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a b s t r a c t 

The productivity rate of a manufacturing process is limited by the speed of any measurement processes at the 

quality control stage. Fast and effective in-line measurements are required to overcome this limitation. Opti- 

cal instruments are the most promising methods for in-line measurement because they are faster than tactile 

measurements, able to collect high-density data, can be highly flexible to access complex features and are free 

from the risk of surface damage. In this paper, a methodology for the development of fast and effective in-line 

optical measuring instruments for the surfaces of parts with millimetre- to micrometre-size is presented and its 

implementation demonstrated on an industrial case study in additive manufacturing. Definitions related to in-line 

measurement and barriers to implementing in-line optical measuring instruments are discussed. 
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. Introduction 

The productivity of a manufacturing line depends on the through-

ut of high-quality parts that are produced within a prescribed period

f time. To control the quality of parts without reducing the production

ate, the parts should be inspected accurately and quickly [1,2] . Fur-

hermore, quality control procedures should be applied at each step of

 complex process chain to reduce stack-up variations during the pro-

esses and to meet desired tolerances [3,4] . Hence, fast (less than the cy-

le time of a process) and effective (satisfying desired requirements, for

xample accuracy) in-line measuring instruments are required to control

he quality of parts without halting the manufacturing processes [4] . 

In this paper, a general methodology to develop in-line surface mea-

uring instruments focusing on millimetre- to micrometre-feature size

s presented. The applications of this type of in-line measurement are,

or example, in micro-scale injection moulding, micro-scale polishing

icro-scale milling, micro-scale electrical discharge machining, micro-

cale electrolyte jet machining, precision grinding, additive manufactur-

ng of small parts and surface coating systems. A case study is used to

how implementation of the methodology for in-line measurement (see

ection 1.1 ) of product properties; in this case, the surfaces produced

y a polishing process for additively manufactured polymer parts. The

evelopment of in-line measuring instruments is a challenging task. The

hallenges are not only the measurement speed requirement, but also is-

ues such as environmental noise, data fusion and system-level integra-
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ion. Considering the requirement of maintaining faster measurement

peeds, tactile (contact) measuring instruments are often not suitable for

n-line measurement because, while accurate, they are slow and can only

easure a limited number of points on the surface of a part [4–6] . Sub-

equently, in many cases, optical instruments may be suitable for in-line

easurement due to their advantages over tactile instruments, including

he ability to obtain high-density data within relatively short measure-

ent times, to gain access with complex geometries, and to measure

urfaces without the risk of damage [6] . However, there are many chal-

enges, which are elaborated on in more detail in Section 1.2 , that hinder

he development of in-line optical instruments including measurement

ethodology, speed, system integration and control, traceability and

ystem intelligence. 

This paper is structured as follows. In Section 1 , several definitions

o clarify the scope of the study are proposed and barriers to the de-

elopment of optical methods for in-line measurement are presented. In

ection 2 , the detailed description of the proposed general methodology

o develop in-line surface measuring instruments is elaborated. The gen-

ral methodology provides guides from the understanding of the mea-

urement task, the definition of the measurand, the development of a

ast and effective in-line measuring instrument, the integration of the

eveloped instrument into a manufacturing process and the control of

he process by using feedback data from the in-line instrument. A case

tudy that applies the methodology for in-line surface measurement of

dditively manufactured polymer parts is presented in Section 3 . Finally,

ection 4 concludes the paper and discusses future work. 
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Fig. 1. Definitions of in-situ, in-line and on-machine measurement (adapted 

from [3] ). 
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.1. Definitions 

Following the CIRP draft definitions [3] , several terms related to in-

ine measurement are given below. 

• In-situ measurement : a measurement of a part surface that is carried

out inside the same manufacturing floor/shop floor without isolating

the measurement process outside the manufacturing line. 
• In-line/on-line measurement : a measurement of a part surface that is

carried out in a production or manufacturing line either inside ( on-

machine ) or outside ( off-machine ) a production machine. Meanwhile,

for off-line , the measurement is carried out outside the production or

manufacturing line, but still inside the same manufacturing floor. 
• On-machine measurement : a measurement of a part surface that is

carried out inside a production machine that manufactures the part.

The measurement can be carried out in-process (during the process)

or off-process (before or after the process). 

From the definitions above, in-situ measurement includes both in-

ine/on-line and on-machine measurement. Fig. 1 shows a pictorial rep-

esentation of the definitions. 

.2. Barriers to developing in-line measuring instruments 

Focusing on optical measuring instruments, there are challenges that

eed to be overcome for in-line measurement. We divide the challenges

nto five groups: methods; speed; system integration and control; trace-

bility; and intelligence (defined here as the ability of an instrument

o take decisions and learn from prior measurements) ( Table 1 ). How-

ver, several challenges are not only relevant for optical instruments,

ut also for tactile measuring instruments, such as the ability to under-

ake multi-scale measurements (measurement of form at hundreds of

illimetre scales and surface texture at sub-micrometre scales) and to

easure in noisy environments (for nanometric accuracy). 

Method is related to the limitations of the optical measurement work-

ng principles. A few examples of physical limitations are given. Phys-

cal limitations related to imaging optics are the slope and resolution

imits of the numerical aperture, limited measuring areas and the rela-

ively short working distance to the measured surface [7] . The intensity

f light from highly reflecting surfaces may exceed the pixel threshold

alue causing saturation of the imaging sensor, which can negatively

ffect a 3D surface reconstruction calculation [7] . Also, environmental

oise from vibration, temperature, humidity and pressure variations,

an significantly contribute to the uncertainty of optical measurement

esults [8] . 

Speed here refers not only to the speed of a measurement, but also

o speed of motion required to access a surface, and to the speed of

andling and processing of high-density data obtained from an opti-

al instrument. The total measurement speed of the instrument depends
272 
n how fast the instrument can capture the raw data, for example, a

tack of images, and the processing speed to derive a measurement re-

ult from the raw data. The processing speed becomes more relevant

hen measuring a surface, reconstructing a 3D model and calculating

pecific parameters from the reconstructed surface data. 

System integration and control includes the integration of an in-line

easuring instrument into a machine or production line and the integra-

ion of the measured data into a system level data management system.

he economic advantage of an in-line measuring instrument becomes

ore significant when a production system can be controlled and main-

ained by an integrated organisation data management system [9] . The

se of methods such as statistical process control can detect, currently

ff-line or per production batch, whether a process deviates from its pre-

efined operating conditions. The main challenge for in-line control is

o have a fast in-line measuring instrument, working in an uncontrolled

nvironment with noises, for example inside a machining chamber, with

 measuring time less than or equal to the production speed. Also, in-

egration and control are related to the use of modular design concepts

o be able to produce a flexible in-line measuring instrument that can

e adapted to various machines or production lines, regardless of, for

xample, space constraints. 

Traceability , an essential factor for measurement, covers the issues

f performance verification and calibration of in-line optical measur-

ng instruments and the uncertainty estimation associated with their

easurement results. For performance verification, there has been sub-

tantial work on how to develop material measures and procedures to

erify the performance of off-line optical measuring instruments [10] .

here has also been some research to verify the optical performance of

n-line measuring instruments [11,12] . For measurement uncertainty es-

imation, there is still a need for methods to identify relevant influence

actors for an in-line optical instrument [3] . 

