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Classical Results and Modern
Approaches to Nonconservative Stability

Oleg N. Kirillov

Abstract Stability of nonconservative systems is nontrivial already on the linear1

level, especially, if the system depends on multiple parameters. We present an2

overview of results and methods of stability theory that are specific for nonconser-3

vative applications. Special attention is given to the topics of flutter and divergence,4

reversible- and Hamiltonian-Hopf bifurcation, Krein signature, modes and waves of5

positive and negative energy, dissipation-induced instabilities, destabilization para-6

dox, influence of structure of forces on stability and stability optimization.7

1 Introduction8

1.1 “It was Greenhill who Started the Trouble...9

...though he never knew it,” remarked Gladwell (1990) in his historical account of10

the genesis of the field of nonconservative stability. As many of his scientific con-11

temporaries, Greenhill successfully combined his interest to pure mathematical sub-12

jects, such as elliptic functions, with contributions to applied problems of ballistics13

(Greenhill 1879), hydrodynamics (Greenhill 1880), and elasticity (Greenhill 1881)14

coming from the flourishing industries of the British Empire. In particular, motivated15

by the problem of buckling of propeller-shafts of steamers he analyzed in Greenhill16

(1883) stability of an elastic shaft of a circular cross-section, length L , and mass per17

unit length m under the action of a compressive force, P , and an axial torque, M .18

Figure 1 taken from Gladwell (1990) illustrates five possible in this system boundary19

conditions:20

I. Symmetric clamped-clamped shaft21

II. Asymmetric clamped-clamped shaft22

III. Clamped-free shaft23
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130 O. N. Kirillov

Fig. 1 Five realizations of Greenhill’s elastic shaft loaded by a compressing force, P , and an axial
torque, M , corresponding to five different boundary conditions (from Gladwell 1990)

IV. Clamped-hinged shaft24

V. Hinged-hinged shaft25

In the absence of the axial torque (M = 0), the Greenhill problem reduces to the26

famous Euler’s buckling under compression of 1757. The critical load at the onset of27

the static instability can be found by the equilibrium method, which seeks values of28

the axial force, for which there are nontrivial equilibrium configurations. This yields29

the Euler formula for the critical buckling force30

Pcr = k
π2 E I

L2
, where

BC I II III IV V
k 4 1 1/4 2.046 1

, (1)31

E is the Young modulus and I is the moment of inertia of a (circular) cross-section32

of the shaft.33

In contrast to the Euler buckling case, Greenhill set P = 0 and tried to find the34

critical torque that causes buckling of the shaft. Using the equilibrium method, he35

managed to find the critical torque for the boundary conditions I, II, and V (Greenhill36

1883; Ziegler 1953a, b; Gladwell 1990)37

Mcr = k
πE I

L
, where

BC I II III IV V
k 2.861 2 ? ? 2

. (2)38

The cases III and IV have not been analyzed by Greenhill and remained untreated39

until Nicolai (1928) reconsidered a variant of the case IV, in which the axial torque40
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Classical Results and Modern Approaches to Nonconservative Stability 131

is replaced with the follower torque, M , such that the vector of the torque is directed41

along the tangent to the deformed axis of the shaft at the end point (Gladwell 1990).42

Nicolai (1928) had established that no nontrivial equilibrium configuration of the43

shaft exists different from the rectilinear one, meaning stability for all magnitudes,44

M , of the follower torque and thus k = ∞ in (2). Being unsatisfied with this overop-45

timistic result, Nicolai realized that the equilibrium method does not work properly46

in the case of the follower torque. He decided to study small oscillations of the shaft47

about its rectilinear configuration using what is now known as the Lyapunov stability48

theory (Lyapunov 1992) that, in particular, can predict instability via eigenvalues of49

the linearized problem.50

Surprisingly, it turned out that there exist eigenvalues with positive real parts51

(instability) for all magnitudes of the torque, meaning that the critical value of the52

follower torque for an elastic shaft of a circular cross-section is actually Mcr = 0, i.e.53

k = 0 in (2). Because of its unusual behavior, this instability phenomenon received54

a name “Nicolai’s paradox” (Nicolai 1928; Gladwell 1990).55

In 1951-56 Ziegler re-considered the five original Greenhill problems with the56

Lyapunov approach and found that at P = 0 the shaft is unstable in cases III and IV57

for all values of the axial torque M , just as in Nicolai’s problem with the follower58

torque (Ziegler 1951a, b, 1953a, b, 1956).59

Mcr = k
πE I

L
, where

BC I II III IV V
k 2.861 2 0 0 2

. (3)60

Moreover, Ziegler realized that “Stability problem for a shaft loaded by an axial61

torque M , is generally non-conservative, as in the cases III, IV, and V, where the62

end slope is unconstrained. Only in exceptional cases the work of such torques in a63

virtual deformation can be represented as a variation of an integral” and the problem64

is conservative, as in cases I and II, where the equilibrium method gives the correct65

critical torque. “In any case”, concluded Ziegler, “the results show that even very66

simple models are not conservative and, if they occur as stability problems, they67

should be treated dynamically”, i.e. with the use of the Lyapunov approach (Ziegler68

1951a, b).69

Note that already Nicolai (1929) realized that the cases III and IV do not represent70

generic situations because it is possible to modify the end conditions, or consider a71

shaft with unequal stiffness (non-circular cross-section) yielding a nonzero critical72

torque (Bolotin 1963; Gladwell 1990). These conclusions were later confirmed by73

Ziegler (1956) and developed further in the recent works on the Nicolai paradox by74

Seyranian and Mailybaev (2011) and Luongo et al. (2016).75

1.2 Greenhill’s Shaft as a Non-self-adjoint Problem76

Small vibrations of the Greenhill’s shaft near its non-deformed rectilinear configu-77

ration are described by the following partial differential equation (Bolotin 1963)78
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132 O. N. Kirillov

l0∂4
z w + l1∂3

z w + l2∂2
z w + m∂2

t w = 0, z ∈ [0, L], w =
(

w1

w2

)
(4)79

where the matrices l0, l1, and l2 are80

l0 =
(

E I 0
0 E I

)
, l1 =

(
0 M

−M 0

)
, l2 =

(
P 0
0 P

)
(5)81

The nonconservative clamped-free case (III) is characterized by the following82

boundary conditions83

w(0) = w′(0) = 0,84

l0w′′(L) + l1w′(L) = 0,85

l0w′′′(L) + l1w′′(L) + l2w′(L) = 0, (6)86

corresponding to the constrained deflection and slope at the clamped end (z = 0) and87

vanishing axial force and axial torque at the free end (z = L).88

Separating time with w = ueλt , and introducing the matrix

l4(λ) = λ2

(
m 0
0 m

)
,

we come to the boundary eigenvalue problem89

L(λ)u = l0∂4
z u + l1∂3

z u + l2∂2
z u + l4(λ)u = 0 (7)90

with the boundary conditions91

u(0) = u′(0) = 0,92

l0u′′(L) + l1u′(L) = 0,93

l0u′′′(L) + l1u′′(L) + l2u′(L) = 0, (8)94

where prime denotes partial differentiation with respect to z. The equilibrium state95

is unstable if there is a value of λ with positive real part.96

Integrating by parts the inner product

(Lu, v) = vT L(λ)u,

where the bar indicates complex conjugation, we obtain (Kirillov 2010)97

∫ L

0
vT L(λ)udx =

∫ L

0
(L

T
(λ)v)T udx + vT Lu. (9)98

Here L
T
(λ)v =: L†(λ)v is the adjoint differential expression (Kirillov 2010)99
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Classical Results and Modern Approaches to Nonconservative Stability 133

L†(λ)v =
4∑

q=0

(−1)4−q∂4−q
z (l

T
q v) = l0∂4

z v + l1∂3
z v + l2∂2

z v + l4(λ)v, (10)100

the vectors u and v are101

uT = (uT (0), u′
z

T
(0), u′′

z
T
(0), u′′′

z
T
(0), uT (L), u′

z
T
(L), u′′

z
T
(L), u′′′

z
T
(L))102

vT = (vT (0), v′
z

T
(0), v′′

z
T
(0), v′′′

z
T
(0), vT (L), v′

z
T
(L), v′′

z
T
(L), v′′′

z
T
(L))103

and the block matrix L := (li j )

L =
(−L(0) 0

0 L(L)

)
, L(z) =

⎛
⎜⎜⎝

l00 l01 l02 l03

l10 l11 l12 0
l20 l21 0 0
l30 0 0 0

⎞
⎟⎟⎠ .

The matrices li j are expressed through the matrices of the differential expression as
(Kirillov 2010, 2013a)

li j =
3− j∑
k=i

(−1)k Mk
i j∂

k−i
z l3− j−k, Mk

i j :=
{ k!

(k−i)!i ! , i + j ≤ 3
⋂

k ≥ i ≥ 0
0, i + j > 3

⋂
k < i

which yields

L(z) =

⎛
⎜⎜⎝

0 l2 l1 l0
−l2 −l1 −l0 0

l1 l0 0 0
−l0 0 0 0

⎞
⎟⎟⎠ ,

where 0 denotes the 2 × 2 zero matrix.104

Boundary conditions (8) can be written in the matrix form as

Uku =
3∑

j=0

Ak j u( j)
z (z = 0) +

3∑
j=0

Bk j u( j)
z (z = L) = 0, k = 1, . . . , 4

where

A10 = A21 = I, B32 = l1, B33 = l0, B42 = l2, B43 = l1, B44 = l0

and all of other matrices Ak j and Bk j are zero. Introducing the matrices A = (Ak j )
∣∣
z=0105

and B = (Bk j )
∣∣
z=L and composing the block matrix U = [A,B] we can finally write106

the boundary conditions (8) in the compact matrix form (Kirillov 2010, 2013a)107

Uu = [A,B]u = 0. (11)108
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134 O. N. Kirillov

Fig. 2 (Left) Greenhill-III
problem with the axial
torque described by the
problem (14). (Right)
Nicolai’s variant of the
Greenhill-III problem with
the follower torque described
by the problem (13) which is
adjoint to (14) (from Ziegler
1951a)

Extend the original matrixU to a square non-degenerate matrixU by an appropriate
choice of the auxiliary matrices Ã and B̃

U = [A,B] ↪→ U =
(

A B

Ã B̃

)
, det U �= 0.

Then, we can obtain the formula for calculation of the matrix V of the boundary
conditions for the adjoint differential expression (10)

Vv = 0

and the auxiliary matrix Ṽ109

[−Ṽ
V

]T

= LU−1 =
(−L(0) 0

0 L(L)

)(
A B

Ã B̃

)−1

(12)110

Choosing

Ã =

⎛
⎜⎜⎝

0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , B̃ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 I 0 0
I 0 0 0

⎞
⎟⎟⎠ ,

where I is the 2 × 2 identity matrix and 0 denotes the 2 × 2 zero matrix, we find that111

det U = (E I )4 �= 0.112

Then, the differential expression (10) and the relation (12) yield the adjoint bound-113

ary eigenvalue problem:114
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Classical Results and Modern Approaches to Nonconservative Stability 135

l0∂4
z v + l1∂3

z v + l2∂2
z v + l4(λ)v = 0,115

v(0) = v′(0) = 0,116

v′′(L) = 0,117

l0v′′′(L) + l2v′(L) = 0, (13)118

which is instructive to compare with the original boundary eigenvalue119

problem (7), (8):120

l0∂4
z u + l1∂3

z u + l2∂2
z u + l4(λ)u = 0,121

u(0) = u′(0) = 0,122

l0u′′(L) + l1u′(L) = 0,123

l0u′′′(L) + l1u′′(L) + l2u′(L) = 0. (14)124

It is easy to see that the differential expressions of the problems (14) and (13)125

are identical and the difference comes from the terms in the boundary conditions126

that contain the matrix l1 =
(

0 M
−M 0

)
that is non-zero at nonzero torque M . Only127

if M = 0 the matrix l1 = 0 and the boundary conditions of the original boundary128

eigenvalue problem and the adjoint boundary eigenvalue problem coincide.129

Therefore, only in the absence of the torque (M = 0), the problem (14) as well130

as its adjoint (13), is self-adjoint and represents a conservative system, which is not131

surprising in view that it is the Euler buckling problem for an elastic shaft.132

In case when M �= 0 the boundary conditions of the adjoint problem (13) do133

not coincide with the boundary conditions of the original problem (14), manifesting134

the non-self-adjoint nature of the non-conservative Greenhill-III problem (Ziegler135

1951a, b, 1956).136

It is well-known that adjoint problems have the same characteristic equation that137

determines eigenvalues. Hence, stability properties of (14) and (13) are identical138

despite they have different mechanical meaning.139

The boundary value problem (14) corresponds to the original Greenhill-III140

clamped-free shaft loaded by the axial force and the axial torque, Fig. 2(left). It141

turns out that its adjoint given by (13) corresponds to the Nicolai’s variant of the142

Greenhill-III problem with the axial force and the follower torque, Fig. 2(right),143

Bolotin (1963).144

Both mechanical systems shown in Fig. 2 are nonconservative but have the same145

spectrum and, therefore, the same stability properties. In the both problems the critical146

value of the torque at P = 0 is Mcr = 0 (Nicolai’s paradox) no matter whether the147

torque is axial or follower.148
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136 O. N. Kirillov

(a)
(b) (c)

Fig. 3 a Pflüger’s hinged-hinged column loaded by the distributed follower force (static instability,
or divergence), b Pflüger’s clamped-free column of the mass per unit length, m, carrying the end
mass, M , and loaded by the concentrated follower force at the tip, c Beck’s column loaded by the
concentrated follower force is a particular case of b with the end mass M = 0 (dynamic instability,
or flutter), from Gladwell (1990)

1.3 From Follower Torques to Follower Forces149

A remarkable property of the Greenhill’s five problems established by Nicolai and150

Ziegler is that, depending on boundary conditions, they could be both conserva-151

tive and nonconservative. In conservative cases I and II, the Greenhill’s shaft loses152

stability of the rectilinear equilibrium statically, i.e. without vibrations (divergence153

instability). In the nonconservative cases III and IV (and their Nicolai’s variants with154

the follower torque), however, the mechanism of instability involves growing oscil-155

lations about the rectilinear equilibrium and is called flutter. Whereas divergence156

is the only possible type of instability in conservative systems, the nonconservative157

systems possess both flutter and divergence.158

For instance, the nonconservative Greenhill-V shaft loses its stability by diver-159

gence (Greenhill 1883; Ziegler 1951a; Gladwell 1990). In 1950 Pflüger established160

divergence instability of a nonconservative hinged-hinged elastic column loaded by161

a distributed follower force, Fig. 3a.162

Note that columns loaded by distributed follower forces provide a basis for math-163

ematical modeling of some biomechanical objects. We mention, for instance, recent164

works on the human spine (Rohlmann et al. 2009), centipede locomotion (Aoi et al.165

