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Abstract

This paper is concerned with the Multi-Row Facility Layout Problem. Given a set of rectangular departments, a
fixed number of rows, and weights for each pair of departments, the problem consists of finding an assignment
of departments to rows and the positions of the departments in each row so that the total weighted sum of the
center-to-center distances between all pairs of departments is minimized. We show how to extend our recent
approach for the Space-Free Multi-Row Facility Layout Problem to general Multi-Row Facility Layout as well
as some special cases thereof. To the best of our knowledge this is the first global optimization approach for
multi-row layout that is applicable beyond the double-row case. A key aspect of our proposed approach is a model
for multi-row layout that expresses the problem as a discrete optimization problem, and thus makes it possible to
exploit the underlying combinatorial structure. In particular we can explicitly control the number and size of the
spaces between departments. We construct a semidefinite relaxation of the discrete optimization formulation and
present computational results showing that the proposed approach gives promising results for several variants of
multi-row layout problems on a variety of benchmark instances.

Keywords: Facilities planning and design, Flexible manufacturing systems, Semidefinite Programming,
Combinatorial Optimization, Global Optimization

1. Introduction

The general facility layout design problem is concerned with placing departments of given areas within a given
facility. To each possible placement is assigned a cost based on the interactions between each pair of departments.
These costs reflect an appropriate measure of adjacency preferences between departments. In some versions of
the problem, the dimensions of the departments are also given. When this is not the case, finding their optimal
shape is also a part of the problem. This problem is known to be NP-hard in general.

Versions of the facility layout problem occur in many practical contexts, not only in the planning of production
and logistics facilities but also in applications such as VLSI chip design. A thorough survey of the facility layout
problem is given in Meller and Gau [42], where the papers on facility layout are divided into three broad areas. The
first is concerned with algorithms for tackling the layout problem as defined above. The second area is concerned
with extensions of the problem in order to account for additional issues that arise in applications, such as designing
dynamic layouts by taking time-dependency issues into account, designing layouts under uncertainty conditions,
and achieving layouts that optimize two or more objectives simultaneously. The third area is concerned with
specially structured instances of the problem, such as the linear layout of machines along production lines. This
paper is concerned with one such structured instance, namely the Multi-Row Facility Layout Problem (MRFLP).

An instance of the Multi-Row Facility Layout Problem (MRFLP) consists of a set of rectangular departments,
a given number of rows, and weights for each pair of departments. We assume without loss of generality that each
department can be assigned to any of the given rows, that the rows all have the same height, that the distances
between adjacent rows are all equal, and that the departments all have the same height (equal to the row height).
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The problem is to find an assignment of departments to rows and the positions of the departments in each row
so that the total weighted sum of the center-to-center distances between all pairs of departments is minimized.
The (MRFLP) has many applications such as computer backboard wiring [53], campus planning [19], scheduling
[24], typewriter keyboard design [47], hospital layout [20], the layout of machines in an automated manufacturing
system [29], balancing hydraulic turbine runners [39], numerical analysis [12] and optimal digital signal proces-
sors memory layout generation [56]. There has not been much research done on metaheuristic approaches to row
layout problems with spacing, see e.g. the recent papers of Murray et al. [43] and Zuo et al. [60]. In this paper, we
focus on mathematical programming approaches that can certify global optimality of solutions, or at least provide
a guaranteed bound on the gap to optimality.

Row layout problems in general are of special interest for optimizing flexible manufacturing systems (FMSs).
FMSs are automated production systems, typically consisting of numerically controlled machines and material
handling devices under computer control, which are designed to produce a variety of parts. In FMSs the layout of
the machines has a significant impact on the materials handling cost and time, on throughput, and on productivity
of the facility. A poor layout may also negate some of the flexibilities of an FMS [26]. The type of material-
handling devices used such as handling robots, automated guided vehicles (AGVs), and gantry robots typically
determines machine layout in an FMS [44].

