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NEW FINDINGS 

What is the central question of this study? 

In order to discern information about testing modalities when assessing neuroplastic 

responses to squat resistance training, the present study investigated whether corticospinal 

and intracortical function was different between a joint-angle matched isometric squat, and 

isometric knee extension.  

What is the main finding and its importance? 

The present data shows poor agreement of corticospinal and intracortical function between 

the isometric squat and isometric knee extension. The data reinforces the notion that task 

specificity is of utmost important for assessing neuroplasticity. 

ABSTRACT 

It has been suggested that task-specific changes in neurophysiological function 

(neuroplasticity), should be assessed using testing modalities that replicate the characteristics 

of the intervention. The squat is a commonly prescribed resistance exercise that has been 

shown to elicit changes in central nervous system (CNS) function. However, previous studies 



have assessed squat-induced neuroplasticity using isometric knee extension, potentially 

confounding the results. The present study aimed to assess the agreement between 

corticospinal and intracortical activity relating to the knee extensors during isometric knee 

extension compared to an isometric squat task. Eleven males completed a neurophysiological 

assessment in an isometric squat (IS), and knee extension (KE) task matched for joint-angles 

(hip, knee, and ankle). Single- and paired-pulse transcranial magnetic stimulation (TMS) 

were delivered during isometric contractions at a range of intensities to assess short-interval 

cortical inhibition (SICI) and corticospinal excitability. Group mean values for SICI (70 ± 

14% vs. 63 ± 12% of unconditioned MEP during IS and KE, respectively) and corticospinal 

excitability (mean differences 2-5% of Mmax at 25, 50, 75 and 100% MVC between the IS 

and KE) were not different between the two tasks (P > 0.05) in the vastus lateralis (VL). 

However, limits of agreement were wide, with poor-to-moderate average ICCs (SICI: ICC3,1 

= 0.15, corticospinal excitability: average ICC3,1 range = 0.0-0.63), indicating disparate 

corticospinal and intracortical activity between the IS and KE. These data highlight the 

importance of task-specificity when assessing the modulation of corticospinal excitability and 

SICI in response to interventions resulting in neuroplastic changes.  

INTRODUCTION 

In recent years, there has been an increase in the number of studies applying transcranial 

magnetic stimulation (TMS) in sport and exercise and movement sciences to assess 

intracortical and corticospinal activity in response to various interventions (Weier & Kidgell, 

2012; Brownstein et al., 2017; Thomas et al., 2017b). Single-pulse TMS permits the 

quantitative assessment of corticospinal excitability through the size of the compound 

electromyography (EMG) response, while paired-pulse TMS separated by 2-5 ms and 10-15 



ms can be used to examine intracortical inhibitory (termed short-interval intracortical 

inhibition; SICI) and facilitatory circuits (termed intracortical facilitation; ICF), respectively 

(Kujirai et al., 1993). Single and paired-pulse TMS paradigms have been used as tools to 

investigate responses to exercise such as fatiguing isometric single-limb contractions (Hunter 

et al., 2016; Kennedy et al., 2016; Goodall et al., 2018) and locomotor exercise (Sidhu et al., 

2012; Brownstein et al., 2017; Thomas et al., 2017a), mechanisms of locomotion (Sidhu et 

al., 2013b) and neural adaptations to strength training (Weier & Kidgell, 2012). 

While many studies have used TMS to assess neural responses to whole-body, dynamic 

exercise, a common feature amongst these studies was that responses were assessed in a 

single-limb, isometric model (Weier & Kidgell, 2012; Brownstein et al., 2017). As such, a 

discrepancy exists between the neuromechanics of the intervention and the testing modality 

used to detect changes in intracortical and corticospinal activity in response to the 

interventions. The discrepancy between intervention and testing modality has been 

highlighted previously by Sidhu et al. (2013a), Avela and Gruber (2010), and, more recently, 

by Kalmar (2018), who suggested that future studies utilising TMS to assess neuromuscular 

responses to whole-body exercise should employ testing modalities that more closely 

replicate the characteristics of the intervention. In support of this supposition, considerable 

evidence suggests that when assessing neuroplasticity following an intervention, the motor 

task performed for testing should mirror the motor task(s) performed during the intervention. 

For instance, Schubert et al. (2008) and Beck et al. (2007) found that intracortical, 

corticospinal and spinal adaptations to two separate motor training tasks (four weeks of 

stability or ballistic training) were constrained to the trained task and were not apparent when 

performing the non-trained motor task. More recently, Giboin et al. (2018) compared 

neuroplasticity responses to two different modalities of isometric strength training (maximal 

isometric explosive or slow sustained knee extension), and displayed that corticospinal 



adaptations were evident when responses were measured during the trained task, but not for 

the untrained task. These findings corroborate numerous other studies that have found 

plasticity of the CNS is specific to the task trained (Liepert et al., 1998; Muellbacher et al., 

2001; Jensen et al., 2005). Additionally, postural differences between motor tasks can have 

large effects on evoked responses (Baudry et al., 2015; Nuzzo et al., 2016), adding further 

support to the notion that testing posture and contraction type should be specific to the trained 

task. 

