
Citation: Theron, Jean-Pierre, Dala, Laurent, Wilke, Daniel N. and Barrier, Patrick (2018)
Practical Implementation of a Trajectory Planning Algorithm for an Autonomous UAV. In:
ICAS 2018 - 31st Congress of the International Council of the Aeronautical Sciences, 9th -
14th September 2018, Belo Horizonte, Brazil.

URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/35576/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/196576394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

PRACTICAL IMPLEMENTATION OF A TRAJECTORY
PLANNING ALGORITHM FOR AN AUTONOMOUS UAV

Jean-Pierre Theron∗ , Laurent Dala∗∗ , Daniel N. Wilke∗ , Patrick Barrier∗∗∗
∗University of Pretoria , ∗∗Northumbria University Newcastle , ∗∗∗UAS consultant

Keywords: Inverse dynamics based planning; Near real-time planning; Numerical optimisation;
Obstacle avoidance; Fixed-wing autonomous unmanned aerial vehicle

Abstract

A near real-time optimal trajectory planning
framework for UAVs is presented and tested in a
series of low altitude obstacle avoidance planning
scenarios. The framework uses the Inverse Dy-
namics Trajectory Optimisation approach with
a quaternion point-mass aircraft dynamic model
and a hybrid Differential Evolution and Sequen-
tial Quadratic Programming based Interior-Point
optimisation strategy.

It was found that the new framework was able
to successfully find a feasible (if not optimal) tra-
jectory and to do so as efficiently as possible.
However, it was also concluded that at this stage
the framework is not yet fit to be used on a UAV,
as the framework tends to take longer to plan a
trajectory than it takes the UAV to fly it.

Ultimately it was concluded that with some
further work, the Hybrid framework could be a
viable near real-time trajectory planner for UAVs.

Nomenclature Units

ΞΞΞ Design vector
η Propulsion efficiency
γ Flight path angle
φ Roll angle
ψ Heading angle
ζ Parameter tolerance
AAA Coefficient matrix
LLL Lower bound vector for Ξ

PPP Bezier curve construction vector
rrr Inertial postion vector m

UUU Upper bound vector for Ξ

XXX Boundary condition vector
C Constraint function
CD Drag coefficient
CL Lift coefficient
CD1 ,CD2 ,CD3 Drag polar coefficients
CR DE crossover probability
F Cost function kg
G DE differential weight
H Population size
J Total number of constraints
K Total number of obstacles
M Load factor g
m Mass kg
N Total number of trajectory discritization

points
nFval Number of objective function evaluations
q1,q2,q3,q4 Quaternion elements
R Sphere radius m
S Aircraft reference surface m2

SFC Specific fuel consumption kg.W−1.s−1

T Thrust N
t Time s
x,y,z Inertial coordinates m
Subscripts
0 Initial value
µ Average
σ Standard deviation
calc Calculation time
CV Coefficient of variation
f Final value
h Population member counter
j Constraint counter
k Obstacle counter

1

JEAN-PIERRE THERON , LAURENT DALA , PATRICK BARRIER , NICO WILKE

n Trajectory discritization point counter
O First order optimality
obs Obstacle
p Penalty function
Superscripts
˙ Time derivative

1 Introduction

1.1 Motivation

A key component for an autonomous Unmanned
Aerial Vehicle (UAV), is the ability for the UAV
to develop a complete flight plan to achieve its
given mission objectives. Part of this process is
planning the trajectory that the UAV must fly in
order to reach its objective. This can be done via
a variety of methods, as presented in survey pa-
pers [1], and planning can be done both optimally
and non-optimally. Additionally, given that the
UAV has to do the planning, it implies that the
planning process has to be conducted on-board
the UAV and in near real-time. Finally, the UAV
will also have to avoid obstacles during its flight.
Especially during low altitude missions.

This leads to the interesting problem of im-
plementing an optimal trajectory planning algo-
rithm that is fast to plan trajectories and robust
enough to work in any planning scenario.

1.2 Inverse Dynamics trajectory planning

In this work, the Inverse Dynamics Trajectory
Optimisation (IDTO) approach is followed. The
basis of the method was developed by Taranenko
[2] (as presented by Yakimenko [3]) and relies on
using differentially flat aircraft dynamic models
to determine aircraft control histories from spec-
ified aircraft trajectories. Trajectory optimisation
is then performed by adapting the specified air-
craft trajectories until some optimality criterion
is satisfied.

