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The productivity rate of a manufacturing process is limited by the speed of any measurement processes at the
quality control stage. Fast and effective in-line measurements are required to overcome this limitation. Opti-
cal instruments are the most promising methods for in-line measurement because they are faster than tactile
measurements, able to collect high-density data, can be highly flexible to access complex features and are free
from the risk of surface damage. In this paper, a methodology for the development of fast and effective in-line
optical measuring instruments for the surfaces of parts with millimetre- to micrometre-size is presented and its
implementation demonstrated on an industrial case study in additive manufacturing. Definitions related to in-line

measurement and barriers to implementing in-line optical measuring instruments are discussed.

1. Introduction

The productivity of a manufacturing line depends on the through-
put of high-quality parts that are produced within a prescribed period
of time. To control the quality of parts without reducing the production
rate, the parts should be inspected accurately and quickly [1,2]. Fur-
thermore, quality control procedures should be applied at each step of
a complex process chain to reduce stack-up variations during the pro-
cesses and to meet desired tolerances [3,4]. Hence, fast (less than the cy-
cle time of a process) and effective (satisfying desired requirements, for
example accuracy) in-line measuring instruments are required to control
the quality of parts without halting the manufacturing processes [4].

In this paper, a general methodology to develop in-line surface mea-
suring instruments focusing on millimetre- to micrometre-feature size
is presented. The applications of this type of in-line measurement are,
for example, in micro-scale injection moulding, micro-scale polishing
micro-scale milling, micro-scale electrical discharge machining, micro-
scale electrolyte jet machining, precision grinding, additive manufactur-
ing of small parts and surface coating systems. A case study is used to
show implementation of the methodology for in-line measurement (see
Section 1.1) of product properties; in this case, the surfaces produced
by a polishing process for additively manufactured polymer parts. The
development of in-line measuring instruments is a challenging task. The
challenges are not only the measurement speed requirement, but also is-
sues such as environmental noise, data fusion and system-level integra-
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tion. Considering the requirement of maintaining faster measurement
speeds, tactile (contact) measuring instruments are often not suitable for
in-line measurement because, while accurate, they are slow and can only
measure a limited number of points on the surface of a part [4-6]. Sub-
sequently, in many cases, optical instruments may be suitable for in-line
measurement due to their advantages over tactile instruments, including
the ability to obtain high-density data within relatively short measure-
ment times, to gain access with complex geometries, and to measure
surfaces without the risk of damage [6]. However, there are many chal-
lenges, which are elaborated on in more detail in Section 1.2, that hinder
the development of in-line optical instruments including measurement
methodology, speed, system integration and control, traceability and
system intelligence.

This paper is structured as follows. In Section 1, several definitions
to clarify the scope of the study are proposed and barriers to the de-
velopment of optical methods for in-line measurement are presented. In
Section 2, the detailed description of the proposed general methodology
to develop in-line surface measuring instruments is elaborated. The gen-
eral methodology provides guides from the understanding of the mea-
surement task, the definition of the measurand, the development of a
fast and effective in-line measuring instrument, the integration of the
developed instrument into a manufacturing process and the control of
the process by using feedback data from the in-line instrument. A case
study that applies the methodology for in-line surface measurement of
additively manufactured polymer parts is presented in Section 3. Finally,
Section 4 concludes the paper and discusses future work.
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Fig. 1. Definitions of in-situ, in-line and on-machine measurement (adapted
from [3]).

1.1. Definitions

Following the CIRP draft definitions [3], several terms related to in-
line measurement are given below.

o In-situ measurement: a measurement of a part surface that is carried
out inside the same manufacturing floor/shop floor without isolating
the measurement process outside the manufacturing line.
In-line/on-line measurement: a measurement of a part surface that is
carried out in a production or manufacturing line either inside (on-
machine) or outside (off-machine) a production machine. Meanwhile,
for off-line, the measurement is carried out outside the production or
manufacturing line, but still inside the same manufacturing floor.

e On-machine measurement: a measurement of a part surface that is
carried out inside a production machine that manufactures the part.
The measurement can be carried out in-process (during the process)
or off-process (before or after the process).

From the definitions above, in-situ measurement includes both in-
line/on-line and on-machine measurement. Fig. 1 shows a pictorial rep-
resentation of the definitions.

1.2. Barriers to developing in-line measuring instruments

Focusing on optical measuring instruments, there are challenges that
need to be overcome for in-line measurement. We divide the challenges
into five groups: methods; speed; system integration and control; trace-
ability; and intelligence (defined here as the ability of an instrument
to take decisions and learn from prior measurements) (Table 1). How-
ever, several challenges are not only relevant for optical instruments,
but also for tactile measuring instruments, such as the ability to under-
take multi-scale measurements (measurement of form at hundreds of
millimetre scales and surface texture at sub-micrometre scales) and to
measure in noisy environments (for nanometric accuracy).

Method is related to the limitations of the optical measurement work-
ing principles. A few examples of physical limitations are given. Phys-
ical limitations related to imaging optics are the slope and resolution
limits of the numerical aperture, limited measuring areas and the rela-
tively short working distance to the measured surface [7]. The intensity
of light from highly reflecting surfaces may exceed the pixel threshold
value causing saturation of the imaging sensor, which can negatively
affect a 3D surface reconstruction calculation [7]. Also, environmental
noise from vibration, temperature, humidity and pressure variations,
can significantly contribute to the uncertainty of optical measurement
results [8].

Speed here refers not only to the speed of a measurement, but also
to speed of motion required to access a surface, and to the speed of
handling and processing of high-density data obtained from an opti-
cal instrument. The total measurement speed of the instrument depends
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on how fast the instrument can capture the raw data, for example, a
stack of images, and the processing speed to derive a measurement re-
sult from the raw data. The processing speed becomes more relevant
when measuring a surface, reconstructing a 3D model and calculating
specific parameters from the reconstructed surface data.

System integration and control includes the integration of an in-line
measuring instrument into a machine or production line and the integra-
tion of the measured data into a system level data management system.
The economic advantage of an in-line measuring instrument becomes
more significant when a production system can be controlled and main-
tained by an integrated organisation data management system [9]. The
use of methods such as statistical process control can detect, currently
off-line or per production batch, whether a process deviates from its pre-
defined operating conditions. The main challenge for in-line control is
to have a fast in-line measuring instrument, working in an uncontrolled
environment with noises, for example inside a machining chamber, with
a measuring time less than or equal to the production speed. Also, in-
tegration and control are related to the use of modular design concepts
to be able to produce a flexible in-line measuring instrument that can
be adapted to various machines or production lines, regardless of, for
example, space constraints.

Traceability, an essential factor for measurement, covers the issues
of performance verification and calibration of in-line optical measur-
ing instruments and the uncertainty estimation associated with their
measurement results. For performance verification, there has been sub-
stantial work on how to develop material measures and procedures to
verify the performance of off-line optical measuring instruments [10].
There has also been some research to verify the optical performance of
in-line measuring instruments [11,12]. For measurement uncertainty es-
timation, there is still a need for methods to identify relevant influence
factors for an in-line optical instrument [3].

