

Edinburgh Research Explorer

Modified orbital branching for structured symmetry with an
application to unit commitment

Citation for published version:
Ostrowski, J, Anjos, MF & Vannelli, A 2015, 'Modified orbital branching for structured symmetry with an
application to unit commitment' Mathematical programming, vol. 150, no. 1, pp. 99-129. DOI:
10.1007/s10107-014-0812-y

Digital Object Identifier (DOI):
10.1007/s10107-014-0812-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/196573949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10107-014-0812-y
https://www.research.ed.ac.uk/portal/en/publications/modified-orbital-branching-for-structured-symmetry-with-an-application-to-unit-commitment(52f0c8db-5e83-4a43-a8cb-93a8f8e57a82).html

Mathematical Programming Series A manuscript No.
(will be inserted by the editor)

Modified Orbital Branching for Structured Symmetry
with an Application to Unit Commitment

James Ostrowski · Miguel F. Anjos ·
Anthony Vannelli

Received: date / Accepted: date

Abstract The past decade has seen advances in general methods for symme-
try breaking in mixed-integer linear programming. These methods are advan-
tageous for general problems with general symmetry groups. Some important
classes of mixed integer linear programming problems, such as bin packing
and graph coloring, contain highly structured symmetry groups. This obser-
vation has motivated the development of problem-specific techniques. In this
paper we show how to strengthen orbital branching in order to exploit special
structures in a problem’s symmetry group. The proposed technique, to which
we refer as modified orbital branching, is able to solve problems with struc-
tured symmetry groups more efficiently. One class of problems for which this
technique is effective is when the solution variables can be expressed as 0/1
matrices where the problem’s symmetry group contains all permutations of
the columns. We use the unit commitment problem, an important problem in
power systems, to demonstrate the strength of modified orbital branching.

Keywords symmetry · integer programming · orbital branching · orbitopes ·
unit commitment

James Ostrowski
Department of Industrial and Systems Engineering
University of Tennessee Knoxville
Knoxville, TN, United States
E-mail: jostrows@utk.edu

Miguel F. Anjos
Canada Research Chair in Discrete Nonlinear Optimization in Engineering
GERAD & École Polytechnique de Montréal
Montréal, QC, Canada H3C 3A7
E-mail: anjos@stanfordalumni.org

Anthony Vannelli
School of Engineering
University of Guelph
Guelph, ON, Canada N1G 2W1
E-mail: vannelli@uoguelph.ca

2 James Ostrowski et al.

1 Introduction

The presence of symmetry in mixed integer linear programming (MILP) has
long caused computational difficulties. Jeroslow [9] introduced a class of simple
integer programming problems that require an exponential number of subprob-
lems when using pure branch and bound due to the problem’s large symmetry
group. The past decade has seen advances in general methods for symme-
try breaking, most notably isomorphism pruning [14,15] and orbital branch-
ing [18]. These methods are advantageous for general problems with general
symmetry groups. There are important classes of MILP problems, such as bin
packing and graph coloring, that contain highly structured symmetry groups
which can be exploited. This observation has motivated the development of
problem-specific techniques. For example, orbitopal fixing [11,12] is an efficient
way to break symmetry in bin packing problems. Symmetry breaking con-
straints can be added to formulations of telecommunication problems, noise
pollution problems, and others, see e.g. [20].

In some cases, a general symmetry breaking-method such as orbital branch-
ing can be modified to take advantage of special structure. For example, con-
sider the Jeroslow problem

min xn+1

s.t.
∑n
i=1 2xi + xn+1 = 2bn2 c+ 1

xi ∈ {0, 1} ∀i ∈ {1, . . . , n+ 1},
(1)

for any positive integer n. This problem contains a large amount of symme-
try. Using pure branch-and-bound, solving (1) will require an exponentially
large branch-and-bound tree [9]. However, this symmetry is very well struc-
tured. Any permutation of variables among {x1, . . . , xn}, while leaving the
remaining variables unchanged, is a symmetry. The only permutations that
are not symmetries are those that move the variable xn+1. Because of this
special structure, the constraints xi ≥ xi+1, for i ∈ {1, . . . , n − 1}, can be
added to the problem to break the symmetry. With these constraints, a pure
branch-and-bound approach can solve (1) using just one branch. Similarly, the
problem can be reformulated by replacing

∑n
i=1 xi by y; the resulting formu-

lation is easy to solve. General symmetry-breaking methods are less efficient.
Both isomorphism pruning [14,15] and orbital branching [18] need bn2 c + 1
nodes to solve (1).

In this paper we show how to strengthen orbital branching in cases where
the problem’s symmetry group contains additional structure. The proposed
technique, to which we refer as modified orbital branching, is able to solve prob-
lems with structured symmetry groups more efficiently. For example, modified
orbital branching solves (1) in one branch. This improvement is especially use-
ful for problems whose solutions can be expressed as orbitopes, e.g. like those
studied in [11,12]. The proposed modified orbital branching strengthens the
results in [11,12] by extending the classes of problems for which symmetry can
be efficiently removed.

Modified Orbital Branching with Applications 3

We demonstrate the potential of modified orbital branching for problems
with structured symmetry via the unit commitment (UC) problem. The UC
problem is formulated in the context of operating an electrical power system
and consists of finding an optimal power production schedule for each gener-
ator in the system so as to minimize the total cost of power generation while
ensuring that demand is met and that the system operates safely and reli-
ably. Real-world instances of UC lead to challenging optimization problems,
in particular in the presence of multiple generators with identical characteris-
tics since this results in problems with significant symmetrical structure. The
survey paper [1] provides an introduction to UC from the point of view of
optimization and a summary of the recent developments in the literature.

This paper is structured as follows. Section 2 provides an overview of sym-
metry in integer programming, as well as a description of orbital branching.
Section 3 shows how orbital branching can be strengthened when the prob-
lem’s symmetry group has a special structure. Section 4 shows how modified
orbital branching can be used to efficiently remove all isomorphic solutions
from MILP problems that can be expressed as orbitopes. Section 5 demon-
strates the strength of modified orbital branching on UC problems having
multiple generators with the same characteristics. Section 6 concludes the pa-
per.

2 Symmetry and Orbital Branching

2.1 Background on Symmetry

The set Sn is the set of all permutations of In = {1, . . . , n}. This set forms
the full symmetric group of In. Any subgroup of the full symmetric group is
a permutation group. For any permutation group Γ , the following hold:

– Γ contains the identity permutation e.
– If π ∈ Γ , then π−1 ∈ Γ , where π−1 is the inverse permutation.
– For π1 and π2 ∈ Γ , the composition of π1 and π2, denoted π1 ◦ π2, is in Γ .

The permutation π ∈ Γ maps the point z ∈ Rn to π(z) by permuting the
indices. The permutation group Γ acts on a set of points Z ⊂ Rn if Γ (Z) = Z
holds.

We focus on MILPs of the form min{cTx+dT y | Ax+By ≤ b, x ∈ Zn+, y ∈
Rp+}, where c is an n-vector, d a p-vector, A an m × n matrix, B an m × p
matrix, and b an m-vector. Let F denote the feasible set of a given MILP. The
symmetry group G of an MILP is the set of permutations of the variables that
map each feasible solution onto a feasible solution of the same value:

G def
= {π ∈ Sn | π(x) ∈ F and cTx = cTπ(x) ∀x ∈ F}.

Note that computing a problem’s symmetry group is NP-hard [16].

4 James Ostrowski et al.

The orbit of z under the action of the group G is the set of all elements of
Z to which z can be sent by permutations in G:

orb(z,G)
def
= {π(z) | π ∈ G}.

Orbits can also be extended to variables. We say that {xi1 , xi2 , . . . , xik} is
a (variable) orbit whenever orb({ei1},G) = {ei1 , ei2 , . . . , eik}. Therefore, the
union of the orbits

n⋃
j=1

orb({ej},G) (2)

can be interpreted as a partition of In, as well as the variables.
To study how a group Γ acts on a subset of In, we project Γ . The projection

of Γ on J ⊆ In, ProjJ(Γ), is formed by truncating the actions of Γ onto the
set J and choosing the set of permutations πP : J → J such that

πP ∈ ProjJ(Γ)⇔ ∃π ∈ Γ s.t. π(ei) = πP (ei) ∀ i ∈ J. (3)

Note that it only makes sense to project the symmetry group Γ onto a set J
if for any i ∈ J , k must be in J if there exists a π ∈ Γ with ek = π(ei).

If Γ is the set of all permutations of pairwise distinct elements {i1, . . . , in},
then we say that Γ is isomorphic to Sn, or Γ ∼= Sn. If J represents an orbit
of ei and ProjJ(Γ) consists of all permutations of the elements of the orbit,
then ProjJ(Γ) ∼= S|J|.

Example 1 Permutations are commonly written in cycle notation. The expres-
sion (a1, a2, . . . ak) denotes a cycle which sends the entry at index ai to index
ai+1 for i = 1, . . . , k − 1 and sends the entry at index ak to index a1. Per-
mutations can be written as a product of cycles. For example, the expression
(a1, a2)(a3) denotes a permutation which sends the entry at index a1 to a2,
a2 to a1, and a3 to itself. We omit 1-element cycles for clarity.

Let Γ ⊂ S5 be the permutation group containing the following permuta-
tions:

π0 = e

π1 = (1, 2)

π2 = (3, 4, 5)

π3 = (1, 2)(3, 4, 5)

Note that all the permutations in Γ can be generated using only π3 (for ex-
ample π1 = π3

3). The orbital partition of Γ is {1, 2} and {3, 4, 5}. If we
projected Γ onto the set {1, 2} we would have the following permutations

π′0 = e

π′1 = (1, 2)

π′2 = e

π′3 = (1, 2).

Modified Orbital Branching with Applications 5

This projection contains all permutations of the set {1, 2}, so Proj{1, 2}(Γ) ∼=
S2. Projecting onto the set {3, 4, 5} gives the permutations

π′′0 = e

π′′1 = e

π′′2 = (3, 4, 5)

π′′3 = (3, 4, 5).

