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Abstract

Capillarity and wetting are the study of the interfaces that separate immiscible fluids and
their interaction with solid surfaces. The interest in understanding capillary and wetting
phenomena in complex geometries has grown in recent years. This is partly motivated by
applications, such as the micro-fabrication of surfaces that achieve a controlled wettability,
but also because of the fundamental role that the geometry of a solid surface can play in
the statics and dynamics of liquids that come into contact with it.

In this work, the statics and dynamics of liquids in contact with smooth, but non-
planar geometries is studied. The approach is theoretical, and include mathematical
modelling and numerical simulations using a new lattice-Boltzmann simulation method.
The latter can account for solid boundaries of arbitrary geometry and a variety of bound-
ary conditions relevant to experimental situations.

The focus is directed to two model systems. First, an analysis on the statics and
dynamics of a droplet inside wedge is performed, this is accomplished by proposing the
shape of the droplet, a new shape that will be referred in this document as a “liquid
barrel”. Using this assumption, the static position and shape of the droplet in response
to an external body force is predicted. Then, the analysis is extended to include to
dynamical situations in the absence of external forces, in which the translational motion
of the liquid barrel towards equilibrium it is described. The proposed analytical model
was validated by comparison with full 3D lattice-Boltzmann simulations and with recent
experimental results. The applicability of these ideas is materialised with the purpose of
achieving energy-invariant manipulation of a liquid barrel in a reconfigurable wedge.

As a second model system, the evaporation of a sessile droplet in contact with a wavy
solid surface was studied. Due to the non-planar solid topography, the droplet position in
equilibrium is restricted to a discrete set of positions. It is shown that when the amplitude
of the surface is sufficiently high, the droplet can suddenly readjust its shape and location
to a new equilibrium configuration. These events occur in a time-scale much shorter than
the evaporation time-scale, a “snap”. With numerical simulations and theoretical analysis,
the study reveals the causes for the snap transitions, which lie in shape bifurcations of
the droplet shapes, The analysis and results are compared against recent experiments of
droplets evaporating on smooth sinusoidal surfaces.

With the advent of low-friction surfaces, in which static friction is practically absent,
the mobility of droplets is close to ideal, and with this, predicting and controlling them
in static cases becomes a challenge. The analysis and results presented in this work can
be used for manipulating the position and defining the shape of droplets via the geometry
of their confinements.
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Introduction

The interest for understanding capillary phenomena has grown in recent years. This can
be attributed to the increasing number of applications that require a precise control and
manipulation of small volumes of fluids [1] and to the micro-fabrication of surfaces that
achieve controlled wettability [2]. At small scales, surface forces become comparable,
or even dominant, to volume forces. Therefore, capillarity, which studies the effects of
the interfaces of multicomponent fluids, becomes a key aspect in the behaviour of these
systems [3].

The forces that the interface of two liquids produce have drawn the attention of many
renowned mathematicians and scientists; attempts of a formal description of this phe-
nomenon can be traced back to the 18th century [4]. Interfacial forces are one of the most
astonishing manifestations of forces at a microscopic level, but are also elusive and diffi-
cult to treat. A major breakthrough in the modern theory of capillarity is due to van der
Waals [5]. In his doctoral thesis, he modelled the concentration of molecules by a mean
field approximation which led him to predict that the interface of a liquid coexisting with
a gas is necessarily smooth and that it carries an energy cost which is now understood as
surface energy or surface tension.

In order to minimise their surface energy, liquids can acquire stable closed shapes with-
out a container. As a requirement, the interface must have a constant mean curvature 3],
this implies the existence of an underlying symmetry in the surface energy. Depending
on the physical constraints, the energy in equilibrium of a capillary system may be in-
variant upon a continuous or a discrete transformation. In this work two possibilities
are explored: a droplet bridging two non-parallel planes, exhibiting energy invariance
upon continuous variation of the angle between the planes, and a sessile droplet on a
wavy surface, which relaxes to equilibrium by centring itself at either a peak or a trough
in the topography. Although these systems appear in a number of real-life situations,
their study, from a Theoretical Physics perspective, has remained relatively unexplored.
Moreover, they constitute archetypes whose understanding can lead to advances in more
complex situations.

The relevant aspects of the Theory of Capillarity that will give the foundations of our
analytical and numerical models is summarised in §1. This includes the thermodynamic
and mechanical aspects of capillarity.

In §2, a description and validation of the computer simulations that will be used is
presented as part of the methodology. For that, the lattice-Boltzmann method (LBM) was
chosen, which is a well-established numerical method that has proven to give an accurate
description when it comes to the details at a small scale for the behaviour of liquids or
gases and their interaction [6, 7, 8]. The LBM was enhanced to model open boundaries
and a new algorithm was introduced to model the wetting behaviour on solid surfaces of
an arbitrary shape.
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Then, for the system exhibiting continuous symmetry, in Part I, an analysis of the
statics and dynamics of a droplet inside a wedge is conducted. This analysis allows to
understand ways of manipulating droplets as a direct application. The analysis begins
in §3, by proposing the shape of the droplet: the liquid barrel. Then, in §4 numerical
simulations to validate the liquid barrel assumption are carried out. The simulations also
reveal further details of the motion of the droplet. In §5, the analytical model is compared
against experimental results to later on propose a direct application to these ideas.

In Part II, a system that exhibits a discrete symmetry is studied: a sessile droplet
on a wavy surface. Due to the patterned topography, the droplet finds equilibrium at a
discrete set of positions that depend on its volume. As a consequence, if the droplet is
changing in volume, it is observed to spontaneously reconfigure its shape and location to
find equilibrium, in a snap. In §6, lattice-Boltzmann simulations are carried out to study
this system, and in §7 an analytical model to study constructed with the aim of revealing
the causes for the snap transitions.

Finally, the general conclusions of this work are presented.



Chapter 1

Review of the Theory of Capillarity

1.1 Thermodynamics of Multiphase Fluids

Capillarity is the study of the interfaces between two immiscible fluids [3]. A starting
point for understanding capillarity is the thermodynamics of phase separation.

Consider a system composed of molecules of two different species. The components
can be labelled by an order parameter, ¢, which is defined as

¢<1£fn2—n1
- 9
n2+n1

(1.1)

where n; and ny are the particle number densities of the two species [9, 10]. The inter-
mediate values of the order parameter describe the relative concentrations of species in
a mixture. This concept can be used to describe single component fluids that undergo a
phase transition, in such a case, n; and ng correspond to the densities, e.g., of the vapour
and liquid phases, respectively.

In a fluid, the molecules are free to move and interact with each other through col-
lisions. If attractive interactions between two molecules of different species are weaker
than same-species interactions, the mixed state will have a higher energy compared to
the pure states |11, 12]. Therefore, mixed states are less stable, and, the system separates
into pure phases.

The thermal equilibrium of the system occurs when the temperature, 7', pressure, p,
and chemical potential, i, are equal in the two phases [11, 13|. To obtain the thermody-
namic quantities of the equilibrium state, Maxwell’s construction rule can be applied to
the p—¢ isotherm (see figure 1.1(a)) [14].}

Equivalently, equilibrium is reached when the Helmholtz free energy, F' = F(¢,T),
which is the relevant thermodynamic potential for fixed volume and temperature situa-
tions, is minimised. For a given number of molecules, the stationary values in the free
energy are obtained by writing

d[F(¢,T) = pog] = 0, (1.2)

where 1 is a Lagrange multiplier that is introduced to satisfy the constraint of a conserved
order parameter. As a consequence, Eq. 1.2 shows that py = dF/d¢, is the chemical

I Maxwell’s construction or equal-area rule is usually applied to the p—v isotherm, where v is the specific
volume; however, if the control parameter is ¢, the same procedure can be applied to the isotherm of its
conjugate variable, p.
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unstable
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Figure 1.1: (b) The chemical potential and (a) the Helmholtz free energy of a binary
mixture. The homogeneous mixture (dashed curves) has a higher energy than the inho-
mogeneous mixture (thick line). The equilibrium chemical potential, p, is such that the
signed area of the shaded region is zero.

potential of the coexisting phases, which is represented by the slope of the line that
interpolates the two pure states (see figure 1.1(b)).
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1.1.1 The Sharp-Interface Approximation

In the sharp-interface approximation, the Helmholtz free energy of a capillary system is
defined by [3, 15, 4],

AF € SdT — pdV + udN + ~vdA, (1.3)
where S, V', and N are the entropy, volume and number of particles, and v and A are the
surface tension and surface area of the interface, respectively. The first three terms in
Eq. (1.3) give the usual bulk contributions of the coexisting phases as described before,
whereas the last term corresponds to the energy cost for increasing the interface area by
dA. If creation of surface area results in work, then, -, is also a force per unit length that
pulls in direction parallel to the interface.

In a gently curved interface, surface tension produces a net force density,

f=—2vkn, (1.4)

where n; is the orthonormal vector to the interface, and k = V - n;/2 its mean curvature
(see figure 1.2(a)) [16]. Therefore, in equilibrium, f is balanced by a change in pressure,
Ap, which leads to the Young-Laplace condition |3, 16],

Ap = 29K. (1.5)
With the change in the pressure, the chemical potential varies accordingly by

2vK

A== (1.6)

where A¢ is the change of the order parameter across the interface. Eq. (1.6) is called
the Gibbs-Thomson condition |17, 16].

The contact of a fluid phase with a solid surface creates an interface, and with it, a
surface tension, 7y, thus adding the term 74dAg to the free energy. If two coexisting
fluids, e.g., 1 and 2, come in contact with a solid, the three interfaces meet at the triple
line (also called contact line). The angle of intersection of the fluid-fluid interface with
respect to the solid is called the contact angle, 6. At the contact line, the three surface
tensions compete. Then, equilibrium is possible if the forces balance (see figure 1.2(b)),
ie.,

v o8 b = Vo2 — V1, (1.7)
Po
f=-2ykh
14
A p=portp 6?7/
Ys1 YsZ

(a) (b)

Figure 1.2: Ilustration of (a) the Laplace pressure inside a spherical droplet and (b) the
equilibirum contact angle of a sessile droplet.
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where 0, is the equilibrium contact angle. Eq. (1.7) is called the Young-Drupé relation [18].
In situations where the temperature, number of molecules and volume are constant,
the free energy of two immiscible liquids in contact with a solid becomes

F =~A — ~Aq cos b, + const., (1.8)

where A and Ay, are the surface areas the fluid-fluid and the solid-fluid (phase 1) interfaces.
To produce Eq. (1.8), Egs. (1.3) and (1.7) are combined, it is also assumed that the total
surface area of the solid is constant. In the absence of the constant term, Eq. (1.8) will
be refer to as the interfacial energy.

1.1.2 The Diffuse-Interface Approximation

In reality, the transition between one phase to another cannot be infinitely sharp. Molecules
have an interaction potential energy which gradually fades out. In addition, due to ther-
mal fluctuations, the molecules of a liquid cannot remain packed. This implies that a sharp
interface cannot be in equilibrium [4], and consequently, the order parameter must change
smoothly, over a distance that depends on the range of interactions between molecules.
This characteristic length, which defines the width of a fluid-fluid interface, has been
measured to be only a few nanometres across for simple liquids and gases [4, 17, 19, 20].
Consequently, for many practical purposes, the sharp-interface formalism is a good ap-
proximation to treat capillary systems. However, it will be shown that there are factors
at the microscopic level that influence the physics at large scale [17], most notably, in the
motion of the contact lines. Therefore, a microscopic description is also necessary.

The long-range effects of the interaction between molecules is captured by considering
an energy contribution due to spatial variations in the order parameter [21, 16]. Therefore,
¢ = ¢(x), is now a scalar field, also called, the phase field. Henceforth, the Helmholtz
free energy of a binary mixture must depend on the phase field and on its gradients, i.e.,

Flo@) = [ wo.Vo)av+ [ co)as (19)

¢
o9
The first term is the volumetric contribution to the energy of the fluid mixture contained in
a domain (2. The second term is the contribution due to the interaction of fluid molecules
in contact with a bounding surface, 92 (e.g., a solid wall).

The free-energy density, ¥, in Eq. (1.9), can be modelled as [20, 19, 21]

1 1
U(6,V6) = B — 17 + oo — o + 3 K|V, (110

where B and K are a constants, and po and py are the reference chemical potential
and pressure. The first term in Eq. (1.10) is excess free energy, and gives the energy
contributions of short range interactions. The excess free energy, together with the next
two terms in Eq. (1.10), reproduce the dashed curve in figure 1.1(a) which corresponds
to the energy of a uniform binary system. The last term of Eq. (1.10) models the free
energy contribution due to phase-field gradients.

From Eq. (1.9), it is possible to calculate the chemical potential field,

def OF
pa) (L11)

= o+ Bo(¢* — 1) — KV, (1.12)
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and the pressure tensor field, [19, 15],

def

Pz) = [ou—¢]I+KVeVe (1.13)
= |po+ ;LBW —1)(3¢* + 1) — KoV?¢p — %K|V¢|2} I+ KV¢Vo, (1.14)

where | is the identity matrix.

For two phases separated by a flat interface in equilibrium, p(x) = o and V- P = 0.
Thus, the distribution of the phase field follows after solving the differential equations;
one finds the equilibrium profile

() = tanh {%} : (1.15)

where z is the normal coordinate to the interface, and

¢\ /K/B, (1.16)

is the interface thickness (see figure 1.3(a)).

For a flat interface profile (Eq. (1.15)), one finds that the pressure tensor, P, can be
decomposed into two different quantities: the pressure component normal to the interface
P, = P,,, and the pressure component tangential to the interface P = P,, = P, all
other components of the pressure tensor are zero. Using the solution of Eq. (1.15), these
read

P, (x) = po, (1.17)
which gives the equilibrium pressure of the mixture, and
Py(z) L B cosh { v }
x) = pyg — =B cos — .
As discussed in §1.1.1, P corresponds to a pulling force per unit length by the interface
(see figure 1.3(b)).

The transition from one phase to the other has an energy cost, [20]

(1.18)

= / N [(¢, Vo) — 1o + po] da. (1.19)

—0o0
This is the energy per unit area which is identified as the surface tension. For the flat
interface profile, this results in

2
7= 3V2KB, (1.20)

Graphically, this is equal to twice the shaded region in figure 1.1(a) and also equal between
the curves P, and P} in figure 1.3(b), i.e., one can also define the surface tension as [22, 23|

14 [(Pie) - Aa)) o (1.21)

Moreover, for gently curved interfaces, x < £~!, it can be shown that the Young-Laplace
(Eq. (1.5)) and Gibbs-Thomson (Eq. (1.6)) laws are reproduced [15, 24].
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Tr 0
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Figure 1.3: Profiles of (a) the order parameter and (b) the components of the pressure
tensor in the neighbourhood of a flat interface.

The second term in Eq. (1.9) is the surface contribution to the free energy, where ((¢)
is the binding energy of the fluid to the solid, i.e. [25, 26]

(@) =—x9, (1.22)

where the constant y, called the wetting potential, controls the energy cost incurred when
the fluid phases come in contact with a solid boundary. Using the standard tools of
Variational Calculus, this results in the equilibrium boundary condition,

Kh-Vé=y, (1.23)

where 1 is the normal vector to the surface pointing towards the solid.

