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Abstract

Capillarity and wetting are the study of the interfaces that separate immiscible fluids and
their interaction with solid surfaces. The interest in understanding capillary and wetting
phenomena in complex geometries has grown in recent years. This is partly motivated by
applications, such as the micro-fabrication of surfaces that achieve a controlled wettability,
but also because of the fundamental role that the geometry of a solid surface can play in
the statics and dynamics of liquids that come into contact with it.

In this work, the statics and dynamics of liquids in contact with smooth, but non-
planar geometries is studied. The approach is theoretical, and include mathematical
modelling and numerical simulations using a new lattice-Boltzmann simulation method.
The latter can account for solid boundaries of arbitrary geometry and a variety of bound-
ary conditions relevant to experimental situations.

The focus is directed to two model systems. First, an analysis on the statics and
dynamics of a droplet inside wedge is performed, this is accomplished by proposing the
shape of the droplet, a new shape that will be referred in this document as a “liquid
barrel”. Using this assumption, the static position and shape of the droplet in response
to an external body force is predicted. Then, the analysis is extended to include to
dynamical situations in the absence of external forces, in which the translational motion
of the liquid barrel towards equilibrium it is described. The proposed analytical model
was validated by comparison with full 3D lattice-Boltzmann simulations and with recent
experimental results. The applicability of these ideas is materialised with the purpose of
achieving energy-invariant manipulation of a liquid barrel in a reconfigurable wedge.

As a second model system, the evaporation of a sessile droplet in contact with a wavy
solid surface was studied. Due to the non-planar solid topography, the droplet position in
equilibrium is restricted to a discrete set of positions. It is shown that when the amplitude
of the surface is sufficiently high, the droplet can suddenly readjust its shape and location
to a new equilibrium configuration. These events occur in a time-scale much shorter than
the evaporation time-scale, a “snap”. With numerical simulations and theoretical analysis,
the study reveals the causes for the snap transitions, which lie in shape bifurcations of
the droplet shapes, The analysis and results are compared against recent experiments of
droplets evaporating on smooth sinusoidal surfaces.

With the advent of low-friction surfaces, in which static friction is practically absent,
the mobility of droplets is close to ideal, and with this, predicting and controlling them
in static cases becomes a challenge. The analysis and results presented in this work can
be used for manipulating the position and defining the shape of droplets via the geometry
of their confinements.
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Introduction

The interest for understanding capillary phenomena has grown in recent years. This can
be attributed to the increasing number of applications that require a precise control and
manipulation of small volumes of fluids [1] and to the micro-fabrication of surfaces that
achieve controlled wettability [2]. At small scales, surface forces become comparable,
or even dominant, to volume forces. Therefore, capillarity, which studies the effects of
the interfaces of multicomponent fluids, becomes a key aspect in the behaviour of these
systems [3].

The forces that the interface of two liquids produce have drawn the attention of many
renowned mathematicians and scientists; attempts of a formal description of this phe-
nomenon can be traced back to the 18th century [4]. Interfacial forces are one of the most
astonishing manifestations of forces at a microscopic level, but are also elusive and diffi-
cult to treat. A major breakthrough in the modern theory of capillarity is due to van der
Waals [5]. In his doctoral thesis, he modelled the concentration of molecules by a mean
field approximation which led him to predict that the interface of a liquid coexisting with
a gas is necessarily smooth and that it carries an energy cost which is now understood as
surface energy or surface tension.

In order to minimise their surface energy, liquids can acquire stable closed shapes with-
out a container. As a requirement, the interface must have a constant mean curvature [3],
this implies the existence of an underlying symmetry in the surface energy. Depending
on the physical constraints, the energy in equilibrium of a capillary system may be in-
variant upon a continuous or a discrete transformation. In this work two possibilities
are explored: a droplet bridging two non-parallel planes, exhibiting energy invariance
upon continuous variation of the angle between the planes, and a sessile droplet on a
wavy surface, which relaxes to equilibrium by centring itself at either a peak or a trough
in the topography. Although these systems appear in a number of real-life situations,
their study, from a Theoretical Physics perspective, has remained relatively unexplored.
Moreover, they constitute archetypes whose understanding can lead to advances in more
complex situations.

The relevant aspects of the Theory of Capillarity that will give the foundations of our
analytical and numerical models is summarised in §1. This includes the thermodynamic
and mechanical aspects of capillarity.

In §2, a description and validation of the computer simulations that will be used is
presented as part of the methodology. For that, the lattice-Boltzmann method (LBM) was
chosen, which is a well-established numerical method that has proven to give an accurate
description when it comes to the details at a small scale for the behaviour of liquids or
gases and their interaction [6, 7, 8]. The LBM was enhanced to model open boundaries
and a new algorithm was introduced to model the wetting behaviour on solid surfaces of
an arbitrary shape.

1



2 CONTENTS

Then, for the system exhibiting continuous symmetry, in Part I, an analysis of the
statics and dynamics of a droplet inside a wedge is conducted. This analysis allows to
understand ways of manipulating droplets as a direct application. The analysis begins
in §3, by proposing the shape of the droplet: the liquid barrel. Then, in §4 numerical
simulations to validate the liquid barrel assumption are carried out. The simulations also
reveal further details of the motion of the droplet. In §5, the analytical model is compared
against experimental results to later on propose a direct application to these ideas.

In Part II, a system that exhibits a discrete symmetry is studied: a sessile droplet
on a wavy surface. Due to the patterned topography, the droplet finds equilibrium at a
discrete set of positions that depend on its volume. As a consequence, if the droplet is
changing in volume, it is observed to spontaneously reconfigure its shape and location to
find equilibrium, in a snap. In §6, lattice-Boltzmann simulations are carried out to study
this system, and in §7 an analytical model to study constructed with the aim of revealing
the causes for the snap transitions.

Finally, the general conclusions of this work are presented.



Chapter 1

Review of the Theory of Capillarity

1.1 Thermodynamics of Multiphase Fluids
Capillarity is the study of the interfaces between two immiscible fluids [3]. A starting
point for understanding capillarity is the thermodynamics of phase separation.

Consider a system composed of molecules of two different species. The components
can be labelled by an order parameter, φ, which is defined as

φ
def
=
n2 − n1

n2 + n1

, (1.1)

where n1 and n2 are the particle number densities of the two species [9, 10]. The inter-
mediate values of the order parameter describe the relative concentrations of species in
a mixture. This concept can be used to describe single component fluids that undergo a
phase transition, in such a case, n1 and n2 correspond to the densities, e.g., of the vapour
and liquid phases, respectively.

In a fluid, the molecules are free to move and interact with each other through col-
lisions. If attractive interactions between two molecules of different species are weaker
than same-species interactions, the mixed state will have a higher energy compared to
the pure states [11, 12]. Therefore, mixed states are less stable, and, the system separates
into pure phases.

The thermal equilibrium of the system occurs when the temperature, T , pressure, p,
and chemical potential, µ, are equal in the two phases [11, 13]. To obtain the thermody-
namic quantities of the equilibrium state, Maxwell’s construction rule can be applied to
the µ–φ isotherm (see figure 1.1(a)) [14].1

Equivalently, equilibrium is reached when the Helmholtz free energy, F = F (φ, T ),
which is the relevant thermodynamic potential for fixed volume and temperature situa-
tions, is minimised. For a given number of molecules, the stationary values in the free
energy are obtained by writing

d[F (φ, T )− µ0φ] = 0, (1.2)

where µ0 is a Lagrange multiplier that is introduced to satisfy the constraint of a conserved
order parameter. As a consequence, Eq. 1.2 shows that µ0 = dF/dφ, is the chemical

1 Maxwell’s construction or equal-area rule is usually applied to the p–v isotherm, where v is the specific
volume; however, if the control parameter is φ, the same procedure can be applied to the isotherm of its
conjugate variable, µ.

3
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ϕ = -1 phase 
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(a) (b)

Figure 1.1: (b) The chemical potential and (a) the Helmholtz free energy of a binary
mixture. The homogeneous mixture (dashed curves) has a higher energy than the inho-
mogeneous mixture (thick line). The equilibrium chemical potential, µ0, is such that the
signed area of the shaded region is zero.

potential of the coexisting phases, which is represented by the slope of the line that
interpolates the two pure states (see figure 1.1(b)).
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1.1.1 The Sharp-Interface Approximation

In the sharp-interface approximation, the Helmholtz free energy of a capillary system is
defined by [3, 15, 4],

dF
def
= SdT − pdV + µdN + γdA, (1.3)

where S, V , and N are the entropy, volume and number of particles, and γ and A are the
surface tension and surface area of the interface, respectively. The first three terms in
Eq. (1.3) give the usual bulk contributions of the coexisting phases as described before,
whereas the last term corresponds to the energy cost for increasing the interface area by
dA. If creation of surface area results in work, then, γ, is also a force per unit length that
pulls in direction parallel to the interface.

In a gently curved interface, surface tension produces a net force density,

f = −2γκn̂i, (1.4)

where n̂i is the orthonormal vector to the interface, and κ =∇· n̂i/2 its mean curvature
(see figure 1.2(a)) [16]. Therefore, in equilibrium, f is balanced by a change in pressure,
∆p, which leads to the Young-Laplace condition [3, 16],

∆p = 2γκ. (1.5)

With the change in the pressure, the chemical potential varies accordingly by

∆µ = −2γκ

∆φ
, (1.6)

where ∆φ is the change of the order parameter across the interface. Eq. (1.6) is called
the Gibbs-Thomson condition [17, 16].

The contact of a fluid phase with a solid surface creates an interface, and with it, a
surface tension, γsf, thus adding the term γsfdAsf to the free energy. If two coexisting
fluids, e.g., 1 and 2, come in contact with a solid, the three interfaces meet at the triple
line (also called contact line). The angle of intersection of the fluid-fluid interface with
respect to the solid is called the contact angle, θ. At the contact line, the three surface
tensions compete. Then, equilibrium is possible if the forces balance (see figure 1.2(b)),
i.e.,

γ cos θe = γs2 − γs1, (1.7)

p = p0 + Δp

p0

R = 2/κ

f = -2γκn

n

γs1 γs2

γ

θe

(a) (b)

Figure 1.2: Illustration of (a) the Laplace pressure inside a spherical droplet and (b) the
equilibirum contact angle of a sessile droplet.
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where θe is the equilibrium contact angle. Eq. (1.7) is called the Young-Drupé relation [18].
In situations where the temperature, number of molecules and volume are constant,

the free energy of two immiscible liquids in contact with a solid becomes

F = γA− γAs1 cos θe + const., (1.8)

where A and As1 are the surface areas the fluid-fluid and the solid-fluid (phase 1) interfaces.
To produce Eq. (1.8), Eqs. (1.3) and (1.7) are combined, it is also assumed that the total
surface area of the solid is constant. In the absence of the constant term, Eq. (1.8) will
be refer to as the interfacial energy.

1.1.2 The Diffuse-Interface Approximation

In reality, the transition between one phase to another cannot be infinitely sharp. Molecules
have an interaction potential energy which gradually fades out. In addition, due to ther-
mal fluctuations, the molecules of a liquid cannot remain packed. This implies that a sharp
interface cannot be in equilibrium [4], and consequently, the order parameter must change
smoothly, over a distance that depends on the range of interactions between molecules.
This characteristic length, which defines the width of a fluid-fluid interface, has been
measured to be only a few nanometres across for simple liquids and gases [4, 17, 19, 20].
Consequently, for many practical purposes, the sharp-interface formalism is a good ap-
proximation to treat capillary systems. However, it will be shown that there are factors
at the microscopic level that influence the physics at large scale [17], most notably, in the
motion of the contact lines. Therefore, a microscopic description is also necessary.

The long-range effects of the interaction between molecules is captured by considering
an energy contribution due to spatial variations in the order parameter [21, 16]. Therefore,
φ = φ(x), is now a scalar field, also called, the phase field. Henceforth, the Helmholtz
free energy of a binary mixture must depend on the phase field and on its gradients, i.e.,

F [φ(x)] =

∫
Ω

ψ(φ,∇φ) dV +

∫
∂Ω

ζ(φ) dS. (1.9)

The first term is the volumetric contribution to the energy of the fluid mixture contained in
a domain Ω. The second term is the contribution due to the interaction of fluid molecules
in contact with a bounding surface, ∂Ω (e.g., a solid wall).

The free-energy density, ψ, in Eq. (1.9), can be modelled as [20, 19, 21]

ψ(φ,∇φ) =
1

4
B(φ2 − 1)2 + µ0φ− p0 +

1

2
K|∇φ|2, (1.10)

where B and K are a constants, and µ0 and p0 are the reference chemical potential
and pressure. The first term in Eq. (1.10) is excess free energy, and gives the energy
contributions of short range interactions. The excess free energy, together with the next
two terms in Eq. (1.10), reproduce the dashed curve in figure 1.1(a) which corresponds
to the energy of a uniform binary system. The last term of Eq. (1.10) models the free
energy contribution due to phase-field gradients.

From Eq. (1.9), it is possible to calculate the chemical potential field,

µ(x)
def
=

δF

δφ
(1.11)

= µ0 +Bφ(φ2 − 1)−K∇2φ, (1.12)
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and the pressure tensor field, [19, 15],

P(x)
def
= [φµ− ψ ] I +K∇φ∇φ (1.13)

=

[
p0 +

1

4
B(φ2 − 1)(3φ2 + 1)−Kφ∇2φ− 1

2
K|∇φ|2

]
I +K∇φ∇φ, (1.14)

where I is the identity matrix.
For two phases separated by a flat interface in equilibrium, µ(x) = µ0 and ∇ ·P = 0.

Thus, the distribution of the phase field follows after solving the differential equations;
one finds the equilibrium profile

φ(x) = tanh

[
x√
2`

]
, (1.15)

where x is the normal coordinate to the interface, and

`
def
=
√
K/B, (1.16)

is the interface thickness (see figure 1.3(a)).
For a flat interface profile (Eq. (1.15)), one finds that the pressure tensor, P, can be

decomposed into two different quantities: the pressure component normal to the interface
P⊥ = Pxx, and the pressure component tangential to the interface P‖ = Pyy = Pzz, all
other components of the pressure tensor are zero. Using the solution of Eq. (1.15), these
read

P⊥(x) = p0, (1.17)

which gives the equilibrium pressure of the mixture, and

P‖(x) = p0 −
1

2
B cosh−4

[
x√
2`

]
. (1.18)

As discussed in §1.1.1, P‖ corresponds to a pulling force per unit length by the interface
(see figure 1.3(b)).

The transition from one phase to the other has an energy cost, [20]

γ
def
=

∫ ∞
−∞

[
ψ(φ,∇φ)− µ0φ+ p0

]
dx. (1.19)

This is the energy per unit area which is identified as the surface tension. For the flat
interface profile, this results in

γ =
2

3

√
2KB, (1.20)

Graphically, this is equal to twice the shaded region in figure 1.1(a) and also equal between
the curves P⊥ and P‖ in figure 1.3(b), i.e., one can also define the surface tension as [22, 23]

γ
def
=

∫
[P⊥(x)− P‖(x)] dx. (1.21)

Moreover, for gently curved interfaces, κ� `−1, it can be shown that the Young-Laplace
(Eq. (1.5)) and Gibbs-Thomson (Eq. (1.6)) laws are reproduced [15, 24].
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B/2

(a) (b)

Figure 1.3: Profiles of (a) the order parameter and (b) the components of the pressure
tensor in the neighbourhood of a flat interface.

The second term in Eq. (1.9) is the surface contribution to the free energy, where ζ(φ)
is the binding energy of the fluid to the solid, i.e. [25, 26]

ζ(φ) = −χφ, (1.22)

where the constant χ, called the wetting potential, controls the energy cost incurred when
the fluid phases come in contact with a solid boundary. Using the standard tools of
Variational Calculus, this results in the equilibrium boundary condition,

Kn̂ · ∇φ = χ, (1.23)

where n̂ is the normal vector to the surface pointing towards the solid.
Eq. (1.23) has the effect of altering the profile of the order parameter in the vicinity

of a boundary. It induces an increment in the energy of the fluid that is proportional to
the contact area with the solid [25, 26], i.e., the surface tension of the solid with a fluid
phase. In equilibrium, one can show that the solid-fluid surface tensions obey

γs± =
γ

2

[
1−

(
1± 4χ

3γ

)3/2
]
, (1.24)

where the + (−) sign corresponds to phase 2 (1). Due to Eq. (1.13), it can be observed that
the component of the pressure tensor parallel to the solid surface produces an effective
pulling force per unit length, γs±. From the balance of forces and the Young-Dupré
relation (Eq. (1.7)), the wetting potential be can expressed in terms of the contact angle,
θe,

χ(θe) =
3

2
γ sgn(π/2− θe)

{
α(θe) [1− α(θe)]

}1/2

, (1.25)

where α(θe) = cos[arccos(sin2 θe)/3] [25, 26].
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1.2 Dynamics of Capillary Systems

1.2.1 The Navier-Stokes and Cahn-Hilliard Equations

Out of equilibrium, a gradient in the chemical potential will cause a diffusive current
−M∇µ, where the constant M is called the mobility. In addition, the phase field will be
advected by the velocity field, u. Therefore, the local conservation of φ is given by the
Cahn-Hilliard equation [20, 16]:

∂tφ+ u · ∇φ = M∇2µ. (1.26)

The local conservation of momentum is governed by the Navier-Stokes equation, i.e.,

ρ(∂tu+ u · ∇u) = −∇ · P + η∇2u+ f , (1.27)

where ρ and η are the local density and dynamic viscosity of the fluid, f is an external
force [27], and incompressibility is assumed, i.e.,

∇ · u = 0, (1.28)

The local fluid mass density and kinematic viscosity, ν def
= η/ρ, is defined in terms of

the phase field via the profiles

ρ(x) =
ρ2 − ρ1

2
φ(x) +

ρ2 + ρ1

2
, (1.29)

and
ν(x) =

ν2 − ν1

2
φ(x) +

ν2 + ν1

2
, (1.30)

where ρ1, ρ2, ν1, and ν2 are the saturation mass densities and kinematic viscosities of
phases 1 and 2.

1.2.2 Energy and Dissipation

The total energy of a coexisting fluid mixture in motion is the sum of the kinetic energy
and the Helmholtz free energy [27], i.e.,

E =
1

2

∫
Ω

ρ(x)u2(x) dV + F [φ(x)], (1.31)

where u = |u|. As the fluid moves, energy will be dissipated to the surroundings. The
rate of change in the energy, Ė , can be obtained by writing the time derivative of E in
terms of φ̇ and u̇. Then, using the equations of motion (Eqs. (1.26) and (1.27)), Ė can be
expressed as:

Ė =−
∫

Ω

{
1

2
ηD : D +M |∇µ|2

}
dV

−
∫
∂Ω

{[
1

2
ρ u2I + P− ηD

]
· u−Mµ∇µ

}
· n̂ dS,

(1.32)

where D
def
= ∇u+∇uT , is called the deformation tensor [9]. The first integral in Eq. (1.32)

is a volume integral and corresponds to the total energy dissipation in the bulk of the
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fluid due to viscous friction and diffusion. The second integral in Eq. (1.32) is a surface
integral and is composed by two terms. The first of these corresponds to the flow of
mechanical energy at the boundary. The second term in the integrand corresponds to
change in energy due to the flow of the chemical potential across the boundary (e.g., due
to gain or loss of molecules). Often, the system might be closed, thus, energy exchange
with its surroundings is impossible. Then, the surface integral in Eq. (1.32) vanishes, and
dissipation occurs due to viscosity and diffusion in the bulk.

1.2.3 Flow Due to Interfaces

In the sharp-interface formalism, the domain of the fluid mixture is subdivided into sep-
arate phases. From a dynamical point of view, the interface is a surface of concentrated
capillary force, f . Each of this subdomains must be treated separately, however, they
must be joined by adequate boundary conditions. One condition states that the velocity
of the flow must be continuous across the interface, and thus, [28, 29]

∆u(xi) = 0, (1.33)

where ∆ represents the discontinuity at the interface point, xi. Eq. (1.33) also describes
the boundary condition at a fluid-solid surface. On the other hand, the capillary forces
have an effect on the stresses of a free interface and produce a discontinuity [27, 29] given
by

∆p(xi)−∆(ηD)(xi) : n̂in̂i = 2γκ. (1.34)

The first term in the left-hand side of Eq. (1.34) corresponds the pressure jump across the
interface, and the second term, gives the discontinuity due to viscous stresses. For a fluid
at rest, where D = 0, Eq. (1.34) reduces to the Young-Laplace condition (see Eq. (1.5)).

1.2.4 Overdamped Flow

If the flow is characterised by a low Reynolds number, Re def
= ρUL/η � 1, where U and

L are the characteristic velocities and length-scales of the capillary system, the inertial
terms in the Navier-Stokes equation (left-hand side of Eq. (1.27)) can be neglected, this
is called the overdamped regime [30, 27, 28]. In such a case, the Navier-Stokes equations
reduce to

0 = −∇p+ η∇2u+ f , (1.35)
0 = ∇ · u. (1.36)

Eq. (1.35) is called the Stokes equation. In the absence of external forces (f = 0), if
follows after taking the divergence of Eq. (1.35), that the pressure is a harmonic function,
i.e.,

∇2p = 0. (1.37)

Analogously, the vorticity, ω def
= ∇× u, which is a measure of the rotation of the flow, is

also a harmonic function, i.e.,
∇2ω = 0. (1.38)

Eqs (1.35)—(1.38) form a linear set of partial differential equations for the vector field,
u(x), and the scalar field, p(x). This implies that, the superposition of solutions can be
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Table 1.1: List of free-space Green functions for the linearised viscous flow for two and
three dimensions. (x̃ = |x̃|, x̃ def

= x′ − x, and ε is the Levi-Civita symbol.)

G(x,x′) p(x,x′) Ω(x,x′) T(x,x′)
2D −I log x̃+ x̃ x̃

x̃2
2 x̃
x̃2

2ε · x̃
x̃2

−4 x̃ x̃ x̃
x̃4

3D I
x̃

+ x̃ x̃
x̃3

2 x̃
x̃3

2ε · x̃
x̃3

−6 x̃ x̃ x̃
x̃5

applied, and with this, a Green function, can be defined. For example, the flow field due
to a point force f(x) = f0δ(x− x′), is given by

u(x) =
1

8πη
G(x− x′) · f0, (1.39)

where δ(x) is the three-dimensional Dirac delta function and G is the Green function.
Similarly, the vorticity, pressure and stress tensor fields are given by,

ω(x) =
1

8πη
Ω(x− x′) · f0, (1.40)

p(x) =
1

8π
p(x− x′) · f0, (1.41)

Σ(x) =
1

8π
T(x− x′) · f0. (1.42)

The corresponding Green functions, G, Ω, p, and T, are summarised in table 1.1

1.2.5 Contact-Line Dynamics

A fundamental aspect of the theory of capillarity is the motion of contact lines [18, 31,
32, 33]. To formulate this problem, let us begin with the sharp-interface formalism.

Consider a fluid-fluid interface of characteristic length-scale `M, reaching a solid sur-
face, and suppose fluid 1 is displacing fluid 2. Let us assume a stationary regime so that
the contact line is moving at a constant velocity, vcl (see figure 1.4) [34].

If adhesion of the fluid molecules with the solid is expected, the fluid is at rest with
respect to the wall, this would require that the velocity of a contact line, vcl, should
vanish [35]. Under this assumption, the motion of the contact line would be impossible,
in other words, the displacement of the contact line would produce an infinite stress [36].
To alleviate this singularity, it has been proposed to allow the fluids to slide over the
solid surface [37] in a small region near the contact line of a characteristic length-scale,
`m [34, 35]. Moreover, vcl is considered small enough so that the contact angle is in
equilibrium at the microscopic level. Nonetheless, further away from the contact line,
the slope of the interface will vary due to its local curvature until reaching `M where the
dynamic contact angle is defined.

According to Cox [34] and Voinov [35], the flow field shows a rolling structure (see
figure 1.4) (as described in the seminal experiments by Dussan and Davis [32, 36, 38]);
the flow is described by the relation [34, 35]∫ θ

θe

dϑ

fCV(ϑ, η2/η1)
=
η1vcl
γ

log
`M

`m

, (1.43)
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vcl

vcl

(a) (b)

Figure 1.4: Flow structure in the vicinity of a contact line, for a liquid (blue phase) and
a gas (white phase) of negligible viscosity (η2 = 0). (a) Shows the flow velocity in the
reference frame of the triple line, therefore the solid surface moves at velocity vcl to the
right; and (b) is settled in the reference frame of the solid, where the contact line is
advancing at vcl to the left. The stream lines are depicted in grey and the magnitude of
the velocity field is plotted as blue arrows.

that predicts the dynamic contact angle, θ, for a given velocity of the contact line, vcl,
where

fCV(ϑ, λ) =
2 sinϑ[λ2(ϑ2 − sin2 ϑ) + 2λ{ϑ(π − ϑ) + sin2 ϑ}+ {(π − ϑ)2 − sin2 ϑ}]

λ(ϑ2 − sin2 ϑ){(π − ϑ) + sinϑ cosϑ}+ {(π − ϑ)2 − sin2 ϑ}(ϑ− sinϑ cosϑ)
,

(1.44)
and η is the viscosity of the fluid from which θ is measured.

The length-scale `M, in Eq. (1.43), is a characteristic size beyond which the details of
the Cox-Voinov flow are no longer dominant. It is expected to extend from a few micros up
to a few millimetres depending on the details of the flow. On the other hand, at length-
scales bellow `m, a purely hydrodynamic description fails to model the motion of the
contact lines. Therefore, a complementary theory is required to continue the description
of the physics at smaller scales, and thus set a value of `m depending on properties of the
fluids involved and the microscopic structure of the solid surface [33].

To continue the analysis from here on, a theory that models the behaviour of the con-
tact line at the microscopic level is necessary; this leads to the diffuse-interface formalism.
Within the diffuse-interface model, the motion of the contact line occurs by virtue of dif-
fusive currents caused by a local imbalance in the chemical potential field [39]. This is
because, while the velocity field vanishes at the solid-fluid interface by virtue of Eq. (1.33),
the diffusive term in Eq. (1.26) does not. This regularises the singularity that stems from
the no-slip boundary condition [40]. More specifically, a distortion of the equilibrium con-
figuration of the contact line will cause a change in the chemical potential ∆µ according
to the Gibbs-Thomson condition (see Eq. (1.6)). From Eq. (1.26), a small peak in the
chemical potential will result in the local evaporation of the phase field, whereas a dimple
will lead to condensation. As shown by [26], the combination of both features leads to a
region where the contact line “slips” past the solid surface, thus, identifying the origin of
`m [40, 41, 42, 43].

Several authors have studied the dependence of `m on the diffuse-interface model
parameters [41, 42, 44, 40]. Kusumaatmaja [45] showed the existence of two scaling
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regimes in relation to the interface width, `, the mobility, M , and the average viscosity
of the fluids, η:

• The diffuse-interface regime, which occurs if ` � (Mη)1/2, and leads to `m ∼
(Mη)1/4, and

• The sharp-interface regime, which occurs if `� (Mη)1/2, and leads to `m ∼ (Mη)1/2.

In both regimes, however, the slip length obeys

log `m ∝ log(Mη) + const. (1.45)

Apart from the hydrodynamic effect, the motion of the contact line also depends
on the spreading of a submicrometre film that precedes the motion of the contact line,
this is called, the precursor film [46, 31]. It has been found that the precursor film
produces a lubricating effect and advances due to van der Waals forces between the solid
and the fluid [47], and because of this, most of the spreading energy is burnt in this
process. However, the precursor film does not always appear, it has been found that its
development depends on the volatility of the fluids and the contact angle with respect to
the solid [46, 47].

On the other hand, Blake and Haynes [33], proposed that, due to motion, the triple
line becomes more diffuse. According to their model, it is predicted a the drag force,
of a non-hydrodynamic origin, restricts the spreading of liquids. This force depends on
the temperature and the density of absorption sites in the solid surface that are able to
capture fluid molecules [48, 49, 50].

In the diffuse-interface model, a material-dependent mobility allows the chemical po-
tential to relax [42, 41, 43, 40]. Therefore, it is the chemical potential that induce breaking
of bonds between the adsorption sites of the solid surface that capture fluid molecules and
therefore allows motion of the contact line [42].

All the aforementioned mechanisms motivates the inclusion of an additional drag force,
fcl, that acts independent of the hydrodynamic dissipation [38, 42, 41]. At low veloci-
ties, the form of fcl must be proportional to the velocity of the contact line to a first
approximation, i.e.,

fcl = −ζ0vcl, (1.46)

where ζ0 is a contact-line friction coefficient. The value of ζ0 depends on the transport
properties of the fluids, but also on the properties of the solid [38]. In view that the
contact-line motion is enhanced by the mobility, thus it is expected that the friction
coefficient is of the form

ζ0 ∝ η/M. (1.47)

1.3 Concluding remarks
In this chapter, a condensed review of the theory of capillarity has been provided for both
static and dynamic situations. First, the sharp-interface formalism is presented, which
gives a sensible approximation to the diffuse-interface model of phase transitions described
afterwards. Then, the equations of motion for capillary systems are provided, these are the
Navier-Stokes for incompressible fluids, which stems from the conservation of momentum
in continuum media, and the Cahn-Hilliard equation, which models diffusive processes
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in multiphase flows. Finally, the behaviour of flows due to interfaces, which include the
dynamics of contact lines is briefly discussed. With this, the theoretical background that
will give base to the analysis and simulations for the following chapters has been defined.