During a period of strength training, it is well documented that improvements in force 

production in the first ~4 weeks precede significant structural adaptations (Carroll et al., 

2001; Gabriel et al., 2006), indicating that adaptations within the CNS are the primary 

explanatory factor for strength improvements. One common training modality for improving 

lower limb strength is the squat. Previous studies have employed the squat in both chronic 

training (Weier & Kidgell, 2012) and acute bout scenarios (Thomas et al., 2017b), assessing 

neurophysiological function pre- and post-intervention. While Weier and Kidgell (2012) and 

Weier et al. (2012) both showed alterations in CNS function following four weeks of heavy-

load squat training, Thomas et al. (2017b) found no changes in corticospinal or intracortical 

activity when assessing the neuromuscular basis of acute performance enhancement in the 

minutes following a heavy-resistance squat protocol, despite inducing an increase in jump 

performance. However, much like the issues highlighted by Sidhu et al. (2013a) and Avela 

and Gruber (2010), the evoked CNS responses in the aforementioned studies were recorded 

in single-limb isometric knee extension, rather than the motor task (squat) performed during 

the intervention. If strength can be mediated by a neuroplastic response to a training stimulus, 

then the optimal method to assess the alterations in corticospinal and intracortical 

mechanisms of neuroplasticity might be during the motor task performed throughout the 

intervention. Thus, it is unclear whether, given the importance of testing specificity, 



intracortical and corticospinal adaptations in response to squat interventions could be masked 

if assessments are conducted using testing modalities which are dissimilar to the imposed 

intervention.  

In order to elucidate the appropriateness of using isometric knee extension to assess 

adaptations to squat exercise, it is first important to identify whether differences exist in 

intracortical and corticospinal activity between knee extension exercise and a testing 

modality that more closely replicates the characteristics of a squat exercise (i.e. a bilateral, 

multi-joint movement comprising axial loading). The present study aimed to investigate and 

compare intracortical and corticospinal responses to single- and paired-pulse TMS in the 

„traditional‟ isometric knee extension (KE) set up, and a joint angle-matched equivalent 

isometric squat (IS) set up. Given the differences in the biomechanical characteristics of KE 

and IS exercise, we hypothesised that there would be limited agreement between 

corticospinal excitability, short interval cortical inhibition (SICI), and intracortical facilitation 

(ICF) during the two motor tasks. 

METHODS 

Ethical Approval 

The study received ethical approval from the Northumbria University Faculty of Health & 

Life Sciences Ethics committee (HLSCB251115) in accordance with the ethical standards 

established in the Declaration of Helsinki, with the exception of registration in a database. 



Participants 

Eleven young male adults (age: 27 ± 4 years; stature: 181 ± 7 cm; mass: 86.6 ± 15.6 kg) gave 

written informed consent to take part in the study. Participants were recreationally-active, 

resistance trained males and reported squatting at least once a week, were free of any 

cardiorespiratory, neurological or neuromuscular health disorders, had no metal plates in the 

head/brain, and were not taking any medication that might have interfered with the nervous 

system. All participants completed a TMS safety screening questionnaire prior to the data 

collection procedure (Keel et al., 2001). Participants were required to refrain from alcohol 

consumption and strenuous physical activity in the 24-hours prior to data collection, and to 

abstain from caffeine consumption for the 12 hours prior to each experimental visit.  

Design 

Participants visited the laboratory on one occasion, and performed a series of submaximal 

and maximal isometric contractions in two exercise modalities: unilateral isometric knee 

extension (KE) and bilateral isometric squat (IS), with both conditions matched for hip and 

knee angle (90°), to avoid muscle length-related differences in neural recruitment (Behrens, 

2017; Doguet et al., 2017). Participants were familiarised with the study procedures 

immediately prior to data collection, including habituation with performing IS and KE 

exercise, and receiving TMS during submaximal contractions. Furthermore, all participants 

had previously taken part in studies in our laboratory involving measures of TMS recorded in 

the knee extensors, and were thus familiar with performing maximal voluntary contractions 

(MVCs) and receiving TMS during submaximal contractions. The conditions were 

pseudorandomised, with a 30-minute rest given between the two conditions in order to 

minimize the influence of fatigue. During both conditions, participants received single- and 



paired-pulse TMS and electrical stimulation of the femoral nerve whilst performing 

submaximal and maximal isometric contractions. Corticospinal excitability, SICI and ICF, 

the maximal compound muscle action potential (Mmax) and EMG/force relationship were 

measured in the vastus lateralis (VL) and rectus femoris (RF) using surface 

electromyography (EMG). These variables were then compared between the two conditions.  

Procedures 

Isometric knee extension 

A calibrated load cell (MuscleLab force sensor 300, Ergotest technology, Norway) was used 

to measure isometric knee extensor force (N). The load cell was fixed to a custom built chair 

and strapped with a non-compliant cuff to the participant‟s right leg, superior to the ankle 

malleoli. During contractions, participants were instructed to grasp the handles on the side of 

the chair for support during maximal voluntary contractions (MVC). Participants were 

instructed to maintain hip and knee angle at 90° flexion during contractions, with these joint 

angles measured using a goniometer at the beginning of the trial, and visually inspected by 

the investigators during contractions to ensure no change in joint angle occurred. Three 

MVCs were performed prior to the trial, with 60 s between each contraction. In order to 

control for any learning effect on performing MVCs during KE, participants were asked to 

perform an additional MVC if there was a > 5% increase in force during successive MVCs. 

This was performed until three consecutive MVCs were performed with force values within 

5% of each other. Three participants were required to perform one additional MVC, and one 

participant was required to perform two additional MVCs. The maximum force from the 

MVCs was recorded in order to calculate the submaximal contraction values. The force trace 

was displayed on a computer screen directly in front of participants in order to assist in 



providing maximal efforts during MVCs and to provide the target force during submaximal 

contractions. Target forces were set using guidelines and real-time force feedback (Spike2, 

CED, Cambridge, UK). 

