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Hyperthermia induces therapeutic 
effectiveness and potentiates 
adjuvant therapy with non-
targeted and targeted drugs in an 
in vitro model of human malignant 
melanoma
T. Mantso1,2, S. Vasileiadis3,4, I. Anestopoulos4, G. P. Voulgaridou4, E. Lampri5, S. Botaitis6, 
E. N. Kontomanolis3, C. Simopoulos6, G. Goussetis7, R. Franco8,9, K. Chlichlia  4, A. Pappa4 & 
M. I. Panayiotidis1,2

In the present study, we have aimed to characterize the intrinsic, extrinsic and ER-mediated apoptotic 
induction by hyperthermia in an in vitro model of human malignant melanoma and furthermore, 
to evaluate its therapeutic effectiveness in an adjuvant therapeutic setting characterized by 
combinational treatments with non-targeted (Dacarbazine & Temozolomide) and targeted (Dabrafenib 
& Vemurafenib) drugs. Overall, our data showed that both low (43 °C) and high (45 °C) hyperthermic 
exposures were capable of inducing cell death by activating all apoptotic pathways but in a rather 
distinct manner. More specifically, low hyperthermia induced extrinsic and intrinsic apoptotic pathways 
both of which activated caspase 6 only as opposed to high hyperthermia which was mediated by the 
combined effects of caspases 3, 7 and 6. Furthermore, significant involvement of the ER was evident 
(under both hyperthermic conditions) suggesting its role in regulating apoptosis via activation of CHOP. 
Our data revealed that while low hyperthermia activated IRE-1 and ATF6 only, high hyperthermia 
induced activation of PERK as well suggesting that ultimately these ER stress sensors can lead to the 
induction of CHOP via different pathways of transmitted signals. Finally, combinational treatment 
protocols revealed an effect of hyperthermia in potentiating the therapeutic effectiveness of non-
targeted as well as targeted drugs utilized in the clinical setting. Overall, our findings support evidence 
into hyperthermia’s therapeutic potential in treating human malignant melanoma by elucidating the 
underlying mechanisms of its complex apoptotic induction.

Malignant melanoma is known to be the most aggressive form of skin cancer and one of the most lethal solid 
tumor types with its incidence rates increasing globally over the past few decades rendering the disease the 5th 
most common type of cancer in the UK1. Hyperthermia is defined as the application of an exogenous heat source 
which acts by directly killing tumor cells or enhancing the efficacy of other therapeutic means (e.g. radiation, 
chemotherapy, etc.) against various cancer types2,3. The latest technological advances have allowed the more 
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accurate and efficient application of hyperthermia in the tumor site as well as the precise temperature monitoring 
all of which have resulted in promising clinical outcomes in a wide range of cancer types4.

Results from numerous in vitro and in vivo studies have identified apoptosis as the key underlined pathway 
responsible for the induction of cell death as a response to hyperthermic treatments5–7. In general, apoptosis 
involves the induction of the extrinsic and intrinsic pathways whose activation depends on distinct signals8. 
Evidence, by other groups, has implicated the activation of both apoptotic pathways (in response to hyperther-
mia) the extent of which is dependent on the cancer type, temperature and duration of exposure9. In addition, 
the activation of an ER-mediated non-conventional apoptotic pathway has been documented in a study utilizing 
melanoma and non-melanoma cell lines10. Finally, although many studies have demonstrated the involvement 
of apoptosis in hyperthermia-induced cell death (in various cancer types) there is limited data pertaining to the 
elucidation of its underlined mechanism(s) in human malignant melanoma. Thus, the aim of this study was to 
delineate the underlined mechanism(s) of hyperthermia’s effectiveness in inducing apoptosis, and furthermore 
to potentiate the action of clinically relevant non-targeted and targeted drugs in an in vitro model of human 
malignant melanoma. Consequently, our objectives were to (i) develop an optimized experimental platform of 
hyperthermic exposures by utilizing a validated model of human malignant melanoma, (ii) determine the mode 
of apoptotic induction and the role of the ER-stress response in relation to the duration and intensity of the 
hyperthermic exposures and (iii) evaluate the role of hyperthermia in potentiating the therapeutic efficacy of 
clinically-relevant non-targeted and targeted drugs. The latter is of paramount importance given that the disease 
is a highly aggressive and metastatic type of skin cancer which despite recent improvements in treatment options 
remains an incurable disease with a poor prognosis and an unmet need for more efficient treatments.

Results
Development of an experimental hyperthermic platform. In this set of experiments, we deter-
mined the optimal conditions of hyperthermic exposures by utilizing the human malignant melanoma (A375) 
and epidermoid carcinoma (A431) cell lines. Several temperature-response and time-course experiments were 
performed with cell viability levels assayed immediately after the 2 h hyperthermic exposure as well as after 24 h 
post-exposure, at 37 °C (Fig. 1A,B). Data showed that exposing cells to temperatures lower than 43 °C did not 
induce a significant effect on viability levels in both cell lines. However, when cells were exposed to temperatures 
higher than 43 °C, there was a significant reduction in viability observed at a greater extent in A375 cells only. 
Furthermore, a significant decline in viability was recorded, in both cell lines, at temperatures above 45 °C sug-
gesting excessive cellular destruction (Fig. 1A,B). To these ends, when cells were exposed at 43 °C over shorter 
time courses (30–60 min) there was no significant reduction in viability levels (Fig. 1C,D) whereas exposure of 
both cell lines at 45 °C caused a considerable decline in the numbers of living cells (Fig. 1E,F). More specifically, 
our data showed that there was a 15% and 25% reduction in cell viability 24 h post-exposure to 43 °C (Fig. 1C,D) 
and further reduced to 60% and 40% at 45 °C (Fig. 1E,F) in A431 and A375 cells respectively.