Possible row layout types are single-row (Figure 1), double-row and multi-row layout (Figure 2). The Single-
Row Facility Layout Problem (SRFLP) requires that the departments be placed next to each other along a single
row; this simplifies the problem significantly. In particular, there is no need to assign each department to a row,
and the optimal solution will not have any empty space between departments. Therefore solving the (SRFLP)
consists of finding the optimal permutation of the departments. This problem arises for example as the problem of
ordering stations on a production line where the material flow is handled by an automated guided vehicle (AGV)
travelling in both directions on a straight-line path [28] (see Figure 1). Several heuristic algorithms have been
suggested to tackle large instances; the best ones to date are Datta et al. [17], Kothari and Ghosh [35, 36, 37] and

Samarghandi and Eshghi [49].
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Figure 1: In a.) an AGV transports parts between the machines moving in both directions along a straight line. In b.) a material-handling
industrial robot carries parts between the machines.
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Figure 2: In a.) an AGV transports parts between the machines that are located on both sides of a linear path of travel. In b.) a gantry robot is
used when the space is limited.

Three problems closely related to the (SRFLP) are the Single-Row Equidistant Facility Layout Problem
(SREFLP), the Linear Arrangement Problem (LAP), and the k-Parallel Row Ordering Problem (kPROP). The
(SREFLP) is the special case of the (SRFLP) with all departments equal in shape and the positions where they
can be placed on the rows fixed in advance; it is sometimes also called one-dimensional machine location prob-
lem [51] or linear machine-cell location problem [58]. On the other hand, the (kPROP) is the an extension of
the (SRFLP) that considers arrangements of the departments along more than one row but with each department
being assigned to a specific row in advance; hence the objective of the (kPROP) is to find a permutation of the
departments within each row so that the total weighted sum of the center-to-center distances between all pairs of
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departments (with a common left origin) is minimized. If the (kPROP) is restricted to two rows we simply call
it (PROP). Applications of the (kPROP) are the arrangement of departments along two or more parallel straight
lines on a floor plan, the construction of multi-floor buildings, and the layout of machines in FMSs. We mention
that even the (LAP), which is a special case of the (SREFLP) where all weights are binary, is already an NP-hard
problem [23], and it remains so even if the underlying graph is bipartite [22].

In layout problems, the pairwise connectivities are usually assumed to be non-negative to ensure boundedness
of the objective value of the optimal layout. For the (SRFLP) and the other problems closely related to it, this fur-
ther guarantees that all departments are placed next to each other without spacing. More generally, the (kPROP)
can be further extended to the Space-Free Multi-Row Facility Layout Problem (SF-MRFLP) in which the opti-
mization is also carried out with respect to the row assignments. This is a particular version of the (MRFLP) in
which all the rows have a common left origin and no empty space is allowed between departments [32]. If we re-
strict the (SF-MRFLP) to two rows we obtain the Space-Free Double-Row Facility Layout Problem (SF-DRFLP)
as a special case that has been applied in spine layout design. Spine layouts, introduced by Tompkins [55], require
departments to be located along both sides of specified corridors along which all the traffic between departments
takes place. Although in general some spacing is allowed, layouts with no spacing are much preferable since
spacing often translates into higher construction costs for the facility.

The special case of the Double-Row Facility Layout Problem (DRFLP) can be viewed as a natural extension
of the (SRFLP) in the manufacturing context when one considers that an AGV can support stations located on
both sides of its linear path of travel (see Figure 2). This is a common approach in practice for improved material
handling and space usage. Furthermore, since real factory layouts most often reduce to double-row problems or
a combination of single-row and double-row problems, the (DRFLP) and its space-free counterpart (SF-DRFLP),
sometimes called the corridor allocation problem, are especially relevant for real-world applications.

Toy Example. We use a small example to illustrate the differences between the (SRFLP), the (kPROP), the
(SF-MRFLP) and the (MRFLP). We consider a problem with two rows so that we actually have instances of
the (SRFLP), (PROP), (SF-DRFLP) and (DRFLP) respectively. Consider 4 departments with lengths £; = 1, £, =
2, {3 = 3, {4 = 4 and pairwise connectivities c¢jp = cj4 = ¢34 = 1, ¢13 = cp4 = 2. Figure 3 illustrates the optimal
layouts and the associated costs for the four different problems:

e In a.) we display the optimal layout for the (SRFLP) with corresponding total costof 3-2+2.5-1+2-2 +
55-1+45-1=225.

e Inb.) we show the optimal layout for the (PROP) with departments 2 and 3 assigned to row 1 and depart-
ments 1 and 4 assigned to row 2. The corresponding costis3.5-1+1-2+1-2+15-1+25-1=11.5.

e In c.) we display the optimal layout for the (SF-DRFLP). The associated costis 1.5-1+2-2+05-1+1-
24+25-1=105.