Intelligence refers to the challenges to build intelligent in-line opti-
cal instruments and includes the utilisation and application of machine
learning (ML) methods, that are only now being utilised for measure-
ment applications, to enhance the capability and performance of the
instruments, for example, the capability to understand surface orienta-
tions [13], to automatically segment 3D point clouds [14] and to in-
fer surface information from missing data using a priori information
[15]. Recently, deep learning neural network methods have been used
in many applications, for example, to automatically segment objects,
especially for machine vision applications [16,17]. The availability of
abundant data, low-cost computers with high computing power and ad-
vanced learning algorithms cause deep neural networks, that is a neural
network with many of layers and multiple hierarchies of abstractions
[16], to perform significantly better than neural networks with only a
few layers [18] and classical machine learning methods, for example,
support vector machines [19]. However, despite the popularity of deep
learning methods, their lack of capability to estimate prediction uncer-
tainty [20] causes a problem in their implementation for measurement
applications, as the methods are only used as a black-box system, for
example, part conformance determination in quality control requires
measurement uncertainty statements to aid a decision [21]. The use of
Bayesian probabilistic approaches may be able to address the uncer-
tainty prediction in machine learning [22], but suffers from the need for
higher memory capacity than neural network methods [19]. The com-
bination of deep learning and Bayesian approaches holds the possibility
to enhance the capability of deep learning methods, while maintaining
an estimate in prediction uncertainty [20].

It is worth noting that we do not necessarily need to overcome all the
above challenges to develop an in-line measuring instrument. Rather,
only relevant barriers that are related to our specific in-line measure-
ment requirements need to be addressed. The identification of what the
relevant challenges are, for the development of a specific in-line surface
measuring instrument, is elaborated on in Section 2. Table 1 summarises
many of the challenges and the current state of the art.
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Table 1

Barriers to implementing optical in-line measuring instruments
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Challenge

Current state of the art

Method

Speed

System integration and control

Traceability

Intelligence

Measurement of large areas significantly increases measuring time

Measurement with high spatial bandwidth (multi-scale
measurements) includes both form and surface texture
measurements

Measurement of features with high slope angles is difficult

Measurement of materials with specular surfaces can negatively
affect 3D surface reconstructions

Accuracy of measurements under noisy environment, for example
vibration and temperature variation will be reduced

Measuring faster than a process cycle-time is still a challenge

Handling and analysing high-density data from optical measuring
instruments require relatively long computing times

Application of modular and environment-robust design is needed to
integrate and adapt into various types of manufacturing machines

Utilisation and combination of various types of in-line
measurement data, from different sensors with different
resolutions, for the efficient control of a manufacturing system
requires algorithm development

Integration of an in-line instrument with system level control (for
example, on-line statistical process control, run-to-run control
and predictive maintenance) needs to be performed continuously
in real time

Integration of measurement data into an enterprise production
planning and scheduling is still a gap to be bridged

Dealing with data transfer speed is needed to avoid data
bottle-necks

Calibration and verification of performance of in-line measuring
instruments is required to assure the instruments work within
their specification

Estimation of the measurement uncertainty associated with in-line
measurement results is essential to establish measurement
traceability

The use and application of machine learning methods for in-line
optical measurements is still limited

Training from very large data sets for in-line optical measurements
will take very long periods of time and needs a large amount of
data

Uncertainty estimation with machine learning methods is still
lacking (commonly, many machine learning methods are used as
a “black-box” methods)

Microscope-based optical methods only measure a relatively small
area [7]. To measure a larger area, multiple measurements
followed by data stitching should be carried out.

Most optical measuring instruments either measure a large area
with low resolution or a small area with high resolution [23,24].

The ability to measure surfaces with high slope angles is limited by
the numerical aperture (NA) of an objective lens [25]; however,
with certain configurations, advanced measurement models and
a priori information, high slope measurements beyond the NA
are possible [26].

High reflection from a surface can cause light intensities that
saturate the imaging sensor pixels. The saturated pixels cause
problem for many 3D surface reconstruction algorithms [7].

Environmental noise, such as ground vibration, is a significant
factor for measurements with micrometre and higher level
accuracies [27]. For an example, small levels of vibration will
cause differences between an encoder reading and the actual
position during a measurement.

Areal surface measurements require motions to access a surface and
a large number of images/computations so that the processing
time is relatively longer (commonly > 1 min [1,7]) than many
manufacturing cycle times, that can be within seconds.

A large number of data points, from hundreds of thousands [28] to
millions or more points [29], can be obtained from optical
measuring instruments in relatively short period of time [1,7].
However, the time required to process the data is more than the
time to acquire it.

Different types of machines have specifically-built in-line
measuring instruments, for example, due to space constraints
[30-32]. Design studies to isolate vibration by using lattice
structures have been proposed [33,34]

A large number and variety of data are obtained from many sensors
with different resolutions and accuracy levels. Often, data fusion
is needed to combine all the data with different densities [35].
Fusion of data with different densities has been proposed, for
example, data fusion from two optical instruments [36] and data
fusion from a tactile and an optical instrument [37,38].

Current practice divides system-level control into several types
[39]. However, the lack of in-line instruments means that
run-to-run process controls have to be carried out in batch rather
than continuous mode [40,41].

Measurement data from in-line instruments needs to be integrated
into the resource planning management system of companies and
enterprises for production planning and scheduling [42].

A large amount of data is congested by the limitation of data
transfer speeds that can be originated from hardware or software
[43].

Performance verification procedures and material measures for the
determination of length measurement errors for optical
instruments are still lacking [10,44]. Currently, performance
verification infrastructures are available for some off-line
instruments [45-47]. In some situations, calibration of in-line
optical instruments for surface measurements can follow those
already available for off-line optical instruments [10,48-50].

Methods of measurement uncertainty estimation are commonly
applied for off-line tactile and optical measuring instruments
[51,52].

A recent application of deep learning in fringe projection
measurement to rapidly tracking the projector orientation has
been reported [13]. Some applications of deep learning for object
classifications from 3D point clouds have also been reported
[14,53]

A parallel computation method leveraging graphical processing
units has been used [54]. Regularisation methods to avoid
overfitting of large training data sets and increased accuracy of
deep learning methods use dropout [55] and penalisation
methods [56,57].

Recent research to combine a Bayesian framework with deep
learning to provide uncertainty estimation for deep learning have
been proposed [58-60]. With the ability to provide uncertainty
estimation, confidence with a prediction can be obtained to
decide whether a prediction is reasonable or not.
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2. The proposed methodology

An IRM framework is an essential element and the foundation of the
proposed methodology [15,82]. IRM is a term referring to the use of any
available information that can be included to improve a measurement
process [15,82]. The available information can be information about a
measured object, a manufacturing process that makes the object, the
instrument-surface interaction, optical instrument characteristics. The
information can be obtained from, for example, a priori knowledge, the
physics of a measurement method, mathematical modelling and sim-
ulations or from other measurement processes. All this information is
aggregated by the use of smart data processing, that is the ability to use
a priori information, rigorous modelling and learn from prior measure-
ments to improve future measurement processes and results. This smart
data processing leverages various methods and algorithms, for example,
machine learning and data fusion.