Intelligence refers to the challenges to build intelligent in-line opti-

al instruments and includes the utilisation and application of machine

earning (ML) methods, that are only now being utilised for measure-

ent applications, to enhance the capability and performance of the

nstruments, for example, the capability to understand surface orienta-

ions [13] , to automatically segment 3D point clouds [14] and to in-

er surface information from missing data using a priori information

15] . Recently, deep learning neural network methods have been used

n many applications, for example, to automatically segment objects,

specially for machine vision applications [16,17] . The availability of

bundant data, low-cost computers with high computing power and ad-

anced learning algorithms cause deep neural networks, that is a neural

etwork with many of layers and multiple hierarchies of abstractions

16] , to perform significantly better than neural networks with only a

ew layers [18] and classical machine learning methods, for example,

upport vector machines [19] . However, despite the popularity of deep

earning methods, their lack of capability to estimate prediction uncer-

ainty [20] causes a problem in their implementation for measurement

pplications, as the methods are only used as a black-box system, for

xample, part conformance determination in quality control requires

easurement uncertainty statements to aid a decision [21] . The use of

ayesian probabilistic approaches may be able to address the uncer-

ainty prediction in machine learning [22] , but suffers from the need for

igher memory capacity than neural network methods [19] . The com-

ination of deep learning and Bayesian approaches holds the possibility

o enhance the capability of deep learning methods, while maintaining

n estimate in prediction uncertainty [20] . 

It is worth noting that we do not necessarily need to overcome all the

bove challenges to develop an in-line measuring instrument. Rather,

nly relevant barriers that are related to our specific in-line measure-

ent requirements need to be addressed. The identification of what the

elevant challenges are, for the development of a specific in-line surface

easuring instrument, is elaborated on in Section 2 . Table 1 summarises

any of the challenges and the current state of the art. 
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Table 1 

Barriers to implementing optical in-line measuring instruments 

Challenge Current state of the art 

Method Measurement of large areas significantly increases measuring time Microscope-based optical methods only measure a relatively small 

area [7] . To measure a larger area, multiple measurements 

followed by data stitching should be carried out. 

Measurement with high spatial bandwidth (multi-scale 

measurements) includes both form and surface texture 

measurements 

Most optical measuring instruments either measure a large area 

with low resolution or a small area with high resolution [23,24] . 

Measurement of features with high slope angles is difficult The ability to measure surfaces with high slope angles is limited by 

the numerical aperture (NA) of an objective lens [25] ; however, 

with certain configurations, advanced measurement models and 

a priori information, high slope measurements beyond the NA 

are possible [26] . 

Measurement of materials with specular surfaces can negatively 

affect 3D surface reconstructions 

High reflection from a surface can cause light intensities that 

saturate the imaging sensor pixels. The saturated pixels cause 

problem for many 3D surface reconstruction algorithms [7] . 

Accuracy of measurements under noisy environment, for example 

vibration and temperature variation will be reduced 

Environmental noise, such as ground vibration, is a significant 

factor for measurements with micrometre and higher level 

accuracies [27] . For an example, small levels of vibration will 

cause differences between an encoder reading and the actual 

position during a measurement. 

Speed Measuring faster than a process cycle-time is still a challenge Areal surface measurements require motions to access a surface and 

a large number of images/computations so that the processing 

time is relatively longer (commonly > 1 min [1,7] ) than many 

manufacturing cycle times, that can be within seconds. 

Handling and analysing high-density data from optical measuring 

instruments require relatively long computing times 

A large number of data points, from hundreds of thousands [28] to 

millions or more points [29] , can be obtained from optical 

measuring instruments in relatively short period of time [1,7] . 

However, the time required to process the data is more than the 

time to acquire it. 

System integration and control Application of modular and environment-robust design is needed to 

integrate and adapt into various types of manufacturing machines 

Different types of machines have specifically-built in-line 

measuring instruments, for example, due to space constraints 

[30–32] . Design studies to isolate vibration by using lattice 

structures have been proposed [33,34] 

Utilisation and combination of various types of in-line 

measurement data, from different sensors with different 

resolutions, for the efficient control of a manufacturing system 

requires algorithm development 

A large number and variety of data are obtained from many sensors 

with different resolutions and accuracy levels. Often, data fusion 

is needed to combine all the data with different densities [35] . 

Fusion of data with different densities has been proposed, for 

example, data fusion from two optical instruments [36] and data 

fusion from a tactile and an optical instrument [37,38] . 

Integration of an in-line instrument with system level control (for 

example, on-line statistical process control, run-to-run control 

and predictive maintenance) needs to be performed continuously 

in real time 

Current practice divides system-level control into several types 

[39] . However, the lack of in-line instruments means that 

run-to-run process controls have to be carried out in batch rather 

than continuous mode [40,41] . 

Integration of measurement data into an enterprise production 

planning and scheduling is still a gap to be bridged 

Measurement data from in-line instruments needs to be integrated 

into the resource planning management system of companies and 

enterprises for production planning and scheduling [42] . 

Dealing with data transfer speed is needed to avoid data 

bottle-necks 

A large amount of data is congested by the limitation of data 

transfer speeds that can be originated from hardware or software 

[43] . 

Traceability Calibration and verification of performance of in-line measuring 

instruments is required to assure the instruments work within 

their specification 

Performance verification procedures and material measures for the 

determination of length measurement errors for optical 

instruments are still lacking [ 10 , 44 ]. Currently, performance 

verification infrastructures are available for some off-line 

instruments [45–47] . In some situations, calibration of in-line 

optical instruments for surface measurements can follow those 

already available for off-line optical instruments [10,48–50] . 

Estimation of the measurement uncertainty associated with in-line 

measurement results is essential to establish measurement 

traceability 

Methods of measurement uncertainty estimation are commonly 

applied for off-line tactile and optical measuring instruments 

[51,52] . 

Intelligence The use and application of machine learning methods for in-line 

optical measurements is still limited 

A recent application of deep learning in fringe projection 

measurement to rapidly tracking the projector orientation has 

been reported [13] . Some applications of deep learning for object 

classifications from 3D point clouds have also been reported 

[14,53] 

Training from very large data sets for in-line optical measurements 

will take very long periods of time and needs a large amount of 

data 

A parallel computation method leveraging graphical processing 

units has been used [54] . Regularisation methods to avoid 

overfitting of large training data sets and increased accuracy of 

deep learning methods use dropout [55] and penalisation 

methods [56,57] . 

Uncertainty estimation with machine learning methods is still 

lacking (commonly, many machine learning methods are used as 

a “black-box ” methods) 

Recent research to combine a Bayesian framework with deep 

learning to provide uncertainty estimation for deep learning have 

been proposed [58–60] . With the ability to provide uncertainty 

estimation, confidence with a prediction can be obtained to 

decide whether a prediction is reasonable or not. 

273 
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i  
. The proposed methodology 

An IRM framework is an essential element and the foundation of the

roposed methodology [15,82] . IRM is a term referring to the use of any

vailable information that can be included to improve a measurement

rocess [15,82] . The available information can be information about a

easured object, a manufacturing process that makes the object, the

nstrument-surface interaction, optical instrument characteristics. The

nformation can be obtained from, for example, a priori knowledge, the

hysics of a measurement method, mathematical modelling and sim-

lations or from other measurement processes. All this information is

ggregated by the use of smart data processing, that is the ability to use

 priori information, rigorous modelling and learn from prior measure-

ents to improve future measurement processes and results. This smart

ata processing leverages various methods and algorithms, for example,

achine learning and data fusion. 

Information about a measured object can be obtained from its 3D

AD model where nominal form and dimension and their tolerance are

vailable. Also, information about the manufacturing of the object can

e obtained in terms of, for example, materials that can be processed, its

apability and typical features and defects it generates. By knowing the

ypical features and defects, with the IRM framework, improved metrol-

gy for quality inspection can be obtained, for example, improving the

peed of defect detection. 