¢ Finally we depict the optimal layout for the (DRFLP) in d.). The corresponding costis 2.5-1+2.5-1+2.5-1 =
7.5.

The contribution of this paper is a new model for (MRFLP) that expresses the problem as a discrete optimization
problem. This makes it possible to exploit the underlying combinatorial structure, and in particular to explicitly
control the number and size of the spaces between departments. This discrete optimization model is an extension
of our recent approach for the (SF-MRFLP) to the more general (MRFLP) and also captures some of its important
special cases. We then construct a semidefinite relaxation of the discrete optimization formulation and present
computational results showing that the proposed approach gives promising results for several variants of multi-
row layout problems on a variety of benchmark instances. To the best of our knowledge this is the first global
optimization approach for (MRFLP) that is applicable beyond the double-row case.

The paper is structured as follows. In Section 2 we summarize the various global optimization approaches
in the literature for row layout problems closely related to multi-row layout, including the (SF-MRFLP). Section
3 presents the theoretical results underpinning our new discrete optimization model for (MRFLP). The key result
is Theorem 2 showing that if all departments lengths are integer then there is always an optimal solution to the
(MRFLP) on the half grid. Section 4 covers the main techniques used for solving the SDP relaxations, and detailed
computational results are reported in Section 5.
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Figure 3: Optimal layouts for four different row layout problems

2. Previous Exact Approaches for Row Layout Problems

In this section we review the literature on global optimization approaches for the single-row, double-row and
space-free versions of the (MRFLP), with an emphasis on the most recent developments. This sets the foundations
for the methodology we propose in Section 3 for the general (MRFLP).

2.1. Single-Row Facility Layout

The (SRFLP) is one of the few layout problems for which strong global lower bounds and even optimal
solutions can be computed for instances of reasonable size. Pioneering approaches for (SRFLP) were based on
dynamic programming [46], integer linear optimization (ILO) [41] and nonlinear optimization [28]. We outline
here the more recent global optimization approaches that are based on either ILO or semidefinite optimization
(SDO) relaxations.

Let 7 = (my,...,7m,) denote a permutation of the indices [n] := {1,2,...,n} of the departments. Given 7 and
two distinct departments i and j, the center-to-center distance between i and j with respect to this permutation
is %f,- + D,(i, j) + %{’ » where Dy(i, j) denotes the sum of the lengths of the departments between i and j in the
ordering defined by 7. In other words, the (SRFLP) is:

min Z Cij
nell,

i, j€[n]
i<j

1 1
=+ D, )+ =C;]|,
3 @ J) >

where I1, denotes the set of all permutations of [n], and the weights c¢;; are usually assumed to be non-negative to
ensure boundedness of the objective value of the optimal layout.

It was already observed by Simmons [52] that the crux of the problem is to minimize }; ¢;;D,(i, j) over all

i<

permutations 7 € I1,. It is also clear that D, (i, j)) = D, (i, j), where 7’ denotes the permutatijon symmetric to 7,
defined by 7 = m,41-;, i € [n]. Hence, it is possible to simplify the problem by considering only the permutations
for which, say, department 1 is on the left half of the arrangement. This type of symmetry-breaking strategy
is important for reducing the computational requirements of most algorithms, including those based on LO or
dynamic programming.

It is also clear that the key concept required for modelling the (SRFLP) is betweenness. This is because D, (i, j)
is precisely the sum of the lengths of the departments between i and j. We thus define the betweenness variables
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{ijx for triplets i, j, k of departments

o 1, if department k lies between departments i and j,
Sijk 0, otherwise

and the betweenness polytope as the convex hull of the incidence vectors {;j corresponding to feasible solutions:
Ppne = CONV {g’ € {0, 1}"=D=2) . r arises from a permutation of [n]}.