Information about a measured object can be obtained from its 3D
CAD model where nominal form and dimension and their tolerance are
available. Also, information about the manufacturing of the object can
be obtained in terms of, for example, materials that can be processed, its
capability and typical features and defects it generates. By knowing the
typical features and defects, with the IRM framework, improved metrol-
ogy for quality inspection can be obtained, for example, improving the
speed of defect detection.

One of the main focuses of the IRM framework is to develop im-
proved mathematical models that describe the interaction between a
measured surface and an optical instrument. Currently, many rigorous
mathematical models that describe the principle of many optical mea-
surement technologies are already available [7]. However, those mod-
els are designed to be general to measure various surfaces with different
scenarios with little a priori knowledge of the measurement. With the
general models, most optical instruments have limitations in their mea-
surement capabilities. In fact, very often, many surface measurement
scenarios provide much additional information [15,29], for example, at
the macroscopic scale, information regarding form and nominal dimen-
sions is available and at the microscopic scale information regarding
surface texture and manufacturing fingerprint are available.

With all the additional information, the IRM framework requires a
new type of data processing pipeline to homogenise and aggregate all
the information, and then, exploit it to give better overall measurement
results and performance. Data fusion methods are essential for various
data homogenisation and aggregation. To data mine relevant relation-
ships between variables and obtain statistical models, machine learning
methods provide significant support for smart data processing and, fi-
nally, smart measurement solutions.

The methodology for the development of in-line surface measur-
ing instruments is based on the IRM framework and consists of three
phases: Phase 1 for knowledge and data (a priori) gathering, Phase
2 for instrument (and software) development and integration, based
on the data gathered in Phase 1, and Phase 3 for the development
of a control system that uses the measurement system from Phase 2
(see Fig. 2).

For the methodology presented here, in Phase 1, knowledge and data
(a priori) gathering is carried out. For example, by conducting mea-
surements of parts to understand the relationship between measured
properties, in this case defects, and component functions. Component
functions are important because those functions are the reason why the
component produced and to make an assembled product work as in-
tended. In addition, from Phase 1, properties that are the most relevant
(small changes of the values of the properties may significantly affect
the component’s functions) to be measured in-line will be identified.
Phase 2 is the development phase for an in-line measuring instrument,
both hardware and software, and the integration of the developed in-
strument into a production line/machine. At Phase 2, the aim is that
the developed instrument should be as “simple” as possible for the re-
quired measurement task. Specificity is the design aim at Phase 2, not
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versatility. Finally, Phase 3 is the development and implementation of
the control system of a manufacturing process or product by leverag-
ing the in-line measurement data obtained from the developed in-line
instrument. Table 2 shows the summary of aspects needed to be consid-
ered in the three phases during the development of an in-line measuring
instrument.

2.1. Phase 1: knowledge and data (a priori) gathering

The main goal of Phase 1, for knowledge and data gathering, is to
gather information related to instrument requirements, measured sur-
faces, measurement models and manufacturing processes to support the
IRM framework and to identify the most important defects to be mea-
sured in-line so that a measurement can be done as fast as possible. In
other words, this phase is to define the measurand definition and all
the information useful to support the IRM framework to develop of an
in-line instrument. To achieve this goal, a high-level of understanding
about the functionality or operation of a part is necessary. Subsequently,
based on this understanding, the type of relevant defects should be de-
fined. In addition, the measurement can be categorised as absolute or
relative (a comparison to a reference quantity) measurement and cor-
relations between measured defects and the functionality/operation of
the part should be established. The understanding of the correlation is
necessary to understand the range of the values of the defects that need
to be controlled. Where possible, functional tests should be carried out
to understand the relevance of a feature with respect to the functionality
of the part.

The process of Phase 1 is very often carried out by using measuring
instruments, with high resolution, which are commonly off-line instru-
ments, to gather data about surface topographies and defects. High res-
olution and accurate instruments commonly need relatively long mea-
surement times (compared to the process cycle time). With these instru-
ments, high resolution measurement data, containing comprehensive or
many features on a part, can be obtained to study the most important
defects that significantly affect the part functionality. From this study,
one can determine the minimum number of defects to be measured and
further determine the range of values needed to be controlled for the
measured defects.

Other factors to consider in Phase 1 are related to, for example, data
structures and analysis, procedures for uncertainty estimation, enhance-
ment of sensors for data capturing and types of machine learning meth-
ods that can be leveraged to improve an instrument’s performance. The
type of data structures, for example grids or vectors, is important to de-
termine what the most appropriate data analysis methods to be used, for
example 2D image or 3D point cloud processing. Procedures to estimate
uncertainty need to be planned in this phase, for example what influence
factors are relevant for a specific type of in-line measurement. Effective
and efficient machine learning methods should be selected, if possible,
to improve an instrument performance while minimising the increase of
computational cost. The time required in Phase 1 can be from several
days to several months of study, but time invested at this stage, can save
considerable time and costs in subsequent phases.

2.2. Phase 2: instrument and software development

In this phase, instrument and software development for an in-line
measuring instrument are carried out. The goal is to develop the sim-
plest and/or most efficient in-line optical instrument utilising the IRM
framework for the required in-line measurement tasks. The development
is carried out based on the outputs of Phase 1, that is, the definition of
minimum number of defects (measurands) that are relevant to the qual-
ity of a part. Several important aspects that need to be considered are
speed requirements, instrument cost, accuracy level, sensor type, size
constraint, modular design and programming language.

Speed requirements can be considered as the first aspect to be taken
into account in designing an in-line measuring instrument. The reason is
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Phase 2

The development of in-line
measuring instrument and the
integration into a production
line or machine
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Fig. 2. The three phases of the proposed methodology based on the IRM framework: Phase 1 for knowledge and data (a priori) gathering, Phase 2 for instrument

(and software) development, and Phase 3 for the use of in-line instruments for in-line control system.

Table 2

Summary (but not limited to) of aspects needed to be considered during Phase 1, Phase 2 and Phase 3

Phase 1 Phase 2

Phase 3

- Type of measurement, whether an absolute or
relative measurements
- Form or surface texture measurements

- Speed requirement from obtaining raw data to
presenting a measurement result
- Target instrument cost for both hardware and

software
- Selection of high-resolution offline measuring - Level of accuracy required for an in-line
instrument for a comprehensive study of defects instrument

(measurands)

- Measurement data correlation with respect to a
process applied to a part

- List of possible potential defects to be measured
by an in-line measurement

- Type of sensor that will be used (contact or
non-contact)

- Size constraint of an in-line instrument defined
by the space availability in a machine

- Modular design possibility to increase the
flexibility of an integration

- Type of programming language used to develop
the software of an in-line instrument

- Types of ML methods that can be efficiently and
effectively implemented

- Type of in-line integration: in-line/on-line or
on-machine

- Design of instrument cover

- Type of positioning system, for example a
Cartesian robot, an articulated-arm robot and a
linear motion stage

- Programming method to control a positioning
system, for example, serial or socket (TCP/IP)
programming

- Safety issues, for example, failsafe system, safety
fence and cable management

- Calibration and performance verification

- A control system for process or product quality
control

- Types of SPC that can be implemented to a
process

- Uncertainty consideration for the determination
of part conformance or no-conformance

- Additional information that can be used as
feedback for a process controller

- Leveraging machine learning methods for
intelligent statistical process control
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that, often, the instrument will only be used by industry if it can measure
faster than (or equal to) the cycle time of a high-throughput manufac-
turing process of interest.

