details of SVM classification accuracy 

variations for all algorithms over 30 experiment runs for 90 unseen testing images, as 

illustrated in Figure 5.5.  
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In Figure 5.5, the first two boxplots from left-hand side represent the classification accuracy 

variations of the proposed algorithms embedded with a self-adaptive (or changing) and a fixed 

pa in the CS, respectively. Firstly, comparing the proposed method embedded with a fixed pa 

to other baseline methods, the proposed method achieves the highest average classification 

accuracy of 93.93% over 30 experiment runs. Moreover, 25% of the results of the proposed 

method, with the third quartile of 97%, are higher than the maximum accuracy results of the 

CS (with 96%), DA (with 94%), BBPSO (with 97%), binary BBPSO (with 94%), ELPSO 

(with 97%), PSO (with 96%) and GA (with 96%), respectively. In terms of the median values, 

the proposed method (with 95%) also outperforms those of the CS (with 91%), DA (with 

90%), BBPSO (with 91%), binary BBPSO (with 91%), ELPSO (with 91%), PSO (with 83%) 

and GA (with 81%) and is different to the proposed method by 4%, 5%, 4%, 4%, 4%, 12% 

and 14%, respectively, over 30 experiment runs. Except for the outliners, the minimum 

accuracy of the proposed method, with a lower whisker of 89%, is higher than 25% of the 

results of the CS, DA, BBPSO, binary BBPSO and ELPSO and 75% of the results of the PSO 

and GA. 

 

  

Figure 5.5 A boxplot diagram for each optimisation method integrated with SVM over 

30 experiment runs for 90 unseen testing images employing the fitness function 1, as 

defined in Eq (5.6). 
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Secondly, when a self-adaptive (or changing) pa is embedded in the proposed algorithm, the 

boxplot also shows that our proposed algorithm achieves the highest average classification 

accuracy of 93.56% over 30 experiment runs; however, it has an average accuracy result 

slightly lower than the one embedded with a fixed pa due to the limited trials of initial setting 

of the pa value. In contrast, when we compare the accuracy result of the proposed algorithm 

embedded with a changing pa to all the comparable baseline methods, it has a better 

classification accuracy distribution with comparatively smaller variations, between 25% and 

75% percentiles. Moreover, a group of 25% of the proposed method, with the third quartile of 

96%, is also higher than the maximum classification accuracy results of the CS (with 96%), 

DA (with 94%), binary BBPSO (with 94%), PSO (with 96%) and GA (with 96%), 

respectively. In terms of the median values, the proposed algorithm (with 93%) also 

outperforms those of the PSO (with 83%) and GA (with 81%) by 10% and 12%, respectively, 

and is different to the proposed method by 2%-4% for all the other comparable baseline 

methods. Furthermore, the minimum classification accuracy result of the proposed algorithm, 

with a lower whisker of 90%, is higher than the 50% classification accuracy results of the DA, 

by at least 25% of the results of the CS, BBPSO, binary BBPSO and ELPSO and 75% of the 

results of PSO and GA. Overall, the proposed algorithms embedded with both a fixed and a 

self-adaptive (or changing) pa outperform all the comparable baseline optimisation algorithms 

greatly in the first experimental setting, i.e. 90 unbalanced training and 90 unseen testing 

images. 

Next, we take the second experimental setting, i.e. 100 balanced training and 80 unseen testing 

images, into account for evaluation over 30 experiment runs of each of the algorithms. Table 

5.2 illustrates the average SVM classification accuracy results of each method for evaluation 

of the 80 unseen testing images over 30 experiment runs, as well as the classification accuracy 

results obtained employing the original 80 raw features. As shown in Table 5.2, the proposed 

method, equipped with a fixed pa, achieves an average classification accuracy of 95.54%, 

whereas, when a self-adaptive (or changing) pa is employed in the proposed algorithm, it 

achieves the highest average classification accuracy of 95.88% over 30 experiment runs. 

Moreover, the results in Table 5.2 indicate that the proposed method, embedded with either a 

fixed or a self-adaptive pa, outperforms all the comparable baseline optimisation algorithms 

and has the least number of selected feature subsets. Overall, in terms of the average 

classification accuracy results over 30 experiment runs, the proposed algorithm equipped with 

a fixed pa outperforms the PSO and GA by 8.35% and 11.5%, and all the other comparable 

methods by 1.04-2.41%, respectively, and the proposed algorithm embedded with a self-
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adaptive (or changing) pa also outperforms the PSO and GA by 8.69% and 11.84%, and all 

other baseline optimisation methods by 1.38-2.75%, respectively. 