The attractiveness of the IDTO approach lies
in the fact that one has direct control over the air-
craft trajectory. That is one derives the controls
histories using algebraic equations which in com-
parison to differential equations, that requires in-
tegration to compute the trajectories, is computa-

tionally more efficient to work with. Therefore,
aircraft trajectories can be optimised much more
rapidly with IDTO, which makes it an ideal can-
didate approach for real-time application on au-
tonomous UAVs.

From Taranenko’s work a variety of adapta-
tions of the IDTO method have been developed
and tested in simulation. Some examples include
Yakimenko’s own work [3] and Lei et al. [4].

This project, however, builds primarily on
the work done by Drury [5, 6]. In his the-
sis, Drury, developed a complete IDTO frame-
work that featured a quaternion inverse aircraft
dynamic model. This was done in response to
previous works, such as those mentioned earlier
[3, 4], which all used an Euler-angle based air-
craft model. It is well known that using Euler-
angles for aircraft orientation representation is
problematic given the gimbal lock phenomenon.
Additionally, the presence of these discontinu-
ities can also severely affect the numerical be-
haviour of the objective function and constraints
of the trajectory optimisation problem. This, in
turn, will affect the performance of the optimi-
sation process. By using Drury’s Quaternion
model, these pitfalls could be avoided. Thus en-
suring good performance for the trajectory plan-
ning process.

Drury, however, only did the foundational
work in the development of his framework. Aside
from the validation tests that he performed, Drury
did not implement and test his framework in a
more practical scenario, like for example an ob-
stacle avoidance scenario. The purpose of this
study is three-fold:

1. To extend Drury’s framework to include
obstacle avoidance planning.

2. To improve computational efficiency of the
framework.

3. To evaluate the suitability of the framework
for on-board route planning on UAVs.

1.3 Flight mission profile

The focus of this work was placed on doing plan-
ning during the cruise section of low altitude mis-

2

PRACTICAL IMPLEMENTATION OF A TRAJECTORY PLANNING ALGORITHM FOR AN
AUTONOMOUS UAV

sions.
The framework was developed to work as a

short time-scale planner of a receding horizon
trajectory planner. Therefore, only a section of
the entire mission flight path is planned within
a planning cycle. Planning cycles are then re-
peated at a set frequency for the entire duration
of the flight. Thus, only a limited amount of time
is available for planning within a cycle.

2 Framework description

2.1 Inverse aircraft dynamic model

Drury’s paper [5] gives a complete description
of the inverse quaternion aircraft model. But it
should be noted that for this work a different out-
put vector was used. Where as Drury works to-
wards an output control vector consisting of the
acceleration and aircraft body angular rates, this
work required an output control vector consisting
of the engine thrust and orientation quaternion.

2.2 Space curve parametric functions

For the time t parametrised functions of x,y,z that
define the 3-dimensional space curve of the air-
craft’s flight, it was opted to use 7th order Bezier
curves. Therefore, 8 construction parameters Pi
have to be specified per dimension, which re-
sults in a total of 24 construction parameters for
a space curve in three dimensional space. In ad-
dition, specifying the final time t f results in a
25 dimensional optimisation problem. This can,
however, be reduced by enforcing initial and final
conditions.

For each dimension the Bezier curves and
their time derivatives (up to the third derivative)
can be evaluated at the initial and final conditions,
after which all the Pi can be separated out. The
linear system in Equation (1) can be then con-
structed. The x dimension is used as an example
but similar systems can be constructed for y and

z.

AAAPPP = XXX

PPP =
[
P0 P1 P2 P3 P4 P5 P6 P7

]T

XXX =
[
x0 ẋ0 ẍ0

...x 0 x f ẋ f ẍ f
...x f

]T

(1)

x0 x f ẋ0 ẋ f ẍ0 ẍ f are known quantities. The
initial conditions are known through measure-
ment, while the end conditions are defined for
the planning process. However,

...x 0 and
...x f are

not. These two unknown parameters will act
as design variables for the numerical optimisa-
tion. By specifying these two values, in conjunc-
tion with a specified t f and the boundary condi-
tions, a unique parametric curve and its deriva-
tives are defined. Therefore, the final design
vector for the numerical optimisation consists of

ΞΞΞ =
[...x 0

...x f
...y 0

...y f
...z 0

...z f t f

]T
.