Chapter 2

The Lattice-Boltzmann Method

2.1 General Framework
The lattice-Boltzmann method (LBM) is a fluid dynamics simulator that earns its name
by numerically solving the Boltzmann equation [7, 51, 10]. The Boltzmann equation,
from the Kinetic Theory of Gases, is a statistical description of the evolution of a fluid at
a mesoscopic level (see figure 2.1) [52, 53]. Its main ingredient is a particle distribution
function, f(x,v), that counts the mean number of particles that have certain velocity, v,
at a certain position in space, x [6, 54].

The discretised Boltzmann equation, also called the lattice-Boltzmann equation reads [55,
56, 6, 57]

fq(x+ cq, t+ 1) = fq(x, t) + J [f ], (2.1)
where fq(x, t) is a particle distribution function that represents the average number of
fluid particles with position x and velocity cq at time t; and J [f ] is called the collision
operator. The terms in the right-hand side of Eq. (2.1) are often referred to as the post-
collision distribution, f ?q , i.e.,

f ?q (x, t)
def
= fq(x, t) + J [f ]. (2.2)

Space and time are discretised, and the velocity space is restricted to a set C = {cq}Q−1
q=0

(see Appendix A) where Q is the number of directions in which particles can move after a
unitary time step (see figure 2.1). Therefore, C defines the neighbourhood of each lattice
site, and Q its degree.

The dimension, D, of the simulation, together with the degree, Q, uniquely identifies
the geometry and topology of the lattice. Therefore, the notation D-Q- is commonly used
to define an LBM model, e.g., the D3Q15 model consists of a 3D lattice with 15 velocity
vectors.

The collision operator, J [f ] in Eq. (2.1), models how particle populations are re-
distributed due to interactions such that it increases the entropy of the fluid and thus
approaches thermodynamic equilibrium. In this work the single-relaxation time collision
operator will be used [58], which is based on the so-called BGK approximation [59],

J [f ] = − 1

τf

[
fq − f eq

]
(x, t). (2.3)

The time evolution of the distribution function in Eq. (2.1) consists of a collision step
where fq relaxes to an equilibrium value f eq over a time-scale determined by the collision

15
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CFD LBM MPC

Macroscopic
scale

Mesoscopic
scale

Microscopic
scale

Figure 2.1: The lattice-Boltzmann is a mesoscopic method that operates at a scale between
the macroscopic Computer Fluid Dynamics (CFD) and the microscopic Multi-Particle
Collision (MPC) methods. It uses discrete particle populations, fq(x), (gray arrows) in a
lattice (coloured squares).

parameter τf (Eq. (2.3)), followed by a streaming step where fq is propagated along the
direction of cq over a unitary time increment (left-hand side of Eq. (2.1)). Over large
length-scales and long time-scales the LB method integrates the macroscopic equations
of motion, i.e., the Navier-Stokes and Cahn-Hilliard equations [52, 53, 6].

2.1.1 Numerical Integration of the Navier-Stokes Equation

The Navier-Stokes equation, Eq. (1.27),

ρ(∂tu+ u · ∇u) = −∇ · P + η∇2u+ f , (2.4)

is recovered by means of a Chapman-Enskog expansion [10, 52, 53, 60] of Eq. (2.1). The
local momentum density is related to the first moment of the distribution function, i.e.,

ρu
def
=
∑
q

fqcq. (2.5)

The equilibrium distribution function, f e
q , is constructed to convey the thermodynamic

behaviour of the fluid and to ensure local mass and momentum conservation. This is done
by requiring that the moments of f e

q obey
∑

q f
e
q = ρ,

∑
q f

e
qcq = ρu, and

∑
q f

e
qcqcq =

P + ρuu. A suitable choice for the equilibrium distribution is,

f eq (ρ,u,P)
def
= wq

[
trPH(0)

q +
ρu

cs
·H(1)

q +
1

2c2
s

(
P− c2

strP I + ρuu
)

: H(2)
q

]
(2.6)

for q 6= 0, and

f e0(ρ,u,P)
def
= ρ−

Q−1∑
q=1

f eq (ρ,u,P), (2.7)

where wq are weighting factors determined by the geometry of the lattice [61], cs is the
speed of sound (see Appendix A), and H(n)

q = H(n)(cq) is the tensor Hermite polynomial
of n-th degree [10, 61, 62]. Explicitly, H(0)

q = 1, H(1)
q = cq/cs, and H

(2)
q = cqcq/c

2
s − I.
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The mass density of the fluid, ρ(x), is determined by means of the phase field, φ(x),
as in Eq. (1.29),

ρ(x) =
ρ2 − ρ1

2
φ(x) +

ρ2 + ρ1

2
, (2.8)

where ρi, i = 1, 2, are constants that correspond to the bulk densities. The Chapman-
Enskog expansion provides a relation between the relaxation parameter, τf , and the kine-
matic viscosity of the fluid,

ν = c2
s(τf − 1/2). (2.9)

Therefore, τf can be specified, by means of Eq. (2.9), as a function of the phase field
(Eq. (2.10)),

ν(x) =
ν2 − ν1

2
φ(x) +

ν2 − ν1

2
, (2.10)

where νi, i = 1, 2, correspond to the kinematic viscosities.
To model a body force, f , acting on the fluid, a term is included to the lattice-

Boltzmann equation,

fq(x+ cq, t+ 1) = fq(x, t) + J [f ] + ∆fq. (2.11)

Following Lee [7, 60], the forcing term, ∆fq, is defined as

∆fq
def
=
wq
c2
s

[
1 +

u · cq
c2
s

+
(u · cq)2

2c4
s

− u2

2c2
s

]
(cq − u) · f . (2.12)

The lattice-Boltzmann method is known to break Galilean invariance in situations
where the fluid has density inhomogeneities [63]. Following Swift [10] and Holdych [64],
to reduce this effect, the correction term is added

Π = ν
[
(u · ∇ρ) I− (u∇ρ)− (u∇ρ)T

]
(2.13)

when calculating the equilibrium distribution function, i.e.,

f e
q = f e

q (ρ,u,P + Π). (2.14)

2.1.2 Numerical Integration of the Cahn-Hilliard equation

To integrate the Cahn-Hilliard equation, Eq. (1.26),

∂tφ+ u · ∇φ = M∇2µ, (2.15)

a second lattice-Boltzmann equation is introduced,

gq(x+ cq, t+ 1) = gq(x, t)−
1

τg

[
gq − geq

]
(x, t), (2.16)

where gq is a distribution function with a collision parameter τg = 1, whose zeroth moment
defines the phase field,

φ
def
=
∑
q

gq. (2.17)
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The corresponding equilibrium distribution function, geq, is defined as

geq(φ,u, µ)
def
= wq

[
M ′µ

c2
s

H(0)
q +

φu

cs
·H(1)

q +
φuu

2c2
s

: H(2)
q

]
(2.18)

if q 6= 0, and

ge0(φ,u, µ)
def
= φ−

Q−1∑
q=1

geq(φ,u, µ), (2.19)

thus satisfying
∑

q g
e
q = φ,

∑
q g

e
qcq = φu and

∑
q g

e
qcqcq = M ′µI + φuu, where M ′ =

M(τg − 1/2)−1.

2.1.3 Calculating the Equations of State

To compute the pressure tensor, P, and the chemical potential, µ, in Eqs. (2.6) and (2.18)
the expressions in Eqs. (2.20) and (1.12) are used, i.e.,

P(x) =

[
p0 +

1

4
B(φ2 − 1)(3φ2 + 1)−Kφ∇2φ− 1

2
K|∇φ|2

]
I +K∇φ∇φ, (2.20)

µ(x) = µ0 +Bφ(φ2 − 1)−K∇2φ, (2.21)

where the reference pressure and chemical potential are set to p0 = 1/3, and µ0 = 0.
To calculate the equations of state, it is required to compute the gradient and the

Laplacian of the phase field. These are approximated using the finite-differences stencils

∇φ(x) ≈ 1

c2
s

∑
q 6=0

wqcq φ(x+ cq), (2.22)

∇2φ(x) ≈ 2

c2
s

∑
q 6=0

wq [φ(x+ cq)− φ(x)] , (2.23)

where the wq are used as weighting factors to optimise the accuracy of the approxima-
tion [65] (see Appendix A).

2.1.4 Structure of the Lattice-Boltzmann Algorithm

The LBM algorithm can be summarised in the following sequence of steps (see fig-
ure 2.2) [51, 54].

1. Initialisation: in which the density, order parameter, pressure, and chemical poten-
tial fields are set to an initial value.

2. Main loop: where the integration over time of the lattice-Boltzmann equation is
done, this is subdivided in the following.

(a) Calculation of the equilibrium distributions f eq and geq, in which Eqs. (2.6)-(2.7)
and (2.18)-(2.19) are evaluated in terms of the hydrodynamic fields.

(b) Collision, in which the collision operators, J [f ] and J [g] from Eq. (2.3) are
applied, this results in the post-collision distribution functions f ?q and g?q .
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Main loop

Initialisation
Calculate equilibrium
distribution functions

Collide Stream Calculate hydrodynamic
fields

Figure 2.2: Flow diagram of the lattice-Boltzmann algorithm.

n̂q

δq

Figure 2.3: Schematics of solid boundaries in the lattice-Boltzmann method. A near-
boundary lattice node (large square) has at least one lattice link that intersects the solid
boundary. Each of such cut links is defined by its direction, and by the fractional distance
to the wall, δq. At the intersection, the boundary is defined by a local normal vector n̂q.

(c) Streaming, in which the post-collision distribution functions are propagated to
the neighbouring sites, e.g., f ?q (x, t)→ fq(x+ cq, t+ 1), and similarly for gq.

(d) Calculation of the hydrodynamic fields by means of the distribution functions
fq and gq according to Eqs. (2.17), (2.8), (2.5), (2.20) and (2.21).

2.2 Boundary Conditions

Boundary conditions in the lattice-Boltzmann method arise in the streaming steps of
Eqs. (2.1) and (2.16), and in the spatial derivatives of the phase field needed to compute
the pressure tensor and chemical potential. In the following, these two types of boundary
conditions will be referred as kinetic boundary conditions and finite-differences boundary
conditions.

A near-boundary node, of position vector xb ∈ Ω, is defined as a node that has at
least one lattice vector that crosses the boundary of the simulation domain (see figure 2.3).
These lattice vectors define a set of cut links, Γc [66]. Each cut link is characterised by
its length, |δqcq|, where 0 < δq ≤ 1, and by a local normal vector to the boundary,
n̂q = n̂(xb + δqcq).

2.2.1 Kinetic Boundary Conditions

The kinetic boundary conditions consist of specifying the particle population fq̄ streaming
into the simulation domain opposite to the cut link, where q̄ ∈ {q′ | cq′ = −cq; q ∈ Γc} is
the direction of streaming from the boundary into the simulation domain. Two types of
boundary conditions are considered: no-slip walls and open boundaries.
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For no-slip (solid) walls the corresponding boundary conditions are,

u(xw) = uw, (2.24)
n̂ · ∇ · P(xw) = 0, (2.25)
n̂ · ∇µ(xw) = 0, (2.26)

where xw = xb + δqcq is the location of the solid wall, and uw is the boundary value of
the velocity. Eqs. (2.24)–(2.26) are satisfied by the bounce-back algorithm [66, 67, 68];
specifically, the YLI bounce-back algorithm was implemented [69, 70], which reads

fq̄(xb, t+ 1) =
δq

1 + δq
f ?q (xb, t) +

1− δq
1 + δq

f ?q (xb − cq, t)

+
δq

1 + δq
f ?q̄ (xb, t)−

2

1 + δq

wq
c2
s

ρwuw · cq,
(2.27)

where the boundary value of the density ρw is taken from the boundary node, i.e., ρw =
ρ(xb). The same algorithm is used for gq̄.

Open boundaries correspond to situations in which the fluid is allowed exchange mass
and energy with its surroundings. The pressure and the chemical potential are prescribed
at an open boundary, i.e.,

φ(xw) = φw. (2.28)
∇ · u(xw) = 0, (2.29)

P(xw) = Pw, (2.30)
µ(xw) = µw, (2.31)

where the notation xw = xb + δqcq holds for the actual position of the boundary; φw,
Pw and µw are the boundary values of the order parameter, pressure tensor and the
chemical potential. For the distribution function fq, the unknown particle populations
are computed according to the anti-bounce back algorithm [69], which reads

fq̄(xb, t+ 1) =
1

2

[
f eq + f eq̄

]
(ρw,uw,Pw), (2.32)

where the distribution functions, f eq and f eq̄ , are given by Eq. (2.6), the velocity at the
boundary, uw, is computed as

uw = u(xb)− n̂q · u(xb)n̂q (2.33)

to satisfy Eq. (2.29), and ρw is determined by Eq. (2.8). The same algorithm is used to
build the boundary populations of g, i.e.,

gq̄(xb, t+ 1) =
1

2
[geq + geq̄](φw,uw, µw). (2.34)

The boundary values φw, µw, and Pw are not independent, but constrained by the
equation of state. Namely, from Eq. (1.13), a relation for the three boundary values needs
to be satisfied,

Pw = [φwµw − ψ(φw) ] I, (2.35)

where it is assumed that ∇φw = 0 at the open boundaries.
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2.2.2 Finite-Differences Boundary Conditions

The wetting behaviour at the solid walls depends on the derivatives of the phase field at
a boundary node in such a way that Eq. (1.23),

n̂q · ∇φ(xb + δqcq) =
χ

K
, (2.36)

is satisfied. To impose Eq. (2.36) as a boundary condition, the derivatives of φ are
computed at the boundary node xb. Specifically, the Taylor expansion of Eq. (2.36)
around the node xb reads [71],

n̂q · ∇φ(xb) + δqn̂qcq :∇∇φ(xb) =
χ

K
, (2.37)

if q ∈ Γc, and

cq · ∇φ(xb) +
1

2
cqcq :∇∇φ(xb) = φ(xb + cq)− φ(xb) (2.38)

otherwise. In Eqs. (2.37) and (2.38) the gradient vector,∇φ(xb), and the Hessian matrix,
∇∇φ(xb), are unknown. In 3D, the gradient vector and the Hessian matrix comprise 3+6
independent components, forming a set of U = 9 unknowns; in 2D, U = 5. Eqs. (2.37)
and (2.38), however, give Q− 1 equations. Therefore, the system is overspecified.

To determine ∇φ(xb) and ∇∇φ(xb), a pseudo-inverse algorithm will be introduced.
First, Eqs. (2.37) and (2.38) are expressed in the same units by multiplying every instance
of Eq. (2.37) by δq|cq|2/n̂ ·cq, this will allow to build linear combinations of the equations.
Then, the system of equations is expressed in matrix form:

GΛ = Φ, (2.39)

where Λ, is a U × 1 vector containing the unknown entries of the gradient vector and the
Hessian matrix, e.g., in 3D,

Λ =
(
∂xφ, ∂yφ, ∂zφ, ∂

2
xφ, ∂

2
yφ, ∂

2
zφ, ∂x∂yφ, ∂y∂zφ, ∂z∂xφ

)T
(xb). (2.40)

In Eq. (2.39), Φ is a (Q − 1) × 1 vector of known field values and boundary conditions
whose entries read

Φq =

{
χδq|cq|2/Kn̂ · cq, if q ∈ Γc.

φ(xb + cq)− φ(xb), otherwise,
(2.41)

and G is a (Q−1)×U matrix of coefficients that reflects the local structure of φ, including
the boundaries. The pseudo-inverse algorithm consists of estimating the solution, Λ =
G−1 Φ, computing G−1 as

G−1 ≡ (E G)−1 E. (2.42)

In Eq. (2.42), E is a U×(Q−1) matrix which projects G into a U×U (square) matrix. This
can be thought of as a weighting of the entries of G while preserving linear independence.
In the spirit of Eqs. (2.22) and (2.23), in 3D, the columns of the projection matrix are
defined as,

Eq ≡
wq
δqc2

s

(
cxq
δq
,
cyq
δq
,
czq
δq
,
c2
xq

c2
s

,
c2
yq

c2
s

,
c2
zq

c2
s

,
cxqcyq
c2
s

,
cyqczq
c2
s

,
czqcxq
c2
s

)T
, (2.43)
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where the generalisation δq = 1 for q 6∈ Γc is made. The structure of the E matrix in
2D is similar, and it is obtained by removing every entry where z appears in Eq. (2.43).
Although the expression of E is not unique, it was found that Eq. (2.43) produces the
expected interface profile near the solid boundaries, which was quantified using the equi-
librium contact angle.

Because the matrix G stores the structure of the lattice and of the solid boundary
(which do not change over time), the pseudo-inverse algorithm, Eq. (2.42), is applied
numerically at the initialisation of a simulation, and is therefore not more expensive than
the usual application of a finite-differences stencil.

2.3 Validation of the Lattice-Boltzmann Method
The lattice-Boltzmann method is validated by representative reference systems; these are,
the Couette Flow, the Poiseuille Flow, and the Jeffery-Hamel Flow for the dynamics of a
single phase fluid, whereas simulations for the interface width, equilibrium contact angle,
and evaporation of a sessile droplet were carried out to validate the two-phase fluid model
and mass transfer boundary conditions.

2.3.1 Couette Flow

A Couette Flow consists of a 2D flow between two parallel plates that have different
tangential velocity. The flow is driven by the difference of the velocity between the two
plates, see figure 2.4(a). The tangential velocity, ux, as a function of the transverse
coordinate y, is given by the following expression [72, 29],

ux(y) = 2uw
y

Ly
− uw, (2.44)

where ±uw is the velocity at the top (+) and bottom (−) walls respectively, and Ly is the
separation between the two plates.

D2Q9 lattice-Boltzmann simulations of a single phase fluid (φ(x) = 1) were carried
out for a simulation box of width, Nx = 32 lattice sites, and variable height, Ny = Ly + 1.
The no-slip boundary conditions are set at the planes y = 0.5 and y = Ly + 0.5, where
the velocity of the solid wall is set to uw = 10−3. The ends of the channel are connected
by periodic boundary conditions. The density of the fluid is set to unity, i.e., ρ = 1, and
the collision parameters are: τf = 1.0, 1.5 and τg = 1.

Initially, the flow is at rest, and after 106 iterations, the flow asymptotically reached
a stationary state.

In figure 2.4(b), the results of the simulation are shown and the solution given by
Eq. (2.44). In the simulations the viscosity was varied by choosing different values of the
relaxation time. This is in good agreement with the analytical solution, Eq. (2.44), and
therefore, validates the velocity boundary conditions, Eq. (2.27).
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Figure 2.4: (a) Schematic representation of the Couette-Flow simulation. The top plate is
moving with horizontal velocity uw and the bottom plate with −uw. This creates a profile
in the velocity of the fluid. (b) Lattice Boltzmann simulations of the velocity profile of
the Couette flow in comparison with the theory, for different system sizes and relaxation
times.

2.3.2 Poiseuille Flow

Similar to the Couette Flow, the Poiseuille Flow consists of a 2D flow between parallel
planes. However, the fluid is driven by either a difference of pressure between the opposite
ends of the cavity, ∆p, or by an external force density throughout the volume, f , see
figure 2.5(a). In both cases, the velocity profile in this system is given by [72, 29],

ux(y) = 4umax
y

Ly

(
1− y

Ly

)
(2.45)

where
umax = − ∆p

2ηLxL2
y

, (2.46)

in case of a pressure driven flow, and

umax =
fx

2ηL2
y

, (2.47)

in case the flow is driven by a body force.
For the Poiseuille system, D2Q9 LB simulations of a single phase fluid contained in a

simulation box of width, Nx = Lx + 1, where Lx = 20, and variable height, Ny = Ly + 1
were carried out. The solid walls are at rest, and are located at the planes y = 0.5 and
y = Ly + 0.5.

The open boundaries are specified at the endpoints of the channel, i.e., x = 0.5 and
x = Lx + 0.5 when the flow is driven by a pressure difference, ∆p = −10−4 and the base
pressure, p0 = 1/3. On the other hand, when a body force is applied, fx = 10−6, and the
end-points of the channel are connected by periodic boundary conditions. The density of
the fluid, and the collision parameters are set to unity, i.e., ρ = 1, and τf = τg = 1.

As an initial condition, the velocity of the flow is u(x) = 0 everywhere, and it was left
for 106 iterations to reach a steady state.
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Figure 2.5: (a) Schematic representation of the Poiseuille Flow for the simulation setup.
The flow is driven either by a difference of pressure between the two open ends of the
channel or by an external force. (b) LBM simulations of the Poiseuille velocity profile
driven by a constant force density. The simulation results for the pressure driven Poiseuille
flow reproduce the same velocity profile.

In the simulations, the width of system was varied, and measure the velocity at a
cross-section of the channel, a quantitative agreement with Eq. (2.45) can be observed in
figure 2.5(b) where the profile of the velocity is plotted. Therefore, the implementation
of the body forces, Eq. (2.12), and pressure driven boundary conditions, Eq. (2.32), give
the expected results.

2.3.3 Jeffery-Hamel Flow

In a Jeffery-Hamel flow, a fluid is contained between two planes that form a wedge geome-
try of opening angle 2β. The flow is driven by a pressure difference. Due to the symmetry
of the system, it is customary to use polar coordinates to describe the flow. A schematic
illustration of the flow can be seen in figure 2.6. For a Jeffery-Hamel flow, the pressure
profile along the bisector reads [27],

p(r, θ = 0) = p0 + ∆p
r2

1

r2

r2 − r2
2

r2
1 − r2

2

, (2.48)

where r1 and r2 are the distances from the openings to the apex of the channel, p0 is
the pressure at r2 and ∆p + p0 is the pressure at r1, where ∆p if the pressure difference
between the two ends [73, 74]. For more details on the derivation of the Jeffery-Hamel
flow, see Appendix §B.

D2Q9 LBM simulations for a single phase Jeffery-Hamel flow were carried out. The
simulation domain is contained in a box of width Nx = 100 and height Ny = 48. the
open boundaries are specified at x = 0.5 and x = 99.5, and the no-slip boundaries at
y = 24± tan(β)± 5, where β = 10◦. The simulations parameters and initial condition are
the same as in the Poiseuille flow simulations §2.3.2.

In the simulations, an increment in the pressure was set at the narrow end of the
channel, then, the system is left to relax near equilibrium. In figure 2.7(a), the pressure
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Figure 2.6: Schematic representation of the Jeffery-Hamel simulation set-up. The top
plate forms an angle β with the horizontal line. The flow is driven by a pressure difference
between the two ends of the channel.
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Figure 2.7: Simulation results of a Jeffery-Hamel flow. (a) In coloured lines, the contour
plot of the pressure field and the velocity profile depicted with arrows. (b) Baromet-
ric pressure profile of the channel at the bisector and comparison with the analytical
prediction.

field is shown with contour lines and the velocity field is drawn with arrows, qualitatively
it can be observed that the arrows of the velocity field are radial, while the contour lines
are circular sections as expected. In figure 2.7(b), the pressure profile from the simulations
is plotted and compared with the analytical prediction displaying good agreement. This
shows that the interpolation scheme in the bounce-back algorithm make an accurate
representation for off-lattice solid walls.

2.3.4 Interface Profile Between Two Fluid Phases

Simulations of the equilibrium phase field profile, φ(x), of a two-phase system were carried
out. A D3Q15 LBM model was used, with a simulation box of Ny = Nz = 1, and
Nx = 100, with closed boundaries at x = 0.5 and x = 99.5, and periodic boundaries for y
and z. The saturation density of both phases is ρi = 1, i = 1, 2. The collision parameters
are τf = τg = 1. The mobility is set to M = 10−2, and the thermodynamic constant K
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Figure 2.8: LBM simulations for the interface profile and the comparison with the pre-
diction by the theory.

was varied from 0.08 to 0.18, and B = (3γ)2/8K, in order to keep a constant value of the
surface tension, γ = 10−3.

Initially, the fluid is at rest, and the profile of the phase field

φ(x) = 2Θ(x− 50)− 1, (2.49)

where Θ is the Heaviside function. The system was left for 104 iterations to equilibrate.
Initially, the system is spatially divided into two halves, for one half, the concentration

is set to one equilibrium value, whereas for the other half, the concentration is set to the
other value in order to make a discontinuity at the middle point. As the system evolves
in time, the discontinuity smooths out until it reaches equilibrium. The resulting profile
is plotted in figure 2.8 for different values of the constant K, the agreement with the
theory, Eq. (1.15), can be observed. This shows that the LBM is capable to simulate
phase coexisting flows. Moreover, by tuning the constants B and K, in Eqs. (2.20) and
(2.21), the interface width, ` (and also the surface tension, γ) can be adjusted.

2.3.5 Equilibrium Contact Angle

To measure the equilibrium contact angle of a sessile droplet on a solid surface, D2Q9 LBM
simulations of two-phase fluids were carried out. The simulation domain was contained
in a box of dimensions 100 × 50, where the solid boundaries were placed at the planes
y = 1− δ, with variable 0 < δ < 1 and y = 49.5, and periodic boundary conditions in the
x direction.

The initial condition for the order parameter is,

φ(x) = − tanh

(
2

`
[|x− xc| − 60]

)
, (2.50)

which represents a circular droplet with centre at xc = (50, 0.5) and radius of 60 lattice
sites. The interface width ` = 2.12, and the surface tension is set to γ = 1.0× 10−3, thus
setting the constants B = 5.0× 10−4 and K = 2.25× 10−3. The parameter χ was varied
from −5× 10−4 to 5× 10−4.
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Figure 2.9: LBM simulation results for the contact angle of a sessile droplet in comparison
with the prediction by the theory for different values of an off-site boundary at distance
δ.

After 104 iterations, the system reaches the equilibrium and the drop forms a circular
cap as shown in figure 2.9(a). The contact angle is measured by finding the centre of the
circular segment. The simulations were carried out for different values for the wetting
potential χ and different values of the off-site distance to the boundary δ, resulting in
different contact angles (see figure 2.9(b)).

As expected, the variation of the surface constant resulted in the predicted contact
angle with a negligible variation with respect to the off-site distance. This is evidence that
the effect of the contact angle is well reproduced, that is, the finite-differences boundary
conditions give the expected results regardless of the distance to the solid surface.

2.3.6 Evaporation of a Sessile Droplet

To assess the numerical method for evaporating boundary conditions of a binary fluid,
3D simulations in a 201× 201× 101 simulation domain were carried out.

The initial condition for the order parameter is,

φ(x) = − tanh

(
2

`
[|x− xc| − 60]

)
, (2.51)

where the centre of the droplet is placed at xc = (50, 50, 0.5) for the 3D set, and the
interface width ` = 2.12. The surface tension is set to γ = 1.0× 10−3 fixing the constants
B = 5.0× 10−4 and K = 2.25× 10−3.

Evaporating boundary conditions, Eq. (2.32), are placed at the top plane, whereas the
solid walls correspond to the bottom plane. The value of the thermodynamic fields at the
boundaries were set to φw = −1.02, pw = 1/3, and thus, the chemical potential at the
boundary is µw = −2.0604 × 10−5. The value of the diffusion constant M = 16 and the
relaxation time for both distribution functions was set to unity, i.e., τi = 1, i = f, g.

As the droplet evaporates, diffusive currents transfer mass from the inner phase to the
open boundaries (see figure 2.10). These currents are perpendicular to the interface of the
droplet, and also to the open boundary plane. According to Cazabat [75], the evolution
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Figure 2.10: Snapshot after t = 1.0 × 106 iterations for a 3D evaporating droplet (blue
spherical cap) where the diffusive flows are shown as streamlines (yellow curves).

of the height is expected to be

h(t) = h0

√
1− t/T , (2.52)

where h0 = h(t = 0) is the initial height of the droplet, and T is the total evaporation time-
lapse. In figure 2.11(a), the simulation result is compared with the theoretical prediction.
The comparision with the theoretical curve is obtained by matching h0 with the initial
value of the height of the droplet in the simulations, and T is adjusted via curve fitting.
A good agreement between the two curves is obtained. However, some discrepancies can
be observed most prominently, at the final stages of the evaporation process where the
simulation shows a faster evaporation rate. This is expected since the chemical potential
inside the droplet obeys the Gibbs-Thomson rule, Eq. (1.6). As the droplet evaporates, its
radius decreases, and therefore the chemical potential also increases (see figure 2.11(b)).
Consequently, the magnitude of the diffusive flow increases and the droplet has a higher
evaporation rate. Nonetheless, this effect is not captured by Eq. (2.52).

2.4 Concluding remarks

In this chapter, the lattice-Boltzmann algorithm was defined and validated. This is an
LBM capable of modelling capillary systems in the presence of open and closed boundary
conditions.

The LBM scheme is introduced in the context of the Boltzmann equation from Kinetic
Theory, and it is shown how it solves the diffuse-interface Navier-Stokes and Cahn-Hilliard
equations. By doing this, the tool that will model capillary phenomena in later chapters
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Figure 2.11: (a) Evolution of the height of the droplet, h, as a function of time, t, (blue
solid line) and comparison with the prediction (black dashed line). (b) The chemical
potential profile at the centre vertical line, x = y = 50.

has been constructed. The lattice-Boltzmann algorithm can be used to model fluids
composed of coexisting phases, including the effects of surface tension and wetting.

Boundary conditions play an important role in the dynamics of capillary systems. For
this reason, the LBM has been equipped to model different types of boundary conditions.
These include moving boundaries, such as no-slip walls, but also open boundaries, in
which the pressure, order parameter and chemical potential are prescribed.