This polytope is well understood, see e.g. Christof [15]. Using betweenness variables, one can express D, (i, j) =

2k Crdiji and hence the (SRFLP) as a linear optimization problem over the betweenness polytope.

The ILO model proposed by Amaral [2] uses precisely this idea. Since an exact description of P, is not
known, Amaral proposes to optimize over a partial description of it. The starting LO relaxation is:

min Zc,-j € +f ng{l]k

i<j ki, j

st i+ G+ (i = 1, for all {i, j, k} C [n],
Gija + Cikd = Lika = 0, for all {i, j, k,d} C [n],
Gija + Cjka — ika 2 0, for all {i, j, k,d} C [n],
Cija + Cjka + Liva < 2, for all {i, j, k,d} C [n],
0<ln<1, for all {i, j, k} C [n],

where the indices i, j, k, d are always all different. Amaral also proposes a class of valid inequalities for Pp;, that
can be used as cuts to improve the (LP) relaxation:

Z §qu + Z gtqr - Z ,Zmin[t,q],max[t,q},r < 0 (1)

t<q.teS 1,98 t<q.teS1,q€S» teS1,q€S,

where 5 < n is a positive even integer, S C [n] such that |S| = 8, and (S|, S ;) is a partition of S \{r} such that r € §
and |S4| = %,B. It is easy to check that for 8 = 4, (1) is a triangle inequality already present in the LO relaxation,
Amaral uses inequalities arising from 8 = 6 for computational purposes. His approach is able to solve instances
with up to 35 departments to optimality.

There are many interesting and important connections between the betweenness polytope and the well-known
cut polytope. For instance, the classes of inequalities above are known to be facet-defining for the cut polytope,
and Sanjeevi and Kianfar [50] showed that they remain facet-inducing for the face of the cut polytope induced by
PB[’W'

A different approach to model the (SRFLP) is to use (;) continuous distance variables z;;,i, j € [n] corre-
sponding to each pair of departments. The polytope containing the feasible positive distance variables z;; for n
departments is called the distance polytope:

P"Dm::conv{zeR@:ElneH : —zu,zjeN,i<j}.
Recently Amaral and Letchford [6] achieved significant progress in improving this approach by identifying several
classes of valid inequalities and using them as cutting planes. In particular they show that the equation

5 o= 1[5 -Se

i,jeNi<j ieN ieN

defines the smallest linear subspace that contains #7,. . They prove that clique inequalities, strengthened pure
negative type inequalities and special types of hypermetrlc inequalities induce facets of ), . They further show
the validity of rounded psd inequalities and star inequalities for . and use them together W1th the facet inducing
inequalities as cutting planes in a Branch-and-Cut approach that can solve instances with up to 30 departments to
optimality.

Alternatively, semidefinite programming (SDP) models have been proposed to obtain tight global bounds
for the (SRFLP). (SDP) is the extension of (LP) to linear optimization over the cone of symmetric positive
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semidefinite matrices. The handbooks edited by Wolkowicz et al. [57] and Anjos and Lasserre [7] provide a
thorough coverage of the theory, algorithms and software in this area, as well as a discussion of many application
areas where (SDP) has had a major impact.

The first (SDP) relaxation was proposed in Anjos et al. [11] and was used by Anjos and Vannelli [9] to compute
globally optimal solutions for instances with up to 30 departments. A more compact relaxation that can compute
useful bounds for instances with up to 100 departments was proposed by Anjos and Yen [10]. The state-of-the-
art is the approach of Hungerldnder and Rendl [34] that uses an improved (SDP) relaxation to compute globally
optimal solutions for instances with up to 42 departments and bounds for instances with up to 100 departments.
These approaches are all based on modelling betweenness using products of binary +1 variables y;; defined as

L ifm<m,
YiE\ -1, ifm <y

for each pair of integers ij with 1 < i < j < n, and for a given permutation 7 of [r]. The order of the subscripts
matters, and y;; = —yj;. Thus, department k is between i and j if and only if yzy = —1. Furthermore, given
a particular assignment of +1 values to the y;; variables, this assignment represents a permutation of [n], if the
transitivity condition

if i is to the right of j and j is to the right of k, then i is to the right of k

is fulfilled. This necessary condition can be formulated as a set of quadratic constraints:
YVijYik = Yiik — YikYjk = —1foralltriples 1 <i< j<k<n. 2)