The curves were discretized in the t domain
by using N equidistant nodes. The consequence
is that δt between the nodes will differ between it-
erations as t f changes over different iterations of
the numerical optimisation. Thus, the accuracy
of the trajectories and derived time histories is not
consistent between iterations. Additionally, the
value of N will also affect the performance of the
algorithm. Hence, there exists a classical trade
off scenario. Using a smaller value of N will re-
duce the calculation time of the planning process,
since there are fewer nodes to process per itera-
tion. However, this increased performance comes
at the cost of losing accuracy in the results.

2.3 Optimisation problem

The aim is to find the optimal trajectory that min-
imizes the fuel consumption under mission and
aircraft constraints which can be expressed by
[7]:

min
ΞΞΞ

F =
∫ t f

0
log
(

T (t)V (t)SFC
4.5η

)
dt (2)

subject to

ΞΞΞ ∈ [LLL;UUU]

C j = max
(
c j,n
)

j ≤ 0; n ∈ [1, ...,N] ; j ∈ [1, ...,J]

3

JEAN-PIERRE THERON , LAURENT DALA , PATRICK BARRIER , NICO WILKE

Where c is a constraint evaluated at every
single node of the trajectory.

The first set of constraints that were enforced
were 10 aircraft performance related constraints.
They are:

−1000 m≤ z≤ 0 m (3)
0 N≤ T ≤ 400 N (4)

Vstall ≤V ≤ 70 m.s−1 (5)
−1 g≤M ≤ 2.5 g (6)

−0.8601≤ 2(q1q3−q2q4)≤ 0.8601 (7)

Constraint 7 is derived from the constraint
−90° ≤ γ ≤ 90°, which in itself is derived from
the need to enforce the dynamics model’s as-
sumption that the magnitude of the lift vector
cannot be 0.

Obstacle avoidence were also enforced
through the use of constraints. For the obsta-
cles it was opted to only use spheres, since they
could easily be characterised by the coordinates
of the centre point and their radius. Therefore,
the obstacle avoidence cosntraints were charac-
terised as:

−
∥∥rrr− rrrobsk

∥∥
2 ≤ Robsk +1; k ∈ [1, ...,K] (8)

2.4 Optimisation strategy

Having a limited amount of time available for a
planning, emphasizes the need to carefully con-
sider the optimisation strategy. To that end the
optimisation strategy was build around a 3 tier
solution hierarchy upon which the final result of
the planning process would land. The higher up
the trajectory is, the more ideal the trajectory is.

1. Tier 1 is optimal trajectories for the given
scenarios.

2. Tier 2 is feasible trajectories for the given
scenarios.

3. Tier 3 is infeasible trajectories that min-
imise the constraint violations.

Given the nature of how numerical optimisation
algorithms operate, the optimisation process will

naturally progress to produce final results from
Tier 3 to 2 to 1. However, the strategy can be
designed to maximise the probability of ending
with a solution from tier 2 or 1.

With regards to Tier 1’s optimal solution, no
specification was made that the solution should
be the global optimum. Given the high non-linear
nature of the problem, focusing on finding the
global optimum would take a lot of time and thus
it is not practical for near real-time planning.

Additionally, during a planning cycle it is
possible for the trajectory planner to find a so-
lution so quickly that there is still some calcu-
lation time available to search for a better local
optimum. This work, however, did not include
this additional improvement scenario in its scope.
The focus was placed only on finding the first
feasible local minimum, after which the planning
cycle would stop.

The nature of the starting initial guess plays a
significant role in the performance of the trajec-
tory planner and thus it affects the design of the
strategy. Two scenarios were considered. The
first is using the result of the previous planning
cycle as the initial guess of the next cycle. This
is the preferred type of initial guess, since it has
already been optimised. Thus, the optimisation
process starts off from a known optimal trajec-
tory and only has to correct for the differences in
the planning environment between the two plan-
ning cycles.

The second scenario is using a random ini-
tial guess. This would typically be used in sce-
narios where the result from a previous planning
cycle cannot be used, for example the very first
planning cycle. Random initial guesses would
also be used in cases where attempts are made
to find better local minima. This is more a dif-
ficult position to start from, since the location of
the feasible domain, let alone an optimal solu-
tion, is not known. Additionally, the optimisation
process has no information about the numerical
landscape of the objective and constraint func-
tions between the initial guess and the optimal
point. Thus, the planning process must take into
account the possibility of the optimisation pro-
cess getting stuck in the infeasible domain due

4

PRACTICAL IMPLEMENTATION OF A TRAJECTORY PLANNING ALGORITHM FOR AN
AUTONOMOUS UAV

to discontinuities or local minima/saddle points
etc. Even if the numerical landscape was charac-
terised, it would only be helpful for one planning
cycle, since, during flight, the numerical land-
scape is constantly changing between planning
cycles.