The LBM was validated against reference systems for which an analytical prediction
of the fluid dynamics is available; therefore, this allows the use the present LBM in the
to study capillary phenomena in complex situations.
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Part I

Droplets in Wedges
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Introduction to Part I

Droplets in wedge geometries appear in many natural environments. For example, many
shorebird species have wedge-shaped beaks that allow them to feed on water-bound organ-
isms [76], water striders have arrays of tapered bristles that help them brush-off droplets
from their legs [77], and the material properties of wet granular media depend on the adhe-
sion and lubrication provided by capillary bridges wedged between solid grains [78, 79, 80].

Understanding the motion of droplets in wedges is important to improve technologies
that use the geometry of the confinement for purposes of transport, positioning or ac-
tuation of small volumes of liquid. Wetting droplets inside tapered capillary tubes [81]
or wedge-shaped channels [82] self-propel towards regions of stronger confinement, while
non-wetting droplets trapped in non-parallel channels migrate to regions of weaker con-
finement [83, 82]. Such principles have been used to transport capillary bridges using
mechanical [84] or photo-induced [85] actuation and even to separate droplets formed by
two immiscible liquids [86].

When a liquid droplet is brought into contact with the inner walls of a wedge-shaped
channel, the system will tend to minimise its total surface energy. In general, the transient
dynamics and the final equilibrium state of the droplet can be characterised in terms of two
main parameters, corresponding to the opening angle of the wedge, β, which characterises
the confinement geometry, and the equilibrium contact angle of the liquid with the solid,
θe, which quantifies the wetting properties of the liquid.

Broadly speaking, one can identify four qualitatively different regimes for the be-
haviour of droplets in wedges depending on the interplay between β and θe, as sum-
marised in figure 2.12. The first corresponds to a complete invasion regime, where
0◦ ≤ θe ≤ 90◦ − β. In which case, the liquid forms a transient capillary bridge that
completely invades the apex of the wedge where they form an edge spread. It was first
noted by Hauksbee [87] that the free motion of such structures (i.e., in the absence of
external forces, such as gravity) always results in their migration towards the apex of
the wedge. Concus and Finn [88] and Concus et al. [89] showed that a global equilib-
rium for capillary bridges is not possible. Recently, Reyssat [82] studied the motion of
completely-wetting capillary bridges (θe = 0) within wedge-shaped channels and identified
two regimes in the dynamics of the liquid. Close to the apex, the main source of energy
dissipation is the viscous friction in the bulk of the liquid, which balances the rate of work
done by capillary forces. As a result, the time evolution of the position of the capillary
bridge is linear. This picture changes when the liquid is far from the apex of the wedge,
where the main source of dissipation is the corner flow near the apparent contact lines.
The result is a different equation of motion, which is given by a power-law dependence of
the position of the liquid as a function of time with an exponent 4/13 [82].

A second regime occurs when 90◦ − β < θe ≤ 90◦ + β. In such a case the liquid-
gas interface forms an equilibrium shape that touches the apex of the wedge, sometimes

33



34

0o < θe < 90o - β
(complete spreading)

θe = 180o

 

90o - β ≤ θe ≤ 90o + β

β

edge-blob

θe

90o + β < θe

barrel

(a) (b) (c) (d)

Figure 2.12: Wetting regimes for a liquid droplet in a wedge geometry. (a) Edge spread.
(b) Edge blob. (c) Liquid barrel. (d) Drop.

referred to as an edge blob [90, 89, 91].
A third regime corresponds to the completely non-wetting case, where θe = 180◦, and

for which a liquid in a wedge-shaped channel will form a suspended droplet, a situation
also found for gas bubbles. In such a case, a confined droplet will always migrate away
from the apex of the wedge [83]. In sharp contrast to the complete-wetting limit, the
equilibrium shapes of suspended droplets or bubbles correspond to perfect spheres. The
dynamics of such systems involve the interplay between the liquid/gas and the surrounding
fluid [92, 93]. However, in the specific case of a low-viscosity fluid (air bubble) suspended
in a liquid of relatively high viscosity (silicone oil), Reyssat [82] showed that the main
sources of dissipation during the motion within a wedge originate from the liquid, and
that the same equations of motion that hold for completely wetting capillary bridges also
hold for completely non-wetting bubbles.

The fourth regime, which is the main focus in this work, corresponds to a mostly
non-wetting situation, where 90◦ + β < θe < 180◦. In such a case, the liquid-gas interface
is convex, i.e., it has a positive mean curvature, and forms a closed surface in equilibrium
that avoids the apex of the wedge.

Concus et al. [89] studied the equilibria of partially wetting droplets in wedge ge-
ometries. They showed that, in contrast to the wetting regime, droplets form closed
equilibrium shapes avoiding the apex of the wedge, and that, in the absence of exter-
nal forces, such shapes correspond to sections of spheres. Experimentally, Baratian [94]
recently observed such equilibrium configurations using an electrowetting setup. They
show that a spherical equilibrium shape implies a vanishing net force acting on the liquid
and that non-spherical static shapes appear when subjecting the liquid to the action of
gravity.

The behaviour of droplets inside wedges is just beginning to be explored [82, 84, 95].
In this part, the statics and dynamics of partially-wetting drops in a wedge geometry is
studied. The approach taken in §3, is to represent the statics and dynamics of the droplet
is by relying on the Lagrangian formalism and by assuming the shape of the liquid-gas
interface. Then, in §4, lattice-Boltzmann simulations are performed to gather further
information and gain a deeper understanding of how the motion of the droplet inside the
wedge occurs. In §5, the manipulation on the position a droplet as an example of the
potential applications for this system is proposed. For the latter, an experimental set-up
grounding our analytical and numerical results is used. Finally, in §I the conclusions of
this part are presented.



Chapter 3

Theoretical Analysis

The analysis of the droplet inside the wedge will be based on the Lagrangian formulation
detailed in §1.1.1. The starting point of the analysis is to determine the free energy of the
system. For this purpose, the shape of the droplet will be proposed and it will be shown
that it is a valid approximation for both static and dynamic situations. This shape is
intended to describe the configuration of the liquid close to equilibrium, where curvature
gradients are small: such shapes will be referred as liquid barrels.

3.1 Sharp-Interface Formulation

3.1.1 Droplet Morphology: Liquid Barrels

The focus is directed at droplets confined in hydrophobic narrow wedges (θe > 90◦),
where β is of the order of a few degrees. Specifically, the interest lies on droplets of
characteristic linear size βV 1/3 ∼ 10−2 mm, where V ∼ 10µL is the volume of the droplet,
made of liquids such as water, glycerol, or oils, for which the density is ρ ∼ 103 kg m−3,
the dynamic viscosity is η ∼ 1mPa s, and the surface tension is γ ∼ 20—70mN m−1.

Based on the experiments carried out by Reyssat [82], it is expected that the droplet
relaxes asymptotically to equilibrium, and thus, the translational motion of the droplet
can be arbitrarily slow. For a typical speed U ∼ 1—10mm s−1, the Reynolds number
is Re def

= ρUV 1/3/η ∼ 10−1—100, the capillary number is Ca def
= ηU/γ ∼ 10−5—10−3,

and the Weber number is We def
= ReCa ∼ 10−6 − 10−3. For droplets under the action of

gravity along the axis of translation (as in the experiments of Baratian, et al. [94]), the
Bond number is Bo def

= ρgV 2/3γ−1 ∼ 10−1, where V 1/3 has been used as the characteristic
length, and g = 9.81m s−2. If the action of gravity is perpendicular to the bisector plane,
the characteristic length can be taken to be the height of the droplet giving a Bond number
Bo ∼ ρgβ2V 2/3γ−1 ∼ 10−3.

The smallness of the Reynolds number implies that inertial effects are negligible rela-
tive to viscous stresses. On the other hand, the magnitude of the Weber number indicates
that short-wavelength (and thus high frequency) perturbations of the liquid-gas interface
should decay over a short time-scale compared to the translational time-scale [96, 97, 27].
Finally, the smallness of the Bond number implies that the action of gravity has a negli-
gible effect over the shape of the interface.

In summary, the magnitudes of the capillary, Weber and Bond numbers imply that
the shape of the liquid-gas interface is dominated by surface tension. In conclusion, close
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Figure 3.1: Schematics of the geometry of a liquid barrel inside a solid wedge of opening
angle 2β. (a) 3D view of the system. The position vector of the liquid-gas interface, xlg, is
described using the vectorsX, r and R, and the azimuthal and polar angles ϕ and ϑ. (b)
View of the barrel’s cross section along the bisector plane, z = 0. The short-dashed line
corresponds to the equator of the barrel. The solid line corresponds to the contact lines.
(c) View of the barrel’s cross section along the transverse plane, y = 0. The intersection
with the solid occurs at a contact angle θ. The aspect ratio of the transverse cross section
of the barrel is determined by its minimum thickness, H and equatorial width, W .

to equilibrium, the liquid-gas surface must have small gradients in its curvature.
The description of the liquid-gas interface begins by setting the coordinate system.

This will be a Cartesian coordinate system in which the wedge planes are located as half
planes intersecting the y-axis and opening at the angles +β and −β from the xy-plane
(see figure 3.1). Therefore, the normal vector to the upper plane is defined as

n̂
def
= (− sin β, 0, cos β), (3.1)

which points outwards from the fluid domain.
It is assumed that the walls of the wedge are identical and perfectly uniform. Further-

more, the shape of the droplet follows two planes of symmetry: the bisector plane,

z = 0, (3.2)

and the transverse plane,
y = 0. (3.3)

The intersection of the two planes occurs at the x-axis, and defines the bisector line which
is the principal axis of symmetry of the droplet.

Let xlg be the position vector of a point on the liquid-gas interface. This vector can
be expressed as the sum of three displacements from the origin,

xlg = X + r +R. (3.4)

The vector X = (X, 0, 0) defines the position of the geometric centre of the droplet, X,
relative to the apex of the wedge. The vector r = r(ϕ)r̂, where r̂ = (cosϕ, sinϕ, 0), is
a displacement vector from the geometric centre of the droplet (point X in figure 3.1) con-
fined to the bisector plane. The vectorR = R(ϕ)R̂, where R̂ = (cosϕ cosϑ, sinϕ cosϑ, sinϑ),
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is a displacement vector that joins the vector r and a point on the liquid-gas interface
(see figure 3.1 for a defintion of the azimuthal and polar angles, ϕ and ϑ).

The sum of the vectors r +R is restricted such that, at the bisector plane (ϑ = 0), it
draws an equatorial circle of radius Ro = |r +R| centred at X.

For each value of ϕ, the vector R draws a circular section parametrised by the polar
angle, ϑ, on a plane perpendicular bisector plane. The centre of each circular section
is the endpoint of X + r, and its radius, R(ϕ), is set such that the liquid-gas interface
intersects the solid planes at a prescribed contact angle θ.

Whilst the azimuthal angle varies in the interval ϕ ∈ [0, 2π), the polar angle is re-
stricted by the intersection of the liquid-gas interface with the solid walls, i.e., ϑ ∈ [−ψ, ψ],
where the maximum angle, ψ, can be found by the intersection with the bounding planes,
i.e.,

n̂ · xlg(ϕ, ϑ = ψ) = 0. (3.5)

The normal vector to the liquid-gas surface is expressed as,

n̂lg(ϕ, ϑ) =
∂ϕxlg × ∂ϑxlg

|∂ϕxlg × ∂ϑxlg|
. (3.6)

From Eq. (3.5) and Eq. (3.6), a condition that specifies ψ in terms of the contact angle is
obtained, i.e.,

− cos θ = n̂ · n̂lg(ϕ, ϑ = ψ). (3.7)

Here it is assumed that
θ → θe; (3.8)

this is consistent with static situations where the local shape of the interface is not affected
by pinning effects, and with dynamic situations where the contact line undergoes a slow
translational motion, corresponding to the limit of small Ca.

Furthermore, it is assumed that the equatorial radius is constant. Therefore, Eq. (3.7)
reduces to

− cos θe ≈ n̂ · R̂. (3.9)

Following these assumptions, the following expressions for the inner and outer radii of the
droplet are obtained,

r(ϕ) =
αRo −X
α + cosϕ

, (3.10)

and

R(ϕ) =
Ro cosϕ+X

α + cosϕ
, (3.11)

where

α
def
= −cos θe

sin β
. (3.12)

Figure 3.1 shows a typical droplet shape as given by Eqs. (3.10) and (3.11), the name
liquid barrel is assigned because this is similar to an old-style wooden barrel. It will be
shown that the liquid barrel is a good approximation to the shape of the interface in both
static and dynamic situations.
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Whilst it is possible to analyse the liquid barrels in Cartesian coordinates, the shape
of the liquid-gas interface is better described using toroidal coordinates (σ, φ, ω). Geomet-
rically, in toroidal coordinates a point in space, (x, y, z), is determined by the intersection
of three surfaces [98]: a torus,

x2 + y2 + z2 + a2 = 2a(x2 + z2)1/2 cothσ, (σ = const); (3.13)

a sphere,

x2 + (y − a cotφ)2 + z2 =
a2

sin2 φ
, (φ = const); (3.14)

and a half plane
z

x
= tanω, (ω = const); (3.15)

which defines the coordinates σ, φ, and ω. From Eq. (3.13), it can be seen that higher
values of σ form tori with shrinking tubular radius that asymptotically approach the
reference circle,

x2 + z2 = a2, as σ →∞. (3.16)

In terms of these coordinates, the position vector x reads

x(σ, φ, ω) =
a

∆
(sinhσ cosω, − sinφ, sinhσ sinω), (3.17)

where ∆ = cosh σ − cosφ.
In toroidal coordinates, the apex of the wedge corresponds to the axis of revolution of

the angle ω. The two solid planes forming the wedge are located at ω = ±β. Therefore,
ω = 0, corresponds to the bisector plane. The liquid-gas interface of the droplet is given
by the surface

σlg = σlg(φ, ω), (3.18)

and the position vector of a point and the liquid-gas interface is thus given by

xlg(φ, ω) = [x ◦ σlg] (φ, ω) (3.19)

(see figure 3.2). The contact lines follow after evaluating xlgat ω = ±β, i.e.,

xcl±(φ) = xlg(φ, ω = ±β), (3.20)

or, equivalently,
σcl(φ)

def
= σlg(φ, ω = ±β). (3.21)

In order to specify σlg(φ, ω) in terms of the liquid barrel shape, the parameter a is
identified with the radius of the equatorial circle; using Eq. (3.13) at z = 0 gives,

a2 = R2
o(ξ

2 − 1), (3.22)

and
coshσ = ξ, (3.23)

where
ξ

def
=

X

Ro

. (3.24)
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Figure 3.2: Representation of the liquid-gas interface using toroidal coordinates. Surface
plot of an example of a parametric function σlg(φ, ω) for the liquid-gas interface (teal)
and the solid planes (grey).

By calculating the angle of a point in the perimeter of the equatorial circle with respect
to its centre, a relation between φ and ϕ is obtained, i.e.,

cosϕ =
ξ cosφ− 1

ξ − cosφ
. (3.25)

Considering that the liquid-gas interface is formed by arcs of constant radii, R, and centres
at X + r, then, Eq. (3.4) satisfies

[x− (X + r cosϕ)]2 + [y − r sinϕ]2 + z2 = R2; (3.26)

which, by substitution of Eqs. (3.17), (3.10), (3.11) and (3.25), yields

σlg(ω) = log

[
α− ξ − (ξ2 − 1)1/2(1− α2 sin2 ω)1/2

αξ − 1− α(ξ2 − 1)1/2 cosω

]
. (3.27)

Eq. (3.27) gives the liquid barrel interface in the toroidal parametrisation. The centre
of the droplet, X, and contact angle, θe are specified by the parameters ξ and α, which
follow from Eqs. (3.12) and (3.24).

Note that, while Eqs. (3.10) and (3.11) contain a singularity whenever |α| < 1, un-
der the parametrisation based on toroidal coordinates, these singularities are removed.
Moreover, using Eq. (3.27), one can introduce a variation in the contact angle, i.e.,
α = − cos θ/ sin β. This offers an effective generalisation of the liquid barrel shape to
model situations where the contact angle varies in space or time.

Having defined the shape of the liquid barrel, some useful geometrical quantities are
at hand. The height-to-width aspect ratio of the droplet is defined as (see figure 3.1),

h
def
=

H

W
, (3.28)

where the droplet height,

H
def
= min
{φ}
|xlg(φ, ω = +β)− xlg(φ, ω = −β)|, (3.29)

is the length of the line connecting the contact lines at the narrow end of the wedge and
the droplet width,

W
def
= max

{φ}
|xlg(φ, 0)− xlg(0, 0)|, (3.30)
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is the distance between the leading and trailing points of the equator of the droplet. For
the liquid barrel shape, the aspect ratio reads

h = − ξ − 1

α− 1
cos(θe − β). (3.31)

The volume of the droplet can be found using the divergence theorem,

V =
1

3

∫
liq.
∇ · x dx dy dz =

1

3

∫
lg
xlg · dAlg, (3.32)

where, according to Eq. (3.17), the liquid-gas interface is xlg = (x ◦ σlg)(φ, ω), and the
differential element of area is given by,

dAlg = (∂φxlg × ∂ωxlg) dφdω. (3.33)

After some calculations, the volume is found to be

V =
a3

3

∫ β

−β

∫ π

−π

[
sinh2 σlg

∆3
(cosφ− cothσlg sinφ ∂φσlg)

]
dφdω. (3.34)

The surface energy of the droplet is obtained by computing the surface areas of the
liquid-gas and liquid-solid interfaces (see §1.1.1). The liquid-gas surface area can be
computed directly as

Alg =

∫
|dAlg|. (3.35)

Using the parametrisation of the liquid-gas interface the liquid-gas interface area is

Alg = a2

∫ β

−β

∫ π

−π

1

∆2

{
(∂ωσlg)

2 + sinh2 σlg
[
1 + (∂φσlg)

2
] }1/2

dφdω. (3.36)

The contact area of the droplet with the walls of the wedge is computed in a similar
fashion, i.e.,

Als = 2

∫
n̂ · dAls, (3.37)

where the element of surface area is

dAls =
1

2
xcl × ∂φxcl dφ. (3.38)

Using the toroidal parametrisation, the solid-liquid interface is

Asl = a2

∫ π

−π

1

∆2

[
sinhσcl cosφ− coshσcl sinφ ∂φσcl

]
dφ. (3.39)

Finally, an expression for the curvature of the liquid-gas interface is derived as follows.
The orthonormal vector to the liquid-gas interface can be calculated by

n̂lg =

[
∇(σ − σlg)
|∇(σ − σlg)|

]
σ=σlg

, (3.40)
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where the gradient operator in toroidal coordinates (of a scalar function f) is

∇f =
∆

a

(
êσ∂σf + êφ∂φf +

1

sinhσ
êω∂ωf

)
, (3.41)

and êi = ∂ix/|∂ix| (i = σ, φ, ω) are the orthonormal coordinate vectors. Therefore, the
vector normal to the liquid-gas interface is,

n̂lg =
(êσ − êφ ∂φσlg) sinhσlg − êω∂ωσlg√

(∂ωσlg)2 + [1 + (∂φσlg)2] sinh2 σlg

. (3.42)

Using n̂lg, the curvature of the liquid-gas interface is calculated,

κ = −1

2
∇ · n̂lg, (3.43)

where the divergence operator (of a vector function B =
∑

iBiêi, i = σ, φ, ω) in toroidal
coordinates is,

∇ ·B =
∆3

a sinhσ

[
∂σ

(
sinhσ

∆2
Bσ

)
+ sinhσ ∂φ

(
Bφ

∆2

)]
+

∆

a sinhσ
∂ωBω. (3.44)

3.1.2 Energy Landscapes

Concus and Finn [90, 89] showed that the ground state of a partially-wetting liquid bridg-
ing two non-parallel plane walls is a truncated sphere. They found that the centre of the
sphere, Xe, is related to its radius, R0, by sin βXe = − cos θeRo, and thus radius of the
droplet is given by

Ro =

[
6V

π(cos 3θe − 9 cos θe)

]1/3

. (3.45)

Baratian, et al. [94] experimentally confirmed these findings and showed, by the effect of
an external force, that the equilibrium state is stable. Nonetheless, further details of the
behaviour of the droplet are still missing for both static and dynamic situations.

In this section, the surface energy of the liquid barrel close to its equilibrium position
will be studied. Then, deviations from the equilibrium position will be quantified using
the displacement X − Xe, where X is the geometric centre of the barrel. The analysis
begins by considering the Helmholtz free energy, which, for constant temperature and
number of molecules, is

F = γAlg − γAsl cos θe. (3.46)

In terms of Eqs. (3.36) and (3.39), with σlg given by Eq. (3.27), the surface areas read

Alg = R2
o(ξ

2 − 1)

∫ β

−β

[
1

∆2

√
sinh2 σlg + (∂ωσlg)2

]
dω, (3.47)

and

Asl = 2πR2
o

ξ2 − 1

sinh2 σcl
. (3.48)
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The volume of the droplet is computed explicitly using Eq. (3.32) to ensure that it is kept
constant,

V = R3
o(ξ

2 − 1)3/2

∫ β

−β

coshσlg

sinh3 σlg
dω, (3.49)

so that is can be used as a constraint.
The integrals in Eqs. (3.47), (3.48) and (3.49) can be evaluated by introducing two

perturbation parameters:

ε
def
=
α

ξ
− 1 =

Ro

q
− 1, (3.50)

and
q

def
=
X

α
. (3.51)

Here, q is a rescaled position of the geometric centre of the barrel. The parameter ε can
be thought of as a deviation from the equilibrium spherical shape: setting ε = 0 gives
α = ξ and thus using Eq. (3.24), X = αRo. Then, Eq. (3.10) gives r = 0 and Eq. (3.11)
gives R = Ro.

The condition of a constant volume fixes a relation between ε and q; implicitly evalu-
ating Eq. (3.49) gives the result

V (q, ε) = q3

3∑
i=0

aiε
i, (3.52)

where the constants ai are functions of β and θe. Their expressions, however, simplify
considerably in the limit of small wedge angles (see Appendix C). Therefore,

a0 =
π

6
(cos 3θe − 9 cos θe), (3.53)

a1 = π(2θe − π − sin 2θe) +O(β2), (3.54)
a2 = −2π cos θe +O(β2), (3.55)
a3 = 0 +O(β2). (3.56)

Using this approximation, and inverting (3.52), is can be found

ε(q) =
1

2a2

({
a2

1 + 4a2

(
V

q3
− a0

)}1/2

− a1

)
. (3.57)

In the same way, the surface energy is expressed in polynomial form in powers of ε,
i.e.,

F (q, ε) = γq2

3∑
i=0

(3− i)aiεi +O(ε4). (3.58)

The constant-volume energy landscapes, FV (X), can be obtained by composing the func-
tions Eq. (3.57) into Eq. (3.58) and recovering the definition of q from Eq. (3.51), i.e.,

FV (X)
def
= F ◦ ε ◦ q (X). (3.59)

In figure 3.3 a plot of the energy landscape of the liquid barrel is presented. These
are convex curves thus showing the existence of a state of minimum energy and the
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θe=100° θe=105° θe=110° θe=115° θe=120° θe=125°

β=13° β=11° β=9° β=7° β=5° β=3°

(a) (b)

Figure 3.3: Free energy landscapes along the position of the liquid barrel within the wedge,
X, calculated analytically. (a) FV (X) curves for fixed β = 5◦ and different equilibrium
contact angles. (b) FV (X) curves for fixed θe = 105◦ and different wedge angles. The
dots correspond to the minima in the analytical curves. The solid cut-off lines correspond
to the limit where the liquid-gas interface touches the apex of the wedge.

corresponding equilibrium position. Figure 3.3(a) shows the energy landscapes for several
values of θe but keeping β = 5◦. The asymmetry in the landscapes about the equilibrium
position arises from the intrinsic asymmetry of the geometry of the wedge. A displacement
towards the apex of the wedge induces a comparatively larger increase in the solid-liquid
surface area relative to the liquid-gas surface area, and results in a sharper increase in the
surface energy. This same feature is observed in figure 3.3(b), where the energy landscapes
at fixed θe = 105◦ and different values of β are presented.

Since the interfacial energy is conservative, Eq. (3.59) can be identified as a source
of potential energy. Therefore, it can be used to derive total force that the liquid barrel
exerts to restore its equilibrium state without the need of calculating the projected forces
arising from the pressure and surface tension. This is a significant advantage for building
simplified models that reduce the details of the configuration of the droplet into a single
degree of freedom.

3.1.3 Force-Free Equilibrium

Figure 3.3 shows that the energy landscapes have a minimum, shown as the orange dotted-
dashed curve. Formally, this can be obtained by finding the minimum of the energy, FV ,
Eq. (3.59).

First, the free energy is expressed as FV (ε) = FV −2/3 by eliminating q (using Eq. 3.52).
Taking the total derivative with respect to ε gives

dFV (ε)

dε
=

1

V 5/3

[
(∂εF )V − 2

3
(∂εV )F

]
. (3.60)

Using the expressions (3.52) and (3.58), Eq. (3.60) recasts into

dFV (ε)

dε
=

1

V 5/3

2∑
i,j=0

[
(2− i)(i+ 1)− 2

3
(3− j)(i+ 1)

]
ai+1ajε

i+j. (3.61)
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Evaluating Eq. (3.61) at
εe = 0, (3.62)

is a solution. Setting ε = 0 in Eq. (3.50), the equilibrium value of

ξe = α; (3.63)

using Eqs. (3.51) and (3.11) gives
qe = Ro. (3.64)

The well-known result of references [89, 94] (see Eq. (3.45)) has been recovered: the
equilibrium shape of the droplet is a sphere truncated by the walls of the wedge. In terms
of Eqs. (3.10) and (3.11), this implies r = 0 and R = Ro = Re which gives spherical
surfaces. Such spherical shapes have a radius

Re =

[
6V

π(cos 3θe − 9 cos θe)

]1/3

, (3.65)

and centre (or equilibrium position),

Xe = −cos θe
sin β

Re. (3.66)

The relations for the height-to-width ratio, he, and surface energy, Fe are also obtained:

he = − cos(θe − β), (3.67)

Fe = 3γ
[π

6
(cos 3θe − 9 cos θe)V

2
]1/3

. (3.68)

Because the energy lanscape is a convex function of the position, as seen in figure 3.3, it
can be ascertained that the equilibrium position, Eq. (3.66), is stable.

Figure 3.4 shows the equilibrium surface energy of liquid barrels at different positions
within the wedge. For θe < 180◦, a suspended droplet will always reduce the total surface
energy by wetting the walls of the wedge. This wetted area is larger for smaller θe, and,
because of volume conservation, the liquid settles at an equilibrium position closer to the
wedge apex (see insets in figure 3.4). At first sight, one might expect a similar effect by
increasing the wedge angle, β. Indeed, from Eq. (3.66), an increase in the wedge angle
leads to a closer position of the barrel to the wedge apex. The surface energy, however,
remains constant. Geometrically, this can be understood by noting that a change in β
is equivalent to a rotation of the excluded portions of the truncated sphere (shown as
dashed lines in the insets of figure 3.4) about the centre of the sphere, which does not
alter the size of any of the interfaces of the barrel.

Note that for the droplet to form a closed barrel, that is, a structure that bridges the
walls of the wedge avoiding its apex, one must have Re < Xe, or, equivalently,

he > 0. (3.69)

From Eq. (3.67), this condition is satisfied only if

θe − β > 90◦. (3.70)
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Figure 3.4: Equilibrium surface energy, Fe, as a function of the distance from the wedge
apex, Xe, for different equilibrium contact angles at fixed β = 5◦ (full symbols) and wedge
angles at fixed θe = 105◦ (empty symbols). The insets correspond to cross sections of the
barrels along the transverse plane.

Equilibrium states can also exist if θe − β ≤ 90◦ but not as liquid barrel shapes. In
such cases it has been shown that the liquid completely invades the wedge [82] and forms
edge blobs [90, 89] or filaments that spread laterally along the wedge apex [91].

For a parallel-plate geometry (β = 0◦), force-free barrels can exist provided that the
separation between the solid walls matches the equilibrium height

He = 2heRe, (3.71)

which follows from Eq. (3.67). As noted by [99], a displacement of the solid wall from this
equilibrium configuration will still result in mechanical equilibrium, albeit in the presence
of a net external force. This situation can also occur for capillary bridges (θe < 90◦ − β),
for which no force-free equilibrium configurations can exist, and for which the net force
exerted by the liquid on the solid plates is always attractive.

3.1.4 Pressure Distribution

In this section, the pressure distribution within the liquid barrel will be analysed for a
displacement from equilibrium, X − Xe 6= 0. In the limit of small Reynolds and Weber
numbers, the local conservation of momentum within the liquid is governed by the Stokes
equation. For an incompressible fluid, the pressure field satisfies the Laplace equation,

∇2p = 0. (3.72)

Eq. (3.72) is also valid for a static droplet under the action of a uniform external field,
such as gravity.

The barrel shape presented in §3.1.1 provides a means to solving Eq. (3.72), i.e., to
obtain the pressure distribution within the liquid in both static and dynamic situations.