The resulting formulation of the (SRFLP) is:

min =} ¢;; [% (& + fj) + g"fk (%) + X b (%) + Y 4 (%)}

i<j i<k<j Jj<k

st 3)
YijYjk = YijYik = YikYjk = —1 for all triples i< ] < k,
yl.zl. =1foralli<j

One advantage of the SDO-based approaches is that they implicitly account for the symmetry in the (SRFLP)
because if every y;; variable is replaced by its negative, then there is no change whatsoever to the formulation.
(We note in passing that Buchheim et al. [13] proved (2) is the minimum equation system for the quadratic linear
ordering problem, and we refer the reader to the survey chapter by Anjos and Liers [8] for more details concerning
the problem and corresponding global optimization approaches.)

To obtain SDO relaxations we collect the ordering variables in a vector y and define the matrix ¥ := yy". The
main diagonal entries of ¥ correspond to yl.zj and hence diag(Y) = e, the vector of all ones. Now we can formulate
the (SRFLP) as a semidefinite optimization program as was first proposed in Anjos et al. [11]:

min { (C,Y) + K : Y satisfies (2), diag(Y) =e, rank(Y)=1, Y =0}, @

where the cost matrix C and the constant K are deduced from (3). Dropping the rank constraint yields the basic
semidefinite relaxation of the (SRFLP)

min { (C,Y) + K : Y satisfies (2), diag(Y)=e¢, Y =0}, (SDPtrivial)

providing a lower bound on the optimal value of the (SRFLP).

Because the matrices Y with rank equal to 1 have only {—1, 1} entries, Anjos and Vannelli [9] proposed to
tighten (SDP+yivia1) by adding the triangle inequalities. These inequalities are known to be facet-defining for the
cut polytope, see e.g. Deza and Laurent [18], and they define the metric polytope M:

-1 1 1
o1 | n
M=<:Y: 1 -1 1 Yj,k Se,i<j<k€(2) . ®))
1 1 -1 Yi

Adding the triangle inequalities to (SDPyyiyia1), We obtain the following relaxation of the (SRFLP)

min { (C,Y) + K : Y satisfies (2), Y € M, diag(Y) =e¢, Y =0 }. (SDPyasic)
6



To reduce the computational burden, Anjos and Vannelli [9] do not solve (SDPy,sic) directly but rather use the
x ﬁn" triangle inequalities as cutting planes. This approach made it possible to solve instances of (SRFLP) with
up to 30 departments to global optimality.

Hungerliander and Rendl [34] suggested a further strengthening of (SDPy.si.) as well as an alternative algo-

rithmic approach to handle the resulting large number of inequalities. They use the matrix

T
Z:(i @), (6)

and relax the equation ¥ — yy™ = 0 to
Y-y 70 2Z%0,

which is convex due to the Schur-complement lemma. Note that Z >= 0 is in general a stronger constraint than
Y = 0. Additionally they use an approach suggested by Lovasz and Schrijver [40] to further improve the relaxation
by adding the following inequalities:

=1 =Y S Yij + Vi = Yik + Vijim + Yjkim = Yikgm < 1+ Yim, i<j<keln], I<meln]
=1+ Y < Yij + Yjk = YVik = Yijim = Yjkim + Yikim < 1 = Yim, i<j<keln], l<me|n]

(M

The inequalities (7) are generated by multiplying the valid 3-cycle inequalities
L=yij=yu+yu=20, L+y;+yp—yu=0,
by the nonnegative expressions (1 — y;,,) and (1 + y;,,). These constraints define the polytope LS

LS :={Z: Z satisfies (7) }, 8)

5

consisting of ~ %n constraints. The result is the following relaxation of the (SRFLP):

min { (C,Y) + K : Y satisfies (2), Ze€ MNLS), diag(Z)=e, Z = 0}. (SDPgtandard)

To make (SDPgtandara) computationally tractable, Hungerldnder and Rendl [34] handle the triangle inequalities
(5) and LS-cuts (7) through Lagrangian duality. This allowed them to solve instances with up to 42 departments
to optimality and obtain tight global bounds for instances with up to 110 departments.