 

Table 5.2 The average classification performance of each optimisation algorithm 

utilising the fitness function 1, as defined in Eq (5.6), over 30 experiment runs and using 

80 unseen testing images as well as the classification result employing the entire set of 

80 raw features. 

Methods 
Number of selected 

features 

SVM 

(10-fold) 

GA 27-45 0.8404 

PSO 29-42 0.8719 

DA 23-40 0.9329 

CS 22-40 0.9450 

BBPSO 26-38 0.9392 

ELPSO 26-40 0.9313 

Binary BBPSO 31-49 0.9358 

The proposed BBPSO 

(fixed pa) 
10-26 0.9554 

The proposed BBPSO 

(changing pa) 
9-28 0.9588 

80 raw features 

(entire set) 
- 0.9375 

 

By inspecting the boxplot diagram in Figure 5.6, it indicates that 25% of the classification 

accuracy results of the proposed algorithm embedded with a fixed pa, with third quartile of 

96%, are higher than the maximum classification accuracy results of the CS (with 96%), 

binary BBPSO (with 96%), PSO (with 94%), and GA (with 95%), respectively, whereas 25% 

of the accuracy results of the proposed method embedded with a self-adaptive (or changing) 

pa, with the third quartile of 97%, are also higher than the maximum classification accuracy 

results of all other comparable baseline methods.  
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Figure 5.6 A boxplot diagram for each optimisation method integrated with SVM over 

30 experiment runs for 80 unseen testing images employing the fitness function 1, as 

defined in Eq (5.6). 

In addition, the proposed algorithm, embedded with either a fixed or a self-adaptive pa, has 

the same median values of 96%, which are 1%-2% higher than those of the CS, DA, BBPSO, 

binary BBPSO and ELPSO, and also higher than those of the PSO and GA by 6% and 10%, 

respectively, over 30 experiment runs. In terms of the minimum classification accuracy 

results, the proposed algorithm, equipped with either a fixed or a self-adaptive pa, is higher 

than at least 25% of the classification accuracy results of the DA, BBPSO, binary BBPSO, 

ELPSO, PSO and GA, whereas the proposed algorithm embedded with a fixed pa is also 

higher than 25% of the classification accuracy results of the CS. Overall, the proposed method, 

equipped with either a fixed or a self-adaptive (or changing) pa, also outperforms the other 

comparable baseline optimisation algorithms in the second experiment setting, i.e. 100 

balanced training and 80 unseen testing lymphocytic cell images. 

5.5.2  Experiment 2 employing Fitness Function 2 

We also test the proposed algorithms using fitness function 2. First, we take the first 

experimental setting, i.e. 90 unbalanced training and 90 unseen testing images, into 

consideration for evaluating the proposed method embedded with either a fixed or a self-

adaptive (or changing) pa and all comparable baseline optimisation methods over 30 
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experiment runs. The SVM-based RBF kernel is also employed for training the 90 unbalanced 

lymphocytic images and evaluating with the unseen 90 sample images. In addition, the 

classification accuracy result of employing the original 80 raw features without using feature 

selection process accounts for comparison with other feature optimisation methods and is 

depicted in the last row of Table 5.3. 

As illustrated in Table 5.3, the proposed algorithm equipped with a self-adaptive (or changing) 

pa achieves a higher average classification accuracy of 93.78%, whereas the proposed method 

embedded with a fixed pa achieves an average classification accuracy of 93.26%. They also 

outperform all other comparable baseline feature optimisation methods. Moreover, the 

experimental results indicate that the proposed algorithm embedded with a changing pa 

outperforms the CS, DA, BBPSO, binary BBPSO, ELPSO, PSO and GA by 2.08%, 5.3 %, 

3.82%, 4.97%, 5.71%, 8.37% and 11.41%, respectively, over 30 experiment runs, whereas the 

proposed algorithm equipped with a fixed pa outperforms the CS, DA, BBPSO, binary 

BBPSO, ELPSO, PSO and GA by 1.56%, 4.78%, 3.3%, 4.45%, 5.19%, 7.85% and 10.89%, 

respectively, over 30 trials. 

 

Table 5.3 The average classification performance of each optimisation algorithm 

utilising the fitness function 2, as defined in Eq (5.21), over 30 experiment runs and 

using 90 unseen testing images as well as the classification result employing the entire 

set of 80 raw features. 