Eq. (1.23) has the effect of altering the profile of the order parameter in the vicinity
of a boundary. It induces an increment in the energy of the fluid that is proportional to
the contact area with the solid |25, 26|, i.e., the surface tension of the solid with a fluid
phase. In equilibrium, one can show that the solid-fluid surface tensions obey

v 4X 3/2

Y

where the + (—) sign corresponds to phase 2 (1). Due to Eq. (1.13), it can be observed that
the component of the pressure tensor parallel to the solid surface produces an effective
pulling force per unit length, 7s.. From the balance of forces and the Young-Dupré
relation (Eq. (1.7)), the wetting potential be can expressed in terms of the contact angle,
Oe.,

1/2

X(00) = 2y sen(r/2— 09 { a0 [1 a6 } (1.25)

where a(f,) = cos[arccos(sin? 0, ) /3] |25, 26].
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1.2 Dynamics of Capillary Systems

1.2.1 The Navier-Stokes and Cahn-Hilliard Equations

Out of equilibrium, a gradient in the chemical potential will cause a diffusive current
— MV i, where the constant M is called the mobility. In addition, the phase field will be
advected by the velocity field, w. Therefore, the local conservation of ¢ is given by the
Cahn-Hilliard equation [20, 16]:

Op+u-Veo= MV (1.26)
The local conservation of momentum is governed by the Navier-Stokes equation, i.e.,
p(Ou+u-Vu)=—-V - -P+nViu+ f, (1.27)

where p and 7 are the local density and dynamic viscosity of the fluid, f is an external
force [27], and incompressibility is assumed, i.e.,

V-u=0, (1.28)

The local fluid mass density and kinematic viscosity, v aof n/p, is defined in terms of
the phase field via the profiles

and
v(w) = 2 o) + (1.30)

where p1, po, v1, and 15 are the saturation mass densities and kinematic viscosities of
phases 1 and 2.

1.2.2 Energy and Dissipation

The total energy of a coexisting fluid mixture in motion is the sum of the kinetic energy
and the Helmholtz free energy [27], i.e.,

1

E= 3 /Q p(x) v?(x) dV + Fp(x)], (1.31)

where u = |u|. As the fluid moves, energy will be dissipated to the surroundings. The
rate of change in the energy, &, can be obtained by writing the time derivative of € in
terms of ¢ and 4. Then, using the equations of motion (Egs. (1.26) and (1.27)), € can be
expressed as:

; 1
52—/{§UD:D+M\VM|2} dV
Q

1
—/ {[—piﬂl—i—P—nD}-u—M,uV,u}'ﬁdS,
o0 L [2

where D & Vu+WVuT, is called the deformation tensor [9]. The first integral in Eq. (1.32)
is a volume integral and corresponds to the total energy dissipation in the bulk of the

(1.32)
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fluid due to viscous friction and diffusion. The second integral in Eq. (1.32) is a surface
integral and is composed by two terms. The first of these corresponds to the flow of
mechanical energy at the boundary. The second term in the integrand corresponds to
change in energy due to the flow of the chemical potential across the boundary (e.g., due
to gain or loss of molecules). Often, the system might be closed, thus, energy exchange
with its surroundings is impossible. Then, the surface integral in Eq. (1.32) vanishes, and
dissipation occurs due to viscosity and diffusion in the bulk.

1.2.3 Flow Due to Interfaces

In the sharp-interface formalism, the domain of the fluid mixture is subdivided into sep-
arate phases. From a dynamical point of view, the interface is a surface of concentrated
capillary force, f. Each of this subdomains must be treated separately, however, they
must be joined by adequate boundary conditions. One condition states that the velocity
of the flow must be continuous across the interface, and thus, [28, 29|

Au(x;) =0, (1.33)

where A represents the discontinuity at the interface point, x;. Eq. (1.33) also describes
the boundary condition at a fluid-solid surface. On the other hand, the capillary forces
have an effect on the stresses of a free interface and produce a discontinuity [27, 29| given
by

Ap(x;) — A(nD)(x;) : nin; = 2yk. (1.34)

The first term in the left-hand side of Eq. (1.34) corresponds the pressure jump across the
interface, and the second term, gives the discontinuity due to viscous stresses. For a fluid
at rest, where D = 0, Eq. (1.34) reduces to the Young-Laplace condition (see Eq. (1.5)).

1.2.4 Overdamped Flow

If the flow is characterised by a low Reynolds number, Re &t pUL/n < 1, where U and
L are the characteristic velocities and length-scales of the capillary system, the inertial
terms in the Navier-Stokes equation (left-hand side of Eq. (1.27)) can be neglected, this
is called the overdamped regime [30, 27, 28|. In such a case, the Navier-Stokes equations
reduce to

0 = —Vp+nViu+ f, (1.35)
0 = V-u. (1.36)

Eq. (1.35) is called the Stokes equation. In the absence of external forces (f = 0), if
follows after taking the divergence of Eq. (1.35), that the pressure is a harmonic function,
ie.,

V?p = 0. (1.37)

Analogously, the vorticity, w L VAN u, which is a measure of the rotation of the flow, is
also a harmonic function, i.e.,

Viw = 0. (1.38)

Eqgs (1.35)—(1.38) form a linear set of partial differential equations for the vector field,
u(x), and the scalar field, p(x). This implies that, the superposition of solutions can be
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Table 1.1: List of free-space Green functions for the linearised viscous flow for two and

three dimensions. (T = |Z|, 2 — , and ¢ is the Levi-Civita symbol.)

| G(z,x) plx, ') Qz,x') T(x,x)
2D | —llog7 + %% 25 2e- 5 —4EET
3D :+2f 22 2% —(ZZZ

applied, and with this, a Green function, can be defined. For example, the flow field due
to a point force f(x) = fod(x — '), is given by

u(z) = %G(w — ) fo, (1.39)

where 0(x) is the three-dimensional Dirac delta function and G is the Green function.
Similarly, the vorticity, pressure and stress tensor fields are given by,

w(x) = %Q(w —x') - fo, (1.40)
p(x) = %p(m — ') - fo, (1.41)
T(x) = %T(a} —x') - fo. (1.42)

The corresponding Green functions, G, €2, p, and T, are summarised in table 1.1

1.2.5 Contact-Line Dynamics

A fundamental aspect of the theory of capillarity is the motion of contact lines [18, 31,
32, 33]. To formulate this problem, let us begin with the sharp-interface formalism.

Consider a fluid-fluid interface of characteristic length-scale ¢y;, reaching a solid sur-
face, and suppose fluid 1 is displacing fluid 2. Let us assume a stationary regime so that
the contact line is moving at a constant velocity, v. (see figure 1.4) [34].

If adhesion of the fluid molecules with the solid is expected, the fluid is at rest with
respect to the wall, this would require that the velocity of a contact line, v., should
vanish [35]. Under this assumption, the motion of the contact line would be impossible,
in other words, the displacement of the contact line would produce an infinite stress [36].
To alleviate this singularity, it has been proposed to allow the fluids to slide over the
solid surface [37] in a small region near the contact line of a characteristic length-scale,
Oy 34, 35]. Moreover, v is considered small enough so that the contact angle is in
equilibrium at the microscopic level. Nonetheless, further away from the contact line,
the slope of the interface will vary due to its local curvature until reaching ¢); where the
dynamic contact angle is defined.

According to Cox [34] and Voinov [35], the flow field shows a rolling structure (see
figure 1.4) (as described in the seminal experiments by Dussan and Davis [32, 36, 38|);
the flow is described by the relation [34, 35]

0
dv M VUcl O\
= log —, 1.43
o T @)~ 7 84, (1.43)




12 CHAPTER 1. REVIEW OF THE THEORY OF CAPILLARITY

\\\\\\\\ N

\\\\\\\\ \\3\\

UL OO
S

\
AL\
AN \\\\

Figure 1.4: Flow structure in the vicinity of a contact line, for a liquid (blue phase) and
a gas (white phase) of negligible viscosity (72 = 0). (a) Shows the flow velocity in the
reference frame of the triple line, therefore the solid surface moves at velocity v, to the
right; and (b) is settled in the reference frame of the solid, where the contact line is
advancing at v, to the left. The stream lines are depicted in grey and the magnitude of
the velocity field is plotted as blue arrows.

that predicts the dynamic contact angle, 6, for a given velocity of the contact line, v,
where

2sin 9[\2(9? — sin? ) + 20\ {I(7 — ¥) +sin® 9} + {(7 — )2 — sin® ¥}]

A02 — sin® 9){(r — V) + sind cos I} + { (7 — ¥)% — sin®* 9 }(9 — sin v cos )’
(1.44)

fov(9,\) =

and 7 is the viscosity of the fluid from which 6 is measured.

The length-scale £y, in Eq. (1.43), is a characteristic size beyond which the details of
the Cox-Voinov flow are no longer dominant. It is expected to extend from a few micros up
to a few millimetres depending on the details of the flow. On the other hand, at length-
scales bellow /., a purely hydrodynamic description fails to model the motion of the
contact lines. Therefore, a complementary theory is required to continue the description
of the physics at smaller scales, and thus set a value of £, depending on properties of the
fluids involved and the microscopic structure of the solid surface [33].

To continue the analysis from here on, a theory that models the behaviour of the con-
tact line at the microscopic level is necessary; this leads to the diffuse-interface formalism.
Within the diffuse-interface model, the motion of the contact line occurs by virtue of dif-
fusive currents caused by a local imbalance in the chemical potential field [39]. This is
because, while the velocity field vanishes at the solid-fluid interface by virtue of Eq. (1.33),
the diffusive term in Eq. (1.26) does not. This regularises the singularity that stems from
the no-slip boundary condition [40]. More specifically, a distortion of the equilibrium con-
figuration of the contact line will cause a change in the chemical potential Ay according
to the Gibbs-Thomson condition (see Eq. (1.6)). From Eq. (1.26), a small peak in the
chemical potential will result in the local evaporation of the phase field, whereas a dimple
will lead to condensation. As shown by [26], the combination of both features leads to a
region where the contact line “slips” past the solid surface, thus, identifying the origin of
0 [40, 41, 42, 43].

Several authors have studied the dependence of ¢, on the diffuse-interface model
parameters [41, 42, 44, 40]. Kusumaatmaja [45] showed the existence of two scaling
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regimes in relation to the interface width, ¢, the mobility, M, and the average viscosity
of the fluids, 7:

e The diffuse-interface regime, which occurs if £ > (Mn)"/?, and leads to £y ~
(Mn)'/4, and

e The sharp-interface regime, which occurs if £ < (Mn)'/2, and leads to £y, ~ (Mn)'/2.

In both regimes, however, the slip length obeys
log ¢y, o< log(Mn) + const. (1.45)

Apart from the hydrodynamic effect, the motion of the contact line also depends
on the spreading of a submicrometre film that precedes the motion of the contact line,
this is called, the precursor film [46, 31]. Tt has been found that the precursor film
produces a lubricating effect and advances due to van der Waals forces between the solid
and the fluid [47], and because of this, most of the spreading energy is burnt in this
process. However, the precursor film does not always appear, it has been found that its
development depends on the volatility of the fluids and the contact angle with respect to
the solid [46, 47].

On the other hand, Blake and Haynes [33], proposed that, due to motion, the triple
line becomes more diffuse. According to their model, it is predicted a the drag force,
of a non-hydrodynamic origin, restricts the spreading of liquids. This force depends on
the temperature and the density of absorption sites in the solid surface that are able to
capture fluid molecules [48, 49, 50].

In the diffuse-interface model, a material-dependent mobility allows the chemical po-
tential to relax [42, 41, 43, 40]. Therefore, it is the chemical potential that induce breaking
of bonds between the adsorption sites of the solid surface that capture fluid molecules and
therefore allows motion of the contact line [42].

All the aforementioned mechanisms motivates the inclusion of an additional drag force,
fa, that acts independent of the hydrodynamic dissipation [38, 42, 41]. At low veloci-
ties, the form of f,; must be proportional to the velocity of the contact line to a first
approximation, i.e.,

Ja = —Cova, (1.46)

where (j is a contact-line friction coefficient. The value of (y depends on the transport
properties of the fluids, but also on the properties of the solid [38]. In view that the
contact-line motion is enhanced by the mobility, thus it is expected that the friction
coefficient is of the form

Co o< n/M. (1.47)

1.3 Concluding remarks

In this chapter, a condensed review of the theory of capillarity has been provided for both
static and dynamic situations. First, the sharp-interface formalism is presented, which
gives a sensible approximation to the diffuse-interface model of phase transitions described
afterwards. Then, the equations of motion for capillary systems are provided, these are the
Navier-Stokes for incompressible fluids, which stems from the conservation of momentum
in continuum media, and the Cahn-Hilliard equation, which models diffusive processes
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in multiphase flows. Finally, the behaviour of flows due to interfaces, which include the
dynamics of contact lines is briefly discussed. With this, the theoretical background that
will give base to the analysis and simulations for the following chapters has been defined.



Chapter 2

The Lattice-Boltzmann Method

2.1 General Framework

The lattice-Boltzmann method (LBM) is a fluid dynamics simulator that earns its name
by numerically solving the Boltzmann equation [7, 51, 10]. The Boltzmann equation,
from the Kinetic Theory of Gases, is a statistical description of the evolution of a fluid at
a mesoscopic level (see figure 2.1) [52, 53|. Its main ingredient is a particle distribution
function, f(x,v), that counts the mean number of particles that have certain velocity, v,
at a certain position in space, x [6, 54].
The discretised Boltzmann equation, also called the lattice- Boltzmann equation reads [55,

56, 6, 57]

ful@ + eqt+1) = fyl,t) + T, (2.1
where f,(x,t) is a particle distribution function that represents the average number of
fluid particles with position & and velocity ¢, at time ¢; and J|f] is called the collision
operator. The terms in the right-hand side of Eq. (2.1) are often referred to as the post-
collision distribution, f;, i.e.,

fi(a ) < Sy, t) + T[], (2:2)

Space and time are discretised, and the velocity space is restricted to a set C' = {cq}qQ:_o1
(see Appendix A) where @ is the number of directions in which particles can move after a
unitary time step (see figure 2.1). Therefore, C' defines the neighbourhood of each lattice
site, and (@) its degree.

The dimension, D, of the simulation, together with the degree, (), uniquely identifies
the geometry and topology of the lattice. Therefore, the notation D-Q- is commonly used
to define an LBM model, e.g., the D3Q15 model consists of a 3D lattice with 15 velocity
vectors.