2013), and flutter of flagella under the action of distributed tangential follower forces166

caused by cytoskeletal motor proteins (Bayly and Dutcher 2016).167

Immediately after the Pflüger’s work, Beck (1952) has found flutter of a clamped-168

free elastic column of length, L , and mass per unit length, m, loaded by the169
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Classical Results and Modern Approaches to Nonconservative Stability 137

Fig. 4 (Left) Stability map for the elastic Pflüger column in the “load” - “mass ratio” plane (from

Ryu and Sugiyama 2003). (Right) Load parameter p = P L2

E I versus dimensionless squared vibration

frequency ξ = mω2 L4

E I for the Pflüger column at different mass ratios μ when 1/μ is close to zero
(from Sugiyama et al. 1976)

Fig. 5 Molecular motors
(kinesin) transporting
membranes along
microtubules (cytoskeletal
filaments) inside a cell cause
tangential follower forces
acting on the microtubules
(from Vale Lab web site
https://valelab4.ucsf.edu/
external/moviepages/
moviesMolecMotors.html)

concentrated follower force at its tip, Fig. 3c. In 1955 Pflüger re-considered the170

Beck’s column with an end mass, M , (see Fig. 3b) and found it flutter-unstable171

for almost all mass ratios μ = M
mL , except for the case when m = 0 or μ → ∞,172

Fig. 4(left).173

Figure 4(right) shows the load parameter of the Pflüger column as a function of the174

squared dimensionless eigenfrequency at small values of μ−1. The lower hyperbolic175

branch has its maximum at the critical flutter value of the load. The interval of loads176
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138 O. N. Kirillov

Fig. 6 Linear reversible-Hopf bifurcation: (Left) eigenvalues of a stable reversible system are all
imaginary and semi-simple; (centre) a pair of two simple imaginary eigenvalues (as well as the
complex conjugate pair) merges into a pair of double imaginary eigenvalues with the Jordan block
at the flutter threshold; (right) the pair of the double non-semi-simple eigenvalues unfolds into a
complex quadruplet inside the flutter domain (from Lamb and Roberts 1998)

corresponding to flutter is between the minimum of the upper hyperbolic branch and177

the maximum of the lower hyperbolic branch in Fig. 4(right). As μ increases, the size178

of the flutter interval tends to zero so that in the limit μ → ∞ the two hyperbolic179

branches merge and form a crossing at the load p ≈ 20.19 (Sugiyama et al. 1976).180

Exactly at the crossing the eigenfrequency is double zero with the Jordan block,181

which corresponds to the onset of the divergence instability. In the μ → ∞ limit182

the Pflüger column is weightless and is known as the Dzhanelidze column (Bolotin183

1963). The opposite limit, μ → 0, of the Pflüger column is known as the Beck column184

with the critical flutter load p ≈ 20.05. It is instructive to note that the critical load185

reaches its local maxima exactly in these two limiting cases, Fig. 4(left).186

Connection of a maximum of the critical load and a crossing in the load-frequency187

plane (Fig. 4(right)) is not a coincidence. Already Mahrenholtz and Bogacz (1981)188

emphasized that “In the case of complicated structures there may appear different189

shapes of characteristic curves, and only an analysis in the [load-frequency] plane190

may assure the correct results for the design of structures subjected to nonconser-191

vative loads”. A general perturbation approach to local extrema associated with192

the crossings of characteristic curves has been developed in Kirillov and Seyranian193

(2002a, b).194

The follower force problems of 1950-s are increasingly popular nowadays in195

the mathematical modeling of mechanics underlying complex cellular phenomena196

caused by molecular motors that translocate along cytoskeletal filaments, carrying197

cargo, Fig. 5. It turns out that molecular motors produce piconewton tangential fol-198

lower forces acting on filaments and resulting in their flutter, which is well described199

by the classical continuous models of Beck and Pflüger and their discrete analogue200

— the Ziegler pendulum (Ziegler 1952; Saw and Wood 1975) — as is shown in the201

recent work by De Canio et al. (2017). Note that the Ziegler pendulum has been202

realized experimentally by Bigoni and Noselli (2011) and the Pflüger column by203

Bigoni et al. (2018).204
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Classical Results and Modern Approaches to Nonconservative Stability 139

Fig. 7 Steady-state bifurcation in a reversible system: (left) eigenvalues of a stable reversible
system are all imaginary and semi-simple; (centre) a conjugate pair of simple imaginary eigenvalues
merges into a double zero eigenvalue with the Jordan block at the divergence threshold; (right) the
double zero non-semi-simple eigenvalue splits into two real eigenvalues of opposite signs inside
the divergence domain

2 Reversible and Circulatory Systems205

O’Reilly, Malhotra and Namachchivaya (1995, 1996) observed that the governing206

equations of the classical structures with nonconservative follower loads possess a207

special type of symmetry, which largely determines their stability properties.208

This symmetry, known as the reversible symmetry, can be defined with reference
to the differential equation (Lamb and Roberts 1998)

dx
dt

= g(x), x ∈ R
n

which is said to be R-reversible (R−1 = R) if it is invariant with respect to the209

transformation (x, t) 
→ (Rx,−t), implying that the right hand side should satisfy210

Rg(x) = −g(Rx).211

If x = x0 is a reversible equilibrium such that Rx0 = x0, and A = ∇g is the
linearization matrix about x0, then A = −RAR, and the characteristic polynomial

det(A − λI) = det(−RAR − RλR) = (−1)n det(A + λI),

implies that ±λ,±λ are eigenvalues of A (Lamb and Roberts 1998). Due to the212

spectrum’s symmetry with respect to both the real and imaginary axes of the complex213

plane, stability requires that all the eigenvalues of A stay on the imaginary axis,214

Fig. 6(left).215

Transition from stability to flutter instability occurs through the reversible-Hopf216

bifurcation (Lamb and Roberts 1998) that requires the generation of a non-semi-217

simple double pair of imaginary eigenvalues and its subsequent separation into a218

complex quadruplet, Fig. 6.219

Transition from stability to divergence instability is accompanied by the steady-220

state bifurcation in which two simple imaginary eigenvalues merge at zero and then221

split into a real couple with the opposite signs, Fig. 7.222
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140 O. N. Kirillov

An important for applications fact is that reversible are all equations of second223

order (Lamb and Roberts 1998):224

d2x
dt2

= f(x). (15)225

Indeed, denoting x1 = x and x2 = dx
dt we can write the first-order system

ẋ1 = x2, ẋ2 = f(x1),

which is invariant under the transformation

x1 → x1, x2 → −x2, t → −t.

The system (15) is reversible also in the case when the positional force f(x) has a
non-trivial curl

∇ × f(x) �= 0,

which makes the reversible system nonconservative. Such nonconservative curl226

forces (Berry and Shukla 2016) that cannot be derived from any potential appear227

in modern opto-mechanical applications, including optical tweezers (Wu et al. 2009;228

Simpson and Hanna 2010; Sukhov and Dogariu 2017) and light robotics (Phillips229

et al. 2017). In mechanics these nonconservative positional forces are known as cir-230

culatory forces for producing non-zero work along a closed circuit (Ziegler 1953a, b).231

A circulatory force acting on an elastic structure and remaining directed along the232

tangent line to the structure at the point of its application during deformation is the233

already familiar to us follower force (Ziegler 1952; Bolotin 1963).234

We notice that in aeroelasticity the term ‘circulatory’ is frequently associated with235

the lift force in the Theodorsen lift model (Theodorsen 1935) that was developed to236

explain flutter instability occurring in aircrafts at high speeds. The Kutta–Joukowski237

theorem relates the lift on an airfoil to a circulatory component (circulation) of238

the flow around the airfoil. The circulation is the contour integral of the tangential239

velocity of the air on a closed loop (circuit) around the boundary of an airfoil. Hence240

the name circulatory lift force, see Pigolotti et al. (2017). Remarkably, the Theodorsen241

model is nonconservative and the non-potential positional forces arising in it due to242

the circulatory lift are simultaneously the circulatory forces in the sense of Ziegler243

(Pigolotti et al. 2017).244

2.1 Zubov-Zhuravlev Decomposition of Non-potential Force245

Fields246

Zubov (1970) established the following instructive result:247
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Fig. 8 (Left) The non-potential force field f = (x, xy)T = f′ + f′′; (right) its circulatory part f′′ =(
− y2

3 ,
xy
3

)T

Theorem 2.1 (Zubov 1970) Let f(t, x) : R+ × R
n → R

n be a real-valued con-248

tinuous vector-function and let w(t, x) = f T x = ∑n
i=1 xi fi (t, x) be a continuously249

differentiable function with respect to components of x. Then,250

(a) there exists a real-valued function V (t, x) : R+ × R
n → R, which is continuous251

and continuously differentiable with respect to components of x;252

(b) f(t, x) possesses the following representation253

f(t, x) = −∇xV (t, x) + Px, (16)254

where P(t, x) is an n × n skew-symmetric matrix (PT = −P) with the elements255

that are continuous functions of t and components of x.256

Example: Let257

f(t, x) =
(

x
xy

)
, x =

(
x
y

)
(17)258

According to Theorem 2.1, there exists the following decomposition259

f(t, x) = −
⎛
⎝

∂V
∂x

∂V
∂y

⎞
⎠ + y

3

(
0 −1
1 0

)(
x
y

)
260

=
⎛
⎝ x + y2

3

2xy
3

⎞
⎠ +

⎛
⎝− y2

3

xy
3

⎞
⎠ =

(
x

xy

)
, (18)261
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142 O. N. Kirillov

where V (t, x) = − x2

2 − xy2

3 , see Fig. 8. Notice that many examples of nonconser-262

vative force fields and their curls can be found in the modern literature on optical263

tweezers, see e.g. Wu et al. (2009), Simpson and Hanna (2010), Sukhov and Dogariu264

(2017), and light robotics (Phillips et al. 2017).265

Zhuravlev (2007, 2008) proposed an algorithm for constructing the Zubov decom-266

position, in particular, of nonlinear generalized forces in the Lagrange equations.267

Here we are interested in positional forces only.268

Let T denote kinetic energy of a mechanical system. Consider the Lagrange
equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= fi (t, q1, . . . , qn), i = 1, . . . , n.

We assume that the generalized forces fi have positional character, being functions269

of time and generalized coordinates only.270

Let us first assume that the generalized forces f are linear

f = −Aq, A �= AT .

Recall that the n × n matrix A can be uniquely represented as the sum

A = A + AT

2
+ A − AT

2
= K + N,

where K = KT is a real symmetric matrix and N = −NT is a real skew-symmetric
matrix. Then, we can write the generalized positional force as

f = −Kq − Nq,

where the force f′ = −Kq is derived from the potential V (q) = 1
2 qT Kq:

f′ = −∇V (q)

and the circulatory force f′′ = −Nq is orthogonal to the vector of generalizes coor-
dinates

qT f′′ = 0.

Indeed,
qT f′′ = −qT Nq = (qT NT q)T = qT Nq ⇒ qT Nq = 0.

A linear circulatory system is thus defined as (Ziegler 1953a, b, 1956)

q̈ + Kq + Nq = 0.

This is a reversible system (O’Reilly, Malhotra and Namachchivaya 1996).271
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Let us calculate the work of the linear positional force f on the displacement q
with the frozen time

W =
∫ 1

0
qT f(sq)ds = −

∫ 1

0
qT Kqsds −

∫ 1

0
qT Nqsds = −1

2
qT Kq

Therefore, the potential component of the linear positional force f is f′ = ∇W =272

−∇V and the circulatory component is just f′′ = f − f′. Zhuravlev (2007, 2008)273

employs this idea for the decomposition of nonlinear non-potential force fields into274

a potential and circulatory parts.275

Following Zhuravlev (2007, 2008), we define the potential part of f as f′ = −∇V ,
where

V = −
∫ 1

0
qT f(sq)ds.

Then, the circulatory part of the nonlinear force f is f′′ = f − f′, f′′ · q = 0.276

Example: Decompose the non-potential vector field f into the potential and cir-
culatory parts

f =
(

x
xy

)
= f′ + f′′.

First, construct the potential function V of the potential part of the field

V = −
∫ 1

0
[x fx (sx, sy) + y fy(sx, sy)]ds = −

∫ 1

0
(x2s + xy2s2)ds

= − x2

2
− xy2

3
.

Then, find the potential part of f277

f′ = −
⎛
⎝

∂V
∂x

∂V
∂y

⎞
⎠ =

⎛
⎝ x + y2

3

2xy
3

⎞
⎠ .

Finally, determine the circulatory part of f

f′′ = f − f′ =
⎛
⎝− y2

3

xy
3

⎞
⎠ = y

3

(
0 −1
1 0

)(
x
y

)
, f′′ · q = 0,

in agreement with Theorem 2.1. Note that ∇ × f′′ = yez �= 0.278

The decomposition is unique up to the class of potential forces that are simulta-
neously orthogonal to the vector of coordinates: qT ∇V = 0. For instance, the force
derived from the potential V (x, y) = x/(x + y) belongs to this class (Zhuravlev
2007, 2008)
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Stability

Flutter

Fig. 9 (Left) Rotating shaft by Shieh and Masur (1968). (Right) Stability map of the model (21)
with k1 = 1 and m = 1

f = −
⎛
⎝

∂V
∂x

∂V
∂y

⎞
⎠ = 1

(x + y)2

(−y
x

)
, f · q = 0.