Isometric squat 

Isometric squat force (N) was measured using a force plate placed directly under the right 

foot (Type 9286B, Kistler Group, Winterthur, Switzerland).  In order to provide support 

during isometric contractions, participants were seated on a bench directly under a fixed 

barbell, with knee and hip angle maintained at 90° flexion measured using a goniometer 

(Figure 1). This procedure was implemented after pilot testing revealed that when 

participants were unsupported, rather than being seated on a bench, the contraction intensity 

and level of EMG activity required to support their own body weight whilst maintaining knee 

and hip angle at 90° flexion was too high to allow the measurement of SICI (Ortu et al., 

2008). The barbell height was adjusted at the beginning of each trial based on the participants 

torso length and was positioned on the shoulders (high-bar position). The participants‟ feet 

were positioned hip width apart with toes pointing forwards, with foot position determined at 

the beginning of the trial and marked to ensure consistent placement throughout the trial. 

Participants held the barbell during contractions and were given freedom to choose their hand 

position, which was maintained throughout the trial. During contractions, participants were 

instructed to exert force upwards against the bar using their whole body (Bishop et al., 2017). 

The investigators visually inspected hip and knee angle during contractions to ensure no 

change in joint angle occurred. Three MVCs were performed prior to the trial, with 60 s 

between each contraction. In order to control for any learning effect on performing MVCs 

during IS exercise, participants were asked to perform an additional MVC if there was a > 



5% increase in force during successive MVCs. This was performed until three consecutive 

MVCs were performed with force values within 5% of each other. Six participants were 

required to perform one additional MVC. The maximum force from the MVCs was recorded 

in order to calculate the submaximal contraction values. The force trace was displayed on a 

computer screen directly in front of participants in order to assist in providing maximal 

efforts during MVCs and to provide the target force during submaximal contractions. 

Isometric contraction protocol 

During assessment of corticospinal excitability in KE and IS trials, seven sets of brief (~3 s) 

isometric contractions were performed at 25, 50, 75 and 100% MVC. Contraction intensities 

were randomized, and participants given 60 s rest between each contraction and 3 minutes 

between each set to avoid the potential influence of fatigue on MEP properties. Two 

electrical nerve stimuli and five TMS pulses were delivered at each contraction intensity. For 

assessment of SICI and ICF, 40 stimuli (20 single- and 20 paired-pulses) were delivered in 

six sets of six and one set of four during a 10% MVC, with 30 s between each set (see below 

for details).  

Instrumentation 

Electromyography recordings 

EMG activity was recorded from RF, VL and biceps femoris (BF), with a reference electrode 

placed on the patella; the areas underneath were cleaned and shaved prior to electrode 



placement. Surface electrodes (Ag/AgCl; Kendall H87PG/F, Covidien, Mansfield, MA, 

USA) were placed 2 cm apart over the muscle belly. The electrodes recorded electrical 

activity in the VL, RF and BF, with the signal processed to permit analysis of the root-mean-

square (RMS) amplitude for voluntary contractions, the compound muscle action potential 

(M-wave) elicited by electrical stimulation of the femoral nerve, and the motor evoked 

potential (MEP) elicited by TMS. Signals were amplified: gain ×1000 for EMG and ×300 for 

KE force (CED 1902; Cambridge Electronic Design, Cambridge, UK), band-pass filtered 

(EMG only: 20-2000 Hz), digitized (4 kHz; CED 1401, Cambridge Electronic Design) and 

analysed offline. Further details on these methods are provided below. 

Percutaneous nerve stimulation 

Percutaneous stimulation of the right femoral nerve was administered using square wave 

pulses (200 µs) via a constant-current stimulator (DS7AH, Digitimer Ltd., Hertfordshire, UK) 

using self-adhesive surface electrodes (CF3200, Nidd Valley Medical Ltd., North Yorkshire, 

UK). The cathode was placed over the femoral nerve high in the femoral triangle, and the 

anode between the greater trochanter and iliac crest. Cathode placement was adjusted to elicit 

the greatest Mmax amplitude in the VL. Stimulations were delivered in 20 mA step-wise 

increments beginning at 20 mA until the maximum quadriceps twitch amplitude (Qtw, N) and 

muscle compound action potential (Mmax, mV) in the VL were elicited. The resulting 

intensity was then increased by 30% in order to ensure the stimulation intensity was 

supramaximal. This procedure was conducted during both KE and IS exercise to ensure the 

stimulation intensity was supramaximal under both modalities, with stimulation intensities of 

229 ± 119 mA during KE, and 260 ± 100 mA during IS. 



Transcranial magnetic stimulation 

Single- and paired-pulse TMS were delivered over the motor cortex via a concave double 

cone coil using a BiStim unit and two Magstim 200
2
 stimulators (The Magstim Company 

Ltd, Whitland, UK). The junction of the double cone coil was aligned tangentially to the 

sagittal plane, with its centre 1-2 cm to the left of the vertex. The optimal coil placement was 

determined at the start of each trial as the position that elicited the largest MEP in the VL 

muscle at 50% stimulator output during a 10% MVC contraction. This procedure was 

conducted separately during both KE and IS exercise to ensure optimal coil placement during 

both modalities. The position was then marked with indelible ink to ensure consistent 

placement throughout the trial. The stimulator intensity was based on active motor threshold 

(AMT) during a 10% MVC during each condition. AMT was defined as the intensity that 

elicited a MEP amplitude of >200 µV in 3 out of 5 stimulations in the VL (Weier & Kidgell, 