The collision operator, J[f] in Eq. (2.1), models how particle populations are re-
distributed due to interactions such that it increases the entropy of the fluid and thus
approaches thermodynamic equilibrium. In this work the single-relaxation time collision
operator will be used [58|, which is based on the so-called BGK approximation [59],

I =~ Uy~ 1] (1) (2.3

The time evolution of the distribution function in Eq. (2.1) consists of a collision step
where f, relaxes to an equilibrium value f7 over a time-scale determined by the collision

15
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Figure 2.1: The lattice-Boltzmann is a mesoscopic method that operates at a scale between
the macroscopic Computer Fluid Dynamics (CFD) and the microscopic Multi-Particle
Collision (MPC) methods. It uses discrete particle populations, f,(x), (gray arrows) in a
lattice (coloured squares).

parameter 75 (Eq. (2.3)), followed by a streaming step where f, is propagated along the
direction of ¢, over a unitary time increment (left-hand side of Eq. (2.1)). Over large
length-scales and long time-scales the LB method integrates the macroscopic equations
of motion, i.e., the Navier-Stokes and Cahn-Hilliard equations [52, 53, 6].

2.1.1 Numerical Integration of the Navier-Stokes Equation

The Navier-Stokes equation, Eq. (1.27),
p(Ou+u-Vu)=—-V-P+nVu+ f, (2.4)

is recovered by means of a Chapman-Enskog expansion [10, 52, 53, 60| of Eq. (2.1). The
local momentum density is related to the first moment of the distribution function, i.e.,

pu « Z Jacq- (2.5)

The equilibrium distribution function, f7, is constructed to convey the thermodynamic
behaviour of the fluid and to ensure local mass and momentum conservation. This is done
by requiring that the moments of fg obey > fi = p, >, fie, = pu, and ) fre,cq =
P + puu. A suitable choice for the equilibrium distribution is,

e def pu 1
fo(p,u,P) = w, |ttPH + o qY + o2 (P — ttP 1+ pun) : H? (2.6)
for ¢ # 0, and
Q-1
f(puP) = p =" fo(p,u, P), (2.7)
q=1

where w, are weighting factors determined by the geometry of the lattice [61], ¢, is the
speed of sound (see Appendix A), and Hén) = H™(c,) is the tensor Hermite polynomial
of n-th degree [10, 61, 62]. Explicitly, H(SO) =1, Hél) = ¢,/cs, and Héz) = ¢, ¢,/ — 1.
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The mass density of the fluid, p(x), is determined by means of the phase field, ¢(x),
as in Eq. (1.29),

plw) = 2oy + 2T (23)

where p;, i = 1,2, are constants that correspond to the bulk densities. The Chapman-
Enskog expansion provides a relation between the relaxation parameter, 7;, and the kine-
matic viscosity of the fluid,

v=c(ty—1/2). (2.9)

Therefore, 7y can be specified, by means of Eq. (2.9), as a function of the phase field
(Eq. (210),

Vo — 1 Vo — 11
vie) = x)+ ,
(2) = 2 () + 22
where v;, i = 1,2, correspond to the kinematic viscosities.
To model a body force, f, acting on the fluid, a term is included to the lattice-

Boltzmann equation,

(2.10)

fo®+cyt+1)= f(xt)+ T[f] + Af, (2.11)

Following Lee [7, 60|, the forcing term, Af,, is defined as

of W u-c u-c,)? u?
Af, =21+ L)

2 2 1 9.2
cz c2 2c; 2c?

(c,—u)- f. (2.12)

The lattice-Boltzmann method is known to break Galilean invariance in situations
where the fluid has density inhomogeneities [63]. Following Swift [10] and Holdych [64],
to reduce this effect, the correction term is added

N=v[(u-Vp)l—(uVp)— (uVp)'] (2.13)
when calculating the equilibrium distribution function, i.e.,

fq = f;(p,u, P+ 1) (2.14)

2.1.2 Numerical Integration of the Cahn-Hilliard equation

To integrate the Cahn-Hilliard equation, Eq. (1.26),

O+ u- Vo= MVp, (2.15)
a second lattice-Boltzmann equation is introduced,
1 €
go(x + gt +1) = g (x,t) — — [gq — gq} (x,t), (2.16)
g

where g, is a distribution function with a collision parameter 7, = 1, whose zeroth moment
defines the phase field,

0= g, (2.17)
q
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The corresponding equilibrium distribution function, g7, is defined as

o def My o qb . duu )
G H + - CHOD 4 T o . H? (2.18)
if ¢ # 0, and
Q-1
e def e
g(Bu ) = 6= > gi(pu,p), (2.19)

q=1
thus satisfying >° g; = ¢, >_, 95¢, = du and ) goe,e, = M'ul + puu, where M’ =
M(7y — 1/2)7"

2.1.3 Calculating the Equations of State

To compute the pressure tensor, P, and the chemical potential, y, in Egs. (2.6) and (2.18)
the expressions in Eqgs. (2.20) and (1.12) are used, i.e.,

P) = |po+ (BS ~ 1B +1)~ KoV~ SK|VoP | 1+ KVoV6, (220)
p(x) = po+ Bo(¢® —1) — KV, (2.21)

where the reference pressure and chemical potential are set to pg = 1/3, and o = 0.
To calculate the equations of state, it is required to compute the gradient and the
Laplacian of the phase field. These are approximated using the finite-differences stencils

Vo(x) ~ — Z wee, (T + ¢y, (2.22)
5 q#0

Vip(x) ~ qu x+c,) —o(x)], (2.23)
5 q#0

where the w, are used as weighting factors to optimise the accuracy of the approxima-
tion [65] (see Appendix A).

2.1.4 Structure of the Lattice-Boltzmann Algorithm

The LBM algorithm can be summarised in the following sequence of steps (see fig-
ure 2.2) [51, 54].

1. Initialisation: in which the density, order parameter, pressure, and chemical poten-
tial fields are set to an initial value.

2. Main loop: where the integration over time of the lattice-Boltzmann equation is
done, this is subdivided in the following.

(a) Calculation of the equilibrium distributions fg and g5, in which Eqs. (2.6)-(2.7)
and (2.18)-(2.19) are evaluated in terms of the hydrodynamic fields.

(b) Collision, in which the collision operators, J[f] and J[g] from Eq. (2.3) are
applied, this results in the post-collision distribution functions f; and g;.
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Figure 2.3: Schematics of solid boundaries in the lattice-Boltzmann method. A near-
boundary lattice node (large square) has at least one lattice link that intersects the solid
boundary. Each of such cut links is defined by its direction, and by the fractional distance
to the wall, d,. At the intersection, the boundary is defined by a local normal vector n,.

(c¢) Streaming, in which the post-collision distribution functions are propagated to
the neighbouring sites, e.g., fx(x,t) — fy(x + ¢4, t + 1), and similarly for g,.

(d) Calculation of the hydrodynamic fields by means of the distribution functions
f, and g, according to Eqgs. (2.17), (2.8), (2.5), (2.20) and (2.21).

2.2 Boundary Conditions

Boundary conditions in the lattice-Boltzmann method arise in the streaming steps of
Egs. (2.1) and (2.16), and in the spatial derivatives of the phase field needed to compute
the pressure tensor and chemical potential. In the following, these two types of boundary
conditions will be referred as kinetic boundary conditions and finite-differences boundary
conditions.

A near-boundary node, of position vector a;, € €2, is defined as a node that has at
least one lattice vector that crosses the boundary of the simulation domain (see figure 2.3).
These lattice vectors define a set of cut links, I'. [66]. Each cut link is characterised by
its length, |d,¢,|, where 0 < 6, < 1, and by a local normal vector to the boundary,
g = N(Tp + 04Cy).-

2.2.1 Kinetic Boundary Conditions

The kinetic boundary conditions consist of specifying the particle population f; streaming
into the simulation domain opposite to the cut link, where g € {¢' | ¢y = —¢;; ¢ € T'c} is
the direction of streaming from the boundary into the simulation domain. Two types of
boundary conditions are considered: no-slip walls and open boundaries.
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For no-slip (solid) walls the corresponding boundary conditions are,

w(Ty) = U, (2.24)
n-V-Plx,) = 0 (2.25)
A Vip(ey) = 0, (2.26)

where x,, = @y, + d,¢, is the location of the solid wall, and u,, is the boundary value of
the velocity. Eqgs. (2.24)-(2.26) are satisfied by the bounce-back algorithm [66, 67, 68];
specifically, the YLI bounce-back algorithm was implemented [69, 70|, which reads

) 1—96
fo(xp, t +1) =—1 fi (@, t) + qf;(:cb — ¢y t)

1446 146
* (‘; * "2 w, (2.27)
4 z t) — 5 Pwlw *
T 5, e @) = g T et G

where the boundary value of the density py, is taken from the boundary node, i.e., py, =
p(xy). The same algorithm is used for g;.

Open boundaries correspond to situations in which the fluid is allowed exchange mass
and energy with its surroundings. The pressure and the chemical potential are prescribed
at an open boundary, i.e.,

(@) = ou. (2.28)
V-.u(xy) = 0, (2.29)
P(x,) = Py, (2.30)
w@e) = e, (2.31)

where the notation x, = @, + d,¢, holds for the actual position of the boundary; ¢,
P, and pu, are the boundary values of the order parameter, pressure tensor and the
chemical potential. For the distribution function f;, the unknown particle populations
are computed according to the anti-bounce back algorithm [69], which reads

Fuwn, t+1) = 3 [F5 + £5] (owr s P, (232

where the distribution functions, fg and fg, are given by Eq. (2.6), the velocity at the
boundary, u, is computed as

Uy = u(xy) — Ny - u(TH)N, (2.33)

to satisfy Eq. (2.29), and p is determined by Eq. (2.8). The same algorithm is used to
build the boundary populations of g, i.e.,

1
gl?(wb7t+ 1) = 5[92 +9§](¢wauw,ﬂw)- (234)

The boundary values ¢y, iy, and Py, are not independent, but constrained by the
equation of state. Namely, from Eq. (1.13), a relation for the three boundary values needs
to be satisfied,

PW = [(bwluw - w(ng)] |7 (235>

where it is assumed that V¢, = 0 at the open boundaries.
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2.2.2 Finite-Differences Boundary Conditions

The wetting behaviour at the solid walls depends on the derivatives of the phase field at
a boundary node in such a way that Eq. (1.23),

fg - Vo(ay + 0,c,) = % (2.36)
is satisfied. To impose Eq. (2.36) as a boundary condition, the derivatives of ¢ are
computed at the boundary node xy,. Specifically, the Taylor expansion of Eq. (2.36)
around the node @, reads |71],

1, Vo(xy) + 0yngc, : VVP(xp) = =, (2.37)

==

if g € I'., and
¢, Vo(xy) + %cch : VVo(xy,) = ¢(xh + ¢4) — d(ap) (2.38)

otherwise. In Eqs. (2.37) and (2.38) the gradient vector, V¢(xy), and the Hessian matrix,
VV ¢(xy,), are unknown. In 3D, the gradient vector and the Hessian matrix comprise 346
independent components, forming a set of U = 9 unknowns; in 2D, U = 5. Eqs. (2.37)
and (2.38), however, give () — 1 equations. Therefore, the system is overspecified.

To determine V¢ (xy,) and VV¢(xy), a pseudo-inverse algorithm will be introduced.
First, Eqgs. (2.37) and (2.38) are expressed in the same units by multiplying every instance
of Eq. (2.37) by d,|¢,|?/r- ¢, this will allow to build linear combinations of the equations.
Then, the system of equations is expressed in matrix form:

GA =9, (2.39)

where A, is a U x 1 vector containing the unknown entries of the gradient vector and the
Hessian matrix, e.g., in 3D,

A= (0,0, 0,0, 0.0, D20, D20, D2, 0,0,6, D,0.0, 0.0,0) (x1). (2.40)

In Eq. (2.39), ® is a (Q — 1) x 1 vector of known field values and boundary conditions
whose entries read

o, = {X5q|cq]2/K'fL - ¢y, ifgerl.. (2.41)

o(xn, + ¢4) — ¢(xy,), otherwise,

and G is a (Q —1) x U matrix of coefficients that reflects the local structure of ¢, including
the boundaries. The pseudo-inverse algorithm consists of estimating the solution, A =
G ! ®, computing G! as

G'=(EG)'E. (2.42)

In Eq. (2.42), Eis a U x (Q—1) matrix which projects G into a U x U (square) matrix. This
can be thought of as a weighting of the entries of G while preserving linear independence.

In the spirit of Egs. (2.22) and (2.23), in 3D, the columns of the projection matrix are
defined as,

22 2 T
E = Wa (Ceqa Cya C2q Tzq Tyq Tzq CaqCyq  CyqCzq  CzqCag (2.43)
T 5,2\ 6, 6, 6, 2T 2T 2 27 27 2 ’ '
q=s q q q s s s s S s
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where the generalisation , = 1 for ¢ ¢ I'. is made. The structure of the E matrix in
2D is similar, and it is obtained by removing every entry where z appears in Eq. (2.43).
Although the expression of E is not unique, it was found that Eq. (2.43) produces the
expected interface profile near the solid boundaries, which was quantified using the equi-
librium contact angle.

Because the matrix G stores the structure of the lattice and of the solid boundary
(which do not change over time), the pseudo-inverse algorithm, Eq. (2.42), is applied
numerically at the initialisation of a simulation, and is therefore not more expensive than
the usual application of a finite-differences stencil.

2.3 Validation of the Lattice-Boltzmann Method

The lattice-Boltzmann method is validated by representative reference systems; these are,
the Couette Flow, the Poiseuille Flow, and the Jeffery-Hamel Flow for the dynamics of a
single phase fluid, whereas simulations for the interface width, equilibrium contact angle,
and evaporation of a sessile droplet were carried out to validate the two-phase fluid model
and mass transfer boundary conditions.

2.3.1 Couette Flow

A Couette Flow consists of a 2D flow between two parallel plates that have different
tangential velocity. The flow is driven by the difference of the velocity between the two
plates, see figure 2.4(a). The tangential velocity, u,, as a function of the transverse
coordinate y, is given by the following expression |72, 29|,

Ua(y) = 2ty — (2.44)
Ly
where tu,, is the velocity at the top (4) and bottom (—) walls respectively, and L, is the
separation between the two plates.

D2Q9 lattice-Boltzmann simulations of a single phase fluid (¢(x) = 1) were carried
out for a simulation box of width, N, = 32 lattice sites, and variable height, N, = L, + 1.
The no-slip boundary conditions are set at the planes y = 0.5 and y = L, + 0.5, where
the velocity of the solid wall is set to u, = 1073. The ends of the channel are connected
by periodic boundary conditions. The density of the fluid is set to unity, i.e., p = 1, and
the collision parameters are: 7y = 1.0,1.5 and 7, = 1.

Initially, the flow is at rest, and after 10° iterations, the flow asymptotically reached
a stationary state.

In figure 2.4(b), the results of the simulation are shown and the solution given by
Eq. (2.44). In the simulations the viscosity was varied by choosing different values of the
relaxation time. This is in good agreement with the analytical solution, Eq. (2.44), and
therefore, validates the velocity boundary conditions, Eq. (2.27).
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Figure 2.4: (a) Schematic representation of the Couette-Flow simulation. The top plate is
moving with horizontal velocity u,, and the bottom plate with —uy,. This creates a profile
in the velocity of the fluid. (b) Lattice Boltzmann simulations of the velocity profile of
the Couette flow in comparison with the theory, for different system sizes and relaxation
times.