In another set of experiments, cells were exposed to either 43 °C or 45 °C over 2 h and cell viability was deter-
mined following 24–72 h post-incubation at 37 °C in order to determine any further and more prolonged decrease 
in cell viability. A non-malignant immortalized keratinocyte (HaCaT) cell line was included in an attempt to 
determine the safety profile of the hyperthermic exposures on the rationale that keratinocytes are the cells sur-
rounding melanocytes and so were used as a control group. Results confirmed our previous observations in 
that A375 cells were more sensitive to 43 °C (as there was a 30–40% decline in cell viability levels at 24–72 h 
post-exposure) while A431 cells were more resistant (Fig. 1G). Moreover, exposure at 45 °C induced an even more 
profound decrease (70–90%) in the viability of A375 cells. In agreement with our previous observations, A431 
cells remained more resistant at 24 h post-exposure but this effect was not seen at 48–72 h suggesting that at these 
time points the hyperthermic effect was equally cytotoxic in both cell lines (Fig. 1H). On the contrary, HaCaT 
cells were significantly more resistant to exposure with either 43 °C (Fig. 1G) or 45 °C (Fig. 1H), irrespectively 
of the experimental condition, suggesting that these cells can retain their tolerance to increased temperatures as 
opposed to A375 and A431 cells.

To examine further the impact of hyperthermia in triggering cytotoxicity, relative levels of dead cells were 
determined by utilizing the CytoTox Fluor assay and trypan blue staining protocols. According to our findings, 
there was a significant increase in cytotoxicity levels in A375 compared to the HaCaT cells when exposed at both 
43 °C (Fig. 2A) and 45 °C (Fig. 2B) either immediately after exposure or 6–24 h post-exposure. In addition, when 
utilizing a trypan-blue staining method, data revealed that A375 cells exposed to 43 °C showed reduced prolif-
erating potential compared to 37 °C (at 24 h post-exposure) while there was no significant change in the levels of 
cytotoxicity (dead cells) (Fig. 2C,D). However, exposure at 45 °C was associated with a slight increase in the levels 
of dead cells immediately after exposure an effect which became more apparent at 24 h post-exposure (Fig. 2D).

Hyperthermia induces apoptosis in human malignant melanoma (A375) cells. In an attempt to 
investigate the effect of hyperthermia in inducing changes in the expression of key apoptotic genes, we utilized a 
genomic approach based on a real-time PCR microarray gene expression profiling system. Our data showed that 
there were several differences in the induction of various apoptotic genes 24 h post-exposure to 43 °C and 45 °C. 
A number of intrinsic apoptotic genes (Fig. 3B) were found to be either up- (e.g. APAF1, BAK1, BAX, BBC3, 
BCL2L11, CASP9, PMAIP1) or down-regulating (e.g. BCL2, VDAC3) (Table 1). Of these, only BAK1, BBC3, 
CASP9 and PMAIP1 were common between the two hyperthermic temperatures with BAX, BCL2, VDAC and 
APAF1, BCL2L11 being exclusively involved at 43 °C and 45 °C respectively (Fig. 3A). On the other hand, a num-
ber of extrinsic apoptotic genes (Fig. 3B) were all shown to be up-regulated (e.g. FAS, FASLG, BIRC2, TNFRSF10, 
TNFSF10 and TRADD) (Table 1). However, their up-regulation was either common between the two hyper-
thermic temperatures (e.g. FAS, FASLG, BIRC2, TNFSF10) or restricted to either 43 °C (e.g. TRADD) or 45 °C 
(e.g. TNFRSF10) (Fig. 3A). Finally, a number of genes was shown to be involved in the p53-dependent apoptotic 
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response (e.g. CDKN2A, MDM2, P53 AIP1, TP53) (Fig. 3B) with some of which being either up-regulated (e.g. 
CDKN2A) or down-regulated (e.g. TP53) at 45 °C (Table 1) while the expression of MDM2 and P53AIP1 was 
common between the two hyperthermic temperatures (Fig. 3A).

Figure 1. Kinetics of hyperthermia in human immortalized keratinocyte (HaCaT), epidermoid carcinoma (A431) 
and malignant melanoma (A375) cell lines. The effect of hyperthermia on cell viability levels in (A) A431 and (B) 
A375 cell lines; The effect of hyperthermia at different time courses in (C and E) A431 and (D and F) A375 cell 
lines; (G and H) HaCaT, A431 and A375 cell lines were subjected to hyperthermia and cell viability levels were 
determined immediately after as well as 24–72 h post-exposure. Data shown are mean values (n = 5) ± SEM and 
represent one of three independent experiments. Asterisk (*) indicates statistical significance at p < 0.05.
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Furthermore, we profiled the response of various caspases by utilizing western blotting assays. More specifi-
cally, initiator caspases-8 and -9 showed identical patterns of expression whereby they were activated immediately 
after as well as up to 8 h post-exposure at both hyperthermic temperatures. At longer post-exposure incubation 
periods (24–72 h), they were not shown to be activated except at 45 °C when they remained active even at 24 h 
(Fig. 4A). Moreover, we tested the activation of executioner caspase-6 by determining its protein levels as well 
as those of its target protein, lamin A/C. Data demonstrated a significant reduction in its protein expression 
levels at 43 °C (up to 4 h post-exposure) whereas remained consistently active up to 72 h post-exposure, at 45 °C 
(Fig. 4B). The same pattern was observed when the uncleaved form of lamin A/C was assayed confirming the 
results obtained with caspase-6 (Fig. 4B). In the case of the executioner caspase-7, it was also found to be consist-
ently activated immediately after exposure to 45 °C as well as after 2–72 h post-exposure without any significant 
activation observed at 43 °C (Fig. 4C). Data also revealed that in the case of the executioner caspase-3, its cleaved 
and un-cleaved protein expression levels were neither changed immediately after hyperthermic exposures nor at 
any time point up to 24 post-exposure. However, at this time point onwards its cleaved form became evident, only 
at 45 °C, suggesting of its activation at this hyperthermic condition (Fig. 4C). In agreement to these observations, 
poly ADP ribose polymerase (PARP) was also shown to remain unaffected up to 24 h post-exposure to 43 °C while 
it remained cleaved at every other time point of post-exposure to 45 °C (Fig. 4D).