One of the main focuses of the IRM framework is to develop im-

roved mathematical models that describe the interaction between a

easured surface and an optical instrument. Currently, many rigorous

athematical models that describe the principle of many optical mea-

urement technologies are already available [7] . However, those mod-

ls are designed to be general to measure various surfaces with different

cenarios with little a priori knowledge of the measurement. With the

eneral models, most optical instruments have limitations in their mea-

urement capabilities. In fact, very often, many surface measurement

cenarios provide much additional information [ 15 , 29 ], for example, at

he macroscopic scale, information regarding form and nominal dimen-

ions is available and at the microscopic scale information regarding

urface texture and manufacturing fingerprint are available. 

With all the additional information, the IRM framework requires a

ew type of data processing pipeline to homogenise and aggregate all

he information, and then, exploit it to give better overall measurement

esults and performance. Data fusion methods are essential for various

ata homogenisation and aggregation. To data mine relevant relation-

hips between variables and obtain statistical models, machine learning

ethods provide significant support for smart data processing and, fi-

ally, smart measurement solutions. 

The methodology for the development of in-line surface measur-

ng instruments is based on the IRM framework and consists of three

hases: Phase 1 for knowledge and data (a priori) gathering, Phase

 for instrument (and software) development and integration, based

n the data gathered in Phase 1, and Phase 3 for the development

f a control system that uses the measurement system from Phase 2

see Fig. 2 ). 

For the methodology presented here, in Phase 1, knowledge and data

a priori) gathering is carried out. For example, by conducting mea-

urements of parts to understand the relationship between measured

roperties, in this case defects, and component functions. Component

unctions are important because those functions are the reason why the

omponent produced and to make an assembled product work as in-

ended. In addition, from Phase 1, properties that are the most relevant

small changes of the values of the properties may significantly affect

he component’s functions) to be measured in-line will be identified.

hase 2 is the development phase for an in-line measuring instrument,

oth hardware and software, and the integration of the developed in-

trument into a production line/machine. At Phase 2, the aim is that

he developed instrument should be as “simple ” as possible for the re-

uired measurement task. Specificity is the design aim at Phase 2, not
274 
ersatility. Finally, Phase 3 is the development and implementation of

he control system of a manufacturing process or product by leverag-

ng the in-line measurement data obtained from the developed in-line

nstrument. Table 2 shows the summary of aspects needed to be consid-

red in the three phases during the development of an in-line measuring

nstrument. 

.1. Phase 1: knowledge and data (a priori) gathering 

The main goal of Phase 1, for knowledge and data gathering, is to

ather information related to instrument requirements, measured sur-

aces, measurement models and manufacturing processes to support the

RM framework and to identify the most important defects to be mea-

ured in-line so that a measurement can be done as fast as possible. In

ther words, this phase is to define the measurand definition and all

he information useful to support the IRM framework to develop of an

n-line instrument. To achieve this goal, a high-level of understanding

bout the functionality or operation of a part is necessary. Subsequently,

ased on this understanding, the type of relevant defects should be de-

ned. In addition, the measurement can be categorised as absolute or

elative (a comparison to a reference quantity) measurement and cor-

elations between measured defects and the functionality/operation of

he part should be established. The understanding of the correlation is

ecessary to understand the range of the values of the defects that need

o be controlled. Where possible, functional tests should be carried out

o understand the relevance of a feature with respect to the functionality

f the part. 

The process of Phase 1 is very often carried out by using measuring

nstruments, with high resolution, which are commonly off-line instru-

ents, to gather data about surface topographies and defects. High res-

lution and accurate instruments commonly need relatively long mea-

urement times (compared to the process cycle time). With these instru-

ents, high resolution measurement data, containing comprehensive or

any features on a part, can be obtained to study the most important

efects that significantly affect the part functionality. From this study,

ne can determine the minimum number of defects to be measured and

urther determine the range of values needed to be controlled for the

easured defects. 

Other factors to consider in Phase 1 are related to, for example, data

tructures and analysis, procedures for uncertainty estimation, enhance-

ent of sensors for data capturing and types of machine learning meth-

ds that can be leveraged to improve an instrument’s performance. The

ype of data structures, for example grids or vectors, is important to de-

ermine what the most appropriate data analysis methods to be used, for

xample 2D image or 3D point cloud processing. Procedures to estimate

ncertainty need to be planned in this phase, for example what influence

actors are relevant for a specific type of in-line measurement. Effective

nd efficient machine learning methods should be selected, if possible,

o improve an instrument performance while minimising the increase of

omputational cost. The time required in Phase 1 can be from several

ays to several months of study, but time invested at this stage, can save

onsiderable time and costs in subsequent phases. 

.2. Phase 2: instrument and software development 

In this phase, instrument and software development for an in-line

easuring instrument are carried out. The goal is to develop the sim-

lest and/or most efficient in-line optical instrument utilising the IRM

ramework for the required in-line measurement tasks. The development

s carried out based on the outputs of Phase 1, that is, the definition of

inimum number of defects (measurands) that are relevant to the qual-

ty of a part. Several important aspects that need to be considered are

peed requirements, instrument cost, accuracy level, sensor type, size

onstraint, modular design and programming language. 

Speed requirements can be considered as the first aspect to be taken

nto account in designing an in-line measuring instrument. The reason is
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Fig. 2. The three phases of the proposed methodology based on the IRM framework: Phase 1 for knowledge and data (a priori) gathering, Phase 2 for instrument 

(and software) development, and Phase 3 for the use of in-line instruments for in-line control system. 

Table 2 

Summary (but not limited to) of aspects needed to be considered during Phase 1, Phase 2 and Phase 3 

Phase 1 Phase 2 Phase 3 

- Type of measurement, whether an absolute or 

relative measurements 

- Speed requirement from obtaining raw data to 

presenting a measurement result 

- A control system for process or product quality 

control 

- Form or surface texture measurements - Target instrument cost for both hardware and 

software 

- Types of SPC that can be implemented to a 

process 

- Selection of high-resolution offline measuring 

instrument for a comprehensive study of defects 

(measurands) 

- Level of accuracy required for an in-line 

instrument 

- Uncertainty consideration for the determination 

of part conformance or no-conformance 

- Measurement data correlation with respect to a 

process applied to a part 

- Type of sensor that will be used (contact or 

non-contact) 

- Additional information that can be used as 

feedback for a process controller 

- List of possible potential defects to be measured 

by an in-line measurement 

- Size constraint of an in-line instrument defined 

by the space availability in a machine 

- Leveraging machine learning methods for 

intelligent statistical process control 

- Modular design possibility to increase the 

flexibility of an integration 

- Type of programming language used to develop 

the software of an in-line instrument 

- Types of ML methods that can be efficiently and 

effectively implemented 

- Type of in-line integration: in-line/on-line or 

on-machine 

- Design of instrument cover 

- Type of positioning system, for example a 

Cartesian robot, an articulated-arm robot and a 

linear motion stage 

- Programming method to control a positioning 

system, for example, serial or socket (TCP/IP) 

programming 

- Safety issues, for example, failsafe system, safety 

fence and cable management 

- Calibration and performance verification 

275 
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[  
hat, often, the instrument will only be used by industry if it can measure

aster than (or equal to) the cycle time of a high-throughput manufac-

uring process of interest. 

