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Abstract
We consider changes in ownership of commercial shipping vessels from an event 
history perspective. Each change in ownership can be influenced by the properties 
of the vessel itself, its age and history to date, the characteristics of both the seller 
and the buyer, and time-varying market conditions. Similar factors can affect the 
process of deciding when to scrap the vessel as no longer being economically viable. 
We consider a multi-state approach in which states are defined by the owning com-
panies, a sale marks a transition, and scrapping of the vessel corresponds to moving 
to an absorbing state. We propose a dual frailty model that attempts to capture unex-
plained heterogeneity in the data, with one frailty term for the seller and one for the 
buyer. We describe a Monte Carlo Markov chain estimation procedure and verify its 
accuracy through simulations. We investigate the consequences of mistakenly ignor-
ing frailty in these circumstances. We compare results with and without the inclu-
sion of frailty.
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1  Introduction

We consider an event history approach to the analysis of ownership duration data, 
with focus on maritime transport. A change of ownership of an item—in our case 
an ocean-going vessel—can be considered as an event in time with the interesting 
feature that each event has a dual interpretation: as a sale by one company and a pur-
chase by another. We will explore and apply methods for the analysis of such data in 
this paper.

Examples of event history analyses of ownership duration to date include studies 
of the housing market (Archer et  al. 2010); corporate ownership and equity dura-
tion (Bøhren et al. 2005); foreign owners and plant survival for companies (Kron-
borg and Thomsen 2009) and, in the transport sector, automotive vehicle owner-
ship (Iwata and Matsumoto 2016). The use of event history analysis in the maritime 
related literature, however, is very limited, though some notable examples include 
work on survival of Norwegian shipping companies (Tenold and Aarbu 2011) and 
an investigation into the effectiveness of ship inspections (Bijwaard and Knapp 
2009). It is somewhat surprising that research on length and pattern of ownership 
in shipping is so scarce (Stott 2014), given that the majority of world trade is trans-
ported by sea (UNCTAD 2017). We, therefore, suggest that an examination of how 
event history analysis could be applied in this field is long overdue and that any such 
analysis should accommodate the dual interpretation of an event, as explained in the 
first paragraph.

A first approach to such an event history analysis of vessel ownership is usually to 
examine covariates in an attempt to explain the variation in the time taken until the 
specified event occurs. Such times are defined as the length of time from some start 
event (when the vessel is bought) until the time to some stop event (when the vessel 
is sold or scrapped) but with ownership times being censored for those vessels that 
are owned by a company at the end of the observation period.

One drawback is that not all possible reasons for the variation in the intensity 
function may have been included in the model as there are many factors that could 
affect the length of ownership of a vessel (Stopford 2009). In Fig. 1, for example, we 
show a transition diagram for sales between the first and second owners of the ves-
sels in our data set. The diagram will be explained and discussed further in the next 
section but it is clear that the relationship between buyers and sellers is complex and 
there is potential for significant heterogeneity in behaviour.

We can model such heterogeneity with random effects, an approach that was first 
introduced by Beard (1959) with the alternative term frailty coined by Vaupel et al. 
(1979) 20 years later. Much work on frailty in a variety of settings soon followed, 
particularly important examples being Oakes (1982) and Hougaard (1986). This 
growing body of work was enhanced when Aalen demonstrated clearly how hetero-
geneity could be modelled (Aalen 1987), while warning that ignoring frailty could 
have a significant impact on estimating effects. In a series of further papers Aalen 
went on to provide the theoretical underpinning for modelling the population hazard 
for the univariate frailty model, making the inclusion of frailty more accessible and 
routine (Aalen 1988, 1992, 1994; Aalen and Tretli 1999; Aalen et al. 2014).
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It is recommended that an attempt should always be made to include frailty if 
it is possible that heterogeneity is present. We therefore look to include sources of 
possible unexplained variation in our current shipping scenario in a novel approach 
that contrasts the frailty values of buyers and sellers. More explicitly, one possible 
source of heterogeneity involves the companies who own the vessels as they may 
all be susceptible to sales at different rates. In addition, companies looking to buy 
a vessel may also influence the rate of sales as each purchase also needs a willing 
buyer and all companies are willing to varying extents. It, therefore, seems sensible 
to combine in the intensity the willingness of companies to sell with the willingness 
of other companies to buy. This can be partially accommodated by including covari-
ates for the vessel, the company that owns the vessel and the company that wants to 
buy the vessel. We cannot, however, be confident that we have captured all of the 
effects that may influence the sale of a vessel so we look to include separate frailty 
terms for both the selling company and the buying company, an approach we call 
dual frailty and explain as follows.