In this case, obviously, ∇ × f = −∇ × (∇V ) = 0.279

2.2 Circulatory Forces in Rotor Dynamics280

Non-potential circulatory forces historically originated in equations of rotor dynam-281

ics when dissipation both in rotor and stator was taken into account. The two types282

of damping were introduced by Kimball (1925) in order to explain a new type of283

instability observed in built-up rotors at high speeds in the early 1920s. Smith (1933)284

implemented this idea in a model of a rotor carried by a flexible shaft in flexible285

bearings with the linearization given by the equation286

z̈ + Dż + 2�Gż + (K + (�G)2)z + βNz = 0 (19)287

where zT = (x, y) is the position vector in the frame rotating with the shaft’s angular288

velocity �, D = diag(δ + β, δ + β), G = J, J =
(

0 −1
1 0

)
, K = diag(k1, k2), and289

N = �J. In Smith’s model (19) the stationary (in the laboratory frame, and thus290

external with respect to the shaft) damping coefficient β > 0 represents the effect of291

viscous damping in bearing supports while the rotating damping coefficient δ > 0292

represents the effect of viscous damping in the shaft itself (internal damping). The293

term βNz in Eq. (19) corresponds to circulatory forces.294
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Classical Results and Modern Approaches to Nonconservative Stability 145

In a more general model of the rotating shaft by Shieh and Masur (1968), the295

diagonal elements of the damping matrix in Eq. (19) are allowed to be different. In296

fact, Shieh and Masur (1968) model the shaft as the point mass m which is attached297

by two springs with the stiffness coefficients k1 and k2 = k1 + κ and two dampers298

with the coefficients μ1 and μ2 to a Cartesian coordinate system Ouv rotating at299

constant angular velocity �, Fig. 9 (left).300

A non-conservative positional force which is proportional to the radial distance301

of the mass from the origin and perpendicular to the radius vector f′′ =
(−βv

βu

)
acts302

on the mass. Such a force on the shaft in the bearings may arise in a rotating fluid or303

in an electromagnetic field. The linearized equations of motion of the shaft have the304

form (Shieh and Masur 1968; Kirillov 2013a, 2011a, b)305

mü + μ1u̇ − 2m�v̇ + (k1 − m�2)u + βv = 0,306

mv̈ + μ2v̇ + 2m�u̇ + (k2 − m�2)v − βu = 0. (20)307

Assuming that damping is absent (μ1 = 0,μ2 = 0) and that the shaft is not rotating308

� = 0 we reduce the model (20) to the motion of the planar oscillator under the action309

of a nonconservative circulatory force310

mü + k1u + βv = 0,311

mv̈ − βu + k2v = 0. (21)312

Separating time in (21) with u = ũeλt and v = ṽeλt , introducing the stiffness
anisotropy κ = k2 − k1, and writing the solvability condition for the resulting system
of two algebraic equations we end up with the quadratic equation in λ2. Its solutions

λ = ±i

√
2m(2k1 + κ ± √−4β2 + κ2)

2m

are imaginary (stability) if κ2 > 4β2 and form a complex quadruplet with negative313

and positive real parts (flutter) if314

β2 >
κ2

4
. (22)315

This conical flutter domain is shown in Fig. 9(right) in the (κ,β)-plane of the stiffness316

anisotropy, κ, and magnitude of the circulatory force, β. Note that flutter instability317

occurs already at β > 0 if the stiffness is symmetric (κ = 0), similarly to the Nico-318

lai paradox for the cantilever rod of circular cross-section under a follower or axial319

torque. However, stiffness anisotropy (κ �= 0), no matter how small, increases the320

flutter threshold as |β f | = |κ|/2. Again, similar to the disappearance of the Nico-321

lai’s paradox in rods of non-circular cross-section (Nicolai 1929). This is not just322

a coincidence. Indeed, the linearization of a two-degrees-of-freedom model of the323
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146 O. N. Kirillov

Greenhill-Nicolai problem considered recently by Luongo and Ferretti (2016) is324

described exactly by Eq. (21).325

2.3 Stability Criteria for Circulatory Systems326

Let us consider a circulatory system327

ẍ + (K + N)x = 0 (23)328

where K = KT and N = −NT are real m × m matrices.329

Separating time in (23) with the standard substitution x = ueλt , write the charac-
teristic polynomial p(λ) = det(λ2 + K + N)

p(λ) = a0λ
2m + a1λ

2m−2 + a2λ
2m−4 + . . . + λ2am−1 + am .

Write the 2m × 2m discriminant matrix for p(λ)330

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · · an 0 0 0
0 ma0 (m−1)a1 (m−2)a2 · · · am−1 0 0 0
0 a0 a1 a2 · · · am−1 am 0 0
0 0 ma0 (m−1)a1 · · · 2am−2 am−1 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 a0 a1 · · · am

0 0 0 · · · 0 0 ma0 · · · am−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)331

Consider a sequence of determinants of all even-order submatrices along the main332

diagonal of � starting from the upper left corner333

det �1 = det

(
a0 a1

0 ma0

)
, det �2, · · · , det �m = det � (25)334

Theorem 2.2 (Gallina criterion Gallina 2003) A necessary and sufficient condition
for all the eigenvalues λ of the eigenvalue problem for the undamped circulatory
system (23) to be imaginary is that the elements of the discriminant sequence corre-
sponding to the discriminant matrix � are all nonnegative and that the coefficients
of the polynomial p(λ) are either all non-positive or all non-negative:

det �1 ≥ 0, det �2 ≥ 0, · · · , det �m = det � ≥ 0,

a0 ≥ 0, a1 ≥ 0, a2 ≥ 0, . . . , am ≥ 0.
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With the use of the Leverrier-Barnett algorithm, see e.g. Kirillov (2013a), one can335

write the characteristic polynomial of the system (23) as336

p(λ) = λ2m + trKλ2m−2 + 1

2

(
(trK)2 − trK2 − trN2)λ2m−4 + . . . (26)337

Since for the polynomial (26) we have det �1 = m > 0, then, Gallina criterion gives338

a sufficient condition for instability if339

a2
0((a

2
1 − a2a0)m − a2

1) < 0. (27)340

With the explicit expressions for the coefficients of the polynomial from (26), we341

re-write (27) as342

trK2 + trN2 <
1

m
(trK)2. (28)343

Taking into account that
trK2 = tr(KT K) = ‖K‖2,

and
trN2 = tr(−NT N) = −‖N‖2,

where the norm is understood as the Frobenius norm, we represent (28) in the form344

‖N‖2 > ‖K‖2 − 1

m
(trK)2. (29)345

The inequality (29) is known as the Bulatovic flutter condition.346

Theorem 2.3 (Bulatovic flutter condition Bulatovic 2011, 2017) If

‖N‖2 > ‖K‖2 − 1

m
(trK)2

the equilibrium of the circulatory system

ẍ + (K + N)x = F(x, ẋ),

where K = KT , N = −NT , and F is a collection of terms of no lower than second347

order, is unstable.348

In a particular case when the stiffness matrix is proportional to the identity matrix,349

K = κI, we have trK = κm and trK2 = ‖K‖2 = κ2m. With this, the flutter condi-350

tion (29) reduces to the inequality ‖N‖2 > 0, which is always fulfilled if ‖N‖ �= 0.351

Instability in this degenerate case occurs at arbitrary small circulatory forces. This352

statement is the famous Merkin theorem, see e.g. Krechetnikov and Marsden (2007);353

Udwadia (2017).354
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Fig. 10 Geometrical
interpretation of the
Bulatovic flutter condition
and Merkin theorem for
m = 2 degrees of freedom

k12

k11 - k22

2

Flutter

Stabilty
0

Theorem 2.4 (Merkin Theorem (Merkin 1956)) Perturbation by arbitrary linear355

circulatory forces of a stable pure potential system with eigenfrequencies coinciding356

into one with the algebraic multiplicity equal to the dimension of the system destroys357

the stability of the equilibrium regardless of the form of the nonlinear terms.358

2.4 Geometrical Interpretation for m = 2 Degrees of359

Freedom360

Let us now assume that m = 2 in Eq. (23). Notice that the 2 × 2 matrix A = K + N361

has the following decomposition362

A = k11 + k22

2

(
1 0
0 1

)
+ 1

2

(
k11 − k22 2k12

2k12 k22 − k11

)
363

+
(

0 −ν
ν 0

)
= C + H + N, (30)364

where the matrix C corresponds to potential forces of spherical type, H to potential365

forces of hyperbolic type, and N to circulatory forces (Zhuravlev 2007, 2008). When366

H = 0 we are in the conditions of the Merkin theorem.367

Calculating the eigenvalues of the corresponding eigenvalue problem, which are368

the roots of the polynomial det(λ2I + A), we find369
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λ2 = −k11 + k22

2
± 1

2

√
(k11 − k22)2 + 4k2

12 − 4ν2. (31)370

which is complex (flutter) if371

ν2 >
(k11 − k22)

2

4
+ k2

12. (32)372

This condition determines an interior of a double cone in the space of parameters373

k11−k22
2 , k12, and ν, see Fig. 10.374

Let us establish a connection between the stability diagram of Fig. 10 and already375

known to us Bulatovic’s flutter condition and Merkin’s theorem.376

Observing that

‖K‖2 = k2
11 + k2

22 + 2k2
12, (trK)2 = (k11 + k22)

2, ‖N‖2 = 2ν2

we find

‖K‖2 − 1

2
(trK)2 = (k11 − k22)

2

2
+ 2k2

12.

Hence,

ν2 >
(k11 − k22)

2

4
+ k2

12 ⇔ ‖N‖2 > ‖K‖2 − 1

m
(trK)2.

and we establish the equivalence of the Bulatovic flutter condition (29) and (32).377

Therefore, the Bulatovic flutter condition determines the conical flutter domain in378

Fig. 10. The axis of the cone passing through the origin at k11 − k22 = 0, k12 = 0 and379

ν = 0 lies in the flutter domain, corresponding to the condition ν2 > 0 or ‖N‖2 > 0380

given by the Merkin theorem.381

The apex of the cone at k11 − k22 = 0, k12 = 0 and ν = 0 corresponds to the382

potential system under the action of potential forces of spherical type, which is stable.383

Potential forces of spherical type and circulatory forces imply Merkin’s instability at384

all values of ν �= 0. Potential forces of hyperbolic type stabilize the Merkin-unstable385

system at ν < νcr = (k11−k22)
2

4 + k2
12. This is equivalent to the finite threshold for a386

torque in the Nicolai shaft with a non-circular cross-section (Nicolai 1929; Ziegler387

1951a, b; Bolotin 1963; Seyranian and Mailybaev 2011; Luongo and Ferretti 2016).388

2.5 Approximating Flutter Cone by Perturbation of389

Eigenvalues390

Consider the matrix A defined by Eq. (30) as a function of three parameters A =391

A(k22, k12, ν), whereas the parameter k11 is fixed, and the eigenvalue problem for it392

A(k22, k12, ν)u = σu, (33)393
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(a) (b)

Fig. 11 Conical flutter domain of a circulatory system in the vicinity of a point in the parameter
space corresponding to a semi-simple eigenvalue of the matrix A = K + N. a Given by Eq. (39). b
Given by Eq. (40)

where σ = −λ2.394

Let A0 = A(k22 = k11, k12 = 0, ν = 0). Then395

A0 =
(

k11 0
0 k11

)
. (34)396

This matrix has a semi-simple real eigenvalue σ0 = k11 with the two linearly-397

independent right eigenvectors u1 and u2 and two linearly-independent left eigen-398

vectors, v1 and v2. In general, left and right eigenvectors of a non-symmetric matrix399

differ but in our example A0 is real and symmetric and we can choose400

u1 = v1 =
(

0
1

)
, u2 = v2 =

(
1
0

)
. (35)401

Let us introduce the vector of parameters p = (k22, k12, ν) and denote p0 =402

(k11, 0, 0). Then, A(k22, k12, ν) = A(p) and A0 = A(p0).403

In the following, we briefly consider a perturbative approach to the study of
stability of circulatory systems following (Kirillov 2010, 2013a). We introduce a
scalar parameter ε and consider a smooth path in the parameter space p(ε) and
consider it in the vicinity of p0 = p(ε = 0)

p(ε) = p0 + ε
dp
dε

+ o(ε).

Then, the matrix family A(p(ε)) takes an increment

A(p(ε)) = A0 + εA1 + o(ε),
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where A1 = ∑n
s=1

∂A
∂ ps

dps

dε
. In our example n = 3, p1 = k22, p2 = k12, and p3 = ν.404

It can be shown by perturbation argument (Kirillov 2010, 2013a) that the double405

semi-simple eigenvalue σ0 splits into two simple eigenvalues as follows406

σ(ε) = σ0 + ε
(A1u1, v1) + (A1u2, v2)

2
± ε

2

√
D + o(ε), (36)407

where D = x2 + y2 − z2 and408

x = 〈f∗, e〉, y = 〈f+, e〉, z = 〈f−, e〉. (37)409

The vector e =
(

dp1

dε
, . . . ,

dpn

dε

)T
. The components of the vectors f∗, f+ and f− are410

given by the expressions411

f∗,s = (∂ps Au1, v1) − (∂ps Au2, v2),412

f±,s = (∂ps Au1, v2) ± (∂ps Au2, v1). (38)413

The brackets 〈 , 〉 in (37) denote the inner product of vectors in n-dimensional space414

and the brackets (, ) in (38) denote the inner product of vectors in m-dimensional415

space. Recall that in our example m = 2 and n = 3.416

The perturbed eigenvalues (36) are complex if417

z2 > x2 + y2, (39)418

that is, inside the conical surface in the (x, y, z)-space, see Fig. 11a.419

In order to describe this conical flutter domain in the space of parameters p, we
introduce the vectors

a = f∗ × f+, b = f∗ × f−, c = f− × f+

and the polar angle ϕ through the relations x = z cos ϕ and y = z sin ϕ. Then we420

can describe the flutter cone at the point p0 as the tangent cone to the flutter domain,421

i.e. as a set of directions e in which from the given point one can send a curve that422

lies in the flutter domain:423

{e : e = t (a + d(b sin φ + c cos φ)), t ∈ R, ϕ ∈ [0, 2π], d ∈ [0, 1)}. (40)424

Taking into account the eigenvectors (35) of the matrix (34) and constructing the
gradient vector

e =
⎛
⎝ k22 − k11

k12

ν

⎞
⎠

we find the vectors
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152 O. N. Kirillov

(a) (b) (c)

Fig. 12 Flutter instability of the shaft (41) at weak damping and weak stiffness anisotropy for
k1 = 1, m = 1 and β = 0.05. a Stability domain (42) with two Whitney umbrella singular points
in the (μ1,μ2,κ)-space. b Instability at weak damping and zero stiffness anisotropy (κ = 0). c
Stabilization by weak damping at large stiffness anisotropy (κ = 2β = 0.1)

f∗ =
⎛
⎝ 1

0
0

⎞
⎠ , f+ =

⎛
⎝0

2
0

⎞
⎠ , f− =

⎛
⎝ 0

0
−2

⎞
⎠ .