Cost is also an important consideration that needs to be considered.
The instrument should have significantly lower cost than the manufac-
turing process, to justify the economic benefit of the instrument. Ac-
curacy levels should be achieved as per requirement from Phase 1. A
significant cost will be generated if the instrument is designed with
accuracy levels beyond the requirement. The sensor type can be se-
lected based on the previous considerations of speed, cost and accu-
racy. A low-cost image sensor can be potentially used to lower the in-
strument cost. The maximum available space within a machine or a
process should be considered to design the overall dimension of the
instrument.

The design of an in-line instrument should be robust to environmen-
tal noise, for example vibration, and from process contamination. Fit-
for-purpose or modular approaches can be selected. Fit-for-purpose de-
sign is needed for special-purpose production machines, especially for
on-machine and in-process measurement (see definition in Section 1.1).
Moreover, fit-for-purpose design will be optimised for a specific ma-
chine and process so that optimised and fast measuring instrument can
be obtained. However, in some cases, may be for in-line, (see defini-
tion in Section 1.1), modular design can be considered to increase the
adaptability of the instrument to various types of production machines,
for example, an in-line instrument that can fit into various types of tool
holder in milling machines.

Programming languages to write the control and data analysis soft-
ware of the instrument need to be carefully chosen. The main consider-
ations for language selection are speed and compatibility. Commonly,
C/C++, a compiled programing language, is used to develop software
for an embedded instrument; this is because C/C++ offers machine-
level compilation suitable for instruments of high measuring speed, and
can be interfaced with many instrument control systems [61]. How-
ever, Python programming language is becoming popular to be used to
write instrument software because, although it is slower than C/C++
language, it has compatibility to different instruments and also sup-
ports Internet-of-Thing (IoT) protocols [62] for system-to-machine and
machine-to-machine communications that is the base for Industry 4.0
[63]. In addition to the Python language, many state-of-the-art ML li-
braries are available. Careful considerations for selecting a type of ML,
such as availability and simplicity to collect data for model training,
and complexity of computation for the ML method should be taken into
account.

To integrate the instrument, the type of enclosure design and posi-
tioning system of the in-line measurement instrument (on-machine or
off-machine, see Section 1.1) need to be considered. On-machine mea-
suring instruments commonly have higher space constraints due to a
limited working/processing volume of a machine and higher environ-
ment disturbances, for example dust and coolants. On the other hand, in-
line measuring instruments commonly have less space constraint com-
pared to on-machine instruments.

The instrument enclosure is designed depending on the application.
Hazardous and extreme environments are some of the main challenges
in designing instrument enclosures. For example, the cover may have
a water-resistant capability to either protect the instrument from any
liquids generated from a process, or enable the instrument to be used
in submerged applications. Safety issues are also important in that a
fail-safe system may need to be provided.

For on-machine instruments, fixed or small movements of the in-
struments are often required for measurement purposes. For in-line and
off-machine instruments, a large movement of the instrument may be
required. For the movement of the instruments, the type of position-
ing system considered can range from a linear motion stage to robotic
manipulation with different coordinate systems. The contribution of po-
sitioning system errors that affect the accuracy of measurement results
must also be considered.
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2.3. Phase 3: the development of in-line control system

Phase 3 is the development of a control system for product/process
monitoring. The control system could be the simple “go/no-go” system
to prevent defected parts being sent to subsequent processes or sent
to customers and provide information about a process for further
improvement. Another type of the control system is an advanced
control system that leverages both a process model and feedback data
from in-line instruments and uses them to reduce the process drift,
variation and shift, to prevent defects of a product to pass to subsequent
processes or to repair defects of the product before going to subsequent
processes [3,40], for example the use of Statistical process control
(SPC). Moreover, additional information from product usage data
during their operating life cycle can also be used to feed information to
the control system, for example, the usage data from a product during
operations provide new types of defect of the product that also affect
the operation and have to be considered by the control system.

Statistical process control (SPC) is a well-known industry method
for advanced control systems used to control a process/product shift,
drift and variation. SPC captures assignable event on a process and give
an “alarm” so that a corrective action can be carried out. A classical
SPC is usually applied off-line that causes corrective actions can be
undertaken after a process drift or shift too far for their limits and
product with defects are already produced. To encounter this issue,
run-to-run control is applied for small batches, while a production line
is still operating, so that corrective action can be made faster compared
to the classical SPC method [40]. Intelligent SPC controllers that utilise
ML methods can also be developed to adapt to correlated data and data
from different probability distributions [40,64].

The uncertainty of measured data should also be considered to design
the control system, for example, in quality control, uncertainty values
have to be considered to determine the conformance of a part [21,65].
Moreover, the uncertainty of measurement results can be integrated into
a system controller to have a better decision of what actions need to be
taken to control the process [66].

3. Case study: the development of an in-line surface condition
detection for post-processed additively manufactured polymer
parts

The case study presents the development of an in-line instrument to
detect the surface condition of post-processed additively manufactured
(AM) polymer parts and to establish a closed-loop feedback control to
the post-processing machine to monitor and control the process. The
measurement system is considered productive because it has a substan-
tial added-value [69]. AM parts generally have rough surfaces due to a
so-called “stair case effect” resulted from layer-by-layer process [67] and
other effects, for example, balling effect in metal additive manufacturing
processes. The effects become more pronounced for surfaces processed
at high inclination angle and having excessive support structures [68].
To improve the texture of AM polymer parts, a post-processing of the
surface has to be performed. A new automated solution for the post-
processing of polymer AM parts, a so-called Postpro3D has been devel-
oped by Additive Manufacturing Technologies (AMT) with their propri-
etary method. Fig. 3 shows the automatic post-processing machine that
improves the surface finish of AM polymer parts. The automatic post-
processing solution results in a significant increase in productivity of AM
polymer processes due to a time reduction of manual post-processing
and an increase of the surface texture quality

Postpro3D post-processing machine is a physical-chemical-based
process that can smooth a wide variety of polymers used in AM, includ-
ing Nylon-12, Nylon-11, Nylon-6, flame resistant nylons, carbon/glass
filled derivatives of nylon, thermoplastic polyurethane (TPU), thermo-
plastic elastomers, ULTEM 9085, PMMA, PLA and other polymer types
[70,71]. Postpro3D is a non-line-of-sight process that can smooth com-
plex internal cavities of polymer parts. The advantages of Postpro3D
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Fig. 3. PostPro3D automatic polymer AM surface smoothing machine.

machine are that it is highly controllable, allowing reproducible result
and closing surface pores so that the surface provides water-tightness
property and has comparable surface finish to that one manufactured
using injection moulding (see Fig. 4). In Fig. 4, it is worth to note that
the presented images are obtained from a focus-stacking of images at
different focus position and not from a single microscope image.