Let us first define ‘sentiment’ S as a measure of whether a company is looking to 
sell a vessel or buy a vessel. We shall assume that the intensity function for a sale is 
in the familiar Cox proportional intensity form with our sentiment value influencing 
the intensity from within the exponential term (a full expression for the intensity 
will be given in Sect. 3). We assume that positive values of S are assigned to compa-
nies willing to sell (thereby increasing the intensity function for a sale) and negative 
values assigned to companies willing to buy (thereby decreasing the intensity for a 
sale). For mathematical expedience, we choose to amend the form of the intensity 
with the frailty term Z = exp(S) so that it appears outside of the exponential and we 
can assign it the familiar gamma distribution to aid our analysis.

After describing the data and problem in Sect. 2, we will develop our model and 
estimation procedure in Sect. 3. We shall then explore with simulations in Sect. 4, 
report our results in Sect. 5 and discuss possible extensions in Sect. 6.

2 � Transactions data

The ownership structure in shipping is fragmented, with various different defini-
tions, the two most important of which are registered and beneficial owner respec-
tively (Veenstra and Bergantino 2000). The registered owner of a vessel is the legal 
title appearing on the vessel’s registration but this often changes in shipping for vari-
ous reasons, including tax and liability. The beneficial owner, also referred to as ulti-
mate owner (Kang and Kim 2012), is the entity that gains “the ultimate financial 
benefit from a vessel’s operation” (Fox 2005).

We consider the beneficial ownership records of 1999 commercial vessels built 
between 1987 and 2007 and followed until 2015. The data were collected by Ral-
itsa Mihaylova as part of her Ph.D. programme, and were obtained via individual 
inspection of records made available by two leading shipping data providers: IHS 
Maritime and Trade’s online tool Sea-web and Clarksons Research Services Ltd 
(CRSL). Mihaylova (2018) provides full information.
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Table 1 gives an overview of ownership and sales or scrap events for each vessel 
category. The entry point for a vessel is the date of the delivery to the first owner, 
which is the date the vessel enters into operation (Stott 2014). Vessels were followed 
until 2015 unless they were scrapped earlier. The shortest recorded lifetime was for a 
vessel that was scrapped at 13.5 years, and the longest was for a vessel that was still 
in use after 28.75 years. Working lifetimes were typically in the region of 25 years: 
Kaplan–Meier estimates are 80% still in use at 20 years but only 6% in use at 28.75 
years. The maximum number of owners recorded in the data was six, with 47% of 
vessels not being sold at all during the follow-up period.

Mihaylova (2018) analysed ownership durations for these data, using standard 
survival analysis techniques rather than the dual frailty and multistate approach con-
sidered here, and without allowance for buyer effects. Our selection of covariates is 
based on the findings there.

We used four vessel-level covariates: type of vessel, deadweight (scaled to a mul-
tiple of 10,000 tonnes), speed (knots) and number of previous owners, the latter 
being time-varying. The vessel types are dry-bulk vessels, tankers and containers, 
but as dry-bulk vessels and tankers both represent the bulk market (dry and liquid 
respectively) in our analyses we simply use a binary indicator for container or other-
wise. The deadweight reflects the cargo-carrying capacity of a vessel.

The number of companies involved in the commercial history of the vessels was 
1125. Not all were active at the same time. We identified 413 companies as being 
active at the beginning of the follow-up period. The number rose steadily to a sta-
ble level around 860 from 2005 to 2008, and then, following the financial crash, 
declined to 696 at the end of follow-up. We classified each company by type and 
nationality. We took four company types (private, public, financial and state-owned) 
and six nationality categories (China, Germany, Greece, Japan, other traditional 
maritime nations and emerging maritime nations). Nationality is associated with 
beneficial ownership as it reflects the country where the primary economic contri-
bution ends up, which may or not be where the company is registered or where the 
owner is based. The data on nationality was retrieved from Sea-web. The categories 
“traditional maritime nations” (TMN) and “emerging maritime nations” (EMN) are 
based on the maritime traditions framework developed by Alderton and Winchester 
(2002). As company-level covariates we defined appropriate indicator variables for 
the classification, with baseline taken to be a privately-owned company associated 
with a traditional maritime nation.