The near real-time requirement, solution hi-
erarchy and the nature of the initial guess, pushes
the focus on optimisation strategies that are fast
to optimise the problem but also robust against
getting stuck in the infeasible domain of the de-
sign space. Lai et al. [4] used a 2-stage approach
where they used the first stage to find the feasible
domain and to provide the second stage with an
improved initial guess. Stage 2 was then used to
quickly close in on the optimal value. The same
hybrid approach was used in this work.

For stage 1, numerical robustness, especially
for the random initial guess case, was the main
design requirement. The Differential Evolution
(DE) algorithm was ultimately selected for this
stage. Since DE uses an entire population of
agents to perform its optimisation, it is very ro-
bust against the numerical landscape of the prob-
lem. If one or more of its agents get stuck at
some local minima or numerical feature, DE can
still rely on the remaining agents to complete the
optimisation process. Additionally, DE also en-
hances the chance that a global solution is found.
DE, however, has slow convergence properties
which translates into long calculation times.

For the second stage, a Sequential Quadratic
Programming (SQP) based Interior-Point (IP)
method was used. As a gradient based solver,
IP can very quickly close in on an optimal value
by using the gradient information of the objective
and constraint functions. However, it is suscep-
tible to getting stuck on local minima/numerical
features. So while it is fast, its robustness is less
than that of the DE.

During the simulation experiments of Sec-
tion 3, prebuilt numerical optimisation packages
were used for the two optimisers. Buehren’s DE
package for MATLAB [8] was used for DE stage,
while MATLAB’s own IP package [9] (via the
fmincon function) was used for the IP stage.

The DE stage was set up to only search for

the feasible domain by optimising the following
penalty function:

Fp =
J

∑
j=1

[
max

(
0,max

(
C j,n

)
j

)]2
; n ∈ [1, ...,N]

(9)
Hence no attempt is made by the DE to optimise
the problem of Equation (2).

For the stopping criteria, 2 metrics were used
in the DE stage. The first was:

min(Fph) = 0 ; h ∈ [1, ...,H] (10)

The second criterion was a simple allocation
of 30 seconds of calculation time, as measured
by MATLAB’s tic-toc function. Irrespective of
which stopping criterion was reached, the design
related to the best member from the DE’s final
population was used as input to the second stage.
Thus, in the case where the DE ran out of cal-
culation time, infeasible designs were sent to the
second stage.

The DE algorithm was configured to operate
with a DE/rand/1/exp mutation strategy, G = 1.5
differential weight, CR = 0.3 crossover proba-
bility and a population of 10× length(ΞΞΞ) = 70
members. For the first generation 69 members
are randomly generated using a uniformly dis-
tributed random process. The 70th member is the
supplied initial guess. For the rest of the config-
urable parameters Buehren’s default values were
used. It should be noted that this optimiser’s set-
tings are not optimised for implementation.

The complete optimisation problem of Prob-
lem 2 to 8, was optimised by the IP stage. Three
metrics were used as stopping criteria for the IP
stage:

1. First order optimality tolerance of ζO ≤
10−3.

2. Design step tolerance of ζΞΞΞ ≤ 10−3

3. Maximum objective function evaluation
count of 1000 evaluations.

MATLAB’s default values were used for the IP’s
settings, except for the constraint violation toler-
ance which was set to ζC ≤ 10−3. Thus, the IP

5

JEAN-PIERRE THERON , LAURENT DALA , PATRICK BARRIER , NICO WILKE

stage used finite differences for gradient estima-
tion and BFGS for Hessian approximation. This
set up is also not optimised for implementation.

For any given planning scenario, there are
multiple locally optimal solutions. Since, the
strategy gives no special attention towards find-
ing the globally optimal solution, the planning
process will deliver different trajectories between
repeat runs of the same planning scenario. With
Stopping Criterion 10, the DE stage is stopped as
soon as the first feasible design is found and the
IP stage would tend to close in on a locally op-
timal solution in the surrounding section of the
feasible design space. Therefore, if the feasi-
ble design space is segmented into pockets, there
is no possibility for optimums in other pockets,
to be considered during the IP stage. The ran-
dom population generation and mutation strategy
of the DE stage enhances the likelihood that be-
tween different planning runs, different pockets
are found resulting in a variety of final trajecto-
ries.

