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We investigate the localization of two incoherent point sources with arbitrary angular and axial
separations in the paraxial approximation. By using quantum metrology techniques, we show that a
simultaneous estimation of the two separations is achievable by a single quantum measurement, with a
precision saturating the ultimate limit stemming from the quantum Cramér-Rao bound. Such a precision is
not degraded in the subwavelength regime, thus overcoming the traditional limitations of classical direct
imaging derived from Rayleigh’s criterion. Our results are qualitatively independent of the point spread
function of the imaging system, and quantitatively illustrated in detail for the Gaussian instance. This
analysis may have relevant applications in three-dimensional surface measurements.
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Introduction.—High-resolution imaging is a cornerstone
of modern science and engineering, which has enabled
revolutionary advances in astronomy, manufacturing, bio-
chemistry, and medical diagnostics. In traditional direct
imaging based on classical wave optics, two incoherent
point sources with angular separation smaller than the
wavelength of the emitted light cannot be resolved due to
fundamental diffraction effects [1], a phenomenon recently
dubbed “Rayleigh’s curse” [2]. Several techniques, includ-
ing most prominently fluorescence microscopy [3], have
been introduced in recent years to overcome this limitation
and achieve sub-wavelength imaging [4,5]. Nevertheless, to
determine the ultimate limits of optical resolution one
needs to resort to a full quantum mechanical description of
the imaging process [6]. In this respect, a breakthrough has
been reported in a series of works [2,7–18] initiated by
Tsang and collaborators [2], who employed techniques
from quantum metrology [19–22] to prove that the achiev-
able error in estimating the angular separation of two
incoherent point sources, in the paraxial approximation, is
in fact independent of said separation (no matter how
small), provided an optimal detection scheme is performed
on the image plane. These results, which stem from the
fundamental quantum Cramér-Rao bound [19,20] and de
facto banish Rayleigh’s curse [2], have been corroborated
by proof-of-principle experiments [23–26].
The majority of the studies presented so far on quantum

superlocalization, however, were limited to the case of
point sources aligned on the same object plane, thus
neglecting their axial separation. The optical lateral reso-
lution of an imaging system is an important characteristic,
but it is not the only figure of merit relevant for the

measurement of nonflat surfaces [27]. When probing
surface topography, the spacing of the points in an image
must be considered, along with the ability to accurately
determine the heights of features. In other words, the lateral
resolution must be considered in conjunction with the
ability of the system to transfer surface amplitudes [28].
To address this key issue, in this Letter we consider the

simultaneous estimation of both angular and axial separa-
tions, as well as the corresponding centroid coordinates, of
two incoherent point sources aligned in general on different
object planes. These point sources may model, e.g., two
emitters at the edges of a steep section on a rough surface,
as indicated by the red dotted outline in Fig. 1.
We tackle the problem by resorting to the toolbox of

multiparameter quantum metrology, a branch of quantum
technology that is attracting increasing interest thanks to its
prominent role in fundamental science and applications
[19–22,29–51]. We find that Rayleigh’s curse does not
occur even when the sources have a nonzero axial sepa-
ration, and both axial and angular distances can be

FIG. 1. Schematic of the two sources. The four parameters to be
estimated are the angular separation s, the axial separation p, the
angular centroid coordinate x̄, and the axial centroid coordinate z̄.
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estimated simultaneously and with distance-independent
precision by means of a single optimal quantum measure-
ment, meeting the compatibility requirements for saturation
of the multiparameter quantum Cramér-Rao bound [29,32].
These results are obtained analytically and are valid for any
point spread function of the imaging system obeying the
paraxial wave equation. We then specialize to the illus-
trative case of a Gaussian point spread function, and derive
closed formulas for the achievable estimation error and its
scaling with the parameters of interest as determined by the
quantum Fisher information matrix, showing that in the
limit of small angular and axial distances all the parameters,
including the centroid coordinates, become statistically
independent.
Sources and imaging system model.—We address the