Table 1   Transactions data summary

Type Number Total owners

Vessels Censored Scrapped Sales 1 2 3 4 5 6

Dry bulk 797 624 173 883 289 258 156 68 16 10
Tanker 585 468 117 450 284 191 77 27 6 0
Container 617 481 136 337 372 171 59 12 3 0
All 1999 1573 426 1670 936 620 292 107 25 10
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There are many potential exogenous variables, as discussed in Mihaylova 
(2018). For simplicity we use just one, the logged Clarksea index, which is a good 
proxy for market conditions. It is a weighted average of the daily earnings of the 
main vessel types, where the weighting is based on the number of vessels in each 
fleet segment provided by CRSL. We chose the Clarksea index because freight 
earnings are believed to trigger activities within the shipping market, including 
the ordering and sale and purchase of vessels (Abouarghoub et al. 2012). In the 
analyses reported in Sect. 5 we used the Clarksea index at the calendar time of 
potential sales, and also lagged by six months. In addition we allowed interaction 
between the index and vessel type.

Most of the covariates are categorical: their frequencies are given in Table 2. 
There are four quantitative covariates: deadweight, speed, number of previ-
ous owners and the Clarksea index. Deadweight ranged from 1.2 × 104 tonnes to 
44 × 104 tonnes, with mean 8 × 104 tonnes. Speeds ranged from 12 to 26.5 knots 
with mean 16.7 knots. Vessels had up to five previous owners in the time period. 
The logged Clarksea index varied between 8.970 and 10.789: its value over time 
is given later, in Fig. 4.

Finally for this section, to illustrate some of the complexity of the transac-
tions data, Fig. 1 represents the transitions from first to second owner based on 
nationality. The number of vessels participating in the transition from first to sec-
ond owner is represented by the outermost circle. The outgoing flows show the 
number of vessels sold (second circle) and therefore the colour of the flow cor-
responds to the colour of the owner nationality. The incoming flows (third circle) 
represent the number of vessels that were bought. From the diagram, it is clear 
that Japanese and German owners are more involved in purchasing new vessels 
than acquiring second-hand tonnage, whereas Greek owners appear to be more 
active in the second-hand market.

Table 2   Overview of categorical 
covariates

Italics indicate baseline levels

Covariate Levels Counts

Vessel type Container 617
Bulker/tanker 1382

Company type Private 895
Financial 26
Public 159
State 45

Company nationality China 117
EMN 184
TMN 380
Germany 101
Greece 245
Japan 98
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3 � Model and estimation

3.1 � Preliminaries

The data consists of information on K vessels that are delivered in a calendar time 
interval (�1, �2) , with follow-up to time � . For each vessel we have the delivery 
date, the dates, if any, at which the vessel is sold from one company to another, 
and the date of scrapping if appropriate. The final time � censors the observed 
history for vessels not yet scrapped.

There are N companies which are potential buyers or sellers of vessels for at 
least part of the observation interval. Events of interest are the sale of a vessel 
from one company to another or the scrapping of the vessel by the current owner. 
In each case the event intensity is expected to depend upon both calendar time t 
and vessel age a. Let tv(a) be the calendar time at which vessel v reaches age a.

First we consider covariates. These fall into three groups:

Fig. 1   First changes in ownership, classified by state-group of selling and buying companies. The start 
and end width of each line is proportional to the number of vessels. The outermost circle represents the 
number of transactions involving companies in the state-group. The next circle represents sales and the 
third represents purchases. The plot was produced using methodology developed by Sander et al. (2014). 
TMN is traditional maritime nations and EMN is emerging maritime nations
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–	 xV
v
(t) is a p1-vector of covariates associated with vessel v at calendar time t. Some 

of these may be static, such as deadweight for instance, whilst others may be 
dynamic summaries of the vessel’s history, such as number of previous owners 
or duration of current ownership.

–	 xC
c
(t) is a p2-vector of covariates associated with company c. In principle these 

can vary with calendar time although in our application they are time-fixed char-
acteristics of the company.

–	 xE(t) is a p3-vector of exogenous covariates reflecting market conditions or time 
trends perhaps.

Next we have two at-risk indicators. Since companies may not be active throughout 
the full observation window, the first indicator YC

c
(t) is taken to be one if company 

c is known to be active at calendar time t and is zero otherwise. The second at-risk 
indicator YV

v
(a) is defined to be one if vessel v is still in use and hence liable to be 

sold at age a, and is taken to be zero if the vessel has been scrapped or censored.
Further, we associate with each company c an unobserved random variable Sc(t) 

that captures the sentiment of the company, with positive values implying a willing-
ness to capitalise on assets and sell vessel holdings, and negative values implying an 
unwillingness to capitalise and a preference for investment in new vessels. It will be 
convenient to denote Zc(t) = exp{Sc(t)} . To be consistent with biostatistical termi-
nology we will refer to Zc(t) as “frailty” and reserve “sentiment” for Sc(t) as conveni-
ent. For simplicity, we will assume for our first analyses that the random effects are 
time-constant, Zc = Zc(t) and Sc = Sc(t) . We will come back to this issue later.