In an attempt to characterize, in more detail, the involvement of the death receptor apoptotic pathway in 
response to hyperthermia, we examined changes in protein expression levels of three different death receptor 
molecules. According to our results, TNFR1 and TRADD presented a similar pattern of expression whereby 
there was a reduction in their protein content up to 24 h post-exposure to 43 °C while this decrease was further 
sustained up to 72 h post-exposure to 45 °C (Fig. 4E). In the case of RIP, there was a profound decline only at 45 °C 
at each time point up to 48 h post-exposure (Fig. 4E).

Hyperthermia induces ER stress response in human malignant melanoma (A375) cells. Alterations 
in protein expression levels of several regulators taking part in ER stress induction (UPR response) were studied. First, 

Figure 2. Hyperthermia-induced cytotoxicity in human immortalized keratinocyte (HaCaT) and malignant 
melanoma (A375) cell lines. The effect of hyperthermia at (A) 43 °C and (B) 45 °C was expressed as fluorescence 
values indicative of relative levels of dead cells in A375 and HaCaT cells; The effect of hyperthermia on levels of 
(C) cell viability and (D) dead cells was determined by trypan blue staining in A375 cells. Data shown are mean 
values (n = 5) ± SEM and represent one of three independent experiments. Asterisk (*) indicates statistical 
significance at p < 0.05.
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we examined changes in protein content of Grp78/BiP, a chaperone protein induced by irregular protein folding and 
also known to bind to stress response proteins like PERK, IRE-1a and ATF-6 under normal conditions. However, upon 
ER stress induction it dissociates and activates their respective UPR pathways. According to our results, there was a 
significant increase in Grp78 protein expression levels up until 8 h post exposure to 43 °C and 24–48 h post exposure to 
45 °C (Fig. 5). Furthermore, data showed a reduction in PERK protein levels up to 24 h post exposure at 45 °C whereas 
there were no alterations in its protein content at any time point post exposure to 43 °C (Fig. 5). Moreover, our findings 
demonstrated that IRE-1a and ATF-6 followed a similar pattern of expression characterized by a decrease in protein 
content up to 8 h post exposure to both hyperthermic temperatures with such decline being maintained at longer post 
exposure incubation periods (24–48 h) but only in the case of 45 °C (Fig. 5).

We also examined the protein expression of XBP-1s (the downstream target of IRE-1a) which was found to be 
induced immediately after exposure as well as 2 h and 4–8 h post exposure to 43 °C and 45 °C respectively. On the 
contrary, its protein levels were completely undetected at any time point after 8 h post exposure to both hyper-
thermic conditions (Fig. 5). Finally, our data revealed a significant alteration in the protein expression levels of 
CHOP (a major regulator of the ER-stress response), immediately after and 2–8 h post exposure to 43 °C whereas 
its induction became evident only after 24 h post exposure to 45 °C (Fig. 5).

Hyperthermia activates the heat shock response in human malignant melanoma (A375) cells.  
In an attempt to monitor the effect of hyperthermia on heat shock response, we determined alterations in the 
expression of various protein regulators. Overall, there was a reduction in the protein content of transcription 
factor HSF1 immediately after and up to 4 h post exposure to 43 °C while this trend continued thereafter (2–72 h) 
but only at 45 °C (Fig. 6). In contrast, the expression levels of HSP 90 increased 4–48 h post exposure to 45 °C 
whereas remained at control levels at 43 °C (Fig. 6). Furthermore, HSPs 40 and 70 exhibited a similar pattern of 
expression in a manner where their protein contents were elevated immediately after and up to 24–48 h at both 
hyperthermic conditions (Fig. 6). Finally, the expression of HSP 60 was elevated 2–24 h post exposure to both 
hyperthermic temperatures and 24–72 h post exposure to 45 °C only (Fig. 6).