Substituting these vectors into the flutter condition

〈f∗, e〉2 + 〈f+, e〉2 − 〈f−, e〉2 < 0,

we reproduce the flutter cone (32).425

Note that the conical singularity is one of the eight generic singularities of codi-426

mension 3 that can occur on stability boundaries of circulatory systems with at least427

three parameters (Kirillov 2013a). In case of two parameters the number of generic428

singular points reduces to four, and in one-parameter families of circulatory systems429

we have only two singular points, corresponding to the reversible-Hopf bifurcation430

and to the steady-state bifurcation shown in Figs. 6 and 7, respectively.431

3 Perturbing Circulatory Systems432

3.1 Shieh–Masur Shaft with Dissipative Forces433

Let us return to the model (20) of a rotating shaft by Shieh and Masur (1968) in the434

case when the shaft is non-rotating (� = 0) and take into account damping435

mü + μ1u̇ + k1u + βv = 0436

mv̈ + μ2v̇ + k2v − βu = 0 (41)437
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Separating time with u = ũeλt and v = ṽeλt and applying to the characteristic438

polynomial of the resulting system of two algebraic equations the Hurwitz stability439

criterion, we find that the trivial solution u = 0, v = 0 is stable asymptotically, if440

and only if441

(μ1 + μ2)
2(μ1μ2k1 − mβ2) + μ1μ2κ(κm + μ1(μ1 + μ2)) > 0,442

μ1 + μ2 > 0. (42)443

The stability conditions (42) ensure the exponential decay with time of all no-trivial444

solutions u(t) and v(t) of the Eq. (41).445

The conditions (42) have a complicated form in contrast to the undamped case446

corresponding to μ1 = 0 and μ2 = 0 when the shaft is stable at β2 < κ2/4. How the447

damped and undamped cases are connected? Does the undamped flutter condition448

always follow from the damped one in the limit of vanishing damping coefficients?449

Let us investigate.450

Equate the left side of Eq. (42)1 to zero and solve the resulting equation with451

respect to κ. Then assume in the result μ1 = bμ2 and consider its limit as μ2 → 0.452

This yields453

κ(b) = ±β

(√
b + 1√

b

)
, b = μ1

μ2
. (43)454

The function κ(b) has a minimum equal to 2β and a maximum equal to −2β at b = 1.455

This means that the threshold of stability of the dissipative system coincides with the456

threshold of the undamped system (κ2 = 4β2) in the limit of vanishing dissipation457

only if μ1 = μ2, or b = μ1/μ2 = 1.458

Let us expand κ(b) in a Taylor series in the vicinity of b = 1459

κ = ±2β ± β
(b − 1)2

4
+ o

(
(b − 1)2

)
. (44)460

Truncating the series and taking into account that b = μ1/μ2, we write461

κ(μ1,μ2) = ±2β ± β
(μ1 − μ2)

2

4μ2
2

. (45)462

Equation (45) is in the form zy2 = x2, which is the normal form of a surface in the463

Oxyz-space that has the Whitney umbrella singular point at the origin (Bottema 1956;464

Arnold 1972; Langford 2003; Kirillov and Verhulst 2010). The function z(x, y) =465

x2/y2 > 0 at all x, y except for the specific line x = 0, where z(0, y) = 0.466

In our case the line x = 0 is the line μ1 = μ2 in the (μ1,μ2)-plane, see Fig. 12467

where the stability domain (42) is shown with the two Whitney umbrella singu-468

lar points situated on the κ-axis at κ = ±2β. It is remarkable that a weak stiff-469

ness anisotropy in the presence of weak damping does not prevent the system from470

flutter when circulatory forces are acting, Fig. 12b. Indeed, at κ = 0 criterion (42)471
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154 O. N. Kirillov

Fig. 13 Stability map of the rotating shaft with k1 = 1, m = 1 (green lines) without dissipation
and (red curves) with dissipation when (left) dissipation coefficients are equal, μ1 = μ2 = 0.05,
(right) when μ1 = 0.07 and μ2 = 0.01. The asymptotic dashed lines are given by Eqs. (48) and
(49), respectively

yields stability beyond a hyperbolic branch in the first quadrant of the (μ1,μ2)-472

plane473

μ1μ2k1 − mβ2 > 0, (46)474

at some distance form the origin. Notice that stability condition (46) traces back to475

Kapitsa (1939) who derived it in his study of transition to supercritical speeds in a476

special high-frequency expansion turbine that he developed for liquefaction of air.477

As soon as the absolute value of the stiffness anisotropy increases, the stability478

domain comes closer to the origin and touches it in a cuspidal point exactly when479

κ = ±2β, Fig. 12c, i.e. at the Whitney umbrella singular points. We observe that480

at κ = ±2β there exists only one direction pointing to the stability domain from481

the origin, and this direction is along the line μ1 = μ2, in full agreement with (45).482

Decreasing dissipation along this line yields tending the critical flutter load smoothly483

to its values κ = ±2β for the undamped shaft. However, this is not true for all other484

directions, i.e. damping ratios b = μ1/μ2 different from 1.485

In fact, near the Whitney umbrella points the stability boundary behaves much
like a ruled surface, which has exactly two rulers μ1 = b±μ2, where

b± = 1 + κ2 − 4β2

2β2
± κ

√
κ2 − 4β2

2β2

at every κ such that κ2 > 4β2. Consequently, tending damping to zero along either486

of the two directions, μ1 = b±μ2, will result in the value of κ that does not coincide487

with the undamped values ±2β. The flutter load of the damped shaft has therefore488

a singular zero-dissipation limit at the Whitney umbrella points. At every damping489
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ratio, except for 1, the flutter load in the limit of vanishing dissipation differs by490

a finite value from the flutter load of the undamped system. This is the famous491

Ziegler–Bottema destabilization paradox (Ziegler 1952; Bottema 1956).492

Now we are prepared to answer how dissipation affects the conical flutter domain493

of the undamped shaft given by the Bulatovich flutter condition that is shown in494

Fig. (9)(right). From (43) an expression for the two lines in the (κ,β)-plane follows495

β = ±
√

μ1μ2

μ1 + μ2
κ. (47)496

The slope of the lines depends on the damping ratio in the manner dictated by the497

ruled surface geometry near the Whitney umbrella singularities. Indeed, for equal498

damping coefficients, μ1 = μ2, the lines (47) are499

β = ±
√

μ1μ2

μ1 + μ2
κ = ±1

2
κ. (48)500

They coincide with the flutter boundaries of the undamped system, Fig. 13(left). If501

we plot the stability domain (42) in the (κ,β)-plane for different damping coeffi-502

cients that satisfy the constraint μ1 = μ2, we will see that the stability boundary is503

a hyperbolic curve with the asymptotes (48). In the limit of vanishing dissipation504

such that μ1 = μ2 the stability boundary of the dissipative system degenerates into505

the cone κ2 = 4β2.506

However, taking the limit of vanishing dissipation at any other constraint on the507

damping coefficients, say, μ1 = 7μ2, results in the different conical domain with the508

boundaries509

β = ±
√

μ1μ2

μ1 + μ2
κ = ±

√
7

6
κ. (49)510

The flutter domain in the limit of vanishing dissipation given by the inequality 36β2 >511

7κ2 is therefore larger than the flutter domain of the undamped shaft, κ2 < 4β2,512

Fig. 13(right), providing an instructive example of a dissipation-induced instability513

(Bloch et al. 1994; Krechetnikov and Marsden 2007).514

3.2 A Circulatory System Perturbed by Dissipative Forces515

The Shieh and Masur (1968) shaft is a non-conservative system with two degrees of516

freedom illustrating the properties summarized in the remark by Leipholz (1987):517

“Independent works of Bottema (1956) and Bolotin (1963) for second-order systems518

has shown that in the non-conservative case and for different damping coefficients519

the stability condition is discontinuous with respect to the undamped case.”520
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156 O. N. Kirillov

Let us build a general theory proving this effect in a finite-dimensional mechan-521

ical system of arbitrary order under the action of positional conservative forces522

represented by a real symmetric matrix K = KT and positional non-conservative (or523

circulatory) forces with the real skew-symmetric matrix N = −NT :524

Mẍ + (K + N(q))x = 0. (50)525

The matrix of circulatory forces smoothly depends on a parameter q.526

Assuming solution to the problem (50) in the form x = u exp λt , we arrive at the527

eigenvalue problem528

L(λ, q)u := (K + N(q))u + λ2Mu = 0. (51)529

Let at the value of the parameter q = q0 there exist an algebraically double imagi-530

nary eigenvalue λ0 = iω0 with the Jordan block that satisfies the following equations531

(K + N(q0))u0 − ω2
0Mu0 = 0532

(K + N(q0))u1 − ω2
0Mu1 = −2iω0Mu0, (52)533

where u0 is an eigenfunction and u1 is an associated function at λ0.534

Note that the eigenfunction v0 and the associated function v1 at the eigenvalue535

λ0 = −iω0 are governed by the adjoint equations536

(K − N(q0))v0 − ω2
0Mv0 = 0537

(K − N(q0))v1 − ω2
0Mv1 = 2iω0Mv0. (53)538

Let us perturb the parameter q in the vicinity of q0 as539

q(ε) = q0 + εq1 + o(ε2). (54)540

Then,541

N(q(ε)) = N(q0) + εN1 + o(ε) (55)542

where N1 = ∂N
∂q

dq
dε

∣∣∣
ε=0

and543

λ(ε) = λ0 + λ1ε
1/2 + λ2ε + o(ε),544

u(ε) = u0 + z1ε
1/2 + z2ε + o(ε). (56)545

Substituting the expansions (55) and (56) into (51), we get546

(K + N(q0) + εN1 + o(ε))(u0 + z1ε
1/2 + z2ε + o(ε))547

+ (λ2
0 + 2ε1/2λ0λ1 + ε(2λ0λ2 + λ2

1) + o(ε))M(u0 + z1ε
1/2 + z2ε + o(ε))548

= 0. (57)549
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Collecting terms at ε0, ε1/2, and ε1 we obtain the equations550

(K + N(q0))u0 + λ2
0Mu0 = 0551

(K + N(q0))z1 + λ2
0Mz1 = −2λ0Mλ1u0 (58)552

(K + N(q0))z2 + λ2
0Mz2 = −2λ0λ1Mz1 − N1u0 − (2λ0λ2 + λ2

1)Mu0.553

Let (a, b) = b
T

a be an inner product of vectors a and b. Taking the inner product554

of the last of the Eq. (58) with the vector v0, we find555

((K + N(q0))z2, v0) + λ2
0(Mz2, v0) = −2λ0λ1(Mz1, v0) − (N1u0, v0)556

− (2λ0λ2 + λ2
1)(Mu0, v0). (59)557

In view of the property (Lu, v) = (u, L†v), where the adjoint matrix polynomial558

is just L† = K − N + λ
2
M, and taking into account that L†v0 = 0, we find559

2λ0λ1(Mz1, v0) + (N1u0, v0) + (2λ0λ2 + λ2
1)(Mu0, v0) = 0. (60)560

Observing that z1 = λ1u1 + C1u0 and (Mu0, v0) = 0 we arrive at the equation561

2λ0λ
2
1(Mu1, v0) + (N1u0, v0) = 0. (61)562

Hence,563

λ2
1 = i(N1u0, v0)

2ω0(Mu1, v0)
. (62)564

In these conditions with εN1 = ∂N
∂q

dq
dε

∣∣∣
ε=0

ε = ∂N
∂q

∣∣∣
q=q0

�q = N′
q�q we obtain565

λ(q) = iω0 ±
√

�q
i(N′

qu0, v0)

2ω0(Mu1, v0)
+ o(

√|�q|), (63)566

567

u(q) = u0 ± u1

√
�q

i(N′
qu0, v0)

2ω0(Mu1, v0)
+ o(

√|�q|), (64)568

569

v(q) = v0 ± v1

√
�q

i(N′
qu0, v0)

2ω0(Mu1, v0)
+ o(

√|�q|). (65)570

Therefore, we have approximations to the eigenvalues and eigenvectors of the571

undamped circulatory system in the vicinity of q = q0, i.e. in the vicinity of the572

flutter boundary corresponding to the reversible-Hopf bifurcation.573

Assume that at q < q0 the eigenvalues of the circulatory system are imaginary574

and at q > q0 the eigenvalues are complex-conjugate (instability).575
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158 O. N. Kirillov

Let us study how simple imaginary eigenvalues of a circulatory system change576

due to dissipative perturbation with the matrix D(p) where p = (p1, p2, . . . , pn)
T

577

and D(p = 0) = 0. Write the dissipatively perturbed eigenvalue problem (51)578

L(λ, q, p)u := (K + N(q))u(q) + λ(q)D(p)u(q) + λ2(q)Mu(q) = 0. (66)579

as well as its adjoint580

L†(λ, q, p)v := (K − N(q))v(q) + λ(q)D(p)v(q) + λ
2
(q)Mv(q) = 0. (67)581

We assume in the above equations that q is fixed such that q < q0.582

Let at p = 0 the eigenvalue problem (66) has a simple eigenvalue λ(q) = iω(q)583

with an eigenvector u(q). Assuming p = p(ε), where p(ε) = εp1 + o(ε), we obtain584

D(p(ε)) = εD1 + o(ε) (68)585

with D1 = ∑n
s=1

∂D
∂ ps

dps

dε

∣∣∣
ε=0

. Then, the eigenvalues of (66) are586

λ(ε) = λ(q) − (D1u(q), v(q))

2(Mu(q), v(q))
ε + o(ε). (69)587

In other words588

λ(q, p) = λ(q) −
∑n

s=1(D
′
ps

u(q), v(q))�ps

2(Mu(q), v(q))
+ o(‖�p‖). (70)589

Following Andreichikov and Yudovich (1974) we require590

n∑
s=1

(D′
ps

u(q), v(q))�ps = 0 (71)591

as a condition for the imaginary eigenvalue remain imaginary after a dissipative592

perturbation. This means that we approximately stay on the neutral stability surface593

after the dissipative perturbation. Eq. (71) gives an exact linear approximation to the594

neutral stability surface at every q < q0, if we know exactly the dependencies u(q),595

v(q) and λ(q). Usually, however, these functions are determined numerically, see596

e.g. Andreichikov and Yudovich (1974); Luongo et al. (2016).597

Kirillov (2007, 2013a) proposed to use in the method of Andreichikov and598

Yudovich (1974) approximations to u(q), v(q) and λ(q) in the vicinity of q = q0599

such as those given by Eqs. (63), (64) and (65). Substituting them into (71), we600

express the approximate critical flutter load explicitly as601
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Fig. 14 The Kelvin gyrostat (Thomson 1880)

q = q0 + 1

λ2
1

( ∑n
s=1(D

′
ps

u0, v0)�ps∑n
s=1[(D′

ps
u0, v1) + (D′

ps
u1, v0)]�ps

)2

. (72)602

In the particular case of n = 2 parameters we assume that �p1 = β�p2. Intro-603

ducing the quantity604

β0 = − (D′
p2

u0, v0)

(D′
p1

u0, v0)
, (73)605

we can write q(β) retaining only the terms of order (β − β0)
2 and lower:606

q = q0 + λ−2
1 (D′

p1
u0, v0)

2(β − β0)
2

[(D′
p1

u0, v1)β0 + (D′
p1

u1, v0)β0 + (D′
p2

u0, v1) + (D′
p2

u1, v0)]2
. (74)607

Therefore, we have derived a general analogue of the expression (44), which gives the608

quadratic approximation to the vanishing-dissipation limit of the critical flutter load,609

q(β), in the vicinity of β = β0 in a rigorous sense. This approximation is sufficient to610

capture the Whitney umbrella singularity that is responsible for the Ziegler–Bottema611

destabilization paradox.612
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160 O. N. Kirillov

4 Krein Signature and Stability of Hamiltonian Systems613

An attempt to spin a hard-boiled egg always ends up successfully: when spun suffi-614

ciently rapidly, its symmetry axis can even rise to the vertical position demonstrating615

a gyroscopic stabilization. The mathematical model of this effect is the rotating solid616

prolate spheroid known as Jellett’s egg, see e.g. Kirillov (2013a). In contrast, trying617

to spin a raw egg containing a yolk inside, surrounded by a liquid, will generally lead618

to its slow wobbling motion.619

Thomson (1880) experimentally demonstrated that a thin-walled and slightly620

oblate spheroid completely filled with liquid remains stable if rotated fast enough621

about a fixed point, which does not happen if the spheroid is slightly prolate, Fig. 14.622