This projection does not contain all permutations of the set {3, 4, 5}, so
Proj{3, 4, 5}(Γ) 6∼= S3.

2.2 Orbital Branching

The methods discussed in the remainder of this paper apply to 0/1 MILP
problems. A subproblem a in the branch-and-bound tree is defined by two
sets: the set of variables fixed to zero, F a0 , the set of variables fixed to one,
F a1 . We let Na be the set of free variables at node a. We let Fa denote the
feasible set of a and Ga its symmetry group. As variables are fixed, Ga changes
and needs to be recomputed. For example, suppose xi and xj share an orbit
at the root node (with π in G mapping i to j). If variable xi is fixed to zero
and xj is fixed to one at node a, then for any feasible x at node a, π(x)i = 0
and π(x)j = 1, meaning that π(x) is not feasible in node a, so π is not in Ga.

Orbital branching works as follows. Let O = {xi1 , xi2 , . . . , xik} be an orbit
of Ga. Rather than branching on the disjunction

xi1 = 1 ∨ xi1 = 0, (4)

one uses the branching disjunction

k∑
j=1

xij ≥ 1 ∨
k∑
j=1

xij = 0. (5)

Note that
∑k
j=1 xij = 0 fixes all the variables involved to zero. Symmetry

is exploited by the following observation regarding
∑k
j=1 xij ≥ 1: since all

the variables in O are isomorphic, and at least one of them must be equal to
one, any variable in O can be arbitrarily chosen to be one. This leads to the
symmetry-strengthened disjunction

xi1 = 1 ∨
k∑
j=1

xij = 0. (6)

It is easy to see that (6) is a valid disjunction by considering the following.
Because the variables are isomorphic, the subproblem generated by fixing xi1
to one will be equivalent to the subproblem generated by fixing xij to one for
all j = 2, . . . , k. Therefore, if there is an optimal solution with xi1 equal to

6 James Ostrowski et al.

one, then there will be an optimal solution with xi2 = 1. If there is an optimal
solution that is feasible at a, there will be an optimal solution feasible in one
of the subproblems of a.

The strength in orbital branching is that a total of |O| + 1 variables are
fixed by the branching, instead of the two that traditional branching fixes.
Because of this, the larger the orbit, the more likely the branching decision
will be strong. Stronger branching decisions will improve the lower bound
faster, leading to shorter solution times.

Example 2 This example shows the effectiveness of orbital branching on the
Jeroslow problem (1). Figure 1 shows the branch-and-bound tree for the in-
stance where n = 8. A pure branch-and-bound approach requires exponentially
many (in n) branches, whereas orbital branching requires only a linear num-
ber of branches. All nodes except node K are pruned by infeasibility. The LP

A

B

D

F

H

J

x5 = 1

K

xi = 0, ∀ i ∈ {5, . . . , 8}

x4 = 1

I

xi = 0, ∀ i ∈ {4, . . . , 8}

x3 = 1

G

xi = 0, ∀ i ∈ {3, . . . , 8}

x2 = 1

E

xi = 0, ∀ i ∈ {2, . . . , 8}

x1 = 1

C

xi = 0, ∀ i ∈ {1, . . . , 8}

Fig. 1 B&B tree for the Jeroslow problem with orbital branching

solution at node K is integer (and optimal).

3 Modified Orbital Branching

The branching tree in Example 2 is very lopsided. While the unbalanced na-
ture for this example is extreme, it is likely that the branch-and-bound tree
will be unbalanced for highly symmetric problems, as the right branch is typ-
ically much stronger (fixing |O| variables to zero) than the left branch (fixing
one variable to one). This may be problematic because the symmetry group of
the left subproblem is typically much smaller than that of the current node.

Modified Orbital Branching with Applications 7

Thus subsequent branching disjunctions in the left subproblem are likely to
be weaker as the smaller symmetry groups lead to smaller orbits. The symme-
try group of the right child does not decrease [18], leading to more powerful
branches, but this only helps when the right node is not pruned.

In some situations, the branching decision can be modified to create a
more balanced branch-and-bound tree. Suppose we branch on orbit O =
{xi1 , . . . , xi,k} at subproblem a with symmetry group Ga, and consider the
branching disjunction

k∑
j=1

xij ≥ b′ ∨
k∑
j=1

xij ≤ b′ − 1 (7)

for any b′ ∈ Z+. If projO(Ga) is equivalent to S|O|, then the above disjunction
can be strengthened in a similar way as (5). If an orbit contains at least b′

many variables that take the value of 1 and projO(Ga) ∼= S|O|, then b′ variables
can arbitrarily be chosen to take the value of 1. Similarly, if at most b′ − 1
variables take the value of 1, then at most |O| − b′− 1 variables take the value
of 0. If projO(Ga) ∼= S|O|, these variables can be chosen arbitrarily. Thus
disjunction (7) can be strengthened to

xij = 1 ∀ j ∈ {1, . . . , b′} ∨ xij = 0 ∀ j ∈ {b′, b′ + 1, . . . , |O|}. (8)

While different values of b′ can be chosen for (7), the choice b′ = d
∑
j∈O x

∗
je

is natural, where x∗ is the solution to the LP relaxation of subproblem a.

Theorem 1 Let a = (F a0 , F
a
1) be a node in the branch and bound tree with

feasible region Fa. Suppose orbit O with projO(Ga) ∼= S|O| was chosen for
branching. Child l is formed by fixing xij = 1 ∀ j ∈ {1, . . . , b′} and child r is
formed by fixing xij = 0 ∀ j ∈ {b′, b′ + 1, . . . , |O|}. For any optimal x∗ in
Fa, there exists a π ∈ Ga with π(x∗) contained in either F l or Fr.

Proof Assume that
∑
j∈O x

∗
j ≥ b′. We construct a π ∈ Ga such that π(x∗) ∈

F l.
Let I = {j ∈ O|x∗j = 1} , I = {i ∈ I | b′ < i}, and J = {j ∈

{0, . . . , b′} | j /∈ I}. By our assumption, we have |I| ≥ |J |.
Let π initially be the identity permutation. For every j ∈ J , choose a

unique element i ∈ I. Because projO(Ga) ∼= S|O|, there exists a πj,i in Ga
with πj,i(ej) = ei, πj,i(ei) = ej , and πj,i(ek) = ek for all k ∈ O not equal to i

or j. Amend π such that π
def
= π ◦ πj,i.

By the definition of a group, the resulting π will be an element of Ga (as
it is a composition of elements of Ga). As such, π(x∗) is in Fa. Moreover, π
maps variables that take the value of “1” in x∗ to elements in J while leaving
the variables in I \ I unchanged. As a result, π(x∗) satisfies the constraint∑
j∈O xj ≥ b′, and is in F l.
The case of π(x∗) in Fr is proved similarly. ut

8 James Ostrowski et al.

Example 3 Let us apply modified orbital branching to the Jeroslow problem
(1). First, note that the orbit O1 = {1, . . . , 8} is such that projO1

(G) ∼= S8, as
any permutation of the first 8 variables is a symmetry of the problem. While
there are many basic optimal solutions to the LP relaxation, it is easy to verify
that all optimal solutions x∗ to the LP at the root node have

∑8
j=1 x

∗
j = 4.5,

hence we use b′ = 5 and branch on O1.
The resulting branch-and-bound tree is shown in Figure 2. While node B is

infeasible, the LP relaxation at C has x1 = x2 = x3 = x4 = x9 = 1, an integer
(and optimal) solution. Note that for this particular problem, using modified
orbital branching is equivalent to adding the symmetry breaking constraints
x1 ≥ x2 ≥ . . . ≥ x8.

A

B

x1 = x2 = x3 = x4 = x5 = 1

C

x5 = x6 = x7 = x8 = 0

Fig. 2 B&B tree for the Jeroslow problem with modified orbital branching

4 Orbital Branching and Orbitopes

Consider the set of all feasible m×n 0/1 matrices, where the symmetry acting
on the variables consists of all permutations of the columns. A classic example
of a problem with this structure is graph coloring. One type of symmetry
found in graph coloring arises from permuting colors. If entry i, j equals 1 if
and only if vertex i is assigned color j then permuting colors corresponds to
permuting two columns of the solution matrix. A common technique used to
remove equivalent solutions to the graph coloring problem (as well as other
problems) is to restrict the feasible region to matrices with lexicographically
non-increasing columns. This idea can be generalized to other problems with
this structure.

The convex hull of all m × n 0/1 matrices with lexicographically non-
increasing columns is called a full orbitope. A packing orbitope is the convex
hull of all matrices with lexicographically non-increasing columns with at most
one 1 per row, and the partitioning orbitope is the set with exactly one 1 per
row. Complete linear descriptions of packing and partitioning orbitopes are
given in [12]. While these descriptions require exponentially many inequali-
ties, a polynomial time algorithm can be used to test if a solution of the LP
relaxations violates any of the constraints [11]. A complete description of full
orbitopes is not known, though an extended formulation is given in [10].

In this section, we show how modified orbital branching can be used to re-
strict the branch-and-bound search to solutions in the full orbitope. Moreover,
we show that modified orbital branching can be used to generate all elements
of a full orbitope in polynomial time for a fixed m.

Modified Orbital Branching with Applications 9

Let P(m,n) = {x ∈ Rm×n|xi,j ∈ {0, 1} ∀i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}}.
Let PO(m,n) ⊂ P(m,n) denote the set of matrices with lexicographically non-
increasing columns. Suppose the MILP has of the form

min{
∑
i

∑
j

cijxi,j |
∑
i

∑
j

akijxi,j ≥ bk ∀k ∈ {1, . . . , l}, and x ∈ P(m,n)},

(9)
and that the symmetry group contains all column permutations of the x vari-
ables. As a result of the symmetry, we can restrict our search to be over
PO(m,n).