Hyperthermia potentiates the effectiveness of non-targeted and targeted therapeutic drugs in  
human malignant melanoma (A375) cells. In order to investigate if hyperthermia potentiates the ther-
apeutic effectiveness of drugs currently used in the clinical setting, we utilized two chemotherapeutic agents 
(Dacarbazine and Temozolomide; non-targeted agents) and two inhibitors of B-RafV600E (Dabrafenib and 
Vemurafenib; targeted agents) in combinational treatment protocols along with hyperthermia at 43 °C. Results 
showed that exposing cells to either Dacarbazine alone or in combination with hyperthermia had a significant 
additive effect on reducing cell viability at 48–72 h post-exposure, while at 24 h there appeared to be no significant 
changes with any of the treatment protocols (Fig. 7A–C). Moreover, it appeared that the effect of Dacarbazine on 
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Figure 3. Apoptotic gene profiling by RT-PCR-based microarrays. A list of apoptotic genes categorized 
according to (A) hyperthermic exposure condition and (B) key apoptotic pathway involvement.
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Gene Hyperthermia at 43 °C Hyperthermia at 45 °C Fold difference
APAF1 — 2.9 ↑2.9
BAK1 2.1 32.0 ↑15.2
BAX 2.4 — ↑2.4
BBC3 4.3 16.0 ↑3.7
BCL2 0.5 — ↓2.0
BCL2L11 — 2.0 ↑2.0
BIRC2 1.7 2.0 —
CASP7 1.5 2.0 ↑1.3
CASP9 1.5 1.5 —
CDKN2A — 2.9 ↑2.9
CFLAR 1.5 1.5 —
CHUK — 2.0 ↑2.0
DAPK3 2.2 2.0 —
DFFA 1.5 — ↑1.5
F2RL3 — 2.1 ↑2.1
FAS 3.0 11.6 ↑3.9
FASLG 10.4 176.3 ↑16.9
IL6 23.7 23.0 —
KDR 3.0 0.5 ↑6.0
KIT — 2.1 ↑2.1
MDM2 6.1 16.2 ↑2.7
MET — 1.5 ↑1.5
NFKB1 1.5 1.5 —
NFKB2 1.5 2.0 ↑1.3
NFKBIA 2.2 6.3 ↑2.9
NFKBIB — 2.0 ↑2.0
NFKBIE 2.1 2.0 —
P53AIP1 2.2 5.8 ↑2.6
PARP2 0.5 — ↓2.0
PIK3CB 1.5 — 1.5
PIK3CD 2.2 2.0 —
PMAIP1 1.7 3.8 ↑2.2
PRKCB — 12.3 ↑12.3
PRKCD 1.5 — ↑1.5
PRKCE — 1.5 ↑1.5
PRKCZ 1.5 — ↑1.5
REL 1.5 1.5 —
RELA 1.5 1.5 —
RELB 1.7 6.3 ↑3.7
RPS6KA2 0.5 0.4 —
RPS6KA4 — 1.5 ↑1.5
RPS6KA5 0.5 — ↓2.0
SLC25A4 1.5 — ↑1.5
TGFB1 1.5 1.5 —
TNF 1.5 186.1 ↑124.0
TNFRSF10 — 2.0 ↑2.0
TNFSF10 1.6 4.1 ↑2.6
TNFSF12 — 2.0 ↑2.0
TP53 — 0.5 ↓2.0
TRADD 1.5 — ↑1.5
TRAF2 — 2.0 ↑2.0
VDAC3 0.5 — ↓2.0

Table 1. Expression levels of apoptotic genes in A375 cells at 24 h post-exposure to 43 °C and 45 °C 
hyperthermia. Data, from each hyperthermic condition (43 °C or 45 °C), are expressed as fold increase in 
comparison to control (37 °C) (1st and 2nd column) while expressed as fold difference when comparing the two 
hyperthermic exposure conditions (43 °C and 45 °C) with each other (3rd column). Gene expression data were 
analyzed by the ΔΔCt method and differences observed were expressed as fold change in gene expression 
by using the DataAssist v3.01 software. (↑) denotes up-regulation whereas (↓) down-regulation and (−) no 
significant fold change between hyperthermic conditions (43 °C or 45°C) compared to control (37°C). Data 
shown are mean values from two independent experiments.



www.nature.com/scientificreports/

7SCIENTIfIC RepoRTs |  (2018) 8:10724  | DOI:10.1038/s41598-018-29018-0

Figure 4. Hyperthermia-induced apoptosis in a human malignant melanoma (A375) cell line. The effect of 
hyperthermia on protein content of (A) caspases-8 and -9; (B) caspase-6 and lamin A/C; (C) caspases-7 and -3; 
(D) uncleaved/cleaved PARP; and (E) RIP, TNFR1, TRADD. Cells were grown overnight at 37 °C followed by 
exposure to hyperthermia, for 2 h, and then transferred back to 37 °C for the indicated post-exposure incubation 
times (2–72 h). Cell lysates were prepared and subjected to western blotting. Control cells were kept at 37 °C. 
β-tubulin was used as loading control. Samples from short and long-post exposure incubation periods following 
hyperthermia were electrophorized on separate gels. Delineation shows blots cropped from different areas of 
the same blot or different blots. Full-length blots are provided in Supplementary Material (Fig. 1S & 2S). Data 
shown is representative of at least two independent experiments.
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cell viability was potentiated in the presence of hyperthermia at 48–72 h post-exposure (Fig. 7A–C). In addition, 
Temozolomide (either alone or in combination with hyperthermia) also significantly reduced cell viability at 
48–72 h post-exposure in a manner similar to Dacarbazine. However, the observed hyperthermia-induced poten-
tiation was more apparent than in the case of Dacarbazine (Fig. 7D–F).