In the same year this observation was confirmed theoretically by Greenhill (1880),623

who found that rotation around the center of gravity of the top in the form of a624

weightless ellipsoidal shell completely filled with an ideal and incompressible fluid,625

is unstable when a < c < 3a, where c is the length of the semiaxis of the ellipsoid626

along the axis of rotation and the lengths of the two other semiaxes are equal to a627

(Greenhill 1880).628

Quite similarly, bullets and projectiles fired from the rifled weapons can relatively629

easily be stabilized by rotation, if they are solid inside. In contrast, the shells, contain-630

ing a liquid substance inside, have a tendency to turn over despite seemingly revolved631

fast enough to be gyroscopically stabilized. Motivated by such artillery applications,632

in 1942 Sobolev, then director of the Steklov Mathematical Institute in Moscow,633

considered stability of a rotating heavy top with a cavity entirely filled with an ideal634

incompressible fluid (Moiseyev and Rumyantsev 1968; Ramodanov and Sidorenko635

2017)—a problem that is directly connected to the classical XIXth century models636

of astronomical bodies with a crust surrounding a molten core (Stewartson 1959).637

For simplicity, the solid shell of the top and the domain V occupied by the cavity638

inside it, can be assumed to have a shape of a solid of revolution. They have a common639

symmetry axis where the fixed point of the top is located. The velocity profile of the640

stationary unperturbed motion of the fluid is that of a solid body rotating with the641

same angular velocity � as the shell around the symmetry axis.642

Following Sobolev, we denote by M1 the mass of the shell, M2 the mass of the643

fluid, ρ and p the density and the pressure of the fluid, g the gravity acceleration,644

and l1 and l2 the distances from the fixed point to the centers of mass of the shell645

and the fluid, respectively. The moments of inertia of the shell and the ‘frozen’ fluid646

with respect to the symmetry axis are C1 and C2, respectively; A1 (A2) stands for647

the moment of inertia of the shell (fluid) with respect to any axis that is orthogonal648

to the symmetry axis and passes through the fixed point. Let, additionally,649

L = C1 + C2 − A1 − A2 − K

�2
, K = g(l1 M1 + l2 M2). (75)650

The solenoidal (div v = 0) velocity field v of the fluid is assumed to satisfy the651

no-flow condition on the boundary of the cavity: vn|∂V = 0.652
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Stability of the stationary rotation of the top around its vertically oriented sym-653

metry axis is determined by the system of linear equations derived by Sobolev in654

the frame (x, y, z) that has its origin at the fixed point of the top and rotates with655

respect to an inertial frame around the vertical z-axis with the angular velocity of the656

unperturbed top, �. If the real and imaginary part of the complex number Z describe657

the deviation of the unit vector of the symmetry axis of the top in the coordinates x ,658

y, and z, then these equations are, see e.g. Kopachevskii and Krein (2001); Kirillov659

(2013a):660

d Z

dt
= i�W,661

(A1+ρκ2)
dW

dt
= i�L Z + i�(C1−2A1+ρE)W662

+ iρ
∫

V

(
vx

∂χ

∂y
− vy

∂χ

∂x

)
dV,663

∂tvx = 2�vy − ρ−1∂x p + 2i�2W∂yχ,664

∂tvy = −2�vx − ρ−1∂y p − 2i�2W∂xχ,665

∂tvz = −ρ−1∂z p, (76)666

where 2κ2 = ∫
V |∇χ|2dV , E = i

∫
V

(
∂xχ∂yχ − ∂yχ∂xχ

)
dV , and the function χ is667

determined by the conditions668

∇2χ = 0, ∂nχ|∂V = z(cos nx + i cos ny) − (x + iy) cos nz, (77)669

with n the absolute value of a vector n, normal to the boundary of the cavity.670

Sobolev realized that some qualitative conclusions on the stability of the top can671

be drawn with the use of the bilinear form672

Q(R1, R2) = L�Z1 Z2 + (A1 + ρκ2)W1W 2 + ρ

2�2

∫
V

vT
2 v1dV (78)673

on the elements R1 and R2 of the space {R} = {Z , W, v}. The linear operator B674

defined by Eq. (76) that can be written as d R
dt = i B R has all its eigenvalues real675

when L > 0, which yields Lyapunov stability of the top. The number of pairs of676

complex-conjugate eigenvalues of B (counting multiplicities) does not exceed the677

number of negative squares of the quadratic form Q(R, R), which can be equal only678

to one when L < 0. Hence, for L < 0 an unstable solution R = eiλ0t R0 can exist679

with Imλ0 < 0; all real eigenvalues are simple except for maybe one (Kopachevskii680

and Krein 2001).681

In the particular case when the cavity is an ellipsoid of rotation with the semi-axes682

a, a, and c, the space of the velocity fields of the fluid can be decomposed into a683

direct sum of subspaces, one of which is finite-dimensional. Only the movements684

from this subspace interact with the movements of the rigid shell, which yields a685

finite-dimensional system of ordinary differential equations that describes coupling686

between the shell and the fluid.687
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162 O. N. Kirillov

Calculating the moments of inertia of the fluid in the ellipsoidal container

C2 = 8πρ

15
a4c, A2 = l2

2 M2 + 4πρ

15
a2c(a2 + c2),

denoting m = c2−a2

c2+a2 , and assuming the field v = (vx , vy, vz)
T in the form

vx = (z − l2)a
2mξ, vy = −i(z − l2)a

2mξ, vz = −(x − iy)c2mξ,

one can eliminate the pressure in Eq. (76) and obtain the reduced model688

dx
dt

= i�A−1Cx = i�Bx, (79)689

where x = (Z , W, ξ)T ∈ C
3 and690

A =
⎛
⎝ 1 0 0

0 A1+l2
2 M2+ 4πρ

15 a2c (c2−a2)2

c2+a2 0
0 0 c2 + a2

⎞
⎠ ,691

C =
⎛
⎝ 0 1 0

L C1−2A1−2l2
2 M2− 8πρ

15 a2c3m2 − 8πρ
15 a4c3m2

0 −2 −2a2

⎞
⎠ . (80)692

The matrix B �= BT in Eq. (79) after multiplication by a symmetric matrix693

G =
⎛
⎜⎝

L 0 0
0 A1+l2

2 M2+ 4πρ
15 a2c (c2−a2)2

c2+a2 0

0 0 4πρ
15 a4c3 (c2−a2)2

c2+a2

⎞
⎟⎠ (81)694

yields a Hermitian matrix GB = (GB)
T

, i.e. B is a self-adjoint operator in the space695

C
3 endowed with the metric696

[u, u] := (Gu, u) = uT Gu, u ∈ C
3, (82)697

which is definite when L > 0 and indefinite with one negative square when L < 0.
If λ is an eigenvalue of the matrix B, i.e. Bu = λu, then uT GBu = λuT Gu. On the

other hand, uT (GB)T u = λ uT Gu = λ uT Gu. Hence,

(λ − λ)uT Gu = 0,

implying uT Gu = 0 on the eigenvector u of the complex λ �= λ. For real eigenvalues698

λ = λ and uT Gu �= 0. The sign of the quantity uT Gu can be different for different699

real eigenvalues.700
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Classical Results and Modern Approaches to Nonconservative Stability 163

(a) (b)

Fig. 15 a Simple real eigenvalues (83) of the Sobolev’s top in the Greenhill’s case for a = 1 with
(red) uT Gu > 0 and (green) uT Gu < 0. b At simple complex-conjugate eigenvalues (black) and
at the double real eigenvalue λd we have uT Gu = 0

For example, when the ellipsoidal shell is massless and the supporting point is at701

the center of mass of the system, then A1 = 0, C1 = 0, M1 = 0, l2 = 0. The matrix B702

has thus one real eigenvalue (λ+
1 = −1, u+

1
T Gu+

1 > 0) and the pair of eigenvalues703

λ±
2 = −1

2
± 1

2

√
1 + 32πρ

15

ca4

L
, L = 4πρ

15
a2c(a2 − c2), (83)704

which are real if L > 0 and can be complex if L < 0. The latter condition together705

with the requirement that the radicand in Eq. (83) is negative, reproduces the706

Greenhill’s instability zone: a < c < 3a (Greenhill 1880). With the change in c,707

the real eigenvalue λ+
2 with u+

2
T Gu+

2 > 0 collides at c = 3a with the real eigenvalue708

λ−
2 with u−

2
T Gu−

2 < 0 into a real double defective eigenvalue λd with the algebraic709

multiplicity two and geometric multiplicity one, see Fig. 15. Note that ud
T Gud = 0,710

where ud is the eigenvector at λd .711

Therefore, in the case of the ellipsoidal shapes of the shell and the cavity, the712

Hilbert space {R} = {Z , W, v} of the Sobolev’s problem endowed with the indef-713

inite metric (L < 0) decomposes into the three-dimensional space of the reduced714

model (79), where the self-adjoint operator B can have complex eigenvalues and715

real defective eigenvalues, and a complementary infinite-dimensional space, which716

is free of these complications. The very idea that the signature of the indefinite met-717

ric can serve for counting unstable eigenvalues of an operator that is self-adjoint718

in a functional space equipped with such a metric, turned out to be a concept of719

a rather universal character possessing powerful generalizations that were initiated720

by Pontryagin in 1944 (Yakubovich and Starzhinskii 1975; Kopachevskii and Krein721

2001).722
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164 O. N. Kirillov

4.1 Canonical and Hamiltonian Equations723

Following Yakubovich and Starzhinskii (1975), we consider a complex vector space724

C
n with the inner product (x, y) = yT x. Define an indefinite inner product in C

n as725

[x, y] = (Gx, y) = yT Gx, (84)726

where G = G
T

(det G �= 0) is an arbitrary (neither positive nor negative definite)727

Hermitian n × n matrix. Hence, [x, x] is real but in contrast to (x, x) it can be positive,728

negative, or zero for x �= 0.729

The matrix A+ with the property730

[Ax, y] = [x, A+y] (85)731

is said to be G-adjoint to A. From Eq. (85) it follows that732

A+ = G−1A
T

G. (86)733

A differential equation734

i−1G
dz
dt

= Hz, (87)735

where H is Hermitian, is called Hamiltonian equation. The matrix A = iG−1H736

yields737

[Ax, y] = −[x, Ay], (88)738

i.e. A+ = −A, and is called the G-Hamiltonian matrix (Yakubovich and Starzhinskii739

1975; Zhang et al. 2016). In terms of the G-Hamiltonian matrix A, the Hamiltonian740

system (87) takes the form741

dz
dt

= Az. (89)742

Since A = −G−1A
T

G, the matrices −A
T

and A have the same spectrum. Con-743

sequently, if λ is an eigenvalue of A, then so is −λ. Hence, the spectrum of a744

G-Hamiltonian matrix is symmetric about the imaginary axis. The eigenvalue λ lies745

on the imaginary axis if and only if λ = −λ (Yakubovich and Starzhinskii 1975).746

Let I be the unit k × k-matrix and747

J =
(

0 −I
I 0

)
= −J−1, (90)748

the canonical symplectic matrix. The n × n matrix G = iJ, where n = 2k, is749

Hermitian: G
T = iJT = −i(−J) = iJ = G. With G = iJ and H = HT real, the750

Hamiltonian equation (87) reduces to751
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Classical Results and Modern Approaches to Nonconservative Stability 165

J
dx
dt

= Hx (91)752

that is referred to as the canonical equation, whereas the indefinite inner product753

takes the form (Yakubovich and Starzhinskii 1975).754

[x, y] = yT (iJ)x = iyT Jx. (92)755

The canonical Hamiltonian linear equation (91) describe motion of a system with756

k degrees of freedom757

dxs

dt
= ∂H

∂xk+s
,

dxk+s

dt
= −∂H

∂xs
, s = 1, . . . , k, (93)758

where xs are generalized coordinates and xk+s are generalized momenta. The759

quadratic form H = 1
2 (Hx, x), where xT = (x1, . . . , x2k), is referred to as a Hamil-760

tonian function. The real symmetric 2k × 2k-matrix H of the quadratic form H is761

called the Hamiltonian (Yakubovich and Starzhinskii 1975).762

Seeking for the solution to Eq. (91) in the form x = u exp(λt), we find763

Hu = λJu. (94)764

From Eqs. (92) and (94) it follows that if λ is a pure imaginary eigenvalue with the765

eigenvector u of the (iJ)-Hamiltonian matrix J−1H, then766

(Hu, u) = Imλ [u, u]. (95)767

Since J and H are real matrices and the eigenvalues of a (iJ)-Hamiltonian matrix768

are symmetric with respect to the imaginary axis, the spectrum of the matrix J−1H769

is symmetric with respect to both real and imaginary axes of the complex plane.770

Theorem 4.1 Let λ be an eigenvalue of the eigenvalue problem (94). Then so771

is its complex conjugate, λ, and −λ. Hence, for a canonical Hamiltonian linear772

equation (91) the eigenvalues come in singlets {0}, doublets {λ,−λ} with λ ∈ R or773

λ ∈ iR, or quadruplets {λ,−λ,λ,−λ}. The algebraic multiplicity of the eigenvalue774

λ = 0 is even.775

Consequently, the equilibrium x = 0 of the system (91) is Lyapunov stable, if776

and only if the eigenvalues λ of the eigenvalue problem (94) are pure imaginary and777

semi-simple (Yakubovich and Starzhinskii 1975).778

4.2 Krein Signature of Eigenvalues779

Let λ (Reλ = 0) be a simple pure imaginary eigenvalue of a G-Hamiltonian matrix780

A and u be a corresponding eigenvector:781
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166 O. N. Kirillov

Au = λu. (96)782

Definition: A simple pure imaginary eigenvalue λ = iω with the eigenvector u is783

said to have positive Krein signature if [u, u] > 0 and negative Krein signature784

if [u, u] < 0.785

Let, further, λ (Reλ = 0) be a multiple pure imaginary eigenvalue of a G-786

Hamiltonian matrix A, and let Lλ be the eigensubspace of A belonging to the eigen-787

value λ, i.e. the set of all u ∈ C
n satisfying Eq. (96). If [u, u] > 0 for any u ∈ Lλ788

(u �= 0), then λ is a multiple eigenvalue with positive Krein signature and the eigen-789

subspace Lλ is positive definite; if [u, u] < 0, λ is a multiple eigenvalue with negative790

Krein signature and the eigensubspace Lλ is negative definite. In such cases the mul-791

tiple eigenvalue is said to have definite Krein signature. If there exists a vector u ∈ Lλ792

(u �= 0) such that [u, u] = 0, the multiple pure imaginary eigenvalue λ is said to have793

mixed Krein signature (Yakubovich and Starzhinskii 1975).794

Note that in case when a multiple pure imaginary eigenvalue λ0 of A has geometric795

multiplicity that is less than its algebraic multiplicity, then there is an eigenvector u0796

at λ0 such that [u0, u0] = 0, i.e. λ0 has mixed Krein signature. Indeed, there exists at797

least one associated vector u1: Au1 = λ0u1 + u0, where Au0 = λ0u0. Taking into798

account the property (88), we obtain (Kirillov 2013a)799

[Au0, Au1] = − [
u0, A2u1

] = −λ
2
0[u0, u1] − 2λ0[u0, u0]800

= λ0λ0 [u0, u1] + λ0 [u0, u0] , (97)801

which yields802

[u0, u0] = 0 (98)803

since λ0 = −λ0 (Yakubovich and Starzhinskii 1975). On the other hand, if λ0 �= −λ0

then [u0, u0] = 0 for any eigenvector u0 at λ0, which follows from the identity

[Au0, Au0] = λ0λ0 [u0, u0] = − [
u0, A2u0

] = λ
2
0 [u0, u0] .