Cost is also an important consideration that needs to be considered.

he instrument should have significantly lower cost than the manufac-

uring process, to justify the economic benefit of the instrument. Ac-

uracy levels should be achieved as per requirement from Phase 1. A

ignificant cost will be generated if the instrument is designed with

ccuracy levels beyond the requirement. The sensor type can be se-

ected based on the previous considerations of speed, cost and accu-

acy. A low-cost image sensor can be potentially used to lower the in-

trument cost. The maximum available space within a machine or a

rocess should be considered to design the overall dimension of the

nstrument. 

The design of an in-line instrument should be robust to environmen-

al noise, for example vibration, and from process contamination. Fit-

or-purpose or modular approaches can be selected. Fit-for-purpose de-

ign is needed for special-purpose production machines, especially for

n-machine and in-process measurement (see definition in Section 1.1 ).

oreover, fit-for-purpose design will be optimised for a specific ma-

hine and process so that optimised and fast measuring instrument can

e obtained. However, in some cases, may be for in-line, (see defini-

ion in Section 1.1 ), modular design can be considered to increase the

daptability of the instrument to various types of production machines,

or example, an in-line instrument that can fit into various types of tool

older in milling machines. 

Programming languages to write the control and data analysis soft-

are of the instrument need to be carefully chosen. The main consider-

tions for language selection are speed and compatibility. Commonly,

/C ++ , a compiled programing language, is used to develop software

or an embedded instrument; this is because C/C ++ offers machine-

evel compilation suitable for instruments of high measuring speed, and

an be interfaced with many instrument control systems [61] . How-

ver, Python programming language is becoming popular to be used to

rite instrument software because, although it is slower than C/C ++
anguage, it has compatibility to different instruments and also sup-

orts Internet-of-Thing (IoT) protocols [62] for system-to-machine and

achine-to-machine communications that is the base for Industry 4.0

63] . In addition to the Python language, many state-of-the-art ML li-

raries are available. Careful considerations for selecting a type of ML,

uch as availability and simplicity to collect data for model training,

nd complexity of computation for the ML method should be taken into

ccount. 

To integrate the instrument, the type of enclosure design and posi-

ioning system of the in-line measurement instrument (on-machine or

ff-machine, see Section 1.1 ) need to be considered. On-machine mea-

uring instruments commonly have higher space constraints due to a

imited working/processing volume of a machine and higher environ-

ent disturbances, for example dust and coolants. On the other hand, in-

ine measuring instruments commonly have less space constraint com-

ared to on-machine instruments. 

The instrument enclosure is designed depending on the application.

azardous and extreme environments are some of the main challenges

n designing instrument enclosures. For example, the cover may have

 water-resistant capability to either protect the instrument from any

iquids generated from a process, or enable the instrument to be used

n submerged applications. Safety issues are also important in that a

ail-safe system may need to be provided. 

For on-machine instruments, fixed or small movements of the in-

truments are often required for measurement purposes. For in-line and

ff-machine instruments, a large movement of the instrument may be

equired. For the movement of the instruments, the type of position-

ng system considered can range from a linear motion stage to robotic

anipulation with different coordinate systems. The contribution of po-

itioning system errors that affect the accuracy of measurement results

ust also be considered. 
p  
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.3. Phase 3: the development of in-line control system 

Phase 3 is the development of a control system for product/process

onitoring. The control system could be the simple “go/no-go ” system

o prevent defected parts being sent to subsequent processes or sent

o customers and provide information about a process for further

mprovement. Another type of the control system is an advanced

ontrol system that leverages both a process model and feedback data

rom in-line instruments and uses them to reduce the process drift,

ariation and shift, to prevent defects of a product to pass to subsequent

rocesses or to repair defects of the product before going to subsequent

rocesses [3,40] , for example the use of Statistical process control

SPC). Moreover, additional information from product usage data

uring their operating life cycle can also be used to feed information to

he control system, for example, the usage data from a product during

perations provide new types of defect of the product that also affect

he operation and have to be considered by the control system. 

Statistical process control (SPC) is a well-known industry method

or advanced control systems used to control a process/product shift,

rift and variation. SPC captures assignable event on a process and give

n “alarm ” so that a corrective action can be carried out. A classical

PC is usually applied off-line that causes corrective actions can be

ndertaken after a process drift or shift too far for their limits and

roduct with defects are already produced. To encounter this issue,

un-to-run control is applied for small batches, while a production line

s still operating, so that corrective action can be made faster compared

o the classical SPC method [40] . Intelligent SPC controllers that utilise

L methods can also be developed to adapt to correlated data and data

rom different probability distributions [40,64] . 

The uncertainty of measured data should also be considered to design

he control system, for example, in quality control, uncertainty values

ave to be considered to determine the conformance of a part [21,65] .

oreover, the uncertainty of measurement results can be integrated into

 system controller to have a better decision of what actions need to be

aken to control the process [66] . 

. Case study: the development of an in-line surface condition 

etection for post-processed additively manufactured polymer 

arts 

The case study presents the development of an in-line instrument to

etect the surface condition of post-processed additively manufactured

AM) polymer parts and to establish a closed-loop feedback control to

he post-processing machine to monitor and control the process. The

easurement system is considered productive because it has a substan-

ial added-value [69] . AM parts generally have rough surfaces due to a

o-called “stair case effect ” resulted from layer-by-layer process [67] and

ther effects, for example, balling effect in metal additive manufacturing

rocesses. The effects become more pronounced for surfaces processed

t high inclination angle and having excessive support structures [68] .

o improve the texture of AM polymer parts, a post-processing of the

urface has to be performed. A new automated solution for the post-

rocessing of polymer AM parts, a so-called Postpro3D has been devel-

ped by Additive Manufacturing Technologies (AMT) with their propri-

tary method. Fig. 3 shows the automatic post-processing machine that

mproves the surface finish of AM polymer parts. The automatic post-

rocessing solution results in a significant increase in productivity of AM

olymer processes due to a time reduction of manual post-processing

nd an increase of the surface texture quality 

Postpro3D post-processing machine is a physical-chemical-based

rocess that can smooth a wide variety of polymers used in AM, includ-

ng Nylon-12, Nylon-11, Nylon-6, flame resistant nylons, carbon/glass

lled derivatives of nylon, thermoplastic polyurethane (TPU), thermo-

lastic elastomers, ULTEM 9085, PMMA, PLA and other polymer types

70,71] . Postpro3D is a non-line-of-sight process that can smooth com-

lex internal cavities of polymer parts. The advantages of Postpro3D
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Fig. 3. PostPro3D automatic polymer AM surface smoothing machine. 
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achine are that it is highly controllable, allowing reproducible result

nd closing surface pores so that the surface provides water-tightness

roperty and has comparable surface finish to that one manufactured

sing injection moulding (see Fig. 4 ). In Fig. 4 , it is worth to note that

he presented images are obtained from a focus-stacking of images at

ifferent focus position and not from a single microscope image. 

In this case study, the in-line instrument will be integrated outside

he post-processing chamber to measure a surface condition directly af-

er post-processing so that it is categorised as off-machine (in-line mea-

urement that is carried out outside a production machine). Relevant

arriers (see Table 1 ) that need to be addressed in this type of in-line

easurements are: 

• Multi-scale measurements to capture the feature on AM polymer sur-

faces with different spatial wavelength. 
• Measurements under noisy or harsh environment, for example vibra-

tion in a workshop, dust and chemical vapour. 
• Fast measurements than the cycle-time of the post-processing. 
• Efficient and effective handling of large data from measurements. 
• Flexible in-line integration into post-processing chain and the use of

measurement data for AM polymer part quality control. 

