
Northumbria Research Link

Citation: Zhang, Shan, Hou, Yinglai, Chen, Heng, Liao, Zijun, Chen, Jianxin, Xu, Bin and Kong, Jie 
(2018) Reduction-Responsive Amphiphilic Star Copolymers with Long-chain Hyperbranched Poly(ε-
caprolactone) Core and Disulfide Bonds for Trigger Release of Anticancer Drugs. European Polymer 
Journal, 108. pp. 364-372. ISSN 0014-3057 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.eurpolymj.2018.09.014 
<https://doi.org/10.1016/j.eurpolymj.2018.09.014>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/35687/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/196576499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html




 

Reduction-Responsive Amphiphilic Star Copolymers with Long-chain 

Hyperbranched Poly(ε-caprolactone) Core and Disulfide Bonds for Trigger 

Release of Anticancer Drugs 

 

Shan Zhanga, Yinglai Houa, Heng Chenb, Zijun Liaoc, Jianxin Chena, Ben B. Xud*, Jie 

Konga* 

 

aShaanxi Key Laboratory of Macromolecular Science and Technology, School of 

Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China 

bShenzhen Key Laboratory of Special Functional Materials, College of Materials 

Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China 

cDepartment of Fundamentals, Army Logistics University of PLA, Chongqing, 

401311, P. R. China 

dSmart Materials and Surfaces Lab, Faculty of Engineering and Environment, 

Northumbria University, Newcastle upon Tyne, NE1 8st, UK 

 

*Corresponding Authors 

E-mail: kongjie@nwpu.edu.cn (J. K.); ben.xu@northumbria.ac.uk (B. X.). 



 

Abstract: In this contribution, the reduction-responsive star copolymers with 

long-chain hyperbranched poly(ε-caprolactone) (PCL) (HyperMacs) core and 

disulfide bonds were synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition 

(CuAAC) reaction. The HyperMacs core was constructed from disulfide-containing 

AB2-type PCL macromonomers, which possesses length-adjustable chain segments 

between branching points, large cavities, low degree of crystallinity, and 

reduction-responsivity. After grafted with poly(ethylene glycol), the 

reduction-responsive star copolymers can self-assemble into micelles in aqueous 

solution. The obtained micelles exhibited much lower critical micelle concentration 

(CMC) than their linear analogues. The reduction-responsivity from disulfide bonds 

makes them a promising carrier candidate for trigger release of anticancer drugs. The 

in vitro release results confirmed that their doxorubicin (DOX)-loaded micelles 

exhibited desirable reduction-triggered release performance. The cellular proliferation 

inhibition against HepG2 cells demonstrated that the DOX-loaded micelles showed a 

comparable anticancer activity with free DOX. Therefore, it can be expected that the 

reduction-sensitive micelles may serve as smart vehicles for intracellular delivery of 

anti-cancer drugs in tumour therapy. 



 

1. Introduction 

Polymeric micelles self-assembled from amphiphilic copolymers have currently 

emerged as an important drug carrier because they enhance drug solubility, prolong 

blood circulation time and reduce toxic and side effect [1-3]. The traditional linear 

amphiphilic polymer micelles are prone to early leakage due to dilution effects of 

blood circulation before they reach lesion sites, reducing the drug efficiency [4]. 

Improving the stability of polymeric micelles has been an important issue in drug 

delivery. Cross-linking is an effective method to improve the stability of polymeric 

micelles, and various strategies have been used to prevent micelles disintegration and 

premature drug leakage when diluting in the bloodstream [5-7]. Normally, the micelle 

cores are constructed with hydrophobic biocompatible polymers to load hydrophobic 

drugs. Although various polymers have been utilized as hydrophobic cores of 

micelles, two important types hydrophobic polymers approved by United States Food 

and Drug Administration (FDA), i.e. poly lactic acid (PLA) and poly(ε-caprolactone) 

(PCL), receive much more attentions for their excellent biocompatibility and 

biodegradability [8,9]. However, cross-linking strategy is unsuitable for these linear 

polymers [10-12]. Furthermore, the crystallization of PCL is an intrinsic drawback 

that reduces drug loading content and further decreases drug loading efficiency of 

drug delivery system [13-15]. This problem significantly hampers the practical 

applications of PCL-based polymeric micelles. 

 

Hyperbranched or highly branched polymers possess three-dimensional topological 

structure with large cavities, and their crystallization ability is limited by the branched 

structure [16-21]. Therefore, constructing hyperbranched hydrophobic core is a 

promising alternative to cross-linking strategy of PCL-based polymeric micelles. 

Normally, PCL is a linear polymer derived from ε-caprolactone through ring-opening 

polymerization, and it is intractable to directly prepare hyperbranched PCL from 

small monomer strategy [22-24]. Long-chain hyperbranched polymers (HyperMacs) 

are distinctive hyperbranched polymers that are typically prepared by 

polycondensation of AB2-type macromonomers.[25-31] By tuning the molecular 



 

weight of macromonomers, the chain length and looseness between branching points 

can be well adjusted.[32,33] Moreover, Compared to traditional hyperbranched 

polymers, they have larger topological cavity and are much more suitable for 

hydrophobic core of micelles [34]. Although HyperMacs type PCL has been prepared 

by Kwak and Gao et al. [23,35], the utilization of HyperMacs PCL to construct a star 

copolymer for polymeric micelle has never been reported and it deserves further 

investigation. 