problem of estimating both axial and angular separation of
two point sources by following a similar approach to
Ref. [2], which is in turn inspired by Rayleigh’s work
[1]. We assume that the detectable light on the image plane
can be described as an incoherent mixture of two quasimo-
nochromatic scalar paraxial waves, one coming from each
source. As shown in Fig. 1, our two sources are in general
not lying on the same object plane (an “object plane” is a
plane perpendicular to the optical axis z), and they feature an
angular separation s and an axial separation p.
Considering thermal sources at optical frequencies, we

divide the total emission time into short coherence time
intervals τc, so that within each interval the sources can be
assumed weak, i.e., effectively emitting at most one photon.
This is a standard approach for modeling incoherent
thermal sources [52–58], and it allows us to describe the
quantum state ρ of the optical field on the image plane as a
mixture of a zero-photon state ρ0 and a one-photon state ρ1
in each time interval (neglecting contributions from higher
photon numbers) [59],

ρ ¼ ð1 − εÞρ0 þ ερ1 þ oðε2Þ; ð1Þ

where ε ≪ 1 is the average number of photons impinging
on the image plane. In practice, a detectable signal is
obtained by measuring the optical field for a time t ≫ τc, so
that many coherence time intervals are included, resulting
in a non-negligible mean photon number.
We assume in general that the image-plane field ampli-

tude generated by each source takes the form

Ψjðx; yÞ≡ ψðx − xj; y; zjÞ; ð2Þ

where ðx; yÞ are the image-plane coordinates, ðxj; zjÞ are
the unknown coordinates of the sources j ¼ 1, 2, xj being
the coordinate perpendicular to the optical axis, and zj the
axial distance to the image plane (in this Letter we assume
that the other coordinate yj ¼ 0 is known). The amplitude
function ψðx; y; zÞ obeys a paraxial wave equation of
the form

i∂zψ ¼ Gψ ; ð3Þ

where G is a self-adjoint differential operator featuring
only x and y derivatives—for example, in free space
one would have G ¼ 1

2k ð∂2
x þ ∂2

yÞ þ k, k being the wave
number. Since ½G; ∂x� ¼ 0, it follows that Ψjðx; yÞ ¼
expð−iGzj − xj∂xÞψðx; y; 0Þ.
We shall indicate with aðx; yÞ the field annihilation

operator at position ðx; yÞ on the image plane, satisfying
the bosonic commutation rule ½aðx; yÞ; a†ðx0; y0Þ� ¼
δðx − x0Þδðy − y0Þ.
We can then write the state ρ1 as the incoherent mixture

ρ1 ¼
1

2
ðjΨ1ihΨ1j þ jΨ2ihΨ2jÞ; ð4Þ

where the quantum state of the optical field on the image
plane corresponding to the emission of one photon by the
source r may be expressed as

jΨji ¼ exp ð−iGzj − xj∂xÞjψi; ð5Þ

jψi≡
Z
R2

ψðx; y; 0Þa†ðx; yÞj0idxdy; ð6Þ

with j0i being the field vacuum state. Finally, we may take
ψðx; y; 0Þ real, which results in some simplifications later
on. This can be assumed without loss of generality, as the
complex phase of ψðx; y; 0Þ may be compensated by a
redefinition of aðx; yÞ that is independent of the source
parameters. However, ψðx; y; zÞ will have in general a
nontrivial phase profile.
Multiparameter estimation and quantum Cramér-Rao

bound.—We work under the assumption that the photon
statistics of our sources is Poissonian, following a similar
approach as in Ref. [2]. We can thus assume that in a single
run of the experiment, which lasts for M coherence time
intervals,M copies of the state ρ in Eq. (1) are prepared and
measured (equivalently, one may consider the input state
ρ⊗M). On average, this yieldsMε photons per run. In order
to apply the standard tools of estimation theory, we further
assume that ν ≫ 1 runs are performed, after which the
measurement data are processed to build estimators for the
unknown parameters.
In our case, the parameters of interest are the angular and

axial relative coordinates and the centroid coordinates of
the sources, indicated as s; x̄; p; z̄, see Fig. 1. We thus write
the state ρ as a function of four parameters fλμgμ¼1;…;4,
where

λ1 ≡ s ¼ x2 − x1; λ2 ≡ x̄ ¼ x2 þ x1
2

;