Methods 
Number of selected 

features 

SVM 

(10-fold) 

GA 28-46 0.8237 

PSO 27-46 0.8541 

DA 21-39 0.8848 

CS 23-36 0.9170 

BBPSO 25-40 0.8996 

ELPSO 25-42 0.8807 

Binary BBPSO 30-52 0.8881 

The proposed BBPSO 

(fixed pa) 
10-28 0.9326 

The proposed BBPSO 

(changing pa) 
5-15 0.9378 

80 raw features 

(entire set) 
- 0.9089 
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Furthermore, a boxplot diagram, as depicted in Figure 5.7, is obtained to investigate the 

classification accuracy result variations of all algorithms, when the fitness function 2 is 

employed. Figure 5.7 illustrates that 25% of the classification accuracy results of the proposed 

algorithm embedded with either a fixed or a self-adaptive (or changing) pa, with the same 

third quartile of 96%, are higher than the maximum classification performances of the DA 

(with 94%), BBPSO (with 96%), binary BBPSO (with 96%), ELPSO (with 96%), PSO (with 

93%) and GA (with 93%). In terms of the median values, the proposed method, equipped with 

either a fixed or a self-adaptive pa, achieves with 94% and is higher than those median values 

of the CS (with 91%), DA (with 90%), BBPSO (with 92%), binary BBPSO (with 92%), 

ELPSO (wit 89%), PSO (with 88%) and GA (with 83%) by 3%, 4%, 2%, 4%, 5%, 6% and 

11%, respectively, over 30 experiment runs. Moreover, a minimum classification accuracy of 

the proposed algorithm embedded with a fixed pa, with a lower whisker of 86%, is higher than 

75% of the classification accuracy results of the GA and at least 25% accuracy results of the 

DA, binary BBPSO, ELPSO and PSO, whereas the minimum classification accuracy result of 

the proposed method equipped with a self-adaptive (or changing) pa, with a lower whisker of 

88%, is higher than at least 75% of the accuracy results of the GA, 50% of accuracy results of 

the PSO and at least 25% of the accuracy results of the BBPSO, DA, binary BBPSO and 

ELPSO. 

 

Figure 5.7 A boxplot diagram for each optimisation method integrated with SVM over 

30 experiment runs for 90 unseen testing images employing the fitness function 2, as 

defined in Eq (5.21). 
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We have also taken the fitness function 2, as defined in Eq (5.21), and the second experimental 

setting, i.e. 100 balanced training and 80 unseen testing images, into account to test the 

efficiency of all feature optimisation algorithms. In addition, we also conduct the experiments 

of each algorithm for a fair comparison over 30 experiment runs as well as the previous 

experiments. The SVM with RBF kernel is also employed for training the 100 balanced 

lymphocytic images and evaluating with the unseen 80 sample images. Table 5.4 and Figure 

5.8 illustrate the average classification accuracy of all feature optimisation methods and the 

classification accuracy result variations of all algorithms over 30 trials, respectively. 

 

Table 5.4 The average classification performance of each optimisation algorithm 

utilising the fitness function 2, as defined in Eq (5.21), over 30 experiment runs and 

using 80 unseen testing images as well as the classification result employing the entire 

set of 80 raw features. 

Methods 
Number of selected 

features 

SVM 

(10-fold) 

GA 22-45 0.8654 

PSO 23-38 0.8922 

DA 20-37 0.9258 

CS 20-38 0.9396 

BBPSO 26-38 0.9354 

ELPSO 24-37 0.9421 

Binary BBPSO 27-44 0.9338 

The proposed BBPSO 

(fixed pa) 
14-19 0.9604 

The proposed BBPSO 

(changing pa) 
12-17 0.9583 

80 raw features 

(entire set) 
- 0.9375 

 

Inspection of Table 5.4 indicates that the proposed algorithm embedded with a fixed pa 

achieves the highest average classification accuracy results of 96.04%, whereas the one 

embedded with a self-adaptive (or changing) pa achieves an average classification accuracy 

of 95.83% over 30 experiment runs. Moreover, the proposed algorithm, embedded with either 

a fixed or a self-adaptive pa, outperforms all the other comparable baseline optimisation 

methods greatly. The proposed method equipped with a fixed pa outperforms the PSO and 
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GA by 6.82% and 9.5%, respectively, and all other baseline methods by 1.83%-3.46%, 

whereas the proposed algorithm embedded with a self-adaptive pa outperforms the PSO and 

GA by 6.61% and 9.29%, respectively, and the other comparable feature optimisation 

algorithms by 1.62%-3.25%, respectively, on average classification accuracy results over 30 

trials. 