In this case study, the in-line instrument will be integrated outside
the post-processing chamber to measure a surface condition directly af-
ter post-processing so that it is categorised as off-machine (in-line mea-
surement that is carried out outside a production machine). Relevant
barriers (see Table 1) that need to be addressed in this type of in-line
measurements are:

e Multi-scale measurements to capture the feature on AM polymer sur-
faces with different spatial wavelength.

¢ Measurements under noisy or harsh environment, for example vibra-
tion in a workshop, dust and chemical vapour.

¢ Fast measurements than the cycle-time of the post-processing.

Efficient and effective handling of large data from measurements.

Flexible in-line integration into post-processing chain and the use of

measurement data for AM polymer part quality control.

Fig. 5 shows the schematic view of the three phases of the in-line in-
strument development. In Phase 1, a focus variation microscopy (FVM)
measuring instrument was used to study the surface texture of AM poly-
mer parts. Following Phase 1, the development of an instrument and a
software is carried out in Phase 2 based on the results obtained in Phase
1. Finally, in Phase 3, the developed instrument is integrated into the
post-processing process chain. Details of each phase are explained in the
following section.

3.1. Phase 1: high resolution measurement of polymer surfaces

The first step in Phase 1 is to define the requirement of the in-line
instrument for the surface condition detection. The requirements are:

e The maximum dimension of the instrument should be <
(200 x 200 x 200) mm to comply with the end-effector of a
collaborative robot.

¢ The maximum mass of the instrument should be <3kg to comply with
the maximum payload of a small collaborative articulated robot arm.

e The instrument is equipped with a stand-alone robust and fast soft-
ware.

¢ The maximum detection time of surface condition is within <15s.

The cost of instrument should be acceptable (significantly lower than

the machine cost).

e The instrument should be flexible, simple to be integrated in-line
into the post-processing chain, and portable.

In this case study, a surface texture measurement type is required
(see Table 2). To understand the evolution of polymer surfaces during
the post-processing, the focus variation microscopy (FVM) instrument
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with a 20x objective lens was used. With the objective lens, the FVM
has theoretically up to 10 nm vertical resolution and 0.8 um lateral sam-
pling distance so that small features on polymer surfaces can be cap-
tured to understand the evolution of the surfaces. Fig. 6 shows the high
resolution measurements with the FVM instrument that is a type of off-
line measurement. Since this measurement is to study the evolution of
the polymer surfaces after being applied at different levels of the post-
processing, measuring time is not relevant (since it is in Phase 1, see
Section 2.1). Instead, the understanding of the surface evolution is more
relevant to decide what attributes need to be measured.

Nylon-12 and TPU polymer surfaces were measured in the surface
evolution study. A total of 18 parts were measured for both types of
polymer. For each type, six post-processing levels (three parts for each
level) were applied to the parts: 0% (no-post-processing), 25%, 50%,
75%, 100% (optimal processing) and sixth >100% “over-processed” pro-
cessing stage. For Nylon-12 parts, two measurement areas (at top and
bottom surfaces) were measured, which leads to a total of 36 measure-
ments. For TPU parts, nine measurement areas (one at a flat surface and
eight at an inclined surfaces) were measured, which leads to a total of
162 measurements (see Fig. 6).

The results of the Nylon-12 and TPU polymer surfaces texture mea-
surements are shown in Fig. 7. In Fig. 7, Sq areal parameters [82] were
calculated from a (2.5x2.5) mm area with S-nesting index [83] of
2.5um and L-nesting index [83] of 500 um. Sq represents the value of
root mean square of heights within a measured area [84]. The S- and L-
nesting index are the filtration operator to remove short-scale and long-
scale components from an extracted surface texture, respectively. From
the results in Fig. 7, the post-processing significantly increases the sur-
face finish of the polymer parts. In this particular test, 100% surface
finish for both TPU and Nylon-12 surfaces was around 2 um. Overall, de-
pending on the application, the post-processing can improve the surface
finish by reducing Sq from tens of microns to below 1 pm for both TPU
and Nylon-12 surfaces. For the TPU surface, >100% “over-processed”
resulted in an increase in texture roughness, whereas for the Nylon-12
surface the difference was insignificant.

In this case study, a relative measurement is required (see Table 2),
that is, the measurement task is to be able to differentiate a required
post-processed surface (at 100% post-processing level) with respect to
other surfaces processed at different post-processing levels. For this type
of measurement, 3D surface measurement is considered to be not suit-
able. The reason is that it requires relatively longer measurement time
(typically in the order of minutes) and higher development cost. For ex-
ample, due to the need of a precision optical system and a linear motion
stage, many 3D surface measurement methods require a scan through
a focus position of a measured surface to collect a stack of images and
reconstruct a 3D surface model from thereof.

Subsequently, a solution based on microscope-based 2D machine vi-
sion is selected due to several reasons:

¢ Only relative measurements are required. The measurement involves
quantitative image comparisons between a measured and a reference
surface considered as a pre-defined surface with smooth surface fin-
ish.

¢ Alow development cost can be achieved because the cost of 2D imag-
ing complementary metal-oxide-semiconductor (CMOS) sensors has
been significantly reduced.

¢ A significant performance improvement of a 2D machine vision
instrument can be obtained by implementing a machine learning
method to improve the classification capability of various AM poly-
mer surface textures after the post processing.

3.2. Phase 2: the development of fast in-line measuring instrument

Based on the results from Phase 1, the development of a 2D ma-
chine vision instrument and its control software are presented in this
section. In addition, the validation, using both simulated images and real
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Fig. 4. Anexample of the surface of a TPU material
smoothed to different controllable levels.

PHASE 3

?

Microscope

I Control

The software Surface treatment
and PC machine

Control ]

Total measurement Development

Integration

Fig. 5. The three phases approach for the development of the in-line measurement system.

Fig. 6. Phase 1 — High resolution measurements with an FVM instrument. In
this example, a TPU surface was measured.

measurement images, of the developed instrument and software are also
presented.

3.2.1. Instrument development

The required in-line instrument should be low-cost, low-mass, small,
and based on non-contact method (see Table 2). Based on the require-
ments, a small and compact instrument with microscope-based 2D ma-
chine vision that can capture the feature of surface textures is de-
veloped. The design of the instrument in 3D solid model is shown
in Fig. 8. In Fig. 8, the instrument has the maximum dimension of
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(203 x 121 x 84) mm. The instrument complies with the requirements
for low-cost, low-mass and compact so that it has high flexibility for an
integration into the post-processing chain. A small area of a surface can
be captured and magnified to get detailed texture features for further
analysis.

The instrument consists of illumination and microscope modules.
The microscope module is constructed with a camera of a complemen-
tary metal-oxide semiconductor (CMOS) sensor, a beam splitter, a tube
lens, objective tool changer and objective lenses with 4x and 10x mag-
nifications (see Fig. 8). With the objective tool changer, more objec-
tive lenses with different magnifications can be mounted. A parallel
light reflected from a measured surface enters the aperture of the ob-
jective lens and is transformed into an image on the CMOS sensor by
the tube lens. The beam splitter is used to deflect the off-axis parallel
ray from the white light source (after passing a diffuser) into the axis of
the microscope. Both the beam splitter and the tube lens have transmis-
sion spectra of 400nm-700nm. The CMOS sensor has a pixel density of
(1280 x 1024) pixels with a frame rate up to 45 fps.