 

On the other hand, for enhancing delivery and therapy efficiency, it is necessary to 

release anticancer drugs in targeted sites. The stimuli-responsive micelles can retain 

the drugs in the blood circulation and release them under appropriate stimulus 

triggering, such as pH, light, temperature, magnetic and reductive environment 

[30-37]. Notably, reductive agent glutathione (GSH) has been regarded as a 

significant signal for distinguishing tumour tissue from normal tissue [38]. In vivo 

research has confirmed that tumour tissues showed much higher GSH concentration 

than that of normal tissues [45]. Disulfide, a reduction-responsive group without 

physiological toxicity, can be cleaved via the thiol-disulfide exchange reaction 

[39-42]. The specific structure of disulfide bond containing polymers exhibit ideal 

physicochemical properties in material science, tissue engineering and targeted gene 

or drug delivery [43-46]. The introduction of disulfide bond into HyperMacs PCL will 

bring reduction-responsivity and endow polymeric micelle new function of triggered 

release. 

 

In this work, a disulfide bond-containing and “clickable” PCL-based AB2 

macromonomer was designed to construct new reduction-responsive PCL HyperMacs 

via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. After grafted with 

poly(ethylene glycol) (PEG), amphiphilic and reduction-responsive star copolymers 

was obtained. The star copolymers can self-assemble into micelles in aqueous 

solution and serve as new drug-carrier for triggered release of anticancer drugs. Using 

DOX as model drug, the reduction-responsive release behaviour of the drug-loaded 



 

micelles, the intracellular release of DOX, and the inhibition of cellular proliferation 

of HepG2 cells by DOX-loaded micelles was fully investigated. 

 

2. Experimental Section 

2.1. Materials  

3-chloro-1, 2-propanediol (99%, Xiya Reagent), 3,3'-dithiobispropionic acid (99%, 

Aladdin ), sodium azide (>99%,Amresco), propargyl alcohol (>99%, Xiya Reagent), 

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC·HCl, 99%, 

J.&K. Chemical), 4-dimethylaminopyridine (DMAP, 99%, J.&K. Chemical), 

ε-caprolactone (99%, J.&K. Chemical), Tin(II) 2-ethylhexanoate (Sn(Oct)2, 96%, 

Alfa Aesar Tianjing Co.), monomethoxy poly(ethylene glycol) (MPEG, Mw=5000 Da, 

Aladd Shanghai Co.), Hoechst 33258 (Beyotime Biotechnology, Jiangsu, China), Cell 

Counting Kit (CCK-8, Beyotime Biotechnology, Jiangsu, China), 

Azido-functionalized Merrifield resin was prepared according to a previously reported 

method [38]. 

2.2. Characterization 

Fourier transform infrared spectroscopy (FT-IR) measurement was conducted using 

an FT-IR spectrophotometer (Perkin-Elmer, USA). Nuclear magnetic resonance 

(NMR) measurements were carried out on a Bruker Avance 500 spectrometer (Bruker 

BioSpin, Switzerland) operating at 50.7 MHz in CDCl3 or DMSO6. Chemical shifts 

are referenced to tetramethylsilane (TMS). Size exclusion chromatography (SEC) 

measurements were conducted using a system equipped with a Waters 515 pump, an 

autosampler, and two MZ gel columns (103 Å and 104 Å) with a flow rate of 0.5 mL 

min−1 in DMF (HPLC grade) at 25 °C. Detectors were including a differential 

refractometer (Optilabr EX, Wyatt) and a multi-angle light scattering detector 

(MALLS) equipped with a 632.8 nm He-Ne laser (DAWN EOS, Wyatt). The 

refractive index increment of polymers in DMF was measured at 25 °C using an 

Optilabr EX differential refractometer. ASTRA software (Version 5.1.3.0) was used 

for the acquisition and analysis of data. The morphologies of the micelles were 

observed by a transmission electron microscope (TEM, Hitachi-600, Japan). The 



 

samples were prepared by directly dropping the solutions of micelles onto 

carbon-coated copper grids and allowed to dry at room temperature before 

measurement. The micelles size and size distribution (PDI) were measured using a 

laser particle size analyzer (Zetasizer Nano, Malvern, UK). Static light scattering 

(SLS)  analysis was performed on a DAWN HELEOS-II multi-angle light scattering 

detector (Wyatt Technology Corporation, USA) operated at 665 nm, using 

gallium–arsenic as the incident laser beam source. SLS data were collected at 6 

different concentrations of the aggregates and 18 different angles for each 

concentration. The average molecular weight values of the amphiphilic copolymers 

aggregate in aqueous solutions were obtained by the common Zimm method using 

HELEOS-II Firmware 2.4.0.4 advanced software. The melting temperature was 

measured with a Perkin-Elmer differential scanning calorimeter (DSC) at a heating 

and cooling rate of 10 K/min from -30 °C to 90 °C, under a nitrogen atmosphere. The 

crystallinity (XC) of the PCL was calculated by the following formula: 

Xc=ΔHm/ΔHm
*×100% 

where ΔHm
* is 139 J/g, which is the theoretical heat of fusion for 100% crystalline 

PCL [47]. The cell uptake experiment was conducted by inverted fluorescence 

microscope (Olympus IX73). Cell viability was detected by M200 Pro Nano Quant 

(TECAN). 