λ3 ≡ p ¼ z2 − z1; λ4 ≡ z̄ ¼ z2 þ z1
2

: ð7Þ
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The statistical error (variance) Δλ2μ of any unbiased
estimator of the unknown parameter λμ is lower bounded
via the quantum Cramér-Rao bound (qCRb) [19,20]

X4
μ¼1

Δλ2μ ≥
1

νMε
Tr½H−1�; ð8Þ

where H is the quantum Fisher information matrix (qFim)
of the single-photon state ρ1 (equivalently, this can be
seen as the qFim per coherence time interval per photon).
The prefactor on the right-hand side of Eq. (8) is obtained
by exploiting the additivity property qFimðρ⊗MÞ ¼
M × qFimðρÞ, and by approximating that qFimðρÞ ≃ ε ×
qFimðρ1Þ at leading order in ε (since the field vacuum state
ρ0 is independent of all source parameters and is always
orthogonal to ρ1—see also the discussion in the Appendix
of Ref. [2]). The resulting linear dependence on the total
photon number νMε is characteristic of classical light
sources [22,60].
The qCRb suggests that, the higher the qFIm element

Hμμ, the more precisely (i.e., with lower statistical error)
one may be able to estimate the parameter λμ, by perform-
ing a suitable measurement. While for a single parameter
the qCRb can always be saturated asymptotically by means
of an adaptive procedure [21], this is no longer the case for
multiparameter estimation, as the parameters may not
always be compatible [32]; we will discuss this issue in
detail later in the Letter.
Results.—We recall that the qFim elements are given by

Hμν ¼ Re½Trðρ1LμLνÞ�; ð9Þ

where Lμ is the symmetric logarithmic derivative (SLD) for
the parameter λμ, defined implicitly by the equation

2
∂ρ1
∂λμ ¼ Lμρ1 þ ρ1Lμ: ð10Þ

The following matrix (proportional to the averaged SLD
commutators) will also be of interest for our discussion,

Γμν ≡ Im½Trðρ1LμLνÞ�: ð11Þ

For the problem under investigation, we have derived
general analytical expressions for both matricesH and Γ, as
presented in detail in Appendix A [61]. Our derivation
relies on the expansion of ρ1 in the generally nonorthog-
onal basis

fjΨ1i; jΨ2i; ∂x1 jΨ1i; ∂z1 jΨ1i; ∂x2 jΨ2i; ∂z2 jΨ2ig; ð12Þ

followed by standard linear algebraic manipulations. This
method results in significant simplifications over previous
studies of quantum superlocalization (typically relying on

the explicit construction of an orthogonal basis to span the
support of ρ1 and its derivatives, as, e.g., in Ref. [2]), and
may be of independent interest in its own right for the field
of multiparameter quantum metrology. Thanks to the
representation of jΨji given in Eq. (5), it is easy to check
that all the scalar products between the above basis vectors
only depend on s ¼ x2 − x1 and p ¼ z2 − z1, which in turn
implies that the qFim is independent of the centroid
coordinates x̄ and z̄. The corresponding physical interpre-
tation is that the information content of the emitted light is
not affected by propagation along the optical axis, or by a
redefinition of the image plane origin. Additional simpli-
fications follow from our assumption ψðx; y; 0Þ ∈ R, which
implies hψ j∂xψi ¼ 0. We then find that the qFim is
composed of the diagonal elements