The illumination module consists of a white light emitting diode
(LED) and a diffuser lens (see Fig. 8 bottom). The LED has a total power
output of 250mW with an intensity of 3mW/cm?. The emission of the
LED has a spectrum of 400nm — —700nm. To improve the cross-sectional
intensity distribution of the light from the LED, a diffuser lens, with
a transmission spectrum of 380nm-1100nm, is used. With the diffuser
lens, the LED will have a uniform intensity across the field of view of
the objective lens of the microscope. Fig. 9 shows the developed instru-
ment without and with an enclosure. The total weight of the instrument
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Fig. 7. Improved surface finish after the different stage of the post-processing for TPU (left) and Nylon-12 (right). The process type number 1, 2, 3, 4, 5, and 6
indicates surfaces with post-processing of 0%, 25%, 50%, 75%, 100%, and >100% (over-processed), respectively.
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with the enclosure is 2.4 kg, suitable to be mount on small robotic arms
systems that commonly have around 3 kg payload.

3.2.2. Software development

For the software development, the selection of programming lan-
guage is very essential for the performance of a developed software (see
Table 2). In this case study, C/C++ programming language is used to
have a high speed software performance to comply with the general
requirement (see Section 3.1).

A general unsupervised classifier of various different types of poly-
mer surfaces, post-processed at different levels, is developed. In this

Diffuser lens
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Fig. 8. The 3D solid model of the in-line surface
detection instrument.

White light
source

Fig. 9. The developed instrument (Phase 2a). (a) The
developed instrument based on imaging microscopy,
and (b) the instrument with the enclosure.

case, a machine learning method that does not require a large data set
to be trained and a very fast learning process is required. The classifier
is based on an unsupervised machine learning approach using princi-
pal component analysis (PCA) [72]. The fundamental idea of PCA is
that data with high dimension are reduced to lower dimension. In this
case, high dimension data are the number of pixels of an image with
(1280 x 1024) pixels, obtained from the CMOS sensor, can be reduced
to a lower number of dimensions that still contains the important sur-
face texture information. Implementing PCA directly into an image (raw
data) requires expensive computation and large memory. Subsequently,
to improve the computation efficiency of the PCA, a total of 54 image
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Table 3
The calculated image parameters
No. Parameter No. Parameter No. Parameter
1 Mean of RED channel 19 Number of blobs 37 o of HSV value
2 Mean of GREEN channel 20 The biggest blob 38 LED: horizontal [73]
3 Mean of BLUE channel 21 The smallest blob 39 LED: vertical [73]
4 o of RED channel 22 The mean of blobs 40 LED: 45° [73]
5 o of GREEN channel 23 o of blobs 41 LED: 135° [73]
6 o of BLUE channel 24 Max. blob diameter 42 LED: others [73]
7 Mean of grey pixel value 25 Min. blob diameter 43 BLP: Symmetric covariance [74]
8 o of grey pixel value 26 Mean blob diameter 44 BLP: auto correlation [74]
9 RED Histogram entropy 27 o blob diameter 45 BLP: standard dev. [74]
10 GREEN Histogram entropy 28 Max. blob and bounding box ration 46 BLP: ¢ of covariance [74]
11 BLUE Histogram entropy 29 Min. blob and bounding box ration 47 BLP: mean covariance [74]
12 Mean of HUE value 30 Mean blob and bounding box ration 48 BLP: mean symmetric variance [74]
13 o of HUE value 31 ¢ blob and bounding box ration 49 BLP: ¢ symmetric variance [74]
14 Mean of SATURATED value 32 Mean value of Fourier absolute image 50 BLP: ¢ of symmetric variance [74]
15 o of SATURATED value 33 o value of Fourier absolute image 51 BLP: mean of binary pixel [74]
16 Mean of V value 34 Mean value of Fourier phase image 52 BLP: mean Rotation invariant binary pattern [75]
17 o of V value 35 o value of Fourier phase image 53 BLP: ¢ of Rotation invariant binary pattern [75]
18 Image focus measure [7] 36 Mean of HSV value 54 BLP: mean of covariance [75]

o = statistical standard deviation, blob = identified white area on grey-scaled image.

BLP =Binary local pattern, LED = Local edge descriptor.

parameters are pre-calculated from the captured image of a surface, ob-
tained from the developed instrument, to feed the PCA algorithm. By
calculating these parameters, a pre-step in data reduction is applied to
increase the speed of the PCA algorithm.

The fundamental idea of PCA is explained as follows. Let Nbe the
number of training data (number of images), and mis number of image
parameters. Hence, a column vector of image parameters X,,; averaged
from number of training images can be calculated as:

N ot X e
where X, is the vector of image parameter with the number of element
m for the n-th training image.

The PCA will project the parameter data on to the principle axis,
also called principle component (PC), u,,;, where k is number of reduced
dimension {k € 1---54} that maximises the variance in training data:

1 N S 2
ﬁ Zn:] {quXm" - quXMI} = qusmmumk’ 2)

where, S, is the covariance matrix of the parameter data and is calcu-
lated as:

1 N
S ﬁ Zn:l
The principle axis u’,;, that maximises the variance in the training data
from Eq. (2) is Eigen vectors of S, that correspond to the largest Eigen
values of S,

The classification process of polymer surface conditions is carried out
by calculating a similarity value. The similarity value is defined as the
Euclidean distance d between projected data of the image parameters
of a measured surface (@), and projected data of the image parame-
ters of a reference surface ((p;ef) on the principle axes u’,; that is the
distance of a new point (from a new measurement) to the mean of the
class cluster (obtained from training). Note that the number of element
of both ¢;"** and q)l‘ff are equal to the number of element of the reduced
dimension k. The projected data of the image parameters @;'** and q)Lef
are calculated as follows:

iml

mm —

(an _Xml)(xmn _Xml)T‘ (3)

o= = T, (X257 - K, @
and
ot = uf, (X0 Xy ). )

The Euclidean distance d in PC space, that is the similarity value,
between @}'** and q)l'{ef are calculated as:

mea

d=1/(gn ©)

—opT)”
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The PCA classification of the images of different surface conditions
are calculated from the 54 image parameters. With this approach, the
calculation of the PCA classification is more efficient compared to the
calculation of the PCA from all the raw pixels of an image. During train-
ing, the best number of considered dimensions (from 3 to 54) can be
determined. The 54 image parameters include both colour-related and
texture-related parameters to represent the texture of surfaces [73]. The
colour-related parameters consist of, for example, the calculation of sta-
tistical parameters of the colour and the histogram entropy of an image
[72]. The texture-related parameters consist of, for example, the calcula-
tion of statistical parameters of blobs of an image, binary local patterns
[74,75] and local edge descriptors that is part of the multimedia content
description interface (MPEG-7) [76]. Table 3 shows the 54 calculated
parameters as the input for the PCA algorithm.