Finally, let t denote the observed history of events and covariate evolution up to 
calendar time t and let Z be the N-vector of frailties.

3.2 � Dual frailty model

At age a a generic vessel v may be sold or scrapped. If sold, then any of the com-
panies that are active at the relevant calendar time may be the purchaser. Hence we 
have a multistate problem and our approach will be based on modelling the transi-
tion intensities (e.g., Andersen and Keiding 2002).

We assume the frailty effects Zc are independent gamma random variables with 
mean one and variance � . Conditioning on the combined vector of frailties Z and 
prior history, let �v(a, b ∣ tv(a)

, Z) be the transition intensity for a sale of vessel v to 
buying company b at vessel age a, which occurs at calendar time t = tv(a) . We will 
use s = s(a, v) to indicate the selling company, ie the current owner. We assume a 
semi-parametric multiplicative model

(1)

�v(a, b ∣ tv(a)
, Z) = exp{Ss(t) − Sb(t)}

× �0(a) exp
{

�Vx
V
v
(a) + �Sx

C
s
(t) + �Bx

C
b
(t) + �Ex

E(t)
}

=ZsZ
−1
b
�0(a) exp

{

�Vx
V
v
(a) + �Sx

C
s
(t) + �Bx

C
b
(t) + �Ex

E(t)
}

=ZsZ
−1
b
�0(a)Rv(a, b;�),
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say, where � = (�V , �S, �B, �E) , Rv(a, b;�) is the relative risk determined by covari-
ates and �0(a) is the baseline intensity. In Eq.  (1) the selling company is uniquely 
determined by the filtration as the current owner of the vessel, but the buyer b can 
be any of the other companies that are currently active at the relevant calendar time. 
The overall sales intensity for the vessel is thus

and the cumulative sales intensity of vessel v to age u is

In (1), �V measures how vessel-level characteristics affect the intensity of sales, �S 
measures how the owning company characteristics influence the likelihood of sell-
ing, and �B is similarly used to measure how the characteristics of potential buyers 
affect the intensity of sales. The final regression coefficient �E is used in an attempt 
to capture exogenous market conditions or time trends. There are two frailty terms in 
(1), one for the selling company and one for the buying company. A sale from com-
pany s to company b is more likely, given covariates, when Zs is high and Zb is low, 
and less likely if the circumstances are reversed. We are not aware of any previous 
work on dual frailty effects of this type.

We make no assumptions about �0(a) . Thus we do not specify the form of the 
vessel age effect, but within (1) we have fully specified the form of the calendar 
time effect by allowing time trends in xE(t) . Our reason is that this form allows us to 
include economic indicators in xE(t) , whose effects would not be identifiable if we 
had a nonparametric baseline in calendar time t rather than age a.

Vessels can be scrapped as well as sold. Our model for the corresponding cause-
specific hazard is

say, where � = (�V , �S, �E) and Qv(a;�) is the non-frailty relative risk. There is no 
buying company effect for scrap, which is of course an absorbing state. We use

to denote the cumulative scrap hazard of vessel v up to age u.

3.3 � Estimation

Given Z, partial likelihood methods are available for estimation of � and � . How 
best to deal with Z is not so obvious however. A variety of methods can be used 
for standard frailty models for survival data, including, inter alia, EM (e.g., Barker 

(2)�v(a ∣ tv(a)
, Z) =

∑

b≠s(a,v)
YC
b
{tv(a)}�v(a, b ∣ tv(a)

, Z),

(3)Av(u ∣ u, Z) = �
u

0

YV
v
(a)�v(a ∣ tv(a)

, Z)da.

(4)
�v(a ∣ tv(a)

, Z) =Zs�0(a) exp
{

�Vx
V
v
(a) + �Sx

C
s
(t) + �Ex

E(t)
}

=Zs�0(a)Qv(a;�),

(5)�v(u ∣ u, Z) = �
u

0

YV
v
(a)�v(a ∣ tv(a)

, Z)da
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and Henderson 2005), penalised likelihood (e.g., Androukalis et al. 2012), h-like-
lihood (e.g., Ha et al. 2001), or marginal approaches after integrating out the frail-
ties. None of these lend themselves to our dual frailty problem.