2.3.2 Poiseuille Flow

Similar to the Couette Flow, the Poiseuille Flow consists of a 2D flow between parallel
planes. However, the fluid is driven by either a difference of pressure between the opposite
ends of the cavity, Ap, or by an external force density throughout the volume, f, see
figure 2.5(a). In both cases, the velocity profile in this system is given by [72, 29|,

e (y) = 4t —- (1 - i) (2.45)

Ly Ly
where A
D
max — T & _ 7 79 2.46
! 2L, L2 (2:46)
in case of a pressure driven flow, and

Ja

max — 5 2.47

in case the flow is driven by a body force.

For the Poiseuille system, D2Q9 LB simulations of a single phase fluid contained in a
simulation box of width, N, = L, + 1, where L, = 20, and variable height, N, = L, + 1
were carried out. The solid walls are at rest, and are located at the planes y = 0.5 and
y = L, +0.5.

The open boundaries are specified at the endpoints of the channel, i.e., x = 0.5 and
x = L, + 0.5 when the flow is driven by a pressure difference, Ap = —10~* and the base
pressure, po = 1/3. On the other hand, when a body force is applied, f, = 107%, and the
end-points of the channel are connected by periodic boundary conditions. The density of
the fluid, and the collision parameters are set to unity, i.e., p =1, and 74 = 75, = 1.

As an initial condition, the velocity of the flow is u(x) = 0 everywhere, and it was left
for 10° iterations to reach a steady state.
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Figure 2.5: (a) Schematic representation of the Poiseuille Flow for the simulation setup.
The flow is driven either by a difference of pressure between the two open ends of the
channel or by an external force. (b) LBM simulations of the Poiseuille velocity profile
driven by a constant force density. The simulation results for the pressure driven Poiseuille
flow reproduce the same velocity profile.

In the simulations, the width of system was varied, and measure the velocity at a
cross-section of the channel, a quantitative agreement with Eq. (2.45) can be observed in
figure 2.5(b) where the profile of the velocity is plotted. Therefore, the implementation
of the body forces, Eq. (2.12), and pressure driven boundary conditions, Eq. (2.32), give
the expected results.

2.3.3 Jeffery-Hamel Flow

In a Jeffery-Hamel flow, a fluid is contained between two planes that form a wedge geome-
try of opening angle 23. The flow is driven by a pressure difference. Due to the symmetry
of the system, it is customary to use polar coordinates to describe the flow. A schematic
illustration of the flow can be seen in figure 2.6. For a Jeffery-Hamel flow, the pressure
profile along the bisector reads [27],

p(r,0=0)=po+Ap-3-5—5, (2.48)

where r; and 79 are the distances from the openings to the apex of the channel, py is
the pressure at ro and Ap + pg is the pressure at ry, where Ap if the pressure difference
between the two ends [73, 74]. For more details on the derivation of the Jeffery-Hamel
flow, see Appendix §B.

D2Q9 LBM simulations for a single phase Jeffery-Hamel flow were carried out. The
simulation domain is contained in a box of width N, = 100 and height N, = 48. the
open boundaries are specified at x = 0.5 and = = 99.5, and the no-slip boundaries at
y = 24+ tan(5) £ 5, where 5 = 10°. The simulations parameters and initial condition are
the same as in the Poiseuille flow simulations §2.3.2.

In the simulations, an increment in the pressure was set at the narrow end of the
channel, then, the system is left to relax near equilibrium. In figure 2.7(a), the pressure
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Figure 2.6: Schematic representation of the Jeffery-Hamel simulation set-up. The top
plate forms an angle § with the horizontal line. The flow is driven by a pressure difference
between the two ends of the channel.
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Figure 2.7: Simulation results of a Jeffery-Hamel flow. (a) In coloured lines, the contour
plot of the pressure field and the velocity profile depicted with arrows. (b) Baromet-
ric pressure profile of the channel at the bisector and comparison with the analytical
prediction.

field is shown with contour lines and the velocity field is drawn with arrows, qualitatively
it can be observed that the arrows of the velocity field are radial, while the contour lines
are circular sections as expected. In figure 2.7(b), the pressure profile from the simulations
is plotted and compared with the analytical prediction displaying good agreement. This
shows that the interpolation scheme in the bounce-back algorithm make an accurate
representation for off-lattice solid walls.

2.3.4 Interface Profile Between Two Fluid Phases

Simulations of the equilibrium phase field profile, ¢(x), of a two-phase system were carried
out. A D3Q15 LBM model was used, with a simulation box of N, = N, = 1, and
N, = 100, with closed boundaries at x = 0.5 and z = 99.5, and periodic boundaries for y
and z. The saturation density of both phases is p; = 1, i = 1, 2. The collision parameters
are 7 = 7, = 1. The mobility is set to M = 1072, and the thermodynamic constant K



26 CHAPTER 2. THE LATTICE-BOLTZMANN METHOD

10 : ,
— analytic

4 a2 K=0.08
v v K=0.10
05|
e ¢ K=0.12
> » K=0.14
o < < Ko
ool K=0.16
o ¢ K=0.18
—os}
—10} |
-15 -10 -5 0 5 10 15

X/

Figure 2.8: LBM simulations for the interface profile and the comparison with the pre-
diction by the theory.

was varied from 0.08 to 0.18, and B = (37)?/8K, in order to keep a constant value of the
surface tension, v = 1073,
Initially, the fluid is at rest, and the profile of the phase field

¢(x) = 20(xz —50) — 1, (2.49)

where © is the Heaviside function. The system was left for 10* iterations to equilibrate.

Initially, the system is spatially divided into two halves, for one half, the concentration
is set to one equilibrium value, whereas for the other half, the concentration is set to the
other value in order to make a discontinuity at the middle point. As the system evolves
in time, the discontinuity smooths out until it reaches equilibrium. The resulting profile
is plotted in figure 2.8 for different values of the constant K, the agreement with the
theory, Eq. (1.15), can be observed. This shows that the LBM is capable to simulate
phase coexisting flows. Moreover, by tuning the constants B and K, in Eqgs. (2.20) and
(2.21), the interface width, ¢ (and also the surface tension, ) can be adjusted.

2.3.5 Equilibrium Contact Angle

To measure the equilibrium contact angle of a sessile droplet on a solid surface, D2Q9 LBM
simulations of two-phase fluids were carried out. The simulation domain was contained
in a box of dimensions 100 x 50, where the solid boundaries were placed at the planes
y = 1— 46, with variable 0 < § < 1 and y = 49.5, and periodic boundary conditions in the
x direction.

The initial condition for the order parameter is,

¢(x) = —tanh (% [l — x| — 60]) , (2.50)

which represents a circular droplet with centre at . = (50, 0.5) and radius of 60 lattice
sites. The interface width ¢ = 2.12, and the surface tension is set to v = 1.0 x 1073, thus
setting the constants B = 5.0 x 107* and K = 2.25 x 1073, The parameter y was varied
from —5 x 107 to 5 x 107%.
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Figure 2.9: LBM simulation results for the contact angle of a sessile droplet in comparison
with the prediction by the theory for different values of an off-site boundary at distance

J.

After 10* iterations, the system reaches the equilibrium and the drop forms a circular
cap as shown in figure 2.9(a). The contact angle is measured by finding the centre of the
circular segment. The simulations were carried out for different values for the wetting
potential y and different values of the off-site distance to the boundary 4, resulting in
different contact angles (see figure 2.9(b)).

As expected, the variation of the surface constant resulted in the predicted contact
angle with a negligible variation with respect to the off-site distance. This is evidence that
the effect of the contact angle is well reproduced, that is, the finite-differences boundary
conditions give the expected results regardless of the distance to the solid surface.

2.3.6 Evaporation of a Sessile Droplet

To assess the numerical method for evaporating boundary conditions of a binary fluid,
3D simulations in a 201 x 201 x 101 simulation domain were carried out.
The initial condition for the order parameter is,

é(x) = — tanh (% 2 — o] — 60]) , (2.51)

where the centre of the droplet is placed at x. = (50, 50, 0.5) for the 3D set, and the
interface width ¢ = 2.12. The surface tension is set to v = 1.0 x 1072 fixing the constants
B=50x10"%and K = 2.25 x 1073.

Evaporating boundary conditions, Eq. (2.32), are placed at the top plane, whereas the
solid walls correspond to the bottom plane. The value of the thermodynamic fields at the
boundaries were set to ¢, = —1.02, p,, = 1/3, and thus, the chemical potential at the
boundary is jiy = —2.0604 x 1075, The value of the diffusion constant M = 16 and the
relaxation time for both distribution functions was set to unity, i.e., , =1,i= f,g.

As the droplet evaporates, diffusive currents transfer mass from the inner phase to the
open boundaries (see figure 2.10). These currents are perpendicular to the interface of the
droplet, and also to the open boundary plane. According to Cazabat |75], the evolution
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Figure 2.10: Snapshot after ¢t = 1.0 x 10° iterations for a 3D evaporating droplet (blue
spherical cap) where the diffusive flows are shown as streamlines (yellow curves).

of the height is expected to be

h(t) = ho /1 —t/T, (2.52)

where hg = h(t = 0) is the initial height of the droplet, and T" is the total evaporation time-
lapse. In figure 2.11(a), the simulation result is compared with the theoretical prediction.
The comparision with the theoretical curve is obtained by matching hy with the initial
value of the height of the droplet in the simulations, and 7" is adjusted via curve fitting.
A good agreement between the two curves is obtained. However, some discrepancies can
be observed most prominently, at the final stages of the evaporation process where the
simulation shows a faster evaporation rate. This is expected since the chemical potential
inside the droplet obeys the Gibbs-Thomson rule, Eq. (1.6). As the droplet evaporates, its
radius decreases, and therefore the chemical potential also increases (see figure 2.11(b)).
Consequently, the magnitude of the diffusive flow increases and the droplet has a higher
evaporation rate. Nonetheless, this effect is not captured by Eq. (2.52).

2.4 Concluding remarks

In this chapter, the lattice-Boltzmann algorithm was defined and validated. This is an
LBM capable of modelling capillary systems in the presence of open and closed boundary
conditions.

The LBM scheme is introduced in the context of the Boltzmann equation from Kinetic
Theory, and it is shown how it solves the diffuse-interface Navier-Stokes and Cahn-Hilliard
equations. By doing this, the tool that will model capillary phenomena in later chapters
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Figure 2.11: (a) Evolution of the height of the droplet, h, as a function of time, ¢, (blue
solid line) and comparison with the prediction (black dashed line). (b) The chemical
potential profile at the centre vertical line, x = y = 50.

has been constructed. The lattice-Boltzmann algorithm can be used to model fluids
composed of coexisting phases, including the effects of surface tension and wetting.

Boundary conditions play an important role in the dynamics of capillary systems. For
this reason, the LBM has been equipped to model different types of boundary conditions.
These include moving boundaries, such as no-slip walls, but also open boundaries, in
which the pressure, order parameter and chemical potential are prescribed.

The LBM was validated against reference systems for which an analytical prediction
of the fluid dynamics is available; therefore, this allows the use the present LBM in the
to study capillary phenomena in complex situations.
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Part 1

Droplets in Wedges
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Introduction to Part I

Droplets in wedge geometries appear in many natural environments. For example, many
shorebird species have wedge-shaped beaks that allow them to feed on water-bound organ-
isms [76], water striders have arrays of tapered bristles that help them brush-off droplets
from their legs [77], and the material properties of wet granular media depend on the adhe-
sion and lubrication provided by capillary bridges wedged between solid grains [78, 79, 80].

Understanding the motion of droplets in wedges is important to improve technologies
that use the geometry of the confinement for purposes of transport, positioning or ac-
tuation of small volumes of liquid. Wetting droplets inside tapered capillary tubes [81]
or wedge-shaped channels [82] self-propel towards regions of stronger confinement, while
non-wetting droplets trapped in non-parallel channels migrate to regions of weaker con-
finement [83, 82|. Such principles have been used to transport capillary bridges using
mechanical [84] or photo-induced [85] actuation and even to separate droplets formed by
two immiscible liquids [86].

When a liquid droplet is brought into contact with the inner walls of a wedge-shaped
channel, the system will tend to minimise its total surface energy. In general, the transient
dynamics and the final equilibrium state of the droplet can be characterised in terms of two
main parameters, corresponding to the opening angle of the wedge, 3, which characterises
the confinement geometry, and the equilibrium contact angle of the liquid with the solid,
0., which quantifies the wetting properties of the liquid.

Broadly speaking, one can identify four qualitatively different regimes for the be-
haviour of droplets in wedges depending on the interplay between ( and 6., as sum-
marised in figure 2.12. The first corresponds to a complete invasion regime, where
0° < 0. < 90° — 3. In which case, the liquid forms a transient capillary bridge that
completely invades the apex of the wedge where they form an edge spread. It was first
noted by Hauksbee [87] that the free motion of such structures (i.e., in the absence of
external forces, such as gravity) always results in their migration towards the apex of
the wedge. Concus and Finn [88] and Concus et al. [89] showed that a global equilib-
rium for capillary bridges is not possible. Recently, Reyssat [82] studied the motion of
completely-wetting capillary bridges (6. = 0) within wedge-shaped channels and identified
two regimes in the dynamics of the liquid. Close to the apex, the main source of energy
dissipation is the viscous friction in the bulk of the liquid, which balances the rate of work
done by capillary forces. As a result, the time evolution of the position of the capillary
bridge is linear. This picture changes when the liquid is far from the apex of the wedge,
where the main source of dissipation is the corner flow near the apparent contact lines.
The result is a different equation of motion, which is given by a power-law dependence of
the position of the liquid as a function of time with an exponent 4/13 [82].

A second regime occurs when 90° — 8 < 6, < 90° + 5. In such a case the liquid-
gas interface forms an equilibrium shape that touches the apex of the wedge, sometimes
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Figure 2.12: Wetting regimes for a liquid droplet in a wedge geometry. (a) Edge spread.
(b) Edge blob. (¢) Liquid barrel. (d) Drop.

referred to as an edge blob [90, 89, 91].

A third regime corresponds to the completely non-wetting case, where 6, = 180°, and
for which a liquid in a wedge-shaped channel will form a suspended droplet, a situation
also found for gas bubbles. In such a case, a confined droplet will always migrate away
from the apex of the wedge [83]. In sharp contrast to the complete-wetting limit, the
equilibrium shapes of suspended droplets or bubbles correspond to perfect spheres. The
dynamics of such systems involve the interplay between the liquid/gas and the surrounding
fluid [92, 93]. However, in the specific case of a low-viscosity fluid (air bubble) suspended
in a liquid of relatively high viscosity (silicone oil), Reyssat [82] showed that the main
sources of dissipation during the motion within a wedge originate from the liquid, and
that the same equations of motion that hold for completely wetting capillary bridges also
hold for completely non-wetting bubbles.

The fourth regime, which is the main focus in this work, corresponds to a mostly
non-wetting situation, where 90° + 8 < 6, < 180°. In such a case, the liquid-gas interface
is convex, i.e., it has a positive mean curvature, and forms a closed surface in equilibrium
that avoids the apex of the wedge.

