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Abstract

In this work novel unconventional core architectures are presented which are able

to induce flexural band gaps while not being detrimental for structural bending

stiffness of the sandwich structures. Two different core schemes are examined

with both of them exhibiting low-frequency stop bands. While unconventional,

the designs of the core offer a novel solution which can be easily manufactured

in high volume parts using two-dimensional automated cutting machine. A

hybrid finite element and periodic structure theory scheme is employed for the

calculation of the stiffness and mass matrices, and periodic structure theory is

used to obtain the wave propagation of the beams. Having acquired the wave

dispersion curves and the finite element analysis’ results, two specimens are

manufactured using carbon fibre cured plates and commercially available PVC

foam as core material. Experimental measurements of the dynamic performance

of the structures are conducted using a laser vibrometer and electrodynamic

shaker setup.
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1. Introduction

One of the main issues that transport vehicles’ industry faces is the noise and

vibration transmission within payload and passenger compartment. To achieve

high standards of their products, manufacturers need to optimise simultaneously

the mechanical and the vibroacoustic performance of structural assemblies. It5

has been demonstrated that judiciously designed periodic structures can induce

vibration attenuation and stop-band behaviour in specific frequency ranges (so-

called band gaps or stop bands).

In 19th century mathematical tools were developed which later would be

used to calculate periodic structures’ behaviour. In Floquet’s mathematical10

work [1] the one-dimensional (1D) Mathieu’s equations were studied as part of

the theory of differential equations with periodic coefficients. Floquet’s work

was followed by that of Rayleigh [2], who developed a similar form to Floquet’s

theorem, which transforms the periodic system to a linear system with con-

stant, real coefficients. During the twentieth century and based on the existing15

mathematical tools, Mead [3, 4], Mace et al. [5] and Langley and Cotoni et

al. [6, 7] produced mathematical tools based on Brillouin’s periodic structure

theory (PST) [8]. Using these methods, researchers nowadays have the ability

to predict the vibroacoustic and dynamic performance of several applications

in relatively short times. Application examples are presented using composite20

panels and shells [9, 10], structures with pressurised shells [11], and complex

periodic structures [12, 13, 14, 15].

The two major mechanisms that have been identified to generate band gap

behaviour in periodic structures are the Bragg scattering and local resonance.

Bragg scattering is observed when a structure exhibits periodic impedance mis-25

matches and the waves are scattered at the borders of the unit-cell (the part of

the structure that is periodically repeated). This scattering can be caused by

means of inclusions, and geometrical or material inconsistencies. This periodic

incosistency leads to the interaction of the reflected waves with the incoming

waves. Under specific circumstances, this interaction causes the partial or com-30
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plete cancellation of wave propagation [16, 17]. It can be easily shown that the

frequency at which the band gap is observed depends on the length and the

material/geometrical mismatch of the unit cell of the periodic structure. This

leads to the need for prohibitively large dimensions to achieve low frequency

band gaps. Therefore, researchers focused on local resonance [18], where a solid35

core material with relatively high density is usually preferred, suppressed by

an elastically soft material, presenting band gaps near 400 Hz. When this sub-

wavelength inclusion/addition resonates, it exhibits behaviour that cancels the

propagation of waves, giving rise to effective negative elastic constants or group

velocities at certain frequency ranges which are significantly lower than those40

observed in Bragg scattering. Liu et al. [19] examined the transition between the

two band gap production mechanisms and there has been research on coupling

of the two mechanisms [20, 21], where band gaps near 2 kHz were achieved in

low-stiffness structures. Recently an additional mechanism of band gap genera-

tions is gaining interest. This mechanism is called inertial amplification and has45

been proposed as band gap generator by Yilmaz et al. [22, 23]. In this approach

inertial forces are enhanced between two points in a periodic cell of a structure.