On the other hand, similar observations were made in the case of targeted B-RafV600E inhibitors namely 
Dabrafenib and Vemurafenib. In particular, the efficacy of Dabrafenib was remarkably enhanced when admin-
istered in combination with hyperthermia at 24–48 h post-exposure (Fig. 7G–I) although the utilization of each 
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exposure incubation periods following hyperthermia were electrophorized on separate gels. Delineation shows 
blots cropped from different areas of the same blot or different blots. Data shown is representative of at least two 
independent experiments.
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therapeutic protocol alone (i.e. drug at 37 °C and 43 °C) did not induce a consistent pattern of reduced cell via-
bility in accordance with the range of concentrations tested at each one of the indicated post-exposure time 
points (Fig. 7G–I). In addition, when hyperthermia was combined with Vemurafenib treatment there was also an 

Figure 7. Hyperthermia-induced potentiation of therapeutic effectiveness of non-targeted and targeted drugs 
in malignant melanoma (A375) cells. Comparison of cell viability levels following treatment with Dacarbazine 
(A–C), Temozolomide (D–F), Dabrafenib (G–I) and Vemurafenib (J–L). The drug compounds were used either 
as single agents, at 37 °C, or in combination with 43 °C hyperthermia over a time-course of 24–72 h. Cell viability 
levels were calculated by comparison with 0.1% DMSO (vehicle) at 37 °C. Data represent mean values ± SEM 
(n = 5) and represent one of at least two independent experiments. Asterisk (*) indicates statistical significance 
at p < 0.05 for comparison with respective control at 37 °C or 0.1% DMSO at 37 °C. Alpha (α) indicates statistical 
significance at p < 0.05 for comparisons between 37 °C and 43 °C for each experimental condition.
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observed potentiation in reducing cell viability levels at 24–72 h post-exposure (Fig. 7J–L). Finally, it is notewor-
thy that although a similar pattern of potentiation was observed between the two targeted drug agents it occurred 
at substantially different concentration ranges in a manner where those of Vemurafenib were 100-fold higher that 
the corresponding Dabrafenib ones. Collectively, our data indicate a potential role of hyperthermia in enhancing 
the therapeutic effectiveness of non-targeted and targeted therapeutic drugs used in the clinical setting in the 
context of disease management.

Discussion
Data from various clinical studies have shown that hyperthermia enhances the effectiveness of therapeutic strat-
egies like radiation and chemotherapy11–14. In the case of malignant melanoma, there is only a limited number of 
reports investigating into the induction of cell death as a response to hyperthermia10,15,16.

In optimizing our hyperthermic exposure platform, detailed kinetic analyses were performed by utilizing 
the epidermoid carcinoma (A431) and malignant melanoma (A375) cell lines. In addition, we have included 
a non-tumorigenic immortalized keratinocyte (HaCaT) cell line in the context of providing a safety profile for 
hyperthermic exposures given that keratinocytes are the primary epidermal cells surrounding melanocytes17. 
To our knowledge, there are no previous studies evaluating the effect of hyperthermia-induced cytotoxicity in 
non-malignant cell lines. Finally, the observed reduction in cell viability, at 43 °C, could also be attributed to 
hyperthermia’s capacity to induce cell cycle growth arrest. In fact, several studies have associated hyperthermia’s 
anti-proliferative effects with alterations in cell cycle regulation in various cell lines18–20.

Hyperthermia-induced cell death has been the subject of many studies utilizing a wide range of experimental 
cancer models7,21,22. Our results indicate the triggering of the extrinsic and intrinsic apoptotic pathways supported 
by the activation of caspases 8, 9, TNF-R1 and TRADD (at both 43 °C and 45 °C) suggesting their interaction 
in forming a death domain capable of recruiting caspase-8. Although our findings are in agreement with other 
studies demonstrating the induction of death receptors as a response to thermal stress23–26, they have not been 
documented in an experimental model of malignant melanoma before. Moreover, our data showed activation of 
RIP1, at 45 °C, which could be indicative either of the protein’s interaction with FADD and TRADD in stimulating 
the extrinsic pathway or its interaction with RIP3 for the formation of the necrosome required for necroptotic cell 
death27,28. On the other hand, induction of caspase-9 has been associated with activation of the intrinsic apoptotic 
pathway in Jurkat cells29 and various other cancer cell lines30 while a recent study (utilizing melanoma cells) has 
provided no evidence for the activation of either caspase-8 or -9 under heat stress10. Such conflicting data can be 
attributed to the utilization of different experimental conditions (e.g. variations in hyperthermic experimental 
platforms, exposure kinetics and utilization of different types of cells3) indicating the significance of utilizing 
an optimized experimental platform when assessing the effect of in vitro hyperthermic exposures. Finally, we 
observed that only caspase-6 became activated at 43 °C whereas caspases-3, -7 and -6 were all induced at 45 °C. 
Although our results are consistent with previous reports, demonstrating the induction of caspases-3 and -7 in 
response to hyperthermia10,25, the activation of caspase-6 (at 43 °C only) has not been previously reported.