Instead, we will take a Bayesian approach, estimating Z, � and � using Markov 
chain Monte Carlo and using versions of the Breslow estimator for baselines. We 
suggest standard Metropolis–Hastings for the regression parameters � and � and 
the log of the frailty variance � , with random walk proposals. For Z, a Gibbs sam-
pling approach is more efficient and is feasible given our construction.

To see this, consider the contribution of vessel v to the full-data likelihood. In 
short and loose notation, this is

where � is an indicator of the vessel being scrapped, �v and �v are the sales intensity 
and scrap hazard, and Av and �v are the cumulative intensities. From (1)–(5) each 
intensity �v is proportional to ZsZ−1

b
 for some Zs and Zb and each � is a multiple of 

the frailty Zc of the final owning company. The cumulative intensity Av , given at 
(3), is the integral of the sales intensity (2). The integral can be broken into disjoint 
segments, one per ownership period, within each of which the integrand is a sum of 
terms involving products like ZsZ−1

b
 for the selling and potential buying companies. 

The cumulative scrap intensity �v can similarly be broken into disjoint segments, in 
each of which the integrand is proportional to the frailty of the current owner.

Taken over all vessels, the above means that the full-data likelihood considered 
as a function of a frailty Zc for a generic company c, is proportional to

for some M and non-negative D1 and D2 . The value of M is simply the difference 
between the total number of vessels sold or scrapped by company c and the total 
number vessels purchased by that company. The value of D1 depends upon the 
cumulative sales and scrap intensities for vessels owned by the company, while D2 
is the cumulative intensity for purchases. Expressions for D1 and D2 are unwieldy to 
write down and hence omitted, but they are straightforward to program. Note that D1 
and D2 both involve frailty terms for other companies.

When the likelihood is combined with an independent gamma � (1∕�, 1∕�) 
prior for Zc , we see that the posterior distribution of Zc , given the data, the param-
eters, and the frailty values for all other companies, is proportional to

This is a generalised inverse gamma distribution (Hougaard 2000, p. 508). The R 
package GIGrvg includes a routine rgig to simulate from this distribution and 
hence Gibbs sampling can be implemented.

This leaves the baseline sales intensity and scrap hazard, �0(a) and �0(a) 
respectively. Given our use of MCMC, we take the common approach of profiling 
out the baseline intensity and hazard functions at each iteration. For fixed frailties 

Lv =

(

∏

sales

�v

)

e−Av��
v
e−�v ,

ZM
c
exp{−D1Zc − D2Z

−1
c
},

ZM+1∕�−1
c

exp{−(D1 + 1∕�)Zc − D2Z
−1
c
}.



	 R. Henderson et al.

1 3

Z and regression parameters � = (�V , �S, �B, �E) and � = (�V , �S, �E) , versions of 
the Breslow estimators of the cumulative baseline sales intensity

and cumulative baseline scrap hazard

are available. Letting dNsale(a) and dNscrap(a) be the total numbers of sales and scraps 
of vessels at age a respectively, the estimators are

and

respectively.
Finally, we note that an alternative hybrid approach is to use partial likelihood for 

estimation of the regression parameters � and � at each iteration of an MCMC for � 
and Z. The final variance estimate needs to combine the within-chain variation aris-
ing through variability in Z with the information-based estimate conditional upon Z.

4 � Simulations

To investigate performance of the estimation procedure we undertook a small simu-
lation study. For simplicity we did not consider vessel scrapping, we assumed there 
were no exogenous covariates xE(t) and we assumed that all companies were active 
throughout the study period.

We took N = 500 companies and K = 1000 vessels. We assumed two time-
constant vessel-level covariates XV . The first was binary and the second uniform 
on ± 20 , loosely representing vessel category and centred deadweight respectively. 
We also assumed two time-constant company level covariates XC , in this case both 
binary. All covariates were independent of the others.

We set the vessel regression parameters to be �V = (0.3, − 0.01), the selling com-
pany parameters to be �S = (0.4, − 0.2) and the buying company parameters to be 
�B = (− 0.2, 0.1). We simulated in discrete time, with baseline intensity 1 × 10−5 per 
month for each vessel and potential buyer combination, and with follow-up censored 
at 500 months for all vessels. We considered two choices of frailty variance: � = 0.2 
and � = 0.4. These parameter choices typically led to around 1800–2000 transac-
tions in each simulated data set.