This way anti-resonance frequencies are generated, where the enhanced inertia

cancels the elastic forces. This solution has been examined in various applica-

tions, where it offers wide low-frequency band gaps. In [24] Acar et al. produced50

numerical and experimental results examining the application of the inertial am-

plification mechanims in a two-dimensional solid structure. In the same scope

Yuksel et al. [25] optimised the shape of phononic band gap structure imple-

menting inertial amplification mechanims and produced wide band gap below

1 kHz. These applications, though, compromised the structural integrity of55

the final result. Then, in [26, 27] researchers applied the inertial amplification

mechanism on load-bearing structures without compromising their stiffnesses by

adding the mechanism on the structure. Nevertheless, in both cases the applica-

tion resulted in additional mass or compromised structural integrity. Hussein et

al. [16] produced an extensive review of developments in band gap technology.60

In this work the Bragg scattering method is examined as band gap generator.
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A sandwich structure is formed when two thin facings or skins are bonded

on a lighter core that is used to keep them together and apart. This formation

offers increased bending and torsional stiffness with minimal added mass, as

lightweight core materials are used (eg. honeycomb, balsa wood and foam) [28].65

The first application of lightweight structural sandwich parts was seen in air-

crafts in the 1940s since they reduced the weight and increased the payload and

flight distance [29]. Since then sandwich formations have been a major part of

load bearing structures and applications can be found in many industries, such

as civil transportation [30, 31, 32] and architecture [33]. Nowadays research is70

focused on examining the static behaviour of innovative solutions of sandwich

formations, like a cylinder with orthogonal corrugated trusses [34], with orthog-

onal grids [35] or with beams with rapid prototyping cylinders as core [36]. A

wide research is, also, focused on corrugated cores [37, 38, 39].

Taking advantage of the band gap mechanisms, researchers examined the75

possibility of having sandwich structures exhibiting stop bands. Ruzzene et al.

[40, 41] examined theoretically the behaviour and control of sandwich beams

and plates with auxetic core. It has been proven that photonic band gaps can

be attained with periodic lattice core [42] and in [43, 44] high-frequency band

gaps are exhibited by sandwich phononic crystal plates. Local resonance mech-80

anism has, also, been examined as band gap generator in sandwich structures

[45], where Sharma et al. focused on the interaction and control of the band

gap and how to tune the characteristics to achieve specific stop bands. In [46]

Jiang et al. examined theoretically and experimentally a phononic crystal of

periodic circular cavity sandwich plates attaining low-frequency (∼ 500 Hz)85

stop bands. The phononic crystal is made of steel, which excludes it from the

group of lightweight structure, and it can handle axial loads. In [47] Badran et

al. developed a lighter model to simulate the dynamic behaviour of sandwich

structures. Guo et al. [48] examined theoretically the banded behaviour of a

sandwich structure using two periodically alternating viscoelastic materials as90

core, achieving low-frequency (∼ 100 Hz) stop bands while compromising its

load-bearing capabilities. Also, the effect of damping on the band gap was con-
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sidered and in [49] Sheng et al. manufactured the same structure to examine it

experimentally. In [50, 51] the effect of the banded behaviour of a sandwich plate

with locally resonant structure on the transmission of the sound is examined,95

proving that band gap offers significantly enhanced sound transmission loss. A

thorough review of the current research on sandwich structures was produced by

Birman and Kardomatea [52]. In this work two composite sandwich structures

demonstrating band gap are examined, with skins made of carbon fibre and the

core being PVC foam.100

To the authors’ knowledge, no research has been done on lightweight struc-

tural sandwich beams with band gaps lower than 5 kHz, where the highest

sensitivity of the human ear lies [53], without additional mechanisms (hence

mass) or significant compromise of structural integrity. Band gap mechanisms

include high-displacement mechanisms or significant impedance mismatch which105

renders the design of a structural part very difficult and of quite complex ge-

ometries. In this work this specific problem is addressed, with the novelty of

this paper being the easy-to-manufacture architecture of the two core designs

of a lightweight sandwich beam which exhibit band gaps while not completely

sacrificing load bearing ability of the structure. A finite element (FE) scheme110

coupled to PST is employed for computing the banded behaviour of the beams.

Experimental analysis of the two schemes is conducted using a laser vibrome-

ter and electrodynamic shaker setup. The results exhibit quite high correlation

between numerical predictions and experimental measurements.