Concus et al. [89] studied the equilibria of partially wetting droplets in wedge ge-
ometries. They showed that, in contrast to the wetting regime, droplets form closed
equilibrium shapes avoiding the apex of the wedge, and that, in the absence of exter-
nal forces, such shapes correspond to sections of spheres. Experimentally, Baratian [94]
recently observed such equilibrium configurations using an electrowetting setup. They
show that a spherical equilibrium shape implies a vanishing net force acting on the liquid
and that non-spherical static shapes appear when subjecting the liquid to the action of
gravity.

The behaviour of droplets inside wedges is just beginning to be explored [82, 84, 95].
In this part, the statics and dynamics of partially-wetting drops in a wedge geometry is
studied. The approach taken in §3, is to represent the statics and dynamics of the droplet
is by relying on the Lagrangian formalism and by assuming the shape of the liquid-gas
interface. Then, in §4, lattice-Boltzmann simulations are performed to gather further
information and gain a deeper understanding of how the motion of the droplet inside the
wedge occurs. In §5, the manipulation on the position a droplet as an example of the
potential applications for this system is proposed. For the latter, an experimental set-up
grounding our analytical and numerical results is used. Finally, in §I the conclusions of
this part are presented.



Chapter 3

Theoretical Analysis

The analysis of the droplet inside the wedge will be based on the Lagrangian formulation
detailed in §1.1.1. The starting point of the analysis is to determine the free energy of the
system. For this purpose, the shape of the droplet will be proposed and it will be shown
that it is a valid approximation for both static and dynamic situations. This shape is
intended to describe the configuration of the liquid close to equilibrium, where curvature
gradients are small: such shapes will be referred as liquid barrels.

3.1 Sharp-Interface Formulation

3.1.1 Droplet Morphology: Liquid Barrels

The focus is directed at droplets confined in hydrophobic narrow wedges (6, > 90°),
where (3 is of the order of a few degrees. Specifically, the interest lies on droplets of
characteristic linear size BV/3 ~ 1072 mm, where V ~ 10 uL is the volume of the droplet,
made of liquids such as water, glycerol, or oils, for which the density is p ~ 10°kg m ™2,
the dynamic viscosity is 7 ~ 1 mPa s, and the surface tension is v ~ 20—70mN m™'.
Based on the experiments carried out by Reyssat [82], it is expected that the droplet
relaxes asymptotically to equilibrium, and thus, the translational motion of the droplet

can be arbitrarily slow. For a typical speed U ~ 1—10mm s™!, the Reynolds number

is Re & pUV3/n ~ 1071-10°, the capillary number is Ca & nU/y ~ 107°—1073,

and the Weber number is We % ReCa ~ 1075 — 10-3. For droplets under the action of
gravity along the axis of translation (as in the experiments of Baratian, et al. [94]), the

Bond number is Bo % pgV2/3y=1 ~ 107!, where V'/3 has been used as the characteristic
length, and g = 9.81 m s~2. If the action of gravity is perpendicular to the bisector plane,
the characteristic length can be taken to be the height of the droplet giving a Bond number
Bo ~ pgB?V2/3y~1 ~ 1073,

The smallness of the Reynolds number implies that inertial effects are negligible rela-
tive to viscous stresses. On the other hand, the magnitude of the Weber number indicates
that short-wavelength (and thus high frequency) perturbations of the liquid-gas interface
should decay over a short time-scale compared to the translational time-scale [96, 97, 27].
Finally, the smallness of the Bond number implies that the action of gravity has a negli-
gible effect over the shape of the interface.

In summary, the magnitudes of the capillary, Weber and Bond numbers imply that
the shape of the liquid-gas interface is dominated by surface tension. In conclusion, close
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Figure 3.1: Schematics of the geometry of a liquid barrel inside a solid wedge of opening
angle 2(. (a) 3D view of the system. The position vector of the liquid-gas interface, g, is
described using the vectors X, » and R, and the azimuthal and polar angles ¢ and 9. (b)
View of the barrel’s cross section along the bisector plane, z = 0. The short-dashed line
corresponds to the equator of the barrel. The solid line corresponds to the contact lines.
(c) View of the barrel’s cross section along the transverse plane, y = 0. The intersection
with the solid occurs at a contact angle 6. The aspect ratio of the transverse cross section
of the barrel is determined by its minimum thickness, H and equatorial width, W.

to equilibrium, the liquid-gas surface must have small gradients in its curvature.

The description of the liquid-gas interface begins by setting the coordinate system.
This will be a Cartesian coordinate system in which the wedge planes are located as half
planes intersecting the y-axis and opening at the angles +3 and —f from the xy-plane
(see figure 3.1). Therefore, the normal vector to the upper plane is defined as

def

n = (—sin g, 0, cos (), (3.1)

which points outwards from the fluid domain.
It is assumed that the walls of the wedge are identical and perfectly uniform. Further-
more, the shape of the droplet follows two planes of symmetry: the bisector plane,

2 =0, (3.2)

and the transverse plane,

y=0. (3.3)

The intersection of the two planes occurs at the x-axis, and defines the bisector line which
is the principal axis of symmetry of the droplet.

Let a1z be the position vector of a point on the liquid-gas interface. This vector can
be expressed as the sum of three displacements from the origin,

mlg =X +7r+ R. (34)

The vector X = (X, 0, 0) defines the position of the geometric centre of the droplet, X,
relative to the apex of the wedge. The vector r = r(¢)7, where # = (cos ¢, siny, 0), is
a displacement vector from the geometric centre of the droplet (point X in figure 3.1) con-
fined to the bisector plane. The vector R = R(gp)R, where R = (cos ¢ cos ¥, sin p cos ¥, sin 1)),
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is a displacement vector that joins the vector r» and a point on the liquid-gas interface
(see figure 3.1 for a defintion of the azimuthal and polar angles, ¢ and ).

The sum of the vectors r + R is restricted such that, at the bisector plane (¢ = 0), it
draws an equatorial circle of radius R, = |r + R| centred at X.

For each value of ¢, the vector R draws a circular section parametrised by the polar
angle, ¥, on a plane perpendicular bisector plane. The centre of each circular section
is the endpoint of X + 7, and its radius, R(¢p), is set such that the liquid-gas interface
intersects the solid planes at a prescribed contact angle 6.

Whilst the azimuthal angle varies in the interval ¢ € [0,27), the polar angle is re-
stricted by the intersection of the liquid-gas interface with the solid walls, i.e., J € [—, ],
where the maximum angle, v, can be found by the intersection with the bounding planes,
ie.,

- @iy (0,0 = 1) = 0. (3.5)

The normal vector to the liquid-gas surface is expressed as,

&pcclg X aﬂwlg

Tug(0,0) (3.6)

a |0pT1g X Oorg|

From Eq. (3.5) and Eq. (3.6), a condition that specifies ¥ in terms of the contact angle is
obtained, i.e.,

—cosf =n - n(p, 0 =1). (3.7)

Here it is assumed that
0 — 0. (3.8)

this is consistent with static situations where the local shape of the interface is not affected
by pinning effects, and with dynamic situations where the contact line undergoes a slow
translational motion, corresponding to the limit of small Ca.

Furthermore, it is assumed that the equatorial radius is constant. Therefore, Eq. (3.7)
reduces to

—cosby ~ 1 - R. (3.9)

Following these assumptions, the following expressions for the inner and outer radii of the
droplet are obtained,

r(p) = %, (3.10)
and
Rip) = 22 L2 (3.11)
where
o —CS?ZZ (3.12)

Figure 3.1 shows a typical droplet shape as given by Egs. (3.10) and (3.11), the name
liquid barrel is assigned because this is similar to an old-style wooden barrel. It will be
shown that the liquid barrel is a good approximation to the shape of the interface in both
static and dynamic situations.
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Whilst it is possible to analyse the liquid barrels in Cartesian coordinates, the shape
of the liquid-gas interface is better described using toroidal coordinates (o, ¢, w). Geomet-
rically, in toroidal coordinates a point in space, (z,y, z), is determined by the intersection
of three surfaces [98]: a torus,

22+ 92 + 2% + a® = 2a(z® + 222 cotho, (o = const); (3.13)
a sphere,
2
2%+ (y — acot §)? + 22 = 'a2 , (¢ = const); (3.14)
sin ¢
and a half plane
Z — tan w, (w = const); (3.15)
x

which defines the coordinates o, ¢, and w. From Eq. (3.13), it can be seen that higher
values of ¢ form tori with shrinking tubular radius that asymptotically approach the
reference circle,

1’ + 22 =a? aso— oo, (3.16)

In terms of these coordinates, the position vector x reads

x(o,p,w) = %(sinha cosw, —sin¢, sinho sinw), (3.17)
where A = cosh o — cos ¢.

In toroidal coordinates, the apex of the wedge corresponds to the axis of revolution of
the angle w. The two solid planes forming the wedge are located at w = +3. Therefore,
w = 0, corresponds to the bisector plane. The liquid-gas interface of the droplet is given

by the surface

Ulg = Ulg(¢,W>, (318)
and the position vector of a point and the liquid-gas interface is thus given by
Tig(¢,w) = [ 0 0] (¢, w) (3.19)

(see figure 3.2). The contact lines follow after evaluating xat w = £4, i.e.,

ZECH:((;S) = a:lg(gb, w = ﬂ:ﬂ), (320)

or, equivalently,
def

ga(9) = oig(p,w = £6). (3.21)

In order to specify o1,(¢,w) in terms of the liquid barrel shape, the parameter a is
identified with the radius of the equatorial circle; using Eq. (3.13) at z = 0 gives,

a’ = R2(&* - 1), (3.22)

and
cosho = ¢, (3.23)

where

722"
s
B

(3.24)
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Figure 3.2: Representation of the liquid-gas interface using toroidal coordinates. Surface
plot of an example of a parametric function oi,(¢,w) for the liquid-gas interface (teal)
and the solid planes (grey).

By calculating the angle of a point in the perimeter of the equatorial circle with respect
to its centre, a relation between ¢ and ¢ is obtained, i.e.,

Ecosp— 1
£—coso

Considering that the liquid-gas interface is formed by arcs of constant radii, R, and centres
at X + r, then, Eq. (3.4) satisfies

cos p = (3.25)

[z — (X +rcosp)®+ [y — rsing]® + 2> = R?; (3.26)
which, by substitution of Eqs. (3.17), (3.10), (3.11) and (3.25), yields

a—§&— (€2 - 1DVl - a?sin®w)/?
af —1—a(—1)2cosw

o1g(w) = log (3.27)
Eq. (3.27) gives the liquid barrel interface in the toroidal parametrisation. The centre
of the droplet, X, and contact angle, 6, are specified by the parameters ¢ and «, which
follow from Egs. (3.12) and (3.24).

Note that, while Eqgs. (3.10) and (3.11) contain a singularity whenever |a| < 1, un-
der the parametrisation based on toroidal coordinates, these singularities are removed.
Moreover, using Eq. (3.27), one can introduce a variation in the contact angle, i.e.,
a = —cosf/sin 8. This offers an effective generalisation of the liquid barrel shape to
model situations where the contact angle varies in space or time.

Having defined the shape of the liquid barrel, some useful geometrical quantities are
at hand. The height-to-width aspect ratio of the droplet is defined as (see figure 3.1),

def H
h=— 3.28
= (3.25)
where the droplet height,
H S min |z1g(6, w = +6) = w15(6,w = —B)], (3.29)

is the length of the line connecting the contact lines at the narrow end of the wedge and

the droplet width,
def

W ma a1, (6,0) — ,(0,0)] (3.30)
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is the distance between the leading and trailing points of the equator of the droplet. For
the liquid barrel shape, the aspect ratio reads

ho St
a—1

cos(f, — f3). (3.31)

The volume of the droplet can be found using the divergence theorem,

1 1
V== V- -xdrdydz = g/ xy, - dAjg, (3.32)

3 lig. Ig

where, according to Eq. (3.17), the liquid-gas interface is @), = ( o 015)(¢,w), and the
differential element of area is given by,

dAlg = (8¢w1g X &J:clg) d(bdw (333)

After some calculations, the volume is found to be

h?
/ / [sm Ulg (cos ¢ — coth oy, sin ¢ Dy01,) | depdw. (3.34)

The surface energy of the droplet is obtained by computing the surface areas of the
liquid-gas and liquid-solid interfaces (see §1.1.1). The liquid-gas surface area can be
computed directly as

Ay = / dA]. (3.35)

Using the parametrisation of the liquid-gas interface the liquid-gas interface area is

| 1/2
I / / p{(awalgf +sinh? oy, [1 4 (9y01)?] } dedw. (3.36)
—B8J—n

The contact area of the droplet with the walls of the wedge is computed in a similar
fashion, i.e.,

A =2 / A dAL, (3.37)
where the element of surface area is
dA, = %wcl X Opxer do. (3.38)
Using the toroidal parametrisation, the solid-liquid interface is

1
Ay =d® / z [smh o cos ¢ — cosh o sin ¢ 0p0q | do. (3.39)

Finally, an expression for the curvature of the liquid-gas interface is derived as follows.
The orthonormal vector to the liquid-gas interface can be calculated by

Pug = [HL g (3.40)
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where the gradient operator in toroidal coordinates (of a scalar function f) is

A [ . 1
Vf = E (egaa'f + e¢,8¢f + mew&uf) s (341)

and é; = O;x/|0;x| (i = 0, ¢, w) are the orthonormal coordinate vectors. Therefore, the
vector normal to the liquid-gas interface is,

(6, — €4 0y01) sinh 01, — €,,0,014

Ny = . (3.42)
J O+ 1+ Ou0ng) ] sinl g
Using 7., the curvature of the liquid-gas interface is calculated,
1 .
K= _EV * Mg, (3.43)

where the divergence operator (of a vector function B = ). B;é;, i = 0, ¢,w) in toroidal
coordinates is,

, .
v.B-_° [aa (Smh"BU) +sinho d, (B¢)] + 2 9B, (3.44)

asinh o A2 A2 asinho ”

3.1.2 Energy Landscapes

Concus and Finn [90, 89] showed that the ground state of a partially-wetting liquid bridg-
ing two non-parallel plane walls is a truncated sphere. They found that the centre of the
sphere, X, is related to its radius, Ry, by sin X, = —cos.R,, and thus radius of the
droplet is given by

6V e

R, =
m(cos 36, — 9 cos b,)

(3.45)

Baratian, et al. [94| experimentally confirmed these findings and showed, by the effect of
an external force, that the equilibrium state is stable. Nonetheless, further details of the
behaviour of the droplet are still missing for both static and dynamic situations.

In this section, the surface energy of the liquid barrel close to its equilibrium position
will be studied. Then, deviations from the equilibrium position will be quantified using
the displacement X — X, where X is the geometric centre of the barrel. The analysis
begins by considering the Helmholtz free energy, which, for constant temperature and
number of molecules, is

F =~Aj — vAq cosbe. (3.46)

In terms of Egs. (3.36) and (3.39), with oy, given by Eq. (3.27), the surface areas read

Fri
A =R(& 1) /ﬁ [F \/sinh2 01 + (0,015)? | dw, (3.47)
and
, &1
Asl = 27TR07 (348)

sinh” oy
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The volume of the droplet is computed explicitly using Eq. (3.32) to ensure that it is kept
constant,

# cosh
V=R - 1)3/2/ Oy, (3.49)

_8 sinh? Olg

so that is can be used as a constraint.
The integrals in Eqgs. (3.47), (3.48) and (3.49) can be evaluated by introducing two

perturbation parameters:

@y fo (3.50)
3 q

def X
= —. 3.51
¢= - (3.51)

and

Here, g is a rescaled position of the geometric centre of the barrel. The parameter € can
be thought of as a deviation from the equilibrium spherical shape: setting e = 0 gives
a = ¢ and thus using Eq. (3.24), X = aR,. Then, Eq. (3.10) gives r = 0 and Eq. (3.11)
gives R = R,.