2.3. Preparation of clickable AB2 macromonomer (M-AB2-PCL) 

The typical synthesis procedure is described as follows. Under an insert argon 

atmosphere, a 100 mL dry Schlenk flask was charged with 3-chloro-1,2-propanediol 

(0.22 g, 2 mmol), ε-caprolactone (4.56 g, 40 mmol) and Sn(Oct)2 (13.0 μL, 0.04 

mmol). The mixture was stirred for 24 h at 110 oC, then added with sodium azide 

(0.95 g, 15 mmol) and 60 mL DMF, and further stirred for another 36 h at 80 oC. After 

removing DMF by rotary evaporation, the residue was dissolved in ethyl acetate and 

passed through a short column of neutral alumina for the removal of sodium salts. 

After concentrated by rotary evaporation, azide functionalized AB2-PCL was obtained 

as white solid. The obtained azide functionalized AB2-PCL, MPDP (1.99 g, 8 mmol), 

EDC·HCl (1.91 g, 10 mmol) and DMAP (0.12 g, 1mmol) were added into 60 mL 



 

dichloromethane. The mixture was stirred at room temperature for 24 h then the 

solvent was added with 100 mL DI water. The organic layer was collected, 

evaporated, and dried over anhydrous MgSO4. After concentrated by 

rotary evaporation, the final product was precipitated twice into an excess cold diethyl 

ether and dried in vacuum oven (yield: 4.95 g, 73.1%). FT-IR (KBr, cm-1): 3275 (s, 

-C≡C-H), 2106 (s, -N3), 1740, 1710 (vs, C=O).1H NMR (CDCl3, ppm): 1.32-1.51 

(-CO-CH2-CH2-CH2-CH2-CH2O-), 1.51-1.82 (-CO-CH2-CH2-CH2-CH2-CH2O-), 

2.18-2.42 (-CO-CH2-CH2-CH2-CH2-CH2O-), 2.51 (-CH2-C≡CH), 2.80 

(-CH2-CH2-SS-CH2-CH2-), 2.90 (-CH2-SS-CH2-), 3.58 (-CH2-N3), 4.21 

(-CH2-COO-CH2-CH2-CH2-CH2-CH2O-), 4.74 (-CH2-C≡CH), 5.25 (-CH-CH2-N3). 

2.4. Synthesis of PCL-based HyperMacs (HB-PCL)  

M-AB2-PCL macromonomer (0.1 mmol) and CuSO4·5H2O (4.9 mg, 0.02 mmol) was 

dissolved in 2 mL DMF in a 10 mL flask, and then bubbled with nitrogen gas for 30 

min, ascorbic acid (17.4 mg, 0.1mmol) was added quickly and the flask was 

immersed in an oil bath at 45 oC to initiate the polymerization. The reaction was 

allowed to react at room temperature for another 12 h. The reaction was quenched by 

diluted with 10 mL dichloromethane and exposed to air. And then, 3 equiv. of 

PMDETA ligand was added to exact out the Cu catalyst from the product. The 

obtained polymers were passed through an alumina column before being precipitated 

in ether (yield: 0.14 g, 56.1%). FT-IR (KBr, cm-1): 2884 (vs, -CH2-), 1740 (w, C=O). 
1H NMR (CDCl3, ppm): 1.32-1.51 (-CO-CH2-CH2-CH2-CH2-CH2O-), 1.51-1.82 

(-CO-CH2-CH2-CH2-CH2-CH2O-), 2.18-2.42 (-CO-CH2-CH2-CH2-CH2-CH2O-), 2.51 

(-CH2-C≡CH), 2.80 (-CH2-CH2-SS-CH2-CH2-), 2.90 (-CH2-SS-CH2-), 3.50-3.52 

(-CH2-N3), 4.21 (-CH2-COO-CH2-CH2-CH2-CH2-CH2O-), 4.68-4.81 (-CH2-C≡CH, 

-SS-CH2-CH2-COO-CH2-CH2-triozle), 5.18-5.34 (triozle-CH2-), 7.65-7.75 (triozle). 

2.5. Synthesis of azido-functionalized methoxy poly(ethylene glycol) (azido mPEG) 

p-Toluenesulfonyl chloride (3.81 g, 20 mmol) in pyridine (20 mL) was added in a 100 

mL flask. The solution was cooled to 0 oC in ice-water bath before DMAP was added. 