Therefore, a multiple pure imaginary eigenvalue can have definite Krein signature804

only if it is semi-simple.805

4.3 Krein Collision or Linear Hamiltonian-Hopf Bifurcation806

Let in the eigenvalue problem (94) the matrix H smoothly depend on a vector of real807

parameters p ∈ R
m : H = H(p). Let at p = p0 the matrix H0 = H(p0) has a double808

pure imaginary eigenvalue λ = iω0 (ω0 ≥ 0) with the Jordan chain consisting of the809

eigenvector u0 and the associated vector u1. Hence,810

H0u0 = iω0Ju0, H0u1 = iω0Ju1 + Ju0. (99)811
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Classical Results and Modern Approaches to Nonconservative Stability 167

Transposing Eq. (99) and applying the complex conjugation yields812

uT
0 H0 = iω0uT

0 J, uT
1 H0 = iω0uT

1 J − uT
0 J. (100)813

As a consequence, uT
1 Ju0 + uT

0 Ju1 = 0, i.e.814

[u0, u1] = −[u1, u0]. (101)815

Varying the vector of parameters along the curve p = p(ε) (p(0) = p0) and816

applying the perturbation formulas for double eigenvalues that can be found e.g.817

in Kirillov (2013a, 2017), we obtain818

λ± = iω0 ± iω1
√

ε + o(ε1/2), u± = u0 ± iω1u1
√

ε + o(ε1/2) (102)819

under the assumption820

ω1 =
√

uT
0 H1u0

uT
1 Ju0

> 0, (103)821

where822

H1 =
m∑

s=1

∂H
∂ ps

dps

dε

∣∣∣∣
ε=0

. (104)823

When ε > 0, the double eigenvalue iω0 splits into two pure imaginary ones accord-824

ing to the formulas (102). Calculating the indefinite inner product for the perturbed825

eigenvectors u± by Eq. (92) and taking into account the conditions (98) and (101),826

we find (Kirillov 2013a, 2017)827

[u±, u±] = ±2ω1uT
1 Ju0

√
ε + o(ε1/2), (105)828

i.e. the simple pure imaginary eigenvalues λ+ and λ− have opposite Krein signatures.829

When ε decreases from positive values to negative ones, the pure imaginary eigen-830

values of opposite Krein signatures merge at ε = 0 to the double pure imaginary831

eigenvalue iω0 with the Jordan chain of length 2 that further splits into two complex832

eigenvalues, one of them with the positive real part.833

When ω0 �= 0, this process is known as the linear Hamiltonian-Hopf bifurcation834

(Langford 2003), the onset of flutter, non-semi-simple 1 : 1 resonance or the Krein835

collision (Kirillov 2013a).836

When ω0 = 0, a pair of pure imaginary eigenvalues of opposite Krein signatures837

colliding at zero and splitting then into a pair of real eigenvalues of different sign838

means the onset of the non-oscillatory instability or divergence known also as the839

linear steady-state bifurcation.840
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168 O. N. Kirillov

5 Dissipation-Induced Instabilities of Hamiltonian Systems841

5.1 The Kelvin-Tait-Chetaev Theorem842

Potential system of the form Mẍ + Kx = 0 with the mass matrix, M = MT , and the843

stiffness matrix, K = KT , can be transformed to the Hamiltonian form (91). Fur-844

thermore, this can be done also in the presence of velocity-dependent gyroscopic845

forces with the matrix G = −GT for the gyroscopic system Mẍ + Gẋ + Kx = 0.846

Gyroscopic forces can stabilize the otherwise unstable static equilibrium. This gyro-847

scopic stabilization can be lost in the presence of dissipation, as we all know from848

observing the behavior of rotating tops.849

This dissipation-induced instability of gyroscopic systems is formalized by the850

Kelvin-Tait-Chetaev theorem (Thomson and Tait 1879; Bloch et al. 1994; Krechet-851

nikov and Marsden 2007).852

Theorem 5.1 (Kelvin-Tait-Chetaev Theorem) Stability of solutions of the equation853

Mẍ + (G + D)ẋ + Kx = 0, (106)854

where M > 0, D = DT > 0 and K nondegenerate is the same as the stability of855

solutions of the corresponding potential system, Mẍ + Kx = 0. In particular, if all856

the eigenvalues of the real symmetric matrix K are positive (negative) then the system857

(106) is asymptotically stable (unstable).858

The number of eigenvalues with positive real parts of the system (106) is equal859

to the number of negative eigenvalues of the matrix K (Zajac Theorem, 1964). If the860

number of negative eigenvalues of K (known also as the Poincaré instability degree)861

is even, then the equilibrium of the corresponding potential system can be stabilized862

by the gyroscopic forces. However, this gyroscopic stabilization is destroyed when863

dissipative forces with full dissipation (D > 0) are added, no matter how weak they864

are Kirillov (2013a).865

Remarkably, the origin of the Kelvin-Tait-Chetaev theorem is in the centuries-866

old problem (going back to Newton) on the stability of rotating and self-gravitating867

masses of fluid motivated by the question of the actual shape of the Earth (Lebovitz868

1998; Borisov et al. 2009).869

5.2 Secular Instability of the Maclaurin Spheroids870

In 1742 Maclaurin has found that an oblate spheroid

x2

a2
1

+ y2

a2
2

+ z2

a2
3

= 1, a3 < a2 = a1
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Classical Results and Modern Approaches to Nonconservative Stability 169

Fig. 16 (Left) Families of Maclaurin spheroids and Jacobian ellipsoids in the plane of angular
velocity versus eccentricity with the common point at e ≈ 0.8127. (Right) Sequence of bifurcations
proposed by the fission theory of binary stars (Lebovitz 1987)

is a shape of relative equilibrium of a self-gravitating mass of inviscid fluid in a871

solid-body rotation about the z-axis, provided that the rate of rotation, �, is related872

to the eccentricity e =
√

1 − a2
3

a2
1

through the formula (Lebovitz 1998)873

�2(e) = 2e−3(3 − 2e2) sin−1(e)
√

1 − e2 − 6e−2(1 − e2). (107)874

A century later, Jacobi (1834) has discovered less symmetric shapes of relative
equilibria in this problem that are tri-axial ellipsoids

x2

a2
1

+ y2

a2
2

+ z2

a2
3

= 1, a3 < a2 < a1.

Later on Meyer (1842) and Liouville (1846) have shown that the family of Jacobi’s875

ellipsoids has one member in common with the family of Maclaurin’s spheroids at876

e ≈ 0.8127, see Fig. 16. The equilibrium with the Meyer-Liouville eccentricity is877

neutrally stable, Fig. 17.878

In 1860 Riemann established neutral stability of inviscid Maclaurin’s spheroids879

on the interval of eccentricities (0 < e < 0.9529..). At the Riemann point with the880

critical eccentricity e ≈ 0.9529 the Hamilton-Hopf bifurcation sets in and causes881

dynamical instability with respect to ellipsoidal perturbations beyond this point.882

A century later Chandrasekhar (1969) proposed a virial method to reduce the prob-883

lem to a finite-dimensional system, which stability is governed by the eigenvalues884

of the matrix polynomial885
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170 O. N. Kirillov

Li (λ) = λ2

(
1 0
0 1

)
+ λ

(
0 −4�

� 0

)
+
(

4b − 2�2 0
0 4b − 2�2

)
, (108)886

where �(e) is given by the Maclaurin law (107) and b(e) is as follows887

b =
√

1 − e2

4e5

{
e(3 − 2e2)

√
1 − e2 + (4e2 − 3)

(π

2
− tan−1(e−1

√
1 − e2)

)}
.

(109)888

The eigenvalues of the matrix polynomial (108) are889

λ = ±
(

i� ± i
√

4b − �2
)

. (110)890

Requiring λ = 0 we can determine the critical Meyer-Liouville eccentricity by
solving with respect to e the equation (Chandrasekhar 1969)

4b(e) = 2�2(e).

The critical eccentricity at the Riemann point follows from requiring the radicand in
(110) to vanish:

4b(e) = �2(e).

Remarkably, when891

�2(e) < 4b(e) < 2�2(e) (111)892

both eigenvalues of the stiffness matrix

(
4b − 2�2 0

0 4b − 2�2

)

are negative, i.e. the Poincaré instability degree of the equilibrium is even and equal893

to 2. Hence, the interval (111) corresponding to 0.8127.. < e < 0.9529.., which is894

stable according to Riemann, is, in fact, the interval of gyroscopic stabilization of895

the Maclaurin spheroids, Fig. 17.896

According to the Theorem 5.1 the gyroscopic stabilization of the equilibrium with897

nonzero Poincaré instability degree can be destroyed even by the infinitely small898

dissipation with the positive-definite damping matrix. In the words by Thomson and899

Tait (1879), “If there be any viscosity, however slight, in the liquid, the equilibrium900

[beyond e ≈ 0.8127] in any case of energy either a minimax or a maximum cannot901

be secularly stable”.902

The prediction made by Thomson and Tait (1879) has been verified quantita-903

tively only in the XX-th century by Roberts and Stewartson (1963). Using the virial904

approach Chandrasekhar (1969) reduced the linear stability problem to the study of905

eigenvalues of the matrix polynomial906
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Classical Results and Modern Approaches to Nonconservative Stability 171

Fig. 17 (Left) Frequencies and (right) growth rates of the eigenvalues of the inviscid eigenvalue
problem Li (λ)u = 0 demonstrating the Hamilton-Hopf bifurcation at the Riemann critical value of
the eccentricity, e ≈ 0.9529 and neutral stability at the Meyer-Liouville point, e ≈ 0.8127

Fig. 18 (Left) Frequencies and (right) growth rates of the (black lines) inviscid Maclaurin spheroids
and (green and red lines) viscous ones with μ = ν

a2
1

= 0.01. Viscosity destabilizes the gyroscopic

stabilization of the Maclaurin spheroids on the interval 0.8127 . . . < e < 0.9529 . . ., which is stable
in the inviscid case (Roberts and Stewartson 1963; Chandrasekhar 1969; Chandresekhar 1984)

Lv(λ) = λ2

(
1 0
0 1

)
+ λ

(
10μ −4�

� 10μ

)
+
(

4b − 2�2 0
0 4b − 2�2

)
, (112)907

where μ = ν
a2

1
and ν is the viscosity of the fluid. The operator Lv(λ) differs from the908

operator of the ideal system, Li (λ), by the matrix of dissipative forces 10λμI, where909

I is the 2 × 2 unit matrix.910
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172 O. N. Kirillov

Fig. 19 Paths of the eigenvalues in the complex plane for (left) viscous Maclaurin spheroids with
μ = ν

a2
1

= 0.002, (centre) Maclaurin spheroids without dissipation, and (right) inviscid Maclaurin

spheroids with radiative losses for δ = 0.05. The Krein collision of two modes of the non-dissipative
Hamiltonian system shown in the centre occurs at the Rieman critical value e ≈ 0.9529. Both types
of dissipation destroy the Krein collision and destabilize one of the two interacting modes at the
Meyer-Liuoville critical value e ≈ 0.8127

The characteristic polynomial written for Lv(λ) yields the equation governing the911

growth rates of ellipsoidal perturbations in the presence of viscosity:912

25�2μ2 + (Reλ + 5μ)2(�2 − Reλ2 − 10Reλμ − 4b) = 0. (113)913

The right panel of Fig. 18 shows that the growth rates (113) become positive beyond914

the Meyer-Liouville point. Indeed, assuming Reλ = 0 in (113), we reduce it to915

50μ2(�2 − 2b) = 0, meaning that the growth rate vanishes when �2 = 2b no mat-916

ter how small the viscosity coefficient μ is. But, as we already know, the equation917

�2(e) = 2b(e) determines exactly the Meyer-Liouville point, e ≈ 0.8127.918

It turns out, that the critical eccentricity of the viscous Maclaurin spheroid is equal919

to the Meyer-Liouville value, e ≈ 0.8127, even in the limit of vanishing viscosity,920

μ → 0, and thus does not converge to the inviscid Riemann value e ≈ 0.9529. This is921

nothing else but the Ziegler–Bottema destabilization paradox in a near-Hamiltonian922

dissipative system (Langford 2003; Krechetnikov and Marsden 2007; Kirillov 2007,923

2013a).924

Viscous dissipation destroys the Krein interaction of two modes at the Riemann925

critical point and destabilizes one of them beyond the Meyer-Liouville point, showing926

a typical for the destabilization paradox avoided crossing in the complex plane,927

Fig. 19(left).928

Thomson and Tait (1879) hypothesised that the instability, which is stimulated by929

the presence of viscosity in the fluid, will result in a slow, or secular, departure of930

the system from the unperturbed equilibrium of the Maclaurin family at the Meyer-931

Liouville point and subsequent evolution along the Jacobi family, as long as the latter932

is stable (Lebovitz 1998).933

Therefore, a rotating, self-gravitating fluid mass, initially symmetric about the axis934

of rotation, can undergo an axisymmetric evolution in which it first loses stability935
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Classical Results and Modern Approaches to Nonconservative Stability 173

Fig. 20 Critical eccentricity in the limit of vanishing dissipation depends on the damping ratio,
X , and attains its maximum (Riemann) value, e ≈ 0.9529 exactly at X = 1. As X tends to zero or
infinity, the critical value tends to the Meyer-Liouville value e ≈ 0.8127, (Lindblom and Detweiler
1977; Chandresekhar 1984)

to a nonaxisymmetric disturbance, and continues for a while evolving along a non-936

axisymmetric family toward greater departure from axial symmetry, Fig. 16; then it937

undergoes a further loss of stability to a disturbance tending toward splitting into two938

parts (Lebovitz 1998).939

Rigorous mathematical treatment of the fission theory of binary stars proposed940

by Thomson and Tait (1879) by Lyapunov and Poincaré has laid a foundation to941

modern nonlinear analysis. In particular, it has led Lyapunov to the development of a942

general theory of stability of motion (Borisov et al. 2009). As we remember, it is the943