While variable orbits can be computed extremely fast if the symmetry
group is known, there are no known polynomial-time algorithms to compute
the symmetry group of a subproblem in the branch-and-bound tree for a gen-
eral integer programming problem. However, because of the special structure
of orbitopes, computing column symmetries (and thus orbits) can be done in
linear time with respect to the number of variables. Permutations that permute
columns j and j′ are in the symmetry group of the subproblem a = (F a0 , F

a
1)

iff either xi,j and xi,j′ are fixed to the same value or both are free for all i in
{1, . . . ,m}.

Even though orbital branching removes a significant proportion of isomor-
phic solutions from the feasible region, it is still possible for some symmetry to
remain unexploited. The extent to which symmetry remains depends on the
branching decisions made. With an appropriate branching rule, however, it is
possible to remove all column symmetry. One such rule is the minimum row-
index (MI) branching rule. For this branching rule, xi,j is an eligible branch-
ing candidate iff variables xi′,j′ have already been fixed for all i′ < i and all
j′ ∈ {1, . . . , n}. In other words, variables in row i are only eligible for branching
if all variables in rows less than i have already been fixed. The MI branching
rule allows orbits to be chosen for branching only if they contain variables
eligible for branching. While this may seem highly restrictive, it can be used
to ensure that only non-isomorphic solutions are explored. In later sections,
we will exploit the rule in order to allow greater flexibility.

Theorem 2 Suppose the MI branching rule was used at every node in the
branch-and-bound tree to generate all non-isomorphic solutions (corresponding
to leaf nodes of depth nm in the full branch-and-bound tree). Let S be the set
of solutions generated. We have that S = F ∩ PO(m,n).

Proof By Theorem 1 we know that S contains at least one representative from
each set of isomorphic solutions, so |S| ≥ |F ∩ PO(m,n)|. We need only to
show that S ⊆ F ∩ PO(m,n) in order to prove this theorem.

Suppose S 6⊆ F ∩ PO(m,n). Let x be such that x is in S but not in
F ∩ PO(m,n). Clearly, we have that x ∈ F . As x is not in PO(m,n), it must
contain two adjacent columns, j and j+1, with column j+1 lexicographically
larger than column j. Let i be the first row where columns j and j + 1 differ.
We have xi,j = 0 and xi,j+1 = 1.

10 James Ostrowski et al.

By definition of S, there is a node of depth mn in the branch-and-bound
tree representing solution x. Let subproblem a be the earliest ancestor of this
subproblem where either xi,j or xi,j+1 was fixed by branching. At node a, the
fixed variables in column j are identical to those in column j + 1. If xi,j was
fixed to zero by branching, then xi,j+1 must be in the orbit branched upon.
In that case, the branching disjunction that fixed xi,j to zero would have also
fixed xi,j+1 to zero (since j < j + 1). Similarly, if xi,j+1 was fixed to one by
branching, then xi,j must have been fixed to one. This branching disjunction
would have removed x from both children’s feasible region, so no such x can
exist. ut

Theorem 2 can be extended to MILPs where only a subset of the variables can
be expressed as 0/1 matrices.

4.1 The Complexity of Enumerating the Elements of an Orbitope

In this section we show that for fixed m, there are polynomially many solu-
tions in PO(m,n). As a consequence of this, modified orbital branching can
enumerate all feasible solutions in polynomial time (for a fixed m).

Theorem 3 For fixed m, the number of solutions in PO(m,n) grows polyno-
mially in n.

Proof We use a combinatorial argument. Let B be the (numbered) collection
of 0/1 m-vectors. We represent each feasible solution in PO(m,n) as a collec-
tion of n of these m-vectors (with duplication). Note that |B| = 2m. Using a

“stars-and-bars” argument, we know that there are
(
n+|B|−1
|B|

)
ways to choose n

elements from a set of B elements with replacements. Since
(
n+|B|−1
|B|

)
= O(n|B|)

for large n, the result follows. ut

Next, we need to show that the branch-and-bound tree grows polynomially
as n increases. This is easy to see by observing that at any subproblem in the
branch-and-bound tree, a feasible solution to PO(m,n) can be found by fixing

all free variables to zero. As a result, there can be no more than
(
n+|B|
|B|
)

many

nodes at any depth in the tree. The depth of the branch-and-bound tree is
bounded above by mn + 1, so there can be at most mn

(
n+|B|
|B|
)

many nodes.

At each subproblem, only the orbits and the minimum row-index need to be
computed. These can also be done in polynomial time.

4.2 Strength of LP Relaxation

Theorem 2 shows that modified orbital branching eventually removes isomor-
phic solutions from the feasible solutions. Nevertheless one concern with using
modified orbital branching is that the LP relaxations might be weaker than

Modified Orbital Branching with Applications 11

if the isomorphic solutions were removed at the root node and weaker relax-
ations might lead to larger branch-and-bound trees. This might be the case
in bin packing problems, where the convex hull of the bin-packing polytope
is known [11]. Usually, though, symmetry-breaking constraints don’t exploit
integrality, and as a result, tend to be very weak. For instance, in his paper [7],
Friedman showed that all isomorphic solutions can be removed from the LP
relaxation’s feasible region by adding the constraints

m∑
k=1

2m+1−kxk,j ≥
m∑
k=1

2m+1−kxk,j+1 ∀j ∈ {1, . . . , n− 1}. (10)

These constraints force the columns of x to be lexicographically non-increasing.
It is clearly not practical to add these constraints to any problem of reasonable
size, as the 2m+1−k term may cause numerical instability. However, even if it
were, these constraints would not improve the LP relaxation at the root node.

Another option for symmetry-breaking inequalities is to add column in-
equalities [12]. Like the Friedman inequalities, column inequalities also enforce
lexicographically decreasing columns by adding the (more computationally
stable) constraints

xi,j ≤
i∑

k=1

xk,j−1 ∀i ∈ 1, . . . ,m, ∀j ∈ 2, . . . , n. (11)

Theorem 4 For any subproblem of (9) formed by using modified orbital branch-
ing with a MI branching rule, the solution to the LP relaxation does not change
when either constraints (10) or (11) are added to the formulation.

Proof A well known result from [8] states that for a linear program with sym-
metry group G, there exists an optimal solution with xi = xπ(i) for all π ∈ G.
Because all column permutations are symmetries, there will always be optimal
LP solution at the root node with xi,j = xi,j+1 for all appropriate i and j.
This solution is not removed by the inequalities described in (10) or by those
described in (11). ut

Note however that constraints (10) and (11) may be strengthened by
considering the integrality of the variables in order to generate tighter cuts.
Theorem 4 does not apply to the resulting integrality-based constraints.

4.3 Relaxing the Branching Rule

Theorem 2 requires the MI branching strategy. Example 4 illustrates how
isomorphic solutions can remain if the MI branching rule is not used.

Example 4 Figure 3 shows a branching tree for a problem where x is a 2 × 2
0/1 matrix whose symmetry contains the permutation of the columns of x.

12 James Ostrowski et al.

A

B

D

x2,1 = 1

E

F

H

x2,2 = 1

I

x2,2 = 0

x1,2 = 1

G

x1,2 = 0

x2,1 = 0

x1,1 = 1

C

x1,1 = x1,2 = 0

Fig. 3 Symmetry remaining after modified orbital branching

Note that the MI branching rule is not used at every node in the tree. The
solution represented by subproblem H is(

1 1
0 1

)
(12)

which does not have lexicographically non-increasing columns. This solution
is equivalent to (

1 1
1 0

)
(13)

which is feasible in node D.
Why does modified orbital branching (without MI branching) fail to prune

the solution at node H from the feasible region? The problem starts at node
B. There is no symmetry in node B, as the first column of x contains one fixed
variable and the second column does not. However, symmetry is present in a
subset of FB , namely {x ∈ FB |x1,2 = 1}. Fixing x1,2 to one at node B (as is
done with the MI branching rule) would reincorporate the column symmetry
into the subproblem. However this is not done in Figure 3. Further branching
also does not exploit this symmetry, and as a result, the search explores more
solutions than is necessary.

Figure 4 shows the branch-and-bound tree when the MI branching rule is
used. Note that the column symmetry is exploited in subproblem D′, leading to
a nontrivial orbital branch. As a result of this branch, solution (12) is removed
from the search space.

Making a rigid application of a branching rule such as MI branching may
hinder the performance of the solver because different strategies to choose
branching variables can have a large impact on the time required to solve the
problem. Fortunately, a few tricks can be implemented to add more flexibility
in branching. Similar to the strategy used in [15], row indices can be permuted

Modified Orbital Branching with Applications 13

A’

B’

D’

F’

x2,1 = 1

G’

x2,1 = x2,2 = 0

x1,2 = 1

E’

x1,2 = 0

x1,1 = 1

C’

x1,1 = x1,2 = 0

Fig. 4 No symmetry remaining with the MI rule

to favor branching. For example, suppose the current subproblem contains
solutions of the type

1 1
1 0
x3,1 x3,2
x4,1 x4,2

 . (14)

The MI branching rule requires that either x3,1 or x3,2 be chosen for branch-
ing. However, by reindexing the rows, we can create a new subproblem with
solutions of the type

1 1
1 0

x′3,1 = x4,1 x
′
3,2 = x4,2

x′4,1 = x3,1 x
′
4,2 = x3,2

 (15)

and now either x′3,1 or x′3,2 (representing x4,1 and x4,2) can be chosen for
branching. Note that a row cannot be reindexed after any variable in that row
has been fixed by branching. Similar to isomorphism pruning [16], this leads
to a reordering of the rows for each subproblem in the branch-and-bound tree.
This reordering can be kept track of by using a rank vector. The rank vector
ra ∈ Rm for subproblem a denotes the order in which rows were branched on.
rai = r < m + 1 designates that row i was the rth row branched on, whereas
rai = m+1 indicates that no variable in row i has been fixed by branching. The
minimum row-rank (MRR) branching rule states that if there is a row with
rank less then m+1 that contains a free variable, a variable from that row must
be chosen for branching (only one such row will exist). The resulting solutions
using the MRR branching rule may not have lexicographical solutions, but
the space explored will not contain any isomorphic solutions. A corollary to
Theorem 2 is:

Corollary 1 Suppose the MRR branching rule was used at every node in the
branch-and-bound tree to generate all non-isomorphic solutions (corresponding
to leaf nodes of depth nm in the full branch-and-bound tree). Let S be the set
of solutions generated. We have that |S| = |F ∩ PO(m,n)|.