Monomethoxypoly(ethylene glycol) (5.0 g, 1 mmol) in pyridine (20 mL) was added 

dropwise into the mixture under stirring. After stirring at ambient temperature for 12 



 

h, the reaction mixture was diluted with 100 mL DI water and extracted with 

dichloromethane (3 times, 100 mL for each extraction). The combined organic 

solution was then washed with 100 mL 1 M HCl solution, and then washed with water 

(100 mL×3). The organic layer was rotary evaporated to dryness to give a white 

crystalline solid. The white solid was added into the mixture of sodium azide (3.9 g, 

60 mmol) and 40 mL DMF. The mixture was stirred at 90 oC for 36 h and evaporated 

to remove DMF. The residue was dissolved in ethyl acetate and passed through a short 

column of neutral alumina for the removal of sodium salts. After concentrated by 

rotary evaporation, the residue was precipitated twice into an excess cold diethyl ether 

and dried in vacuum oven (Yield: 68%). FT-IR (KBr, cm-1): 2102 (s, -N3). 1H NMR 

(CDCl3, ppm): 3.38 (2H, (~O-CH2-CH2-N3), 3.67 (broad, ∼O-(CH2-CH2∼)).  

2.6. Preparation of star copolymers (SC-PCL-PEG) 

HB-PCL (500 mg), azido-mPEG (0.15 g, 0.03 mmol), CuSO4
.5H2O (7.48 mg, 0.03 

mmol) and 3 mL DMF were mixed in a 10 mL flask. The mixture was degassed by 

three freeze-evacuate-thaw cycles followed by the addition of ascorbic acid (26.42 

mg, 0.15 mmol) under the argon atmosphere and sealed. After stirring at 60 oC for 24 

h, alkynyl-functionalized Merrifield resin was added and stirred for another 12 h. The 

polymer solution was diluted with dichloromethane and exposed to air to quench the 

reaction. 2 equiv. of PMDETA ligand was added to exact out the Cu catalyst. The 

obtained polymer in dichloromethane was then passed through an alumina column 

before being precipitated in diethyl ether. The final product was colorless with a yield 

around 60%. FT-IR (KBr, cm-1): 2884 (vs, -CH2-), 1740 (w, C=O). 1H NMR (CDCl3, 

ppm): 1.32-1.51 (-CO-CH2-CH2-CH2-CH2-CH2O-), 1.51-1.82 

(-CO-CH2-CH2-CH2-CH2-CH2O-), 2.18-2.42 (-CO-CH2-CH2-CH2-CH2-CH2O-), 2.51 

(-CH2-C≡CH), 2.80 (-CH2-CH2-SS-CH2-CH2-), 2.90 (-CH2-SS-CH2-), 3.50 

(-CH2-N3), 3.59-3.88 (-O-CH2-CH2-O-, -O-CH2-CH2-triozle), 4.21 

(-CH2-COO-CH2-CH2-CH2-CH2-CH2O-), 4.68-4.81 (-CH2-C≡CH, 

-SS-CH2-CH2-COO-CH2-CH2-triozle), 5.18-5.34 (triozle-CH2-), 7.65-7.75 (triozle).  

2.7. Preparation of DOX-loaded micelles 

The anticancer drug doxorubicin (DOX) was used as a model because of its 



 

fluorescence properties. To obtain a high amount of DOX incorporation, triethylamine 

was added to remove hydrochloride from DOX.HCl. DOX-loaded micelles were 

prepared by a dialysis method as follows. Briefly, SC-PCL-PEG (25 mg) and DOX (8 

mg) were dissolved in DMF (4 mL) under stirring 2 h, and then10 mL DI water was 

added dropwise to the mixture and stirred for another 2 h. The organic solvent was 

removed by dialysis against deionized water for 24 h (MWCO=50,000 g/mol), during 

which the water was renewed every 4 h and the whole procedure was performed in a 

dark room. To determine the total drug loading, the DOX-loaded micelle solution was 

lyophilized and then dissolved in DMF. The UV absorbance at 498 nm was measured 

to determine the DOX concentration. The drug loading content DLC (%) and drug 

loading efficiency DLE (%) were calculated based on the following equations: 

DLC (%) = (weight of loaded drug/weight of polymer) × 100% 

DLE (%) = (weight of loaded drug/weight of drug in feed) × 100% 

2.8. In vitro reduction-triggered drug release 

The DOX release from drug-loaded micelles (SC-PCL20-PEG) was investigated at 

37 °C in a phosphate-buffered saline (PBS) buffer solution (pH 7.4). Typically, the 

as-prepared DOX-loaded micelle solution was first suspended in 3 mL PBS or PBS 

with 0.1 mM of DTT and transferred into a dialysis membrane bag (MWCO=3,500 

g/mol). The release experiment was initiated by immersing the end-sealed dialysis bag 

into 50 mL of the corresponding buffer solution in a shaking water bath at 37 °C in 

dark. At predetermined intervals, 3 mL of the release medium was taken out and 

replaced with an equal volume of fresh release medium. UV measurement was carried 

out to determine the content of the released DOX. All the results are expressed as the 

average data with standard deviations. 