Fig. 5 shows the schematic view of the three phases of the in-line in-

trument development. In Phase 1, a focus variation microscopy (FVM)

easuring instrument was used to study the surface texture of AM poly-

er parts. Following Phase 1, the development of an instrument and a

oftware is carried out in Phase 2 based on the results obtained in Phase

. Finally, in Phase 3, the developed instrument is integrated into the

ost-processing process chain. Details of each phase are explained in the

ollowing section. 

.1. Phase 1: high resolution measurement of polymer surfaces 

The first step in Phase 1 is to define the requirement of the in-line

nstrument for the surface condition detection. The requirements are: 

• The maximum dimension of the instrument should be <

(200 × 200 × 200) mm to comply with the end-effector of a

collaborative robot. 
• The maximum mass of the instrument should be < 3kg to comply with

the maximum payload of a small collaborative articulated robot arm.
• The instrument is equipped with a stand-alone robust and fast soft-

ware. 
• The maximum detection time of surface condition is within < 15s. 
• The cost of instrument should be acceptable (significantly lower than

the machine cost). 
• The instrument should be flexible, simple to be integrated in-line

into the post-processing chain, and portable. 

In this case study, a surface texture measurement type is required

see Table 2 ). To understand the evolution of polymer surfaces during

he post-processing, the focus variation microscopy (FVM) instrument
277 
ith a 20 × objective lens was used. With the objective lens, the FVM

as theoretically up to 10 nm vertical resolution and 0.8 μm lateral sam-

ling distance so that small features on polymer surfaces can be cap-

ured to understand the evolution of the surfaces. Fig. 6 shows the high

esolution measurements with the FVM instrument that is a type of off-

ine measurement. Since this measurement is to study the evolution of

he polymer surfaces after being applied at different levels of the post-

rocessing, measuring time is not relevant (since it is in Phase 1, see

ection 2.1 ). Instead, the understanding of the surface evolution is more

elevant to decide what attributes need to be measured. 

Nylon-12 and TPU polymer surfaces were measured in the surface

volution study. A total of 18 parts were measured for both types of

olymer. For each type, six post-processing levels (three parts for each

evel) were applied to the parts: 0% (no-post-processing), 25%, 50%,

5%, 100% (optimal processing) and sixth > 100% “over-processed ” pro-

essing stage. For Nylon-12 parts, two measurement areas (at top and

ottom surfaces) were measured, which leads to a total of 36 measure-

ents. For TPU parts, nine measurement areas (one at a flat surface and

ight at an inclined surfaces) were measured, which leads to a total of

62 measurements (see Fig. 6 ). 

The results of the Nylon-12 and TPU polymer surfaces texture mea-

urements are shown in Fig. 7 . In Fig. 7 , Sq areal parameters [82] were

alculated from a (2.5 ×2.5) mm area with S -nesting index [83] of

.5 μm and L -nesting index [83] of 500 μm. Sq represents the value of

oot mean square of heights within a measured area [84] . The S- and L-

esting index are the filtration operator to remove short-scale and long-

cale components from an extracted surface texture, respectively. From

he results in Fig. 7 , the post-processing significantly increases the sur-

ace finish of the polymer parts. In this particular test, 100% surface

nish for both TPU and Nylon-12 surfaces was around 2 μm. Overall, de-

ending on the application, the post-processing can improve the surface

nish by reducing Sq from tens of microns to below 1 μm for both TPU

nd Nylon-12 surfaces. For the TPU surface, > 100% “over-processed ”

esulted in an increase in texture roughness, whereas for the Nylon-12

urface the difference was insignificant. 

In this case study, a relative measurement is required (see Table 2 ),

hat is, the measurement task is to be able to differentiate a required

ost-processed surface (at 100% post-processing level) with respect to

ther surfaces processed at different post-processing levels. For this type

f measurement, 3D surface measurement is considered to be not suit-

ble. The reason is that it requires relatively longer measurement time

typically in the order of minutes) and higher development cost. For ex-

mple, due to the need of a precision optical system and a linear motion

tage, many 3D surface measurement methods require a scan through

 focus position of a measured surface to collect a stack of images and

econstruct a 3D surface model from thereof. 

Subsequently, a solution based on microscope-based 2D machine vi-

ion is selected due to several reasons: 

• Only relative measurements are required. The measurement involves

quantitative image comparisons between a measured and a reference

surface considered as a pre-defined surface with smooth surface fin-

ish. 
• A low development cost can be achieved because the cost of 2D imag-

ing complementary metal-oxide-semiconductor (CMOS) sensors has

been significantly reduced. 
• A significant performance improvement of a 2D machine vision

instrument can be obtained by implementing a machine learning

method to improve the classification capability of various AM poly-

mer surface textures after the post processing. 

.2. Phase 2: the development of fast in-line measuring instrument 

Based on the results from Phase 1, the development of a 2D ma-

hine vision instrument and its control software are presented in this

ection. In addition, the validation, using both simulated images and real



W.P. Syam, K. Rybalcenko and A. Gaio et al. Optics and Lasers in Engineering 121 (2019) 271–288 

Fig. 4. An example of the surface of a TPU material 

smoothed to different controllable levels. 

Fig. 5. The three phases approach for the development of the in-line measurement system. 

Fig. 6. Phase 1 – High resolution measurements with an FVM instrument. In 

this example, a TPU surface was measured. 
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easurement images, of the developed instrument and software are also

resented. 

.2.1. Instrument development 

The required in-line instrument should be low-cost, low-mass, small,

nd based on non-contact method (see Table 2 ). Based on the require-

ents, a small and compact instrument with microscope-based 2D ma-

hine vision that can capture the feature of surface textures is de-

eloped. The design of the instrument in 3D solid model is shown

n Fig. 8 . In Fig. 8 , the instrument has the maximum dimension of
278 
203 × 121 × 84) mm. The instrument complies with the requirements

or low-cost, low-mass and compact so that it has high flexibility for an

ntegration into the post-processing chain. A small area of a surface can

e captured and magnified to get detailed texture features for further

nalysis. 

The instrument consists of illumination and microscope modules.

he microscope module is constructed with a camera of a complemen-

ary metal-oxide semiconductor (CMOS) sensor, a beam splitter, a tube

ens, objective tool changer and objective lenses with 4 × and 10 × mag-

ifications (see Fig. 8 ). With the objective tool changer, more objec-

ive lenses with different magnifications can be mounted. A parallel

ight reflected from a measured surface enters the aperture of the ob-

ective lens and is transformed into an image on the CMOS sensor by

he tube lens. The beam splitter is used to deflect the off-axis parallel

ay from the white light source (after passing a diffuser) into the axis of

he microscope. Both the beam splitter and the tube lens have transmis-

ion spectra of 400nm–700nm. The CMOS sensor has a pixel density of

1280 × 1024) pixels with a frame rate up to 45 fps. 

The illumination module consists of a white light emitting diode

LED) and a diffuser lens (see Fig. 8 bottom). The LED has a total power

utput of 250mW with an intensity of 3mW/cm 

2 . The emission of the

ED has a spectrum of 400 nm − −700 nm . To improve the cross-sectional

ntensity distribution of the light from the LED, a diffuser lens, with

 transmission spectrum of 380nm–1100nm, is used. With the diffuser

ens, the LED will have a uniform intensity across the field of view of

he objective lens of the microscope. Fig. 9 shows the developed instru-

ent without and with an enclosure. The total weight of the instrument
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Fig. 7. Improved surface finish after the different stage of the post-processing for TPU (left) and Nylon-12 (right). The process type number 1, 2, 3, 4, 5, and 6 

indicates surfaces with post-processing of 0%, 25%, 50%, 75%, 100%, and > 100% (over-processed), respectively. 