Hss ¼ h∂xψ j∂xψi; Hpp ¼ ΔG2; ð13Þ

Hx̄ x̄ ¼ 4h∂xψ j∂xψi − 4ð∂sjγjÞ2 − 4
jγj2ð∂sφÞ2
1 − jγj2 ; ð14Þ

Hz̄ z̄ ¼
4

1 − jγj2 fΔG
2 − ð∂pjγjÞ2 − jγj2½hG2i − ð∂pjγjÞ2

þ 2hGi∂pφþ ð∂pφÞ2�g; ð15Þ

while the off-diagonal elements are all zero except

Hx̄ z̄ ¼ −
4jγj2ð∂sφÞðhGi þ ∂pφÞ

1 − jγj2 − 4ð∂sjγjÞð∂pjγjÞ: ð16Þ

At the same time, the only nonzero matrix elements of Γ are

Γsx̄ ¼ −
2jγj3ð∂sjγjÞð∂sφÞ

1 − jγj2 ; ð17Þ

Γpz̄ ¼ −
2jγj3ð∂pjγjÞðhGi þ ∂pφÞÞ

1 − jγj2 ; ð18Þ

Γsz̄ ¼ 2jγj
�
ð∂pjγjÞð∂sφÞ −

∂sjγjð∂sφþ hGiÞ
1 − jγj2

�
; ð19Þ

Γx̄p¼2jγj
�
−ð∂sjγjÞðhGiþ∂pφÞþ

ð∂pjγjÞð∂sφÞ
1− jγj2

�
: ð20Þ

The following short-hand notations have been used:

γ ≡ hΨ1jΨ2i; φ≡ arg γ; ð21Þ

hOi≡ hψ jOjψi; ΔG2 ≡ hG2i − hGi2; ð22Þ

where we emphasize that γ ¼ γðs; pÞ is the only quantity
depending on the source coordinates. A fundamental result
can be immediately inferred from Eq. (13) and below: for
any point spread function that satisfies the paraxial wave
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equation, Hss and Hpp are constant. This statement
exemplifies how our results provide new insights on the
problem of subwavelength imaging, while correctly repro-
ducing what is known for p ¼ 0 [2]. We note in particular
that Rayleigh’s curse does not affect the estimation of the
angular separation s nor that of the axial separation p.
Taking one step further, we can now investigate how

close one can get to the limits imposed by the qCRb in
practical experiments. In quantum estimation theory, multi-
parameter problems embody a nontrivial generalization of
the single-parameter case [21,29,31,32]: if an estimation
scheme is optimized for a particular parameter, it typically
results into an increased error in estimating the others.
However, in the best case scenario, such a trade-off does
not apply, and one can identify an optimal protocol for
the estimation of all the parameters simultaneously. This
happens if and only if the parameters are compatible; i.e.,
they satisfy the following conditions [32]: (i) There is a
single probe state yielding the maximal qFim element for
each of the parameters; (ii) there is a single measurement
which is jointly optimal for extracting information on all
the parameters from the output state, ensuring the asymp-
totic saturability of the qCRb; (iii) the parameters are
statistically independent, meaning that the indeterminacy
of one of them does not affect the error on estimating the
others. We recall also that (ii) holds if and only if
Γμν ¼ 0 ∀ μ ≠ ν, while (iii) is equivalent to the condition
Hμν ¼ 0 ∀ μ ≠ ν.
In this Letter we do not focus on the first condition, since

our theory is built around a realistic imaging scenario in
which the emission properties of the sources are fixed in
advance. Yet, it is worth investigating conditions (ii) and
(iii), since they have crucial implications for the actual
achievability of the statistical errors given by the qCRb.
Remarkably, we find that conditions (ii) and (iii) are always
satisfied for the pair of parameters ðs; pÞ—independently
of the specifics of the point spread function. In the
simplified scenario where ðx̄; z̄Þ are estimated independ-
ently or known in advance, it is thus possible to construct a
physical measurement and estimation strategy for s and p
saturating Eq. (8) asymptotically [29,32]. On the other
hand, we can see that conditions (ii) and (iii) do not hold in
general for the full set of parameters ðs; p; x̄; z̄Þ. Yet, we
shall see in the example below that there is at least one
relevant type of point spread function for which conditions
(ii) and (iii) are satisfied for all parameters in the
limit s → 0; p → 0.
We consider in what follows a Gaussian beam in free

space,

ψðx; y; zÞ ¼
ffiffiffiffiffiffiffi
kzR
π

r
i

zþ izR
exp

�
−ikðx2 þ y2Þ
2ðzþ izRÞ

− ikz

�
;

ð23Þ

where zR is a length parameter characterizing the beam,
typically assumed of the same order as the wavelength, i.e.,
∼1=k. Equation (23) can be obtained, e.g., if the fields
generated by the two sources are well approximated by
Gaussian beams in the vicinity of the image plane [62]. We
thus obtain