2.9. Cellular uptake of drug loaded micelles 

HepG2 cells were seeded in 6-well plates at 1×105 cells per well in 1 mL complete 

Dulbecco's Modified Eagle Medium (DMEM), containing 10% fetal bovine serum 

(FBS) and supplemented with 1% penicillin/streptomycin, and cultured in a humid 

environment with 5% (V/V) CO2 and 95% air at 37 °C for 24 h. After incubation for 

24 h, the cells were washed with PBS and incubated for an additional 3 h with 



 

DOX-loaded micelles (SC-PCL20-PEG) at a final DOX concentration of 10 μg mL-1 

in DMEM. Cells treated with free DOX were used as control. Then, the medium was 

removed, and the cells were washed three times with PBS. The cells were fixed with 

4% formaldehyde for 30 min at room temperature, and the cells were washed three 

times with PBS. Finally, the cells were stained with Hoechst 33258 for 10 min. After 

replacement with PBS, the fluorescence images were obtained by using fluorescence 

microscope (Olympus, Japan). 

2.10. In vitro cytotoxicity 

HepG2 cells were seeded in 96-well plates at 1×104 cells per well in 100 μL of 

complete DMEM and incubated at 37 °C for 24 h. Then, the culture medium was 

removed and replaced with100 μL medium containing various concentrations of 

micelles from 25 to 1000 μg mL−1, free DOX and DOX-loaded micelles 

(SC-PCL20-PEG) with final DOX concentrations of 0.05 to 10 μg mL−1. The untreated 

cells were used as the control. After further incubation of 24 h, the cells were 

incubated with fresh medium and CCK-8 solution at 37 °C for 4 h. And then 

quantified by an Infinite F200 (Tecan Inc., Switzerland) at a wavelength of 490 nm.  

 

3. Results and Discussion 

3.1. Synthesis and characterization of star copolymers 

The synthetic route of star copolymers was shown in Scheme 1. First, 3-chloro-1, 

2-propanediol initiated the ring-opening polymerization (ROP) of ε-caprolactone to 

generate AB2-type PCL under the catalysis of Sn(Oct)2. The primary and secondary 

hydroxyl groups of the initiator have different reactivities that may result to unequal 

chain length of AB2 macromonomers theoretically. However, it has been reported that 

the ring-opening polymerization of ε-caprolactone was companied with intense 

transesterification,[48-49] and this transesterification would equilibrate the difference 

of macromonomer chain length caused by the reactivities of primary and secondary 

hydroxyl groups. Therefore, the difference of chain length of AB2 macromonomers is 

neglected in this work. The AB2-type PCL was further azidized with sodium azide, 

followed by esterification with MPDP, and azide- and alkyne-functionalized AB2-PCL 



 

macromonomer with disulfide bond was synthesized. The clickable AB2-PCL 

macromonomer was named as M-AB2-PCLx where x refers to theoretical feed ratio of 

ε-caprolactone to 3-chloro-1, 2-propanediol. Then, CuSO4·5H2O/ascorbic acid was 

employed to catalyze CuAAC click polymerization of M-AB2-PCLx, and a 

PCL-based HyperMacs (HB-PCLx) was yielded. The HB-PCLx was further grafted 

with azido-mPEG through CuAAC reaction, and star copolymer with PCL-based 

HyperMacs core and PEG shell (SC-PCLx-PEG) was obtained.  
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Scheme 1 The synthetic route of disulfide bonds containing star copolymers with 

HyperMacs core using ring-opening polymerization and CuAAC reaction. 

 

These polymers were characterized by 1H NMR, FTIR, and GPC. The 1HNMR 

spectra of M-AB2-PCL20, HB-PCL20, and SC-PCL20-PEG were shown in Fig. 1 and 

characteristic signals of different protons were assigned with green labels. The signals 

at 3.58 and 4.74 ppm in the 1H NMR spectrum of M-AB2-PCL20 (Fig. 1a) were 

attributed to protons on methylene groups neighbored to azide and alkyne groups, 

respectively. The integration ratio of the two signals was calculated as 1: 2.08, and 

this result was consistent with their theoretical ratio of 1:2, suggesting that AB2-type 

monomers have been synthesized. After click polymerization, the proton signals of 

methylene groups neighbored to alkyne groups decreased largely, and that neighbored 

to azide groups almost disappeared in the 1HNMR spectrum of HB-PCL20 (Fig. 1b), 



 

meanwhile, some new signals appeared at about 7.65-7.75 ppm suggested triazole 

units generated. After further click grafting, the proton signals of methylene groups 

neighbored to alkyne groups almost disappeared, and strong characteristic signals of 