Fig. 8. The 3D solid model of the in-line surface 

detection instrument. 

Fig. 9. The developed instrument (Phase 2a). (a) The 

developed instrument based on imaging microscopy, 

and (b) the instrument with the enclosure. 
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ith the enclosure is 2.4 kg, suitable to be mount on small robotic arms

ystems that commonly have around 3 kg payload. 

.2.2. Software development 

For the software development, the selection of programming lan-

uage is very essential for the performance of a developed software (see

able 2 ). In this case study, C/C ++ programming language is used to

ave a high speed software performance to comply with the general

equirement (see Section 3.1 ). 

A general unsupervised classifier of various different types of poly-

er surfaces, post-processed at different levels, is developed. In this
279 
ase, a machine learning method that does not require a large data set

o be trained and a very fast learning process is required. The classifier

s based on an unsupervised machine learning approach using princi-

al component analysis (PCA) [72] . The fundamental idea of PCA is

hat data with high dimension are reduced to lower dimension. In this

ase, high dimension data are the number of pixels of an image with

1280 × 1024) pixels, obtained from the CMOS sensor, can be reduced

o a lower number of dimensions that still contains the important sur-

ace texture information. Implementing PCA directly into an image (raw

ata) requires expensive computation and large memory. Subsequently,

o improve the computation efficiency of the PCA, a total of 54 image
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Table 3 

The calculated image parameters 

No. Parameter No. Parameter No. Parameter 

1 Mean of RED channel 19 Number of blobs 37 𝜎 of HSV value 

2 Mean of GREEN channel 20 The biggest blob 38 LED: horizontal [73] 

3 Mean of BLUE channel 21 The smallest blob 39 LED: vertical [73] 

4 𝜎 of RED channel 22 The mean of blobs 40 LED: 45° [73] 

5 𝜎 of GREEN channel 23 𝜎 of blobs 41 LED: 135° [73] 

6 𝜎 of BLUE channel 24 Max. blob diameter 42 LED: others [73] 

7 Mean of grey pixel value 25 Min. blob diameter 43 BLP: Symmetric covariance [74] 

8 𝜎 of grey pixel value 26 Mean blob diameter 44 BLP: auto correlation [74] 

9 RED Histogram entropy 27 𝜎 blob diameter 45 BLP: standard dev. [74] 

10 GREEN Histogram entropy 28 Max. blob and bounding box ration 46 BLP: 𝜎 of covariance [74] 

11 BLUE Histogram entropy 29 Min. blob and bounding box ration 47 BLP: mean covariance [74] 

12 Mean of HUE value 30 Mean blob and bounding box ration 48 BLP: mean symmetric variance [74] 

13 𝜎 of HUE value 31 𝜎 blob and bounding box ration 49 BLP: 𝜎 symmetric variance [74] 

14 Mean of SATURATED value 32 Mean value of Fourier absolute image 50 BLP: 𝜎 of symmetric variance [74] 

15 𝜎 of SATURATED value 33 𝜎 value of Fourier absolute image 51 BLP: mean of binary pixel [74] 

16 Mean of V value 34 Mean value of Fourier phase image 52 BLP: mean Rotation invariant binary pattern [75] 

17 𝜎 of V value 35 𝜎 value of Fourier phase image 53 BLP: 𝜎 of Rotation invariant binary pattern [75] 

18 Image focus measure [7] 36 Mean of HSV value 54 BLP: mean of covariance [75] 

𝜎 = statistical standard deviation, blob = identified white area on grey-scaled image. 

BLP = Binary local pattern, LED = Local edge descriptor. 
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arameters are pre-calculated from the captured image of a surface, ob-

ained from the developed instrument, to feed the PCA algorithm. By

alculating these parameters, a pre-step in data reduction is applied to

ncrease the speed of the PCA algorithm. 

The fundamental idea of PCA is explained as follows. Let N be the

umber of training data (number of images), and m is number of image

arameters. Hence, a column vector of image parameters 𝐗̄ 𝑚 1 averaged

rom number of training images can be calculated as: 

̄
 𝑚 1 = 

1 
𝑁 

∑𝑁 

𝑛 =1 
𝐗 𝑚𝑛 , (1)

here X mn is the vector of image parameter with the number of element

 for the n -th training image. 

The PCA will project the parameter data on to the principle axis,

lso called principle component (PC), u mk , where k is number of reduced

imension { k ∈1 ⋅⋅⋅54} that maximises the variance in training data: 

1 
𝑁 

∑𝑁 

𝑛 =1 

{
𝐮 𝑇 
𝑚𝑘 

𝐗 𝑚𝑛 − 𝐮 𝑇 
𝑚𝑘 ̄

𝐗 𝑚 1 
}2 = 𝐮 𝑇 

𝑚𝑘 
𝐒 𝑚𝑚 𝐮 𝑚𝑘 , (2)

here, S mm 

is the covariance matrix of the parameter data and is calcu-

ated as: 

 𝑚𝑚 = 

1 
𝑁 

∑𝑁 

𝑛 =1 

(
𝐗 𝑚𝑛 − 𝐗̄ 𝑚 1 

)(
𝐗 𝑚𝑛 − 𝐗̄ 𝑚 1 

)𝑇 
. (3)

he principle axis u ′ mk that maximises the variance in the training data

rom Eq. (2) is Eigen vectors of S mm 

that correspond to the largest Eigen

alues of S mm 

. 

The classification process of polymer surface conditions is carried out

y calculating a similarity value. The similarity value is defined as the

uclidean distance d between projected data of the image parameters

f a measured surface ( 𝛗 

𝐦𝐞𝐚 
𝐤 ), and projected data of the image parame-

ers of a reference surface ( 𝛗 

𝐫𝐞𝐟 
𝐤 ) on the principle axes u ′ mk that is the

istance of a new point (from a new measurement) to the mean of the

lass cluster (obtained from training). Note that the number of element

f both 𝛗 

𝐦𝐞𝐚 
𝐤 and 𝛗 

𝐫𝐞𝐟 
𝐤 are equal to the number of element of the reduced

imension k . The projected data of the image parameters 𝛗 

𝐦𝐞𝐚 
𝐤 and 𝛗 

𝐫𝐞𝐟 
𝐤 

re calculated as follows: 

 

𝐦𝐞𝐚 
𝐤 = 𝒖 𝑻 

𝒌 𝒎 

(
𝐗 

𝒎 𝒆 𝒂 
𝒎 1 − 𝐗̄ 𝒎 1 

)
, (4)

nd 

 

𝐫𝐞𝐟 
𝐤 = 𝒖 𝑻 

𝒌 𝒎 

(
𝐗 

𝒓 𝒆 𝒇 

𝒎 1 − 𝐗̄ 𝒎 1 

)
. (5)

The Euclidean distance d in PC space, that is the similarity value,

etween 𝛗 

𝐦𝐞𝐚 
𝐤 and 𝛗 

𝐫𝐞𝐟 
𝐤 are calculated as: 

 = 

√ (
𝛗 

𝐦𝐞𝐚 
𝐤 − 𝛗 

𝐫𝐞𝐟 
𝐤 

)2 
. (6)
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The PCA classification of the images of different surface conditions

re calculated from the 54 image parameters. With this approach, the

alculation of the PCA classification is more efficient compared to the

alculation of the PCA from all the raw pixels of an image. During train-

ng, the best number of considered dimensions (from 3 to 54) can be

etermined. The 54 image parameters include both colour-related and

exture-related parameters to represent the texture of surfaces [73] . The

olour-related parameters consist of, for example, the calculation of sta-

istical parameters of the colour and the histogram entropy of an image

72] . The texture-related parameters consist of, for example, the calcula-

ion of statistical parameters of blobs of an image, binary local patterns

74,75] and local edge descriptors that is part of the multimedia content

escription interface (MPEG-7) [76] . Table 3 shows the 54 calculated

arameters as the input for the PCA algorithm. 