The condition of a constant volume fixes a relation between e and ¢; implicitly evalu-
ating Eq. (3.49) gives the result

3

V(g,e) = ¢ Z a;e', (3.52)

1=0

where the constants a; are functions of § and 6.. Their expressions, however, simplify
considerably in the limit of small wedge angles (see Appendix C). Therefore,

ag = z(COS 30, — 9cosb,), (3.53)
ay = 7(20, — 7 —sin26,) + O(5?), (3.54)
ay = —2mcosb,+ O(p%), (3.55)
as = 04 0(B%). (3.56)

Using this approximation, and inverting (3.52), is can be found

elq) = 2%2 ({a? + 4ay (% - ao) }1/2 — a1> : (3.57)

In the same way, the surface energy is expressed in polynomial form in powers of ¢,
ie.,

F(q,€) = v¢? Z(g — i)ae’ + O(e*). (3.58)

The constant-volume energy landscapes, Fy (X)), can be obtained by composing the func-
tions Eq. (3.57) into Eq. (3.58) and recovering the definition of ¢ from Eq. (3.51), i.e.,

Fy(X) M Foeog (X). (3.59)

In figure 3.3 a plot of the energy landscape of the liquid barrel is presented. These
are convex curves thus showing the existence of a state of minimum energy and the
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Figure 3.3: Free energy landscapes along the position of the liquid barrel within the wedge,
X, calculated analytically. (a) Fy(X) curves for fixed § = 5° and different equilibrium
contact angles. (b) Fy(X) curves for fixed 6, = 105° and different wedge angles. The
dots correspond to the minima in the analytical curves. The solid cut-off lines correspond
to the limit where the liquid-gas interface touches the apex of the wedge.

corresponding equilibrium position. Figure 3.3(a) shows the energy landscapes for several
values of 6, but keeping 8 = 5°. The asymmetry in the landscapes about the equilibrium
position arises from the intrinsic asymmetry of the geometry of the wedge. A displacement
towards the apex of the wedge induces a comparatively larger increase in the solid-liquid
surface area relative to the liquid-gas surface area, and results in a sharper increase in the
surface energy. This same feature is observed in figure 3.3(b), where the energy landscapes
at fixed 6, = 105° and different values of 3 are presented.

Since the interfacial energy is conservative, Eq. (3.59) can be identified as a source
of potential energy. Therefore, it can be used to derive total force that the liquid barrel
exerts to restore its equilibrium state without the need of calculating the projected forces
arising from the pressure and surface tension. This is a significant advantage for building
simplified models that reduce the details of the configuration of the droplet into a single
degree of freedom.

3.1.3 Force-Free Equilibrium

Figure 3.3 shows that the energy landscapes have a minimum, shown as the orange dotted-
dashed curve. Formally, this can be obtained by finding the minimum of the energy, Fy,
Eq. (3.59).

First, the free energy is expressed as Fy (e) = FV~2/3 by eliminating ¢ (using Eq. 3.52).
Taking the total derivative with respect to € gives

dF\/(E) . 1 2
VT {(GGF) V- 3(86‘/) F} . (3.60)
Using the expressions (3.52) and (3.58), Eq. (3.60) recasts into
dFy(e) 1 o 2.,
=T dle-ii+1) - 5(3 — N6+ 1)| aiprae™. (3.61)

1,j=0
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Evaluating Eq. (3.61) at
ce =0, (3.62)

is a solution. Setting € = 0 in Eq. (3.50), the equilibrium value of
Ce = (3.63)

using Eqs. (3.51) and (3.11) gives
ge = Ro. (3.64)

The well-known result of references [89, 94| (see Eq. (3.45)) has been recovered: the
equilibrium shape of the droplet is a sphere truncated by the walls of the wedge. In terms
of Egs. (3.10) and (3.11), this implies » = 0 and R = R, = R, which gives spherical
surfaces. Such spherical shapes have a radius

6V 18
R, = , 3.65
7(cos 30, — 9 cosb.) ( )
and centre (or equilibrium position),
cos 6,
Xe = T smp (3.66)

The relations for the height-to-width ratio, he, and surface energy, F, are also obtained:

he = —cos(f. — 5), (3.67)
- 1/3
F, = 3y [6 (cos 30, — 9cos ) V2| . (3.68)

Because the energy lanscape is a convex function of the position, as seen in figure 3.3, it
can be ascertained that the equilibrium position, Eq. (3.66), is stable.

Figure 3.4 shows the equilibrium surface energy of liquid barrels at different positions
within the wedge. For 6, < 180°, a suspended droplet will always reduce the total surface
energy by wetting the walls of the wedge. This wetted area is larger for smaller 6., and,
because of volume conservation, the liquid settles at an equilibrium position closer to the
wedge apex (see insets in figure 3.4). At first sight, one might expect a similar effect by
increasing the wedge angle, §. Indeed, from Eq. (3.66), an increase in the wedge angle
leads to a closer position of the barrel to the wedge apex. The surface energy, however,
remains constant. Geometrically, this can be understood by noting that a change in
is equivalent to a rotation of the excluded portions of the truncated sphere (shown as
dashed lines in the insets of figure 3.4) about the centre of the sphere, which does not
alter the size of any of the interfaces of the barrel.

Note that for the droplet to form a closed barrel, that is, a structure that bridges the
walls of the wedge avoiding its apex, one must have R, < X,, or, equivalently,

he > 0. (3.69)
From Eq. (3.67), this condition is satisfied only if

e — B > 90°. (3.70)
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Figure 3.4: Equilibrium surface energy, F,, as a function of the distance from the wedge
apex, X, for different equilibrium contact angles at fixed 5 = 5° (full symbols) and wedge
angles at fixed 0, = 105° (empty symbols). The insets correspond to cross sections of the
barrels along the transverse plane.

Equilibrium states can also exist if 6, — 5 < 90° but not as liquid barrel shapes. In
such cases it has been shown that the liquid completely invades the wedge [82] and forms
edge blobs [90, 89] or filaments that spread laterally along the wedge apex [91].

For a parallel-plate geometry (8 = 0°), force-free barrels can exist provided that the
separation between the solid walls matches the equilibrium height

H, = 2h.R., (3.71)

which follows from Eq. (3.67). As noted by [99], a displacement of the solid wall from this
equilibrium configuration will still result in mechanical equilibrium, albeit in the presence
of a net external force. This situation can also occur for capillary bridges (6. < 90° — f3),
for which no force-free equilibrium configurations can exist, and for which the net force
exerted by the liquid on the solid plates is always attractive.

3.1.4 Pressure Distribution

In this section, the pressure distribution within the liquid barrel will be analysed for a
displacement from equilibrium, X — X, # 0. In the limit of small Reynolds and Weber
numbers, the local conservation of momentum within the liquid is governed by the Stokes
equation. For an incompressible fluid, the pressure field satisfies the Laplace equation,

Vip = 0. (3.72)

Eq. (3.72) is also valid for a static droplet under the action of a uniform external field,
such as gravity.

The barrel shape presented in §3.1.1 provides a means to solving Eq. (3.72), i.e., to
obtain the pressure distribution within the liquid in both static and dynamic situations.
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Here, the geometry of the wedge and the configuration of the barrel provide the boundary
conditions for the pressure field p. At the solid walls, the impenetrability condition is
imposed,

n - Vp(xy) =0, (3.73)

and at the liquid-gas interface, the Young-Laplace law,
p(xrg) = 29k. (3.74)

To determine the pressure profile, the boundary value problem posed by Egs. (3.72)—
(3.74) must be solved. The mean curvature, r, follows from Eq. (3.43) after specifying
the interface shape in Eq. (3.27); keeping terms up to second order in w, it reads,

€—a)

k= r(d,w=0)+ 2 w? + 0w, (3.75)

where k(¢,w = 0) is the curvature at the equatorial plane,

(@ —&)(§ —cos¢)
ae-1 |
Considering that |w| <  and & ~ « near equilibrium, the high-order correction terms in

Eq. (3.75) are vanishingly small and thus can be dropped.
Eq. (3.72) can now be solved in toroidal coordinates. Laplace’s equation reads [98|

3 : : 2
v S [ag (w&,p) + 0, (Slnhaa¢p)] LA 0. 37

a?sinh o A A a? sinh? o

(6w = 0) = — [1+

i (3.76)

This equation is separable using the ansatz p = (A/sinh 0)Y/25(0)®(4)2(w). The general
solution is given by Andrews [100], where S(o) is expressed as a linear combination of
terms P!’ | jo(coth o) and Q" jo(coth ), which are the Legendre and associate Legendre
functions of the third kind; ®(¢) is expressed as a linear combination of the functions
cosm¢ and sinme; and Q(w) is expressed as a linear combination of cos puw and sin pw
terms.

Periodicity in the angle ¢ demands that p(¢+27) = p(¢) for all ¢, therefore making m
an integer, and, due to the plane symmetry (y <> —y), only the cos m¢ solutions are kept.
Symmetry upon a reflection about the bisector plane (z <+ —z) restricts the solutions of
the form cos pw. The boundary condition at the solid surface, d,p(5) = 0, sets u = 7mn/p,
for integer n. Interior solutions, i.e., finite value at the inner phase, demand discarding
the Q)" , terms since such terms diverge at the reference circle (Eq. (3.16)). After these
simplifications, the pressure field is expressed as,

o0

2y
b= ﬁ Z Amn \I}mn(o-u ¢7w)7 (378)

0
m,n=0

where,

P is-1/2 (coth o) cos(me) cos(mnw/f). (3.79)

cosh o — cos ¢ 1/2
sinh o

B0, 6,0) = {



3.1. SHARP-INTERFACE FORMULATION 47

Note that for small 5, the lower index in the Legendre function (7n/f —1/2) becomes
large and so does its value at the boundary. This implies that the terms of higher order
in n should carry a vanishingly small coefficient; and, even for n = 1, their contribution
can be neglected. Therefore, the pressure at the equatorial circle of the droplet can be
written as (27/Ro) Y-, Ck cos k¢, where the coefficients ¢, = ¢4 (€, @) are,

E+at-2

@ = gy (3.80)
_ _§-a
a = qEo1 (3.81)

As stated in [100], the pre-factor in square brackets from the general solution, Eq. (3.79),
can be expressed as a Fourier cosine series using the identity

\/W Z by (€) cosma. (3.82)

where b, = (212 /7)(2 — Som) Qmn—1,2(€).

The product of the two Fourier series resulting from substituting Eq. (3.82) into
Eq. (3.79) and then into Eq. (3.78) can be recast into a single series by using the trigono-
metric equality, 2 cos me cos k¢ = cos[(m+ k)p|+cos[(m —k)¢]. Then, rearranging terms,
the Ao coefficients in Eq. (3.78) follow as,

Cobo + clb1/2, m = O,

(& - )1/4 by + c1(bo + by/2) (3.83)
X q coby + c1(bo + b2/2), m =1, .
P&/ E —
cobm + c1(bp—1 + bmi1)/2, m > 2.

Am0<€7 Oé)

The result is illustrated in figure 3.5, by plotting the solution of Laplace’s equation,
Eq. (3.78), along the bisector line. Evaluating the pressure profile at the points ¢ = 0 and
¢ = 7 leads to an expression for the pressure difference along the bisector line (between
the leading and trailing ends of the barrel), which, in terms of €, reads

2vXe

Ap = _XQ%R?,' (3.84)
Eq. (3.84) gives an indication of the structure of the pressure profiles along the bisector
line. It is first noted that the sign of Ap is controlled by € (since X > R,). Inwards
displacements, corresponding to € > 0, give Ap < 0, indicating that the barrel is subject
to an outwards force due to the pressure gradient. The converse situation occurs for e < 0.
The magnitude of Ap increases as X — R,, reflecting the stronger effect of confinement
for inwards displacements from the equilibrium position. In equilibrium, where € = 0, the
pressure profile is uniform (Ap = 0), and corresponds to p(x,y = 0,z = 0) = 2v/R,, as
expected for a spherical barrel shape.

As shown in the contour plots of figure 3.6, the 3D pressure distribution broadly follows
the same structure as the pressure profile along the bisector line. For barrels displaced
inwards and outwards from their equilibrium position, the contour lines of the pressure
field are denser towards the narrow end of the barrel, implying a stronger capillary force
caused by the effect of confinement. This is confirmed by inspection of the pressure gra-
dient force density, —Vp, shown in figure 3.7, which is radial and decreases in magnitude
with increasing distance from the apex of the wedge.
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Figure 3.5: Pressure profiles along the bisector line (x,0,0) for out-of-equilibrium barrel
shapes of equilibrium contact angle 6, = 110° and wedge angle § = 5° (shown as insets).

Each curve corresponds to a different displacement from equilibrium. From left to right,
(X — X.)/VY3=—1, =1/2, 0, 1/2, 1.

3.2 Comparison to Static Droplet Shapes Displaced by
a Body Force

In the presence of an external force, the droplet is deformed from its equilibrium shape [94].
In this section, the liquid barrel model is compared to direct numerical calculations of the
shape of a droplet subject to an applied force under static conditions.
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(a) (b)

() (d)
Figure 3.6: Pressure field, p(x), for a barrel displaced inwards, (a and b), and outwards,
(c and d), from the equilibrium position. (a) and (c): Projections of the pressure field on
the bisector plane, z = 0. (b) and (d): Projections on the transverse plane, y = 0. The

displacement in (a) and (b) is (X — X,)/V'3 = —1, and in (c) and (d), (X — X,)/V/? =
+1. The contact and tapering angles are 6, = 110° and 3 = 5°.

(a) (b)

Figure 3.7: Pressure gradient force density, —Vp, for a barrel displaced (a) inwards
and (b) outwards from the equilibrium position. The plots correspond to cross sections
along the transverse plane, y = 0. The displacements in (a) and (b) correspond to
(X — X)/VY3 = —1 and (X — X,)/V¥3 = +1. The contact and tapering angles are
0. = 110° and 8 = 5°.
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3.2.1 Energy and Shape of a Droplet in an External Forced Field

If a conservative force field is acting on the droplet, e.g. —V U, each differential volume
element contributes with an additional potential energy, U(x)dV. Therefore, the total
energy, £, reads
g[Ulg] = F[O'lg] + U(CU) dv. (385)
lig.

In the following, static and constant external forces are exclusively considered. These
forces model the gravitational field, U(x) = pg - «, where g = geé, is the gravitational
acceleration vector, oriented parallel to the bisector line.

The problem of finding the equilibrium surface is reduced to a similar minimisation
problem as before, i.e.,

J

6Ulg

(5[alg] . ﬁV[mg]) —0, (3.86)

where p is a Lagrange multiplier.