The semidefinite approach we have described is also the best method known for the (SREFLP) [30] and one
of the best methods for the (LAP) on dense graphs Hungerldnder and Rendl [33]. We will use a similar approach
in Section 4.

2.2. Parallel Row and Space-Free Multi-Row Layout

None of the approaches for the (SRFLP) can be applied directly to the (MRFLP) because when two or more
rows are available, the betweenness variables do not suffice to model the problem. There are three additional
modeling issues that arise in the (MRFLP) but not in the (SRFLP):

1. Expressing the center-to-center distance between departments assigned to different rows;
2. Assigning each department to exactly one row;
3. Handling the possibility of empty space between departments.

We summarize in this section the approaches that have been proposed to handle 1 and 2 by extending the
models for the (SRFLP) in Subsection 2.1.

On the ILO side, Amaral [5] extended the approach for the (SRFLP) based on distance variables [1] to the
(PROP) and was able to provide optimal solutions for instances with up to 23 departments. Amaral [3] also
suggested mixed integer linear programming formulation based on distance variables for the (SF-DRFLP) that
allows him to solve instances with up to 13 departments to optimality.

On the (SDP) side, the authors recently extended the (SDP)-based methodology for (SRFLP) to the (kPROP)
and the (SF-MRFLP). The recent paper by Hungerldnder and Anjos [32] includes results suggesting that the
proposed semidefinite optimization approach provides high-quality global bounds in reasonable time for instances
with up to 15 departments and 5 rows. For the (kPROP) tight global bounds can be computed for instances with
up to 100 departments and for an arbitrary number of rows [31].

To generalize the (SDP) approach from the (SRFLP) to the (kPROP) and the (SF-MRFLP) we introduce the
function r : [n] — R that assigns each department to one of the m rows R := {1, ..., m}. Now the center-to-center

7



distances of departments can be expressed as quadratic terms in ordering variables whether two departments are
in the same row:

1 1= yeve; 1+ yuves 1 =yavu . .
w= e+ Y L3 Y G Y G i = (), (%)
keln], k<i, ke[n], i<k<j, ke[n], k>j,
r(k)=r(i) r(k)=r(i) r(k)=r(i)

or in different rows:

¢ 1+ 1-y; ¢ 1+ yy 1-y, , ,
G| 2+ D Ggt ) G| =3 D Gt > G| D E (). (9b)

keln], k<j, keln], k>j, keln], k<i, keln], k>i,
r(k)y=r(j) r(k)=r(j) r(k)=r(i) r(k)=r(i)

where additionally the distances between pairs of departments in non-adjacent rows have to be non-negative:
7;; 20, i,j€nl, i<j, r@) # r()). (10)

Now building on the (SDP) formulations of the (SRFLP) we can formulate the (kPROP) as a semidefinite
optimization problem.

Theorem 1. The following optimization problem is equivalent to the (kPROP):
min {(Cy,Z) : Z satisfies 2) and (10), Z€ &, ye {-1,1}}

where the cost matrix Cy is deduced by equating the coefficients of the following equation

2CyZ) = Z cij Z Cyikyrj — Z Ovivej — Z T,

i<jeln], keln], i<k<j, keln], k<i, keln], k>j,

r(H)=r(j) r(k)=r(i) r(k)=r(i) r(k)=r(i)

+ Z ¢iyij | Ly — Lrj) + Z Oy — Z Ciyin
i<jeln], ke[n), k<i, ke[n], k>i,
r()#r(j) r(k)=r(i) r(k)=r(i)

= DL owr D ol Nl DL |l D 4|
keln], k<j, keln], k>j, heR || i,jelnl, i<j, i<jeln],
r(k)=r(j) r(k)=r(j) r(i)=r(j)=h r(i)=r(j)=h

and L; denotes the sum of the length of the departments on row i

L; = ka, ieR

keln],
r(k)=i

Proof. Since y? =1, i € {1,...,A — 1} we have diag(Y — yy") = 0, which together with ¥ — yy™ = 0 shows that
in fact Y = yy" is integral. The equations (2) model transitivity for y € {—1, 1} [13]. Hence the integrality on Y
together with (2) and (10) suffice to describe all feasible layouts of the (kPROP) and the objective function (Cy, Z)
gives the costs for feasible layouts. O