The developed software, implemented in the C/C ++ , works as a

tand-alone software to control the developed instrument, to process

mages for the detection of surface conditions, and to control a collab-

rative robot used to position the instrument to a focus position with

espect to a part surface for measurement. The image processing uses

he OpenCV robust image processing library [77] , and the graphical

ser interface (GUI) is developed using the Qt framework [78] . The de-

eloped software is shown in Fig. 10 . In Fig. 10 , the software has two

ain modules: measurement and machine learning. 

The measurement module provides the capability to control the col-

aborative robot, to adjust camera settings and to detect a surface con-

ition; by comparing a measured surface with respect to a reference

urface. The camera settings can be adjusted to find an optimal surface

olour. An auto-exposure algorithm [79] and a white-balancing algo-

ithm [80] are implemented to optimise the colour adjustment. The de-

ection process is carried out based on the already described machine

earning approach that learns distinctive image properties data from a

easured surface and image properties data of a reference surface and

ompares them. Based on the learning process, a measured surface can

e monitored and classified as similar or dissimilar with respect to the

eference surface. The machine learning module provides the function-

lity to also control the collaborative robot, to adjust camera settings

nd to train the software with a specific reference surface. This module

llows setting of the number of training data and the number of reduced

imensions from 2 to 54. 

The machine learning process is as follows. An image is taken from

he CMOS sensor according to a number of training images N that are

et by a user. For each captured image, the 54 image parameters are

alculated as the first data reduction. By this reduction, the training
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Fig. 10. The developed software (Phase 2b-software development). (a) The measurement module, and (b) the machine learning module. 
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fficiency increases so that only hundred number of images are required

o effectively conduct the machine learning process. A mean of the

4 parameters is calculated and a matrix containing the difference of

alues between the 54 parameters of each image and the mean param-

ters is derived. Subsequently, a 54 × N training matrix is constructed.

inally, the PCA method is applied to the training matrix. A single

alue decomposition method is applied to obtain the eigenvectors and

igenvalues of the trained data. The trained data are stored in a file

o that the file can be recalled when a specific surface detection is to

e carried out. A similarity value is calculated between the reference

urface and the measured surface to decide whether the two surfaces are

imilar or not. With the calculation of the similarity value, subjectivity

or determining a specific surface texture condition can be eliminated. 

.2.3. Instrument and software testing 

Before the integration of the develop instrument and software into

he post-process chain, several testing was carried out to verify their ef-

ectiveness for surface condition detection. Two stages of testing were

pplied: testing with simulated images and testing with real TPU sur-

ace images. The test with simulation images is to understand how well

he algorithm can separate different surface images. With the simulated

mages, how different each simulated image can be understood and con-

rolled so that the separation among simulated images in a PC space can

e correlated. 

A number of generated images with simulated speckles features were

enerated as the first test. The simulated speckles consists of different
281 
izes and density to represent different features and condition on a sur-

ace and is generated by a method found elsewhere [81] . Four types of

imulated images with speckle features are generated, namely Type 1,

ype 2, Type 3, and Type 4 (see Fig. 11 ). A total of 100 images are gen-

rated for each type of the simulated images. Type 1 images represent an

n-processed surface and have the largest size of speckle patterns with

he lowest density. In contrast, Type 4 images represent a processed

urface and have the smallest size of speckle patterns with the highest

ensity. A simulated image of type 4 is selected as a reference surface. A

otal of 100 images are used for the training. The trained data are used

o calculate a similarity value to detect the different type of simulated

mages with respect to the reference image. In this test, three PC spaces

number of reduced dimension k = 3) are considered for the surface de-

ection. 

The projection data onto the three PC of the simulated image param-

ters is shown in Fig. 12 . In Fig. 12 a, the separation plot of the projection

ata considers only two out of three PCs (2D view), from each image

ype in PC space. Meanwhile, the separation plot considering three PCs

3D view) is shown in Fig. 12 b. From Fig. 12 , the different types of sur-

aces can be classified into four different groups. The Type 4 surfaces,

s the reference surface, can be largely separated from the other types.

t is worth to note that Type 1 and Type 2 simulated surfaces are sep-

rated along the direction of PC2 (see Fig. 12 b). Calculated similarity

alues will be significantly smaller for Type 4 compared to other values

f the other types. Table 3 shows the calculated similarity values for

he four types of surfaces compared to the reference surface (Type 4).
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Fig. 11. One example for each type of simulated images with speckle patterns. 

Fig. 12. Separation of each type of simulated images in PC space (a) in 2D view, and (b) in 3D view. 

Fig. 13. Testing with real surface measurements (a) Nylon-12 

and (b) TPU surfaces. 
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F  
rom Table 3 , Type 4 surfaces can be identified from the other types of

urfaces by setting a threshold value. 

Furthermore, tests were also carried out for the measurement of real

olymer surfaces: TPU and Nylon-12. Fig. 13 shows one of the measure-

ents of both samples. The testing with both of the material surface

mages uses five types of surfaces with different post-processed levels,

amely: Type 1, Type 2, Type 3, Type 4 and Type 5 that represent 0%

unprocessed), 25%, 50%, 75% and 100% (fully processed) surfaces, re-
282 
pectively. The type refers to a specific process parameter for a specific

olymer, such as processing time. A total of 100 images for each type

f surface are captured. In order to cover various types of features on

ach surface type, the 100 images are captured from different areas that

over the entire surfaces. 

Figs. 14 and 15 show a measurement process for one of the TPU

nd Nylon-12 surfaces at different post-process level, respectively. From

igs. 14 and 15 , the Type 1 (unprocessed) surface has high roughness
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Fig. 14. The images of the five types of TPU surfaces. 

Fig. 15. The images of the five types of Nylon-12 surfaces. 

283 
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Fig. 16. Separation of each type of TPU images in PC space (a) in 2D plot, and (b) in 3D plot. 

Fig. 17. Separation of each type of Nylon-12 images in PC space (a) in 2D plot, and (b) in 3D plot. 
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nd Type 5 (fully processed) has low roughness. The reference surface

s a surface from Type 5. The surface of Type 4 and Type 5 have a small

ifference on their textures. 

Training procedures used a total of 100 Type 5 images for both TPU

nd Nylon-12 materials. Surface condition measurements will be com-

ared with respect to the Type 5 surfaces. The calculated similarity val-

es of all measurements were calculated by considering three PC com-

onents out of 54 components from the training data. 

Fig. 16 a and b shows the separation plot of each TPU image type in

C space as a 2D (two PCs) and 3D plot (three PCs), respectively. From

ig. 16 a and b, the Type 5 TPU surfaces can be isolated from the other

ypes of TPU surfaces. However, the group of type 4 surfaces are close

o the group of Type 5 as can be qualitatively observed from the images

n Figs. 14 and Fig. 15 that the Type 4 surface is similar to the Type 5

urface. 