The paper is organised as follows: in Section 2 the methodology that is used115

during the numerical examination is described. In Section 3 the novel architec-

tures of the two examined schemes are presented. The FE and experimental

results along with the numerical ones are presented and discussed in Section 4

and finally in Section 5 the conclusions of the work are drawn.
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Figure 1: Caption of the modelled periodic structure. The core architectures that were

examined are shown.

2. Methodology120

2.1. Periodic structure theory

A generic structure with one-dimensional periodicity is considered. A unit cell

is extracted from the structure (see Fig. 1) and its behaviour modelled with FE

methods. A steady-state free harmonic vibration of frequency ω is considered in

what follows and all response quantities are represented by complex amplitudes,

so that

q(t) = Re{qeiωt} (1)

where t is time and the DOFs q can be partitioned into interior (I), left (L)

and right (R) DOFs (see Fig. 2). According to Floquet’s theorem, the equation

that relates the displacements on the edges and sides of the modelled unit cell

is the following [3]:

qR = e−iεxqL (2)

where the term εx = kxLx is referred to as ’phase constant’, Lx is the periodic

element’s length in x direction and kx is the wavenumber. The complete vector

of the local DOFs can be ordered

q =
[
qT
I qT

L qT
R

]T
. (3)
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Figure 2: Caption of the one-dimensional unit cell. The degrees of freedom (DOFs) are

grouped in left, internal and right ones during the numerical examination.

The equation of motion for the cell including damping [54] is given by[
K + iωC− ω2M

]
q = f, (4)

where K, M and C are the stiffness, mass and damping matrices respectively

and f is the vector of the nodal forces. Eq. (4) can be used when proportional

damping is available [55], where damping is expressed as a linear combination

of the mass and stiffness matrices, that is,

C = α1M + α2K, (5)

where α1 and α2 are real scalars. In the case of structural damping [9, 54], the

equation of motion becomes[
K + iC− ω2M

]
q = f, (6)
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and the structural damping matrix C is given by

C =

ne∑
i=1

Kiηi, (7)

where ne is the number of the FEs of the unit cell, Ki is the stiffness matrix of

the ith element and ηi is the loss factor of the corresponding element. Eq. (6)

can be written as [
K(1 + iη)− ω2M

]
q = f. (8)

In this work, we do not focus on the accuracy of the model of damping, since

the main aim of the wave propagation analysis is to examine the existence of the

band gap. In order to write the propagation relation in Eq. (1) in matrix form,

we consider transformation matrix R, which is given in the following equation:

q =


I 0

0 I

0 Ie−iεx

x = Rx. (9)

In this way, we get

q = Rq′, (10)

where

q′ = x =
[
qI qL

]T
. (11)

In the absence of external forces (free wave propagation), we have

RHf = 0, (12)

where RH denotes the complex conjugate (Hermitian) transpose of R. The

resulting homogenous equations in the reduced set of degrees of freedom are

then given by [
K′ + iωC′ − ω2M′

]
q = 0, (13)

and [
K′(1 + iη)− ω2M′

]
q′ = 0, (14)
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where

K′ = RH(εx)KR(εx), M′ = RH(εx)MR(εx), C′ = RH(εx)CR(εx). (15)

When a set of phase constants εx is specified, we get a quadratic eigenvalue

problem for Eq. (13), the solution method of which is described elsewhere [56].

Eq. (14) gives a standard eigenvalue problem with eigenvalues λ = ω2 indicating

the frequencies at which a wave can propagate in the structure when a given125

phase is specified between the edges of the cell. It is noted that in this work, only

the real part of the eigenvalues is examined since the target of the examination

is the band gap behaviour.

The methodology described above is transferred in MATLAB and ANSYS

environments through a master script generated specifically for this purpose130

which combines newly developped scripts with embedded existing tools [57].

The master script takes as input the geometry of the unit cell of the examined

structure as produced in FE software and gives as output the wave propagation

characteristics of the periodic structure (Figure 3). The steps are described in

detail below:135

• The geometry of the unit cell of the examined structure is produced in .txt

file of ANSYS script language. This file also includes the material prop-

erties of the structure and these properties are assigned to each element

of the cell to represent the actual structure.