As we are able to model the (kPROP) using the same variables as the (SRFLP), namely products of ordering
variables, it makes sense to adopt the strongest (SDP) relaxation from the previous section:

min { (Cy,Z) + K : Y satisfies (2) and (10), Z € M N LS), diag(Z) =e, Z = 0}. (SDPgtandard)

However, because the objective function of the (kPROP) is more complex than that of the (SRFLP), additional
valid inequalities are necessary to tighten the relaxation. Specifically we may consider triangle inequalities relating
the distances between three departments:

Zij + Zik 2 Zjks Zij + Zik 2 Zjks Zik + Zjk = Zijs i< j<kel[n] (11)



An easy inductive argument further shows that the above constraints imply the associated constraints for more
than three departments. Hence we define the polytope DV containing the 3(’3’) triangle inequalities relating the
distances between three or more departments:

DV :={Z: Zsatisfies (11) }. (12)
Adding these constraints t0 (SDPgtandara) yields (SDPgtrong):
min { (Cy,Z) + K : Y satisfies (2) and (10), Z € M N LSNDYV), diag(Z) =e, Z = 0}. (8DPgtrong)

It was demonstrated in Hungerldnder and Rendl [33] that using LS in the semidefinite relaxation pays off in
practice for several ordering problems including the (SRFLP). However for the (kPROP) and further extensions,
these additional tightening constraints did not pay off in terms of practical performance. For this reason, it is
preferable to work with the following SDP relaxation

min {(Cy,Z) + K : Y satisfies (2) and (10), Z€ M N DYV), diag(Z) =e, Z = 0}. (SDPcheap)

The relaxation (SDPpeap) can be solved with the same algorithmic tools as used for the most competitive approach
for the (SRFLP) (see Section 4 below for details). To extend this approach from the (kPROP) to the (SF-MRFLP),
Hungerlénder and Anjos [32] solve (SDPcheap) for all possible row assignments (e.g. 21 _ 1 in the double-row
case). From the obtained bounds, one can deduce global upper and lower bounds: these are the minima of all
upper and lower bounds respectively.

2.3. Double-Row Facility Layout

The (DRFLP) has been much less studied in the literature than the (SRFLP). We summarize here the two LO
approaches that extend in different ways the LO models proposed for the (SRFLP). The key difference between
the two approaches is in the number of binary variables: the first approach uses O(n?) binary variables while the
second uses only O(n?). As a consequence, the structure of the two models is very different.

The first approach [16, 59] defines the binary variables as follows:

1, if department i is placed in row r,
Yir = .
0, otherwise.

1, if departments i and j are both placed in row r and j is located to the right of i,
Zrij =
" 0, otherwise.

In other words, the variables y encode the assignment of departments to rows and the variables z encode the
relative position of two departments assigned to the same row. The resulting model is:

n=1 n
. v
min ), 1 cij(vl.j + vl.j)

i=1 j=i+
s.t.  x; < My, fori=1,...,n,r=1,...,m
m
> vir=1 fori=1,...,n
r=i
Civirtliyir . . .
%+aijzrj,-Sxi,—xj,+M(1—zrji) fori=1,....,n-1, j=i+1,...,n,r=1,...,m
Coyirtliyir . . .
Y b @iz < =X+ X+ M(1 = 25)  fori=1,...,n—1, j=i+1,...,n,r=1,....m
m m
A . .
Z'x,-,—zlxj,+vij—vij—0 fori=1,....,n-1, j=i+1,...,n
r=i r=i
Zrij + Zrji < 3ir + ¥jr) fori=1,....n—1, j=i+1,...,n,r=1,...,m
Zij+ Zrji + 1 2 vie + e fori=1,....,n—=1, j=i+1,...,n,r=1,...,m
x>0 fori=1,....,n=-1,r=1,....m
v . oy
vl.j,viij fori=1,....,n—-1, j=i+1,...,n
vir €10, 1} fori=1,....,n=-1,r=1,....m
Zij €10, 1} fori=1,...,n, j=1,...,n,i# jr=1,...,m,