3 Experimental tests

The aircraft data and model parameters used
during the experiments are tabulated in Equa-
tion (11). These values are derived from the
RoadRunner aircraft developed by the Paramount
Group [10]. Also, a constant air density was as-
sumed for the experiments.

m = 45 kg ; CD1 = 0.1754

S = 2.7 m2 ; CD2 =−0.0168

Vstall = 11.547 m.s−1 ; CD3 = 0.0258 (11)

ρ = 1.225 kg.m−3 ; N = 400
η = 0.7

SFC = 1.1111×10−7 kg.W−1.s−1

3.1 Simple planning tests

As a demonstration of the capabilities of the algo-
rithm a series of 4 experiments were conducted.
The first 3 experiments were simple planning sce-
narios. In each case the UAV was given a set
of boundary conditions and the algorithm had to

Parameter Exp 1 Exp 2 Exp 3
a 000 fff 000 fff 000 fff

V [m.s−1] 27.6026
γ [°] 35.2656
ψ [°] 45
φ [°] 0
x [m] 1 100 1 200 1 200
y [m] 1 100 1 200 1 200
z [m] -1 -100 -1 -200 -1 -200

xobs [m] 50.5

[
50.5

150.5

]  50.5
150.5
110


yobs [m] 50.5

[
50.5

150.5

]  50.5
150.5

90


zobs [m] -50.5

[
−50.5
−150.5

]  −50.5
−150.5
−100


Robs [m] 10

[
10
10

] 10
10
10


Table 1 Boundary conditions used during the ex-
periments
plan the optimal trajectory between the start and
end points. Random initial guesses were used for
these 3 experiments. The distance between the
end and start point was chosen to be small enough
so that the end point would arguably be within the
planning range of a single planning cycle. There-
fore, the entire trajectory of the mission will be
planned in one planning cycle.

Obstacles were placed on the direct line con-
necting the end and start points, ensuring the al-
gorithm would have to plan for obstacle avoid-
ance. Experiment 1 (Exp 1) was given only one
sphere to dodge, while Experiment 2 (Exp 2) and
3 (Exp 3) were constructed to be environmentally
more complex by having more spheres to dodge.

Table 1 Lists all the boundary conditions and
obstacle data used during Exp 1-3.

From these boundary conditions LLL and UUU
for each experiment were defined. This pro-
cess was done on a trail-and-error approach and
the final bounds were selected based on whether
the extreme bound trajectories were contained in
an approximately ±2000 m in x,y and z box.
For all three the experiments the bounds LLL =[
−10 −10 −10 −10 −10 −10 1

]T
and UUU =[

10 10 10 10 10 10 60
]T

were found to be

6

PRACTICAL IMPLEMENTATION OF A TRAJECTORY PLANNING ALGORITHM FOR AN
AUTONOMOUS UAV

sufficient to define the bound constrained LLLUUU do-
main.

Given the random element inherent to the Hy-
brid trajectory planner, each experiment repeated
the planning process a 100 times. The 100 ran-
dom starting points were sampled using Latin hy-
per cube sampling over the entire LLLUUU domain.
This ensures that the entire bounded design do-
main is included in the experiments.

To provide additional levels of comparison
and validation of the optimisation strategy’s de-
sign choices, all three experiments were also con-
ducted with trajectory planners that only used ei-
ther the DE or the IP optimisation solvers.

The pure DE solver was tasked with optimis-
ing Equation (2), with prospective designs only
being checked for feasibility. With this objective
function, 3 new stopping criteria were defined:

1.
∣∣Fhbest −Fhworst

∣∣≤×10−3

2.
∥∥ΞΞΞhbest −ΞΞΞhworst

∥∥
2 ≤×10−3

3. Maximum generation count of 100 genera-
tions.

The same mutation strategy, differential weight,
crossover probability and population size as that
of the Hybrid DE was used.

The pure IP solver was set up to use the same
settings as the Hybrid IP solver. However, the
pure IP solver was given an increased maximum
function evaluation count of 3000 evaluations.

A planning attempt was considered failed if
the final solution was still within the infeasible
domain. This could only really occur in cases
where the framework ran out of function evalua-
tions/generations.

Finally, for every experimental run the suc-
cess rate, the calculation time tcalc (as measured
by MATLAB’s tic-toc function) and the num-
ber of objective function evaluations nFval were
recorded. Additionally, the t f values from the
final designs were also recorded. With these t f
values the suitability of the configuration will
be evaluated by counting the amount of runs
where the calculation time was less than the final
planned flight time. For the system to be suitable

it should generally plan trajectories faster than it
would take to fly them.