• A simple and quick modal analysis is solved using ANSYS through the140

script so that mass, damping and stiffness matrices can be calculated.

Using FE software to retrieve mass and stiffness matrices allows the user

to simulate complex geometries.

• The matrices are retrieved by the script and moved to the folder-in-use.

• Then the matrices need to be converted to form MATLAB sparse matrices.145

For this step a freeware converter script was used [57] in order to convert

the ANSYS matrices format (Harwell Boeing, HB) to MATLAB format.
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• After having the matrices in MATLAB format, the mathematical script of

PST equations is run. This script can solve both one- and two-dimensional

case studies.150

• Finally, the wave propagation curve is calculated and plotted. In this step

additional post-processing scripts can be implemented.

The script offers the chance to examine different structures quickly, since the

only thing that the user needs to produce is the geometry file as all the rest is

automated and included in the master script. Additionally, using FE software155

to retrieve mass and stiffness matrices allows the user to simulate complicated

geometries. This way several schemes were examined before ending up to the

ones presented in the next section.

Figure 3: Flow diagram of the master script used to acquire wave propagation characteristics

of the examined structures. The text boxes with dashed outline (- -) consist of ANSYS actions.

3. Proposed core architecture

The fundamental principle to save energy consumption and manufacturing160

cost is weight reduction. Additionally, the manufacturability of the structure
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must always be part of the design process in order to enable the industrilisation

of the design. Having these two principles in mind two one-dimensional cases

are developed and numerically and experimentally examined in this paper. Tak-

ing advantage of the core unconventional geometry, no additional mechanism is165

required avoiding extra mass. The work is based on lessons that were learnt in

previous draft studies where a simple design of a sandwich beam with periodi-

cally hollow core acting as band gap generator was employed. The core-no core

design was simulated and parametrically examined, where it presented banded

behaviour in all the different alternative designs that were modelled. Neverthe-170

less, the examined beam could not be considered as structural since there was

no continuous part of core to handle the shear loading of the two skins during

bending.

Figure 4: Geometry of the core of the scheme 1 and 2 unit cells.

Taking into consideration all the above, several alternatives were tested using

the master script. All designs were conceived to combine core inconsistency

in x-axis and structural integrity. Symmetry along both x- and y-axes was

sought after in line with manufacturability and the examined solutions followed

the dimensions of the commercially available materials. The schemes that are

presented here have part of their cores continuous along x axis, a characteristic
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Figure 5: Skin and core of scheme 1 and 2 specimen.

Table 1: Material properties and Schemes characteristics.

Scheme 1 Scheme 2 Both Schemes

0.5 mm Skin, 5 mm Core 1 mm Skin, 3 mm Core

Cured Carbon Fibre Cured Carbon Fibre PVC Foam

ρ = 1 600 kg/m
3

ρ = 1 420 kg/m
3

ρ = 100 kg/m
3

Ex = 50 GPa Ex = 55 GPa E = 75 MPa

Ey = 50 GPa Ey = 50 GPa G = 27.75 MPa

Ez = 20 GPa Ez = 20 GPa η = 4%

νxy = 0.4 νxy = 0.4

νyz = 0.4 νyz = 0.4

νxz = 0.25 νxz = 0.25

Gxy = 1.2 GPa Gxy = 1.2 GPa

Gyz = 1.2 GPa Gyz = 1.2 GPa

Gxz = 3.6 GPa Gxz = 3.6 GPa

η = 1% η = 1%
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which renders them load bearing elements of a structure. The load bearing

part of the core in bending loads is shown in different colour in Figure 5. To

compare the load bearing capacity of the two schemes with the respective solid

core beams, a 3-point bending beam simulation is considered using the FE

models from Sec. 4.2. The setup can be seen in Fig. 6, where the beam is

supported on both edges of the one side and a force F = 5 N is applied on

the opposite edge on the middle point. The bending stiffness is then calculated

using the equation:

k = F/δz, (16)

where δz equals with the vertical displacement at the point of the force appli-

cation. The results show that both schemes sacrifice a small percentage of the175

original bending stiffness (see Table 2).