Numerically, the minimisation problem can be solved using a finite element approach,
this gives the droplet morphologies in mechanical equilibrium subject to a constraint in
the position of the centre of mass. The data by C. Semprebon' is presented in figure 3.8.
It was obtained using the public domain software Surface Evolver [101]. The data is
plotted along with analytical predictions for the displaced droplet. The good agreement
of the data with the liquid barrel analytical curves supports the liquid barrel is a good
approximation of the morphology of a forced droplet.

1T thank Dr. Ciro Semprebon for kindly providing his data.
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Figure 3.8: Energy landscapes along the position of the liquid barrel within the wedge,
X, calculated analytically (dashed lines) and numerically via constrained minimisation
of the surface energy (symbols). (a) Curves for fixed § = 5° and different equilibrium
contact angles: 6, = 95° (+), 6, = 100° (x), 6, = 105° (%), 6, = 110° (O), 6, = 115°
(W), 6, = 120° (o), 6, = 125° (o), and 6, = 130° (A). (b) Curves for fixed 6, = 105°
and different wedge angles: § = 5° (+), 8 = 9° (x) and § = 13° (x). The pentagons
correspond to the minima in the analytical curves. The solid cut-off lines correspond to
the limit where the liquid-gas interface touches the apex of the wedge.

3.2.2 Pressure Distribution within a Droplet in an External Force
Field

Having compared the free energy of the droplet to the numerical results obtained from
Surface Evolver, the pressure profiles are now compared to numerical results using the
same method. In Surface Evolver, a Lagrange multiplier is introduced to enforce the
volume constraint, Ay, it plays the role of the Laplace pressure at the coordinate x = 0;
another Lagrange multiplier is used to fixe the centre of mass, Ax, which can be interpreted
as an effective body force required to hold the droplet in place. Therefore, a linear
hydrostatic pressure profile can be obtained, reading pys(z) = Ay + Ax V32 /7.

In figure 3.9, an overlay the pressure profiles obtained numerically to the analytical
curves can be observed. The range of each curve corresponds to the equatorial width of
the barrel in each model. There is a good agreement with the magnitude of the pressure

and the location of the edges close to equilibrium with the analytical model, particularly
for for X > X..
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Figure 3.9: Comparison of the pressure profiles along the bisector line for out-of-
equilibrium barrel shapes. The solid line represent the hydrostatic profiles obtained via
constrained free-energy minimisation and the dashed lines are the analytical solution.
From left to right, the curves correspond to the set of displacements (X — X,)/V1/? =
—1, =1/2, 0, 1/2, 1. The equilibrium and wedge angles are 6, = 110° and § = 5°.

3.2.3 Displacement of Equilibrium as Response to External Forces

After establishing that the liquid barrel shape gives a good representation of the shape
of the droplet under the action of a uniform force field, a simple model to predict the
displacement of the droplet in the presence of gravity is now derived. With numerical
validation of the energy landscapes, the liquid-barrel model can be used to calculate the
restitution force that the droplet experiences upon a displacement from equilibrium.

Eliminating the Lagrange multiplier term from Eq. (3.85) by using Eq. (3.59) instead,
the energy of a droplet under a uniform potential field simplifies to,

Ev(X) = Fy(X) — pVgX. (3.87)

The new equilibrium position is obtained by finding the minimum of &y in Eq. (3.87),
which follows after solving

1 dFV %
WW(X:X )— Bo =0, (3.88)
where X* is the equilibrium position, and Eq. (3.88) is expressed in dimensionless form
by introducing the Bond number, Bo = pgV?/3 /7.

In figure 3.10, the equilibrium position as a function of Bo is plotted. When the force
points inwards (Bo < 0), the droplet is monotonically displaced towards the apex of the
wedge (see inset of figure 3.10). The force required to approach the apex increases with
the contact angle. This is a consequence of the increased curvature in the narrow side of
the droplet resulting from higher contact angles. The increase in curvature produces an
increase in the Laplace pressure and therefore the net force increases as well. This can
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occur until X* = R,, or equivalently, using Eq. (3.24), when
& =1, (3.89)

i.e., the position in which droplet reaches the apex. This has been previously shown in
figures 3.3, 3.8 and 3.10 as the yellow cut-off line.

On the other hand, when the force is pointing outwards (Bo > 0), the droplet is
displaced towards the wide end of the wedge. From the figure, there is a maximum force
above which no equilibrium solution exists. This occurs because the force that the droplet
can oppose due to an outwards displacement is finite; the total force is the sum of the
pressure over the contact area, and the surface tension exerted over the contact lines. For
a partially wetting liquid, the curvature of the droplet is positive, and thus, the pressure
alone would push the droplet apart from the apex. The surface tension at the contact
lines exerts an opposite force, that would tie the wedge and the droplet together. As
the droplet is forced out of the wedge, it becomes narrower, the pressure wanes, and the
contribution from the contact lines dominates. However, the same action also reduces the
perimeter of the contact lines. For a liquid barrel, this happens as o, — 0o, where the
contact areas are reduced to points. From Eq. (3.27), the singularity appears when

1+ cos [ sin 6,
sin [3 cos 0,

X*=-R , (3.90)
which sets the upper bound to the parametrisation. Above this point, the liquid-barrel
model fails.

Moreover, as a droplet becomes narrower, the curvature of the equatorial circle begins
to increase, and thus, the average pressure inside the droplet raises again. Consequently,
the restoring force that the droplet can oppose is not monotonic, and with further dis-
placement, the droplet exerts less restoring force. This implies that the forced equilibrium
position, which is given by the roots of Eq. (3.88), is not unique. This is observed for
droplets of low .. See inset of figure 3.10 for instance, where two forced equilibrium
states with different displacement are found at the same force magnitude.

If the force that the droplet opposes due to the displacement is non-monotonic then it
can reach an extreme. In this case, the extreme is a maximum, which implies the existence

of a threshold set by

B max — _yr1/2 v
0 VI T ax
and whose position is at the inflection point of the energy landscape. Therefore, applying
a force above the threshold would detach the droplet from the wedge.

(3.91)

3.3 Simplified Analysis of the Dynamics of the Liquid
Barrel

The dynamic situation in which a droplet inside am hydrophobic wedge will be analysed.
The droplet will be initially set at a distance away from its equilibrium position, and it
is allowed to relax back to its equilibrium position X,. The liquid barrel assumption is
used to obtain an expression of the net capillary force that drives the relaxation of the
droplet in dynamic situations. Then, the dynamics will be modelled using the Lagrangian
approach, treating the position of the droplet as a function of time, X (), as the relevant
degree of freedom for the dynamics.
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Figure 3.10: Equilibrium position of the droplet by the effect of an external force. From
right to left, the thick curves represent the response in the position of droplet as a function
of the Bond number, Bo, for the contact angles 6., = 95°,100°, ...,135° at § = 5°. The
cut-off line at the bottom represents the position in which the droplet reaches the apex
of the wedge.

3.3.1 Simplified Equations of Motion

The Lagrangian functional of the system reads,

1 -
Lo, u] = 3 /pu2 d*z — Floy] + p Vo, (3.92)

where © = |u|, and u is the velocity field of the fluid. The first term in the right-
hand side of the equation corresponds to the total kinetic energy, the next term is the
interfacial energy contribution, and the last term is included to satisfy the constant-volume
constraint, where p is the corresponding Lagrange multiplier. The equations of motion
are derived from the principle of minimum action, and by adding dissipative forces caused
by viscous friction and contact line motion.

The liquid barrel shape, constructed in §3.1.1, can be used to model the translational
motion of the liquid. It is assumed that the velocity of the droplet is small, and thus,
the kinetic energy term in Eq. (3.92) can be neglected. From Egs. (3.52) and (3.58), the
Lagrangian is reduced to

L(g,€,4,€) = —F(g,€) + pV (g, €). (3.93)
Then, the equations of motion are

0,F — po,V
OF —poV =

. (3.94)
o (3.95)

= =
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where K, = K,(q,¢€,¢,€), and K. = K(q,¢€, ¢, ) stand for non-conservative friction forces.
The conservation of volume,

V =0,Vi+0.Vé=0, (3.96)

is necessary to bring closure to the system and to determine the value of p.
From Noether’s theorem [102], the energy flow of the system is calculated,

d

E[F—pv] =&, (3.97)

where the dissipation function, & = & (q,€,4q,¢€), gives the rate of change of energy of the
system, i.e., '
E=qK,+€éK.. (3.98)

The friction forces can be reconstructed on the basis of the dissipative contributions to
Eq. (3.98). Therefore, the properties of the dissipation function, relevant to the equations
of motion, will be derived.

For small velocities near equilibrium, the dissipation function can be expanded in a
Taylor series,

= > Umtitiog, + O (i), (3.99)

I,m=1
where the variables are w; = ¢ and wy = €, and the drag coefficients v, are given by
1 0%¢

Vlm(wla wm) = -3

2 Ouin Qi | (3100

w;=0, Wm=0)

The dissipation function, &, lacks a constant term since dissipation cannot occur while
the system is at rest. The linear terms should also be zero, otherwise they would lead to
the spontaneous creation of energy for a combination of values of ¢ and é. On that basis,
and without loss of generality, the friction forces are expressed as

K, = —vyq — Vg€ and (3.101)
K. = —Upl— vet. (3.102)

It can be verified that Eqgs. (3.101) and (3.102) satisfy Eq. (3.99).
Substituting Eqgs. (3.101) and (3.102) into Eqs. (3.94) and (3.95) respectively, and

using the constraint of constant volume (Eq. 3.96), the equations of motion and the value
of the Lagrange multiplier is obtained:

E)qV}

8\/][(

vi = [—8qF+(86F) (3.103)

- [

Vaq(OF) (0 V') — vge[(
Vgq(0V)?

e A% 9,V \?
vy, — 2uq€a o+ Ve (;V) : (3.106)

) : (3.104)

E)(04V) + (0, F)(0V)] + vee (9, F) (94V)
zng(a vxa V) + vee(0,V)?

; (3.105)

i
|

where
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The Lagrange multiplier, p, is the average pressure inside the liquid barrel. This can be
seen by looking at the total energetic contribution of the pressure. As discussed in §1.2.2,
the work done by the pressure of the fluid is — [ pdV, integrated throughout the volume
of the droplet. In this simplified model, the energy contribution corresponds to —p V.
By construction, the two expressions must be equal, and thus, the Lagrange multiplier
corresponds to the average pressure, i.e.,

1
= — [ pdV. 3.107
p V/p ( )

The equations of motion can be further simplified by reducing the system to a sin-
gle degree of freedom, X. This eliminates the volume constraint but, because of that,
knowledge of the average pressure is lost. The Lagrange function for this single degree of
freedom is,

L(X,X)=—Fy(X). (3.108)
Following a similar procedure as above, the equation of motion now reads
. dFy
X=—. 3.109
X dX (3.109)

The relation among the drag coefficients of Eqs. (3.101), (3.102) and (3.109) is found
by means of the chain rule of the free-energy derivatives, i.e.,

% = {&zF + (agF)j—;} ;—;’(, (3.110)
and the cyclic relation,
gzg = —j—;, (3.111)
which, by comparison to Egs. (3.94) and (3.106), gives
vx(X) = %V(qm), (3.112)
where the drag coefficient vx is defined by
E=—vxX2 (3.113)

In order to solve the equations of motion, an explicit expression of the friction coeffi-
cients is required. Strictly speaking, this task requires solving the hydrodynamic equations
coupled with the equations that describe the motion of the contact lines. Nonetheless,
within this coarse-grain approximation, the dissipation function will be estimated using
a superposition of the friction forces arising from the motion of the contact lines and the
flow pattern that develops during the translational motion of the droplet.

3.3.2 Flow Pattern

The friction forces that the droplet experiences depend on the details of the flow pattern
within the liquid barrel, for this, the force-free Stokes equation will be used (see §1.2.4),

0=—-Vp+nViu. (3.114)
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Figure 3.11: Decomposition of the flow field for the liquid barrel. The corner flow models
the flow in the vicinity of the contact line which is described in the Cox-Voinov theory,
and the bulk flow or the region far from the contact line, modelled by a Jeffery-Hamel
flow.

This comprises a set of non-homogeneous linear partial different equations for the velocity
field w. Due to the linearity of the Stokes equation, w can be expressed in terms of a
superposition of solutions. Therefore, a perturbative method can be applied to refine the
approximation of the velocity field.

For this, two regions in the liquid can be differentiated: the region near the contact
lines, and the bulk region of the barrel (see figure 3.11).

In the region near the contact lines, according to Voinov [35] and Cox [34], the flow
pattern in the vicinity of the contact lines is generic for dynamic wetting problems [103].
It is determined by the competition between the capillary and viscous forces. As discussed
in §1.2.5, this flow pattern is a corner flow defined by the contact angle, 8, at which the
liquid-gas interface intersects the solid wall (see figure 3.12).

To describe the flow, a local reference frame to the contact line given by three unit
vectors is defined: the vector orthonormal to the solid surface n, the vector parallel to
the contact line tangent to the solid planes,

aqﬁwcli

» def
t(p) = +——(¢), 3.115
(¢) Dotas (3.115)
as defined in Eq. (3.20), and the binormal vector perpendicular to both,
b(o) L A x £(). (3.116)

These vectors serve as an orthonormal basis: a local system of coordinates is defined such
that any position vector 7’ is given by the linear combination ' = 2’b + y't — 2'n.
Following Snoeijer [36], who focused on situations where the fluid of the outer phase
has negligible viscosity, the velocity field of the viscous phase is expressed as
Vel

o 2 . - x'Z ;. . D
Uoomer (T, 7) = 0 —cosOsinf | a7+ 22 smob = (m —¢ s1n6’> n] tu)t
(3.117)

where v = v - b is the velocity of the contact line, u = wu - t is the velocity component
of the fluid velocity (perpendicular to the z’z—plane), and ¢’ is the angle of the point
(2', 2') subtending from the solid wall (¢ = 0), and the interface (¢ = 6).

The bulk of the barrel is the next region to be studied, i.e., the region far from the
contact lines. Therefore, it is expected that fluid flow is governed by the geometry of
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Figure 3.12: Local coordinate system for the corner flow. The origin of the local coordinate
system, (2, 2') is at the contact line . The liquid-gas interface makes an angle 6 with
respect to the vector b.

the solid planes and the structure of the pressure field. It will be analysed, first, by
writing the flow between two non-parallel solid planes (see §2.3.3 and figure 3.6). For
such a geometry, it is expected that the velocity profile forms a radial flow known as a
Jeffery-Hamel flow [104, 105].