Lyapunov stability theory that helped Nicolai and Ziegler to shed light on stability944

of nonconservative systems under circulatory forces.945

Chandrasekhar (1970) demonstrated that there exists another mechanism making946

the Maclaurin spheroid unstable beyond the Meyer-Liouville point of bifurcation,947

namely, the radiative losses due to emission of gravitational waves. However, the948

mode that is made unstable by the radiation reaction is not the same one that is made949

unstable by viscosity, Fig. 19(right).950

In the case of the radiative damping mechanism stability is determined by the
spectrum of the following matrix polynomial (Chandrasekhar 1970)

Lg(λ) = λ2 + λ(G + D) + K + N

that contains the matrices of gyroscopic, G, damping, D, potential, K, and noncon-
servative positional, N, forces

G = 5

2

(
0 −�

� 0

)
, D =

(
δ16�2(6b − �2) −3�/2

−3�/2 δ16�2(6b − �2)

)

K =
(

4b − �2 0
0 4b − �2

)
, N = δ

(
2q1 2q2

−q2/2 2q1

)
,
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174 O. N. Kirillov

where �(e) and b(e) are given by Eqs. (107) and (109). Explicit expressions for q1951

and q2 can be found in Chandrasekhar (1970).952

Lindblom and Detweiler (1977) studied the combined effects of gravitational953

radiation reaction and of viscosity on the stability of the Maclaurin spheroids. As we954

know, each of these dissipative effects induces a secular instability in the Maclaurin955

sequence past the Meyer-Liouville point of bifurcation. However, when both effects956

are considered together, the sequence of stable Maclaurin spheroids therefore reaches957

past the bifurcation point to a new point determined by the ratio of the strengths of958

the viscous and the radiative forces.959

Figure 20 shows the limit of the critical eccentricity as a function of the damping960

ratio in the limit of vanishing dissipation. This limit coincides with the inviscid961

Riemann point only at a particular damping ratio. At any other ratio, the critical962

value is below the Riemann one and tends to the Meyer-Liouville value as this ratio963

tends either to zero or infinity. Lindblom and Detweiler (1977) correctly attributed964

the cancellation of the secular instabilities to the fact that viscous dissipation and965

radiation reaction cause different modes to become unstable, see Fig. 19.966

Andersson (2003) relates the mode destabilized by the fluid viscosity to the pro-967

grade moving spherical harmonic that appears to be retrograde in the frame rotating968

with the fluid mass and the mode destabilized by the radiative losses to the retrograde969

moving spherical harmonic when it appears to be prograde in the inertial frame. This970

gives a link to destabilization of positive- and negative energy modes (Ostrovsky971

et al. 1986; Kirillov 2009, 2013a) as well as to the theory of the anomalous Doppler972

effect (Nezlin 1976; Ginzburg and Tsytovich 1979; Vesnitskii and Metrikin 1996).973

It is known (Nezlin 1976) that to excite the positive energy mode one must provide974

additional energy to the mode, while to excite the negative energy mode one must975

extract energy from the mode. The latter can be done by dissipation and the former976

by the nonconservative positional (curl) forces. Both are presented in the model by977

Lindblom and Detweiler (1977).978

The destabilization of a Hamiltonian system in the presence of two different types979

of non-Hamiltonian perturbations can be understood on the example of the general980

two-dimensional system981

ẍ(t) + (δD + �G)ẋ(t) + (K + νN)x(t) = 0, x ∈ R
2 (114)982

where δ, �, ν are scalar coefficients and matrices D > 0, K > 0 are real and sym-
metric, while matrices G and N are skew-symmetric as follows

G = N =
(

0 −1
1 0

)
.

This system is a conservative Hamiltonian system if δ = 0, � = 0, and ν = 0,983

which is statically unstable for K < 0 with the even Poincaré instability degree equal984

to 2. Adding gyroscopic forces with � > 0, keeps this system Hamiltonian and yields985

its stabilization if � > � f = √−κ1 + √−κ2, where κ1,2 < 0 are eigenvalues of K.986
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Classical Results and Modern Approaches to Nonconservative Stability 175

(a) (b)

Fig. 21 Given � = 0.3, the green lines depict (a) imaginary and (b) real parts of the eigenvalues
of the PT - symmetric problem with indefinite damping (116) as functions of the parameter �2 =
μ1 − μ2 = 2μ when k = 1. Red lines correspond to the eigenvalues of the problem (41) with k1 = 1,
κ = k2 − k1 = 0.1 and �1 = μ1 + μ2 = 0.1

Owing to the ‘reversible’ symmetry of its spectrum (MacKay 1991; Bloch et al.987

1994), the Hamiltonian system displays flutter instability via the collision of imagi-988

nary eigenvalues at � = � f and their subsequent splitting into a complex quadruplet989

as soon as � decreases below � f . This is the already familiar to us linear Hamilton-990

Hopf bifurcation.991

If δ > 0, ν > 0 the gyroscopic stability is destroyed at the threshold of the
classical-Hopf bifurcation (Kirillov 2007, 2013a)

�H ≈ � f + 2� f

(ω f trD)2

(
ν

δ
− tr(KD + (�2

f − ω2
f )D)

2� f

)2

,

where ω2
f = √

κ1κ2 and D > 0.992

The dependency of the new gyroscopic stabilization threshold just on the ratio993

ν/δ implies that the limit of �H as both ν and δ → 0 is higher than � f for all ratios994

except a unique one. Similarly to the case of nonconservative reversible systems,995

this happens because the classical Hopf and the Hamilton-Hopf bifurcations meet in996

the Whitney umbrella singularity that exists on the stability boundary of a nearly-997

Hamiltonian dissipative system and corresponds to the onset of the Hamilton-Hopf998

bifurcation (Bottema 1956; Arnold 1972; Langford 2003; Kirillov 2007, 2013a;999

Krechetnikov and Marsden 2007; Kirillov and Verhulst 2010).1000
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176 O. N. Kirillov

6 Stability in the Presence of Potential, Circulatory,1001

Gyroscopic and Dissipative Forces1002

Beletsky (1995) remarked that when potential, circulatory and gyroscopic forces are1003

present simultaneously, it becomes nontrivial to judge about stability. “The pairwise1004

interaction of arbitrary two of these [forces] results in the existence of stable domains1005

in the parameter space. However, the simultaneous action of all three effects always1006

results in instability!” (Beletsky 1995). Addition of dissipation entangles stability1007

analysis even more (Kirillov 2013a; Hagedorn et al. 2014; Kliem and Pommer 2017).1008

Here we present several examples illustrating these statements.1009

6.1 Rotating Shaft by Shieh and Masur (1968)1010

Let us return once again to the model (20) of a rotating shaft by Shieh and Masur1011

(1968) with damping but without circulatory forces1012

mü + μ1u̇ − 2�v̇ + (k1 − �2)u = 01013

mv̈ + μ2v̇ + 2�u̇ + (k2 − �2)v = 0. (115)1014

Although the literal meaning of the word ‘damping’ prescribes the coefficients1015

μ1 and μ2 to be nonnegative, it is instructive to relax this sign convention Kirillov1016

(2013b). Therefore, we consider the gyroscopic system (115) where the negative1017

sign of the damping coefficient corresponds to a gain and the positive one to a loss1018

(Karami and Inman 2011; Schindler et al 2011).1019

In mechanics, negative damping terms enter the equations of motion of moving1020

continua in frictional contact when the dependence of the frictional coefficient on1021

the relative velocity has a negative slope, which can be observed already in the1022

tabletop experiments with the singing wine glass (Kirillov 2009, 2013a). In physics,1023

a pair of coupled oscillators, one with gain and the other with loss, can naturally be1024

implemented as an LRC-circuit (Schindler et al 2011).1025

When μ1 = −μ2 = μ > 0 the gain and loss in Eq. (41) are in perfect balance. Let1026

us further assume that k1 = k2 = k:1027

mü + μu̇ − 2�v̇ + (k − �2)u = 01028

mv̈ − μv̇ + 2�u̇ + (k − �2)v = 0. (116)1029

Let us look at what happens with these equations when we change the direction of1030

time, assuming t → −t . Then,1031

mü − μu̇ + 2�v̇ + (k − �2)u = 01032

mv̈ + μv̇ − 2�u̇ + (k − �2)v = 0 (117)1033
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Classical Results and Modern Approaches to Nonconservative Stability 177

(a)
(b) (c)

Fig. 22 Stability domain of the rotating shaft by Shieh and Masur for k1 = 1, � = 0.3, and β = 0.
a The Plücker conoid in the (μ1,μ2,κ)-space and its slices in the μ1, μ2-plane with b κ = 0 and c
κ = 0.1. Open circles show locations of exceptional points (EPs) where pure imaginary eigenvalues
of the ideal PT -symmetric system (116) experience the nonsemisimple 1 : 1 resonance; green lines
are locations of the exceptional points where double nonsemisimple eigenvalues have negative real
parts

and we see that Eq. (116) are not invariant to the time reversal transformation (T).1034

The interchange of the coordinates as x ↔ y in Eq. (116) results again in Eq. (117),1035

which do not coincide with the original. Hence, the Eq. (116) are not invariant with1036

respect to the parity transformation (P).1037

Nevertheless, two negatives make an affirmative, and the combined PT-1038

transformation leaves the Eq. (116) invariant despite the T-symmetry and P-symmetry1039

not being respected separately. The spectrum of the PT-symmetric system (116) with1040

indefinite damping is symmetrical with respect to the imaginary axis on the complex1041

plane as it happens in Hamiltonian and reversible systems.1042

To see this, let us consider the eigenvalues λ of the problem (41) introducing
the new parameters �1 = μ1 + μ2, �2 = μ1 − μ2 and κ = k2 − k1. At �1 = 0 and
κ = 0 they represent the spectrum of the problem (116)

λ = ±1

4

√
2�2

2 − 16k1 − 16�2 ± 2
√

(16�2 − �2
2)(16k1 − �2

2)

where k1 = k and �2 = 2μ. In Fig. 21 the eigenvalues are shown by the green lines.1043

They are pure imaginary when |�2| < 4|�|. At the exceptional points (EPs), �2 =1044

±4�, the pure imaginary eigenvalues collide into a double defective one which with1045

the further increase in �2 splits into a complex-conjugate pair (flutter instability).1046

PT - symmetry can be violated by the asymmetry both in the stiffness distribution1047

κ �= 0 and in the balance of gain and loss �1 �= 0. In such a situation, the merging1048

of eigenvalues that was perfect for the PT-symmetric system (116) is destroyed. The1049

red eigencurves in Fig. 21 demonstrate the imperfect merging of modes that causes1050

a decrease of the stability interval with respect to that of the symmetric system (the1051

effect similar to the Ziegler–Bottema destabilization paradox in circulatory systems).1052
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178 O. N. Kirillov

Fig. 23 Imaginary and real parts of the roots of the characteristic equation (118) as a function of
the damping coefficient μ1 under the constraints (119) for k1 = 1, � = 0.03 and β = 0.03

The Routh–Hurwitz conditions applied to the characteristic polynomial of the1053

system (1.60) yield the domain of the asymptotic stability1054

μ1μ2κ
2 + (μ1 + μ2)(μ1μ2 + 4�2)(μ1κ + (μ1 + μ2)(k1 − �2)) > 01055

μ1 + μ2 > 0,1056

shown in Fig. 22a in the (μ1,μ2,κ)-space. The surface has a self-intersection along1057

the κ-axis that corresponds to a marginally stable conservative gyroscopic (Hamil-1058

tonian) system. More intriguing is that in the (κ = 0) - plane there exists another1059

self-intersection along the interval of the line μ1 + μ2 = 0 with the ends at the excep-1060

tional points (μ1 = 2�,μ2 = −2�) and (μ1 = −2�,μ2 = 2�), see Fig. 22b. This1061

is the interval of marginal stability of the oscillatory damped (PT-symmetric) gyro-1062

scopic system (116) with the perfect gain/loss balance. At the exceptional points, the1063

stability boundary has the Whitney umbrella singularities.1064

In the (κ = 0) - plane the range of stability is growing with the increase of the dis-
tance from the line μ1 + μ2 = 0, which is accompanied by detuning of the gain/loss
balance, Fig. 22b. Indeed, in this slice the boundary of the domain of asymptotic
stability is the hyperbola

(μ1 − μ2)
2 − (μ1 + μ2)

2 = 16�2.

At μ1 + μ2 = 0 it touches the two straight lines μ1 − μ2 = ±4�, every point of1065

which corresponds to a pair of double defective complex-conjugate eigenvalues with1066

real parts that are negative when μ1 + μ2 > 0, positive when μ1 + μ2 < 0, and zero1067

when μ1 + μ2 = 0:1068

λ = −μ1 + μ2

4
± 1

4

√
(μ1 + μ2)2 − 16(k1 − �2)
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(a) (b) (c)

Fig. 24 Stability domain of the rotating shaft by Shieh and Masur for k1 = 1, � = 0.03, β = 0.03.
a The ‘Viaduct’ in the (μ1,μ2,κ)-space and its slices in the (μ1,μ2)-plane with b κ = 0.06 and c
κ = 0.03 (Kirillov 2011a, b)

The two lines of exceptional points stem from the end points of the interval of1069

marginal stability of the PT - symmetric system and continue inside the asymptotic1070

stability domain of the near-PT-symmetric one (green lines in Fig. 22b).1071

The proximity of a set of defective eigenvalues to the boundary of the asymptotic1072

stability, that generically is characterized by simple pure imaginary eigenvalues, plays1073

an important role in modern nonconservative physical and mechanical problems.1074

Near this set the eigenvalues can dramatically change their trajectories in the complex1075

plane. For this reason, encountering double eigenvalues with the Jordan block and1076

negative real parts is considered as a precursor to instability.1077

The full model of Shieh and Masur (20) provides even more non-trivial example.1078

Indeed, its characteristic equation has the form1079

λ4 + (μ1 + μ2)λ
3 + (μ1μ2 + k1 + k2 + 2�2)λ2 (118)1080

+(k1μ2 + μ1k2 + 4�β − (μ1 + μ2)�
2)λ + (�2 − k1)(�

2 − k2) + β2 = 0.1081

Equation (118) is biquadratic in the case when1082

μ1 + μ2 = 0, κ = −4�β

μ1
, (119)1083

with κ = k2 − k1. If k1 > �2 and β > 0 then all the roots of Eq. (118) are imaginary1084

when1085

2� ≤ μ1 < 0,
4�β(k1 − �2)

β2 + (k1 − �2)2
< μ1 ≤ 2�. (120)1086

In Fig. 23 the imaginary eigenvalues are shown by black lines as functions of the1087

damping parameter μ1. At1088

μ1 = μd := 4�β(k1 − �2)

β2 + (k1 − �2)2
, κ = κd := −k1 + �2 − β2

k1 − �2
(121)1089
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180 O. N. Kirillov

there exists a double zero eigenvalue with the Jordan block, see Figs. 23 and 24a. In
the interval 0 < μ1 < μd there exist one positive and one negative real eigenvalue. In
Fig. 23 the eigenvalues with non-zero real parts are shown in red. In the (μ1,μ2,κ)-
space the exceptional points (EPs)