Figure 6: Schematic represantation of the cantilever beam simulation used to compare bend-

ing stiffness of the two schemes.

The core schemes can be easily manufactured using 2D automated cutting

machine which puts no limitations to high-volume production. Both beams

have carbon fibre as skin material and PVC foam as core material with different

geometrical characteristics in both skin and core, see Table 1. The geometry of180

both schemes’ unit cell’s core architecture is depicted in Fig. 4. Both schemes’

geometry is symmetrical along x and y axis and scheme 1 is along the diagonal,

too. The two architectures can be used to incorporate internal resonators to
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Table 2: Bending stiffness.

Scheme 1 Scheme 2

Proposed core Solid core Proposed core Solid core

δz 0.479 mm 0.417 mm 0.335 mm 0.275 mm

Bending stiffness 10.44 kN/m 11.99 kN/m 14.93 kN/m 18.18 kN/m

Difference 12.94 % 17.91 %

enhance the vibration annihilation behaviour. Additionally, another aspect that

could be examined is the active control of vibrations using the necessary smart185

elements in the hollow parts of the cores. Both concepts are out of the scope of

this work and are considered part of the future work.

4. Experimental and numerical validation

4.1. Numerical analysis

A FE model of each unit cell is built for both schemes, and the results190

of the wave propagation analysis are compared with unit cells of regular core

sandwich beams with the same material properties (Table 1). Linear 8-node

hexahedral ANSYS SOLID45 solid element is chosen for the segment’s meshing,

which comprises a 3D displacement field and three degrees of freedom per node

(translations in x, y, and z directions). The number of the elements is decided195

according to the relevant convergence study results and wavelength requirement

(6-10 elements per wavelength [5]) and so the model of scheme 1 unit cell is

comprised of 176 elements, 48 of which are used to model the core, while the

model of scheme 2 unit cell is comprised of 168 elements, 40 of which are used to

model the core. In the case of the regular sandwich structure unit cell, the same200

number of elements are used for both of them (192 in total, 64 of which are used

to model the core). In Fig. 7 and 8 the results of the wave propagation analysis

are presented. As it can be seen in the graphs (shaded area), flexural band

gap is observed at the frequency band 2 271 − 2 603 Hz for the scheme 1 and
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Figure 7: Flexural wave propagation of scheme 1 (.) and regular sandwich beam (x). The

shaded area represents the bending band gap.

Figure 8: Flexural wave propagation of scheme 2 (.) and regular sandwich beam (x). The

shaded area represents the bending band gap.

1 701− 2 299 Hz for the scheme 2. In order to examine the flexural behaviour205

of both schemes 10-cell beams were tested using both FE method and a laser

vibrometer and electrodynamic shaker setup. The results are examined in the

following paragraph.
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4.2. FE and experimental results

Figure 9: Left: The points that were examined in the experimental procedure and FE

analyses. The point of excitation is marked as ’X’. Right: the points that were measured

during the vibration experiment.

Following the same procedure as in Section 4.1 10-cell FE models of both210

schemes and regular sandwich beams with the same materials are produced.

The same number of elements per unit cell was used, so the model of scheme 1

beam is comprised of 1760 elements, 480 of which are used to model the core,

while the model of scheme 2 beam is comprised of 1680 elements, 400 of which

are used to model the core. In the case of the regular sandwich beam structures,215

the same number of elements are used for both of them (1920 in total, 640 of

which are used to model the core).

The core schemes were manufactured using two PVC foam sheets which were

cut in the specific geometries, as seen in Fig. 10. After shaping the core schemes,

the carbon fibre strips were cemented on both sides of them using a two-part220

epoxy adhesive (Permabond ET500). Concerning the experimental set up, an

electrodynamic shaker (TBS K2007E1) is used to excite the specimen between

800 Hz and 3 000 Hz, with the signal produced and analysed by a Polytec VIB-

E-400 Junction Box using a fast Fourier transform (FFT). A single point laser
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vibrometer (Polytec PDV-100) is used to measure the displacement at several225

points on the specimen (Fig. 9). An impedance head (PCB 288D01) is mounted

on one edge of the specimen and provides the measurement of the input force

on the mounting point of the specimen. The impedance head is then bolted on

to the moving head of the shaker. The mounting point of the impedance head,

hence the excitation point, is marked as ’X’ in Fig. 9. The shaker is mounted230

on an aluminium rig, designed specifically for vibration experiments. As it can

be seen in Fig. 9, the points’ number is indicative of the unit cell’s repetition.