As depicted in Figure 5.8, a boxplot diagram for all algorithms employing the fitness function 

2 reveals that the classification accuracy results of the proposed method, embedded with either 

a fixed or a self-adaptive (or changing) pa, with a third quartile of 97% and 96%, respectively, 

are higher than the maximum classification accuracy results of the binary BBPSO (with 96%), 

PSO (with 96%) and GA (with 96%). In terms of the median values, the proposed method 

(with the median values of 96%), embedded with either a fixed or a self-adaptive pa, is also 

higher than those of all other comparable based-line methods. In particular, the proposed 

method equipped with a self-adaptive (or changing) pa has the best classification accuracy 

distribution with comparatively smaller variations between the 25% and 75% percentiles, as 

compared to those from all other baseline optimisation methods. Furthermore, the minimum 

 

 

Figure 5.8 A boxplot diagram for each optimisation method integrated with SVM over 30 

experiment runs for 80 unseen testing images employing the fitness function 2, as  

defined in Eq. (5.21). 
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classification accuracies of the proposed algorithm embedded with a self-adaptive pa, with a 

lower whisker of 94%, are higher than 50% of the classification accuracy results of the DA, 

BBPSO and binary BBPSO, with the same median values of 94%, and at least 25% of the 

accuracy results of the CS and ELPSO, with a first quartile of 93%, whereas the minimum 

classification accuracies of the proposed method equipped with a fixed pa, with a lower 

whisker of 93%, are higher than at least 25% of the classification accuracy results of the CS, 

DA, BBPSO, binary BBPSO and ELPSO. Moreover, the minimum classification accuracy 

results of the proposed method, embedded with either a fixed or a self-adaptive pa, are higher 

than 75% of the classification accuracy results of the PSO, with a third quartile of 92%, and 

the GA, with a third quartile of 91%. 

By observation, the empirical results of the proposed method evaluated with the fitness 

function 2 utilising both experimental settings, i.e. 90 unbalanced and 100 balanced training 

datasets, further strengthen the superiority of the proposed algorithm. Overall, the proposed 

BBPSO variant algorithm, embedded with either a fixed or a self-adaptive pa, reveals great 

efficiency and outperforms all the other comparable baseline feature optimisation algorithms, 

i.e. state-of-the-art PSO variants, meta-heuristic and conventional optimisation algorithms, 

across the different experimental settings and under the different fitness function evaluations. 

In comparing the proposed BBPSO variant algorithm to the other related studies in ALL 

diagnosis reported in the literature in Chapter 2, Section 2.8, to the best of our knowledge, 

Madhukar et al. (2012) and Putzu et al. (2014) have achieved high recognition performances 

employing the same ALL-IDB database. Putzu et al. (2014) achieved 93.2% classification 

accuracy using SVM with RBF kernel based on 10-fold cross validation and evaluated with 

131 extracted features of the lymphocytic cell images, whereas Madhukar et al. (2012) 

obtained 93.5% classification accuracy employing SVM with leave-one-out cross validation 

and evaluated with a high dimension vector of shape, texture, and HD features of the nuclei 

extracted to distinguish normal and blast cells. The experimental results of the proposed 

BBPSO variant algorithm embedded with a fixed pa using SVM-based RBF kernel with 10-

fold cross validation and evaluated with the 100 balanced training samples and testing with 

80 unseen images under the fitness function 2, as defined in Eq (5.21), achieves an average 

classification accuracy of 96.04% over 30 experiment runs and identifies comparatively far 

fewer discriminative feature subsets for recognition of healthy and unhealthy lymphocytic cell 

images, whereas the proposed algorithm embedded with a self-adaptive pa employing the 

fitness function 1, as defined in Eq (5.6), achieves an average classification accuracy of 

95.88% over 30 trials. In addition, the comparison results of the proposed algorithm are 

obtained by the average classification accuracy results over 30 experiment runs in each 
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experimental setting, i.e. 90 unbalanced training and 90 unseen testing images or 100 balanced 

training and 80 unseen testing samples. Therefore, the proposed BBPSO variant algorithm 

compares favourably with other related studies for ALL diagnosis reported in the literature 

and indicates the efficiency of the feature optimisation algorithm for acute lymphoblastic 

leukaemia detection. 

Overall, in comparison to all other comparable baseline feature optimisation algorithms, the 

proposed method has the benefit of combining the three different search strategies to work in 

a collaborative manner. In particular, it embeds two operations, including the local random 

walk, which is a uniform combination, and the global random walk, which is Lévy flights, to 

diversify both primary and subswarm populations and to jump-out from local traps and to 

increase local exploitation and global exploration capabilities. Moreover, it integrates single 

swarm based BBPSO algorithm, and multi-subswarm based CS and DA algorithms, which 

work together under the compatible mechanisms to guide the search towards the optimal 

solutions. 