A0(u) = ∫
u

0

�0(a)da

�0(u) = ∫
u

0

�0(a)da

(6)Â0(u;𝛽, Z) =
�

a≤u
dNsale(a)

∑

v

∑

b≠s(a,v) YV
v
(a)YC

b
(tv(a))Zs(a,v)Z

−1
b
Rv(a, b;𝛽)

(7)𝛬̂0(u;𝜃, Z) =
�

a≤u
dNscrap(a)

∑

v Y
V
v
(a)Zs(a,v)Qv(a;𝜃)
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We used Metropolis–Hastings for the regression parameters � and for log(� ), with 
random walk proposals and zero-mean Gaussian increments. After some trial and 
error, we selected the standard deviation for the increments to be 0.07 for all regres-
sion parameters other than the continuous vessel-level covariate (which is on a dif-
ferent scale), for which we used standard deviation 0.002. For log(� ) the increment 
standard deviation was 0.02. Initial values for the regression parameters were taken 
from a no-frailty analysis, all frailties Zc were initially set at one, and the frailty 
variance � was initialised at the low value of 0.01. For each value of � we took 1000 
replications, each with 3000 iterations for burn-in and a further 10,000 iterations for 
estimation.

Table 3 summarises our results, for the full MCMC and also for standard propor-
tional intensity analyses in which frailty is mistakenly ignored. In that case there is 
clear attenuation of the regression parameters for vessels and selling companies, �V 
and �S respectively, as might be expected when frailty is ignored (Henderson and 
Oman 1999). Interestingly, there is no evidence of attenuation for the buying-com-
pany parameters �B . We explore this issue further in supplementary material.

When frailty is properly accounted for our procedure seems to work well, as 
it should. All means are within simulation noise of the true parameter values, the 

Table 3   Simulation results

 Estimates are from 1000 simulations, each involving 500 companies and 1000 vessels
Columns 4–6 are from (partial) likelihood analyses, ignoring frailty
Columns 7–9 are from MCMC analyses, properly allowing for frailty
‘Est SE’ is based on the average within-run variance, and ‘Emp SE’ is based on the observed variance of 
mean values across replications 

True Ignored frailty MCMC

Mean Est SE Emp SE Mean Est SE Emp SE

� = 0.2

�
V

0.300 0.261 0.049 0.050 0.299 0.053 0.052
− 0.010 − 0.009 0.002 0.002 −0.010 0.002 0.002

�
S

0.300 0.273 0.048 0.070 0.299 0.068 0.066
0.400 0.357 0.050 0.071 0.401 0.071 0.069

�
B

− 0.200 − 0.201 0.049 0.070 − 0.202 0.070 0.067
0.100 0.104 0.049 0.072 0.104 0.071 0.068

� 0.200 0.199 0.020 0.019
� = 0.4

�
V

0.300 0.218 0.050 0.050 0.298 0.057 0.052
− 0.010 − 0.007 0.002 0.002 − 0.010 0.002 0.002

�
S

0.300 0.253 0.049 0.123 0.304 0.087 0.082
0.400 0.301 0.051 0.119 0.398 0.089 0.081

�
B

− 0.200 − 0.208 0.050 0.141 − 0.205 0.092 0.088
0.100 0.109 0.050 0.146 0.104 0.093 0.092

� 0.400 0.398 0.032 0.032
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estimated standard errors closely match the empirical values, and the number of iter-
ations is adequate.

5 � Application to vessel trading

Maximised log partial likelihoods under a no-frailty model are in Table 4 and coef-
ficient estimates with and without frailty are in Tables  5,  6 and 7. For the model 
including frailty, we ran the Monte Carlo chain for 23,000 iterations and discarded 
the first 3000 as burn-in. Just as for the simulations we initialised all frailties at the 
value one and took the initial value of � to be 0.01. The trace plot in Fig. 2 shows 
how the estimate of � quickly increased during the burn-in and then converged to 
a distribution centred just below 0.2. Trace plots for other parameters all also indi-
cated convergence after burn-in. There are no maximised log likelihoods for the 
frailty model, given our use of MCMC estimation.

Conclusions concerning the regression coefficients are essentially the same 
whether or not frailty is included in the model. From Table 4 there are highly signifi-
cant effects on sales intensity for covariates associated with the vessel and the buy-
ing and selling companies, and also relating to market conditions. The same is true 
for the intensity of vessel scrapping, except of course there is no buying company in 
that case.

The company-level effects are perhaps of most interest. State-owned compa-
nies are highly reluctant to sell, while Japanese and German companies are highly 
unlikely to buy vessels that are not new. Companies based in emerging maritime 
nations tend to either buy or sell relatively rarely. Greek companies, which are usu-
ally small and privately owned, are lively purchasers of second-hand vessels. The 
comments on Fig. 1 in Sect. 2 are consistent with these results. Interestingly, finan-
cial companies are likely to both sell and buy, which is in accord with suggestions 
that such companies are in a position to benefit from the volatile nature of the ship-
ping industry due to availability of capital (Thanopoulou and Strandenes 2017).