Moreover, we investigated the participation of the ER stress response pathway in triggering hyperthermia- 
induced cell death. Our data showed an increase in Grp78 indicative of an increased demand for chaperone 
proteins together with a slight decrease in PERK which may be caused by its increased homodimerization for 
phosphorylating the eIF2 factor thus inhibiting protein synthesis in stressed cells26. Similarly, induction of IRE-1a 
and ATF-6 was also noted suggesting that IRE-1a becomes homodimerized and binds to downstream proteins 
while ATF-6 is cleaved to its active form under ER-stress conditions. Consistent with these observations, XBP-1s 
(the downstream target of IRE-1a) was shown to be up-regulated and together with active ATF-6 can modulate 
the activation of UPR pathways31,32. Finally, induction of CHOP was shown to be dependent on the activation of 
ATF-6 and XBP-1s and potentially linked to stimulation of apoptosis33,34. Interestingly, the induction of IRE-1a 
and ATF-6 has been suggested to play an anti-apoptotic role under ER stress conditions, in contrast to PERK 
which was shown to have pro-apoptotic effects instead35–39. In parallel, we also examined alterations in several 
heat shock proteins (HSPs) as a response to stress-induced protein misfolding and aggregation both of which 
can induce cell death. In particular, the up-regulation of HSPs 70 and 90 has been previously demonstrated to 
exert anti-apoptotic effects by preventing the formation of the apoptosome40,41. In addition, inhibition of HSP 70 
appears to have anti-cancer effects by preventing tumor growth and enhancing cisplatin’s cytotoxicity in an in vivo 
model of melanoma42. Findings from a recent study have linked the absence of JB12 (an ER-associated HSP 40 
protein) with the stimulation of ER-stress-mediated apoptosis43 whereas HSP 60 exerts its anti-apoptotic effects 
by acting as a mitochondrial chaperone while its inhibition promotes apoptosis and prevents tumor growth in an 
in vivo glioblastoma model44,45. Interestingly, the suppression of HSF1 appears to exert anti-proliferative effects in 
melanoma cells under hyperthermic conditions46. To this end, both HSPs 90 and 70 can interact with HSF1 and 
suppress its function47,48.

On a different note, we aimed to investigate the effect of hyperthermia in potentiating the effectiveness of sev-
eral drugs (currently utilized in the clinical setting), in a way where lower concentrations can exert comparable 
cytotoxicity (with that observed at higher concentrations) and thus potentially minimizing the risk for unwanted 
side effects49. According to our initial observations, we determined that 43 °C was the optimal hyperthermic 
temperature used in all adjuvant treatment protocols (data not shown). This finding is in agreement with other 
studies indicating that the combination of low hyperthermia (40–43 °C) with chemotherapy exerts increased 
cytotoxicity against various cancer cells3,50 while higher temperatures (>45 °C) are associated with the induction 
of necroptotic death10,51. Our data revealed that hyperthermia potentiated the effectiveness of DTIC, the action of 
which requires its obligatory bio-activation in the liver52. This is an experimental limitation of our in vitro model 
and consequently the reason for utilizing TMZ in additional experiments. This drug agent is an analogue of DTIC 
but without the requirement for bio-activation as it is spontaneously metabolized to its active form52. TMZ’s 
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efficacy was also demonstrated to be potentiated in the presence of hyperthermia to a higher degree than DTIC. 
This observation is also in agreement with previous studies demonstrating hyperthermia-induced enhancement 
of the therapeutic efficacy of TMZ in in vitro and in vivo experimental models53. On another note, almost half of 
melanoma patients carry a mutation (V600E) in the BRAF oncogene which results in an amino acid substitution, 
at amino acid 600, from a valine (V) to a glutamic acid (E). Consequently, there has been a growing interest in 
developing new drugs capable of targeting this mutation and thus inhibiting the continuous activation of MAPK/
ERK signaling pathway which contributes to tumor growth54. Two such BRAF-targeted drugs are Vemurafenib 
and Dabrafenib both of which have been approved by FDA in 2011 and 2013 respectively55,56. Our data revealed 
that exposure to mild hyperthermia (43 °C) potentiated the therapeutic effectiveness of both drugs, a finding 
which has not been reported before.

Moreover, hyperthermia has been shown to induce oxidative stress via generation of reactive oxygen species 
(ROS)57 which, in turn, can induce an apoptotic response58. For instance, a previous study utilizing in vitro and 
in vivo models of malignant melanoma has demonstrated that exposure to 45 °C was capable of affecting the 
redox state but not altering the cellular proliferating potential59. In addition, generation of free radicals along with 
the presence of molecular oxygen appeared to affect the efficiency of several photosensitizers against melanoma 
cells60. Furthermore, the combination of hyperthermia with radiation therapy was found to be more effective 
due to the suppressed oxygen uptake caused by the increased temperature in multicell spheroids61. On another 
note, under normal conditions, melanocytes produce melanin that is capable of protecting cells by absorbing 
UV radiation62. L-tyrosine acts as a positive regulator of melanogenesis while it is also associated with increased 
metastatic potential of melanoma cells63. Numerous reports have shown the utilization of various forms of 
melanin-containing nanoparticles based on their ability to increase the temperature on tumor location (due to the 
capacity of melanin to absorb energy after irradiation) thus leading to tumor growth inhibition and even complete 
eradication64–69. On the other hand, various studies have shown that hyperthermia can influence the immune sys-
tem in various ways including induction of HSPs, improvement of dendritic cell and NK-cell function, improved 
lymphocyte-endothelial adhesion and leukocyte trafficking, and mediation of immune surveillance70. To this end, 
several studies have shown that thermal therapy can enhance the therapeutic efficacy of immunotherapy when 
combined. For instance, a combinational protocol utilizing IL-2 or GM-CSF along with hyperthermia resulted in 
complete eradication of tumors in melanoma-bearing mice71. Finally, pyroptosis is another type of programmed 
cell death involving the activation of caspase-172. This distinct pathway has protective effects against microbial 
infections for the host while a recent report revealed the bidirectional crosstalk between apoptosis and pyroptosis 
in innate immune cells73.