5.6 Chapter Summary 

This chapter has introduced the proposed evolutionary BBPSO variant algorithm for feature 

optimisation. The unique contribution in this chapter is a novel combination of the two 

complementary search algorithms, i.e. CS and DA algorithms, which are used to enhance and 

diversify the search behaviour of the original BBPSO algorithm, in an attempt to overcome 

the local optimum trap and guide the search toward the global optimal solution(s). The 

proposed algorithm enables both primary and subswarm-based searches employing the 

BBPSO, CS and DA searching algorithms and local and global random walk operations of a 

uniform combination and Lévy flights to work co-operatively to increase local exploitation 

and global exploration and mitigate (avoid) premature convergence problems of the 

conventional BBPSO. It was evaluated using the two experiment settings of a dataset of 180 

lymphocytic images obtained in consultation with the haematologists, i.e. (i) 90 unbalanced 

training and 90 unseen testing images, and (ii) 100 balanced training and 80 testing samples. 

The proposed method embedded with either a fixed or a self-adaptive pa indicates great 

efficiency and greatly outperforms the comparable baseline optimisation algorithms, including 

state-of-the-art PSO variants, meta-heuristic and conventional optimisation algorithms, across 

different experimental settings under the two different fitness function evaluations. 

For comparison with the other baseline optimisation algorithms, the proposed BBPSO variant 

algorithm, with both a fixed and a self-adaptive pa, identify comparatively fewer feature 

subsets with the fastest convergence rates and outperforms these comparable algorithms. 
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Furthermore, in comparison with the other related studies, the proposed method outperforms 

these comparable related research studies for ALL diagnosis reported in the literature by a 

significant margin, as illustrated in Section 5.5. 

Overall, the best experimental results have been achieved, when the proposed BBPSO variant 

algorithm has been trained upon balanced 100 images and evaluated with 80 unseen samples 

employing SVM-based RBF kernel with 10-fold cross validation. In particular, if it is 

embedded with a fixed pa, it achieves a superior average classification accuracy of 96.04% 

under the fitness function defined in Eq (5.21), whereas embedded with a self-adaptive pa 

achieves an average classification accuracy of 95.88% under the fitness function defined in 

Eq (5.6) over 30 experiment runs, respectively. The empirical results indicate the efficiency 

of the proposed feature optimisation algorithm for ALL detection. 
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Chapter 6: Conclusion and Future Work 

 

6.1. Introduction 

In this chapter, brief summaries of each chapter of this research study are presented. The 

contributions of this research are also discussed, followed by identified limitations of the 

thesis. Moreover, recommendations for future investigations to overcome the deficiencies of 

this research study are also outlined. 

6.2. Summary of This PhD Research 

First, Chapter 1 described the relevant background of the multidisciplinary areas of this 

research study, including biomedical engineering, haematology and computer science. 

Information about cancer and recent incidence of cancer, in particular, blood cancer, or 

leukaemia, was also presented. Moreover, the model of screening or early state diagnosis of 

acute leukaemia of individuals from remote areas in order to receive full diagnosis at an 

advanced clinical laboratory for accurate diagnosis and appropriate treatments and therapies 

(Figure 1.1 of Chapter 1) was introduced. This is a crucial process of screening or early 

diagnosis which may lead to an increasing rate of survival among those cured of a severe 

illness such as acute leukaemia. Although modern hospitals and clinics have advanced 

laboratories with powerful medical equipment used in diagnosis of blood cancer/leukaemia, 

for the resource-limited regions there remain major barriers to such facilities. Therefore, 

microscopic examination of peripheral blood smear samples remains a necessary screening or 

early process for blood cancer, especially acute leukaemia. In this chapter, we also introduced 

the research problems and the motivation behind the decision to investigate and develop an 

intelligent decision support system for ALL detection using microscopic blood smear images. 

Then, the aims and objectives were explained, and brief details of the research contributions 

were described. Finally, the details and the structure of each chapter were also presented. 

Chapter 2 reviewed the biological background of leukaemia, ALL, laboratory diagnosis of 

ALL and the limitations of traditional methods. Moreover, an image analysis on blood smear 

samples using computer technology and image processing was provided to indicate the benefit 

of using a quantitative microscopic for image analysis to reduce human operation error and 

assist the experts in diagnosis of ALL. This chapter also described the state-of-the-art of 

development for ALL detection, by organising the related literature review under five 

sequential processes: image segmentation; image separation of nucleus and cytoplasm of the 
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cell membrane images; feature extraction of cell nucleus and cell cytoplasm of the segmented 

cells; feature selection of the extracted descriptors to reduce the redundancy of the non-

significant features; and ALL detection/classification. As observed in the related works, we 

found challenging tasks for the improvement of the above diagnosis stages for the quantitative 

analysis of ALL detection/classification. Finally, we provided the scope of this research study. 