All the experiments were conducted on a
Lenovo ThinkPad X250 with an Intel Core I7-
5600U 2.6 GHz 4 core CPU, 8 GB PC3-12800
DDR3L RAM and Samsung SSD 850 EVO 500
GB hard drive Windows 8.1 Pro Version 6.3
Build 9600 was used for the operating system.

3.1.1 Results

Table 2 lists a summary of the final results. Ex-
cept for the success rate, only the successful runs
were used in calculating these results. Looking
at the success rate and the averages of tcalcµ and
nFvalµ over all three cases, one can clearly see
the expected result of the DE configuration gen-
erally being slowest but 100% successful, while
the IP configuration was the fastest but with the
lowest success rate. With the Hybrid falling in
the middle of two, one can conclude that the de-
sign works as intended.

What is interesting to note is the dramatic im-
provement in performance for the Hybrid config-
uration between Exp 1 and Exp 2-3. This result is
counter-intuitive when considering that the plan-
ning environment of Exp 1 is a lot simpler than
that of Exp 2-3. The scale of the trajectory that
has to be planned, could be a possible explana-
tion. Table 1 shows that the distance between
the start and end points for Exp 1 is a lot smaller
than the distance for Exp 2-3. It is possible that
this smaller scale makes the associated numeri-
cal landscape of Exp 1 more difficult to traverse
during the optimisation process. Thus, increasing
the calculation time.

As for the consistency in the performance of
the various configurations, the coefficient of vari-
ance CV = σ/µ ratios of tcalcCV and nFvalCV in
Table 2, show that in Exp 1 the Hybrid method
had the most consistent performance since it had
the lowest CV value. The DE had the most erratic
performance with the highest CV value. How-
ever, in Exp 2 and Exp 3 the roles are reversed
and the Hybrid and IP frameworks have about the
same consistency. The scaling problem discussed
above, could also be a possible explanation for

7

JEAN-PIERRE THERON , LAURENT DALA , PATRICK BARRIER , NICO WILKE

Exp 1 Exp 2 Exp 3
Parameter Hybrid DE IP Hybrid DE IP Hybrid DE IP

Success rate [%] 92 100 57 92 100 74 94 100 68
tcalcµ [s] 32.549 103.8115 3.5966 23.2699 206.1538 4.2409 22.2099 213.2413 4.0184
tcalcCV [s] 0.1611 1.0732 0.4294 0.5464 0.2655 0.5975 0.5917 0.1814 0.5369
nFvalµ 3534 2868 267 2473 7221 316 2388 7420 295

nFvalCV 0.1557 0.9132 0.4357 0.5549 0.1543 0.6077 0.5974 0.0158 0.5486
t fµ [s] 12.4687 16.7343 22.4361 14.1904 13.6186 23.5792 14.8695 13.6007 21.7234

Suitability [%] 2.1739 7 100 29.3478 0 100 31.9149 0 100

Table 2 Exp 1-3 results

this phenomenon.
Finally, the suitability values show that the

Hybrid framework is again the middle choice be-
tween the three configurations. Unsurprisingly
the DE configuration did the worst of the three,
while the IP configuration had a 100 % rate for all
three experiments. Again there is a massive im-
provement phenomena in the Hybrid’s suitability
between Exp 1 and Exp 2-3. This is a direct con-
sequence of the dramatic improvement in calcu-
lation time discussed previously. Despite this, the
results of the experiments does cast doubt on the
viability of the Hybrid configuration.

However, as mentioned in Section 2.4, the
solver settings of the two optimisers have not
been optimised to this type of application. Addi-
tionally, by using dedicated compiled program-
ming code instead of pre-built packages for the
optimisers, one would be able to gain some ad-
ditional performance. Hence, despite the under-
whelming suitability values, the Hybrid configu-
ration still has the potential to a viable method for
robust and fast optimal trajectory planning and
thus warrants further investigation.

Figure 1 is a collection of 3D plots of 10 ran-
domly chosen trajectories from the Hybrid pool
of successful trajectories. There are 2 distinct
groups of trajectories First there is a group of
trajectories that can be considered "reasonable".
Trajectories that closely follow the direct line be-
tween the start and end point, and only curve to
avoid the obstacle. An example is Ξ6. In contrast
to this are "unreasonable" trajectories. Trajecto-
ries that either momentarily completely veer off
course for no apparent reason, or perform ma-
noeuvres that are completely unnecessary. Like

Fig. 1 Exp 3 sample set of trajectories.

for example Ξ4. While these trajectories are un-
reasonable, they are valid since they meet all the
constraints. Thus, they are included in the range
of possible solutions

There are few options as to how to eliminate
these trajectories. The first option would be to
use constraints, like for example reducing the op-
timisation bounds LLL and UUU , or adding additional
constraints. However, care should be taken so
that the planning of reasonable trajectories are
not inhibited.