The developed software, implemented in the C/C++, works as a
stand-alone software to control the developed instrument, to process
images for the detection of surface conditions, and to control a collab-
orative robot used to position the instrument to a focus position with
respect to a part surface for measurement. The image processing uses
the OpenCV robust image processing library [77], and the graphical
user interface (GUI) is developed using the Qt framework [78]. The de-
veloped software is shown in Fig. 10. In Fig. 10, the software has two
main modules: measurement and machine learning.

The measurement module provides the capability to control the col-
laborative robot, to adjust camera settings and to detect a surface con-
dition; by comparing a measured surface with respect to a reference
surface. The camera settings can be adjusted to find an optimal surface
colour. An auto-exposure algorithm [79] and a white-balancing algo-
rithm [80] are implemented to optimise the colour adjustment. The de-
tection process is carried out based on the already described machine
learning approach that learns distinctive image properties data from a
measured surface and image properties data of a reference surface and
compares them. Based on the learning process, a measured surface can
be monitored and classified as similar or dissimilar with respect to the
reference surface. The machine learning module provides the function-
ality to also control the collaborative robot, to adjust camera settings
and to train the software with a specific reference surface. This module
allows setting of the number of training data and the number of reduced
dimensions from 2 to 54.

The machine learning process is as follows. An image is taken from
the CMOS sensor according to a number of training images Nthat are
set by a user. For each captured image, the 54 image parameters are
calculated as the first data reduction. By this reduction, the training
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Fig. 10. The developed software (Phase 2b-software development). (a) The measurement module, and (b) the machine learning module.

efficiency increases so that only hundred number of images are required
to effectively conduct the machine learning process. A mean of the
54 parameters is calculated and a matrix containing the difference of
values between the 54 parameters of each image and the mean param-
eters is derived. Subsequently, a 54 x N training matrix is constructed.
Finally, the PCA method is applied to the training matrix. A single
value decomposition method is applied to obtain the eigenvectors and
eigenvalues of the trained data. The trained data are stored in a file
so that the file can be recalled when a specific surface detection is to
be carried out. A similarity value is calculated between the reference
surface and the measured surface to decide whether the two surfaces are
similar or not. With the calculation of the similarity value, subjectivity
for determining a specific surface texture condition can be eliminated.

3.2.3. Instrument and software testing

Before the integration of the develop instrument and software into
the post-process chain, several testing was carried out to verify their ef-
fectiveness for surface condition detection. Two stages of testing were
applied: testing with simulated images and testing with real TPU sur-
face images. The test with simulation images is to understand how well
the algorithm can separate different surface images. With the simulated
images, how different each simulated image can be understood and con-
trolled so that the separation among simulated images in a PC space can
be correlated.

A number of generated images with simulated speckles features were
generated as the first test. The simulated speckles consists of different
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sizes and density to represent different features and condition on a sur-
face and is generated by a method found elsewhere [81]. Four types of
simulated images with speckle features are generated, namely Type 1,
Type 2, Type 3, and Type 4 (see Fig. 11). A total of 100 images are gen-
erated for each type of the simulated images. Type 1 images represent an
un-processed surface and have the largest size of speckle patterns with
the lowest density. In contrast, Type 4 images represent a processed
surface and have the smallest size of speckle patterns with the highest
density. A simulated image of type 4 is selected as a reference surface. A
total of 100 images are used for the training. The trained data are used
to calculate a similarity value to detect the different type of simulated
images with respect to the reference image. In this test, three PC spaces
(number of reduced dimension k = 3) are considered for the surface de-
tection.

The projection data onto the three PC of the simulated image param-
eters is shown in Fig. 12. In Fig. 12a, the separation plot of the projection
data considers only two out of three PCs (2D view), from each image
type in PC space. Meanwhile, the separation plot considering three PCs
(3D view) is shown in Fig. 12b. From Fig. 12, the different types of sur-
faces can be classified into four different groups. The Type 4 surfaces,
as the reference surface, can be largely separated from the other types.
It is worth to note that Type 1 and Type 2 simulated surfaces are sep-
arated along the direction of PC2 (see Fig. 12b). Calculated similarity
values will be significantly smaller for Type 4 compared to other values
of the other types. Table 3 shows the calculated similarity values for
the four types of surfaces compared to the reference surface (Type 4).
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Fig. 11. One example for each type of simulated images with speckle patterns.
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Fig. 12. Separation of each type of simulated images in PC space (a) in 2D view, and (b) in 3D view.

From Table 3, Type 4 surfaces can be identified from the other types of
surfaces by setting a threshold value.

Furthermore, tests were also carried out for the measurement of real
polymer surfaces: TPU and Nylon-12. Fig. 13 shows one of the measure-
ments of both samples. The testing with both of the material surface
images uses five types of surfaces with different post-processed levels,
namely: Type 1, Type 2, Type 3, Type 4 and Type 5 that represent 0%
(unprocessed), 25%, 50%, 75% and 100% (fully processed) surfaces, re-
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Fig. 13. Testing with real surface measurements (a) Nylon-12

— and (b) TPU surfaces.

spectively. The type refers to a specific process parameter for a specific
polymer, such as processing time. A total of 100 images for each type
of surface are captured. In order to cover various types of features on
each surface type, the 100 images are captured from different areas that
cover the entire surfaces.

Figs. 14 and 15 show a measurement process for one of the TPU
and Nylon-12 surfaces at different post-process level, respectively. From
Figs. 14 and 15, the Type 1 (unprocessed) surface has high roughness



W.P. Syam, K. Rybalcenko and A. Gaio et al. Optics and Lasers in Engineering 121 (2019) 271-288
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Type 5-100%
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Fig. 14. The images of the five types of TPU surfaces.

Typel-0% Type2-25% Type3-50%
Type4-75% Type 5—100 %

Fig. 15. The images of the five types of Nylon-12 surfaces.
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Fig. 17. Separation of each type of Nylon-12 images in PC space (a) in 2D plot, and (b) in 3D plot.

and Type 5 (fully processed) has low roughness. The reference surface
is a surface from Type 5. The surface of Type 4 and Type 5 have a small
difference on their textures.

Training procedures used a total of 100 Type 5 images for both TPU
and Nylon-12 materials. Surface condition measurements will be com-
pared with respect to the Type 5 surfaces. The calculated similarity val-
ues of all measurements were calculated by considering three PC com-
ponents out of 54 components from the training data.

Fig. 16a and b shows the separation plot of each TPU image type in
PC space as a 2D (two PCs) and 3D plot (three PCs), respectively. From
Fig. 16a and b, the Type 5 TPU surfaces can be isolated from the other
types of TPU surfaces. However, the group of type 4 surfaces are close
to the group of Type 5 as can be qualitatively observed from the images
in Figs. 14 and Fig. 15 that the Type 4 surface is similar to the Type 5
surface.