Chapter 3 introduced the first key stage of this research study, i.e. the segmentation of WBCs 

membranes, particularly lymphocyte and lymphoblast cells, using the proposed modified 

marker-controlled watershed algorithm integrated with the morphological operations using 

the microscopic sub-images of ALL-IDB2 database. The unique contribution of this chapter 

is a novel combination of existing techniques, i.e. watershed transform and morphological 

operations, and the proposed algorithm of generating the good markers for watershed 

transform to isolate the lymphocytic cell membranes with promising results. This stage 

focused on the isolation of lymphocyte/lymphoblast cell membrane from touching and 

overlapping of the RBCs, platelets and artefacts of the microscopic peripheral blood smear 

sub-images. Moreover, the overall system architecture of this PhD research was also 

introduced. In addition, the details of the microscopic peripheral blood smear image database, 

the ground truths and annotations of the lymphocytic images, and clinical diagnosis criteria of 

the ALL according to the consultations with the haematologists were described. In evaluation 

using the 180 lymphocytic sub-images from the ALL-IDB2 database and comparison between 

the proposed method and the traditional marker-controlled watershed transformation using the 

correlation coefficient, the proposed method using Gaussian low-pass filter achieves 

segmentation results with the highest correlation coefficient scores to the ground truth images 

of 0.9374. Furthermore, it is able to produce promising segmentation results of the whole 

lymphocytic cell membrane, including nucleus and cytoplasm. Therefore, the segmentation 

results of the proposed method are of benefit for the next step of blood cell image analysis. 

Chapter 4 presented the second and third key stages of this research study. The second key 

stage is a novel SDM-based clustering algorithm with both within- and between-cluster scatter 

variances. It used to produce robust separation of the nucleus and cytoplasm of 

lymphocyte/lymphoblast cell images. Additionally, to overcome the limitation of the 

conventional FCM algorithm, the motivation and development of the proposed SDM 

algorithm were explained. The third key stage is concerned with the extraction of the eighty 

features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-

images. This chapter revealed the simulation and evaluation results of the SDM clustering 

compared with state-of-the-art clustering techniques reported in the literature. A number of 

classifiers (MLP, SVM and Dempster-Shafer ensemble) were employed for 



 

144 

 

lymphocyte/lymphoblast classification. Evaluated using the ALL-IDB2 database, the 

proposed SDM-based clustering overcomes the shortcomings of FCM, which focuses purely 

on within-cluster scatter variance. Additionally, it achieves the highest correlation coefficient 

scores for the separation of nucleus and cytoplasm and outperforms FCM, FCS and LDA. 

Finally, the overall system, as shown in Figure 4.1, achieves superior recognition rates of 

96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with 

Dempster-Shafer ensemble and SVM, respectively. This indicates the usefulness of the 

proposed SDM-based clustering method. 

Chapter 5 introduced the fourth key stage of this thesis, the proposed BBPSO variant 

algorithm, to identify the most significant discriminative characteristics of 

healthy/lymphocyte and unhealthy/lymphoblast cell images to enable efficient ALL 

recognition. The unique contribution of this chapter is a novel hybridisation of the two 

complementary search algorithms, i.e. CS and DA algorithms, which are employed to enhance 

and diversify the search behaviour of the traditional BBPSO algorithm, in an attempt to 

overcome the local optimum trap and lead the search toward the global optimal solution(s). 

The proposed BBPSO-based feature optimisation with the two objective functions for fitness 

evaluation, and ALL identification using SVM classifier, were described. This chapter also 

revealed the simulation and evaluation results of the proposed BBPSO variant algorithm 

compared with state-of-the-art nature-inspired meta-heuristic algorithms reported in the 

literature. Evaluated using the ALL-IDB2 database, it achieves superior recognition accuracy 

of 95.88% and 96.04% using two different fitness evaluation strategies, respectively. 

Moreover, the proposed BBPSO variant algorithm outperforms the baseline state-of-the-art 

optimization algorithms and related research for ALL detection.  

6.3. Summary Contribution to Knowledge of this Research 

The achievements of this research study described in the above section enable us to make three 

contributions to the field of quantitative image analysis of ALL. 