The alternative approach would be to add
an optimisation metric that is minimised along-
side the fuel cost. Like for example minimis-
ing the distance of each point on the trajectory
to its corresponding point on the direct line be-
tween the start and end point. Following this
approach, however, transforms the optimisation
problem into a multi-objective problem and then
the competing interests of this metric and fuel

8

PRACTICAL IMPLEMENTATION OF A TRAJECTORY PLANNING ALGORITHM FOR AN
AUTONOMOUS UAV

consumption have to be balanced.

3.2 Replanning test

Experiment 4 (Exp 4) is almost exactly the same
as the previous 3 experiments. The focus of this
test, however, was to emulate the replanning sce-
nario where one would use the result of a previ-
ous planning cycle as the initial guess. This was
emulated by repeating Exp 3 but with the suc-
cessful Hybrid configuration results of Exp 2 as
input. In this case the third obstacle of Exp 3 is a
new object that has to be accounted for.

For this experiment 3 types of results can
be expected. The first is cases where the origi-
nal Exp 2 trajectory would collide with the new
obstacle and thus the replanning process would
replan to avoid the new obstacle. The second
type of result is cases where the Exp 2 trajectory
would not have collided with the new obstacle,
but the replanning process further improved the
trajectory. The third group of results are cases
where the Exp 2 trajectory would not have col-
lided but the replanning process did not result in
a new design.

Due to these possible solutions, multiple op-
timisation configurations were again tested to see
if one could still further improve one’s perfor-
mance. In this case since one already has a base-
line trajectory that is either feasible (Group 2 and
3) or infeasible (in the obstacle avoidance sense),
one might find that one can get by without hav-
ing to do a DE stage type search. Therefore, for
this experiment only the Hybrid and pure IP con-
figurations were tested. In both cases the same
solver settings used during Exp 1-3 were used in
this experiment as well.

3.2.1 Results

The results of Exp 4 is listed in Table 3.
Looking at the "Number of trajectories" row

in Table 3, it should be noted that since the results
of Exp 2 were used as input, no control was ex-
ercised over the distribution of the experimental
results between the three types of results. There-
fore, only very preliminary interpretations can be
drawn. Particularly for the results of small num-

bered groups.
Focussing first on calculation speed via the

average values of tcalc and nFval, it is clear that
the pure IP configuration performed the best of
the two configurations. As expected, its average
calculation times and function evaluation counts
are less than that of the Hybrid method. However,
in contrast to Exp 1-3, the IP configuration has
a 100 % success rate for all three groups. This
suggests that for the replanning scenario, the IP
configuration is the superior option.

The coefficient of variance ratios of tcalc and
nFval show that the Hybrid configuration still
has a more consistent performance. Of the two
configurations it has the lowest values over all
three groups.

Finally, the suitability values are, in almost all
the cases and for both configurations, a 100 %.
Again the only exception was the Hybrid Crash
group and this is most probably due to the low
number of trajectories in this group. Ultimately,
based on this result and the results of tcalc and
nFval, it can be concluded that in the replanning
scenario, the pure IP configuration is the better
option.

To further illustrate the point that the replan-
ning scenario results in better performance than
the random initial guess, a comparison simply
needs to be drawn against the results of the Hy-
brid configuration from Exp 3. This was done
in Table 3. Both the Hybrid and IP methods had
better success rates, tcalcµ and nFvalµ values and
suitability. The relative differences between the
averages of tcalcµ and nFvalµ and those of Exp 3
show improvements of at least 43.0585 %.

4 Conclusion

Drury’s framework was successfully adapted and
implemented in the form of the Hybrid frame-
work. Testing showed that in principle, the new
system worked in an obstacle avoidance setting.
The tests also showed that the system struck a
good balance between successfully finding a fea-
sible (if not optimal) trajectory and doing it in the
least amount of time.