2012). We believed it was more appropriate to base AMT and stimulator output on responses 

in the VL rather than the RF, which has a bi-articular make up and is involved in both hip and 

knee extension, potentially influencing the level of recruitment during the IS and KE and 

thereby confounding intracortical and corticospinal responses. For single-pulse TMS, the 

stimulus intensity was set at 120% AMT. The configuration used during paired-pulse TMS 

consisted of a conditioning stimulus intensity of 70% AMT with an inter-stimulus interval 

(ISI) of 2 ms for SICI, and a conditioning stimulus intensity of 60% AMT with an ISI of 10 

ms for ICF. The suprathreshold test pulse intensity was maintained at 120% AMT for both 

SICI and ICF. Pilot work from our laboratory has identified this configuration as eliciting the 

highest degree of SICI and ICF in the active knee extensors, while twenty single- and twenty 

paired-pulse TMS stimuli were identified as the minimum number required to obtain an 

accurate estimate of SICI and ICF.  



Data analysis 

The peak-to-peak amplitude of the EMG responses to motor nerve stimuli and TMS were 

analysed offline. The root mean square EMG amplitude (RMSEMG) and average force were 

calculated in the 500 ms prior to each TMS stimulus to ensure a similar level of background 

muscle activity during each stimulation when assessing SICI and ICF, and to assess the 

EMG/force relationship at different contraction intensities. For the latter, RMSEMG at a given 

contraction intensity was normalised to RMSEMG during the mode specific 100% MVC. To 

quantify SICI and ICF, the ratio of the average conditioned paired-pulse MEP amplitude was 

expressed relative to the average unconditioned MEP amplitude at 120% AMT. A 

conditioned vs. unconditioned ratio < 100% indicates inhibition, and a ratio > 100% indicates 

facilitation. If the ratio for SICI was > 100%, or the ratio for ICF was < 100%, the data from 

the corresponding participant was removed from the analysis. In order to assess corticospinal 

excitability and EMG activity at different contraction intensities, MEP amplitude and 

RMSEMG were averaged across the five TMS pulses and normalised to the Mmax assessed at 

each contraction intensity (MEP/Mmax and RMS/Mmax, respectively).  

Statistical analyses 

SPSS version 20.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses. All 

data are presented as means ± standard deviation unless stated otherwise. Significance was 

set at an alpha level of 0.05. Normality of data was assessed using the Shapiro-Wilk test. If 

the data were not normal, transformations were performed using common logarithm or square 

root. In order to demonstrate there were no learning or fatigue effects associated with 

performing multiple MVCs during IS and KE exercise, a repeated measures ANOVA was 

performed to assess for differences in MVC values obtained throughout the 

contraction 



protocol. Analysis revealed no significant main effect of time on MVC scores in either KE 

(F6,60 = 2.736, P = 0.084, η p
2
 = 0.215) or IS (F6,60 = 2.539, P = 0.086, η p

2
 = 0.215). 

Furthermore, reliability analysis revealed excellent reliability for both IS (ICC3,1 = 0.96, 95% 

confidence interval; CI  0.90 – 0.99) and KE (ICC3,1= 0.96, 95% CI 0.90 – 0.99), with low 

coefficients of variation for both modalities (2.9 and 1.9% for IS and KE, respectively). A 

paired sample t-test was performed to determine the difference in SICI between the IS and 

KE. Agreement between modalities was assessed graphically using Bland-Altman plots, with 

lines indicating the mean difference and the 95% limits of agreement (mean difference ± 2SD 

of the difference). Absolute agreement between contraction modalities was assessed using 

two-way mixed-effect intraclass correlation coefficients (ICC3,1) with 95% CIs. As per the 

guidelines recommended by Koo and Li (2016), ICCs between 0.5 and 0.75 were considered 

as moderate agreement, values between 0.75 and 0.9 were considered as good agreement, and 

values above 0.9 considered as excellent agreement. Sphericity was assessed using 

Mauchly‟s test. In the case of a violation, Greenhouse-Geisser correction was employed. A 2 

× 2 repeated measures ANOVA (2 types of stimuli – single- and paired-pulse, and 2 

modalities – IS and KE) was used to assess differences in RMS during investigation of SICI. 

A 4 × 2 repeated measures ANOVA (4 contraction intensities – 25, 50, 75 and 100%, and 2 

modalities – IS and KE) was used to assess differences between the modalities in Mmax, 

RMS/Mmax, MEP/Mmax, and BF EMG during different contraction intensities. In the case of 

significant main effects, analysis was continued using pairwise comparisons with Bonferroni 

correction. Partial eta squared (η p
2
) was reported as a measure of effect size. An interaction 

was only reported whenever it was found to be statistically significant. The EMG-force 

relationship was estimated by linear regression, with the determination coefficient considered 

acceptable at r
2
 > 0.95 and P < 0.05.