14 James Ostrowski et al.

Even more flexibility in branching can be obtained by recognizing when
symmetry will never be reincorporated. This is the case in the partial solution
shown in (15). Independent of the unknown variables, column two will always
be lexicographically smaller than column one. This is easily seen by recognizing
that the first difference between the solutions in the columns are at row two,
where column one has a “1” and column two has a “0”. In this case, variables
can be branched on in any order and still guarantee that only nonisomorphic
solutions are explored. We need to test if and when this is the case.

Suppose we wish to branch on orbit Oi,j containing the k elements Oi,j =
{xi,j , xi,j+1, . . . , xi,j+k−1} at subproblem a. Let ra be the rank vector at a.
We say that Oi,j is left closed with respect to ra if j = 1 or column j (reindexed
by ra) is guaranteed to be lexicographically smaller than column j − 1. Left
closure is easily determined by finding the first (after reindexing) row i′ with
xi′,j−1 fixed to a different value than xi′,j . If xi′,j−1 ∈ F a1 and xi′,j ∈ Fa0 ,
then Oi,j is left closed. Similarly, Oi,j is right closed with respect to ra if either
j = n or Oi,j+k+1 is left closed (the jth column of the matrix will always be
lexicographically larger than the j + k + 1st column). Orbit Oi,j is said to be
closed if it is both left closed and right closed. We define the closure of Oi,j ,
OCi,j , to be the minimal set {xi,j′ , xi,j′+1, . . . , xi,j′′} such j′ ≤ j, j′′ ≥ j+k−1,
the orbit containing xi,j′ is left closed, and the orbit containing xi,j′′ is right
closed. Note that closure depends only on the columns, not the rows. If Oi,j
is right/left closed, then orbit Oi+1,j will also be right/left closed.

The notion of closure is meant to indicate whether additional variable
fixings can be used to increase the size of a given orbit. For instance, if Oi,j =
{xi,j , xi,j+1, . . . , xi,j+k−1} is not left closed, then fixing some free variables
might create a new symmetry group where {xi,j−1, xi,j , xi,j+1, . . . , xi,j+k−1}
is an orbit. Similarly, if Oi,j is not right closed, then variable fixings might
cause the orbit to become larger. Recall from Example 4 that when symmetry
enters the problem as a result of fixings, then some isomorphic solutions may
remain (necessitating the use of the MRR branching rule). However, if Oi,j
is left closed, then independent of additional fixings, column j − 1 will be
lexicographically larger than any column in {j, j+ 1, . . . , j+ k− 1}. Similarly,
if Oi,j is right closed, then column j+ k will be lexicographically smaller than
any column in {j, j + 1, . . . , j + k − 1}. The notion of closure can be useful in
identifying when the MI (or MRR index) branching rule can be ignored. With
that in mind, we create the relaxed minimum-index (RMI) branching rule. An
orbit Oi,j with closure {xi,j′ , xi,j′+1, . . . , xi,j′′} is eligible for branching if and
only if xu,v is fixed for all u < i and all j′ ≤ v ≤ j′′.

Theorem 5 Suppose the RMI branching rule was used at every node in the
branch-and-bound tree to generate all non-isomorphic solutions. Let S be the
set of solutions generated. We have that S = F ∩ PO(m,n).

Proof This proof closely follows the proof of Theorem 2. In the proof to Theo-
rem 2, we argue that if S 6= F ∩PO(m,n), then there must exist an x ∈ S that
contains columns j and j+1 where column j+1 is lexicographically larger than
column j. Let i be the minimum row index where xi,j < xi,j+1, i.e., xi,j = 0

Modified Orbital Branching with Applications 15

and xi,j+1 = 1. Let a be the earliest ancestor of the nodes representing the
solution x where either xi,j or xi,j+1 was fixed by branching.

The proof for Theorem 2 relied on the fact that the orbit at a containing
xi,j also contains xi,j+1. We must prove that with the RMI branching rule
variables xi′,j and xi′,j+1 are fixed at a for all i′ < i. Because of our choice of
a, there is no i′ < i with xi′,j > xi′,j+1, so the closure of the orbit containing
xi,j must also contain xi,j+1. As a result, if xi,j and xi,j+1 are eligible for
branching, then xi′,j and xi′,j+1 must be fixed for all i′ < i, implying that xi,j
and xi,j+1 are in the same orbit at node a. The branching disjunction must
either set xi,j to 1 or xi,j+1 to 0, contradicting our choice of i. ut

Example 5 Consider the subproblem with the following fixed variables

1 1 1 1 1 0
1 0 0 0 0 0
1 1 1 x3,4 0 0
0 x4,2 x4,3 x4,4 x4,5 0
1 x5,2 x5,3 x5,4 x5,5 x5,6
x6,1 x6,2 x6,3 x6,4 x6,5 x6,6
x7,1 x7,2 x7,3 x7,4 x7,5 x7,6

. (16)

The symmetries in this subproblem permute columns 2 and 3.
Let O6,1 represent the variable orbit {x6,1}. O6,1 is trivially left closed

(because it contains a variable from the leftmost column). It is also right
closed because column 2 can never be lexicographically larger than column 1
(since x2,1 = 1 and x2,2 = 0). Since orbit O6,1 is closed with xi′,1 fixed for all
i′ < 5, it is eligible for branching using the RMI branching rule.

O4,2 = {x4,2, x4,3} is left closed (for the same reasons O6,1 is right closed),
but not right closed. Notice that if x3,4 were fixed to 1, then {x4,2, x4,3, x4,4}
would be a larger orbit containing O4,2.

O3,4 = {x3,4} is neither left closed nor right closed, as fixing x3,4 to 1
creates a larger orbit (by adding variable found to the left of x3,4) containing
{x3,2, x3,3, x3,4}, and it is not right closed as fixing x3,4 to 0 creates the larger
orbit {x3,4, x3,5} (note that the larger orbits can contain fixed variables).

O4,5 is not left closed (by the reasons mentioned above), but it is right
closed, as x1,5 = 1 and x1,6 = 0.

The closure of O4,2, and also the closure of O4,4 and O4,5, is equal to
{x4,2, x4,3, . . . , x4,5}, which is not eligible for branching, as x3,4 is a free vari-
able. In fact, the orbit containing x3,4 is the only orbit in columns 2 through
5 that is eligible for branching using the RMI rule.

The orbit O5,6 = {x5,6} is both right closed and left closed. Since xi′,6 is
fixed for all i′ < 5, it is eligible for branching under the RMI branching rule.

Note that the MI branching rule would require that the orbit containing
x3,4 be chosen for branching. The RMI branching rule adds more flexibility by
allowing the solver to branch on the orbit containing x6,1, x3,4, or x5,6.

Similar to the MI branching rule, the RMI rule can be relaxed by allowing
rows to be reordered. We define the relaxed minimum-rank index (RMRI)

16 James Ostrowski et al.

branching rule as follows. Let Ra ∈ Rm×n be a matrix whose ith column
corresponds to a rank vector associated with column j of x at node a in the
branch-and-bound tree, where Rai,j = k ≤ m implies that, amongst all the
variables in column j, variable xi,j was the kth variable fixed by branching. If
xi,j is a free variable at node a, Rai,j takes the value m+1. The minimum rank
of a set of variables O at node a, RaO is equal to the rank of its smallest element,
i.e. RaO = {minRai,j | xi,j ∈ O}. An orbit of free variables is branchable under
the RMRI branching rule if and only if the rank of its closure is smaller than
any other orbit closure spanning the same set of columns. A consequence of
this rule is that if an orbit closure contains both free variables and variables
fixed by branching, then an orbit contained in that closure must be chosen for
branching. Corollary 2 is a similar extension to Theorem 5 as Corollary 1 is
to Theorem 2.

Corollary 2 Suppose the RMRI branching rule was used at every node in the
branch-and-bound tree to generate all non-isomorphic solutions. Let S be the
set of solutions generated. We have that |S| = |F ∩ PO(m,n)|.
Example 6 Consider again (16) in the previous example. Both sets {x6,1} and
{x7,1} are closed orbits, and contain variables with rank of 8 (with respect to
Ra). As such, both orbits are eligible for branching.

Consider any orbit containing a variable in any of columns 2 through 5.
Suppose orbit Oi,j contains xi,j , where j is between 2 and 5. We have that
OCi,2 = {xi,2, . . . , xi,5}. As columns 2 through 5 have no variables fixed in
rows 4 through 7, Rai,j = 8 for all j ∈ {2, . . . , 5}, and i ∈ {4, . . . , 7}. As a

result, ROC
4,2

= ROC
5,2

= ROC
6,2

= ROC
7,2

= 8. However, OC3,2 contains elements

with rank 3, (x3,2, x3,3, and x3,5), and one with rank 4, (x3,4), so RO3,2 = 3.

Even though OC1,2 and OC2,2 have ranks smaller than OC3,2, they do not contain

any free variable orbits. Since {x3,3} is the only free variable orbit in OC3,2, it
is eligible for branching.

The orbits {x5,6}, {x6,6}, and {x7,6} are all closed and all have a rank of
8 with respect to Ra. As a result, all of these orbits are eligible for branching
under the RMRI branching rule.

Algorithm 1 summarizes how to choose the appropriate branching orbit for
orbitopes.

Recall that for packing (partitioning) problems, solutions can be repre-
sented as 0/1 matrices with at most (exactly) one 1 per column, such that all
permutations of the column indices are symmetries. It is easy to see that in this
case every orbit in every subproblem will be closed, meaning that isomorphic
solutions can be removed from the search without requiring any branching
restrictions.