However, in its current form, testing also

9

JEAN-PIERRE THERON , LAURENT DALA , PATRICK BARRIER , NICO WILKE

Crash Improved Same Exp 3
Parameter Hybrid IP Hybrid IP Hybrid IP Hybrid

Number of trajectories 2 2 87 40 3 50 100
Success rate [%] 100 100 100 100 100 100 94

tcalcµ [s] 12.6467 1.098 1.9351 0.9069 1.5136 0.1241 22.2099
tcalcCV 0.9532 1.0971 0.4153 1.0645 0.0087 0.2382 0.5917

Relative difference w.r.t. to tcalcµ of Exp 3 - Hybrid [%] -43.0585 -95.0562 -91.2872 -95.9165 -93.1852 -99.4411 0
nFvalµ 1218 81 175 65 148 8 2388

nFvalCV 0.9159 1.1331 0.3251 1.0732 0.0039 0.2044 0.5974
Relative difference w.r.t. to nFvalµ of Exp 3 - Hybrid [%] -49.0159 -96.629 -92.6534 -97.2603 -93.7884 -99.6491 0

t fµ [s] 13.407 14.839 14.0395 14.8659 12.96 13.4595 14.8695
Suitability [%] 50 100 100 100 100 100 31.9149

Table 3 Exp 4 results

showed that the Hybrid configuration is not yet
suitable for use on UAVs. However, by opti-
mising the settings of the optimisation solvers
and improving the programming code, the perfor-
mance figures of the system could be improved.

Ultimately it is concluded that the Hybrid
framework still has the potential to develop into a
viable near real-time trajectory planner for UAVs.

References

[1] Goerzen C, Kong Z and MettlerB. A survey of mo-
tion planning algorithms from the perspective of au-
tonomous UAV guidance. Journal of Intelligent and
Robotic Systems, Vol. 57, No. 1, pp 65-100, 2009.

[2] Taranenko V T. Experience of employment the
Ritz’s, Poincare’s, and Lyapunov’s methods for solv-
ing the problems of flight dynamics. Air Force Engi-
neering Academy Prof. N. Zhukovskiy Press, 1968.

[3] Yakimenko O A. Direct method for rapid prototyp-
ing of near-optimal aircraft trajectories. Journal of
Guidance, Control, and Dynamics, Vol. 23, No. 5,
pp 865-875, 2000.

[4] Lai C K, Lone M, Thomas P, Whidborne J F and
Cooke A. On-board trajectory generation for colli-
sion avoidance in unmanned aerial vehicles. 2011
IEEE Aerospace Conference, Big Sky MT USA, pp
1-14, 2011

[5] Drury R G. Trajectory generation for autonomous
unmanned aircraft using inverse dynamics. Phd the-
sis, Cranefield University. 2010.

[6] Drury R G and Whidborne J F. Quaternion-based in-
verse dynamics model for expressing aerobatic air-
craft trajectories. Journal of Guidance, Control, and
Dynamics, Vol. 32, No. 4, pp 1388-1391, 2009

[7] Phillips W F. Mechanics of Flight. 2nd edition, Wi-

ley, 2004
[8] Buehren M. Differential evolution, Ver.

1.16. MathWorks - File Exchange, https:
//www.mathworks.com/matlabcentral/
fileexchange/18593-differential-
evolution (visited on 2018-02-14)

[9] MathWorks. Constrained nonlinear Optimization
Algorithms. https://www.mathworks.
com/help/optim/ug/constrained-
nonlinear-optimization-algorithms.
html#brnpd5f (visited on 2018-06-05)

[10] Paramount Group. Roadrunner. http://www.
paramountgroup.com/capabilities/
air/roadrunner/ (visited on 2018-06-17)

Contact Author Email Address

jeanpierre.jtheron@gmail.com

Copyright Statement

The authors confirm that they, and/or their company
or organization, hold copyright on all of the origi-
nal material included in this paper. The authors also
confirm that they have obtained permission, from the
copyright holder of any third party material included
in this paper, to publish it as part of their paper. The
authors confirm that they give permission, or have ob-
tained permission from the copyright holder of this
paper, for the publication and distribution of this pa-
per as part of the ICAS proceedings or as individual
off-prints from the proceedings.

10

https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
http://www.paramountgroup.com/capabilities/air/roadrunner/
http://www.paramountgroup.com/capabilities/air/roadrunner/
http://www.paramountgroup.com/capabilities/air/roadrunner/

	Introduction
	Motivation
	Inverse Dynamics trajectory planning
	Flight mission profile

	Framework description
	Inverse aircraft dynamic model
	Space curve parametric functions
	Optimisation problem
	Optimisation strategy

	Experimental tests
	Simple planning tests
	Results

	Replanning test
	Results

	Conclusion