Turning briefly to other effects, vessels are more likely to be traded when the 
Clarksea index is high, and more likely to be scrapped when it is low. The effect 
on containers is lagged compared with other vessel types. This may be because 
of the nature of the container sector where competition is linked to availability 

Table 4   Maximised log partial 
likelihood for no-frailty model

Sale data Scrap data

Null − 21597.01 − 2331.58
No vessel effect �

V
= �

V
 = 0 − 21287.56 − 2256.48

No seller effect �
S
 = 0 − 21417.00 − 2250.97

No exogenous effect �
E
= �

E
 = 0 − 21298.04 − 2287.95

No buyer effect �
B
= 0 − 21353.07 NA

Full − 21262.85 − 2235.24
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of capacity whose purpose is to provide efficient service to network strings. The 
container liner market is defined by high levels of cooperation and concentration 
(Sys 2009), which suggests that any capacity-related investment decisions need to 
be in alignment with the interests of strategic partners (Rau and Pinler 2016). If 
a liner operator believes that the cost of supply shortage is greater than the cost 
of excess capacity, they are likely to be optimistic when purchasing additional 

Table 5   Vessel and company covariate effects for sales

No frailty Frailty

Est SE Wald Est SE Wald

�
V

  Deadweight − 0.010 0.004 − 2.48 − 0.006 0.004 − 1.44
  Speed − 0.053 0.019 − 2.75 − 0.048 0.020 − 2.35
  Container 3.974 1.316 3.02 3.884 1.324 2.93
  Previous owners − 0.195 0.039 − 4.98 − 0.122 0.045 − 2.69

�
S

  Financial 0.437 0.129 3.39 0.263 0.165 1.59
  Public − 0.100 0.063 − 1.59 − 0.042 0.083 − 0.50
  State − 1.454 0.175 − 8.30 − 1.544 0.211 − 7.31
  China − 0.420 0.098 − 4.28 − 0.550 0.117 − 4.68
  EMN − 0.339 0.087 − 3.88 − 0.548 0.103 − 5.30
  Germany − 0.097 0.097 − 1.00 − 0.119 0.120 − 1.00
  Greece − 0.349 0.077 − 4.53 − 0.305 0.091 − 3.34
  Japan 0.239 0.074 3.22 0.297 0.108 2.75

�
E

  Index 0.553 0.092 6.02 0.566 0.092 6.14
  Lagged index − 0.219 0.094 − 2.33 − 0.197 0.094 − 2.09
  Index*Container 0.201 0.205 0.98 0.224 0.206 1.09
  Lagged index*Container − 0.639 0.212 − 3.01 − 0.649 0.212 − 3.05

Table 6   Company covariate 
effects for purchases

No frailty Frailty

Est SE Wald Est SE Wald

�
B

  Financial 0.375 0.148 2.53 0.450 0.175 2.57
  Public 0.098 0.073 1.33 0.114 0.092 1.24
  State − 0.048 0.133 − 0.36 − 0.114 0.172 − 0.66
  China − 0.098 0.087 − 1.12 − 0.171 0.107 − 1.59
  EMN − 0.275 0.077 − 3.55 − 0.270 0.095 − 2.86
  Germany − 0.655 0.111 − 5.92 − 0.641 0.130 − 4.94
  Greece 0.256 0.063 4.09 0.206 0.078 2.63
  Japan − 1.124 0.137 − 8.22 − 1.086 0.159 − 6.82
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Table 7   Vessel and company covariate effects for scrap

No frailty Frailty

Est SE Wald Est SE Wald

�
V

  Deadweight 0.038 0.008 4.90 0.041 0.009 4.83
  Speed 0.111 0.032 3.44 0.131 0.034 3.82
  Container 7.977 4.642 1.72 8.607 4.675 1.84
  Previous owners − 0.138 0.054 − 2.56 − 0.063 0.060 − 1.06

�
S

  Financial 0.481 0.417 1.15 0.276 0.438 0.63
  Public − 0.136 0.136 − 1.00 − 0.306 0.154 − 1.98
  State 0.216 0.201 1.08 0.003 0.240 0.01
  China 0.277 0.166 1.67 0.362 0.188 1.93
  EMN − 0.126 0.169 − 0.75 − 0.283 0.183 − 1.55
  Germany 0.533 0.192 2.78 0.486 0.229 2.12
  Greece 0.239 0.152 1.57 0.265 0.167 1.59
  Japan 0.861 0.204 4.21 1.045 0.242 4.31