4.4 Implementation

Algorithm 1 describes how to use modified orbital branching to ensure that the
branching process explores only non-isomorphic solutions. One implementation

Modified Orbital Branching with Applications 17

Algorithm 1 Selecting Branching Orbit at Subproblem a = (F a0 , F
a
1)

INPUT: Fa
1 , Fa

0 , rank matrix Ra for all j, and candidate branching orbit Oi,j =
{xi,j , . . . , xi,j+k}.
OUTPUT: Branchable orbit
If Oi,j is left closed

If Oi,j is right closed
Branch on Oi,j

Else
Let r be the smallest ranked index where only one of xr−1,j and xr−1,j+k+1

is in Na.
If xr,j ∈ Fa

1
Branch on Or,j+k+1

If xr,j+k+1 ∈ Fa
0

Branch on Or,j

Else
Let r be the smallest ranked index where only one of xr−1,j−1 and xr−1,j

is in Na

If xr,j−1 ∈ Fa
1

Branch on Or,j

If xr,j ∈ Fa
0

Branch on Or,j−1

difficulty, however, is the use of the rank vector. The rank vector describes
the branching decisions made on the path from the root node to the current
problem in the branch-and-bound tree. Some MILP solvers do not keep track of
what the actual tree looks like, and storing the rank vector for each subproblem
may consume a lot of memory. Fortunately, the rank vector is not necessary.

The rank vector is used to determine two things. First, it is needed to
determine if a given orbit is closed and branchable. Second, it is used to find
a branchable orbit if the initial orbit is not. Suppose that all variable fixings
occur only through RMRI branching (no reduced cost fixing or other logi-
cal implications). Using Theorem 6, it is easy to determine if a given orbit
Oi,j = {xi,j , . . . xi,j+k} is closed (both left and right) without knowing the
rank vector.

Theorem 6 Let Oi,j = {xi,j , . . . xi,j+k} be an orbit in Ga with 1 < i and
j + k < n. Oi,j is left closed with respect to Ra if and only if there is a
row i′ such that xi′,j−1 ∈ F a1 and xi′,j ∈ F a0 . Similarly, Oi,j is right closed
with respect to Ra if and only if there is a row i′ such that xi′,j ∈ F a1 and
xi′,j+k+1 ∈ F a0 .

Proof Let i′ be the smallest ranked row with xi′,j−1 ∈ F a1 and xi′,j ∈ F a0 .
Aiming at a contradiction, assume that Oi,j is not left closed. Because Oi,j is
not left closed, there must be a row r with rank smaller than i′ with either

1. xr,j−1, xr,j ∈ Na,
2. xr,j−1 ∈ Fa1 and xr,j ∈ Na,
3. xr,j−1 ∈ Na and xr,j ∈ F a0 .

In any of these cases, there is a free variable in a column with rank less then
i′, meaning that neither xi′,j−1 nor xi′,j could have been fixed by branching
in Algorithm 1 using the RMRI branching rule.

18 James Ostrowski et al.

A similar argument can be made to show that if there exists a row i′ with
xi′,j ∈ F a1 and xi′,j+k+1 ∈ F a0 , then Oi,j must be right closed. ut

Suppose that the orbit Oi,j is not closed. We must then test if Oi,j is
branchable, and if it is not, find a branchable orbit. This is done using Theo-
rem 7.

Theorem 7 Let a be a node in a branch-and-bound tree generated by using the
RMRI branching rule at every node. Consider orbit Oi,j, with closure OCi,j =

{xi,j′ , . . . , xi,j′′}. If Oi,j 6= OCi,j, then there is exactly one i′ such that the set

OCi′,j = {xi′,j′ , . . . , xi′,j′′} contains both a fixed variable (by branching) and

a free variable. Moreover, any orbit Ok,l ∈ OCi′,j containing free variables is
branchable.

Proof Suppose no such i′ exists. WLOG we can assume that Oi,j is not left
closed (i.e., j′ < j). Because Oi,j is not left closed, there is no i′ with xi′,j′ = 1
and xi′,j = 0. If there is an i′ with xi′,j′ = 0 and xi′,j = 1, then column j
will be lexicographically larger (with respect to the rank vectors) than column
j′, which cannot happen using the RMRI branching rule. As a result, for any
i′, either xi′,j′ and xi′,j are fixed to the same value or they are both free
variables (note that the nonexistance of i′ dissallows one variable to be fixed
and the other variable to be free). In this case, xi,j′ shares an orbit with xi,j ,
contradicting the fact that j′ < j.

Suppose instead that we have i′ and i′′, with i′ 6= i′′, where OCi′,j =

{xi′,j′ , . . . , xi′,j′′} and Oi′′,j = {xCi′′,j , . . . , xi′′,j′′} contains both a fixed vari-

able and a free variable. Assume Ra
OC

i′,j
< Ra

OC
i′′,j

, i.e., a variable in OCi′,j was

branched on before any variables in OCi′′,j . Let b be the node where the first

variable in OCi′′,j was fixed by branching. We know that Rb
OC

i′′,j
= m + 1, but

Oi′,j contains a free variable and Rb
OC

i′,j
< m+1. Thus, branching on any orbit

in Oi′′,j would violate the RMI branching rule. ut

Theorem 6 relies on the fact that variables are only fixed by branching.
In reality, a solver will attempt to fix variables by a variety of methods, such
as reduced-cost fixing or strong-branch fixing. These fixings make it difficult
to determine the appropriate branching orbit. For example, two consecutive
columns may have many rows where they take different values. Fortunately,
though, the structure of the modified branching algorithm can be studied in
order to return good branchable orbits. Recall from the algorithm that if Oi,j
is not left closed, then the row index is chosen by looking for a row with either
xi,j−1 ∈ F a1 and xi,j ∈ Na or xi,j−1 ∈ Na and xi,j ∈ F a0 . If no such row exists,
then additional variables can be fixed in a way that makes Oi,j a larger orbit.
If there are two or more such rows, then any of these rows can be arbitrarily
chosen without affecting the correctness of the branching disjunction, as the
branch is then equivalent to a modified orbital branching without a branching
rule. However, this may lead to isomorphic subproblems and solutions.

Modified Orbital Branching with Applications 19

5 Orbital Branching and the Unit Commitment Problem

We demonstrate the effectiveness of modified orbital branching by applying
it to the unit commitment (UC) problem. The UC problem is a fundamental
problem in the operation of power systems. The purpose of UC is to minimize
the total cost of power generation by finding an optimal power production
schedule for each generator while ensuring that demand is met and that the
system operates safely and reliably. In the context of practical system oper-
ation, the instances of UC that must be solved are often challenging because
they are large-scale and require significant computational time to solve, while
the time available to solve a UC model is a hard limitation. The survey pa-
per [1] provides an introduction to UC from the point of view of optimization
and a summary of the recent developments in the literature.

The solution of UC problems can be particularly difficult when there are
many identical generators, resulting in a problem with many symmetries. In
practice, the MILP formulations were at first solved using Lagrangian relax-
ation. However, even without branch-and-bound, symmetry still causes nu-
merical difficulties in Lagrangian relaxation methods. The paper [21] addressed
this issue by developing a surrogate subgradient method to update second level
prices. At present, most system operators use MILP solvers whose performance
may benefit from effective symmetry-breaking methods.

One way to remove symmetry from the UC problem’s formulation is to ag-
gregate all identical generators into a single generator. This is typically done
for combined cycle plants that can have two or three identical combustion
turbines. While this might be effective in reducing the number of variables,
aggregating generator variables may be very difficult, and some of the physical
requirements may be difficult to enforce. If the UC solution only specifies the
number of generators operating at each time period as well as the total power
produced by those generators, it might be difficult to determine which gener-
ators produce how much power at each time period. A comparison between
aggregating combined cycle generators and modeling them as individual units
can be found in [13].

We now describe the formulation of UC that we use for the computational
experiments in this paper. This formulation assumes that there are multiple
generators with the same characteristics; specifically generators are divided
intoK classes such that generators in the same class can be treated as identical.

Given a set of power generators and set of electricity demands, the UC
problem minimizes the total production cost of the power generators subject
to the constraints that

1. the demand is met, and
2. the generators operate within their physical limits, i.e.,

(a) the power output level of a generator may not change too rapidly (ramp-
ing constraints), and

(b) when a generator is turned on (off), it must stay on (off) for a minimum
amount of time (minimum up / downtime constraints).

20 James Ostrowski et al.

We use the three-binaries-per-generator-hour formulation based on [2]. This
model contains three sets of binary variables at every time period: those repre-
senting the on/off status of each generator at the time period, those represent-
ing if each generator is started up in the time period, and those representing
if each generator is shut down in the time period.

The problem data are as follows:

– T : Number of time steps (h).
– Dt: Demand at time period t (MW)
– Rt: Generation reserves required at time t (MW)
– K : Set of generator types.
– Gk : Set of generators of type k.
– nk : Number of generators of type k
– bklow, bkhigh : Coefficients for the piecewise linear approximation of the cost

function for a generator of type k ($/MW).
– P klow, P khigh : Marginal cost coefficients for piecewise linear approximation

of the cost function for a generator of type k ($/MW).

– P k, P
k

: Minimum and maximum generator limits for generator of type k
(MW).

– RDk : Ramp-down rate of generator of type k (MW/h).
– RUk : Ramp-up rate of generator of type k (MW/h).
– SDk : Shutdown limit of generator of type k (MW).
– SUk : Startup level of generator of type k (MW).
– UT k : Minimum uptime for generator of type k (h).
– DT k : Minimum downtime for generator of type k (h).

The variables are:

– ckt,g : Operating cost for generator g of type k at time t ($).

– pkt,g : Power produced at generator g of type k at time t (MW).

– ukt,g : On/off status of generator g of type k at time t.

– vkt,g : Startup status of generator g of type k at time t.