Contribution 1: 

White blood cell membranes segmentation using a modified marker-controlled watershed 

method and morphological operations: 

a. White blood cell membranes segmentation for microscopic blood smear sub-

images, particularly lymphocyte (healthy lymphocyte cell) and lymphoblast 

(unhealthy lymphocyte cell) sub-images, using integration of the modified 

marker-controlled watershed method and morphological operations is 
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presented. This method can segment and identify WBC membrane from a 

noisy background sub-image, which is touching and overlapping with RBCs, 

to retrieve the original RGB pixels’ colour of the identified cell membrane in 

the white background sub-image. 

 

Contribution 2: 

The separation of nucleus and cytoplasm of the identified lymphocyte and lymphoblast cell 

membrane using a novel SDM-based clustering technique and the feature extraction from the 

separated nucleus and cytoplasm cell images: 

a. The novel clustering technique to separate nucleus and cytoplasm of 

lymphocytic (lymphocyte and lymphoblast) cell membrane images, namely 

SDM-based clustering, which takes both within- and between-cluster scatter 

variants into consideration, overcomes the limitation of the objective function 

of conventional Fuzzy C-mean (FCM) clustering, which focuses on only 

within-cluster scatter variance. It also outperforms other clustering methods, 

including Linear Discriminant Analysis (LDA) and Fuzzy Compactness and 

Separation (FCS) (Wu et al., 2005) for robust identification of cell nucleus 

and cell cytoplasm. This clustering technique can also produce robust results 

of the separation of nucleus and cytoplasm of the lymphocytic cell membrane 

images. 

  

b. A total of 80 features, which include shape-based features, texture-based Gray 

Level Co-occurrence Matrix (GLCM) features, colour-based CIELAB colour 

space features, and the statistical measurement of these feature sets, is 

identified and used to discriminate healthy and unhealthy lymphocyte cells, 

as well as being used for ALL screening or an early detection system with 

image processing and artificial intelligent machine learning techniques. 

 

c. Diverse single and ensemble classifiers are used in the experimental study for 

lymphocyte and lymphoblast detection. In this research study, Dempster-

Shafer ensemble achieves the highest accuracy of 96.72% for bootstrap 

validation, whereas SVM with Gaussian Radial Basis Function kernel (RBF) 

achieves an accuracy of 96.67% for 10-fold cross validation. 
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Contribution 3: 

The identification of the most significant discriminative characteristics of lymphocyte and 

lymphoblast cells to enable efficient ALL recognition using a proposed evolutionary Bare-

Bones Particle Swarm Optimisation (BBPSO) variant algorithm: 

a. The proposed BBPSO variant algorithm for feature selection incorporates the 

following search mechanisms, i.e. cuckoo search (CS), dragonfly algorithm 

(DA), convergence speed monitoring mechanisms, self-adaptive parameter 

settings and subswarm concepts to reduce the premature convergence 

problem of the conventional BBPSO. 

 

b. The proposed algorithm incorporates BBPSO, CS and DA to diversify the 

primary and subswarm based search, respectively. An adaptive mechanism is 

also used to observe stagnant iterations and convergence degrees of each of 

the aforementioned search algorithms. The proposed algorithm employs Lévy 

flights and uniform combination to increase particle swarm diversity if the 

primary or subswarm based search stagnates. A self-adaptive discovery 

probability of the CS is also employed in the proposed method to further fine-

tune solution vectors to overcome drawbacks of constant parameter setting in 

a traditional CS in order to further improve performance. Most importantly, 

the previous mentioned diverse search strategies, i.e. BBPSO, CS and DA, 

and local and global random walk operations, i.e. uniform combination and 

Lévy flights, work in a cooperative manner to increase local exploitation and 

global exploration and overcome the local optimum. 

 

c. In comparison with advanced and classic nature-inspired and meta-heuristic 

algorithms, e.g. ELPSO, PSO, BPSO, Genetic Algorithm, CS, DA, etc., the 

proposed BBPSO-based feature optimisation algorithm has efficient 

discriminative capabilities in which the significant discriminating feature 

subsets for lymphocytes and lymphoblasts are revealed. Evaluated using the 

ALL-IDB2 dataset, the proposed algorithm, with either a fixed or a 

dynamically changing parameter setting, shows great efficiency and 

significantly outperforms all other baseline search algorithms across different 

experimental settings with two different fitness evaluations. It also compares 

favourably with related researches for ALL detection as reported in the 

literature. 
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6.4 Limitations and Future Work 