46 CHAPTER 3. THEORETICAL ANALYSIS

Here, the geometry of the wedge and the configuration of the barrel provide the boundary
conditions for the pressure field p. At the solid walls, the impenetrability condition is
imposed,

n̂ ·∇p(xsl) = 0, (3.73)

and at the liquid-gas interface, the Young-Laplace law,

p(xlg) = 2γκ. (3.74)

To determine the pressure profile, the boundary value problem posed by Eqs. (3.72)—
(3.74) must be solved. The mean curvature, κ, follows from Eq. (3.43) after specifying
the interface shape in Eq. (3.27); keeping terms up to second order in ω, it reads,

κ = κ(φ, ω = 0) +
α(ξ − α)

8Ro

ω2 +O(ω4), (3.75)

where κ(φ, ω = 0) is the curvature at the equatorial plane,

κ(φ, ω = 0) =
1

Ro

[
1 +

(α− ξ)(ξ − cosφ)

2(ξ2 − 1)

]
. (3.76)

Considering that |ω| ≤ β and ξ ∼ α near equilibrium, the high-order correction terms in
Eq. (3.75) are vanishingly small and thus can be dropped.

Eq. (3.72) can now be solved in toroidal coordinates. Laplace’s equation reads [98]

∇2p =
∆3

a2 sinhσ

[
∂σ

(
sinhσ

∆
∂σp

)
+ ∂φ

(
sinhσ

∆
∂φp

)]
+

∆2

a2 sinh2 σ
∂2
ωp = 0. (3.77)

This equation is separable using the ansatz p = (∆/ sinhσ)1/2S(σ)Φ(φ)Ω(ω). The general
solution is given by Andrews [100], where S(σ) is expressed as a linear combination of
terms P µ

ν−1/2(cothσ) and Qµ
ν−1/2(cothσ), which are the Legendre and associate Legendre

functions of the third kind; Φ(φ) is expressed as a linear combination of the functions
cosmφ and sinmφ; and Ω(ω) is expressed as a linear combination of cosµω and sinµω
terms.

Periodicity in the angle φ demands that p(φ+2π) = p(φ) for all φ, therefore making m
an integer, and, due to the plane symmetry (y ↔ −y), only the cosmφ solutions are kept.
Symmetry upon a reflection about the bisector plane (z ↔ −z) restricts the solutions of
the form cosµω. The boundary condition at the solid surface, ∂ωp(β) = 0, sets µ = πn/β,
for integer n. Interior solutions, i.e., finite value at the inner phase, demand discarding
the Qm

µ−1/2 terms since such terms diverge at the reference circle (Eq. (3.16)). After these
simplifications, the pressure field is expressed as,

p =
2γ

Ro

∞∑
m,n=0

Amn Ψmn(σ, φ, ω), (3.78)

where,

Ψmn(σ, φ, ω) =

[
coshσ − cosφ

sinhσ

]1/2

Pm
πn/β−1/2(cothσ) cos(mφ) cos(πnω/β). (3.79)
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Note that for small β, the lower index in the Legendre function (πn/β−1/2) becomes
large and so does its value at the boundary. This implies that the terms of higher order
in n should carry a vanishingly small coefficient; and, even for n = 1, their contribution
can be neglected. Therefore, the pressure at the equatorial circle of the droplet can be
written as (2γ/Ro)

∑1
k=0 ck cos kφ, where the coefficients ck = ck(ξ, α) are,

c0 =
ξ2 + αξ − 2

2(ξ2 − 1)
, (3.80)

c1 =
ξ − α

2(ξ2 − 1)
. (3.81)

As stated in [100], the pre-factor in square brackets from the general solution, Eq. (3.79),
can be expressed as a Fourier cosine series using the identity

1√
ξ − cosφ

=
∞∑
m=0

bm(ξ) cosmφ. (3.82)

where bm = (21/2/π)(2− δ0m)Qm−1/2(ξ).
The product of the two Fourier series resulting from substituting Eq. (3.82) into

Eq. (3.79) and then into Eq. (3.78) can be recast into a single series by using the trigono-
metric equality, 2 cosmφ cos kφ = cos[(m+k)φ]+cos[(m−k)φ]. Then, rearranging terms,
the Am0 coefficients in Eq. (3.78) follow as,

Am0(ξ, α) =
(ξ2 − 1)1/4

Pm
−1/2(ξ/

√
ξ2 − 1)

×


c0b0 + c1b1/2, m = 0,

c0b1 + c1(b0 + b2/2), m = 1,

c0bm + c1(bm−1 + bm+1)/2, m ≥ 2.

(3.83)

The result is illustrated in figure 3.5, by plotting the solution of Laplace’s equation,
Eq. (3.78), along the bisector line. Evaluating the pressure profile at the points ϕ = 0 and
ϕ = π leads to an expression for the pressure difference along the bisector line (between
the leading and trailing ends of the barrel), which, in terms of ε, reads

∆p = − 2γXε

X2 −R2
o

. (3.84)

Eq. (3.84) gives an indication of the structure of the pressure profiles along the bisector
line. It is first noted that the sign of ∆p is controlled by ε (since X > Ro). Inwards
displacements, corresponding to ε > 0, give ∆p < 0, indicating that the barrel is subject
to an outwards force due to the pressure gradient. The converse situation occurs for ε < 0.
The magnitude of ∆p increases as X → Ro, reflecting the stronger effect of confinement
for inwards displacements from the equilibrium position. In equilibrium, where ε = 0, the
pressure profile is uniform (∆p = 0), and corresponds to p(x, y = 0, z = 0) = 2γ/Re, as
expected for a spherical barrel shape.

As shown in the contour plots of figure 3.6, the 3D pressure distribution broadly follows
the same structure as the pressure profile along the bisector line. For barrels displaced
inwards and outwards from their equilibrium position, the contour lines of the pressure
field are denser towards the narrow end of the barrel, implying a stronger capillary force
caused by the effect of confinement. This is confirmed by inspection of the pressure gra-
dient force density, −∇p, shown in figure 3.7, which is radial and decreases in magnitude
with increasing distance from the apex of the wedge.
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Figure 3.5: Pressure profiles along the bisector line (x, 0, 0) for out-of-equilibrium barrel
shapes of equilibrium contact angle θe = 110◦ and wedge angle β = 5◦ (shown as insets).
Each curve corresponds to a different displacement from equilibrium. From left to right,
(X −Xe)/V

1/3 = −1, −1/2, 0, 1/2, 1.

3.2 Comparison to Static Droplet Shapes Displaced by
a Body Force

In the presence of an external force, the droplet is deformed from its equilibrium shape [94].
In this section, the liquid barrel model is compared to direct numerical calculations of the
shape of a droplet subject to an applied force under static conditions.
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(a) (b)

(c) (d)

Figure 3.6: Pressure field, p(x), for a barrel displaced inwards, (a and b), and outwards,
(c and d), from the equilibrium position. (a) and (c): Projections of the pressure field on
the bisector plane, z = 0. (b) and (d): Projections on the transverse plane, y = 0. The
displacement in (a) and (b) is (X −Xe)/V

1/3 = −1, and in (c) and (d), (X −Xe)/V
1/3 =

+1. The contact and tapering angles are θe = 110◦ and β = 5◦.

(a) (b)

Figure 3.7: Pressure gradient force density, −∇p, for a barrel displaced (a) inwards
and (b) outwards from the equilibrium position. The plots correspond to cross sections
along the transverse plane, y = 0. The displacements in (a) and (b) correspond to
(X − Xe)/V

1/3 = −1 and (X − Xe)/V
1/3 = +1. The contact and tapering angles are

θe = 110◦ and β = 5◦.
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3.2.1 Energy and Shape of a Droplet in an External Forced Field

If a conservative force field is acting on the droplet, e.g. −∇U , each differential volume
element contributes with an additional potential energy, U(x)dV . Therefore, the total
energy, E , reads

E [σlg] = F [σlg] +

∫
liq.
U(x) dV. (3.85)

In the following, static and constant external forces are exclusively considered. These
forces model the gravitational field, U(x) = ρg · x, where g = gêx is the gravitational
acceleration vector, oriented parallel to the bisector line.

The problem of finding the equilibrium surface is reduced to a similar minimisation
problem as before, i.e.,

δ

δσlg

(
E [σlg]− p̃ V [σlg]

)
= 0, (3.86)

where p̃ is a Lagrange multiplier.
Numerically, the minimisation problem can be solved using a finite element approach,

this gives the droplet morphologies in mechanical equilibrium subject to a constraint in
the position of the centre of mass. The data by C. Semprebon1 is presented in figure 3.8.
It was obtained using the public domain software Surface Evolver [101]. The data is
plotted along with analytical predictions for the displaced droplet. The good agreement
of the data with the liquid barrel analytical curves supports the liquid barrel is a good
approximation of the morphology of a forced droplet.

1 I thank Dr. Ciro Semprebon for kindly providing his data.
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(a) (b)

Figure 3.8: Energy landscapes along the position of the liquid barrel within the wedge,
X, calculated analytically (dashed lines) and numerically via constrained minimisation
of the surface energy (symbols). (a) Curves for fixed β = 5◦ and different equilibrium
contact angles: θe = 95◦ (+), θe = 100◦ (×), θe = 105◦ (+×), θe = 110◦ (�), θe = 115◦

(�), θe = 120◦ (◦), θe = 125◦ (•), and θe = 130◦ (4). (b) Curves for fixed θe = 105◦

and different wedge angles: β = 5◦ (+), β = 9◦ (×) and β = 13◦ (+×). The pentagons
correspond to the minima in the analytical curves. The solid cut-off lines correspond to
the limit where the liquid-gas interface touches the apex of the wedge.

3.2.2 Pressure Distribution within a Droplet in an External Force
Field

Having compared the free energy of the droplet to the numerical results obtained from
Surface Evolver, the pressure profiles are now compared to numerical results using the
same method. In Surface Evolver, a Lagrange multiplier is introduced to enforce the
volume constraint, λV , it plays the role of the Laplace pressure at the coordinate x = 0;
another Lagrange multiplier is used to fixe the centre of mass, λX , which can be interpreted
as an effective body force required to hold the droplet in place. Therefore, a linear
hydrostatic pressure profile can be obtained, reading phs(x) = λV + λXV

2/3x/γ.
In figure 3.9, an overlay the pressure profiles obtained numerically to the analytical

curves can be observed. The range of each curve corresponds to the equatorial width of
the barrel in each model. There is a good agreement with the magnitude of the pressure
and the location of the edges close to equilibrium with the analytical model, particularly
for for X > Xe.
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Figure 3.9: Comparison of the pressure profiles along the bisector line for out-of-
equilibrium barrel shapes. The solid line represent the hydrostatic profiles obtained via
constrained free-energy minimisation and the dashed lines are the analytical solution.
From left to right, the curves correspond to the set of displacements (X − Xe)/V

1/3 =
−1, −1/2, 0, 1/2, 1. The equilibrium and wedge angles are θe = 110◦ and β = 5◦.

3.2.3 Displacement of Equilibrium as Response to External Forces

After establishing that the liquid barrel shape gives a good representation of the shape
of the droplet under the action of a uniform force field, a simple model to predict the
displacement of the droplet in the presence of gravity is now derived. With numerical
validation of the energy landscapes, the liquid-barrel model can be used to calculate the
restitution force that the droplet experiences upon a displacement from equilibrium.

Eliminating the Lagrange multiplier term from Eq. (3.85) by using Eq. (3.59) instead,
the energy of a droplet under a uniform potential field simplifies to,

EV (X) = FV (X)− ρV gX. (3.87)

The new equilibrium position is obtained by finding the minimum of EV in Eq. (3.87),
which follows after solving

1

γV 1/3

dFV
dX

(X = X∗)− Bo = 0, (3.88)

where X∗ is the equilibrium position, and Eq. (3.88) is expressed in dimensionless form
by introducing the Bond number, Bo = ρgV 2/3/γ.

In figure 3.10, the equilibrium position as a function of Bo is plotted. When the force
points inwards (Bo < 0), the droplet is monotonically displaced towards the apex of the
wedge (see inset of figure 3.10). The force required to approach the apex increases with
the contact angle. This is a consequence of the increased curvature in the narrow side of
the droplet resulting from higher contact angles. The increase in curvature produces an
increase in the Laplace pressure and therefore the net force increases as well. This can
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occur until X∗ = Ro, or equivalently, using Eq. (3.24), when

ξ∗ = 1, (3.89)

i.e., the position in which droplet reaches the apex. This has been previously shown in
figures 3.3, 3.8 and 3.10 as the yellow cut-off line.

On the other hand, when the force is pointing outwards (Bo > 0), the droplet is
displaced towards the wide end of the wedge. From the figure, there is a maximum force
above which no equilibrium solution exists. This occurs because the force that the droplet
can oppose due to an outwards displacement is finite; the total force is the sum of the
pressure over the contact area, and the surface tension exerted over the contact lines. For
a partially wetting liquid, the curvature of the droplet is positive, and thus, the pressure
alone would push the droplet apart from the apex. The surface tension at the contact
lines exerts an opposite force, that would tie the wedge and the droplet together. As
the droplet is forced out of the wedge, it becomes narrower, the pressure wanes, and the
contribution from the contact lines dominates. However, the same action also reduces the
perimeter of the contact lines. For a liquid barrel, this happens as σlg → ∞, where the
contact areas are reduced to points. From Eq. (3.27), the singularity appears when

X∗ = −Ro
1 + cos β sin θe

sin β cos θe
, (3.90)

which sets the upper bound to the parametrisation. Above this point, the liquid-barrel
model fails.

Moreover, as a droplet becomes narrower, the curvature of the equatorial circle begins
to increase, and thus, the average pressure inside the droplet raises again. Consequently,
the restoring force that the droplet can oppose is not monotonic, and with further dis-
placement, the droplet exerts less restoring force. This implies that the forced equilibrium
position, which is given by the roots of Eq. (3.88), is not unique. This is observed for
droplets of low θe. See inset of figure 3.10 for instance, where two forced equilibrium
states with different displacement are found at the same force magnitude.

If the force that the droplet opposes due to the displacement is non-monotonic then it
can reach an extreme. In this case, the extreme is a maximum, which implies the existence
of a threshold set by

Bomax
def
=

1

γV 1/3
max
{X}

dFV
dX

, (3.91)

and whose position is at the inflection point of the energy landscape. Therefore, applying
a force above the threshold would detach the droplet from the wedge.

3.3 Simplified Analysis of the Dynamics of the Liquid
Barrel

The dynamic situation in which a droplet inside am hydrophobic wedge will be analysed.
The droplet will be initially set at a distance away from its equilibrium position, and it
is allowed to relax back to its equilibrium position Xe. The liquid barrel assumption is
used to obtain an expression of the net capillary force that drives the relaxation of the
droplet in dynamic situations. Then, the dynamics will be modelled using the Lagrangian
approach, treating the position of the droplet as a function of time, X(t), as the relevant
degree of freedom for the dynamics.
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*
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Figure 3.10: Equilibrium position of the droplet by the effect of an external force. From
right to left, the thick curves represent the response in the position of droplet as a function
of the Bond number, Bo, for the contact angles θe = 95◦, 100◦, ..., 135◦, at β = 5◦. The
cut-off line at the bottom represents the position in which the droplet reaches the apex
of the wedge.

3.3.1 Simplified Equations of Motion

The Lagrangian functional of the system reads,

L[σlg,u] =
1

2

∫
ρu2 d3x− F [σlg] + p̃ V [σlg], (3.92)

where u = |u|, and u is the velocity field of the fluid. The first term in the right-
hand side of the equation corresponds to the total kinetic energy, the next term is the
interfacial energy contribution, and the last term is included to satisfy the constant-volume
constraint, where p̃ is the corresponding Lagrange multiplier. The equations of motion
are derived from the principle of minimum action, and by adding dissipative forces caused
by viscous friction and contact line motion.

The liquid barrel shape, constructed in §3.1.1, can be used to model the translational
motion of the liquid. It is assumed that the velocity of the droplet is small, and thus,
the kinetic energy term in Eq. (3.92) can be neglected. From Eqs. (3.52) and (3.58), the
Lagrangian is reduced to

L(q, ε, q̇, ε̇) = −F (q, ε) + p̃ V (q, ε). (3.93)

Then, the equations of motion are

∂qF − p̃ ∂qV = Kq, (3.94)
∂εF − p̃ ∂εV = Kε, (3.95)
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where Kq = Kq(q, ε, q̇, ε̇), and Kε = Kε(q, ε, q̇, ε̇) stand for non-conservative friction forces.
The conservation of volume,

V̇ = ∂qV q̇ + ∂εV ε̇ = 0, (3.96)

is necessary to bring closure to the system and to determine the value of p̃.
From Noether’s theorem [102], the energy flow of the system is calculated,

d

dt

[
F − p̃ V

]
= Ė , (3.97)

where the dissipation function, Ė = Ė(q, ε, q̇, ε̇), gives the rate of change of energy of the
system, i.e.,

Ė = q̇Kq + ε̇Kε. (3.98)

The friction forces can be reconstructed on the basis of the dissipative contributions to
Eq. (3.98). Therefore, the properties of the dissipation function, relevant to the equations
of motion, will be derived.

For small velocities near equilibrium, the dissipation function can be expanded in a
Taylor series,

Ė = −
2∑

l,m=1

νlmẇlẇm +O(ẇ4), (3.99)

where the variables are w1 = q and w2 = ε, and the drag coefficients νlm are given by

νlm(wl, wm) = −1

2

∂2 Ė
∂ẇl ∂ẇm

∣∣∣∣∣
(ẇl=0, ẇm=0)

. (3.100)

The dissipation function, Ė , lacks a constant term since dissipation cannot occur while
the system is at rest. The linear terms should also be zero, otherwise they would lead to
the spontaneous creation of energy for a combination of values of q̇ and ε̇. On that basis,
and without loss of generality, the friction forces are expressed as

Kq = −νqq q̇ − νqεε̇ and (3.101)
Kε = −νqεq̇ − νεεε̇ . (3.102)

It can be verified that Eqs. (3.101) and (3.102) satisfy Eq. (3.99).
Substituting Eqs. (3.101) and (3.102) into Eqs. (3.94) and (3.95) respectively, and

using the constraint of constant volume (Eq. 3.96), the equations of motion and the value
of the Lagrange multiplier is obtained:

ν q̇ =

[
−∂qF + (∂εF )

∂qV

∂εV

]
, (3.103)

ν ε̇ =

[
−∂εF + (∂qF )

∂εV

∂qV

](
∂qV

∂εV

)2

, (3.104)

p̃ =
νqq(∂εF )(∂εV )− νqε[(∂εF )(∂qV ) + (∂qF )(∂εV )] + νεε(∂qF )(∂qV )

νqq(∂εV )2 − 2νqε(∂qV )(∂εV ) + νεε(∂qV )2
; (3.105)

where

ν
def
= νqq − 2νqε

∂qV

∂εV
+ νεε

(
∂qV

∂εV

)2

. (3.106)
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The Lagrange multiplier, p̃, is the average pressure inside the liquid barrel. This can be
seen by looking at the total energetic contribution of the pressure. As discussed in §1.2.2,
the work done by the pressure of the fluid is −

∫
p dV , integrated throughout the volume

of the droplet. In this simplified model, the energy contribution corresponds to −p̃ V .
By construction, the two expressions must be equal, and thus, the Lagrange multiplier
corresponds to the average pressure, i.e.,

p̃ =
1

V

∫
p dV. (3.107)

The equations of motion can be further simplified by reducing the system to a sin-
gle degree of freedom, X. This eliminates the volume constraint but, because of that,
knowledge of the average pressure is lost. The Lagrange function for this single degree of
freedom is,

L(X, Ẋ) = −FV (X). (3.108)

Following a similar procedure as above, the equation of motion now reads

νXẊ = −dFV
dX

. (3.109)

The relation among the drag coefficients of Eqs. (3.101), (3.102) and (3.109) is found
by means of the chain rule of the free-energy derivatives, i.e.,

dFV
dX

=

[
∂qF + (∂εF )

dε

dq

]
dq

dX
, (3.110)

and the cyclic relation,
∂qV

∂εV
= −dε

dq
, (3.111)

which, by comparison to Eqs. (3.94) and (3.106), gives

νX(X) =
1

α2
ν(q, ε), (3.112)

where the drag coefficient νX is defined by

Ė = −νXẊ2. (3.113)

In order to solve the equations of motion, an explicit expression of the friction coeffi-
cients is required. Strictly speaking, this task requires solving the hydrodynamic equations
coupled with the equations that describe the motion of the contact lines. Nonetheless,
within this coarse-grain approximation, the dissipation function will be estimated using
a superposition of the friction forces arising from the motion of the contact lines and the
flow pattern that develops during the translational motion of the droplet.

3.3.2 Flow Pattern

The friction forces that the droplet experiences depend on the details of the flow pattern
within the liquid barrel, for this, the force-free Stokes equation will be used (see §1.2.4),

0 = −∇p+ η∇2u. (3.114)
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corner flow

bulk flow

corner flow

Figure 3.11: Decomposition of the flow field for the liquid barrel. The corner flow models
the flow in the vicinity of the contact line which is described in the Cox-Voinov theory,
and the bulk flow or the region far from the contact line, modelled by a Jeffery-Hamel
flow.

This comprises a set of non-homogeneous linear partial different equations for the velocity
field u. Due to the linearity of the Stokes equation, u can be expressed in terms of a
superposition of solutions. Therefore, a perturbative method can be applied to refine the
approximation of the velocity field.

For this, two regions in the liquid can be differentiated: the region near the contact
lines, and the bulk region of the barrel (see figure 3.11).

In the region near the contact lines, according to Voinov [35] and Cox [34], the flow
pattern in the vicinity of the contact lines is generic for dynamic wetting problems [103].
It is determined by the competition between the capillary and viscous forces. As discussed
in §1.2.5, this flow pattern is a corner flow defined by the contact angle, θ, at which the
liquid-gas interface intersects the solid wall (see figure 3.12).

To describe the flow, a local reference frame to the contact line given by three unit
vectors is defined: the vector orthonormal to the solid surface n̂, the vector parallel to
the contact line tangent to the solid planes,

t̂(φ)
def
= ± ∂φxcl±

|∂φxcl±|
(φ), (3.115)

as defined in Eq. (3.20), and the binormal vector perpendicular to both,

b̂(φ)
def
= n̂× t̂(φ). (3.116)

These vectors serve as an orthonormal basis: a local system of coordinates is defined such
that any position vector r′ is given by the linear combination r′ = x′b̂+ y′t̂− z′n̂.

Following Snoeijer [36], who focused on situations where the fluid of the outer phase
has negligible viscosity, the velocity field of the viscous phase is expressed as

ucorner(x
′, z′) =

vcl
θ − cos θ sin θ

[
− z′2

x′2 + z′2
sin θ b̂−

(
x′z′

x′2 + z′2
− φ′ sin θ

)
n̂

]
+ u‖(z

′) t̂,

(3.117)
where vcl = vcl · b̂ is the velocity of the contact line, u‖ = u · t̂ is the velocity component
of the fluid velocity (perpendicular to the x′z′–plane), and φ′ is the angle of the point
(x′, z′) subtending from the solid wall (φ = 0), and the interface (φ = θ).

The bulk of the barrel is the next region to be studied, i.e., the region far from the
contact lines. Therefore, it is expected that fluid flow is governed by the geometry of
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Figure 3.12: Local coordinate system for the corner flow. The origin of the local coordinate
system, (x′, z′) is at the contact line xcl. The liquid-gas interface makes an angle θ with
respect to the vector b̂.

the solid planes and the structure of the pressure field. It will be analysed, first, by
writing the flow between two non-parallel solid planes (see §2.3.3 and figure 3.6). For
such a geometry, it is expected that the velocity profile forms a radial flow known as a
Jeffery-Hamel flow [104, 105].

Using the result from Eq. (B.9) from Appendix B, the mean flow velocity of a Jeffery-
Hamel flow is matched with the translational velocity of the barrel, Ẋ. For a given a
barrel configuration of width 2Ro and centre at X, the bulk flow velocity reads

ubulk(x) = Ẋ
X

(x2 + z2)1/2
· cos 2β − cos 2ω

cos 2β − β−1 sin 2β
(cosω êx + sinω êz). (3.118)

The pressure profile of this flow reads

pbulk(x) =
2γ

Ro

(
α + 3ξ

4ξ

)
+
γ

2

(
α

ξ
− 1

)
Ro(ξ

2 − 1)

x2 + z2
. (3.119)

To assess the quality of this approximation, the pressure profile of the barrel (Eq. (3.78))
and the Jeffery-Hamel pressure profile are compared (Eq. (3.119)). This is shown in
figure 3.13. There can be observed a good match between both pressure profiles when
X ≥ Xe, and larger deviations when the liquid barrel is closer to the apex of the wedge.
This is expected at X � Xe, since the shape of the droplet becomes increasingly distorted
and the Jeffery-Hamel assumption begins to depart from the liquid barrel.
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Figure 3.13: Comparison between the pressure profile of a liquid barrel along the bisector
line (dashed curves), to the Jeffery-Hamel pressure profile (solid curves) for θe = 120◦,
β = 5◦ and barrel positions (X −Xe)/V

1/3 = −1,−1/2, 0,+1/2,+1.

3.3.3 Effect of the Outer Phase in the Flow Field

It has been shown that the Jeffery-Hamel flow gives a good approximation of the flow in
the bulk of the droplet at the transverse plane. In this section, the flow in the outer phase
that surrounds the liquid is investigated.

The following analysis is based on the Boundary Integral Method [28], using the single-
layer formulation (see §1.2.4). The general solution of the velocity of a fluid phase of
viscosity ηin in contact with another phase of viscosity ηout = ηinλ, is given by

u(x) =

∫
G(x,x′) · q(x′) dAlg(x

′), (3.120)

where G is a Green’s tensor function that solves the Stokes equation, and the vector q(x)
is the local force density, that drives the flow. The latter satisfies a Fredholm integral
equation of the second kind,

q(x) = − 1

4πηin
· 1

1 + λ
∆f(x) +

ζ

4π
n̂lg ·

∫ PV

T(x,x′) · q(x′) dAlg(x
′), (3.121)

where ζ = (1−λ)/(1 +λ), ∆f = 2γκn̂lg is force discontinuity due to the surface tension,
T is a third rank Green’s tensor function, and the superscript PV indicates that the
Cauchy Principal Value of the integral should be taken.

The Green’s function relevant to the wedge geometry, i.e., one that vanishes at the solid
planes, was given by Osano and Hasimoto [106]; using their result to compute the force
density, however, has considerable difficulties. For that reason, the analysis is restricted
to the flow in the bisector plane, and therefore, the 2D free-space Oseen tensor will be
used as the Green function G, i.e.,

G(x,x′) = −I log x̃+
x̃ x̃

|x̃|2
, (3.122)
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and for the third rank stress tensor Green function,

T(x,x′) = −4
x̃ x̃ x̃

x̃4
, (3.123)

where x̃ = |x̃|, and x̃ = x′ − x.
Eq. (3.121) can be solved in polar coordinates. From Eq. (3.76), the force discontinuity

can be expressed in the angular coordinate ϕ,

∆f =
γ

Ro

(
α + ξ + 2 cosϕ

ξ + cosϕ

)
êr, (3.124)

and express the force density as a Fourier series

q(ϕ) = êr

∞∑
m=0

bm cosmϕ+ êϕ

∞∑
m=1

cn sinmϕ, (3.125)

where the terms that do not satisfy the reflection symmetry have been dropped (ϕ→ −ϕ).
With this, Eq. (3.121) turns into an algebraic equation for the coefficients bm and cm.

After some simplifications, the force density results in

q(ϕ,Ro, ξ, α) = (b0 + b1 cosϕ) êr − b1 sinϕ êϕ +
1

4πηin(1 + λ)
∆f , (3.126)

where the coefficients are

b0 =
γ ζ

4πηin(1 + λ)Ro

· α− ξ + 2
√
ξ2 − 1

(ζ + 2)
√
ξ2 − 1

(3.127)

and

b1 =
γ ζ

4πηin(1 + λ)Ro

· (ξ − α)(ξ −
√
ξ2 − 1)

(ζ − 2)
√
ξ2 − 1

. (3.128)

Eq. (3.126) can now be used in conjunction with Eq. (3.120) to integrate the velocity
field. An example of this is shown in figure 3.14 by numerical integration of the force
density. There, streamlines and vector plots are shown for droplets moving outwards and
inwards for a vanishing viscosity ratio λ = 0. The structure of the flow shows a slow
recirculating flow that vanishes in a short vicinity of the droplet. Also, the formation of
two vortices at the sides of the liquid barrel can be observed. The velocity field vanishes at
the centres of the vortices, reducing drag, and thus, their presence allow a faster motion of
the centre of the droplet. Therefore, due to the interaction of the outer phase, a significant
reduction of the bulk dissipation relative to the expected reference Jeffery-Hamel flow
occurring throughout the volume of the droplet.

In the context of the boundary-layer, a fluid near a solid plane is expected to acquire a
parabolic profile [107]. In this case, due to conservation of flux for a diverging confinement,
a more adequate profile is the Jeffery-Hamel flow given in Eq. (3.118). The amplitude of
such profile is governed by the gradients in the pressure [108]; in this case, prescribed by
the curvature of the liquid-gas interface. Therefore, the structure of the flow in the bulk
of a moving droplet is expected to be a Jeffery-Hamel flow in the transverse plane, which
includes two side vortices in the orthogonal plane as shown in figure 3.14.
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(a) (b)

Figure 3.14: Stream and vector plots at the bisector plane of the droplet at positions (a)
X−Xe = −V 1/3, and (b) X−Xe = +V 1/3 for outwards and inwards motion, respectively
as the liquid barrel moves in the absence of external forces. The colour map shows the
vorticity in the z direction. The viscosity ratio is set to λ = 0.