– wkt,g : Shutdown status of generator g of type k at time t.

The UC problem formulation is:

min

T∑
t=1

∑
k∈K

∑
g∈Gk

ckt,g (UC)

subject to

ckt,g ≥ P klowpkt,g + bklowu
k
t,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (17)

ckt,g ≥ P khighpkt,g + bkhighu
k
t,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (18)∑

k∈K

∑
g∈Gk

pkt,g ≥ Dt +Rt, t = 1, . . . , T (19)

P kukt,g ≤ pkt,g ≤ P
k
ukt,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (20)

Modified Orbital Branching with Applications 21

pkt,g − pkt−1,g ≤ RUkukt−1,g + SUkvkt,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (21)

pkt−1,g − pkt,g ≤ RDkukt,g + SDkwkt,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (22)

t∑
`=t−UTk+1, `≥1

vk`,g ≤ ukt,g, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (23)

ukt,g +

t∑
`=t−DTk+1, `≥1

wk`,g ≤ 1, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (24)

ukt−1,g − ukt,g + vkt,g − wkt,g = 0∀g ∈ Gk, ∀k ∈ K, t = 1, . . . , T (25)

ckt,g, p
k
t,g ∈ R+, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (26)

ukt,g, v
k
t,g, w

k
t,g ∈ {0, 1}, ∀g ∈ Gk,∀k ∈ K, t = 1, . . . , T (27)

The cost function of a generator is generally assumed to be a quadratic
function and it is customary to approximate it with a piecewise linear func-
tion as we do here. This approximation is done using the two line segments
in constraints (17) and (18) that are derived from two tangent lines of the
quadratic cost function (representing a low cost and a high cost) strengthened
using the method described in [5,6]. Constraint (19) ensures that enough power
is produced to meet demand. (We assume demand is known a priori.) Con-
straints (20) through (25) ensure that each generator’s production schedule is
feasible [2]. Constraint (20) ensures that each generator’s production is within
its normal operating limit. Constraints (21) and (22) are ramping constraints
ensuring that the output of each generator does not change too rapidly. Con-
straints (23) and (24) are minimum up and downtime constraints. For these
constraints, a negative time index corresponds to a generator’s status before
the start of the timing horizon. Similarly, a time index larger than T represents
the generator’s status after the planning horizon has expired. Constraint (25)
is a logical constraint, ensuring that the vkt,g variable must take the value of 1

if generator g is turned on at time t, and that wkt,g must take the value of 1
of it is turned off. This form of the minimum on and off time constraints was
proposed in [19], and tightened ramping constraints were given in [17].

We use the three-binaries-per-generator-hour formulation based on [2]. This
model contains three sets of binary variables at every time period: those repre-
senting the on/off status of each generator at the time period, those represent-
ing if each generator is started up in the time period, and those representing
if each generator is shut down in the time period. Since the startup/shutdown
status can be easily determined if the on/off status is known, in our discussion
we focus only on those variables indicating if the generator is on or off. This is
done for notational convenience. It is common in the power systems literature
to relax the integrality constraints of the startup and shutdown variables.

The binary variables in UC can be expressed as a series of 0/1 matrices.
For example, we can let Uk to be the T × nk 0/1 matrix where Ukt,g = ukt,g.

Similarly, one can construct Ck, P k, V K , and W k. Because any two generators

22 James Ostrowski et al.

in class k are identical, their production schedules can be permuted to form
identical (isomorphic) solutions. Permuting the schedules of two generators of
the same type is equivalent to permuting their respective columns in each of
Uk, Ck, P k, V K , and W k. As all generators of the same class are identical, any
such permutation of columns will be a symmetry, so long as the permutation
is applied to all the matrices. For the sake of notational simplicity, we will
only consider the variables in Uk, those representing the on/off status of each
generator of class k. We assume that any symmetry that permutes columns
of Uk will also permute columns of Ck, P k, V K , and W k. This is appropriate
for the UC problem because the remaining binary variables can be uniquely
determined if the Uk variables are known, and breaking the symmetry of the
Uk variables will break all the symmetry between the generators of class k.

The following subsections describe computational tests related to symme-
try breaking and the UC problem. All tests were performed on a Dell Pow-
erEdge T620 with two Intel Xeon E5-2670 2.60GHz processors and eight 32
GB RDIMM chips. It is running Ubuntu version 12.10. Instances were solved
one at a time with no other (significant) program running concurrently. The
MILP problems were solved using CPLEX version 12.5.1.0. All instances were
solved to within 0.1% optimality and the number of available threads was set
to 1.

To test the impact of modified orbital branching on the UC problem, we
generated 25 instances of the UC problem based on generator characteristics
described in [3]. The test problems in [3] have 8 unique generators described
in Tables 1 and 2. The quadratic cost functions were approximated by a
piecewise linear function. The marginal cost of power produced in the bottom
half of the possible production quantities is P klow, while the marginal cost of
producing power above the midpoint is P khigh. If a generator has been off for

fewer than tcoldj hours, it pays a startup cost of hcj . Otherwise, its startup cost
is ccj . Generation reserves were set to be 3% of demand.

By replicating generators and scaling the hourly demand appropriately, we
generated instances of varying sizes, each primarily containing generators of
type 1 and 2. Table 3 gives the number and type of generators in each instance.

5.1 Modified Orbital Branching

Because all generators of type k are identical, the setOkt,1 = {ukt,1, ukt,2, . . . , ukt,nk
}

is an orbit with respect to G for all t in T . Moreover, ProjO(k,t)(G) ∼= Snk so

modified orbital branching can be applied when orbit Okt,1 is chosen for branch-
ing.

We report results for the following algorithms:

– Default CPLEX: CPLEX’s default algorithm except that multithreading
is turned off.

– Branch & Cut: CPLEX with advanced features turned off (mimicking
what happens when callbacks are used); CPLEX’s symmetry-breaking pro-
cedure is used.

Modified Orbital Branching with Applications 23

Table 1 Generator Data

Gen P P UT (DT) SU (SD) RU (RD) tcold

(MW) (MW) (h) (MW) (MW/h) (h)
1 455 150 8 150 225 5
2 455 150 8 150 225 5
3 130 20 5 20 50 4
4 130 20 5 20 50 4
5 162 25 6 25 60 4
6 80 20 3 20 60 4
7 85 25 3 25 60 2
8 55 10 1 20 135 0

Table 2 Generator Costs

Gen CostLow ($/MW) CostHigh ($/MW) hc ($) cc ($)
1 16.3 16.6 4500 9000
2 17.4 17.55 5000 10000
3 16.7 17 550 1100
4 16.6 16.95 560 1120
5 19.9 20.75 900 1800
6 22.5 23.3 170 340
7 27.8 27.85 260 520
8 27 27.25 30 60

Table 3 Number of Generators

Total Generator
Instance Gens 1 2 3 4 5 6 7 8

1 46 10 11 9 1 4 4 2 5
2 46 13 12 1 2 3 8 7 0
3 47 16 19 0 2 0 1 3 6
4 47 11 18 0 8 0 3 5 2
5 48 16 14 2 9 1 3 2 1
6 49 13 14 7 5 3 5 1 1
7 49 10 18 6 1 8 1 3 2
8 49 15 15 0 2 6 2 0 9
9 52 13 10 7 5 6 5 4 2
10 52 16 15 8 0 5 0 2 6
11 52 11 13 4 6 3 7 5 3
12 52 15 14 5 7 0 3 0 8
13 53 12 14 4 4 4 2 4 9
14 55 11 18 7 9 6 1 2 1
15 55 11 15 2 5 8 5 6 3
16 56 10 14 4 8 3 5 9 3
17 56 13 19 6 9 3 1 2 3
18 57 13 16 7 5 3 5 6 2
19 58 14 13 7 2 9 3 7 3
20 62 10 19 8 5 1 8 4 7
21 63 18 10 5 7 6 8 7 2
22 63 19 16 8 2 7 5 1 5
23 67 15 18 8 5 8 7 5 1
24 67 17 19 9 1 5 3 6 7
25 72 15 17 9 7 9 9 5 1

24 James Ostrowski et al.

– OB: Original orbital branching implemented using callbacks.
– Modified OB: Modified orbital branching from Section 3 implemented

using callbacks.
– Modified OB RMRI: Modified orbital branching implemented using call-

backs with the RMRI branching rule to guarantee only non-isomorphic
solutions are explored.

The computational results are reported in Table 4. Instances not solved within
2 hours are denoted by “-”.

All versions of orbital branching were implemented using the branch call-
back feature. Branching decisions in the default version were determined by
CPLEX. After CPLEX chooses a branching variable, OB computes the orbit
of that variable, and branches on that orbit. Modified OB is done in the same
way. Modified OB RMRI needs to tests if the orbit is branchable or not. If
the orbit is not branchable, then a branchable orbit is found by using the
techniques in Section 4.4.

Unfortunately, using callback functions disables other CPLEX features,
notably dynamic search. For this reason, in addition to comparing classical
orbital branching with the versions of modified orbital branching, we also give
results based on CPLEX’s default setting (dynamic search plus additional
features) and CPLEX with features disabled (using traditional branch-and-
cut).

Amongst the three variants of orbital branching, the one with the RMRI
branching rule seems to be the most effective, indicating that for these in-
stances, the ability to remove all isomorphic solutions from the search out-
weighs the restriction in branching. The difference between using RMRI and
modified orbital branching without any branching rule, however, isn’t nearly as
significant as the difference between modified orbital branching and standard
orbital branching.

These tests also show the extreme difference between CPLEX with its ad-
vanced features and CPLEX using callback functions. One explanation for this
extreme difference may be in how CPLEX handles symmetry. Perhaps CPLEX
uses more sophisticated strategies that are turned off when callback functions
are used. Given the large discrepancy, we wonder how modified orbital branch-
ing (even without the RMRI rule) would perform if it were integrated into
CPLEX’s advanced features, or if CPLEX’s advanced symmetry handling is
better than modified branching.