Collectively, our data suggest that at higher temperatures (45 °C) cells could not adapt effectively and conse-
quently increased cytotoxicity and apoptotic cell death were evident whereas at milder hyperthermic conditions 
(43 °C) the cells were more thermotolerant and thus able to regulate the apoptotic response in a more efficient 
manner. For instance, although initiator caspases -8 and -9 were activated in response to both 43 °C and 45 °C, 
induction of effector caspases appeared to differ between the two hyperthermic conditions in a manner where 
triggering of effector caspases-3, -7 and -6 occurred at 45 °C (Fig. 8B) whereas only caspase-6 was activated at 
43 °C (Fig. 8A). This suggests that mild hyperthermia triggers the apoptotic response in a more regulated manner 
in contrast to more excessive hyperthermia which requires the participation of all the executioner caspase rep-
ertoire in order to sustain apoptotic cell death. Moreover, this study provides further insights in the involvement 
of ATF-6, IRE-1 and PERK in regulating the apoptotic activation in response to low and high hyperthermic 
conditions. More specifically, it was evident that only IRE-1a and ATF-6 pathways were induced at 43 °C (Fig. 8A) 
whereas all three of them were activated at 45 °C (Fig. 8B). Although both the IRE-1 and ATF6 pathways can 
up-regulate CHOP, PERK predominates through selective up-regulation of translation of ATF4 which, in turn, 
induces transcription of CHOP. Hence, it can be proposed that PERK signaling along with the subsequent induc-
tion of CHOP play a major role in regulating hyperthermia-induced apoptosis. Last but not least, hyperthermia 
exerted a significant role in potentiating the therapeutic effectiveness of a number of non-targeted and targeted 
drugs (when administered as adjuvant treatment protocols) thus high lightening its premise as a therapeutic 
approach in melanoma patients.

Materials and Methods
Cell lines. The human epidermoid carcinoma (A431) and malignant melanoma (A375) cell lines were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The human immortalized keratinocyte (HaCaT) cell line was 
a kind gift from Dr. Sharon Broby (Dermal Toxicology and Effects Group; Centre for Radiation, Chemical and 
Environmental Hazards; Public Health England, UK). All cell lines were maintained in Dulbeccos’s Modified 
Eagle Medium (DMEM), high glucose, supplemented with 10% fetal bovine serum, 2 mM L-glutamine and 1% 
pen/strep (100U/ml penicillin, 100 μg/ml streptomycin). Cells were cultured in a humidified atmosphere at 37 °C 
and 5% CO2. They were grown as monolayer cultures and sub-cultured when reaching 80–90% confluence. All 
cell lines were cultured for up to 20–25 passages before new vials were utilized. All cell culture media and reagents 
were purchased from Labtech International Ltd (East Sussex, UK) and cell culture plastic ware were obtained 
from Corning (NY, USA).

Exposure to hyperthermia. Cells were exposed to a range of temperatures (37 °C–50 °C) for various time 
periods in a standard 5% CO2 incubator. Briefly, the appropriate number of cells was plated and incubated at 37 °C 
overnight. Next day, medium was changed prior to hyperthermic exposure and all plates were transferred into 
a 5% CO2 incubator set at 37–50 °C and exposed for various time periods. Then, plates were returned at a 37 °C 
incubator for additional incubation periods (post-exposure).
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Adjuvant hyperthermic exposures. Cells were seeded into 96-well plates and incubated at 37 °C, over-
night. On the following day, plates were transferred into an incubator set at 43 °C (hyperthermia) or 37 °C 
(untreated) for 2 h. After the end of the exposure period, medium was aspirated and various concentrations of 
non-targeted (Dacarbazine, Temozolomide) and targeted (Dabrafenib, Vemurafenib) drugs were added over a 
time course of 24–72 h at 37 °C. Dacarbazine and Temozolomide were purchased from Abcam (Cambridge, UK) 
and Sigma-Aldrich (St. Louis, MO, USA) respectively while Dabrafenib and Vemurafenib were obtained from 
Selleckchem (Houston, TX, USA).

Determination of cell viability and cytotoxicity. Cells were seeded in 96 well-plates with 100 μl 
medium and incubated overnight before hyperthermic exposures. Prior to exposures, the medium was refreshed 

Figure 8. Schematic representation of proposed apoptotic induction in response to 43 °C (A) and 45 °C (B) 
hyperthermic exposures in human malignant melanoma (A375) cells.
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and cells were exposed to various hyperthermic conditions at the end of which they were returned back to 37 °C. 
Cell viability levels were determined immediately after exposures as well as at 24–72 h post-exposure by utilizing 
the Celltiter-Blue Assay (Promega, UK) according to the manufacturer’s protocol. The assay uses the indica-
tor dye (resazurin) which is converted to a highly fluorescent product (resorufin) by metabolically active cells. 
Non-viable cells lose their metabolic capacity; thus, they are not able to reduce resazurin into the fluorescent 
product and consequently cannot generate a fluorescent signal. Briefly, 20 μl of Celltiter-Blue reagent was added 
into each well of α 96-well plate and mixed by gentle shaking. The plates were incubated at 37 °C for 2 h and then 
the samples were transferred into the wells of a black opaque plate. Fluorescence was monitored at 400 Exc/505 
Emm (nm) by using a SpectraMax M5 multimode plate reader (Molecular Devices, LLC, Sunnyvale, USA). Cell 
viability was expressed as percentage of control (37 °C) cells. Five replicates (n = 5) of each experimental condi-
tion were used under each experiment.