�
E

  Index − 0.726 0.279 − 2.60 − 0.697 0.279 − 2.49
  Lagged index − 0.992 0.265 − 3.74 − 1.007 0.266 − 3.79
  Index*Container − 0.413 0.500 − 0.82 − 0.441 0.502 − 0.88
  Lagged index*Container − 0.452 0.483 − 0.94 − 0.482 0.484 − 0.99
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capacity (Fusillo 2003). Fusillo (2003) also provides evidence that: (1) capacity 
additions in the liner sector are large in comparison to demand and (2) that par-
tially this is due to a strategic entry-deterring behaviour adopted by large opera-
tors where they use capacity expansion as means to limit competition. Therefore, 
the lagged effect might be a product of the resilience of liner operators due to 
cooperation and concentration of the market, the willingness to withstand market 
fluctuations rather than risk losing market share, the technical difficulties associ-
ated with rescheduling services and the time it takes to discuss capacity-related 
decisions with all strategic partners.

The mean of the frailty variance was 𝜉 = 0.231 with MCMC standard devia-
tion 0.027 after burn in. The distribution for individual company estimates Ẑc was 
concentrated about one, as expected. Almost 60% of estimates were in the range 
(0.8, 1.2) and 94% in the range (0.5, 1.5). There were however some quite extreme 
values, with the smallest being 0.08 and the largest being 2.24. The smallest 
frailty estimate was for a large, state-owned Chinese company. Consistent with 
low frailty implying a preponderance of buying over selling, this company bought 
25 vessels in our observation period and sold just one. At the other end of the 
scale the largest frailty estimate was for a medium sized privately owned Chinese 
company that sold eight vessels and bought none.

Finally, Fig.  3 shows the effect of vessel age on intensity of sales or scrap-
ping, evaluated for a vessel with median values of all covariates. Sales intensity 
is fairly constant until the vessel is around 25 years old, after which there are no 
sales. Vessels are not likely to be scrapped until they are around 20 years old, 
after which time the cumulative hazard for scrapping increases steeply year by 
year.
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6 � Discussion

We have described a dual frailty model for ownership duration data and given 
an application on the buying, selling and scrapping of ocean-going vessels. The 
act of ordering new vessels was not considered due to the specific nature of new-
building contracts in shipping. For example, the decision to order a vessel can 
be made years before the vessel is delivered to the buyer and, in addition, it is 
not uncommon for ships that have been ordered by one company to end up being 
delivered to another company. Subsequent purchases have a clearer process and 
have been, therefore, our focus in the paper.

We assumed the company-level frailty variables are time-constant and a nat-
ural extension would be to relax that assumption. A piecewise-constant model 
would seem to be appropriate, with change-points at some natural waymarks. In 
Fig.  4 for instance we show the logged Clarksea index together with the rela-
tive risk of sale for containers compared with other vessel types. We also indi-
cate three events that could have serious effects on the market for vessels: the 
1997 Asian financial crisis, the 2000 dot.com bubble and its demise, and the 2008 
financial crash. After each of these there seems to be a change in slope for the rel-
ative risk. Allowing a company—if active—to have a different frailty for each of 
the periods between these events is a reasonable next step. Clearly the values are 
likely to be correlated, which could be accommodated in principle through the 
correlated gamma frailty models of Henderson and Shimakura (2003) or Fiocco 
et al. (2009). There is no simple form for the density of these multivariate gamma 
distributions and hence the use of MCMC would not be straightforward. Instead 
we might consider modelling the sentiments Sc(t) directly, most obviously using 
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index (scaled by 10). The first vertical line marks the Asian financial crisis of July 1997, the second the 
peak in March 2000 of the dot.com bubble, and the third the financial crash of September 2008
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a multivariate Gaussian distribution. In this case the price to be paid is the lack 
of a closed form conditional distribution, given the data and other frailties, which 
precludes the use of Gibbs sampling.

Another assumption is that the same sentiment or frailty affects buying, selling 
and scrapping. A potentially interesting extension would be to have three frailties 
per company, drawn from some trivariate distribution, with one acting on sales, one 
on purchases and one on scrapping. Another is to have a single frailty Z which acts 
directly on sales, say, but then to have powered forms Z�1 and Z�2 for the effects of 
sentiment on purchases and scrapping, respectively. A disadvantage of this model is 
that we would lose the generalised inverse gamma form for the posterior distribu-
tions of frailties. Further work on this would be worthwhile, and also for the time-
varying situation. Clearly the available data would need to be rich in order for reli-
able inferences to be obtained from these more complex models.
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