Fig. 17 a and b shows the separation plot of each Nylon-12 image

ype in PC space as a 2D (two PCs) and 3D plot (three PCs), respectively.

imilar results with the measurement of TPU surfaces, the Type 5 Nylon-

2 surfaces can be isolated from the other types of TPU surface as shown

n Fig. 16 a and b. For the Nylon-12 surfaces, the group of Type 4 surfaces

re quite far to the group of Type 5 as can be qualitatively observed from

he images in Fig. 15 that the Type 4 surface is not as similar as the Type
 surface. s  

284 
Table 4 shows the calculated similarity values for the five types of

PU and Nylon-12 surfaces compared to the Type 5 surface as the ref-

rence. From Table 4 , the closer condition or texture of a surface com-

ared to its reference surface, the lower the similarity value. All surfaces

lose to their reference surface have the lowest similarity value, which

eans that surfaces are considered similar to their reference surfaces. A

hreshold can be set to detect Type 5 surfaces from the other types. The

etection time is ranging from around 2–4 s depending on the number

f features on the surface texture and is less than the required maximum

etection time of 15 s. 

.2.4. Sensitivity analysis 

It is important to quantitatively analyse the effect of the variation of

imilarity values with respect to the variation of pixel intensity on the

MOS sensor. The pixel detector on the CMOS sensor has noise so that

he intensity value of a pixel at each detector will vary over time. The

nalysis of the intensity variation is carried out by analysing a single

ntensity value of a pixel on the detector over time. A Nylon-12 sur-

ace was used for the analysis. The sampling frequency of the detector

as set to 15 fps because the sampling frequency range of the camera is

round 10 −− 15 fps for measurements. A total of 100 pixels were sam-

led over a period of 6.6 s. The sampling period is considered sufficient,

ince it is larger than detection time of around 2 −− 4 s . Fig. 18 a shows
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Table 4 

Similarity values, with respect to a reference surface, for the tested simulated and TPU surfaces. 𝜎

is a standard error 

Image type Similarity value (mean ± 𝜎) × 10 3 

Type 1 Type 2 Type 3 Type 4 Type 5 Reference 

Simulated 23,797.6 ± 327 20,117.5 ± 234 5219.6 ± 65 8.712 ± 0.1 – Type 4 

Image type Similarity value (mean ± 𝜎) × 10 6 

Type 1 Type 2 Type 3 Type 4 Type 5 Reference 

TPU 40.1 ± 0.3 176.2 ± 1.9 348.9 ± 3.4 48.2 ± 0.8 9.8 ± 0.3 Type 5 

Image type Similarity value (mean ± 𝜎) × 10 5 

Type 1 Type 2 Type 3 Type 4 Type 5 Reference 

Nylon-12 599.4 ± 9.3 1187.3 ± 5.6 503.6 ± 10.9 89.4 ± 1.9 2.7 ± 0.2 Type 5 

Fig. 18. (a) The pixel variation over a period of 6.6 s (100 values) and (b) the sensitivity of similarity value over the level of pixel variation. 

Fig. 19. System integration of the developed in- 

strument with an articulated-arm robot (Phase 3). 
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line in Fig. 18 b. 
he pixel intensity variation over 6.6 s. The results of the variation anal-

sis show that the standard deviation of the pixel intensity is 2 pixel

nit. 

The analysis of the similarity value is carried out by analysing the

imilarity value of a Nylon-12 surface image with respect to the image

f the Nylon-12 surface with increasing values of pixel intensity varia-

ion. A Gaussian noise with a mean 0 pixel unit and a standard deviation
285 
anging from 0 to 100 pixel units are used to perturb the intensity values

f the pixels of the image. Fig. 18 b shows the results of the sensitivity

nalysis of similarity value. From Fig. 18 b, it can be observed that the

imilarity value is stable below a noise of 30 pixel units. From this re-

ult, a surface detection is considered robust, since the pixel intensity

ariation is within only 2 pixel units that is in the left region of the red
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Fig. 20. Measurement of the green coloured Nylon-12 surfaces. 
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.2.5. In-line integration into post-processing chain 

The developed instrument is integrated in-line into the post-

rocessing chain. Factors considered in the integration are the selection

f a positioning system, the design of the enclosure for the instrument

nd the type of programming method to control the positioning sys-

em ( Table 2 ). For the positioning system, a collaborative articulated-

rm robot (cobot) is selected for the integration due to its flexibility

nd workability with human. The cobot has linear resolution of 0.1mm

nd rotational resolution of 0.5 ∘. The enclosure for the instrument is de-

igned to be stiff with 2mm thick aluminium sheet, because the cobot

nd the instrument are placed in an open area within the post-processing

hain. To control the robot with the developed software, a socket pro-

ramming approach is selected due to its universality with respect to

ifferent robot manufacturers. With socket programming method, the

ontrol procedure for the cobot can be applied to different cobot man-

facturers so that the flexibility of the integration is increased. Fig. 19

hows the in-line integration of the developed instrument and software

ith the cobot. The in-line measurement is carried out after a post-

rocessing has finished. 

.3. Phase 3: control system implementation 

In this case, a simple “go/no-go ” control system based on feed-

ack data is implemented. The main goal is to distinguish parts that

ave different surface quality with reference surfaces. The defective
286 
arts will be re-processed to achieve a desirable level of surface fin-

sh. A demonstration is showcased by measuring coloured Nylon-12

urfaces. The purpose of the demonstration after the integration is to

est the ability of the selected cobot as a positioning system to effec-

ively position the instrument at its focus position for the purpose of

apturing images and to test the classification ability of the instru-

ent. Only two types of green Nylon-12 parts are used: unprocessed

nd processed at 50%. Fig. 20 shows the measurement of the polymer

arts. 

The demonstration uses the processed part having smooth surfaces

s the reference. For the training processes, a total of 150 images of

he reference (processed) surfaces are captured to extract the learning

ata. Fig. 21 a shows the measurement area (green box) for the 150

raining images. The unprocessed part is shown in Fig. 21 c as a vali-

ation pair. Measurements on both type of unprocessed and processed

arts are carried out covering the entire top surfaces of the parts (see

ig. 21 b and d in red boxes). For each part, a total of 100 measure-

ent images are captured. The threshold value for classification of the

urfaces (whether they belong to the unprocessed or processed parts)

s set to be less than five times from the calculated reference similarity

alue form the training process. The threshold selection is based on the

esults shown in Table 3 . The demonstration shows that all the images

aptured form the two surfaces can be correctly classified as processed

r unprocessed with 100% success rate and a “go/no-go ” can be made

o the parts with different surface quality with respect to the reference

urfaces. 

. Conclusion and future work 

In this paper, a methodology to develop an in-line measuring instru-

ent is proposed. The methodology can be used as a general frame-

ork to develop in-line surface measuring instruments and is validated

ith a case study to develop an in-line surface measuring instrument

or post-processed AM polymer parts. The purpose of the developed in-

trument is to quantitatively detect the surface condition of the surfaces

t different post-processing level. The results show that by using the

ethodology, a successful development and implementation of an in-

ine instrument can be achieved. With the developed instrument, a sub-

ectivity to classify the condition of the surfaces can be eliminated since

he condition is quantitatively represented as a similarity value. Future

orks include applying the proposed methodology for the development

f an in-line surface measuring instrument for absolute measurements

s well as further fundamental research to solve the various mentioned

arriers. 
Fig. 21. Surface areas used for training and measurement. (a) Sur- 

face areas (green box) on the processed Nylon-12 part used for 

training, (b) measurement areas (red boxes) on the processed part 

for measurement validations, (c) the unprocessed Nylon-12 part, 

and (d) surface areas (red boxes) on the unprocessed part for mea- 

surement validations. 
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