RESULTS 

Short interval intracortical inhibition and facilitation 

We were unable to induce SICI during the IS trial for one subject (conditioned vs. 

unconditioned ratio > 100%); as such, this participant was excluded from further analysis. On 

average, SICI was similar in the IS compared to KE in both VL (70 ± 14% vs. 63 ± 12%; t9 = 

1.330, P = 0.216) and RF (58 ± 19% vs. 71 ± 19%; t9 = −1.577, P = 0.149; Figure 2A). No 

difference was found in pre-stimulation EMG activity during KE and IS at 10% MVC 

between single and paired pulse stimulation in the RF (IS: 0.030 ± 0.005 mV vs. 0.030 ± 

0.005 mV; KE: 0.040 ± 0.014 mV vs. 0.040 ± 0.011 mV; F1, 9 = 0.322, P = 0.584, η p
2
 = 

0.035) or VL (IS: 0.044 ± 0.016 mV vs. 0.045 ± 0.016; KE: 0.081 ± 0.128 vs. 0.081 ± 0.128; 

F1, 9 = 0.606, P = 0.456, η p
2
 = 0.063). Despite this, the agreement between modalities was 

poor-to-moderate; ICCs3,1 for SICI was 0.15 (95% CI 0.00-0.67) in the VL and 0.09 (95% CI 

0.00-0.63) in the RF (Figure 2B). Limits of agreement were −25% to 39% and −62% to 37%, 

systemic bias: 7% and −13%, in the VL and RF respectively (Figure 2C).  

We were able to induce ICF during both the IS and KE in only 5 and 2 subjects in RF and 

VL, respectively (conditioned vs. unconditioned ratio > 100%). In all other subjects, we were 

unable to elicit ICF in either modality, with conditioned vs. unconditioned ratios < 100%. 

Due to the small number of valid cases, no statistical analyses were performed for ICF. 

Maximal compound action potential 

On average, Mmax was similar in KE and the IS in both VL (5.5 ± 1.8 vs. 5.0 ± 1.5 mV; F1, 10 

= 2.106, P = 0.177, η p
2
 = 0.174) and RF (5.8 ± 2.2 vs. 5.9 ± 2.6 mV; F1, 10 = 0.013, P =



0.911, η p
2
 = 0.001. However, agreement between modalities varied at different contraction 

intensities, with ICC3,1 values ranging between poor-to-moderate and moderate-to-excellent 

(Table 1). Mmax was also similar across different contraction intensities in VL (F1.4, 14.3 = 

1.106, P = 0.337, η p
2
 = 0.100) as well as RF (F2.1, 21.1 = 0.907, P = 0.424, η p

2
 = 0.083).

Motor evoked potentials 

On average, MEP/Mmax was similar between IS and KE in both VL (F1, 10 = 1.062, P = 0.327, 

η p
2
 = 0.096) and RF (F1, 10 = 2.407, P = 0.152, η p

2
 = 0.194; Figure 3A). However, the 

agreement between the modalities varied between MEP/Mmax measured at different 

contraction intensities, with average ICCs3,1 values ≥ 0.0 and ≤ 0.63 (Table 1; Figure 3B). 

Bland-Altman plots with limits of agreement and systematic bias are displayed in Figures 3C-

F. In both modalities, MEP/Mmax was modulated by contraction intensity in both VL (F3, 30 = 

14.826, P < 0.001, η p
2
 = 0.597) and RF (F3, 30 = 11.153, P < 0.001, η p

2
 = 0.527; Figure 3A) 

such that MEP/Mmax was smaller at 25% MVC compared to higher contraction strength in 

both muscles (P ≤ 0.025). In RF, there was also a statistically significant modality × 

contraction intensity interaction for MEP/Mmax (F3, 30 = 3.267, P = 0.035, η p
2
 = 0.246). 

Specifically, post hoc test revealed MEP/Mmax was smaller during IS compared to KE at 25% 

MVC (24 ± 23% vs. 47 ± 20%; p = 0.004).  

Electromyography and force-EMG relationship 

In VL, RMS/Mmax was similar in both modalities on average (F1, 10 = 2.695, P = 0.132, η p
2
 = 

0.212; Figure 4A), but the agreement between them was generally poor, with ICC3,1 values 

ranging from poor to moderate-to-good (Table 1; Figure 4B).  However, RMS/Mmax in VL 



was influenced by contraction intensity (F3, 30 = 111.389, P < 0.001, η p
2
 = 0.918) in that it 

was greater with increased contraction strength (P < 0.005; Figure 4A). There was also 

statistically significant modality × contraction intensity interaction for RMS/Mmax in VL (F1.4, 

14.1 = 10.242, P = 0.004, η p
2
 = 0.506). Post hoc testing showed RMS/Mmax was greater during 

KE compared to IS at 50% MVC (4 ± 1% vs. 2 ± 1%; p = 0.013).  

In RF, RMS/Mmax was higher on average during KE compared to the IS (F1, 10 = 10.688, P = 

0.008, η p
2
 = 0.517; Figure 4A). Furthermore, agreement for RMS/Mmax between the IS and 

KE in RF ranged from poor to poor-to-moderate at different contraction intensities (Table 1; 

Figure 4B). Both modalities were also modulated by contraction intensity (F3, 30 = 174.329, P 

< 0.001, η p
2
 = 0.946) such that RMS/Mmax increased with greater contraction intensity (P < 

0.005; Figure 4A).  

The determination coefficient of linear regression was significant in both the VL and RF for 

both modalities, suggesting the force – EMG relationship was linear in all cases (see Figure 

5). On average, the antagonist EMG activity was similar between KE and IS (0.06 ± 0.05 vs. 

0.05 ± 0.02 mV; F1, 10 = 1.722, P = 0.219, η p
2
 = 0.147), but it was affected by contraction 

intensity (F1.2, 12.1 = 24.179, P < 0.001, η p
2
 = 0.707) insofar as BF EMG activity increased 

stepwise from 25% to 100% MVC (KE: 0.04 ± 0.01, 0.05 ± 0.02, 0.08 ± 0.06, 0.09 ± 0.08 

mV; IS: 0.04 ± 0.01, 0.04 ± 0.01, 0.05 ± 0.01, 0.06 ± 0.02 mV; P < 0.05).  