Fig. 17a and b shows the separation plot of each Nylon-12 image
type in PC space as a 2D (two PCs) and 3D plot (three PCs), respectively.
Similar results with the measurement of TPU surfaces, the Type 5 Nylon-
12 surfaces can be isolated from the other types of TPU surface as shown
in Fig. 16a and b. For the Nylon-12 surfaces, the group of Type 4 surfaces
are quite far to the group of Type 5 as can be qualitatively observed from
the images in Fig. 15 that the Type 4 surface is not as similar as the Type
5 surface.
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Table 4 shows the calculated similarity values for the five types of
TPU and Nylon-12 surfaces compared to the Type 5 surface as the ref-
erence. From Table 4, the closer condition or texture of a surface com-
pared to its reference surface, the lower the similarity value. All surfaces
close to their reference surface have the lowest similarity value, which
means that surfaces are considered similar to their reference surfaces. A
threshold can be set to detect Type 5 surfaces from the other types. The
detection time is ranging from around 2-4 s depending on the number
of features on the surface texture and is less than the required maximum
detection time of 15s.

3.2.4. Sensitivity analysis

It is important to quantitatively analyse the effect of the variation of
similarity values with respect to the variation of pixel intensity on the
CMOS sensor. The pixel detector on the CMOS sensor has noise so that
the intensity value of a pixel at each detector will vary over time. The
analysis of the intensity variation is carried out by analysing a single
intensity value of a pixel on the detector over time. A Nylon-12 sur-
face was used for the analysis. The sampling frequency of the detector
was set to 15 fps because the sampling frequency range of the camera is
around 10—-15 fps for measurements. A total of 100 pixels were sam-
pled over a period of 6.6 s. The sampling period is considered sufficient,
since it is larger than detection time of around 2——4s. Fig. 18a shows
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Table 4
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Similarity values, with respect to a reference surface, for the tested simulated and TPU surfaces. o

is a standard error

Image type  Similarity value (mean + ¢) x 10%
Type 1 Type 2 Type 3 Type 4 Type 5 Reference
Simulated 23,797.6+327  20,117.5+234  5219.6+65 8.712+0.1 - Type 4
Image type  Similarity value (mean + ¢) x 10°
Type 1 Type 2 Type 3 Type 4 Type 5 Reference
TPU 40.1+0.3 176.2+1.9 3489+34 482+08 9.8+03 Type5
Image type  Similarity value (mean + o) x 10°
Type 1 Type 2 Type 3 Type 4 Type 5 Reference
Nylon-12 599.4+9.3 1187.3+56 503.6+10.9 89.4+1.9 27+0.2 Type5
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Fig. 18. (a) The pixel variation over a period of 6.6s (100 values) and (b) the sensitivity of similarity value over the level of pixel variation.

Non-contact in-process
instrument

the pixel intensity variation over 6.6 s. The results of the variation anal-
ysis show that the standard deviation of the pixel intensity is 2 pixel
unit.

The analysis of the similarity value is carried out by analysing the
similarity value of a Nylon-12 surface image with respect to the image
of the Nylon-12 surface with increasing values of pixel intensity varia-
tion. A Gaussian noise with a mean 0 pixel unit and a standard deviation
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Fig. 19. System integration of the developed in-
strument with an articulated-arm robot (Phase 3).

ranging from 0 to 100 pixel units are used to perturb the intensity values
of the pixels of the image. Fig. 18b shows the results of the sensitivity
analysis of similarity value. From Fig. 18b, it can be observed that the
similarity value is stable below a noise of 30 pixel units. From this re-
sult, a surface detection is considered robust, since the pixel intensity
variation is within only 2 pixel units that is in the left region of the red
line in Fig. 18b.
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Fig. 20. Measurement of the green coloured Nylon-12 surfaces.

3.2.5. In-line integration into post-processing chain

The developed instrument is integrated in-line into the post-
processing chain. Factors considered in the integration are the selection
of a positioning system, the design of the enclosure for the instrument
and the type of programming method to control the positioning sys-
tem (Table 2). For the positioning system, a collaborative articulated-
arm robot (cobot) is selected for the integration due to its flexibility
and workability with human. The cobot has linear resolution of 0.1mm
and rotational resolution of 0.5°. The enclosure for the instrument is de-
signed to be stiff with 2mm thick aluminium sheet, because the cobot
and the instrument are placed in an open area within the post-processing
chain. To control the robot with the developed software, a socket pro-
gramming approach is selected due to its universality with respect to
different robot manufacturers. With socket programming method, the
control procedure for the cobot can be applied to different cobot man-
ufacturers so that the flexibility of the integration is increased. Fig. 19
shows the in-line integration of the developed instrument and software
with the cobot. The in-line measurement is carried out after a post-
processing has finished.

3.3. Phase 3: control system implementation

In this case, a simple “go/no-go” control system based on feed-
back data is implemented. The main goal is to distinguish parts that
have different surface quality with reference surfaces. The defective
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parts will be re-processed to achieve a desirable level of surface fin-
ish. A demonstration is showcased by measuring coloured Nylon-12
surfaces. The purpose of the demonstration after the integration is to
test the ability of the selected cobot as a positioning system to effec-
tively position the instrument at its focus position for the purpose of
capturing images and to test the classification ability of the instru-
ment. Only two types of green Nylon-12 parts are used: unprocessed
and processed at 50%. Fig. 20 shows the measurement of the polymer
parts.

The demonstration uses the processed part having smooth surfaces
as the reference. For the training processes, a total of 150 images of
the reference (processed) surfaces are captured to extract the learning
data. Fig. 21a shows the measurement area (green box) for the 150
training images. The unprocessed part is shown in Fig. 21c as a vali-
dation pair. Measurements on both type of unprocessed and processed
parts are carried out covering the entire top surfaces of the parts (see
Fig. 21b and d in red boxes). For each part, a total of 100 measure-
ment images are captured. The threshold value for classification of the
surfaces (whether they belong to the unprocessed or processed parts)
is set to be less than five times from the calculated reference similarity
value form the training process. The threshold selection is based on the
results shown in Table 3. The demonstration shows that all the images
captured form the two surfaces can be correctly classified as processed
or unprocessed with 100% success rate and a “go/no-go” can be made
to the parts with different surface quality with respect to the reference
surfaces.

4. Conclusion and future work

In this paper, a methodology to develop an in-line measuring instru-
ment is proposed. The methodology can be used as a general frame-
work to develop in-line surface measuring instruments and is validated
with a case study to develop an in-line surface measuring instrument
for post-processed AM polymer parts. The purpose of the developed in-
strument is to quantitatively detect the surface condition of the surfaces
at different post-processing level. The results show that by using the
methodology, a successful development and implementation of an in-
line instrument can be achieved. With the developed instrument, a sub-
jectivity to classify the condition of the surfaces can be eliminated since
the condition is quantitatively represented as a similarity value. Future
works include applying the proposed methodology for the development
of an in-line surface measuring instrument for absolute measurements
as well as further fundamental research to solve the various mentioned
barriers.

Processed

Measurement

Fig. 21. Surface areas used for training and measurement. (a) Sur-
face areas (green box) on the processed Nylon-12 part used for
training, (b) measurement areas (red boxes) on the processed part
for measurement validations, (c) the unprocessed Nylon-12 part,
and (d) surface areas (red boxes) on the unprocessed part for mea-
surement validations.
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