3.3.4 Estimating the Dissipation Function

Having developed a model for the flow pattern within the barrel, the dissipation function
can now be derived. As discussed by de Gennes [18], the total dissipation will be the sum
of the dissipations at three different length scales:

Ė = Ėbulk + Ėcorner + Ėcl, (3.129)

The first two contributions, Ėbulk, and Ėcorner, are hydrodynamic in origin, and Ėcl accounts
for the dissipation that occurs at the microscopic scale, sometimes referred to as the ‘true’
contact line [18].

The dissipation in the bulk of the fluid can be readily obtained by evaluating Eq. (1.32)
using the velocity field from Eq. (3.118), this is,

Ėbulk = −1

2
ηin

∫
(∇ubulk +∇uTbulk)2 dV. (3.130)

The dissipation function in Eq. (3.130) considers a Jeffery-Hamel flow that is homogeneous
along the y axis. Therefore, the integral is bounded to the region within the liquid barrel
in which the dissipation of the Jeffery-Hamel flow takes place. This can be quantified as
an effective volume, Veff ≤ V . The effective volume, Veff, is an adjustable parameter that
excludes the volume of the corner flow, and also the volume that contains the side vortices
that facilitate the motion of the fluid (see §3.3.3). Then, from Eq. (3.130),

Ėbulk = − 6πηin
| cos θe|

Veff
V

α ξ2

(ξ2 − 1)3/2
Ro Ẋ

2 (3.131)

is obtained (see Appendix D for details).
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At the corner-flow length scale, the stresses that locally bend the interface are the
main causes of dissipation [109]. This induces a change in the contact angle to a dynamic
value of θ [34]. This deviation out of equilibrium results in a force per unit length in the
perpendicular direction to the contact line given by

fcorner = γ(cos θe − cos θ) b̂ ≈ γ(θ − θe) sin θe b̂. (3.132)

Then, the energy dissipated is

Ėcorner = 2

∮
cl
fcorner · vcl dl, (3.133)

where dl is the differential arc-length element of the contact line.
The apparent contact angle is obtained from the Cox-Voinov expression (see 1.2.5).

For small differences in the contact angle, the integral in Eq. (1.43) can be approximated
as,

θ − θe
fCV(θe, λ)

≈ ηin vcl
γ

log
`M
`m
. (3.134)

where fCV(θe, λ) is given by Eq. (1.44). In the limit of vanishing outer viscosity (λ→ 0),

fCV(θ, 0) =
2 sin θe

θe − sin θe cos θe
. (3.135)

The force per unit length is then obtained by eliminating the difference in contact
angles in Eq. (3.134), i.e.,

fcorner = ηinvcl fCV(θe, 0) sin θe log
`M
`m
b̂. (3.136)

Therefore, the dissipation contribution due to the corner flow is,

Ėcorner = − 4ηin sin2 θe
θe − sin θe cos θe

log
`M
`m

∮
cl
v2
cl dl. (3.137)

Note that the integrand of Eq. (3.137) is quadratic in vcl, therefore regardless of the
direction of motion of the contact line, the dissipation function is always negative. The
closed-loop integral in Eq. (3.137) can be approximated as (see Appendix E),∮

cl
v2
cl dl ≈ πRoẊ

2. (3.138)

At length scales below the microscopic length, `m, dissipative processes are determined
by the motion of molecules of the two phases and the interaction with the solid surface.
According to Ruijter [49], the corresponding friction force is proportional to vcl, i.e.,

fcl = ζ0vcl b̂, (3.139)

where the constant of proportionality, ζ0, is described in §1.2.5. This leads to the dissi-
pation contribution of the contact line,

Ėcl = 2ζ0

∮
cl
v2
cl dl, (3.140)
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Adding all the dissipation contributions, Eqs. (3.131), (3.137), and (3.140), gives the
total dissipation. Using Eq. (3.113), the friction coefficient is obtained,

νX(X,Ro) ≈
[

6πηin
| cos θe|

Veff
V

αX2Ro

(X2 −R2
o)

3/2
+

4πηin sin2 θe
θe − sin θe cos θe

log
`M
`m

+ 2πζ0

]
Ro, (3.141)

where the corrections that involve Ṙo have been neglected since they come with high-order
powers of β and ε. This also implies that the generalised velocity ε̇ does not play significant
role in the dissipation, as, νqε ≈ νεε ≈ 0. Consequently, the only friction coefficient, which
dominates the translational motion of the barrel, is νqq = ν = α2νX .

3.3.5 Near Equilibrium Relaxation

Having obtained the dissipation coefficients, the analysis of the motion of the liquid barrel
can be completed. The equation of motion of the liquid barrel (Eq. (3.109)) reads,

Ẋ = − 1

νX(X)

dFV (X)

dX
. (3.142)

The right hand side of Eq. (3.142) depends on the position X. In the vicinity of equi-
librium, it can be expanded in terms of power of (X − Xe) and the equation of motion
reduces to

Ẋ = −1

τ
(X −Xe) +O(X −Xe)

2, (3.143)

where
τ

def
=
νX(Xe)

k
. (3.144)

Here,

k
def
=

d2FV
dX2

∣∣∣∣
X=Xe

, (3.145)

is defined from the expansion around equilibrium of the free energy,

FV (X) = Fe +
1

2
k (X −Xe)

2 +O(X −Xe)
3. (3.146)

The role of k is to act as a restitution coefficient, a force per unit displacement that
restores the barrel to equilibrium. From Eq. (3.59) and Eq. (3.57), it reads

k(θe, β) = 6γ
a0

α2

(
1− 3a0a2

a2
1

)
(3.147)

= πγ
sin2 β

cos2 θe
(cos 3θe − 9 cos θe)

[
1 +

2 cos2 θe(cos 2θe − 5)

(2θe − π − sin 2θe)2

]
. (3.148)

Evaluating the friction coefficient (Eq. (3.141)) close to equilibrium results in

νX(Xe) ≈
(

6πηin
| cos θe|

Veff
V

+
4πηin sin2 θe

θe − sin θe cos θe
log

`M
`m

+ 2πζ0

)[
6V

π(cos 3θe − 9 cos θe)

]1/3

.

(3.149)
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Figure 3.15: Bulk, corner flow and contact line contributions to (a) the drag coefficient,
νX and (b) the relaxation time, τ , of the translational motion of barrels along the bisector
plane of a wedge of angle β = 5◦. In (a) the restitution coefficient, k, is superimposed
on the right-hand side axis. The vertical lines in both plots correspond to the limiting
wetting angle θe = 90◦ + β.

The solution of Eq. (3.143) is,

X(t) = [X(0)−Xe ] e−t/τ +Xe. (3.150)

Consequently, near equilibrium, the liquid barrel relaxes at an exponential rate. The
characteristic time scale, τ , in which this occurs, is determined by the ratio of the friction
to restitution constants.

Figures 3.15(a) and (b) show plots of k, νX , and τ as functions of the equilibrium
angle. In the limit θe → 90◦ + β, the barrel equilibrium position is closer to the apex of
the wedge. Geometrically, this implies a stronger confinement, and thus both the bulk
contribution to the friction coefficient and the restitution constant reach local maxima
in this limit. For larger θe, both quantities decrease monotonically, leading to an initial
decrease in the relaxation time. However, the rate at which k decreases becomes dominant
with increasing θe. This is because at higher equilibrium contact angle the barrels keep
an approximately spherical shape for larger displacements from equilibrium. As a result,
the relaxation time reaches a minimum, beyond which it increases with θe until it reaches
a maximum saturation value as θe → 180◦.

The typical magnitude of the corner flow is controlled by the length scale separation
between the macroscopic length scale `M, and the microscopic length scale `m. The
microscopic length depends on the details of the liquid-gas interactions and the roughness
of the solid surface [33] that characterise the motion of the interface at the level of the
contact line [38]. Experiments by [110, 111], reveal that in narrow confinements, the
relative velocity of a liquid near the bounding solid is not zero. The speed of this shear
motion was found to be proportional to the viscous stress, [112] where the constant of
proportionality manifests as a length-scale of a few nanometres.

For a macroscopic droplet, `M ∼ Re ∼ 1 mm can be fixed and comparing the mi-
croscopic length `m to the slip-length then, `M/`m ≈ 105. As shown in figure 3.15(a),
this additional contribution is important at intermediate angles, and vanishes in the limit
θe → 180◦. This is the combined effect of a vanishing contour length and a less confined
corner flow at higher opening angle. As a result of the corner flow, the minimum in the



3.4. CONCLUDING REMARKS 65

relaxation time is displaced to a higher contact angle, as shown in figure 3.15(b).
The contribution of contact line dissipation to the drag coefficient is controlled by

the (constant) microscopic friction coefficient ζ0 and the contour length of the contact
line. Therefore, this term decays more slowly than the corner flow term in Eq. (3.149).
Estimating ζ0 will, in general, be subject to the details of a specific model [109, 113].
For the sake of illustration, the case where ζ0 = 3η in (3.149) is examined as a specific
example where the corner and contact line dissipation are comparable in magnitude. As
shown in figures 3.15(a) and 3.15(b), the main effect of this term is a slower decay in the
contact line dissipation with increasing contact angle, which in turn leads to an overall
broadening of the maximum in the relaxation time.

3.4 Concluding remarks
In this chapter, an analytical model to study the statics and dynamics of droplets in hy-
drophobic wedges has been proposed. First, the shape that the droplet acquires is studied
from a sharp-interface perspective based on a free energy approach. It was proposed that
the “liquid barrel” gives a good approximation for a static case in the presence of an exter-
nal force. This assumption is validated by comparing the energy landscapes and pressure
profiles with numerical methods.

Having validated the liquid barrel assumption, the model is extended to analyse dy-
namic situations in the absence of external forces. Continuing with the free energy ap-
proach, the equations of motion were deduced by considering the restitutive forces and
dissipative forces. The dissipative forces were estimated from three contributions: the
viscous friction of bulk of the droplet, the dissipation in the vicinity of the contact lines,
and the microscopic drag forces arising from the true contact lines.
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Chapter 4

Lattice-Boltzmann Simulations

Diffuse-interface numerical simulations are amenable methods to study the dynamics of
liquid barrels, as they have the capacity of modelling capillary phenomena, including the
dynamic wetting of smooth solid surfaces [42, 26, 39, 44, 40, 45, 114]. The main advantage
of this approach is that the interface dynamics occurs naturally through convection and
diffusion—the latter driven by chemical potential gradients [41, 42, 9]. This contrasts
with sharp-interface models, where one needs to track the evolution of the interface [115]
and to specify a boundary condition for the contact line in an ad hoc manner [103].

Following §1, the relevant equation to analyse the translational motion of a droplet in
a wedge is the Navier-Stokes equation. This equation models the evolution of the velocity
field, in the incompressible limit, it reads (Eq. (1.27)),

ρ (∂t + u · ∇)u = −∇ · P + η∇2u. (4.1)

To model the behaviour of the interfaces with a continuous phase field, φ, the pressure
tensor, P, is defined as in Eq. (2.20),

P =

[
1

4
B(φ2 − 1)(3φ2 + 1)−Kφ∇2φ− 1

2
K|∇φ|2

]
I +K∇φ∇φ, (4.2)

where the parameters B and K are tuned according to Eqs. (1.20) and (1.16) to give
values of surface tension and interface thickness, respectively.

Additionally, the Cahn-Hilliard equation (Eq. (1.26)),

(∂t + u · ∇)φ = M∇2µ, (4.3)

preserves continuity of the phase field, and allows motion of the contact lines by diffusive
processes. Similarly, the chemical potential, µ, is defined by the phase field as in Eq. (1.12),

µ = Bφ(φ2 − 1)−K∇2φ. (4.4)

The wettability of the wedge planes is determined by introducing the boundary con-
dition of Eq. (1.23),

Kn̂ · ∇φ = χ, (4.5)

where, the wetting potential, χ, is specified by the equilibrium contact angle, θe, according
to Eq. (1.25).

To integrate the Navier-Stokes coupled with the Cahn-Hilliard equations, the D3Q15
lattice-Boltzmann method, as presented in §2, was used.

67
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Figure 4.1: Schematics of the simulation set-up. Two planes forming a wedge with an
opening angle β are contained in a simulation domain of dimensions Nx ×Ny ×Nz. The
initial condition consists of a truncated spherical droplet of radius R0 centred at a position
X0.

4.1 Simulation Set-Up
A simulation domain contained in a box of dimensions Nx×Ny×Nz, as shown in figure 4.1,
was set. In the frame of reference of the simulation box, the walls of the wedge are fixed
at the planes (x − d) · n̂ = 0. The offset d is introduced to avoid that the solid walls
intersect within the simulation domain, which was found to give rise to numerical errors.
Setting d · n̂ = 1.72 allowed at least two nodes of separation between the boundaries.
Periodic boundary conditions were used along the y direction, and impose two other solid
planes at x = 1/2 and x = Nx − 3/2.

As an initial condition, the fluid is at rest. The interface has a spherical configuration
with radius R0 and centre X0 as shown in figure 4.1. This corresponds to setting the
following initial velocity and phase-field profiles

u(x, t = 0) = 0, (4.6)

φ(x, t = 0) = tanh

[
R0 − |x−X0|√

2`

]
. (4.7)

Two initial values of the centre of sphere were used, X0 = (0.75Nx, 0, 0) and X0 =
(0.24Nx, 0, 0), which, for the range of tapering and contact angles considered, correspond
to the droplet initial positions, X0 > Xe and X0 < Xe. These initial conditions allow the
droplet to move inwards or outwards of its equilibrium position.

The instantaneous volume of the droplet, V (t), and its position, X(t), are computed
as follows. To calculate the volume of the droplet, the formula

V (t) =
∑
x∈Ω

φ(x, t) + 1

2
if φ > −1, (4.8)

was used. To calculate X(t), a slice of the phase field is taken at the bisector plane,
x = (x, y, 0), and use a linear interpolation scheme to find the interface—defined as the
level curve φ = 0. X(t) is taken as the x coordinate of the centre of the circle that best
fits the interface profile using a Least Mean Squares algorithm.
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Parameter Value* Parameter Value Parameter Value
Nx 256 γ 0.008 ρin 1.0
Ny 128 θe 100◦—120◦ ρout 0.4
Nz 32—76 ` 3.54 ηin 1/6—1
β 5◦—8◦ M 1.5× 10−4—5.0× 10−3 ηout 1/15

*Unless otherwise specified, values are reported in lattice-Boltzmann units (lBu).

Table 4.1: Lattice-Boltzmann simulation parameters.

The values of the simulation parameters used are summarised in table 4.1. For these
parameter values, it was found that the system reaches equilibrium in a typical time-scale
of ∼ 5× 106 iterations.

4.2 Simulation Results

4.2.1 Equilibrium

First, the equilibrium configuration of the droplet as a quantitative validation of accuracy
of the numerical method is performed.

As expected from §3.1.3, the interface adopts the shape of a sphere truncated by
the solid planes of radius and position consistent with by Eqs. (3.65) and (3.66) (fig-
ure 4.2(a)); the simulations agree with the analytical prediction over the whole range of
equilibrium and wedge angles considered (see figures 4.2(b) and 4.2(c)). This agreement
holds regardless of the initial conditions (compare symbols to solid lines in the figure).

Beyond the configuration of the interface, the simulations provide details of the equi-
librium hydrodynamic fields. The velocity field vanishes everywhere, except for small
currents (∼ 10−5 in lattice-Boltzmann units; see figure 4.3a) which arise due to spuri-
ous effects in the lattice-Botzmann method [116]. Despite being augmented by the lower
density and viscosity of the outer phase, they have a negligible effect on the liquid barrel.

The scalar pressure profile, p ≡ trP/3, along the centre-line of the droplet, dips at
two points (see figure 4.3(b)), these correspond to the interfacial regions (compare to the
phase-field profile shown as a dashed line). As pointed out by Lee and Lin [7], this is
due to the free-energy density contribution to the pressure and gives rise to the surface
tension effect. The pressure is higher in the bulk of the inner phase than in the outer
phase. This is the combined effect of surface tension and the curvature of the interface,
as expected from the Young-Laplace relation [3].
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Figure 4.2: Equilibria of liquid barrels in wedges. (a) Interface configuration of a barrel
of equilibrium contact angle θe = 110◦ in a wedge of opening angle β = 6◦. The interface
adopts the shape of a truncated sphere. The expected analytical result is shown as a
wireframe. (b) Equilibrium position of the liquid barrel as a function of θe at constant
β = 6◦. (c) Equilibrium position as a function β at constant θe = 110◦. The symbols
indicate the two types of initial conditions used in the simulations: X0 > Xe (◦) and
X0 < Xe (�). The solid lines correspond to the analytical prediction. The simulation
parameters are M = 5× 10−3 and ηin = 1/3.
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Figure 4.3: Equilibrium hydrodynamic fields of a liquid barrel of contact angle θe = 110◦

in a wedge of opening angle β = 6◦. (a) Cross-sections of the phase field (colour plot,
top) and velocity field (vector plot) and barometric pressure (colour plot, bottom). The
magnitude of the arrows has been rescaled by a factor of 105 for visibility. (b) Pressure
(solid line) and phase field (dashed line) profiles along the centre line (x-axis). The
simulation parameters are M = 5× 10−3 and ηin = 1/3.
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4.2.2 Translational Motion along the Wedge

Now, the translational motion of the droplet during equilibration is analysed. Fig-
ure 4.4(a) shows a sequence of simulation snapshots at intervals of 8 × 105 time steps
for droplets moving inwards and outwards to the same equilibrium position. In both
cases, the position of the droplet as a function of time suggests an exponential relaxation
(figure 4.4(b) and inset). For an exponential decay, (see §3.3.5), it is expected that the
position of the droplet, X, obeys the relation,

Ẋ = −1

τ
(X −Xe), (4.9)

where Ẋ is the translational velocity of the droplet and τ is the relaxation time. It was
found that the linear relation in Eq. (4.9) is satisfied by the liquid barrels over the whole
range of contact angles considered in the simulations, and that, for constant values of all
other parameters (β, M and ηin), the data collapse onto a single line (see figure 4.5(a)).
This implies that the relaxation time does not change significantly with the contact angle.

While at lower contact angles, a stronger restitutive force due to confinement is ex-
pected, and also a higher hydrodynamic dissipation near the contact lines due to the
development of vortices in the inner (more viscous) phase. It can be inferred that the
variation of the dissipative and conservative forces with the contact angle is therefore
approximately equal, thus cancelling out a net dependence of τ on θe.

The dependence of τ with the wedge angle, β, was also tested; from the simulation
results (figure 4.5(b)) it was found a scaling −Ẋ/ sin2 β ∝ (X − Xe), and thus τ ∝
1/ sin2 β. Physically, this functional dependence implies that as the wedge gets narrower
by decreasing β, the droplet takes more time to reach its equilibrium point. After an
analysis of the restoring forces [94], the projection of surface tension and pressure along
coordinate of translational motion give a net capillary force proportional to sin2 β. This
implies that the dependence of β on the relaxation time is given by the restitutive forces
alone and not on dissipative forces.

The plots in figures 4.4 (b, inset) and 4.5 show faint oscillations in the position of the
droplet and velocity. These oscillations are unphysical, and their origin is attributed to
an aliasing effect in the discretisation of the boundary. Due to the lattice structure of the
simulation domain, the discretisation of a boundary deviated from a straight angle will
create spatial aliasing on the boudnaries. This is because the wavelength of the oscillations
coincide with the passing of the interface at every lattice site, and further amplified when
crossing an aliasing step.

The numerical noise due to the aliasing of the boundary creates a small pinning effect to
the contact lines, equivalent to roughness or imperfections in the surface. As the droplet
relaxes, the restitutive forces become weaker and thus the effect is more contrasting.
Applying the numerical algorithm presented in §2.2 substantially reduced the spatial
aliasing effect and the relaxation process of the droplet to equilibrium can be analysed
with a high degree of accuracy.



4.2. SIMULATION RESULTS 73

xy

z

0

t  (lBu)

(a) (b)

Figure 4.4: Motion of the liquid barrel and relaxation to the equilibrium configuration. (a)
Snapshots of the time evolution of the droplet. (b) Evolution in the position of the droplet,
the symbols (�) denote outwards motion, in contrast with (◦) that represent inward mo-
tion. The dot-dashed line indicates the equilibrium position. In the inset, a semiloga-
rithmic plot of the the distance to equilibrium as a function of time is presented. The
simulations were carried out for the angles β = 6◦, and θe = 120◦, the snapshots are taken
every 8×105 timesteps for a total of 4.8×106 iterations. The mobility and viscosity were
set to M = 0.005 and ηin = 1/3.

(a) (b)

Figure 4.5: Correlation of the instantaneous displacement and velocity of liquid barrels.
(a) Data collapse for liquid barrels of different contact angles and fixed wedge angle β = 5◦;
the symbols correspond to θe = 100◦ (4), 105◦ (�), 110◦ (♦), 115◦ (◦), and 120◦ (?). (b)
Data collapse for different opening angles: β = 5◦ (N), 6◦ (�), 7◦ (�) and 8◦ (•), and fixed
contact angle θe = 120◦. The solid lines correspond to linear trends close to equilibrium.
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4.2.3 Driving Forces

To better understand the mechanisms driving the relaxation process, the instantaneous
pressure and chemical potential fields will now be considered. It was found that the slope
of the pressure profile, ∂p/∂x, is negative for droplets that move outwards and positive
for droplets that move inwards (see figure 4.6). This indicates the action of a net capillary
driving force resulting from Laplace pressure differences.

Along with the numerical results, the pressure profile derived in §3.1.4 and the av-
erage pressure from the Lagrange multiplier from §3.3.1 is presented for comparison in
figure 4.6(b). It was found a good qualitative agreement of the numerical results (solid
lines) with the analytical results (dashed lines). Quantitatively, however, it is found some
differences, these discrepancies arise from the motion of the contact lines. According to
Cox [34] and Voinov [35], the contact angle is expected to vary in dynamical situations.
This has the effect of changing the curvature of the interface, most prominently, at the
leading and trailing sections of the droplet where the velocity of the droplet is perpen-
dicular to the contact line. At the leading section of the droplet, the curvature of the
interface increases, whilst at trailing section it decreases. This has the effect of reducing
the pressure gradient and consequently the main driving force acting on the liquid.

While the pressure gradient drives the dynamics in the bulk of the barrel, the contact
lines move by virtue of the local pressure drop and an imbalance in the chemical poten-
tial. The chemical potential profile, µ(x), deviates from equilibrium more strongly near
the contact lines (see figures 4.7a and 4.7b); it is found that µ dips at the advancing
contact line, and peaks at the receding contact line (see figure 4.7c). From the Gibbs-
Thomson condition [39], an increment in ∆µ is expected at the interface due to a change
in curvature,

∆µ = −2γκ

∆φ
, (4.10)

where ∆φ ≈ 2 is the change in the order parameter across the interface.
From the Cahn-Hilliard equation, Eq. (1.26), a small peak in the chemical potential

will result in the local “evaporation” of the inner phase, whereas a dimple will lead to
“condensation”. As shown by Briant et al. [26], the combination of both features allows
the motion of the contact lines.
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Figure 4.6: Instantaneous out-of-equilibrium pressure profiles for a liquid barrel of contact
angle θe = 110◦ in a wedge of opening angle β = 5◦. (a) The inset illustrations show a
colour map of the pressure field at the cross-sectional plane y = 0 (decreasing from dark
red to lightt blue) at the displacements X(t) −Xe = {−1,−1/2, 0, 1/2, 1}V 1/3 from top
to bottom. (b) Plot of the pressure profile at the bisector line, p(x, 0, 0) (solid black lines)
for the snapshots shown in (a). Due to the surface tension of the liquid-gas interface, the
pressure dips at the endpoints (see figure 4.3), therefore the pressure profile is plotted for
the section where φ(x) > 0.9 to highlight the area of interest. This result is compared
with the theoretical prediction from the Young-Laplace equation (dashed gray lines). The
simulation parameters are M = 0.005 and ηin = 1/3.
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Figure 4.7: Chemical potential field of a liquid barrel of contact angle θe = 110◦ at different
displacements from equilibrium in a wedge of opening angle β = 5◦. (a) The colour map in
the 3D images show the slicing plane z = 0.82−x tan 5◦ (l.B.u.) for a displacement of the
equilibrium position of the liquid barrel at X−Xe = ±V 1/3. (b) Projections of the colour
maps ∆µ on the wedge walls at displacements X − Xe = {−1,−1/2, 0, 1/2, 1}V 1/3 (top
to bottom). (c) Profile of the chemical potential along the x coordinate of the wall. The
arrows indicate the direction of motion of the liquid barrel. The simulation parameters
are M = 0.005 and ηin = 1/3.
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4.2.4 Flow Field

The flow pattern resulting from the pressure gradient will now be discussed. In the
surrounding phase, two recirculating streamlines at the sides of the droplet (see figure 4.8)
can be observed as predicted by the analytical model presented in §3.3.2. These are also
observed in figure 4.9, by means of a vector field and a vorticity colour map. It can
be infer that these vortices occur close to the interface because of the difference in the
viscosities, and reduce friction in the motion of the droplet.

The topology of the flow field is persistent over the whole set of simulations, with
little variation in the details depending on the direction of motion or the velocity of
translation. This is reasonable, as the dynamics in the simulations always fall in the
exponential regime. Therefore, it is expect that, while the magnitude of these features
decreases as the system approaches equilibrium, the overall structure of the flow remains
the same [27].

The flow in the bulk of the droplet shows a remarkable laminar structure (see fig-
ure 4.8). This is in agreement with the theoretical model proposed in section §3.3.2, thus
supporting that a Jeffery-Hamel flow gives a good approximation of the flow inside the
droplet. This is a consequence of the relatively large viscosity of the outer phase, for which
the vortices are located out of the droplet. This effect implies that by increasing the vis-
cosity ratio, the inner flow becomes laminar, making the assumption of a Jeffery-Hamel
flow more accurate. This also implies that the dissipation of the outer phase becomes
more significant for a higher outer viscosity.

The flow in the transverse plane also shows a laminar structure (see figure 4.9(a)).
The flow points in the direction of the apex, growing in magnitude from the walls to the
bisector plane. This feature is distinctive of the Jeffery-Hamel flow, giving further support
to the assumption of the bulk flow in §3.3.2.

As shown in the inset of figure 4.9(b), the flow pattern changes near the contact
line. Here, the structure of the flow is consistent with the generic corner flow of wetting
dynamics predicted by Cox [34] and Voinov [35], which results in a tread-milling motion
of the interface [18, 38] as documented in experiments by Dussan and Davis [32] This is
in agreement with the analytical model (see §3.3.2).
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Figure 4.8: Instantaneous flow field at the bisector plane of a liquid barrel of contact angle
θe = 120◦ moving outwards (a and c) and inwards (b and d) in a wedge of opening angle
β = 6◦. The streamlines of the velocity field (a and b) are coloured with the z component
of the vorticity. The arrows of the vector field in the bisector projection (c and d) are
amplified by 105 for visibility.
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Figure 4.9: (a) Side view of the velocity and vorticity fields. The interface is plotted as a
solid contour line, the vorticity field ωy is plotted in colour map. The size of the arrows is
augmented by 3.5× 104 for visibility. (b) Close-up of the contact-line region indicated as
a square in (a). The interface is plotted as a thick semi-transparent line. Contour lines
of the vorticity field are plotted to enhance the visibility. The velocity field vectors are
rescaled to 1.5× 104. The simulation parameters are set to M = 0.005 and ηin = 1/3.
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4.2.5 Contact Angle Variations

A dynamic contact angle, different from the its equilibrium value, results from the resis-
tance of motion from either fluid in the vicinity of the contact line, and the contact line
itself [33]. In the diffuse-interface model, the dynamics combines viscous and diffusive
processes [42, 41, 43] and, for that reason, as discussed in §3.3.4, the energy dissipation
provides relevant information at both levels.

In the lattice-Boltzmann simulations, the dynamic contact angle in the advancing
and receding sections of the contact lines at the transverse plane was measured. Follow-
ing Kusumaatmaja [45], this was done by finding the best circle that fits the fluid-fluid
interface at the solid walls and then calculating the intersection angle with the solid walls.

As predicted by Cox [34] and Voinov [35], the contact angle varies with the local
velocity of the contact lines, vcl. The difference between the dynamic and the equilibrium
contact angle can be estimated using in Eq. (3.134),

θ − θe ≈
ηin
γ
fCV(θe, λ) vcl log

`M
`m
, (4.11)

where the function fCV is given in Eq. (1.44) for any value of the viscosity ratio λ =
ηout/ηin.

In figure 4.10, the dynamic contact angle, θ, vs the velocity of the contact line, vcl, is
plotted for a set of prescribed contact angles, θe. It can be observed that, at vanishing
velocity, the contact angle converges to the equilibrium value, and, when vcl is positive
(negative)—which corresponds to the advancing (receding) section of the contact line—θ
increases (decreases) with respect to the base value θe. Moreover, it can be observed
that the growth in the dynamic contact angle is linear with respect to the velocity of the
contact line, which is in good agreement with the prediction in Eq. (4.11).