DISCUSSION 

The aim of the present study was to compare corticospinal and intracortical responses to 

single- and paired-pulse TMS during an IS and KE exercise. The key finding from the study 

was that the two motor tasks resulted in disparate corticospinal and intracortical activity, with 

a poor level of agreement between the two exercise modalities. Specifically, despite a similar 



level of background EMG during measurements of SICI and a comparable response on a 

group level, absolute agreement assessed through ICCs in the VL and RF were poor-to-

moderate, and limits of agreement were wide, indicating disparate activity of inhibitory 

interneurons during the tasks. Similarly, comparable responses were observed at a group level 

between normalised MEP amplitude in response to single-pulse TMS delivered at a range of 

contraction intensities in the VL and RF, but agreement between the tasks was generally 

poor, with ICCs ranging from poor to poor-to-good, and wide limits of agreement at most 

contraction intensities. Collectively, these results highlight the task specific nature of 

corticospinal and intracortical activity and could have implications regarding the requirement 

for testing specificity when assessing CNS responses.  

Differential intracortical and corticospinal activity during IS and KE exercise. Previous 

work has displayed that SICI is a task dependent, highly specific phenomenon, which is 

differentially modulated by the requirements of the motor task (Liepert et al., 1998; Devanne 

et al., 2002). In the present study, ICCs revealed a poor-to-moderate level of agreement 

between SICI measured during KE and IS squat exercise. Previous work has displayed 

moderate-to-excellent within-day reliability of corticospinal excitability and SICI when 

measured in the knee extensors, suggesting that the poor agreement between the modalities is 

not simply a result of variability in the measures (O'Leary et al., 2015). Furthermore, limits of 

agreement for SICI were ± 32% and ± 50% in the VL and RF, respectively. These limits of 

agreement are wide in the context of previously observed changes in SICI measured in the 

knee extensors as a consequence of strength training. For example, studies have reported 

statistically significant changes in SICI ranging between 22% and 35% in response to 

strength training interventions (Weier & Kidgell, 2012; Weier et al., 2012). Given that the 

ICCs for SICI measured during KE and IS in the present study were lower than has 



previously been reported during isometric knee extension (O‟Leary et al., 2015), and that 

limits of agreement were wider than the magnitude of previously observed changes in SICI in 

response to strength training interventions (Weier & Kidgell, 2012; Weier et al., 2012), this 

implies that the agreement between the two modalities was poor, indicating differences in the 

activity of intracortical inhibitory interneurons during the tasks. 

While voluntary contraction strength has been shown to influence the degree of SICI 

(Ridding et al., 1995; Ortu et al., 2008), the similar relative contraction intensity and 

background pre-stimulation EMG in the VL and RF during measurements of SICI in the 

present study suggests that the disparity between SICI measured in the two modalities was 

not due to differences in the level of motor drive to the muscle. Instead, it is plausible that the 

differences in the neuromechanics of the IS and KE could have contributed to the lack of 

agreement between SICI measured in the two conditions. Specifically, the bilateral versus 

unilateral nature of the IS and KE, respectively, could have influenced the level of SICI in the 

VL and RF. Indeed, it has previously been reported that there are differences in voluntary 

control of unilateral versus bilateral contractions that could be mediated through alterations in 

intracortical inhibition (Ferbert et al., 1992; Skarabot et al., 2016). For example, during 

bilateral contractions, it has been suggested that inhibition is modulated through 

interhemispheric interactions between homologous muscle representations of the primary 

motor cortex acting to produce a coordinated movement of the two limbs (Oda & Moritani, 

1995). Another integral difference between the two conditions which might have contributed 

to the lack of agreement in SICI is that the KE is a single-joint exercise, in which the 

quadriceps femoris muscle group is the sole contributor to force production, while the IS is a 

multi-joint exercise, in which additional agonist and synergist muscle groups, including the 

hip extensors, are activated. It has been speculated that SICI could be involved in the 

„fractionation‟ of muscular activity, such that inhibitory influences are reduced on the 



contracting muscle whilst maintaining or increasing inhibition in the non-contracting muscles 

(Zoghi et al., 2003; Ortu et al., 2008). Although there were no differences in SICI on a group 

level, the concurrent activation of agonist and synergist muscle groups during the IS could 

influence the degree of inhibition measured in the knee extensors. In support of this 

supposition, previous studies have found that concurrent activation of synergist muscles 

influences the magnitude of SICI measured in a target muscle (Devanne et al., 2002; 

Kouchtir-Devanne et al., 2012), possibly due to interactions between muscle representations 

within the motor cortex (Capaday et al., 2013). Thus, differences in the neuromechanics of 

muscle recruitment between the IS and KE could have contributed to the lack of agreement in 

SICI between the two motor tasks.  

Similar to measures of SICI, ICCs showed generally poor agreement between corticospinal 

excitability measured during the KE and IS at a range of contraction intensities. Furthermore, 

limits of agreement between corticospinal excitability measured during KE and IS ranged 

from ± 42% and ± 53% in the RF and ± 28% and ± 44% in the VL across different 

contraction intensities. These limits of agreement are wider than much of the previously 

reported changes in corticospinal excitability measured in the knee extensors in response to 

locomotor exercise. For example, Thomas et al (2017a) reported a statistically significant 5% 

decrease in corticospinal excitability 24 h following competitive soccer match-play. 