Using the result from Eq. (B.9) from Appendix B, the mean flow velocity of a Jeffery-
Hamel flow is matched with the translational velocity of the barrel, X. For a given a
barrel configuration of width 2R, and centre at X, the bulk flow velocity reads

% X cos 23 — cos 2w
(22 + 22)1/2 cos2B — B~ 1sin2p

Upuk(T) = (coswé, +sinwe,). (3.118)

The pressure profile of this flow reads

2 3 Ry(€2 — 1
Pouik(T) = % ((X Ig 5) +% (% - 1) % (3.119)

To assess the quality of this approximation, the pressure profile of the barrel (Eq. (3.78))
and the Jeffery-Hamel pressure profile are compared (Eq. (3.119)). This is shown in
figure 3.13. There can be observed a good match between both pressure profiles when
X > X,, and larger deviations when the liquid barrel is closer to the apex of the wedge.
This is expected at X < X,, since the shape of the droplet becomes increasingly distorted
and the Jeffery-Hamel assumption begins to depart from the liquid barrel.
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Figure 3.13: Comparison between the pressure profile of a liquid barrel along the bisector
line (dashed curves), to the Jeffery-Hamel pressure profile (solid curves) for 6, = 120°,
B = 5° and barrel positions (X — X,)/V1/3 = —1,-1/2,0,+1/2, +1.

3.3.3 Effect of the Outer Phase in the Flow Field

It has been shown that the Jeffery-Hamel flow gives a good approximation of the flow in
the bulk of the droplet at the transverse plane. In this section, the flow in the outer phase
that surrounds the liquid is investigated.

The following analysis is based on the Boundary Integral Method [28|, using the single-
layer formulation (see §1.2.4). The general solution of the velocity of a fluid phase of
viscosity 7y, in contact with another phase of viscosity 1wt = 7in, is given by

u(x) = /G(w,az’) -q(x') dA(x), (3.120)

where G is a Green’s tensor function that solves the Stokes equation, and the vector q(x)
is the local force density, that drives the flow. The latter satisfies a Fredholm integral
equation of the second kind,

= L L A C g WV/T ! "NdA,(x' 3.121
al@) =~ A @+ e [ T@e) @) dane). G120

where ( = (1= \)/(1+\), Af = 2ykny, is force discontinuity due to the surface tension,
T is a third rank Green’s tensor function, and the superscript &% indicates that the
Cauchy Principal Value of the integral should be taken.

The Green’s function relevant to the wedge geometry, i.e., one that vanishes at the solid
planes, was given by Osano and Hasimoto [106]; using their result to compute the force
density, however, has considerable difficulties. For that reason, the analysis is restricted
to the flow in the bisector plane, and therefore, the 2D free-space Oseen tensor will be
used as the Green function G, i.e.,

G(z,z') = —Ilogi + ’w—ﬁ (3.122)
xXr
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and for the third rank stress tensor Green function,

T(x,x') = W bt

- (3.123)
where 7 = |Z|, and & = o’ — @.

Eq. (3.121) can be solved in polar coordinates. From Eq. (3.76), the force discontinuity
can be expressed in the angular coordinate ¢,

v [a+E+2cosp |
Af =— 124
f R, ( £+ cosp ) er (3.124)

and express the force density as a Fourier series

q(p) =€, > bncosmp+eé, »  cpsinmep, (3.125)
m=0 m=1

where the terms that do not satisfy the reflection symmetry have been dropped (¢ — —¢).
With this, Eq. (3.121) turns into an algebraic equation for the coefficients b, and ¢,,.
After some simplifications, the force density results in

1

q(p, Ry, &, ) = (bo + by cos @) €, — by singp é, +

where the coeflicients are

by = i aZErye -l (3.127)
" dmm(I+ MR, (C+2)/E2 -1 '

and

_ 7¢ (o) —VE-1T)
b= TN, N (3.128)

Eq. (3.126) can now be used in conjunction with Eq. (3.120) to integrate the velocity
field. An example of this is shown in figure 3.14 by numerical integration of the force
density. There, streamlines and vector plots are shown for droplets moving outwards and
inwards for a vanishing viscosity ratio A = 0. The structure of the flow shows a slow
recirculating flow that vanishes in a short vicinity of the droplet. Also, the formation of
two vortices at the sides of the liquid barrel can be observed. The velocity field vanishes at
the centres of the vortices, reducing drag, and thus, their presence allow a faster motion of
the centre of the droplet. Therefore, due to the interaction of the outer phase, a significant
reduction of the bulk dissipation relative to the expected reference Jeffery-Hamel flow
occurring throughout the volume of the droplet.

In the context of the boundary-layer, a fluid near a solid plane is expected to acquire a
parabolic profile [107]. In this case, due to conservation of flux for a diverging confinement,
a more adequate profile is the Jeffery-Hamel flow given in Eq. (3.118). The amplitude of
such profile is governed by the gradients in the pressure [108]; in this case, prescribed by
the curvature of the liquid-gas interface. Therefore, the structure of the flow in the bulk
of a moving droplet is expected to be a Jeffery-Hamel flow in the transverse plane, which
includes two side vortices in the orthogonal plane as shown in figure 3.14.
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YIRo

Figure 3.14: Stream and vector plots at the bisector plane of the droplet at positions (a)
X —X,= -V and (b) X — X, = +V1/3 for outwards and inwards motion, respectively
as the liquid barrel moves in the absence of external forces. The colour map shows the
vorticity in the z direction. The viscosity ratio is set to A = 0.

3.3.4 Estimating the Dissipation Function

Having developed a model for the flow pattern within the barrel, the dissipation function
can now be derived. As discussed by de Gennes [18], the total dissipation will be the sum
of the dissipations at three different length scales:

S = Sbulk + gcorner + 8017 (3129)

The first two contributions, gbulk; and gcornera are hydrodynamic in origin, and Scl accounts
for the dissipation that occurs at the microscopic scale, sometimes referred to as the ‘true’
contact line [18].

The dissipation in the bulk of the fluid can be readily obtained by evaluating Eq. (1.32)
using the velocity field from Eq. (3.118), this is,

Ehulk = —%Thn /(Vubu1k + Vugulk)Q dv. (3.130)
The dissipation function in Eq. (3.130) considers a Jeffery-Hamel flow that is homogeneous
along the y axis. Therefore, the integral is bounded to the region within the liquid barrel
in which the dissipation of the Jeffery-Hamel flow takes place. This can be quantified as
an effective volume, Vg < V. The effective volume, Vg, is an adjustable parameter that
excludes the volume of the corner flow, and also the volume that contains the side vortices
that facilitate the motion of the fluid (see §3.3.3). Then, from Eq. (3.130),

. 67N Verr a &2 "o
k= — B ¢ 131
Ebulk lcos0l] V (@ 1)2 R (3.131)

is obtained (see Appendix D for details).
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At the corner-flow length scale, the stresses that locally bend the interface are the
main causes of dissipation [109]. This induces a change in the contact angle to a dynamic
value of € [34]. This deviation out of equilibrium results in a force per unit length in the
perpendicular direction to the contact line given by

Seorner = Y(cos 0, — cos ) b~ (60 — 0.) sin 0, b. (3.132)

Then, the energy dissipated is

gcorner = 2% fcorner * Vel dl7 (3133>
cl

where dl is the differential arc-length element of the contact line.

The apparent contact angle is obtained from the Cox-Voinov expression (see 1.2.5).
For small differences in the contact angle, the integral in Eq. (1.43) can be approximated
as,

0 — 96 Tin Vel 1 gM
~ og —.
fCV(eea )‘> Y gm
where fov(fe, A) is given by Eq. (1.44). In the limit of vanishing outer viscosity (A — 0),

(3.134)

2sin 6,

Jov(0,0) = 0, — sinf, cos d, (3.135)

The force per unit length is then obtained by eliminating the difference in contact
angles in Eq. (3.134), i.e.,

/N
Foomer = MinvVel fev(fe, 0) sin 0, log e_M b. (3.136)

m

Therefore, the dissipation contribution due to the corner flow is,

corner — 5 log — di. 3.137
£ 0, — sin 0, cos 0, o8 0y, ?{1 Vel ( )

Note that the integrand of Eq. (3.137) is quadratic in v, therefore regardless of the
direction of motion of the contact line, the dissipation function is always negative. The
closed-loop integral in Eq. (3.137) can be approximated as (see Appendix E),

7{ v dl &~ TR,X2. (3.138)
cl

At length scales below the microscopic length, ¢,,,, dissipative processes are determined
by the motion of molecules of the two phases and the interaction with the solid surface.
According to Ruijter [49], the corresponding friction force is proportional to v, i.e.,

fa = Govad, (3.139)

where the constant of proportionality, (y, is described in §1.2.5. This leads to the dissi-
pation contribution of the contact line,

Ea = 2 f v dl, (3.140)
cl
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Adding all the dissipation contributions, Egs. (3.131), (3.137), and (3.140), gives the
total dissipation. Using Eq. (3.113), the friction coefficient is obtained,

in e X2 0 4 in I 2‘ge 14
67N Ver aX°R T1)in SIN log 2+ orc| By (3.141)

X, R,) =~ Eva -
B S | Teos0] V 02— Ry T8, — sinGcos8.

where the corrections that involve R, have been neglected since they come with high-order
powers of 5 and e. This also implies that the generalised velocity ¢ does not play significant
role in the dissipation, as, v, =~ v, =~ 0. Consequently, the only friction coefficient, which

dominates the translational motion of the barrel, is v,, = v = @’v.

3.3.5 Near Equilibrium Relaxation

Having obtained the dissipation coefficients, the analysis of the motion of the liquid barrel
can be completed. The equation of motion of the liquid barrel (Eq. (3.109)) reads,

1 dF(X)

X=- 3.142
The right hand side of Eq. (3.142) depends on the position X. In the vicinity of equi-
librium, it can be expanded in terms of power of (X — X.) and the equation of motion

reduces to

. 1
X = —;(X - X.) +O0(X — X,)?, (3.143)
where ¥
 det vax(Xe) (3.144)
k
Here,
d?Fy
p L 3.145
dX2 sze ? ( )
is defined from the expansion around equilibrium of the free energy,
1
Fy(X)=F,+ 3k (X — X))+ O(X — X,)> (3.146)

The role of k is to act as a restitution coefficient, a force per unit displacement that
restores the barrel to equilibrium. From Eq. (3.59) and Eq. (3.57), it reads

3
k(0 8) = 67— (1 = ‘Zf”) (3.147)
1
sin? 3 2 cos? 0. (cos 20, — 5)
- 0. — 9cosd.) |1 ; . (3.148
™ cos? 9(0083 I cosfe) [ i (20, — m — sin 26, )? } ( )

Evaluating the friction coefficient (Eq. (3.141)) close to equilibrium results in

67N Ve 4T sin? O O 6V 1/3
X.) =~ log — + 2 .
VX( ) ( | COS 9e| Vv He — sin Qe COS He o8 fm * WCO 7T(COS 396 — 9cos (96)
(3.149)
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Figure 3.15: Bulk, corner flow and contact line contributions to (a) the drag coefficient,
vx and (b) the relaxation time, 7, of the translational motion of barrels along the bisector
plane of a wedge of angle § = 5°. In (a) the restitution coefficient, k, is superimposed
on the right-hand side axis. The vertical lines in both plots correspond to the limiting
wetting angle 6, = 90° + 3.

The solution of Eq. (3.143) is,
X(t) = [X(0) = Xe]e™"T + X.. (3.150)

Consequently, near equilibrium, the liquid barrel relaxes at an exponential rate. The
characteristic time scale, 7, in which this occurs, is determined by the ratio of the friction
to restitution constants.

Figures 3.15(a) and (b) show plots of k, vx, and 7 as functions of the equilibrium
angle. In the limit 8, — 90° + 3, the barrel equilibrium position is closer to the apex of
the wedge. Geometrically, this implies a stronger confinement, and thus both the bulk
contribution to the friction coefficient and the restitution constant reach local maxima
in this limit. For larger 6., both quantities decrease monotonically, leading to an initial
decrease in the relaxation time. However, the rate at which k decreases becomes dominant
with increasing #,. This is because at higher equilibrium contact angle the barrels keep
an approximately spherical shape for larger displacements from equilibrium. As a result,
the relaxation time reaches a minimum, beyond which it increases with 6, until it reaches
a maximum saturation value as 8, — 180°.

The typical magnitude of the corner flow is controlled by the length scale separation
between the macroscopic length scale ¢y, and the microscopic length scale ¢,. The
microscopic length depends on the details of the liquid-gas interactions and the roughness
of the solid surface [33] that characterise the motion of the interface at the level of the
contact line [38]. Experiments by [110, 111], reveal that in narrow confinements, the
relative velocity of a liquid near the bounding solid is not zero. The speed of this shear
motion was found to be proportional to the viscous stress, [112] where the constant of
proportionality manifests as a length-scale of a few nanometres.

For a macroscopic droplet, ¢y ~ R, ~ 1 mm can be fixed and comparing the mi-
croscopic length £, to the slip-length then, ¢y /¢, =~ 105. As shown in figure 3.15(a),
this additional contribution is important at intermediate angles, and vanishes in the limit
f. — 180°. This is the combined effect of a vanishing contour length and a less confined
corner flow at higher opening angle. As a result of the corner flow, the minimum in the
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relaxation time is displaced to a higher contact angle, as shown in figure 3.15(b).

The contribution of contact line dissipation to the drag coefficient is controlled by
the (constant) microscopic friction coefficient (; and the contour length of the contact
line. Therefore, this term decays more slowly than the corner flow term in Eq. (3.149).
Estimating (o will, in general, be subject to the details of a specific model [109, 113].
For the sake of illustration, the case where {; = 371 in (3.149) is examined as a specific
example where the corner and contact line dissipation are comparable in magnitude. As
shown in figures 3.15(a) and 3.15(b), the main effect of this term is a slower decay in the
contact line dissipation with increasing contact angle, which in turn leads to an overall
broadening of the maximum in the relaxation time.

3.4 Concluding remarks

In this chapter, an analytical model to study the statics and dynamics of droplets in hy-
drophobic wedges has been proposed. First, the shape that the droplet acquires is studied
from a sharp-interface perspective based on a free energy approach. It was proposed that
the “liquid barrel” gives a good approximation for a static case in the presence of an exter-
nal force. This assumption is validated by comparing the energy landscapes and pressure
profiles with numerical methods.

Having validated the liquid barrel assumption, the model is extended to analyse dy-
namic situations in the absence of external forces. Continuing with the free energy ap-
proach, the equations of motion were deduced by considering the restitutive forces and
dissipative forces. The dissipative forces were estimated from three contributions: the
viscous friction of bulk of the droplet, the dissipation in the vicinity of the contact lines,
and the microscopic drag forces arising from the true contact lines.
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Chapter 4

Lattice-Boltzmann Simulations

Diffuse-interface numerical simulations are amenable methods to study the dynamics of
liquid barrels, as they have the capacity of modelling capillary phenomena, including the
dynamic wetting of smooth solid surfaces [42, 26, 39, 44, 40, 45, 114|. The main advantage
of this approach is that the interface dynamics occurs naturally through convection and
diffusion—the latter driven by chemical potential gradients [41, 42, 9]. This contrasts
with sharp-interface models, where one needs to track the evolution of the interface [115]
and to specify a boundary condition for the contact line in an ad hoc manner [103].

Following §1, the relevant equation to analyse the translational motion of a droplet in
a wedge is the Navier-Stokes equation. This equation models the evolution of the velocity
field, in the incompressible limit, it reads (Eq. (1.27)),

p(O+