Our research study has taken us on a long journey through the multidisciplinary areas 

involving biomedical engineering, haematology and computer science. In particular, we are 

specialising in the computer science discipline. Therefore, this project outcome is more in the 

computer science area. This research study is limited to ALL blood cancer, focusing on the 

lymphocyte and lymphoblast white blood cells. Additionally, the experimental results reported 

in this research study are evaluated using the ALL-IDB2 microscopic blood smear sub-images 

database (Labati et al., 2011b). Moreover, the ground truths and annotations about each of the 

microscopic sub-images are derived from both the publication of the ALL-IDB database and 

consultation with the haematologists in the Royal Victoria Infirmary (RVI Hospital at 

Newcastle-Upon-Tyne, United Kingdom). There are several possible directions for future 

investigation appearing from the implementation of this thesis, as follows: 

First, regarding the segmentation of the WBCs cell membrane images (Chapter 3), the results 

of segmentation of the lymphocyte and lymphoblast cell membrane sub-images using the 

proposed method are promising, in which the segmented cell membrane includes nucleus and 

cytoplasm. However, an alternative technique that is interesting for future investigation to 

improve WBCs membrane segmentation is to use adaptive location and iteration (Liu, Cao, 

Zhao, & Chu, 2016) to identify the location of the WBC with adaptive adjustment and, then, 

an iterative GrabCut based on the dilation method could be employed for segmentation of the 

blood cell membrane.  

Secondly, for the separation of cell nucleus and cell cytoplasm sub-images using SDM-based 

clustering algorithm (Chapter 4), since the SDM-based discriminant measure can be used as a 

fitness/cost function for different optimisation algorithms, the SDM-based clustering method 

with different optimisation algorithms, such as BBPSO, CS, Firefly Algorithm, DA, etc., are 

interesting to explore. Moreover, ensemble classifiers integrated with clustering techniques 

are also interesting for further investigation to detect the arrival of novel unseen classes, e.g. 

AML cell images, without prior training required (Farid et al., 2013; Neoh, Zhang, et al., 

2015d) and it may help to reduce the difficulty in collecting huge samples of microscopic 

blood smear images to cover all types of leukaemia cells. 

Thirdly, for the feature subsets optimisation using the BBPSO variant algorithm (Chapter 5), 

the proposed BBPSO variant algorithm contains diverse search strategies to improve its 

performance. In order to further release the burden of identifying the upfront optimal setting 

for the CS search strategy in the proposed method, a self-adaptive step-size parameter, α, 

together with a self-adaptive pa, is of interest to employ to further fine-tune solution vectors 
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in order to improve performance of the proposed algorithm. Moreover, to date, we have 

employed a single objective fitness function for the two different fitness evaluation strategies 

to search for the global best solution(s). However, challenging real-world optimisation 

problems tend to have multiple constraints and competing objectives, such as computational 

cost, the number of selected feature subset, convergence speed, swarm diversity, etc. 

Consequently, multiple criteria decision-making is required. The multi-objective evolutionary 

algorithms, such as multi-objective PSO (Coello Coello & Lechuga, 2002) and CS (Yang & 

Deb, 2013), nondominated sorting PSO (NSPSO) (Yang Liu, 2008), Strength Pareto 

Evolutionary Algorithm2 (SPEA2) (Zitzler, Laumanns, & Thiele, 2001), and Pareto Achieved 

Evolutionary Algorithms (PAES) (Knowles & Corne, 1999), etc., are interesting to explore to 

further improve performance of the proposed algorithm. 

Finally, the other possible application of this research study could be applied in the field of 

computerised-aid technology for health care disease/cancer screening from microscopic 

images. For example, the early screening of cervical cancer using Pap smear images. Cervical 

cancer is the second leading cause of cancer death in females across the globe (Torre et al., 

2015). Most affected group are younger women in many countries, including Europe, Central 

Asia, Japan, and China (Bray et al., 2013; Vaccarella et al., 2013). The screening program can 

efficiently reduce the mortality rates of cervical cancer. Torre et al. (2015) reported that in 

many Western countries, where the long-time existed screening programs have been used, the 

rates of cervical cancer have decreased by almost 65% over the past 40 years. The individuals 

can be cured by early detection or diagnosed in the pre-cancerous lesion stage. Papanicolaou 

test or Pap test is a widely used physical examination technique to prevent cervical cancer by 

finding cells that either reveal the significant characteristics to indicate the cancer or have the 

high possibility to turn cancerous. Therefore, the highly accurate automated intelligent 

screening systems for cervical cancer can be used as an aid-tool for the experts’ decision of 

helping suspected individuals to have more chance to be cured and live longer. 
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