γ ¼ 2izR
pþ 2izR

exp

�
−ikp −

i
2

ks2

pþ 2izR

�
;

h∂xψ j∂xψi ¼
k
2zR

;

hGi ¼ k −
1

2zR
;

hG2i ¼ k2 −
k
zR

þ 1

2z2R
: ð24Þ

By substituting the above expressions in the qFim elements
calculated previously, we find fully analytical closed
formulas (as reported in Appendix B [61]) that allow us
to perform a comprehensive analysis of the multiparameter
estimation problem under investigation. Furthermore, the
Gaussian case bears the advantage that it can be easily
compared with the existing literature that tackled the
estimation of s alone (typically fixing p ¼ 0). To support
the solidity of our results, we have indeed checked that, in
the limit p → 0, our expressions forHss andHx̄ x̄ match the
appropriate quantities in Refs. [2,60].
Our results become particularly interesting in the regime

ks; kp ≪ 1, which is precisely the one of relevance to
subwavelength imaging. In this limit we have

lim
ðs;pÞ→ð0;0Þ

H ¼ diag

�
k
2zR

;
2k
zR

;
1

4z2R
;
1

z2R

�
; ð25Þ

lim
ðs;pÞ→ð0;0Þ

Γ ¼ diagf0; 0; 0; 0g; ð26Þ

meaning that the (optimal) estimators of the four param-
eters s; x̄; p; z̄ are approximately statistically independent;
i.e., they have vanishingly small statistical correlations,
when the two sources have infinitesimal angular and axial
separations.
The behavior of the four diagonal qFim elements Hμμ as

a function of the separations s and p is illustrated in Fig. 2;
the top panel can be compared directly with Fig. 2 of
Ref. [2]. From the plots and from Eq. (25), we see that the
qFIm diagonal elements tend to a nonzero value when
s; p → 0. Hence the fundamental lower bound on the total
estimation error, ∝ Tr½H−1�, stays finite even when the two
sources are infinitesimally close, instead of diverging as in
direct imaging [1,2]. Equation (26) further suggests that
it should be possible to construct a single measurement that
is approximately optimal for the estimation of all four
parameters when ks; kp ≪ 1. Note that this may require
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collective measurements over many copies, i.e., many time
intervals. Exploring more practical suboptimal strategies
and determining how close one can get to the optimal
measurement by using only single-copy measurements will
be the subject of future work.
Conclusions.—We determined the ultimate quantum lim-

its to the simultaneous estimation of both angular and axial
separations and centroid coordinates of two incoherent point
sources on different object planes in the paraxial approxi-
mation. Our results indicate that there exists a jointly optimal
detection scheme that enables resolving the sources even
when arbitrarily close, reasserting that Rayleigh’s curse is
merely an artifact of classical detection strategies based on
direct imaging. In practice, a measurement apparatus
approaching the optimal precision can be designed by
adapting the methods of Refs. [15,16,46,47,63], in particular
extending the “spatial-mode demultiplexing” or “superloc-
alization by image inversion interferometry” techniques [2,7]
to the axially separated setting considered here.
While some of our findings were illustrated explicitly for

Gaussian beams, our framework is general and can be
applied to any point spread function that satisfies the
paraxial wave equation, thanks to the exact expressions
in Eqs. (13)–(20). This leads to qualitatively similar results
as those presented here. In particular, the two most
important conclusions, namely, that the qFim elements
for the angular distance s and for the axial distance p are
both independent of s and p, and that the joint estimation of
s and p fulfils the measurement compatibility condition

leading to the saturation of the quantum Cramér-Rao bound
in Eq. (8), are in fact valid for any point spread function.
This Letter constitutes an important application of multi-

parameter quantum estimation theory to a realistic imaging
setting, extending the seminal work of Ref. [2]. Our
analysis, combined with the one in Ref. [12], yields a
quantum enhanced toolbox for full 3D subwavelength
localization. This paves the way to further experimental
demonstrations and innovative metrology solutions in
scientific, industrial, and biomedical domains, such as
subnanometer depth mapping in rough surfaces, and
dynamical interaction analysis of heterogeneous molecules
in a cellular environment [4,5,27,64].
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Note added.—Shortly after the initial submission of this
Letter, quantum superresolution of two incoherent point
sources in three dimensions was studied independently in
Ref. [65], reporting explicit results for the case of a clear
circular aperture.
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