Looking at figure 4.10 in further detail reveals a difference in the slope of the contact
angle, dθ/dvcl, at the advancing and receding parts of the contact line. From Eq. (4.11),
this can be attributed to the last term, i.e., log `M/`m. Recall that `M plays the role of the
macroscopic length-scale, in which the corner flow merges with the bulk flow, therefore
it is expected to depend on the geometry of the droplet, and thus, scale with the height
of the droplet. On the other hand, as shown by Jacqmin [42] and Kusumaatmaja [45],
the microscopic length-scale `m has a power-law dependence with the viscosity and the
mobility; the exponent varying between 1/2 and 1/4. Therefore,

`m ∝ [Mηin]a (4.12)

can be considered.
Combining Eq. (4.11) with Eq. (4.12), the rate of change of the contact angle is

expected to have the form,

dθ

dvcl
∼ ηin

γ

{
b− a log[M ηin]

}
fCV

(
θe,

ηout
ηin

)
, (4.13)

where the constants a and b are free parameters yet to be determined. The positive
(negative) sign inside the cosine function corresponds to the farther (+) and closer (−)
sections of the contact line relative to the apex of the wedge.

The numerical error due to spatial aliasing is evident in figure 4.10 and is more preva-
lent for the advancing section of the contact line. This is because, for a droplet moving
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Figure 4.10: Variation of the contact angle with the velocity of the contact line. Scatter
plot of the measured contact angle at varying prescribed θe while fixing the viscosity
(ηin = 1/3) and mobility (M = 5× 10−3). The symbol (N) corresponds to the advancing
section of the contact lines, whereas (�) corresponds to the receding. The solid lines
represent the fitting of a linear profile, where the slope is dθ/dvcl.

inwards, the advancing section of the fluid-fluid interface is more confined, and therefore,
spurious effects in the contact angle are also amplified.

From figure 4.10, one can extract the slope of the linear fits to see its dependence on
θe. Similarly, this can be done for a set of β, ηin andM . The rate of change of the contact
angle is presented in figure 4.11 for both advancing and receding sections of the contact
line as function of θe, β, ηin and M .

Figure 4.11(a) shows that dθ/dvcl does not change significantly with respect θe. On
the other hand, the effect of the wedge angle is apparent as one that varies with β (see
figure 4.10(b)). The latter gives further support to the form of `M in Eq. (4.11) which
models the effect of the geometry of the confinement in the structure of the corner flow.

Moreover, in figures 4.11(c) and (d) a predominantly linear dependence on ηin and
logM , respectively, can be observed. At higher viscosity, the contact angle has larger
deviations from the equilibrium value, meaning that a greater difference in the curvature
of the interface at the contact lines is necessary to allow a faster motion. In contrast, with
higher mobility, the diffusion of the order parameter can occur at lower differences, and
therefore less variation in the contact angles is necessary. Henceforth, the motion of the
contact lines is hindered by viscosity and enhanced by mobility, and consequently, less
dissipation is expected at higher values of M and lower values of ηin.
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Figure 4.11: Plots of the variation of the contact angle response with respect to (a) the
equilibrium contact angle, (b) wedge angle, (c) viscosity, and (c) mobility; the latter in
logarithmic scale. The symbols correspond to (N) advancing and (�) receding sections
of the contact lines. The dotted-dashed and dashed lines correspond to their respective
curve fittings.

4.2.6 Reconstruction of the Energy Landscapes

The energy landscapes as the droplet travels to its equilibrium position will now be stud-
ied. As the liquid barrel equilibrates, the excess surface energy is dissipated not only by
viscous friction, but also by the relaxation of the chemical potential field [9] (see §1.2.5
for further details).

Following §1.2.2, the total rate of energy dissipation reads,

Ė = −
∫ {

1

2
η
(
∇u+∇uT

)2
+M |∇µ|2

}
dV, (4.14)

which renders the term inside the brackets an energy dissipation density. It was found
that the dissipation density is higher close to the interface, and peaks near the contact
lines (see figure 4.12). The overall contribution to dissipation, however, is dominated by
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Figure 4.12: Energy dissipation density field of a liquid barrel with contact angle θe = 110◦

moving inwards in a wedge of opening angle β = 6◦. Cross-section of the dissipation
field at the bisector plane, z = 0, for a droplet moving (a) outwards and (b) inwards.
Dissipation field at the transverse plane, y = 0, for a droplet moving (c) outwards and (d)
inwards. The interface of the droplet is depicted with a grey solid line. The simulation
parameters are M = 0.005 and ηin = 1/3.

viscous friction over the whole equilibration of the barrel—the contribution of the diffusive
term is typically less than 10% (figure 4.13).

The total dissipation can be used to reconstruct the instantaneous free energy, F (t),
by integrating the dissipation rate, Ė , with respect to time (see §1.2.2). Yet, in the
simulations, a constant residual dissipation at long times, Ė∞, which is unphysical (see
figure 4.13) was found. The origin of the residual dissipation is in the spurious currents
of the lattice-Boltzmann method, which it was found to increase in magnitude as the
equilibrium contact angle deviates from 90◦ [116] (see figure 4.13(b)). Therefore, to find
F (t), the relation

F (t) =

∫ ∞
t

[
Ė(t′)− Ė∞

]
dt′ + E0 (4.15)

was used. Figure 4.14 shows the resulting energy landscapes, which is presented as para-
metric plots of F (t) vs X(t) at different θe and β. The asymmetry in the curves shows
that the liquid barrel is subject to a stronger restitutive force upon and inwards displace-
ment (as opposed to an outwards displacement) due to the effect of confinement. The
overall increase in the curvature of the landscapes at lower θe arises from the same effect;
at low θe the barrels equilibrate closer to the apex of the wedge (where confinement is
strongest). The increase in curvature at large β implies a stronger restitutive force; this
is due to a larger projection of the net restitutive force along the direction of motion, and
a higher rate of distortion of the interface shape in wider wedges.

To compare the lattice-Boltzmann results to the analytical model §3.1.1, the energy
landscapes obtained in Eq. (3.59) to the simulation results (see figure 4.14) are superim-
posed. It was found that, on occasions, the theoretical curve is below the simulations.
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Figure 4.13: Energy dissipation as a function of time and residual dissipation. In (a), the
solid line indicates the total energy dissipation. The viscous hydrodynamic dissipation is
shown as a dotted-dashed line and the chemical dissipation as a dotted line. The residual
dissipation is indicated with a double arrow. (b) Dependence of the residual dissipation on
the equilibrium contact angle. The simulation parameters are M = 0.005 and ηin = 1/3.

This is expected, as initial configurations of the droplet that have a higher initial energy
compared to the liquid barrel. This occurs when the initial condition of the droplet is
closer to equilibrium. It is reasonable to conclude that the liquid barrel is a low-energy
interfacial shape. In contrast, when the droplet travels for a longer distance, it can be
observed that the theoretical curve lies above the one obtained from the simulations. This
is also expected since, as the droplet moves, the variation in the contact angle changes the
fluid-fluid interface. Since it is a dissipative process, regardless of the direction of motion
and change in the contact angle, this effect reduces instantaneous energy compared to the
liquid barrel.

The analytical value of the restitution constant, k, Eq. (3.145), was also compared with
the one obtained from the simulations. In the simulations, k was obtained by fitting the
energy landscape curves of figure 4.14 to a third-degree polynomial (fixing the constant
and linear terms to coincide with the energy minima in the simulations). It was found that
the curve fitting gave a good representation of the data by considering data points within
a region close to the equilibrium position. The measurements show a decrease of k with
increasing θe and decreasing β, in qualitative agreement with the theory (see figure 4.15).
Moreover, there is a reasonable agreement with the magnitude of k; the overall larger k
values obtained from the simulations imply a larger total energy than the surface energy
accounted for in the analytical model. This is expected, as the initial configuration of
the liquid in the simulations has a larger surface area than the barrel shape proposed in
§3.1.1.
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Figure 4.14: Energy landscapes of the liquid barrel for (a) different values of the contact
angle at fixed β = 6◦, and (b) different values of the wedge angle at θe = 120◦. The
symbols correspond to inwards motion (◦) and outwards motion (�). The solid lines
correspond to the energy of the liquid barrel. The dashed line corresponds to the zero-
point energy. The thin solid lines show third-degree polynomials used to fit the data. The
simulation parameters are ηin = 1/3 and M = 0.005.
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Figure 4.15: Restitution constant as a function of θe at β = 6◦ (a), and as a function of β
at θe = 120◦ (b). In both plots, the symbols represent the numerical calculation and the
solid lines represent the theoretical prediction. The error bars are the root-mean-square
error of the least-squares algorithm used to determine k.
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4.2.7 The Relaxation Time and the Friction Coefficient

As explained in §3.3.5, the time-scale of the relaxation of the droplet is set by the com-
petition between the driving (capillary) force and the dissipative (friction) forces, i.e.,

τ
def
=
νX
k
, (4.16)

where νX is the friction coefficient (see §3.3.5). Since diffusion of momentum and mass
are irreversible processes, the constants ηin and M can only affect dissipative forces.
Therefore, any effect that these constants have on the relaxation time, must emerge from
the friction coefficient, since by construction, k is conservative.

Considering the contributions to energy dissipation (as stated in §3.3.5) and the dy-
namic behaviour of the contact angle (as presented in §4.2.5), it is expected that the
dissipation function is of the form

Ė ∼
[
a′ + b′ log(Mηin) +

c′

M

]
Ẋ2, (4.17)

where a′, b′, and c′ are parameters yet to be determined that depend on the viscosity of
the inner and outer phase, the contact angle and the wedge angle. Therefore, comparing
Eq. (4.17) with the results of §4.2.2, the relaxation time is expected be proportional to
the term inside the brackets of Eq. (4.17) up to a dependence on sin−2 β and independent
of θe, i.e.,

τ ≈ ηinV
1/3

γ sin2 β

[
a+ b log(Mηin) +

c

M

]
, (4.18)

where a, b and c are constants that depend only on the viscosities of both phases.
From the simulations, it was found that τ increases linearly with the viscosity of the

inner phase, ηin (see figure 4.16(a)). This implies that all three contributions to the drag
coefficient (and thus all a, b, and c) scale with ηin. The extrapolation of the relaxation
time to a finite value (τ > 0) as ηin → 0 is due to the non-zero viscosity of the outer
phase.

The dependence of τ on the mobility coefficient, M , is presented in figure 4.16(b).
A monotonic decrease of τ with M is found, which can be reasoned in terms of both a
larger microscopic length-scale `m, and a smaller contact-line friction coefficient at higher
M (second and third term in Eq. (4.18)). More quantitatively, the simulation data to fit
Eq. (4.18) is used, treating the constants a, b and c as fitting parameters. The functional
form is in good agreement with the simulation data for the set of parameter values a =
3.15, b = −0.196, and c = 9.71 × 10−5. In fact, it was found that none of the terms
in Eq. (4.18) is negligible: a fit, fixing b = 0 (dotted line in figure 4.16(b)) or c = 0
(dotted-dashed line in the same figure), gives a qualitatively incorrect representation of
the simulation data.

4.3 Concluding remarks

In this chapter, lattice-Boltzmann simulations were carried out to analyse the dynamics
of droplets in wedges and further support the liquid barrel shape in dynamic situations.
First, the simulation results for the equilibrum shape and position of droplets on wedges
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Figure 4.16: Dependence of the translational relaxation time of a liquid barrel on the
viscosity and coefficient of mobility. (a) τ as a function of ηin at fixed M = 0.005. The
solid line a linear fit. (b) τ as function of M at fixed ηin = 1/3. The continuous lines
correspond to three curve fittings of Eq. (4.18), corresponding contributions to dissipation
from the bulk and corner flow (dotted-dashed line), bulk and contact line (dotted line),
and bulk, corner and contact line (solid line). The simulation parameters are θe = 110◦

and β = 5◦.

were obtained. Then, the translational motion of droplets in hydrophobic wedges is anal-
ysed. This is done by observing the driving forces and the flow field and comparing these
findings with previous analysis. Moreover, the restitutive forces are compared against the
theoretical model by reconstructing the energy landscapes.

The dissipative forces involved in the relaxation process are then examined. This is
done by first noting how the advancing and receding contact angles change due to the
motion of the droplet, a consequence of the motion of the contact lines. The analysis
concludes by looking at the relaxation time, that is, the characteristic time in which the
droplet approaches equilibrium, which shows the three contributions to the dissipative
forces. This is in good agreement with the liquid barrel model proposed in the previous
chapter.



Chapter 5

Droplet Manipulation in a Wedge
Geometry

The theoretical description and simulations developed in § 3 and § 4 give a framework to
study applications of the motion of a liquid droplet inside a wedge. In this chapter, the
possibility of droplet manipulation by changing the geometry of the wedge is assessed,
where the knowledge gained by the theoretical analysis and simulations is applied to
explain recent experimental results.

5.1 Experiments on Liquid Barrels

Experimentally, a smooth translation of a droplet in a wedge upon reconfiguration of the
boundaries is only possible in the absence of contact angle hysteresis. In that way, a con-
sistent equilibrium configuration can be found and thus, the behaviour of the droplet
can be modelled by the liquid-barrel model. Slippery liquid-infused porous surfaces
(SLIPS) [117], also known as lubricant-impregnated porous surfaces [118], provide an
excellent framework for these purposes [119] (see figure 5.1).

A SLIPS consists of a porous surface that is covered by a thin liquid layer that acts
as a lubricant. In the experiments1, the underlying surface consists of a flat silicon wafer
with a square grid of SU-8 photolithographic resin pillars of 90× 90µm2 with 100µm of
separation that produce the porous texture. The porous surface is coated with a nano-
particle solution making it superhydrophobic—repelling water, but not oil [120]—and
then infused with a thin layer of lubricating oil [119, 95].

When a water droplet sits on a SLIPS, a small oil meniscus of a few hundred microns,
is observed in place of a contact line. This suggests that the droplet is cloaked by oil.
This is further confirmed by surface tension measurements of a sessile droplet in air,
γ ≈ 63 mN m−1, which is a value lower than the surface tension of water and air alone
(γ < 71 mN m−1); thus indicating the presence of oil in the water-air interface which
decreases the surface tension. Except for the oil meniscus, a water droplet in contact with
a SLIPS adopts a spherical shape. Extrapolating the spherical cap up to the intersection
with the solid surfaces defines the apparent contact angle, θe = 100◦± 5◦, in equilibrium.

A direct contact between the water phase and the solid surface is prevented due to
the nano-particle coating, thus practically eliminating the contact angle hysteresis [118,

1The experiments were carried out by Jian Hui Guan whom I thank for kindly sharing his results.
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Figure 5.1: Schematics of a SLIPS surface with a sessile droplet of water.
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Figure 5.2: Droplet morphology in equilibrium. A 4µL water droplet equilibrates at
different positions within a SLIPS wedge by adjusting the opening angle.

121, 119]. This is verified by placing a droplet on top of a tilted SLIPS and allowing it to
roll off by the force of gravity. The sliding angle, i.e., the minimum tilting angle in which
motion occurs, was less than 1◦ for a droplet of 3µL.

The experimental set-up consists of two SLIPS surfaces indistinguishable in their fab-
rication; one fixed, parallel to the horizontal and facing up, and the other one, facing down
and forming a wedge of an angle 2β, where β was varied within 1.1◦ ≤ β ≤ 2.8◦. Then, a
droplet of water of volume V (2µL ≤ V ≤ 5µL) is placed inside the wedge bridging the
two surfaces (see figure 5.2).

Experiments were conducted to measure the equilibrium shape of the droplet for initial
positions closer to the apex and farther out from the expected equilibrium state. After all
visible motion ceased (∼ 100 s), measurements were taken for the height-to-width aspect
ratio and droplet radius.

The height-to-width aspect ratio, h, is a dimensionless number that characterises the
shape of the droplet. This is illustrated in figure 5.3, which shows a diagram of the different
filling regimes for a wedge with the contact angle as the bifurcation parameter. The energy
landscapes reported in § 3.3.5 suggest that the spherical droplet shape corresponds to
global minima in the surface energy, and therefore distortions to such shapes will always
relax back to equilibrium. Henceforth, in equilibrium, the height-to-width aspect ratio,
he = − cos(θe−β), plays the role of an attractor. For θe < 90◦+β, he = 0, corresponding
to the complete filling states studied by Concus and Finn [90, 89] and Brinkmann and
Blossey [91]. For θe = 90◦+β, one obtains the onset of droplet detachment from the apex.
For θe > 90◦ + β, the aspect ratio becomes finite (he > 0), corresponding to the liquid
barrel domain (see § 3.1.1). Increasing the equilibrium contact angle leads to a limiting
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Figure 5.3: Bifurcation diagram of the filling states of liquid droplets in a solid wedge.
The solid line denotes the equilibrium height-to-width ratio, or attractor. The vertical
arrows indicate the direction of the trajectories of the system for fixed values of θe and β.
The dotted line (θe = 90◦+β) shows the bifurcation, or onset of edge blobs. Examples of
the morphology of the droplet are shown as insets. For clarity, the volume in the examples
is not the same.

barrel configuration, where θe = 180◦ and he = cos β. In such a limit, the contact area
between the liquid and the solid vanishes, and the liquid forms a suspended droplet.

Out of equilibrium, the instantaneous aspect ratio characterises the inwards and out-
wards modes of motion for a liquid barrel, is given by

h =
ξ − 1

α− 1
he. (5.1)

A displacement of the liquid towards the apex of the wedge will result in a vertical
compression of the droplet (see lower inset in figure 5.3), this corresponds to h < he. In
contrast, a displacement towards the wide end of the wedge causes a vertical extension in
the shape of the droplet, and corresponds to h > he. As the only attractor, at constant
contact angle and geometry of the wedge, all trajectories move as vertical lines towards
he as shown in figure 5.3.

Further examination of the equilibrium state can be performed to asses the final posi-
tion of the droplet. In this case the parameter q is measured, which is proportional to the
position of the droplet. It is a positive quantity that decreases when the droplet is closer
to the apex of the wedge and it becomes identical to the droplet radius in equilibrium
(from Eqs. (3.66) and (3.51)),

Re = qe = − sin β

cos θe
Xe =

[
6V

π(cos 3θe − 9 cos θe)

]1/3

. (5.2)

The experiments were carried out for droplets at positions closer to the apex and
further out as initial conditions. The results are shown in figure 5.4 and are in good
agreement with the analytical prediction. That is, for a given contact angle, the radius of
the droplet does not depend on the wedge angle. Moreover, it also shows that the position
in which the droplet relaxes is invariant to initial conditions and is consistent with the
analytical prediction. This is most important for an accurate control of the droplet during
actuation.
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Figure 5.4: Measurements of the equilibrium state of the droplet. (a) Data collapse of
the height-to-width ratio of droplets of different volumes and contact angles confined in
wedges with different opening angles. (b) Radius of droplets of volumes from 2µL to
5µL. The data has been collapsed to eliminate differences due to the small variations of
the contact angle.

In order to study the dynamic behaviour of the droplets, the translation of the droplet
as the system relaxes to equilibrium will now be studied. In this set of experiments, the
droplet was filmed during its translation to the equilibrium position (see figure 5.5). The
position of the droplet was tracked by finding the centre of the osculating circle to the
interface of the droplet. Figure 5.6(a) shows that the distance to the equilibrium position
decreases exponentially, according to Eq. (3.150),

X(t)−Xe = [X(0)−Xe]e
−t/τ . (5.3)

In the absence of a contact line, the main drag force is assumed to stem from the
bulk hydrodynamic dissipation (see § 3.3.4). In other words, the dissipative contributions
from the corner flow and contact-line, as formulated in Eq. (3.141), do not appear. This
is equivalent to setting `m = `M and ζ0 = 0 in the drag coefficient of Eq. (3.141) when
evaluating the relaxation time in Eq. (3.144). This leads to the following scaling of the
relaxation time,

T (V, θe, β) =
V 1/3 cos θe csc2 β

(cos 3θe − 9 cos θe)4/3

[
1 +

2 cos2 θe(cos 2θe − 5)

(2θe − π − sin 2θe)2

]−1

. (5.4)

The experimental value for the relaxation time, τexp, can be measured via curve fitting
from the time series of the position, X = X(t). The experimental relaxation time is
compared with Eq. (5.4) in figure 5.6(b). As it can be observed, this model gives a good
scaling of the experimental data over the range of parameters considered. The details of
the motion of the droplet, in contact with the lubricating layer, affects the pre-factor in
the relaxation time, which the dynamic model of the liquid-barrel model in §3.3.5 does
not capture.
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Figure 5.5: Sequence of snapshots of a 4µL droplet relaxing to equilibrium.

5.2 Droplet Manipulation

The possibility of actuating the droplet by introducing a change in the on the geometry
of the set-up will now be considered. For simplicity, the actuation is restricted in such
a way to produce translation in a single dimension. The axis of translation, or principal
axis, designates the line that bisects the wedge and that is perpendicular to the apex.
Furthermore, changes in the geometry of the wedge produced by a combination of a
change in the wedge angle, β, and a rigid displacement of the planes (see figure 5.7) are
considered.

From the wedge angle, β(t) → β, has the effect of moving he and thus producing
vertical trajectories that aim at the moving equilibrium point. A rigid displacement of
the solid planes, d(t), has the effect of shifting the position of the apex relative to the
laboratory frame of reference, and modifies the instantaneous aspect ratio, h.

An example of droplet translation was carried out experimentally by manually con-
trolling the geometry of the wedge [95]. This is shown in figure 5.8(a). In the absence
of pinning, no threshold force is necessary to overcome, and the motion of the droplet
follows immediately. The position of the droplet with respect to the laboratory frame of
reference (lower plane in figure 5.8(a)) is tracked, see dashed curve in figure 5.8(b).

The motion of the droplet can be analysed in the Lagrangian formalism. Following
Eq. (3.108), the Lagrangian function is

L(X, t) = −FV (X, t), (5.5)

which now depends explicitly on time. The equation of motion, as discussed in § 3.3.1, is

νXẊ = −dFV
dX

, (5.6)

and reduces to
Ẋ = − 1

τ(t)
[X −Xe(t)], (5.7)
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Figure 5.6: Relaxation to equilibrium. (a) Data collapse of the position of the droplet
against time. (b) Comparision of the experimental relaxation time against the theoretical
prediction at Veff = V/2, `m = `M, and ζ0 = 0.
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Figure 5.7: The two ways of actuation of the geometry of the set-up that were used for
droplet translation: (a) a vertical displacement of the upper plane, and (b) a change in
the dihedral angle.

if the system is kept close to equilibrium (see § 3.3.5). However, the equilibrium position
and the relaxation time of the system now depend on time explicitly. The equilibrium
position becomes the driver of the droplet, i.e., a signal, and is given by

Xe(t) = − cos θe
sin β(t)

[
6V

π(cos 3θe − 9 cos θe)

]1/3

− d(t) cot 2β(t). (5.8)

The relaxation time, being the ratio between the drag and restitution coefficients becomes

τ(t) =
νX

k ◦ β(t)
, (5.9)

where νX can be express in terms of the volume of the liquid and contact angle, as in
Eq. (3.149), making it independent of t.

Eq. (5.7) is a linear first-order differential equation, and it can be solved by introducing
an integrating factor [122], i.e., multiplying Eq. (5.7) by

g(t) = exp

[∫ t

t0

dt′

τ(t′)

]
. (5.10)
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Figure 5.8: Actuation of a droplet by reconfiguration of the wedge geometry. (a) The
actuation signal, driven by the hand of the experimentalist, shifts the relative position
of the apex of the wedge (N). The new prescribed position (◦◦◦) if followed by the centre of
the droplet (×××). (b) Equilibrium position and droplet trajectory for the sequence shown
in (a). The droplet trajectory, here tracked by measuring the position of the centre of
the osculating circle (green) in the frame of reference of the laboratory, X, follows the
imposed signal with a lag determined by the friction force acting on the liquid.

Without loss of generality, it is assumed that the initial time is zero, t0 = 0, the solution
to Eq. (5.7) can be written as,

X(t) = [X(0)−Xe(0) ] e−
∫

dt/τ +Xe(t)−
1

g(t)

∫
Ẋe g(t) dt. (5.11)

The first term in the right hand side of Eq. (5.11) can be interpreted as the effect of the
initial conditions, which, in the long run, will fade out. The second term reveals that the
position of the droplet will follow the equilibrium value with a delay given by the velocity
of the signal, which is given by the third term. Note that for constant τ and Xe the more
familiar solution of Eq. (5.3) is recovered.

The change in the energy of the system is given by,

Ė =
∂FV
∂t
− νXẊ2, (5.12)

which is used to quantify the energy consumed during the actuation. The first term in the
right-hand side of the equation stands for the power needed to produce the translation of
the droplet; the second term is the dissipation term.

From the aforementioned experiments, the energy change as a function of time is
reconstructed and is shown in figure 5.9. It was observed that when actuation takes place,
there is a peak in the potential energy of the droplet. This occurs when the actuation
time-scale is much faster than the relaxation time; henceforth resulting in accumulation
of potential energy that will later on will be dissipated during motion. Moreover, if
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Figure 5.9: Evolution of the energy of the droplet upon manipulation within the SLIPS
wedge. The total energy (solid line) is composed of the conservative energy (dashed line)
which relaxes asymptotically to zero, and the dissipative energy (dot-dashed line) which
decreases most when the velocity of the droplet is highest.

the driving force acts slowly, the energy remains close to its ground state, therefore the
dissipation of energy can be arbitrarily small.

The overall change in energy is obtained by integrating Eq. (5.12) throughout the span
of actuation time, i.e., from the initial time, t = 0, until the end, t = T .

∆E =
[
FV (t)

]T
0
− νX

∫ T

0

Ẋ2 dt. (5.13)

The first term in the right hand side of Eq. (5.13) is the energy difference between the
initial and final configuration states.

Close to equilibrium, Eq. (3.146),

FV (X, t) = Fe +
1

2
k(t)[X −Xe(t)]

2 +O(X −Xe)
3, (5.14)

is valid. The ground state energy Fe depends only on the volume of the droplet and
its contact angle, quantities kept constant during actuation. Then, if the droplet is set
in equilibrium at both initial and final states of the actuation, the term in brackets of
Eq. (5.13) is equal to zero. This is true, regardless of the initial and final positions,
X(0) 6= X(T ), as long as these are equilibrium states. Consequently, the total change in
energy is burnt in viscous dissipation.

Using the Eq. (5.11) in Eq. (5.13), and assuming that the starting and final states are
in equilibrium, the total amount of energy dissipated is

∆E = −νX
∫ T

0

[
1

τg

∫
Ẋe g dt′

]2

dt. (5.15)

Eq. (5.15) shows the dissipation of energy in terms of the velocity of the driving signal,
Ẋe, and the delay given by the function g. If the velocity of the signal is small, the term
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inside the brackets of Eq. (5.15) is small, and therefore dissipation is almost negligible.
This can be observed in figure 5.8 at frames 2 and 4, which corresponds to the plateaus
in the conservative energy (dot-dashed curve of figure 5.9).

In contrast, when the equilibrium position of the droplet is drastically changed and
the droplet speeds up (see figure 5.8, frames 1 and 5), a large dissipation takes place (see
figure 5.9). Consequently, the total energy decreases by the release of the potential energy
and but also by dissipation, and thus, ∆E decreases from plateau to plateau.

5.3 Concluding remarks
In this chapter, experimental results of the statics and dynamics of droplets in wedges is
reported. Good agreement with the theoretical description was made possible by using
SLIPS surfaces as the bounding planes. This surfaces provide an ideal test bed for the
model since they allow mobility of sessile droplets at virtually no pinning.

Finally, the possibility of droplet manipulation is explored. Relying on the theoretical
framework constructed in previous chapters, the behaviour of a droplet, when actuating
on the geometry of its confinement, can be predicted and controlled. In this case, it can
be concluded that, since the initial and final states that a droplet acquire are energetically
identical, the energy dissipated during actuation can be arbitrarily reduced.
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Conclusions of Part I

In this part, the static and dynamics of partially wetting droplets in wedges is studied.
The analysis is based on the sharp-interface formalism and, the shape of a droplet is
proposed to simplify model, the liquid barrel. Then, lattice-Boltzmann simulations were
carried out. These revealed details in the behaviour of this system, and also to compare
the liquid barrel assumption. Finally, these concepts were applied with the purpose of
droplet manipulation by means of actuating on the geometry of the confinement.

During the relaxation of the liquid barrels towards equilibrium, the motion of the
liquid is driven by a distribution of the curvature of the interface which creates a pressure
gradient. The resulting flow field in the bulk of the droplet is laminar. Near the contact
lines, the flow field changes to the treadmill pattern described by Dussan and Davies [32].
The motion of the contact lines is driven by differences in the chemical potential caused
by the out-of-equilibrium interface curvature [39]. The viscous stress and the chemical-
potential imbalance make the dissipation density peak at the contact lines. This causes
the contact angle to deviate from its equilibrium value and thus produce a force that
opposes the motion.

The energy landscape experienced by the liquid barrel upon a translation from its
equilibrium position reveals the effect of geometry on the restitutive force. This force is
larger for a displacement towards the narrow portion of the wedge because of an increase
in confinement. The same effect explains the decrease in the force as a function of the
wetting angle; droplets with a higher contact angle tend to equilibrate further away from
the apex of the wedge. The increase of the force with the wedge angle can be attributed to
an increased rate of distortion of the shape of the droplet and the growth in the horizontal
projection of the force.

The simulations to the model in §3 were compared, assessing the expressions of the
relaxation time of the liquid barrel including the effect of the hydrodynamic dissipation
of the bulk flow and the corner flow near the contact line, and the dissipation arising from
the motion of the contact line itself. The scaling of the relaxation time is expressed in
terms of the diffuse-interface model parameters. The results confirm the presence of the
three contributions to the relaxation time.