Similarly, both Goodall et al (2018) and Jubeau et al (2014) reported a ~15% increase in 

corticospinal excitability in response to fatiguing isometric and locomotor exercise, 

respectively. Given that responses were normalised to Mmax, these differences between the 

tasks could not have been related to differences in neuromuscular transmission at the 

sarcolemma. It should be noted that at certain contraction intensities, there were differences 

in the EMG activity in the VL and/or RF muscles between the two modalities. In particular, 

EMG in the RF was higher in the KE compared with the IS at all contraction intensities 



above 25% MVC, and higher in the VL during KE at 50% MVC. However, the increased 

EMG activity at these contraction intensities was not synonymous with an increase in 

corticospinal excitability. This can likely be explained by the plateau in MEP amplitude 

observed above 50% MVC, which has previously been observed in work conducted in the 

knee extensor musculature (Goodall et al., 2009; Sidhu et al., 2009). This observation is 

likely due to a decline in motoneuron output in response to the stimulus arising from an 

inability of some motoneurons to fire in response to excitatory input (Todd et al., 2003; 

Goodall et al., 2014). Nevertheless, it is possible that the differences in the level of muscle 

activity could have contributed to the lack of agreement between corticospinal excitability 

measured during the two modalities.  

During multi-joint muscle contractions, the motor cortex and corticospinal tract work as a 

dynamic and integrated neural network in order to execute the required movement (Devanne 

et al., 2002; Capaday et al., 2013; Mason et al., 2017). Rather than each muscle group 

involved in the movement being controlled singly and separately by distinct territories within 

the motor cortex, cortical points are interconnected by intrinsic collaterals which function to 

control muscle synergies in an integrated manner (Capaday et al., 2013). For example, 

cortical mapping experiments examining the topography of muscle representations within the 

motor cortex have shown that the areal representations of task-related proximal and distal 

muscles of the upper limbs overlap considerably, despite differences in the location of their 

optimal points (Devanne et al., 2006). In the case of the IS, the quadriceps femoris muscles 

act as the primary agonist muscle group during contraction, but are subserved by other 

agonist and synergist muscles such as the hip extensors. Given the overlapping and 

intertwined nature of muscle representations in the motor cortex and corticospinal tract, it is 

plausible that the activation of synergist muscles during the IS could have contributed to the 

lack of agreement between corticospinal excitability measured in the KE and IS. In support of 



this, Devanne et al (2002) reported differences in corticospinal excitability during a finger 

pointing task involving co-activation of multiple muscle groups in the upper limb compared 

to an isolated contraction of each muscle and suggested that interactions between muscle 

representations within the motor cortex were responsible for the differential modulation of 

corticospinal excitability.  

While interactions between muscle representations within the motor cortex could have 

contributed to the divergence in corticospinal excitability between the two tasks, given that 

MEP amplitude depends on the level of excitation of the motor cortex and spinal motor 

neurons, the possibility that there might have been a contribution at the spinal level cannot be 

ruled out. For example, differences in “recruitment gain” of the motoneuron pool, whereby 

the range of thresholds for different motoneurons within the pool can be compressed or 

expanded depending on the nature of the motor task (Kernell & Hultborn, 1990; Vestergaard 

& Berg, 2015), could have influenced corticospinal excitability measured in the knee 

extensors. Further insight into the potential spinal contribution during the two motor tasks 

could be gained from the stimulation at the cervicomedullary junction (Taylor & Gandevia, 

2004). Although a contribution of spinal factors cannot be ruled out, the lack of agreement in 

SICI during the motor tasks suggest that intracortical mechanisms at least partially 

contributed to the results of the present study.  

In addition to SICI, the present study also attempted to measure and compare ICF during the 

KE and IS. In an attempt to induce the maximum level of facilitation, we implemented 

paired-pulse stimulus variables (ISI and conditioning stimulus intensity) which have 

previously been optimised during pilot work in our laboratory when assessing ICF in the 

rectus femoris . Despite this, we were able to induce facilitation during both the IS and KE in 

only a limited number of participants, and consequently were unable to make a valid 

comparison between the two modalities. In particular, we were unable to induce ICF in the 



VL in most participants during the IS or KE, despite AMT being based on responses in the 

VL. Previous work has similarly shown that ICF demonstrates significant inter-subject 

variability in the knee extensors, such that some individuals do not exhibit facilitation using 

paired-pulse paradigms previously shown to elicit ICF (O‟Leary et al., 2015; Kujirai et al., 

1993). For example, when attempting to assess the reliability of ICF in the active vastus 

lateralis, O‟Leary et al (2015) displayed an average ratio of conditioned/unconditioned MEP 

amplitude below 1.0 in a cohort of 16 participants. While it is suggested that ICF reflects the 

excitability of glutamate mediated N-methyl-D-aspartate excitatory interneurons (Liepert et 

al., 1997; Nakamura et al., 1997), this still remains unclear (Ni & Chen, 2011). These results 

question the validity and applicability of measuring ICF in the vastus lateralis.  