the repeating PEO units appeared at 3.67 ppm in the 1HNMR spectrum of 

SC-PCL20-PEG (Fig. 1c). These changes revealed click polymerization and click 

grafting were well proceeded. Furthermore, in the FTIR spectra (Fig. 2a), 

M-AB2-PCL20 exhibited a strong peak of azide groups at 2106 cm-1 and a weak peak 

of alkyne groups 3275 cm-1, and these peaks decreased greatly after click 

polymerization, and disappeared completely after click grafting. Moreover, GPC 

result also revealed the molecular weight of polymers increased gradually (Fig. 2b 

and Table 1). Note that the molecular weight of HyperMacs decreased with increasing 

molecular weight of AB2 macromonomers. This phenomenon should be related to the 

long chains of AB2 macromonomers that entangled together, wrapped azide and 

alkyne groups, and hindered the encounter between intermolecular azide and alkyne 

groups. In other words, the long chains of AB2 macromonomers reduced the 

reactivities of azide and alkyne groups. In addition, the XPS spectrum (Fig. S1) 

showed that the SC-PCL20-PEG was composed of carbon, oxygen, nitrogen, and 

sulfur elements, indicating the successful introduction of disulfide bonds into the star 

copolymers and complete removal of copper ions. These results demonstrated that 

M-AB2-PCLx, HB-PCLx, and SC-PCLx-PEG have been prepared successfully.  
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Fig. 1. 1H NMR spectra of M-AB2-PCL20 macromonomer (a), HB-PCL20 (b) and 

SC-PCL20-PEG (c). 
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Fig. 2. (a) FT-IR spectra of M-AB2-PCL20 macromonomer (red curve), HB-PCL20 

(blue curve), and SC-PCL20-PEG (purple curve); (b) SEC curves of azide-PEG 

(green), M-AB2-PCL20 macromonomer (red), HB-PCL20 (blue), and SC-PCL20PEG 

(purple).  

 

Table 1 

Molecular weight and molecular weight distribution of monomers, HyperMacs, and 

star copolymers. 
Monomers Mna Mnb PDIb HyperMacs Mnb PDIb Star copolymers Mnb PDIb 

M-AB2-PCL20 2 850 3 100 1.26 HB-PCL20 69 000 1.25 SC-PCL20-PEG 166 000 1.23 



 

M-AB2-PCL30 3 990 4 200 1.21 HB-PCL30 49 300 1.36 SC-PCL30-PEG 85 400 1.32 

M-AB2-PCL40 5 130 6 100 1.18 HB-PCL40 41 900 1.28 SC-PCL40-PEG 80 200 1.26 

aMolecular weight was calculated theoretically based on feed ratio of 

3-chloro-1,2-propanediol and ε-caprolactone. bMolecular weight and polydispersity 

index (PDI) were measured by GPC. 

The crystallization of PCL has certain implications on the properties of PCL-based 

polymeric micelles, and typically higher PCL crystallinity will decrease its DLC [16]. 

Herein, the melting and crystallization behaviors of HyperMacs were investigated by 

DSC, and a linear PCL, L-PCL20 (N3-PCLm-SS-PCLm-N3), was prepared for a 

comparison. The DSC thermograms of L-PCL20 and HB-PCL20 are shown in Fig. 3. 

Both melting temperature (41.3 oC) and crystallinity of HB-PCL20 (38.7%) were 

lower than that of L-PCL20 (50.8 oC and 66.3%, respectively). This phenomenon was 

mainly because that branched structures hindered regular arrangement of PCL 

segments and limited their crystallization, and this result suggested HyperbMacs 

strategy is an effectively way to reduce crystallization of PCL. 
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Fig. 3. DSC thermograms of L-PCL20 (a) and HB-PCL20 (b). 

 

3.2. Self-assembly in aqueous solution 

In this study, all original aggregates of amphiphilic copolymers were prepared in 

aqueous solution via dialysis method. The aggregates of these star copolymers are 

denoted as SC20 (SC-PCL20-PEG), SC30 (SC-PCL30-PEG), and SC40 

(SC-PCL40-PEG), respectively. Meanwhile, micelles of their linear counterparts were 

also prepared and denoted as LC20 (LC-PCL20-PEG), LC30 (LC-PCL30-PEG), and 



 

LC40 (LC-PCL40-PEG), respectively. The size and morphology of polymeric micelles 

have important influences on their in vivo performance, and they were investigated 

first by DLS and TEM. TEM images of polymeric micelles were shown in Fig. 4a-c, 

and it revealed that these star polymers formed stable spherical micelles in aqueous 

solution. Meanwhile, DLS results suggested these polymeric micelles exhibited 

monomodal distribution with hydrodynamic diameters around 60-80 nm (Fig. 4d-f). 

The particle size measured by DLS was larger than that by TEM, due to the swelling 

of the hydrophilic PEG shells in aqueous solution. Furthermore, SLS technique was 

used to analyze the averaged aggregation number of polymeric micelles (Table 2), and 

the averaged aggregation numbers of SC20, SC30, and SC40 were 6.0, 9.2, and 8.4, 

respectively. Compared to that of linear copolymers, the averaged aggregation 

numbers of these star copolymer micelles are much smaller, and this suggests these 

star copolymers are more prone to form stable micelles in aqueous solution. These 

micellar sizes form star copolymers are smaller than 200 nm allows them extravasate 

and accumulate in tumors via enhanced permeability and retention effect [51], and 

these micelles will be suitable for anticancer drug delivery applications. 
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Fig. 4. TEM images of SC20 (a), SC30 (b), and SC40 (c), and DLS plots of SC20 (d), 

SC30 (e), and SC40 (f). 