Determination of relative levels of dead cells was made based on the CytoTox-Fluor cytotoxicity assay 
(Promega, UK) according to the manufacturer’s protocol. The assay involves a fluorogenic peptide substrate 
(bis-alanyl-alanyl-phenylalanyn-rhodamine 110; bis-AAF-R110) which can measure the activity levels of a spe-
cific protease released from dead cells which have lost membrane integrity. This particular peptide substrate 
cannot produce a signal in viable cells as it cannot cross their cell membrane. Briefly, cells were plated in 96 
well-plates, exposed to hyperthermic conditions and then 100 μl of the assay reagent was added into each well (at 
indicated time points) mixed by orbital shaking and incubated at 37 °C for 2 h. Then, samples were transferred 
into the wells of a black opaque plate and fluorescence was monitored at 400 Exc/505 Emm (nm) by using a 
SpectraMax M5 multimode plate reader. The generation of fluorescent product is proportional to the protease 
activity of the marker associated with cytotoxicity so that higher fluorescence values represent increased levels of 
dead cells. Five replicates (n = 5) of each condition were used in each experiment.

In another approach, the trypan blue staining protocol was utilized in order to determine levels of viable and 
dead cells within the same sample. Briefly, cells were plated in 100 mm3 dishes (incubated overnight at 37 °C) and 
after exposure to hyperthermia they were trypsinized and collected. A sample of each cell suspension was mixed 
with the trypan blue stain and cells were counted under the microscope. Overall, cells were categorized into being 
either viable (unstained) or dead (stained) while the total cell suspension number was calculated. Three replicates 
(n = 3) of each experimental condition were used under each experiment.

RNA extraction and determination of apoptotic gene profiling by RT-PCR-based microarrays.  
To examine differential apoptotic gene expression in response to hyperthermia, A375 cells were plated in 100 mm 
cell culture dishes, cultured overnight and exposed to 43 °C and 45 °C or 37 °C for 2 h. Cells were then returned to 
37 °C for an additional 24 h incubation period after which they were collected via trypsinization. Total RNA was 
extracted using the TRIzol reagent according to the manufacturer’s protocol (Invitrogen). RNA quality and con-
centration were assessed by agarose gel electrophoresis and spectrophotometric analysis. Complimentary DNA 
was synthesized by using the SuperScript VILO cDNA synthesis kit (Invitrogen, Waltham, MA, USA) according 
to the manufacturer’s protocol. qPCR was carried out by utilizing the TaqMan Array Human Apoptosis 96-well 
plates (Applied Biosystems, Carlsbad, CA, USA). TaqMan Universal master mix (2x) was mixed with the equal 
amount of diluted cDNA (5–50 ng per well) in RNAase free water and 10 μl of the mixture were added into 
each well of the 96-well plate. RT-PCR was performed on a StepOne Plus RT-PCR system (Applied Biosystems, 
Carlsbad, CA, USA). Gene expression data were analyzed by the ΔΔCt method and differences observed were 
expressed as fold change in gene expression by using the DataAssist v3.01 software.

Determination of protein expression by western blotting. Samples were stored as cell pellets at −20 °C  
following trypsinization and PBS washes. Cell pellets were suspended in the appropriate amount of lysis buffer 
(10 mM HEPES, pH 7.9; 10 mM KCl; 0.1 mM EDTA; 1.5 mM MgCl2; 0.2% NP-40) supplemented with a cocktail 
of protease inhibitor tablets (Thermo Fisher, Waltham, MA, USA), and were left on ice while periodically being 
vortexed for 15 min. Then, they were sonicated at 30% amplitude for 3 cycles of 15 s each (with 30 s intervals) on 
ice. Cell lysates were centrifuged at 14,000 × g for 15 min at 4 °C and protein content was determined by utilizing 
the Pierce BCA protein assay kit according to the manufacturer’s protocol. Fifty μg of proteins were separated by 
using SDS-polyacrylamide gels of different gradient (8–20%) according to the molecular weight of the protein of 
interest. Separated proteins were then transferred electrophoretically onto either 0.2 and/or 0.45μm PVDF mem-
branes (depending on protein’s molecular weight) (Thermo Scientific, Waltham, MA, USA) by wet transfer in 1x 
transfer buffer at predetermined running conditions. The blots were blocked with 5% (w/v) non-fat milk powder 
in TBST buffer, for 1 h at RT, under gentle agitation. Then, the blots were incubated with specific primary antibod-
ies, overnight at 4 °C, under gentle agitation. On the following day, the membranes were washed in TBST buffer 
for 10 min, three times, and then were incubated with an appropriate secondary antibody, for 1 h at RT, under 
agitation. Blots were incubated with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, 
Waltham, MA, USA) according to the manufacturer’s protocol before being imaged by using a ChemiDoc XRS+ 
system (Bio-Rad, Perth, UK). All antibodies were purchased from Cell Signaling Technology (Hertfordshire, 
UK), apart from β-tubulin which was from Sigma-Aldrich (St. Louis, MO, USA).

Data analysis. Experimental conditions for all sets of experiments were expressed as mean values ± SEM and  
comparisons were made between control and treatment groups. Calculations were performed by using the 
Microsoft Office Excel 2016 software. Means were compared by one-way analysis of variance (one-way ANOVA) 
with Tukey’s test for multiple comparisons. SPSS v.22 or PRISM v5.01 software were used for statistical tests. A 
value of p < 0.05 was considered statistically significant.
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