The experimental setup employed in this work has already been proven in [58].

Figure 10: The two core schemes as were manufactured. The cores were then cemented on

cured carbon fibre sheets.

In Fig. 11 and 12 the FEA and experimental results of all the measured235

points of both schemes 1 and 2 are presented. Firstly and most importantly,

it can be observed that in both cases experimental and FEA results correlate,

with only some anomalies for the point 2 graphs. Figures 13 and 14 exhibit

the correlation of the peaks of the experimental and FEA curves at point 10,

where the local divergence is less than 3 %. Secondly, both schemes 1 and240

2 experiments demonstrate banded behaviour, as predicted in the numerical

results in 4.1. The stop band is quite clear in the predicted frequency bands,

and the vibration cancellation becomes more apparent as the points’ number

increase. This happens because as the wave propagates through the unit cells,

it interacts with the reflective ones, which in the specific band gap frequency245

weaken it. Therefore, the wave passes weakened through each unit cell and
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Figure 11: FRF of FEA (-o) and experimental results (–) of all the measured points of scheme

1. The points of the line connecting the FEA graphs consists of the middle value of the band

gap.

10
-10

10
-8

1000

10
-6

F
R

F
 /

 (
m

/N
)

10
-4

Frequency / Hz

2000

109

Points / Number

87653000 432

Figure 12: FRF of FEA (-o) and experimental results (–) of all the measured points of scheme

2. The points of the line connecting the FEA graphs consists of the middle value of the band

gap.

the amplitude loss adds up as it goes through the beam. Eventually it gets

significantly weakened which is translated in annihilation of the beam vibration.

This observation coincides with the theory of band gap on periodic structures
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Figure 13: Scheme 1 experimental (–) and FEA (-o) results of point 10 displacement.

Figure 14: Scheme 2 experimental (–) and FEA (-o) results of point 10 displacement.

Figure 15: FEA of scheme 1 at 2430 Hz

(displacements in meters).

Figure 16: FEA of scheme 2 at 2000 Hz

(displacements in meters).
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and it has been discussed in existing literature [58, 59, 60]. In Fig. 15 and 16250

the displacement profiles of schemes 1 and 2, respectively, are presented, where

the aforementioned observation is graphically represented. This behaviour must

be taken into consideration during the design of the application of the banded

structure so that to achieve the optimum vibration isolation. Another issue

that must be considered is the boundary conditions of the structure which will255

probably alter the banded behaviour. Furthermore, further work could concern

the incorporation of local resonant structures in the parts of the core that are

hollow, employing both band gap mechanisms.

5. Concluding remarks

In this paper we present novel core architectures able to induce wave stop260

bands while not being detrimental for structural bending stiffness. The two

designs are developed following weight reduction and manufacturability criteria

to produce a low-cost and profitable solution. The main conclusions that are

drawn are listed below:

• Firstly the numerical results of the wave propagation of the two core265

schemes demonstrate that both of the examined beams exhibit stop band

of the flexural wave below 5 000 Hz. This low frequency stop band has not

been observed in load-bearing structures without any additional internal

resonance or inertial amplification mechanism.

• Secondly, quite high agreement is observed in the FE analysis and exper-270

imental results. This agreement validates the banded behaviour of the

proposed core schemes.

• Thirdly, a master script is produced which gives the ability to the engi-

neer to examine the banded behaviour of a complicated periodic structure

quickly, since PST is used which is more time efficient than full FEA.275

Additionally, the master script offers all the needed calculations in one

automated procedure.
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The two schemes, hence, consist of a load bearing solution of passively annihi-

lating vibrations in specific frequency bands.
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