The relative contribution of the contact-line and corner-flow dissipation (to the bulk
dissipation) is governed by the size of the interface. In the simulations, this length scale
is two orders of magnitude smaller than the size of the droplet, which contrasts with
millimetre-sized droplets of molecular liquids (such as water) where the interface thickness
is several orders of magnitude smaller than the typical macroscopic length scale of the flow.
Qualitatively, however, the scaling relation for the relaxation time is expected to hold,
and, thus, the results presented might help guide experiments to identify the contribution
of the different sources of dissipation in this system.

The presence of parasitic effects due to numerical gave rise to inaccuracies in the
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simulations. These manifest as the non-vanishing spurious currents that surround the
interface droplet and the small amplitude oscillations in the translation of the droplet
due to discretisation error of the solid boundary. The forces acting on the droplet in
the immediacy of equilibrium are arbitrarily small, and any perturbation, which may
stem from numerical errors, might interrupt its relaxation. Nonetheless, these numerical
errors did not affect significantly motion of the flow and allowed the droplet to reach the
expected equilibrium.

Further details in the behaviour of the droplet remain an open question. These include
a unified and consistent structure of the flow of the inner and the outer phase in connection
with the corner flow. The spurious currents had the effect of distorting the flow field that
surrounds the droplet, thus obscuring the effect that the side vortices, predicted by the
theory, have in the motion of the droplet. The discretisation error, or aliasing of the solid
boundaries had a considerable impact in the velocity of the droplet, and for that reason,
details on what affects the dynamic contact angle were not conclusive, and thus finer
details of the dissipation function. Experiments, in order to avoid contact line pinning,
made use of SLIPS surfaces, thus preventing measurements about the dynamics of a
contact line.

Pathways for droplet actuation at no potential energy cost were presented, which
can be accomplished at arbitrarily low energy dissipation. It is worth highlighting the
relevance of these ideas in the design of new microfluidic devices that require the actuation
of liquids. The example of droplet manipulation presented in this chapter might inspire
more experiments [94] to further understand the behaviour and shape of droplets in wedge
geometries. But also to further understand the behaviour of the system beyond the
assumptions that were considered, e.g., when a true contact line is present or when the
viscosity of the outer fluid is non negligible.



Part II

Evaporation of Droplets on Smooth
Wavy Surfaces
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Introduction to Part II

Although the evaporation of sessile droplets appears to be a simple diffusion problem,
a significant amount of research is invested to predict and control this phenomenon [75,
123]. Important applications of droplet evaporation are Microcontact Printing [124] and
Immersion Lithography [125, 126], which are highly effective techniques for microstructure
patterning on surfaces. The miniaturisation of these technologies is only possible due
to a highly controlled evaporation of specialised inks and solidification of resins that
are deposited on a smooth substrate. In Microcontact Printing, the shape that the ink
acquires during its evaporation has several consequences on the deposition of the material
that the ink carries [124]. At the same time, the topography of the surface may also affect
the morphology of the deposited ink [127]. In Immersion Lithography, water droplets,
which are difficult to avoid, may stay in contact with the substrate and cause watermarks
that damage the quality of the lithography [128]. Henceforth, controlling the location
and morphology of the droplets as they evaporate is of paramount importance to these
technologies.

Closely related to evaporation is condensation, as several features observed in evapo-
ration persist in condensation. There are considerable reasons to motivate research along
this line; for example, harvesting water out of humid air via dewing can provide a viable
solution to the water shortage problem in arid regions [129]. Another example is in de-
humidifiers, which use the same principle of condensation to reduce the concentration of
water in ambient air. In such devices, the humidity-collecting surface is topographically
patterned with grooves in order to increase the surface area for condensation, and thus
the efficiency of the device [130]. These mechanism has been widely inspired by surfaces
observed in nature, for example, the green frog in tropical Australia [131], the Stenocara
beetle[129, 132], and some plants[133]. Nonetheless, by introducing the grooves, other
effects affecting the behaviour of the condensing phase also take place [134]. Therefore,
understanding how droplets behave on grooved surfaces presents the possiblity to further
increase the efficiency of water-harvesters and de-humidifiers.

To date, four different “modes” of evaporation have been documented (see figure 5.10).
Picknett and Bexon first proposed a model based on two modes to explain the behaviour of
evaporating sessile droplets on solid surfaces [135]. These are, the constant contact angle
or slide mode and the constant area or stick mode. In the slide mode of evaporation,
the shape of the droplet remains constant as the droplet shrinks in size by the loss of
mass. This requires that the contact lines are free to move, and therefore, the surface to
be smooth and homogeneous [18]. In contrast, in the stick mode of evaporation, for the
contact to remain constant, it is necessary that the contact lines maintain their position,
thus the droplet becomes thinner and thinner with time [136]. This is commonly observed,
for example, in the coffee rings, where, due to eddy flows, small coffee particles deposit
at the contact lines leaving a ring-shaped stain [137].
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Figure 5.10: Four modes of evaporation of sessile droplets. Higher opacity in the liquid-gas
interface of the droplets indicate later stages in the evaporation process.
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Figure 5.11: Snapshots of two water droplets evaporating. (a) An 8µL water droplet on
a flat LIR surface undergoing the slide mode of evaporation. (b) An 80µL sessile droplet
on a sinusoidal LIR surface with wavelength, λ = 2mm, and amplitude ε = 200µm
undergoing snap evaporation.

It is also possible that the droplet undergoes a combination of constant area and con-
stant angle modes, i.e., a stick-slide mode. This occurs when a droplet begins evaporating
under the constant area mode until the contact angle reaches a critical value, θ∗ in fig-
ure 5.10. After this point, the mode changes into a slip mode of evaporation, thus, the
footprint radius of the droplet decreases but the contact angle stays fixed [138].

A fourth mode of evaporation has been reported, the stick-jump mode [139]. This
occurs when a sessile droplet on a flat non-homogeneous surface undergoes a pinning and
jumping mechanism in which the droplet keeps a constant area until a critical angle is
reached, then it jumps acquiring a new radius and the contact angle is restored. The
jumps occurs at discrete intervals of time until the droplet evaporates completely [140].

The focus of the next chapters is directed to the case of a droplet in contact with a
surface which has a smooth sinusoidal topography. The droplet would be able to slide off
if the surface was flat, nevertheless, due to the topography, it sits in a discrete set of loca-
tions. An experimental demonstration2 of this effect is shown in figure 5.11. The surfaces
used for the experiments are Liquid-Infused Rough (LIR) surfaces . Similar to the SLIPS
(see §5.1), LIR surfaces consist of a 3D-printed surface coated with a superhydrophobic
solution, and infused with a thin layer of oil.

When a droplet is in contact with a flat LIR surface, it undergoes a slide mode of
evaporation, where the droplet keeps a constant contact angle for the most part of the
evaporation process. That is, until the end, when the size of the droplet is comparable to

2I thank Gary G. Wells for providing the experimental images and plots.
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Figure 5.12: Time evolution of a droplet evaporating on a wavy LIR surface. (a) Plot of the
radius as a function of time. The numbers correspond to the snapshots of figure 5.11(b).
(b) Plot of the apparent contact angle as a function of time.

the height of the oil meniscus, thus affecting the shape of the droplet.
When the droplet sits on the wavy LIR surface, depending on its volume, it centres

itself either at a peak or a trough of the topography (see figure 5.11(b)). During the
most part of the evaporation process, the droplet smoothly changes its contact area and
the apparent contact angle (see figure 5.12). However, there are times in which the
droplet undergoes abrupt changes in its configuration: contracting its footprint radius
and alternating from peak to trough or vice versa. This is a different mode of evaporation
from any of the aforementioned, since both the footprint radius and contact angle are
changing smoothly for most of the time, and discontinuously at moments. This new
mode will be referred as snap evaporation.

In this part, the causes of snap evaporation are studied. The approach taken in §6, is
to replicate the snap evaporation of droplets under lattice-Boltzmann simulations. Then,
in §7, an analytical model based on the sharp-interface formalism is constructed. Finally,
the conclusions of this part are presented.
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Chapter 6

Lattice-Boltzmann Simulations

To better understand the mechanism of snap evaporation, numerical simulations of the
coupled hydrodynamic and diffusion equations were carried out using the lattice-Boltzmann
algorithm presented in §2. The aim will be to look into more detail at the conditions and
the mechanism of the snap transition.

As detailed in §1, the governing equation for the evaporation of droplets is the Cahn-
Hilliard equation (Eq. (1.26)),

(∂t + u · ∇)φ = M∇2µ, (6.1)

which models diffusive process driven by gradients in the chemical potential, µ. The latter
is defined by a phase field, φ, according to Eq. (1.12) as,

µ = Bφ(φ2 − 1)−K∇2φ, (6.2)

where the parameters K and B can be adjusted by Eqs. (1.20) and (1.16) to give value to
the surface tension and the interface thickness. Although we expect a quasi-static process,
the velocity field, u, which produces advective currents, cannot be neglected at this point.
The velocity field is governed by the Navier-Stokes equation (Eq. (1.27)),

ρ (∂t + u · ∇)u = −∇ · P + η∇2u+ ρg. (6.3)

where the pressure tensor, P, is also defined by the phase field according to Eq. (2.20),

P =

[
1

4
B(φ2 − 1)(3φ2 + 1)−Kφ∇2φ− 1

2
K|∇φ|2

]
I +K∇φ∇φ, (6.4)

and g is included to model the gravitational acceleration.
The wettability of the sinusoidal surface is tuned by introducing the boundary condi-

tion of Eq. (1.23),
Kn̂ · ∇φ = χ, (6.5)

where, the wetting potential, χ, is specified by the equilibrium contact angle, θe, according
to Eq. (1.25).

Following §2, the coupled Cahn-Hilliard and Navier-Stokes equations are integrated
by a lattice-Boltzmann algorithm.
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Figure 6.1: Schematics of the 2D (a) and 3D (b) simulation set-up. At the bottom, the
curved line (surface) represents the solid surface. At the top, a horizontal line (plane)
representing the evaporation boundary condition where the value of the chemical potential
is prescribed to µb.

6.1 Simulation Set-Up

For an evaporating sessile droplet on a topographically patterned surface, a simulation set-
up similar to the one described in §2.3.6 is used; these are, 2D and 3D lattice-Boltzmann
simulations of a binary fluid. The geometry of the lattice is a D2Q9 or a D3Q15 grid
for the 2D and 3D simulations, respectively. The domain of the simulation is contained
in a box of dimensions Nx × Ny(×Nz). The sides of the simulation box have a periodic
topology. At the bottom, the domain is bounded by the surface defined by the topography
of the solid, whose local height is

h(x) = |α| − α cos [2π(x−Nx/2)/λ] + 0.5. (6.6)

An upper horizontal plane is fixed at the top of the simulation box, in which boundary
conditions to promote evaporation are prescribed (see figure 6.1). Following §2.3.6, along
the upper bounding surface the chemical potential is fixed to a constant value, µb.

Small inhomogeneities are introduced to the wettability solid surface in order to break
the symmetry of the set-up. In the diffuse interface model, the surface energy of the solid,
χ, is prescribed as a boundary condition [25]. In the lattice-Boltzmann simulations (see
§2.2), the value of χ, can be specified in terms of the contact angle, θ′, i.e.,

χ(θ′) =
3

2
γ sgn(π/2− θ′)

√
a(θ′) [1− a(θ′)], (6.7)

where a(θ′) = cos[arccos(sin2 θ′)/3], and sgn(x) gives the sign of x [26]. Therefore, it
is possible to introduce inhomogeneities to the solid surface by randomly prescribing θ′
at every boundary node. For this, a random number generator of normal distribution is
used, whose mean and variance are θe and ∆θ, respectively. Small values of ∆θ are chosen
so that the deviation of the contact angle from θe is negligible, however, enough to create
small perturbations that break the symmetry of the set-up.

Additionally, to replicate the effect of the gravitational acceleration observed in the
experiments, a body force of the form was added,

g(x) =
φ(x) + 1

2
g0 êz. (6.8)
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Table 6.1: List of parameters for the 2D and 3D simulations.

Common simulation paramters
Parameter Value Parameter Value Parameter Value
γ 0.001 ` 2.12 µb −1× 10−5

θe 105◦ ρ 1 λ Nx/6
∆θ 0—1◦ η 1/6 α ±0.1λ

2D
Parameter Value
Nx 240
Ny 120

M 8
g 0

3D
Parameter Value
Nx 120
Ny 120
Nz 60
M 1
g −2× 10−6

The value of constant g0 = −2.0× 10−6 is chosen to match the Bond number (Bo ≈ 1.8)
of an 80µL water droplet (∼ 3 mm in radius).

As an initial condition, the fluid is at rest, and the shape of the droplet is spherical
with centre at X0 and radius, R0 = 3λ/2. In terms of the velocity field, u, and order
parameter, φ, the initial condition reads

u(x, t = 0) = 0, (6.9)

φ(x, t = 0) = tanh

[
R0 − |x−X0|√

2`

]
. (6.10)

X0 is placed at the geometric centre of the surface h(x), i.e.,

X0 = 0.5Nxêx + (|α|+ 0.5)êy, (6.11)

for 2D simulations, and

X0 = 0.5Nxêx + 0.5Nyêy + (|α|+ 0.5)êz, (6.12)

for the 3D simulations, respectively. This generally renders the initial configuration of
the droplet out of equilibrium, however, after a short transient, which was discarded, the
droplet finds the stable equilibrium configuration.

The values of the simulation parameters used are summarised in table 6.1. Under
these conditions, the typical time for the droplet to evaporate completely was found to
be ∼ 107 iterations for 2D simulations, and ∼ 105 for 3D.

In order to characterise the behaviour of a 2D evaporating droplet on the wavy to-
pography, as formulated in §7, the footprint radius, cross-sectional area, and interfacial
energy were measured. To calculate these quantities, first, it is necessary to find the in-
terface of the droplet, this is the set of points, I, that belong to the contour curve, φ = 0,
of the order parameter, i.e.,

I =
{
xi = (xi, yi) |φ(xi) = 0

}n
i=1
, (6.13)

where x1 and xn are the two contact points, n is the number of interface points on the
set, and φ(x) is a linear interpolation of the order parameter field. The footprint radius
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is obtained from the distance between the two contact points, i.e.,

r =
|x1 − xn|

2
. (6.14)

The position of the droplet can be measured by averaging the position of the two contact
points,

X =
xn + x1

2
. (6.15)

The cross-sectional area can be calculated using the shoelace algorithm [141], 1 Following
Eq. (1.8), the interfacial energy in two-dimensions was calculated by approximating the
arc length of the fluid-fluid circular section and the arc length of the fluid-solid surface,
i.e.,

F = γ
n∑
i=1

{
|xi+1 − xi| − cos θe

√
[xi+1 − xi]2 + [h(xi+1)− h(xi)]2

}
, (6.17)

where it is understood that the set I is sorted, that is, the interface points make a
progressive sequence from x1 to xn, according to the rule

(xi+1 − xi) · (xi − xi−1) > 0, for i = 2, ..., n− 1. (6.18)

For accuracy, the search for interface points is done until the distance between adjacent
points is less than two lattice spacings, i.e.,

|xi+1 − xi| < 2, for i = 1, ..., n− 1. (6.19)

6.2 Simulation Results
In order to assert agreement with the experimental results, full 3D simulations with the
effect of gravity and inhomogeneities in the energy of the solid surface were carried out. In
figure 6.2, the snapshots of the experiments and simulations at the moments previous and
after the snap events are presented. In both cases, the evaporation sequence is normalised
by the total evaporation time. As it can be observed, qualitatively, the morphology and
position of the droplet is in good agreement with the experimental observations.

In an ideal situation, since the equilibrium state of the droplet appears to be symmet-
ric, the droplet should not break the symmetry during the snap events. This, however, has
not been observed in the experiments, and implies that the alternation in the position of
the droplet, which renders an effective translation to the nearby sites, can only be possible
if the symmetry is broken. Therefore, two situations of snap evaporation were examined:
one in which all symmetries are preserved, and one in which noise on the surface energy
of the solid is introduced as the only source of asymmetry.

To further simplify the system, 2D simulations where the effect of gravity has been
removed were performed. Since symmetry in the transverse direction to the grooves is
discrete it is expect that the snap events will persist in a two-dimensional system.

1The shoelace algorithm consists of adding the areas of the triangles cast by the corners of a polygon,
in summary,

A =
1

2

n∑
i=0

{
det

∣∣∣∣xi xi+1

yi yi+1

∣∣∣∣+ det

∣∣∣∣ xi xi+1

h(xi) h(xi+1)

∣∣∣∣} , (6.16)

where the point x0 is identified with xn.
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2 mm

Figure 6.2: 3D simulation of a droplet undergoing a sequence of snaps during its evapo-
ration. To the left of each frame, the experimental snapshot is presented for comparision.

6.2.1 2D Simulations Preserving Symmetry

Initially, the droplet begins evaporating in a symmetric configuration and centering itself
either at a peak or at a valley of the surface pattern (see figure 6.3(a)). Then, as the mass
of the droplet begins to decrease, the footprint radius slowly decreases, until reaching a
point in which the footprint radius drops down at a faster pace. During this short period,
it can be observed that the droplet builds pressure gradients in its core and, therefore, it
is no longer in mechanical equilibrium (see figure 6.3(b)). At this time, a reconfiguration
process of the droplet leads to a new equilibrium. Since the centre of the droplet stays at
either a trough or a peak, it can be concluded that a symmetric snap has occurred.

Looking in more detail at the time interval where the symmetric snap takes place 6.3(c),
it can be observed that, as the contact points get past the critical footprint radius, the
contact points begin to move towards the centre of the droplet. This increases the pres-
sure at both sides of the droplet which in turn creates a gradient forces the fluid to move
to the centre of the droplet. Moreover, two side vortices on top of the interface appear,
elevating the central part of the droplet and reducing its width. The snap event termi-
nates when the flows die out and the droplet sits still on top of a trough, with its contact
points resting near the peaks of the topography.
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Figure 6.3: Evolution of a 2D sessile droplet on a homogeneous surface. (a) Plot of the
time evolution of the footprint radius. The symbols correspond to droplets centred in a
valley (◦) or in a peak (+) of the periodic topography. (b) Sequence of snapshots during
a symmetric snap of a droplet centred in valley. The velocity of the fluids is shown as a
vector field. The colour maps represent the pressure inside the droplet, in a green (low)
to red (high) gradient, and the chemical potential of the surrounding region, with a white
(low) to blue (high) gradient.

6.2.2 2D Simulations with Noisy Surfaces

Now, the effect of the static noise in the evolution of the droplet will be examined. At
the beginning of the simulation, the droplet is centred either at a peak or a trough (see
figure 6.4(a)). As the droplet evaporates, it slowly begins to decrease its footprint radius
keeping its shape unaltered by the inhomogeneities in the surface of the solid. This
implies that the fluctuations in the equilibrium contact angle do not produce a significant
change in the equilibrium state of the droplet. Consequently, the fluctuations produce
perturbations to the state of the droplet, however, these equilibrium states are stable.

As the droplet evaporates, the footprint radius shows an evolution similar to the
symmetric system, until the footprint radius reaches a point where a snap takes place. At
the onset of the snap, however, the noise in the energy of the solid surface has a strong
effect on the course of the relaxation to the new equilibrium configuration. The droplet
snaps asymmetrically, reducing its footprint radius and shifting its centre to a side, this
will be referred as an asymmetric snap (see figure 6.4(b)).

The sequence of snapshots of figure 6.4(b) that show the snap transition reveal details
of the asymmetric snap. It can be observed that the contact point on the right is the
first to move; this can also be recognised by the local increase in pressure (colour map).
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Figure 6.4: Evolution of a droplet sitting on a non-homogeneous wavy surface. (a) Time
evolution of the footprint radius of the droplet. The symbols correspond to droplets
initially centred at a valley (◦) or at a peak (+) of the solid surface. (b) A sequence
of snapshots during the asymmetric snap of a droplet previously centred in valley. The
vector and colour maps have the same meaning as in figure 6.3.

Due to the motion of the right contact line, the pressure on the left side of the droplet
decreases, and thus the left contact point moves away from the centre. In contrast to the
symmetric snap, a single vortex appears at the right side, the fluid inside the droplet is
propelled to the left resulting in a net translation leaving the droplet centred at a peak.

Comparing figures 6.3(b) and 6.4(b), it can be observed that the course of asymmetric
the snaps is determined at an early stage. This is also observed in the experiments, since
no symmetric snap has been observed.

6.3 Concluding remarks
Lattice-Boltzmann simulations of snapping droplets were successfully carried out. It was
shown that the 3D simulations, with the effect of gravity, correctly match the sequence of
states of an evaporating droplet on a wavy surface observed in the experiments. Further-
more, 2D simulations were carried out, these reveal that the phenomenon can be studied
in two dimensions since the snaps transitions, and the rest of the evaporation process is
well preserved. From the simulations, it was observed that the droplet undergoes two
distinct snap transitions: the symmetric, in which the droplet remains in position, and
asymmetric, in which the droplet switches to a nearby position.
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Chapter 7

Analytical Model

7.1 Sharp-Interface Formulation

To further understand the causes for the snap events, a two-dimensional, sharp-interface
model that captures the main features of the system will be constructed.

In the aforementioned experiments, it can be seen that for an 80µL water droplet, at
room temperature, and relative humidity of ∼ 20%, the time-lapse of evaporation is about
5 hours. On the other hand, any perturbation to the equilibrium state of the droplet will
fade out due to viscous dissipation; presumably, after a few seconds [27, 96] for a water
droplet of the same volume and in the same conditions. The high contrast between the
evaporation and mechanical relaxation time-scales ensures that, during evaporation, the
system is in mechanical equilibrium and the process can be considered quasi-static. This
is a reasonable approximation except for the few instants in which the snaps occur, which
will be considered instantaneous. This also implies that the cross-sectional area of the
droplet, equivalent to the droplet volume, can regarded as the control parameter, instead
of analysing the time evolution of the system explicitly.

For mechanical equilibrium to be possible, the pressure inside the fluid must be uni-
form, thus, according to the Young-Laplace law [3], the mean curvature of the inter-
face must be constant for a quasi-static droplet configuration. Consequently, for a two-
dimensional droplet, the shape of the interface must be circular. Additionally, assuming
that the surface is ideal—free from pinning of the contact lines—implies that the inter-
section angle of the liquid-gas with the solid surface is equal to the equilibrium contact
angle, θe, defined by the Young-Dupré relation (see figure 7.1).

On this basis, the problem is reduced to finding the set of circular arc shaped droplets
of a prescribed cross-section area, A, and intersection angle θe.

Let the topography of the solid be parametrised as

h(x) = −α cos
2πx

λ
, (7.1)

where α is the amplitude, and λ is the wavelength. Note that Eq. (7.1) is an even function,
and advantage of this symmetry is taken by placing the centre of the droplet in the y axis.
This implies that, α > 0 represents a droplet sitting on top of a trough, whereas α < 0
corresponds to a droplet sitting on a peak.

The liquid-gas interface is described by a circle of radius R, and centre at a point
(0, y0). The intersection of the liquid-gas interface and the solid surface occurs at the

113
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Figure 7.1: Schematics of a 2-D sessile droplet on a sinusoidal surface.

contact point which is at a distance r from the axis of symmetry, thus, defining the
footprint radius (see figure 7.1).

Let ζ = ζ(x), be the straight line that joins the centre of the droplet with the contact
point. The angle opening from the y axis to the line ζ will be denoted as Φ. Then, the
cross-sectional area of the droplet is obtained by adding the area of the of the truncated
circle, delimited by Φ, and the area bounded by the curves ζ(x) and h(x), i.e.,

A(r) = ΦR2 + 2

∫ r

0

[ζ(x)− h(x)] dx. (7.2)

Therefore, to evaluate the cross-sectional area, it is necessary to determine the opening
angle, the radius of the droplet and the slope of the line ζ in terms of the footprint radius.
The opening angle reads

Φ(r) = θe − arctanh′(r). (7.3)

Then, the radial line ζ can be expressed as,

ζ(x) = h(r) + (x− r) cot Φ(r), (7.4)

where the slope, expressed in terms of θe and r, is

cot Φ(r) =
1 + h′(r) tan θe
tan θe − h′(r)

. (7.5)

The relation between the radius of the droplet and contact point follows by noting that
r = R sin Φ, and using Eq. (7.3), which leads to

R =
r
√

1 + h′(r)2

sin θe − h′(r) cos θe
. (7.6)

The apparent contact angle, as measured in the experiments (see figure 5.11), is

θa = Φ. (7.7)
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(a) (b) (c)

Figure 7.2: Cusp bifurcation in the relation of the radius of the droplet, r, and the cross-
sectional area, A: (a) at low amplitude of the pattern (α = 0.013λ), (b) at the bifurcation
point (α ≈ 0.033λ), (c) and at high amplitude (α = 0.073λ). The contact angle is
θe = 110◦.

7.2 Equilibrium States

Having established the geometry of the system, the corresponding equilibrium state for a
given cross-sectional area can now be determined. By virtue of Eqs. (7.1), and (7.3)–(7.6)
Eq. (7.2) can be evaluated and thus give

A(r) = Φ(r)R2 − 2rα cos
2πx

λ
− r2 cot Φ(r) +

αλ

π
sin

2πr

λ
. (7.8)

In figure 7.2, r vs A is plotted for different values of the undulation amplitude of the
solid, α. At small amplitude, the base radius grows monotonically with A in the range
shown in figure 7.2(a). Consequently, as the droplet evaporates and A decreases, the radius
can follow the decrement smoothly. In contrast, at large amplitude (see figure 7.2(c)),
the footprint radius is not always unique for a given droplet area, i.e., the system is
multistable [142].

In the context of dynamical systems, the emergence (or disappearance) of equilibria as
a control parameter varies, is called a bifurcation. In this case, it is a cusp type bifurcation,
which corresponds to the onset of multiple equilibrium states [142], and is triggered by
the bifurcation parameter, α/λ, as can be seen from figure 7.2. Later, it will be clarified
that the cusp bifurcation is not the mechanism that produces the snap events, however,
it is a necessary condition.

The bifurcations are found to be characterised by the loss of monotonicity in the
A(r) curve. This implies that, when multiple equilibrium states emerge, A develops an
inflection point, thus satisfying

∂2
rA = 0. (7.9)

Moreover, a minimum and a maximum appears at the sides of the inflection point. As
the bifurcation parameter is decreased, the two extrema approach each other until they
merge. This implies that,

∂rA = 0, (7.10)

is passed on to the bifurcation point [143]. In other words, Eqs. (7.9) and (7.10) yield
the necessary conditions for the bifurcation, and algebraically determine the value of the
bifurcation parameters, α∗ and r∗.
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(a) (b) (c)

Figure 7.3: Plot of the energy vs cross-sectional area of the droplet parametrised by the
footprint radius for pattern amplitude (a) below the bifurcation (α = 0.013λ), (b) at the
bifurcation point (α ≈ 0.033λ), and (c) above the bifurcation (α = 0.073λ) for a contact
angle, θe = 110◦. The bifurcation point is indicated by the cross mark in (b), and area
of the multistable equilibria from figure 7.2(c) is presented by the vertical dashed line in
(c).

7.3 Stability of Equilibria
To analyse the stability of the system, the energy of the equilibrium droplet configurations
will be calculated. The interfacial energy is calculated from the two arc lengths of the
liquid-gas and the solid-liquid interface,

F (r) = 2γΦR− 2γ cos θe

∫ r

0

√
1 + h′(x)2 dx, (7.11)

which, by virtue of Eqs. (7.1), and (7.3)–(7.6), can be evaluated, i.e.,

F (r) = 2γΦR− 2γλ cos θe
2π

E

(
2πr

λ
, i

2πα

λ

)
, (7.12)

where E is the incomplete elliptic integral of the second kind, and i =
√
−1.

In figure 7.3, F vs A is plotted, parametrised by r, for different values of the amplitude
of the pattern. It can be observed that, when the amplitude is below the bifurcation value
(figure 7.3(a)), the scaling of the energy is approximately the square-root of the cross-
sectional area. For this value of the amplitude, the grooves have a weak effect on the
shape of the droplet, therefore, the area roughly grows as the square radius, and the
energy linearly, therefore F ∼ A1/2. At the bifurcation (see figure 7.3), the derivative

dF

dA
=
∂rF

∂rA
, (7.13)

presents a discontinuity (see Eq. (7.10)). Further increasing the amplitude produces a
bow-like structure in the energy curve (figure 7.3(c) and close-up of the bow structure in
figure 7.4).

Figure 7.4 shows a closer look to the behaviour of the system at large amplitudes,
where the loop in the energy curve appears. In this plot, the equilibrium curves of both
valley-centred and peak-centred droplets are included. Consider an evaporating droplet
on a surface of amplitude α > α∗, and consider that the area of the droplet is well above
the inflection point as in state (1) of figure 7.4. As the droplet evaporates, the system
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Figure 7.4: Trajectory of an evaporating droplet in the energy space. Initially, a large
droplet starts at state (1) and moves along the solid blue line until it reaches state (2).
After (2), the system is driven to a new configuration state with lower energy, which could
be either (3a) or (3b). The dashed line represents the states with higher energy in the
metastable region.

stays in equilibrium and the trajectory follows the solid line until reaching state (2). This
is a critical point, since ∂rA = 0. A further (infinitesimal) loss in the area brings the
droplet out of equilibrium. At that moment, the trajectory goes downwards, decreasing
its energy, to either state (3a) or (3b) in an “instantaneous” transition, i.e., the snap.