(−2�, 2�, 2β), (2�,−2�,−2β)

correspond to the double imaginary eigenvalues with the Jordan block

λ−2� = ±i
√

k1 − �2 + β, λ2� = ±i
√

k1 − �2 − β,

for μ1 = −2� and μ1 = 2�, respectively.1090

We see in Fig. 23 that changing the damping parameter μ1 we migrate from the1091

marginal stability domain to that of flutter instability by means of the collision of1092

the two simple pure imaginary eigenvalues as it happens in gyroscopic or circulatory1093

systems without dissipation. It is remarkable that such a behavior of eigenvalues is1094

observed in the gyroscopic system in the presence of dissipative and non-conservative1095

positional forces.1096

Let us now establish how in the (μ1,μ2,κ)-space the domain of marginal stability1097

given by the expressions (119) and (120) is connected to the domain of asymptotic1098

stability of the Eq. (118). Writing the Liénard and Chipart conditions for asymptotic1099

stability of the polynomial (118) we find1100

p1 := μ1 + μ2 > 0,1101

p2 := μ1μ2 + k1 + k2 + 2�2 > 0,1102

p4 := (�2 − k1)(�
2 − k2) + β2 > 0,1103

H3 := (μ1 + μ2)(μ1μ2 + k1 + k2 + 2�2)1104

× (
k1μ2 + μ1k2 + 4�β − (μ1 + μ2)�

2
)

1105

− (μ1 + μ2)
2((�2 − k1)(�

2 − k2) + β2)1106

− (k1μ2 + μ1k2 + 4�β − (μ1 + μ2)�
2)2 > 0. (122)1107

The surfaces p4 = 0 and H3 = 0 are plotted in Fig. 24a. The former is simply1108

a horizontal plane that passes through the point of the double zero eigenvalue with1109

the coordinates (μd ,−μd ,κd) and thus bounds the stability domain from below. The1110

surface H3 = 0 is singular because it has self-intersections along the portions of1111

the hyperbolic curves (119) selected by the inequalities (120). The curve of self-1112

intersection that corresponds to κ > 0 ends up at the EP with the double pure imag-1113

inary eigenvalue λ−2�.1114

Another curve of self-intersection has at its ends the EP with the double pure1115

imaginary eigenvalue λ2� and the point of the double zero eigenvalue, 02. In Fig. 24a1116

the curves of self-intersection are shown in red and the EP and 02 are marked by the1117

black and white circles, respectively. At the point 02 the surfaces p4 = 0 and H3 = 01118

intersect each other forming a trihedral angle singularity of the stability boundary1119
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with its edges depicted by red lines in Fig. 24a. The surface H3 = 0 is symmetric with1120

respect to the plane p1 = 0. Thus, a part of it that belongs to the subspace p1 > 01121

bounds the domain of asymptotic stability.1122

At the EPs, the boundary of the asymptotic stability domain has singular points1123

that are locally equivalent to the Whitney umbrella singularity. Between the two EPs1124

the surface H3 = 0 has an opening around the origin that separates its two sheets.1125

This window allows the flutter instability to exist in the vicinity of the origin for1126

small damping coefficients and small separation of the stiffness coefficients κ.1127

In Fig. 24b a cross-section of the surface H3 = 0 by the horizontal plane that1128

passes through the lower exceptional point is shown. The domain in grey indicates1129

the area of asymptotic stability. Its boundary has a cuspidal point singularity at the1130

EP. Although the very singular shape of the planar stability domain is typical in1131

the vicinity of the EP with the pure imaginary double eigenvalue with the Jordan1132

block, the unusual feature is the location of the EP that corresponds to non-vanishing1133

damping coefficients, Fig. 24b.1134

According to the theorems of (Bottema, 1955; Lakhadanov, 1975) the undamped1135

gyroscopic system with non-conservative positional forces is generically unstable,1136

see e.g. Beletsky (1995), Kirillov (2013a). By examining the slices of the surface1137

H3 = 0 at various values of κ one can see that the origin is indeed always unstable,1138

Fig. 24b, c. At κ = 0 the origin is unstable in the presence of the non-conservative1139

positional forces even when the rotation is absent (� = 0) according to the Merkin1140

theorem. Contrary to the situation known as the Ziegler–Bottema destabilization1141

paradox, in the Shieh–Masur model the tending of the damping coefficients to zero1142

along a path in the (μ1,μ2)-plane cannot lead to the set of pure imaginary spectrum1143

of the undamped system because in this model such a set corresponds to the non-1144

vanishing damping coefficients.1145

Therefore, the Shieh–Masur model provides a nontrivial example of a gyroscopic1146

system that can have all its eigenvalues pure imaginary in the presence of dissipative1147

and circulatory forces. The highly non-trivial shape of the discovered stability bound-1148

ary illustrates the peculiarities of stability of a system loaded by non-conservative1149

positional forces in their interplay with the dissipative, gyroscopic and potential ones.1150

6.2 Two-Mass-Skate (TMS) Model of a Bicycle1151

Kooijman et al. (2011) considered a reduced model of a bicycle with vanishing radii1152

of the wheels (that are replaced by skates), known under the name of the two-mass-1153

scate (TMS) bicycle. The deviation from the straight vertical equilibrium is described1154

by the leaning angle of the frame and the steering angle of the front wheel/skate that1155

are governed by the following system of two linear equations1156

Mẍ + vDẋ + gKx + v2Nx = 0, (123)1157

where dot denotes time differentiation,1158
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Fig. 25 The two-mass-skate
bicycle model (Kooijman
et al. 2011)

M =
(

m B z2
B + m H z2

H −m H uH zH

−m H uH zH m H u2
H

)
,1159

D =
(

0 −(m B xB zB + m H xH zH )/ŵ

0 (m H uH xH )/ŵ

)
,1160

K =
(

m B zB + m H zH −m H uH

−m H uH −m H uH sinλs

)
,1161

N =
(

0 −(m B zB + m H zH )/ŵ

0 (m H uH )/ŵ

)
, (124)1162

uH = (xH − w) cos λs − zH sin λs , ŵ = w/ cos λs and g denotes the gravity accel-1163

eration.1164

The model (123), (124) is nonconservative, containing dissipative, gyroscopic,1165

potential and circulatory forces. Curiously enough, Eq. (123) has a form that is typ-1166

ical in many fluid-structure interactions problems, where the parameter v would1167

correspond to the velocity of the flow either inside of a flexible pipe or around a1168

flexible structure (Mandre and Mahadevan 2010; Paidoussis 2016). This similarity1169

in the mathematical description suggests an analogy between the weaving bicycle1170

and fluttering flag, which is not very obvious.1171

In fact, Eq. (123) depends on 9 dimensional parameters:

w, v, λs, m B, xB, zB, m H , xH , zH

that represent, respectively, the wheel base, velocity of the bicycle, steer axis tilt,1172

rear frame assembly (B) mass, horizontal and vertical coordinates of the rear frame1173

assembly center of mass, front fork and handlebar assembly (H ) mass, and horizontal1174

and vertical coordinates of the front fork and handlebar assembly center of mass.1175

Choosing the wheelbase, w, as a unit of length, and introducing the Froude num-
ber, Fr, we find that, actually, the model depends on the following seven dimensionless
parameters:
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Fr = v√
gw

, μ = m H

m B
, ξB = xB

w
, ξH = xH

w
, ζB = zB

w
, ζH = zH

w
, λs .

We can assume that for realistic bicycles 0 ≤ μ ≤ 1. Notice that ζB ≤ 0 and ζH ≤ 01176

due to choice of the system of coordinates, Fig. 25.1177

Assuming the solution ∼ exp(σt) and introducing the dimensionless time τ =√
g
w

t such that the dimensionless eigenvalue is s = σ
√

w
g

, we write the characteristic

polynomial of the TMS bicycle model:

p(s) = a0s4 + a1s3 + a2s2 + a3s + a4,

with the coefficients1178

a0 = −(ζH tan λs − ξH + 1)ζ2
B,1179

a1 = Fr(ζBξH − ζHξB)ζB,1180

a2 = Fr2(ζB − ζH )ζB − ζB(ζB + ζH ) tan λs − (ξH − 1)(μζH − ζB),1181

a3 = −Fr(ξB − ξH )ζB,1182

a4 = −ζB tan λs − μ(ξH − 1). (125)1183

Notice that in the case when the coordinates of the masses m B and m H coincide:

ξH = ξB, ζH = ζB

the characteristic polynomial simplifies and factorizes as

p(s) = −(s2ζB + 1)(ζB(ζB tan λs − ξB + 1)s2 + ζB tan λs + μ(ξB − 1)).

Since ζB < 0 by definition, this immediately yields static instability (growth of the1184

leaning angle yielding capsizing of the bike).1185

Asymptotic Stability and Critical Froude Number1186

We study linear stability of the TMS bicycle with the Lienard–Chipart version of the1187

Routh–Hurwitz criterion (Kirillov 2013a). First, compute the Hurwitz determinants1188

of the characteristic polynomial1189

h1 = Fr(ζBξH − ζHξB)ζB,1190

h2 = FrζB f,1191

h3 = −Fr2ζ2
B(ζB − ζH )h,1192

h4 = Fr2ζ2
B(ζB − ζH )(tan(λs)ζB + μξH − μ)h, (126)1193
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where1194

f = −ζB(ζ2
BξH − ζ2

HξB) tan λs − ζH (ξH − 1)(ζBξH − ζHξB)μ1195

+ ζB(ζB − ζH )(ζBξH − ζHξB)Fr2 + ζBξB(ξH − 1)(ζB − ζH ) (127)1196

and1197

h = −ζBξBξH (ζB − ζH ) tan λs − ξH (ξH − 1)(ζBξH − ζHξB)μ1198

+ ζB(ξB − ξH )(ζBξH − ζHξB)Fr2 + ζBξB(ξH − 1)(ξB − ξH ). (128)1199

The Lienard–Chipart criterion requires that

a4 > 0, a3 > 0, a1 > 0, a0 > 0, h1 > 0, h3 > 0.

The relation h1 = a1 eliminates one of the inequalities and in view of that μ > 0,1200

ζB < 0, and ξB > 0 yields the following explicit conditions1201

ξH > 1 + ζH tan λs1202

ξH < 1 − ζB

μ
tan λs1203

ξH < ξB1204

ζH > ζB1205

Fr > Frc > 0, (129)1206

where the critical Froude number at the stability boundary is given by the expression1207

Fr2
c = ζB − ζH

ξB − ξH

ξBξH

ζBξH − ζHξB
tan λs + ξH − 1

ξB − ξH

ξH

ζB
μ − (ξH − 1)ξB

ζBξH − ζHξB
(130)1208

that follows from the condition h = 0.1209

At 0 ≤ Fr < Frc the bicycle is unstable by flutter demonstrating the weaving1210

motion (Kooijman et al. 2011)1211

Critical Fr for the Benchmark Bikes of Kooijman et al. (2011)1212

For the design determined by

w = 1 m, λs = 5π

180
rad, m H = 1 kg, m B = 10 kg,

xB = 1.2 m, xH = 1.02 m, zB = −0.4 m, zH = −0.2 m

the critical Froude number is1213

Fr1 = 0.9070641497, (131)1214
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Fig. 26 For w = 1 m, λs = 5π
180 rad, m H = 1 kg, m B = 10 kg, xB = 1.2 m, zB = −0.4 m (left)

stability diagram at Fr = Fr1 = 0.9070641497 with the circle corresponding to xH = 1.02 m and
zH = −0.2 m; (right) stability diagram at Fr = Frmin = 0.6999527422. Black circle denotes a point
with the coordinates (0.9716634870,–0.3238878290) given by (135)

which corresponds to the critical velocity of weaving1215

v1 = 2.841008324 m/s (132)1216

in accordance with the original result by Kooijman et al. (2011).1217

For the alternative design determined by

w = 1 m, λs = − 5π

180
rad, m H = 1 kg, m B = 10 kg,

xB = 0.85 m, xH = 1 m, zB = −0.2 m, zH = −0.4 m

the critical Froude number is1218

Fr2 = 0.8415708896, (133)1219

which corresponds to the critical velocity of weaving1220

v2 = 2.635877411 m/s (134)1221

in accordance with the original result by Kooijman et al. (2011). Notice that careful1222

analysis of the Lienard-Chipart criteria for the TMS bicycle proves the existence of1223

just two classes of self-stable TMS bikes that differ by the sign of λs , see Austin1224

Sydes (2018).1225
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Finding Designs that Minimize the Critical Fr1226

Let us fix λs , ξB , ζB , and μ and plot the stability domain specified by Eq. (129) in1227

the (ξH , ζH ) - plane at different values of Fr, Fig. 26.1228

This yields a vertical line ξH = ξB , a horizontal line ζH = ζB and an inclined1229

line ξH = 1 + ζH tan λs that form a rectangular triangle in the (ξH , ζH ) - plane,1230

Fig. 26. There is no stability outside of this triangle. On the other hand the condition1231

Fr = Frc defines two hyperbola-like curves, one of which always passes through1232

the right lower corner of the triangle and the other one always passes through a1233

point on the hypotenuse of the triangle shown by a black circle in Fig. 26. Solving1234

simultaneously equations ξH = 1 + ζH tan λs and Fr = Frc we find the coordinates1235

of this point to be1236

ξH = −ξB

ζB tan λs − ξB
, ζH = −ζB

ζB tan λs − ξB
. (135)1237

If we take, for instance1238

w = 1 m, λs = 5π
180 rad, m H = 1 kg, m B = 10kg,

xB = 1.2 m, zB = −0.4 m,
(136)1239

the branch of the curve Fr = Frc passing through the point (135) with the coordinates1240

(0.9716634870,−0.3238878290) lies partially inside the triangle, Fig. 26(left). The1241

area between this part and the hypotenuse is the stability domain, which for the TMS1242

bicycle is further restricted by the condition ζH < 0.1243

Can we change the design in order to minimize the critical Froude number? If we1244

plot the curve Frc(ξH , ζH ) = Fr at different values of Fr, we will see that the portion1245

of its branch passing through the point (135) and lying in the triangle tends to get1246

smaller as Fr decreases. At some Frmin the branch is tangent to the hypotenuse at the1247

point (135), and the stability domain disappears, Fig. 26(right).1248

Therefore, the design specified by the conditions (135) gives the minimum pos-
sible Froude number, beyond which the TMS bike becomes stable:

Fr2
min = (ζB tan λs − ξB)2 + μ

(ζB tan λs − ξB)(ζB tan λs − ξB + 1)
tan λs .

For instance, if we take parameters as in (136) and use (135) to find xH =
0.9716634870 m and zH = −0.3238878290 m, then we obtain the minimal Froude
number and the corresponding velocity of weaving

Frmin = 0.6999527422, vmin = 2.192316351 m/s

that indeed are smaller then that given by (131) and (132) for the benchmark TMS1249

bike in Kooijman et al. (2011).1250
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