Limitations. While the present study opens up an interesting area for future research 

concerning CNS adaptations to squat based exercise, it is important to acknowledge the 

study‟s limitations. Namely, although the set-up employed during the IS exercise was 

designed to more closely replicate the characteristics of the squat exercise, there are a number 

of differences between the IS set-up utilised in the present study compared with a 

conventional dynamic squat, such as the contraction mode, being supported versus 

unsupported, and potential differences in joint angles. Nevertheless, our aim was to employ a 

testing modality that more closely replicates the characteristics of the squat exercise whilst 

also allowing us to compare responses with the conventional method used to assess 

neuroplasticity in response to squat interventions, i.e. isometric knee extension with hip and 

knee angles of 90° (Weier et al., 2012; Weier & Kidgell, 2012). Using an experimental set-up 

which precisely replicated that of normal squat exercise, i.e. dynamic, unsupported 



movement under load with self-selected hip and knee angles, would have had obvious 

methodological impracticalities which would have precluded us from taking 

neurophysiological measures under such conditions. However, given the closer 

biomechanical similarities between the IS and normal squat exercise compared to that of KE, 

the IS set-up used in the present study has the potential to provide a more valid means of 

assessing neuroplasticity in response to squat based interventions, providing an intriguing 

avenue for future investigations.  

CONCLUSION 

The present study found disparate corticospinal and intracortical responses to single- and 

paired-pulse transcranial magnetic stimulation in the vastus lateralis and rectus femoris 

during joint-angle specific isometric squat and knee extension exercise, despite similar levels 

of background EMG during the two modalities. The lack of agreement noted between 

corticospinal excitability and SICI could have been a consequence of the differences in the 

characteristics of the tasks, such as the bilateral, multi-joint contraction implicated during the 

isometric squat compared with the unilateral, single-joint contraction involved during 

isometric knee extension. The results highlight the task specific nature of corticospinal and 

intracortical activity and emphasise the requirement for testing specificity when assessing 

CNS responses. Future studies should assess differences in the sensitivity of the IS compared 

with isometric KE in detecting changes in CNS function in response to interventions 

involving the squat.  
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Table and Figure Legends 

Table 1. Intraclass correlation coefficients (ICC3,1 with 95% confidence intervals) displaying 

the level of agreement between the isometric squat and knee extension in the vastus lateralis 

and rectus femoris during different contraction intensities for Mmax, MEP/M and RMS/M (n = 

11). 

Vastus lateralis Rectus femoris 

Mmax 25% MVC 0.92 (0.72 – 0.98) 0.33 (0.00 – 0.77) 

50% MVC 0.64 (0.08 – 0.89) 0.08 (0.00 – 0.55) 

75% MVC 0.36 (0.00 – 0.77) 0.33 (0.00 – 0.77) 

100% MVC 0.42 (0.00 – 0.79) 0.25 (0.00 – 0.73) 

MEP/Mmax 25% MVC 0.15 (0.00 – 0.68) 0.34 (0.00 – 0.74) 

50% MVC 0.59 (0.00 – 0.87) 0.32 (0.00 – 0.76) 

75% MVC 0.63 (0.08 – 0.88) 0.22 (0.00 – 0.45) 

100% MVC 0.41 (0.00 – 0.79) 0.00 (0.00 – 0.24) 

RMS/Mmax 25% MVC 0.54 (0.00 – 0.85) 0.12 (0.00 – 0.52) 

50% MVC 0.00 (0.00 – 0.35) 0.01 (0.00 – 0.45) 

75% MVC 0.31 (0.00 – 0.76) 0.07 (0.00 – 0.53) 

100% MVC 0.41 (0.00 – 0.80) 0.00 (0.00 – 0.44) 



Figure 1. Experimental setup for eliciting and recording electromyographic responses via 

transcranial magnetic and percutaneous nerve stimulation during an isometric squat. 



Figure 2. Short interval intracortical inhibition during the isometric squat and knee extension 

measured in the rectus femoris and vastus lateralis, with values displayed on a group level 

(A) as mean ± SD (filled bars = isometric squat; unfilled bars = knee extension), as individual

data points (B) during the isometric squat relative to knee extension (filled circles = vastus 

lateralis; open circles = rectus femoris), with the dashed line representing the line of 

agreement (n = 11), and Bland-Altman plots (C) with systemic bias (continuous lines) and 

95% limits of agreement (dashed lines) showing agreement between the modalities.  



Figure 3. Motor evoked potentials normalised to maximal compound action potential at the 

same contraction intensity measured in the vastus lateralis and rectus femoris during 

isometric squat and knee extension at different contraction intensities expressed as percentage 

of MVC (n = 11). Values are displayed on a group level (A) as mean ± SD, and as individual 

data points during the isometric squat relative to knee extension (B), with the dashed line 

representing the line of agreement, and Bland-Altman plots with systemic bias (continuous 

lines) and 95% limits of agreement (dashed lines) at 25 (C), 50 (D), 75 (E) and 100% MVC 

(F). 
*
P ≤ 0.025 compared to other intensities in both modalities, 

#
P = 0.004 compared to the

other modality. 





Figure 4. Root mean square EMG activity at different contraction intensities normalised to 

maximal compound action potential at the same contraction intensity in vastus lateralis and 

rectus femoris during the isometric squat and knee extension at different contraction 

intensities expressed as percentage of MVC (n = 11). Values are displayed on a group level 

(A) as mean ± SD, and as individual data point during the isometric squat relative to knee

extension (B), with the dashed line representing the line of agreement, and Bland-Altman 

plots with systemic bias (continuous line) and 95% limits of agreement (dashed lines) at 25 

(C), 50 (D), 75 (E) and 100% MVC (F). 
*
P < 0.005 compared to higher contraction

intensities, 
#
P < 0.015 compared to the other modality.





Figure 5. The EMG-force relationship during the isometric squat and knee extension in 

vastus lateralis and rectus femoris with determination coefficients and associated p-values (n 

= 11). 