In order to better understand the impact of modified orbital branching
over traditional orbital branching, consider the partial solution

x =

1 ? ? ? ?
? ? ? 1 ?
? 1 ? ? ?
? 1 1 ? ?

 .

Modified Orbital Branching with Applications 25
In

st
a
n

ce
T

im
e

N
o
d

es
N

u
m

b
er

C
P

L
E

X
B

ra
n

ch
&

C
u

t
O

B
M

o
d

O
B

R
M

R
I

C
P

L
E

X
B

ra
n

ch
&

C
u

t
O

B
M

o
d

O
B

R
M

R
I

1
5
3
.3

2
2
2
7
3
.0

9
5
6
3
.4

2
1
6
9
.3

8
1
4
7
.0

9
5
0
2

7
3
4
1
4

1
9
0
6
0

3
2
5
3

2
8
2
6

2
3
0
.5

5
3
9
.3

3
2
8
1
.3

7
7
6
.3

3
1
2
2
.1

1
6
0
0

3
1
0

6
6
5
2

1
1
4
8

2
2
7
7

3
1
7
.8

2
7
6
2
.6

7
1
4
0
.0

5
6
3
.8

2
6
2
.2

0
1
4
0

1
4
8
6
8

3
8
5
1

1
9
0

1
9
0

4
4
0
.1

4
2
8
2
8
.5

3
2
1
6
7
.1

2
2
5
4
.7

6
3
5
8
.0

4
4
8
2

1
0
3
7
5
1

6
9
8
1
8

4
1
3
0

7
0
4
1

5
1
0
5
.9

1
2
0
4
1
.8

4
2
3
2
0
.6

5
2
2
5
.8

0
3
1
4
.9

1
2
9
4
0

5
5
1
1
0

3
8
5
9
0

2
7
2
3

4
0
2
6

6
7
0
.9

0
1
3
7
6
.2

4
4
0
6
8
.6

3
1
2
3
4
.8

5
5
9
1
.4

7
4
9
1

2
8
9
0
3

6
6
9
5
9

1
7
8
9
0

7
8
2
6

7
1
1
7
.5

0
-

1
6
4
7
.2

5
3
9
0
.0

6
3
6
3
.7

2
2
9
6
5

-
2
6
2
3
0

5
6
8
5

5
1
9
1

8
6
2
.4

4
6
5
0
4
.0

9
6
0
7
.3

1
2
0
2
.3

5
4
3
7
.1

2
6
3
4

2
5
3
7
0
0

1
7
9
8
2

4
1
9
1

1
0
0
2
0

9
4
6
.8

7
8
8
8
.9

1
1
6
1
9
.4

9
6
5
9
.7

9
3
2
8
.5

6
5
2
8

2
5
4
7
3

3
5
0
5
0

6
5
3
0

2
6
5
1

1
0

6
2
.6

5
2
8
6
5
.0

0
4
4
4
.1

6
1
7
3
.4

2
1
9
9
.0

0
5
3
0

5
4
6
7
2

6
1
4
1

1
2
5
5

1
4
4
0

1
1

7
2
.2

0
1
6
1
7
.8

6
3
0
6
.2

8
1
5
6
.6

9
1
4
1
.1

4
9
2
6

3
5
9
7
2

3
2
9
4

1
7
5
9

1
5
2
5

1
2

1
3
9
.6

2
-

1
5
2
3
.7

9
4
0
5
.8

4
3
1
3
.9

0
4
0
6
5

-
3
2
5
2
1

3
5
9
7

2
5
3
4

1
3

8
8
.0

8
3
3
9
0
.1

0
1
6
5
1
.8

6
5
1
1
.4

4
3
4
4
.1

6
1
4
6
2

1
0
7
7
7
3

6
6
0
0
0

1
1
0
0
0

6
7
0
1

1
4

2
4
4
.2

0
-

5
0
4
7
.1

7
1
4
0
9
.9

4
1
0
7
0
.9

0
5
6
6
6

-
5
4
9
1
1

1
5
3
4
2

9
7
8
5

1
5

5
5
.5

4
7
0
3
.6

6
6
0
6
.5

9
6
3
2
.5

1
3
0
8
.4

9
5
3
7

2
2
0
2
4

1
0
7
2
2

1
1
2
8
0

4
4
9
0

1
6

3
3
.4

5
9
7
.0

5
5
7
.8

7
3
9
.2

1
4
1
.2

7
4
7
3

2
2
0
2

1
5
0

1
3
0

1
3
0

1
7

4
1
.4

4
2
2
8
3
.4

3
2
3
8
0
.7

0
7
1
.0

9
6
3
.3

3
3
3
1

4
6
5
3
6

4
0
3
5
0

3
7
0

3
1
9

1
8

4
3
.0

9
4
3
2
9
.3

8
6
1
6
.9

0
5
4
6
.5

9
2
4
5
.3

9
5
1
4

1
2
1
1
6
4

1
4
5
7
7

8
0
0
0

2
7
9
7

1
9

1
4
8
.5

4
-

4
2
2
0
.1

3
8
6
9
.5

2
7
3
2
.1

4
1
0
6
7

-
7
6
1
0
5

1
2
0
0
0

9
8
2
6

2
0

5
2
.1

9
4
2
2
0
.2

1
3
7
2
.8

1
2
7
3
.0

0
2
7
8
.3

1
5
2
0

1
1
3
0
0
0

7
1
0
0

4
2
7
0

5
0
0
0

2
1

4
5
.2

5
6
0
4
1
.2

1
1
3
5
3
.2

1
5
4
9
.1

4
5
0
2
.4

1
4
9
9

1
7
8
1
0
0

3
0
6
5
0

7
4
8
9

6
5
4
4

2
2

6
1
.1

1
6
5
4
7
.7

6
9
8
2
.2

8
2
0
7
.8

9
2
1
4
.4

2
4
8
6

1
4
7
4
0
0

1
5
7
9
9

1
4
8
6

1
4
8
7

2
3

6
1
.0

8
6
0
1
3
.7

6
5
2
4
.7

4
4
1
5
.2

8
2
7
7
.5

2
4
9
9

1
5
9
9
1
7

6
1
4
8

2
8
4
4

1
4
7
6

2
4

5
4
.9

2
1
5
3
8
.9

4
1
6
1
.2

1
1
1
9
.4

4
1
2
2
.1

5
5
2
1

2
9
9
7
2

1
3
3
2

6
2
3

6
2
3

2
5

7
8
.5

0
2
9
2
1
.9

7
9
0
6
.5

9
3
7
6
.5

8
6
1
2
.7

3
5
1
3

6
8
6
4
9

1
2
0
4
4

4
1
3
0

8
8
4
4

M
ea

n
7
3
.0

9
3
5
2
3
.4

0
1
3
8
2
.8

6
4
0
1
.3

9
3
2
7
.7

0
1
1
1
5
.6

4
8
8
3
7
8
.7

2
2
6
4
8
1
.4

4
5
2
5
2
.6

0
4
2
2
2
.7

6
G

eo
.

M
ea

n
6
1
.8

3
2
1
8
3
.5

5
8
3
0
.5

3
2
7
3
.7

8
2
4
3
.3

6
7
2
9
.2

5
5
1
7
1
8
.7

7
1
4
3
5
9
.0

9
2
9
4
6
.2

2
2
6
1
6
.1

1

T
a
b
le

4
C

o
m

p
u

ta
ti

o
n

a
l

re
su

lt
s

o
n

U
C

in
st

a
n

ce
s

26 James Ostrowski et al.

In the subproblem, all of the column permutations have been removed from
the symmetry group. But suppose that the corresponding LP solution is

xLP =

1 .95 1 ? ?
? ? ? 1 ?
.97 1 1 ? ?
.95 1 1 ? ?

 . (28)

Technically, there is no symmetry found in this subproblem. However, it is
likely that the optimal solution to this problem has each of x1,2, x3,1, and x4,1
equal to one. If each of these variables had been fixed, then all permutations
of the first three columns of x would be in the subproblem’s symmetry group,
and those permutations could be used to strengthen the branching disjunction.

We let CPLEX choose our branching candidate, then act on that branching
decision by branching on the orbit containing CPLEX’s branching candidate.
One problem with this approach is that if xi,j is chosen to branch on at a
node, then it is unlikely that xi,k will be chosen at a child node. This is
especially true in cases similar to (28). Variables that take a value close to one
in the LP solution (and especially if they are equal to one) will likely not be
chosen for branching because doing so will not improve the bound. However,
from a symmetry point of view, those variables need to be fixed to create
larger symmetry groups and strengthen the subsequent branches. To exploit
symmetry early in the branch-and-bound tree, it is important to branch on
variables in the same row as previously fixed variables, but this is not a good
branching strategy from a general MILP point of view. Using modified orbital
branching makes it more likely that several variables in each row are fixed, so
there is a better chance that this symmetry will be recognized.

Interestingly, there is not a great difference between Modified OB and Mod-
ified OB RMRI. One possible explanation for this is that the loss of branching
flexibility balances out with the full removal of isomorphic solutions. Another
explanation might be found in the structure of the UC problem. Because of the
minimum up and downtimes, branching on one variable can have a significant
effect on several other variables. For instance, if a generator is on at time t
then off at time t + 1, then the generator must be off for several more time
periods to satisfy the minimum downtime constraint.

5.2 Symmetry Breaking Inequalities

The previous section focused on comparing modified orbital branching to
other dynamic symmetry-exploiting strategies, such as orbital branching and
CPLEX’s default strategies to exploit symmetry. Another option for highly
symmetric integer programs is to add symmetry-breaking inequalities. The
benefit of adding inequalities is that it is much easier to implement as there is
no need to modify CPLEX’s branching behavior. In this section, the impact
of two different sets of symmetry-breaking constraints, Friedman inequalities
and column inequalities, is examined.