If the symmetry of the system is preserved, the centre of droplet remains in place and
the transition to the new equilibrium state (e.g., (3a)) is a symmetric snap. However, if
the symmetry of the system is broken, e.g., by fluctuations or by inhomogeneities in the
solid surface, the transition results in an asymmetric snap (e.g. (3b)). In this case, the
droplet moves sideways, switching its centre from a valley to a peak, as exemplified in the
figure, or vice versa depending on the former configuration.

As shown in figure 7.4 by the dashed segment, the region joining the two extrema
of the multistable region has a higher energy. States with higher energy are disfavoured
compared to those with lower energy, and therefore, it is expected that the stability of
these states is lower.

7.4 Comparison with the Simulations

Looking at the simulation results for the 2D droplet, the trajectory that the system draws
in the r–A and F–A space can be observed. More details of the snap transitions can be
found With the aid of the simulations.

In figure 7.5(a, b), the footprint radius as a function of the cross-sectional area, A,
can be observed during the evaporation of the droplet. At the beginning of the simula-
tions, both valley- and peak-centred droplets, have a high value in A, and follow their
equilibrium branch until they reach their critical points. At that point, the droplet loses
its equilibrium state and is forced to jump to a new equilibrium state. Since the symme-
try is preserved throughout the simulations, the droplets maintain their positions, thus
resuming the evaporation process in the same equilibrium branch.
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Figure 7.5(c, d) shows the effect that noise to the energy of the solid surface produces.
In the beginning of the trajectory, no difference from a symmetric system is evident, until
the critical point is reached whence the snap transitions reveal the asymmetry. During the
course of the snap, the base radius is reduced, however, to the other equilibrium branch,
which corresponds to a peak if the droplet was initially centred in a valley.

7.5 Bifurcations Induced by the Cross-Sectional Area

The 2D simulations presented in §6.2.2, indicate that the droplet configuration sequence
is determined at the early stages of the snap transition. Therefore, fluctuations in the
contact angle reveal that the symmetric transition is unlikely due to an instability that
precedes slightly before the symmetric snap. This is further confirmed in figure 7.6(a),
note that the trajectory of a sessile droplet on noisy surface does not quite reach the
critical point and begins to depart from the equilibrium branch in a symmetric snap.
This is evidence that the stable equilibrium branch now has lost stability at some value
of A before the critical value, repelling the trajectory from the current branch, and now
being attracted by the side branches (see figure 7.6). Due to the topology of the of the
solutions of a continuous dynamical system, this requires that two unstable equilibrium
points at the sides of this branch merge with it and breaking its stability [144]. In the
language of the dynamical systems, this is called a subcritical pitchfork bifurcation [142].

On the other hand, if the symmetry is not broken, lateral motion is forbidden, and
the trajectory goes past the pitchfork bifurcation. This implies that, the equilibrium
branch does not show any instability if symmetry is preserved. Consequently, the section
of the equilibrium branch from the pitchfork bifurcation to the critical point is stable to
variations of the footprint radius, but unstable to lateral perturbations, i.e., a saddle [143].

As the evaporation of a droplet on a homogeneous surface continues and A reaches
the critical point, the local equilibrium configurations suddenly disappear. This is due to
a fold bifurcation [142], and consists of a collision of a saddle point and an unstable point.
It occurs at the critical value, where the curve A(r) reaches a minimum or a maximum.
In this case, the unstable point belongs to the high energy section of the branch as shown
in figure 7.4.

7.6 Concluding remarks

In this chapter, a two-dimensional sharp-interface model has been constructed to elucidate
the origin of the snap transitions that droplets undergo when placed on wavy surfaces.
First, it was found that the number equilibrium states that the droplet can acquire depend
on the amplitude of the topography: at low values of the amplitude, the relation is unique,
however at higher values, multiple configurations for a given volume can be found. The
latter gives the requirement for the snap transitions, that is to say, if the amplitude of
the topography is small enough, the evaporation of the droplet will follow a quasi-static
evolution.

It was found that the transition between these two behaviours is due to a cusp bi-
furcation. The cusp bifurcation is accompanied by a fork bifurcation, which is transited
as the mass of the droplet is reduced by evaporation. The fold bifurcation gives rise to
symmetric snaps. Moreover, with the aid of the lattice-Boltzmann simulations, a third
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bifurcation was found, a pitchfork bifurcation, which precedes the fold bifurcation and
corresponds to the asymmetric snaps.
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(a) (b)

(c) (d)

Figure 7.5: Evolution of a 2D system. (a, c) Plot of the footprint radius against the
cross-sectional area and (b, c) plot of the interfacial energy as function of the area. In
(a) and (b) the system preserves it symmetry, whereas in (c) and (d) noise in the surface
energy of the solid is introduced to give rise to asymmetric snaps. The blue and red
curves correspond to the equilibrium branches of a valley-centred droplet (α = 0.1) and
a peak-centred droplet (α = −0.1), respectively. The symbols have the same meaning as
in figures 6.3 and 6.4.
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Figure 7.6: Bifurcations in the evolution of snap evaporation. (a) Simulation trajectories
projected as shown in the A–X–r space. Symmetric trajectories stay with a constant
position, X, unlike noisy trajectories that switch from branch to branch. (b) Caricature
of the bifurcation diagram of the position of the droplet with respect to the bifurcation
parameter, A. The stable equilibria of the branches is depicted by a solid line, the saddle
points are represented by a dashed line.
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Conclusions of Part II

The evaporation of sessile droplets on a sinusoidal patterned surface was studied using
lattice-Boltzmann simulations and an analytical model based on a sharp-interface formal-
ism. During the course of its evaporation, the base radius and contact angle of the droplet
smoothly changes except for the few sudden events dubbed snaps. The snap events oc-
cur when the amplitude of the surface undulation is big enough, and are caused by a
bifurcation in the stability of the equilibrium configuration.

Two types of snaps transitions; corresponding to symmetric and asymmetric snaps
were identified. The symmetric snap, only observed in the simulations, occurs when
the system is symmetric upon reflections about the centre of the droplet. It can be
described as a quick contraction of the contact lines leaving the position of the droplet
unaltered. This transition is the consequence of a fold bifurcation which annihilates
the local equilibrium state. The asymmetric snap, in contrast, is the one observed in
the experiments, and consists of a lateral displacement of the droplet together with the
contraction of its footprint radius. It is caused by a pitchfork bifurcation that precedes
the fold bifurcation in the course of the evaporation, and because of this, the symmetric
snaps are not observed in experimental situations.

The pitchfork and fold bifurcations are triggered by the cross-sectional area of the
droplet, A/λ2, which is the relevant control variable of the two-dimensional system since
it is proportional to the current mass of the droplet as it evaporates. Nonetheless, due
to the relation between the footprint radius and the cross-sectional area, the first can be
used as a bifurcation parameter as well.

A third type of bifurcation was found, a cusp bifurcation, which is triggered by the
amplitude of the surface undulations, α/λ. This bifurcation, creates multistability in the
equilibrium curves, and thus the emergence of the fold bifurcations. Due to the relation
of the footprint radius, r, with the cross-sectional area, A of the droplet, r can also be
used as the bifurcation parameter. The bifurcation diagram, r–α, can be used to visualise
the stable and unstable branches for droplet of a given footprint radius (see figure 7.7).
It can be observed that for |α| above any cusp bifurcation, a curve separating the stable
and unstable region is born. This corresponds to the set of fold bifurcations that give
rise to the symmetric snaps. The bifurcation diagram shows how the sinusoidal pattern
determines the valid solutions for the base radius of the droplet. [145, 146].

A two-dimensional system has revealed the richness and details of the snap evapora-
tion in the experimental set-up. Figure 7.8 shows a comparision of the analytical model
with the experimental data. The evolution of the footprint radius in the experiments
shows that the snap occurs before the fold bifurcation, further contrasting the presence of
the pitchfork bifurcation. However, the apparent contact angle presents higher discrep-
ancies from the analytical model. This may be due to a change in the height of the oil
meniscus in relation to the size of the droplet that occurs in the LIR surfaces used in the
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Figure 7.7: Bifurcation diagram r–α. Fold bifurcations shown as coloured solid lines,
and correspond to the critical points that lead to symmetric snaps. The shaded (or
white) areas represent the location of stable (or unstable) equilibria. The coloured regions
correspond to the equilibrium branch of a valley-centred (blue), peak-centred (red). The
cusp bifurcations are shown as black dots. The contact angle is set to θe = 120◦ to produce
this plot.

experiments [147, 119].
The 3D simulations with the effect of gravity did not present any qualitatively differ-

ence in the behaviour with respect to the 2D simulations. This is expected since weak
gravitational field only distort the shape of the droplet, however, maintaining the contact
angles unaltered. Because of this, the contact area of the droplet can be matched by a
droplet of a different volume unaffected by gravity, at least in the cross section. Therefore,
the present model may still be valid. Although, the relation of the footprint radius and
the cross-sectional area of a droplet may be distorted by gravity, it is not expected any
qualitative difference to arise.

The time evolution of the cross-sectional area of a droplet that undergoes snap evap-
oration is monotonic, and continuous (see figure 7.9(a)). Since the evaporation rate of
the droplet depends on the exposed surface area [135], the evolution of A is smooth most
of the time, except at the snap transitions, where the curves present a sudden change in
slope as the droplet is subject to a quick reduction of its interface area.

Moreover, it can be observed that the droplet that undergoes a series of asymmetric
snaps evaporates at a lower pace compared to the other two symmetric cases. This is
expected, since after an asymmetric snap, a lateral leap of the droplet allows it to sit in
a configuration with a larger base radius and thus, less exposed surface area. Therefore,
droplet that undergo asymmetric snaps take a longer time to evaporate.

Considering that the fluctuations that affect the droplet are unpredictable, it can
assume that, because of the asymmetric snaps, the droplet jumps with equal probability
to any of its neighbouring sides. This implies that the trajectory of the position of the
droplet is not unique, thus the initial conditions cannot be traced back, nor the future
evolution is fully determined. Therefore, the evolution of the position of the droplet is a
stochastic process, discrete both in time and space.
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Figure 7.8: Time evolution of (a) the base radius, r, and (b) the apparent contact angle,
θa, measured in the experiments compared to the analytical model. To produce these
plots, it has been assumed that, in 3D, the cross-sectional area decreases at a constant
rate. The constant of proportionality is adjusted by matching the initial configuration
with the moment when the droplet has evaporated.

Figure 7.9: Time evolution of (a) the cross-sectional area of 2D droplets undergoing snap
evaporation. The black line corresponds to a droplet undergoing asymmetric snaps, the
blue and red curves represents a valley-centred and a peak-centred droplet, respectively.
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General Conclusions

In this work, the statics and dynamics of capillary surfaces in contact with solid boundaries
using analytical and numerical models have been studied. For this, a lattice-Boltzmann
method (LBM) that models open boundaries which allow mass transfer by means of
diffusive or advective currents was developed. An algorithm to model the dynamic wetting
of the fluids on smooth solid boundaries of an arbitrary shape was also introduced.

The statics and dynamics of a droplet inside a wedge was analysed. A model for the
shape of the droplet was put forward, which can be found with the name “liquid barrel”.
Using this assumption, the energy and pressure of the droplet at different positions within
the wedge were computed. This allowed the calculation of the forces that the droplet
exerts to restore its equilibrium position. Using a Lagrangian formulation, and estimating
dissipative forces, the translational motion in which the droplet relaxes to equilibrium was
studied. It was found that the equilibration process obeys an exponential trend, which is
characteristic of overdamped motion. This implies that the characteristic time in which
this occurs is determined by the quotient of friction and restitutive coefficients.

The liquid barrel assumption was validated by comparing the analytical results with
LBM simulations and with experiments. The simulations confirm that the energy dissi-
pated by the droplet during its translational motion can be attributed to the friction forces
operating at three different length-scales. The macroscopic length-scale corresponds to
the viscous dissipation of the flows in the bulk of both phases. In the intermediate length-
scale, the dissipation is due to the corner flow, which corresponds to the hydrodynamic
friction arising due to the motion of the fluids in the close vicinity of the contact line. This
source of friction links to the microscopic scale since it depends on diffusive processes that
escape a purely hydrodynamic description. At the microscopic level, the diffuse-interface
approximation predicts a third source of dissipation, which is inversely proportional to
the mobility. This mechanism has an interesting implication: although diffusion is an
irreversible process, and thus dissipative, the diffusion of the chemical potential has a
lubricating effect which facilitates the motion of the droplet.

The applicability of the liquid-barrel model in the manipulation of a droplet confined
in a wedge was also demonstrated. This consisted on actuating the geometry of the wedge
confinement in order to achieve translational motion. It was shown that by decreasing
the speed of the droplet, one can approach the limit of translational invariant motion.

The behaviour of an evaporating sessile droplet on a wavy surface was also studied.
Due to the patterned topography, the droplet rests in equilibrium on a discrete set of
positions. The stability and emergence of these states depend on the volume of the
droplet, therefore, as the droplet evaporates, the equilibrium configuration is suddenly
lost. As a consequence the droplet relaxes to a new configuration changing its shape
and position. Those transitions were named “snaps”, because the footprint radius of the
droplet always decreases in a much shorter timescale than evaporation. LBM simulations
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were carried out and then an analytical model was constructed to understand the causes
for these transitions. It was found that such events can to occur due to a bifurcation
in the equilibrium configuration of the droplet, and this bifurcation is triggered by the
amplitude of the surface topography. Therefore, at sufficiently low amplitudes in the
surface pattern, snap events can be prevented. Moreover, it was found that the actual
snap transition occurs due to other bifurcations which are triggered by the volume of
the droplet. Therefore, as the droplet evaporates, the reduction of its volume induce an
instability that drive the droplet to a new configuration.

Some lessons on the physics of contact lines are worth mentioning. When modelling
the motion of a contact line from a hydrodynamic approach, it is assumed that a fluid is in
a local thermodynamic equilibrium. For that reason, a slip-length is artificially included
to produce the effect that is experimentally observed. This assumption must be used with
caution, since it is know to fail under several circumstances [31, 109].

In the diffuse-interface formulation of phase transitions, the motion of a triple line is
possible due to diffusive flows of chemical gradients. This provides an advantage since
the slip-length becomes a consequence of the model rather than a requirement. It is
then left to the diffusive coefficient as the tuning parameter to match the experimental
evidence. However, when this is carried out, the values obtained are much larger than
what is expected for normal diffusive processes [42, 9], and once again, caution must be
taken. Therefore, despite the success of the diffuse interface approach, it can be said
that the problem of contact line dynamics lies at a deeper level, in which kinetic effects
at molecular level are dominant [33, 148]. In that context, the spontaneous motion of
droplets in wedges may provide a plausible alternative for experimental examination on
the motion of contact lines. That is because the opening angle of the wedge can be tuned
to amplify the effect of the dissipative forces acting on the droplet and thus allowing fine
measurements on the progression of the contact lines.

On the other hand, the snap transitions observed in the evaporation of droplets on
wavy surfaces provide an interesting insight on the problem of contact line hysteresis.
By construction, the surfaces in which the experiments are conceived allow a smooth
motion of the contact lines, nonetheless, before any snap event, the contact angle reaches
a minimum value. A similar effect occurs for condensation of droplets, in which case, the
contact angle would reach a maximum value before the sudden spreading of the droplet.
Therefore, hysteresis in the contact angle is induced by the topography of the surface.
From the bifurcation diagram in figure 7.7, it can be seen that in order to avoid these
sudden transitions, for large droplets (r � λ), the amplitude of the topography must
be decreased at a higher rate. In other words, if the grooves of the surface are shrunk
while maintaining their aspect ratio, contact angle hysteresis is inevitable. This would
explain the difficulties in producing surfaces completely free from pinning, since roughness
is always found at a microscopic level.



Appendix A

LBM Constants

Table A.1 containst a list of the lattice-Boltzmann velocity sets and table A.2 geometric
factors for the D2Q9, D3Q15, and D319 models.

Table A.1: Lattice-Boltzmann velocity sets for the models:

D2Q9
q (cq)x (cq)y
0 0 0
1 -1 0
2 0 -1
3 0 1
4 1 0
5 -1 -1
6 -1 1
7 1 -1
8 1 1

D3Q15
q (cq)x (cq)y (cq)z
0 0 0 0
1 1 0 0
2 -1 0 0
3 0 1 0
4 0 -1 0
5 0 0 1
6 0 0 -1
7 1 1 1
8 1 1 -1
9 1 -1 1
10 -1 1 1
11 1 -1 -1
12 -1 1 -1
13 -1 -1 1
14 -1 -1 -1

D3Q19
q (cq)x (cq)y (cq)z
0 0 0 0
1 1 0 0
2 -1 0 0
3 0 1 0
4 0 -1 0
5 0 0 1
6 0 0 -1
7 1 1 0
8 1 -1 0
9 1 0 1
10 1 0 -1
11 -1 1 0
12 -1 -1 0
13 -1 0 1
14 -1 0 -1
15 0 1 1
16 0 1 -1
17 0 -1 1
18 0 -1 -1

Table A.2: Lattice Boltzmann weighting factors. (w(|cq|2)
def
= wq.)

Model w(0) w(1) w(2) w(3) c2
s

D2Q9 4/9 1/9 1/36 0 1/3
D3Q15 2/9 1/9 0 1/72 1/3
D3Q19 1/3 1/18 1/36 0 1/3
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Appendix B

The Jeffery-Hamel Flow

The flow within a wedge geometry, including inertial effects, was addressed by Rosen-
head [74]. Here, a similar procedure in the low-Reynolds number is followed to ob-
tain behaviour of the flow. Using polar coordinates, the velocity field is expressed as
u = urr̂ + uθθ̂, and the angular flow is assumed to vanish, i.e., uθ = 0.

The continuity equation, Eq. (1.36), reads,

1

r

∂rur
∂r

= 0, (B.1)

which has the general solution,

ur(r, θ) =
f(θ)

r
(B.2)

where f depends only on θ. The explicit form of f can be found using the Stokes equations,
Eq. (1.35). In polar coordinates, and using (B.2), these read

η
f ′′

r3
− ∂p

∂r
= 0, (B.3)

2η
f ′

r3
− 1

r

∂p

∂θ
= 0. (B.4)

Integrating (B.4) with respect to θ gives the pressure profile,

p(r, θ) =
2η

r2
f(θ) + g(r), (B.5)

where g only depends on r. Substituting this result into (B.3) gives the equation,

d2f

dθ2
+ 4f =

r3

η

dg

dr
. (B.6)

The left hand side only depends on θ, whereas the right hand side only depends on r.
This can only happen if both sides are equal to a constant, c1. Therefore,

g(r) = −c1η

2r2
+ c2, and f(θ) =

c1

4
+ c3 cos 2θ + c4 sin 2θ. (B.7)

The constants ci, i = 1, ..., 4 can be found by imposing boundary conditions to the flow.
Due to symmetry, the flow profile must be an even function of θ, therefore c4 = 0.
Imposing a no-slip boundary condition at the walls of the wedge fixes c1 = −4c3 cos 2β.
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Setting the pressure to p(r1) = p1 and p(r2) = p2 at two arbitrary points, r1 and r2, fixes
c2 = (p1r

2
1 − p2r

2
2)/(r2

1 − r2
2) and c3 = (p2 − p1)r2

1r
2
2/2η(r2

1 − r2
2). Finally, the velocity of

the flow reads,

u(r, θ) =
1

2η

p2 − p1

r2 − r1

r2
1r

2
2

r1 + r2

cos 2β − cos 2θ

r
r̂, (B.8)

and the pressure field is,

p(r, θ) = −p2r
2
2 − p1r

2
1

r2
2 − r2

1

+
1

r2

p2 − p1

r2 − r1

r2
1r

2
2

r2 + r1

cos θ. (B.9)



Appendix C

Coefficients of the Volume and Free
Energy Polynomial Forms

Changing back to the (ϕ, ϑ)-parametrisation of the liquid barrel, the liquid-gas surface
element is,

dAlg = (∂ϕx× ∂ϑxlg) dϑdϕ (C.1)

Using Eq. (3.32) and integrating with respect to ϑ gives,

V =
1

3

∫ 2π

0

R
{

2(X∂ϕr sinϕ+ r2 +Xr cosϕ) sinψ +R[r(3ψ + sinψ cosψ)

+X(ψ + sinψ cosψ) cosϕ] + 2X∂ϕRψ sinϕ+ 2R2 sinψ
}

dϕ,

(C.2)

Following the Eq. (3.10) and Eq. (3.11), the radii r and R read

r(ϕ) =
qεα

cosϕ+ α
, (C.3)

R(ϕ) = q

(
1 +

ε cosϕ

cosϕ+ α

)
. (C.4)

Substituting Eqs. (C.3) and (C.4) into Eq. (C.2) results in a polynomial of ε where
the coefficients are,

a0 =
1

3

∫ 2π

0

{2 sinψ + α[ψ + sinψ cosψ] cosϕ} dϕ, (C.5)

a1 =
1

6

∫ 2π

0

(cosϕ+ α)−3
{

4α4 cosϕ sinψ

+ α3[(4ψ + 2 sinψ + sin 2ψ) cos 2ϕ+ 6(ψ + sinψ) + 2 sin 2ψ]

+ 2α2[({3ψ + sin 2ψ} cos 2ϕ+ 7ψ + 4{2 + cosψ} sinψ) cosϕ]

+ α[(2ψ + sin 2ψ) cos 2ϕ+ 8ψ + 4(6 + cosψ) sinψ] cos2 ϕ

+12 cos3 ϕ sinψ
}

dϕ,

(C.6)
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a2 =
1

12

∫ 2π

0

(cosϕ+ α)−3
{

4α3[cos 2ϕ+ 3] sinψ

+ α2[(6ψ + sin 2ψ) cos 2ϕ+ 22ψ + 16 sinψ + 5 sin 2ψ] cosϕ

+ α[(2ψ + sin 2ψ) cos 2ϕ+ 26ψ + 24 sinψ + 5 sin 2ψ] cos2 ϕ

+24 cos3 ϕ sinψ
}

dϕ,

(C.7)

and

a3 =
1

6

∫ 2π

0

(cosϕ+ α)−3
{

4α2 cosϕ sinψ

+ α [6ψ + sin 2ψ] cos2 ϕ

+4 cos3 ϕ sinψ
}

dϕ.

(C.8)

The evaluation of the integrals requires an explicit expression of the angle ψ, using
Eq. (3.8) gives

tanψ =
tan β

α2 tan2 β − 1

[
α
√

1 + (cos2 ϕ− α2) tan2 β + cosϕ

]
. (C.9)

Using (C.9) and expanding in powers of β leads to (3.56).
To compute the interfacial energy, it is first noted that (3.46) is composed of two

terms, the first being∫ 2π

0

∫ ψ

−ψ
|dAlg| =

∫ 2π

0

∫ ψ

−ψ
R
[
R2 cos2 ϑ+ 2Rr cosϑ+ r2 + (∂ϕR + ∂ϕr cosϑ)2

]1/2
dϑdϕ.

(C.10)
The integral in ϑ can be expressed in terms of elliptic functions. Then, substituting R
and r using Eqs. (C.3) and (C.4), gives an expression in terms of q and ε. This is then
complemented by Eq. (3.48), and after making a third order Taylor expansion ε, leads to
Eq. (3.58).



Appendix D

Bulk Dissipation of the Liquid Barrel

By substituting Eq. (3.118) in Eq. (3.130), the energy dissipation in the bulk of the droplet
can be determined. First, the gradient of the velocity field is

∇ubulk =
Ẋβ(s1 + s2)

s2(2β cos 2β − sin 2β)

[
cos 2ω − cos 2β sin 2ω

0 cos 2β − cos 2ω

]
, (D.1)

which leads to the bulk energy dissipation density

ε̇ = −η
2

(∇ubulk +∇uTbulk)2 =
2ηẊ2β2(s1 + s2)2(3 + cos 4β − 4 cos 2β cos 2ω)

s4(2β cos 2β − sin 2β)2
. (D.2)

To obtain the total dissipation, Eq. (D.2) needs to be integrated over a volume Veff < V ,
that corresponds to the region where the Jeffery-Hamel is adequate and thus the bulk
dissipation of the barrel takes place.

Veff is approximated as a toroidal section, of major radius equal to the distance X, and
a minor diameter R′o = Ro(1−δ), for some positive δ ≤ 1. Therefore, the bulk dissipation
is

Ėbulk =

∫
ε̇ dVeff =

∫ β

−β

∫ X+R′
o

X−R′
o

∫ √R′2
o −(s−X)2

−
√
R′2

o −(s−X)2
ε̇ dy sds dω, (D.3)

which evaluates to

Ėbulk = −16 π η
ξ2

(ξ2 − 1)3/2

[β (cos 4β + 3)− sin 4β] β2

(2β cos 2β − sin 2β)2
R′o Ẋ

2. (D.4)

From Eq. (D.4) the effective volume can be redefined as Veff
def
= V (1 − δ), and with this

replace R′o. Then, taking a Laurent series expansion in β of Eq. (D.4) leads to Eq. (3.131).
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Appendix E

The Contour Integral of the Velocity of
the Contact Line

To calculate the closed-loop integral in Eqs. (3.137), and (3.140), vcl, the projection of
the velocity perpendicular to the contact line must be first obtained. This can be done
by obtaining a parametrisation of the contact line. Points belonging to the contact line
can be reached through three displacements from the origin, that is,

xcl = Xêx +X sin β n̂+ rcl. (E.1)

The first displacement lands in the centre of the droplet, from there, the next displacement
moves to the nearest point in the top solid surface, concluding with a coplanar displace-
ment to the triple line represented by the vector rcl. This vector can be obtained using
Eq. (3.4) evaluated at the solid boundary. Then, rcl = xlg(ϕ, ϑ = ψ) −Xx̂ −X sin β n̂,
which gives the radius of the contact line,

rcl =
q

2(α + cosϕ)

[
2(1 + ε)2 + α2(3− 2α2 + 4ε2)− 4α{α2 − 2(1 + ε)} cosϕ

+ 2α cos 2β(α + cosϕ)2 + {2(1 + ε)2 − α2} cos 2ϕ

+ 8αε{α + (1 + ε) cosϕ} cosψ
]1/2

,

(E.2)

where the relation sinψ = (α+ cosϕ cosψ) tan β that results from Eq. (3.8), was used to
simplify the expression. Substituting Eq. (C.9), the contact line radius can be expressed
in series form,

rcl = q(1 + ε)− 1

2
qαβ2(α + ε cosϕ) +O(β3). (E.3)

Notice that at ε = 0, the variation in ϕ from Eq. (E.2), is lost and the contact line
becomes a circle. From Eq. (E.3), it can be seen the that dependence in ϕ is weak, since
it is proportional to αβ2ε ∼ βε.

After obtaining the magnitude of the vector rcl, its direction can be expressed by the
unitary vector r̂cl = rcl/rcl. From Eqs. (E.1), (C.9), and (E.2), it can be seen that

r̂cl =
(cosϕ, sinϕ, tan β cosϕ)√

1 + tan2 β cos2 ϕ
+O(β4, ε). (E.4)

This a vector collinear to the intersection of the solid plane wall, and a vertical slice at
the angle ϕ from the x axis.
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The velocity of the points in the contact line can be calculated by the derivative with
respect to time of Eq. (E.1); using Eqs. (3.57), (E.2), and (E.4), this is,

vcl =
(1

2

[
q cosϕ{2− β2 cos2 ϕ}ε̇− q̇{(α2β2 − 2) cosϕ+ 2α(β2 − 1) + β2 cos3 ϕ

+ ε cosϕ(β2 cos2 ϕ− 2)}
]
,

− 1

2
sinϕ[q̇{α2β2 + β2 cos2 ϕ+ ε

(
β2 cos2 ϕ− 2

)
− 2}+ q

(
β2 cos2 ϕ− 2

)
ε̇],

β [q̇(α + ε cosϕ+ cosϕ) + q cosϕε̇]
)

+O(β3)

(E.5)

To calculate the projection of the velocity in the perpendicular direction to the contact
line, the vector b̂ ≡ t̂ × n̂ is defined, where t̂ = ∂ϕrcl/|∂ϕrcl|. For the sake of simplicity,
b̂ = r̂cl is used, which is a valid approximation for small values of β and ε. Then, the
projected velocity reads,

vcl ≈ vcl · r̂cl = qε̇− q̇

4

[
2α2β2 + α

(
β2(1 + cos(2ϕ))− 4

)
cosϕ− 4(1 + ε)

]
+O(β3). (E.6)

Now, all the ingredients are gathered to compute the circuit integral. The infinitesimal
length dl becomes rcldϕ, and the integration is performed over the interval [0, 2π]. The
integral in (3.137) can be evaluated in series form,∮

cl
v2
cl dl ≈

∫ 2π

0

v2
cl rcl dϕ =π q (1 + ε)

[{
α2 + 2(1 + ε)2

}
q̇2 + 4 q (1 + ε) ε̇ q̇ + 2 q2 ε̇2

]
− π

4
α2β2q

[{
2α2 + 3(1 + ε)(5 + 4ε)

}
q̇2

+ 16 q (1 + ε) ε̇ q̇ + 4q2 ε̇2
]

+O(β4)

(E.7)

Keeping terms up to linear order in β and ε, Eq. (3.138) is finally obtained.
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