 

Critical micelle concentration (CMC) is the direct evidence of micellization, and it is 



 

a key parameter to evaluate the stability of polymeric micelles. The CMC values of 

copolymers were determined by the fluorescence probe method using pyrene as a 

hydrophobic probe and carried out according to a reported method [52]. The CMC 

values of SC20, SC30, and SC40 at pH 7.4 were 0.69, 0.56, and 0.21 mg/ L (Fig. S2), 

respectively. In comparison, the CMC values of these star copolymers was almost one 

order of magnitude lower than that of linear counterparts (Table 2). These results 

confirmed that polymeric micelles from these star copolymers had higher stability 

than that of linear counterparts. The main reason probably is that these star 

copolymers have intrinsic core-shell structures, and these hyperbranched core 

structures play a role of discrete crosslink domains that effective reduce the risk of 

micellar disassembly. Furthermore, the drug loading capacity of polymeric micelles is 

also investigated. DOX was used as model of hydrophobic anti-cancer drug to be 

encapsulated into the polymeric micelles, and the results of DLC and DLE of 

polymeric micelles were listed in the Table 2. Obviously, polymeric micelles of star 

polymers exhibited much higher DLC and DLE than that of their linear counterparts. 

As analyzed above, these star polymers have HyperMacs core that has lower degree 

of crystallinity of PCL. Combining with their large cavities, these unique HyperMacs 

core contributes to load more hydrophobic drug moles in aqueous solution. 

Table 2 

Characterization data of star copolymers (SC-PCL-PEG) and properties of 

corresponding self-assembled micelles. 

Samples Diameter 
(nm)a PDIa Mw,agg 

(g/mol)b Naggc CMC 
(mg/L) 

DLC 
(%) 

DLE 
(%) 

SC20 80 0.125 9.93×105 6.0 0.69 10.6 42.3 
SC30 71 0.243 7.85×105 9.2 0.56 8.3 33.2 
SC40 64 0.194 6.70×105 8.4 0.21 11.1 45.6 
LC20 123 0.343 1.53×106 209.0 4.47 1.3 5.2 
LC30 119 0.286 1.46×106 173.9 6.31 1.6 6.4 
LC40 141 0.198 1.80×106 187.8 7.59 2.4 9.6 

aDiameter and PDI of polymeric micelles were measured by DLS; bThe 

weight-average molecular weight of polymeric aggregates in aqueous solution; 
cAverage aggregation number (Nagg) was calculated by the ratio between Mw, agg and 



 

weight-average molecular weight of copolymers. 

 

3.3. Reduction-responsivity and in vitro drug release of polymeric micelles 

The HyperMacs core of star copolymers contained disulfide bonds, and this endowed 

star copolymers and their polymeric micelles reduction-responsivity. In this study, the 

reduction-responsive of polymeric micelles was evaluated with the reductant of DTT 

and the size change of micelles was monitored by DLS. The micelles were dispersed 

in PBS (pH 7.4) with 10 mM DTT, and a control group with 0 mM DTT. The size 

change of micelles in 48 h was illustrated in Fig. 5a. The size of micelles increased 

gradually over time in PBS with 10 mM DTT, while that in the control group remain 

stable in the 48 h. This indicated the micelles dissociated under the reductive 

environment. The dissociation of micelles was attributed the cleavage of disulfide 

groups that suffered from thiol/disulfide exchange with DTT [53].  

The results confirmed the as-prepared micelles from disulfide bonds-containing star 

copolymers possessed good stability under physiological condition and 

reduction-cleavable property under reductive environment. Furthermore, in vitro 

DOX release behaviors of micelles were investigated in PBS with different DTT 

concentrations. The in vitro release profiles of DOX from micelles were shown in Fig. 

5b. Obviously, the micelles exhibited a much faster release behavior of DOX in PBS 

with 10 m DTT than that in PBS without DTT. In detail, about 53% of the loaded 

DOX was released in PBS with DTT in the first 6 h, but only 13.4% was released in 

PBS without DTT. Over the whole 48 h test, more than 83% of the loaded DOX was 

released in PBS with DTT. In contrast, less than 25% was released in PBS without 

DTT. The in vitro drug release profiles clearly revealed that reductive environment 

accelerated the release of DOX from micelles of disulfide bond-containing star 

copolymers. These results confirm that these micelles had reduction-responsive drug 

release behavior, and this allows them suitable for triggered release of anticancer 

drug. 
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Fig. 5. (a) The size changes of SC20 micelles in PBS (pH 7.4), (b) In vitro DOX 

release from DOX-loaded micelles in PBS (pH 7.4). 