Modified Orbital Branching with Applications 27

0 2 4 6 8 10

40

60

80

100

120

p

T
im

e
(s
)

(a) UC Instance 18

0 2 4 6 8 10

40

60

80

100

p

T
im

e
(s
)

(b) UC Instance 20

Fig. 5 The Impact of p in Friedman Inequalities

As stated in (10), the inequalities are not practical for the UC problem.
Because the UC instances are usually solved over a 24-hour time horizon, the
Friedman inequalities will have coefficients up to 224, and solving them may
cause numerical difficulties. To address this issue, the Friedman inequalities are
relaxed. Rather than enforcing that Uk has lexicographically non-increasing
columns, the constraints

p∑
k=1

2p+1−kuk,j ≥
p∑
k=1

2p+1−kuk,j+1 ∀j ∈ {1, . . . , n− 1}, (29)

ensure that the p × nk submatrix Ukp , where Ukp = ukt,j for all 1 ≤ t ≤ p and
1 ≤ j ≤ nk, has non-increasing columns.

To test the impact of the relaxed Friedman inequalities, all 25 instances
of the UC problem are solved with p varying from 0 (no symmetry-breaking
inequalities) to 10. Similarly, the impact of the column inequalities was tested
on the same instances. The default CPLEX settings were used (except that
the thread count was limited to 1), including symmetry breaking. The results
indicate that for the Friedman inequalities, the larger the p, the longer CPLEX
takes to solve the problem. Figure 5 illustrates this using UC instances 18
and 20, where the best solution times are usually obtained when p is small.
While only two instances are shown for the Friedman inequalities, they are
representative of the entire set of instances. Similarly, the inclusion of the
column inequalities had a negative impact on the overall solution time. The
average solution time using default CPLEX was 73 seconds (a geometric mean
of 62 seconds), compared to an average of 116 seconds (with a geometric mean
of 102 seconds) after the column inequalities were included. In addition, the
size of the branch-and-bound tree grew by a similar rate after the column
inequalities were added.

One reason for this behavior is that the inequalities break the symmetry
in the original formulation, so CPLEX’s symmetry breaking procedures are
not used (except for the Friedman inequalities with p = 0 that corresponds

28 James Ostrowski et al.

to no symmetry-breaking inequalities). Another factor coming into play is
that adding the inequalities makes finding feasible solutions more difficult,
as many feasible solutions in the original problem become infeasible with the
inequalities present. Note however that the symmetry-breaking constraints can
be pretty weak, as they do not take integrality into account. There may be
classes of tighter symmetry-breaking inequalities that improve performance.

One benefit of using constraints to break symmetry is that doing so does not
restrict branching. However, one would expect that adding constraints like (29)
would significantly increase the importance of variables with low time indices.
For example, fixing u1,i to 0 would also fix u1,j to 0 for i < j ≤ nk (similarly,
fixing u1,i to 1 would also fix u1,j to 1 for 1 ≤ j < i). On the other hand, fixing
u20,i to either 0 or 1 will likely not be helpful in fixing additional variables
(using the Friedman constraints). So, while there is no explicit branching rule,
we intuitively argue that these constraints lead to branching that will closely
resemble the MI branching rule.

As mentioned in previous sections, the row indices are arbitrary. To test
the impact of different row orderings, the symmetry-breaking constraints are
modified to reflect different row orderings. If R is a proper ordering of the
rows, the permuted Friedman constraints∑
{k|Rk≤p}

2p+1−Rkuk,j ≥
∑

{k|Rk≤p}
2p+1−Rkuk,j+1 ∀j ∈ {1, . . . , n− 1} (30)

ensure that the p×nk submatrix Ukp , where Ukp = uk
R−1

t ,j
for all 1 ≤ t ≤ p and

1 ≤ j ≤ nk, has non-increasing columns. Let R−1i denote the index of the row
that has rank i. The permuted column inequalities

ui,j ≤
Ri∑
k=1

uR−1
k ,j−1 ∀i ∈ 1, . . . ,m, ∀j ∈ 2, . . . , n, (31)

also ensure that Ukp has non-increasing columns.
Ten random ordering vectors were generated for each of the UC instances

and used to seed both Friedman and column symmetry-breaking inequalities.
The Friedman inequalities were tested for values of p from 0 to 10. While
the tests were performed on all 25 instances, only data from instances 18
and 20 using Friedman inequalities are reported in Figure 6. For reference,
a line showing the solution time without any Friedman inequalities is added
to the figures. Interestingly, the data shows that there is a large variance
in solution times when varying the row ranks. However, even the best times
with the Friedman inequalities are frequently worse than, or not significantly
better than, CPLEX without the symmetry-breaking constraints. The column
inequalities fare a little better. Figure 7 shows the distribution of the solution
times for 10 random row-rankings for each of the 25 UC instances. Again, a
line is included to show CPLEX’s default solution time. In some cases (for
example, instances 12 and 14), adding the column inequalities consistently
produces a notable computational speedup, but more often than not, the best

Modified Orbital Branching with Applications 29

0 2 4 6 8 10
0

200

400

p

T
im

e
(s
)

(a) UC Instance 18

0 2 4 6 8 10
0

200

400

p

T
im

e
(s
)

(b) UC Instance 20

Fig. 6 The Impact of p in Random Friedman Inequalities

2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

UC Instance

T
im

e
(s
)

Fig. 7 The Impact of Column Inequalities on Solution Times

time with the column inequalities is only marginally better than CPLEX’s
default.

While symmetry-breaking constraints are the easiest to implement (as their
implentation does not require the use of callback functions), the computa-
tional experiments performed in this section seem to indicate that symmetry-
breaking constraints are not likely to offer a significant improvement over gen-
eral symmetry breaking techniques, such at those used by CPLEX and orbital
branching.

6 Conclusion

There are generally two different ways to address symmetry in integer program-
ming problems, either to add symmetry-breaking constraints, or to exploit
symmetry through branching decisions. This paper takes the latter approach
by exploring how the specific structure of the symmetry group of a MILP can
be used to strengthen orbital branching. This strengthening, called modified
orbital branching, can have a considerable impact on the overall time needed
to obtain a global optimal solution. This is demonstrated by testing modified
orbital branching on several instances of the unit commitment problem, where

30 James Ostrowski et al.

modified orbital branching is able to solve the UC instances in one-third of the
time taken by classical orbital branching. In addition, two types of symme-
try breaking constraints, Friedman and column inequalities, are examined and
compared to CPLEX. The results indicate that CPLEX’s default branching is
as effective in dealing with symmetry as the constraints.

Acknowledgements The authors thank an anonymous referee for the constructive reports
that helped greatly improve this paper.

The research of the first author was supported by NSF CMMI grant 1332662. The
research of the second and third authors was partially supported by NSERC, the Natural
Sciences and Engineering Research Council of Canada.

References

1. Anjos, M.F.: Recent progress in modeling unit commitment problems. In: L. Zuluaga,
T. Terlaky (eds.) Modeling and Optimization: Theory and Applications: Selected Con-
tributions from the MOPTA 2012 Conference, Springer Proceedings in Mathematics &
Statistics, vol. 84. Springer (2013)

2. Arroyo, J.M., Conejo, A.J.: Optimal response of a thermal unit to an electricity spot
market. IEEE Transactions on Power Systems 15(3), 1098–1104 (2000)

3. Carrion, M., Arroyo, J.: A computationally efficient mixed-integer linear formulation for
the thermal unit commitment problem. IEEE Transactions on Power Systems 21(3),
1371 –1378 (2006)

4. Chang, G., Tsai, Y., Lai, C.: A practical mixed integer linear programming based ap-
proach for unit commitment. PES General Meeting pp. 221 – 225 (2004)

5. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer
programs. Mathematical Programming 106 (2006)

6. Frangioni, A., Gentile, C., Lacalandra, F.: Tighter approximated milp formulations for
unit commitment problems. IEEE Transactions on Power Systems 24(1) (200)

7. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In: Dress,
A.W.M., Xu, Y., Zhu, B. (eds.) Combinatorial Optimization and Applications, Lecture
Notes in Computer Science, vol. 4616, pp. 146–153. Springer (2007)

8. Gattermann, K., Parrilo, P.: Symmetry groups, semidefinite programs, and sums of
squares. Journal of Pure and Applied Algebra 192, 95–128 (2004)

9. Jeroslow, R.: Trivial integer programs unsolvable by branch-and-bound. Mathematical
Programming 6, 105–109 (1974)

10. Kaibel, V., Loos, A.: Branched polyhedral systems. In: IPCO 2010: The Fourteenth
Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in
Computer Science, vol. 6080, pp. 177–190. Springer (2010)

11. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discrete Optimization 8(4),
595 – 610 (2011)

12. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical Program-
ming 114, 1–36 (2008)

13. Liu, C., Shahidehpour, M., Li, Z., Fotuhi-Firuzabad, M.: Component and mode models
for the short-term scheduling of combined-cycle units. IEEE Transactions on Power
Systems 24(2), 976 –990 (2009)

14. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming
94, 71–90 (2002)

15. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming, Series B
98, 3–21 (2003)

16. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.M.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey,
L.A. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer Berlin
Heidelberg (2010)

Modified Orbital Branching with Applications 31

17. Ostrowski, J., Anjos, M.F., Vannelli, A.: Tight mixed integer linear programming for-
mulations for the unit commitment problem. IEEE Transactions on Power Systems
27(1), 39 –46 (2012)

18. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathematical
Programming 126(1), 147–178 (2009)

19. Rajan, D., Takriti, S.: Minimum up/down polytopes of the unit commitment problem
with start-up costs. Tech. rep., IBM Research Report (2005)

20. Sherali, H.D., Smith, J.C.: Improving zero-one model representations via symmetry
considerations. Management Science 47(10), 1396–1407 (2001)

21. Zhai, Q., Guan, X., Cui, J.: Unit commitment with identical units successive subproblem
solving method based on Lagrangian relaxation. IEEE Transactions on Power Systems
17(4), 1250 – 1257 (2002)