 

3.4. Cellular uptake of drug-loaded micelles 

The cellular uptake of DOX and DOX-loaded micelles was studied by fluorescence 

microscope using HepG2 cells. The red fluorescence from DOX and blue 

fluorescence from cell nucleus stained with Hoechst were used to monitor the 

intracellular localization of DOX within the cells [54]. Merged images displayed the 

overlay of red fluorescence of DOX and blue fluorescence of Hoechst staining of 

nuclei. In Fig. 6a, the cells exposed to free DOX for 1 h showed an obvious 

fluorescence signal in the nucleus and minimal fluorescence signal in cytoplasm 

(evidenced by red dots of DOX signal). In comparison with the blue fluorescence of 

the stained nucleus, HepG2 cells incubated with DOX-loaded micelles for 1 h 

displayed red fluorescence (Fig. 6b), indicating the efficient internalization of 

DOX-loaded micelles, GSH-triggered dissociation of micelles, and the release of 

DOX inside cells (as illustrated in Fig. 6e), and the longer incubation time (3 h) 

resulted in stronger DOX fluorescence in the nuclei of HepG2 cells in Fig. 6d. In 

contrast, the intracellular trafficking of DOX was significantly different for the cells 

incubated with free DOX. As shown in Fig. 6c, a relatively weak DOX fluorescence 

was observed in HepG2 cells after being cultured with free DOX for 3 h. The 

phenomenon was attributed to the fact that DOX-loaded micelles could be more 

efficiently internalized in HepG2 cells. 



 

 
Fig. 6. Inverted fluorescence micrographs of HepG2 cells (scale bar 100 μm): cells 

were incubated with free DOX for 1 h (a), cells were incubated with DOX-loaded 

micelles for 1 h (b), cells were incubated with free DOX for 3 h (c), and cells were 

incubated with DOX-loaded micelles for 3 h (d), and schematic illustration of in vitro 

release of DOX-loaded SC micelles. 

 

3.5. In vitro cytotoxicity of polymeric micelles and antitumor activity of DOX-loaded 

micelles 

The in vitro cytotoxicity of polymeric micelles and the viability of HeLa cell treated 

with free DOX and DOX-loaded micelles (SC20) were evaluated in vitro using the 

Cell Counting Kit (CCK-8) assay. As shown in Fig. 7, with micelles concentrations up 

to 1000 μg/mL, cell viabilities were still higher than 90% after 24 h of incubation. 

Therefore, it can be considered that the micelles have no toxicity on HepG2 cells, and 

this indicates the micelles can be used as a good biocompatible carrier for drug 

delivery. After 24 h incubation, the DOX-loaded micelles showed comparable 

inhibition of HepG2 cells in comparison with free DOX (Fig. 7b), and this suggested 

DOX maintained its biological activity after incorporation into copolymer micelles. 

Moreover, as DOX concentration increasing, the DOX-loaded micelles showed 

increased cytotoxicity against HepG2 cells, more than 50% and 80% of HepG2 cells 



 

died at an equivalent DOX concentration of 1 and 5μg/mL, respectively. Given 

instability of free DOX in blood circulation and the reduction-responsivity of the 

prepared micelles, it is concluded that the DOX-loaded micelles is a better choice for 

intracellular drug delivery systems for cancer chemotherapy. 
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Fig. 7. (a) Cell viability of HepG2 cells following 24 h incubation with various 

concentrations of SC20 micelles; (b) Cell viability of HepG2 cells following 24 h 

incubation with free DOX and DOX-loaded SC20 micelles as a function of DOX 

dosages. The data were reported as the mean ± SD (n = 3). 

 

4. Conclusions 

Amphiphilic star copolymers with HyperMacs core containing disulfide bonds were 

prepared through two-step CuAAC reaction and their micelles were used as 

reduction-responsive carriers for triggered release of anti-cancer drug. The 

HyperMacs core was prepared from disulfide bond-containing AB2 macromonomers 

of PCL, followed by grafting with PEG. The HyperMacs was found to reduce degree 

of crystallinity due to numerous branched structures. Combining its larger cavities and 

reduction-responsivity, the HyperMacs was ideal inner core of polymeric micelles for 

triggered release of anti-cancer drug. The as prepared star copolymers can 

self-assemble into spherical micelles in aqueous media, possessing good stability in 

neutral environment and reduction-cleavable property in reductive environment. 

Interestingly, these star copolymers exhibited excellent stability with a 10 times lower 

CMC value and a 5 times higher drug loading content as compared to their linear 

counterparts. In addition, the in vitro DOX release behavior showed slow drug release 



 

in PBS and rapid release in a reductive environment. The cellular uptake and 

cytotoxicity tests showed that DOX-loaded micelles possessed a reduction-triggered 

release manner, good biocompatibility, and comparable anticancer activity. It is 

envisioned that the reduction-responsive micelles from as prepared star copolymers 

can be used for triggered release of anticancer drug to improve chemotherapy of 

cancer. 
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