where M is a sufficiently large number. Note that there are two z variables for each triplet i, j, r. Furthermore,
there is one continuous variable x;, for each pair department-row; this variable equals zero whenever department i
is not assigned to row r, and moreover if two departments i and j are both assigned to the same row r, then vfj +V;
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represents the distance between i and j. We observe that the presence of the variables x;. causes redundancy in the
encoding, as the assignment of rows to departments is already encoded in the ;. variables. This is not necessarily
a negative feature; there are situations where models with similar “redundancy” in the binary variables perform
better in practice than alternate models with fewer binaries. For instance, this behaviour was recently observed for
the unit commitment problem in power systems [45].

In this case, however, an alternate approach that eliminates redundancy achieves a better performance. The
approach of Amaral [4] encodes all the information in only O(n?) binary variables defined as

1= 1, if departments i and j are both placed in the same row and j is located to the right of i
K 0, otherwise

The model is:

n-1 n

min Z Z C,'jd,‘j
i=1 j=i+1

st dij = x;— x;j fori=1,....,n—-1, j=i+1,...,n
dij > x;— x; fori=1,....,n—-1, j=i+1,...,n
d,'j—%(€i+f‘]‘)/lij—%(5i+€.j)/lji20 fori=1,...,n—1, j=i+1,...,l’l
X+ 26+ 6) < xj+ L(1 = A)) fori=1,....n, j=1,....n, i %
X; < X5 where (i, j) = argmin ¢;;

()

b<x<L-4% fori=1,...,n
4 €1{0,1} fori=1,...,n, j=1,....,n,i#j
AeN,

where A denotes the vector containing all the A;; variables associated to a fixed ordering, and

A={AeR™D A+ Ap+ A —Aji+ A+ g < Lfori=1,....n—1, j=i+1,...,n k#i, k#j
—/lij-i-/l[k—/ljk-i-ﬂji—/lk[-i-/lkj < lforj: 1,...,n,i= 1,...,j— 1, k = l,...,j— 1, itk
/lij+/lik+/ljk+/lji+/lki+/lkj2 lfori=1,...,n-2, j:i+ 1,....,n-1, k=j+1,...,l’l

OS/l,'j,/lji < 1fori= 1,...,l’l, j= 1,...,”, l?ﬁ_]}

where the continuous variable x; gives the position of department i within one of the two rows, and d;; represents
the distance between i and j. Furthermore A is a relaxation of the convex hull of the 0-1 incidence vectors A of
all possible orderings. This second model has a reduced number of variables, both binary and continuous, and
eliminates some constraints relating them. On the other hand, it involves a large number of inequalities in the
description of A.

The differences between these models are reflected in their running times. We implemented both approaches
using the CPLEX solver on our machine (for details see the first paragraph of Section 5) and obtained the following
results: The model of Amaral [4] is at least 100 times faster for instances of challenging size with 9 or more
departments. Thus the method of Amaral [4] can solve instances with up 13 departments in a 12 hours time
limit, whereas the approach by Chung and Tanchoco [16] can only handle instances with up to 12 departments
within the same time limit. This difference in running time is mainly due to the tighter relaxations provided by the
formulation of Amaral [4], and the consequent smaller number of branch-and-bound nodes. We further note that
the corrections provided by Zhang and Murray [59], and the corresponding additional variables and constraints,
result only in marginal increases of the running times compared to the original version of Chung and Tanchoco
[16].

3. A Discrete Model for Space Between Departments

This section presents the theoretical results used to extend the semidefinite approach outlined in Subsections
2.1 and 2.2 to handle the possibility of empty space between departments. The key result is Theorem 2 showing
that if all departments lengths are integer then there is always an optimal solution to the (MRFLP) on the half grid.
As a consequence, the semidefinite approach from Hungerldnder and Anjos [32] will provide an optimal layout for
the (MRFLP) if we add a sufficient number of spacing departments of length 0.5 and with all connectivities equal
to zero. Because the number of spacing departments needed will normally be too large for practical computation,
this section also proposes several strategies to reduce the number of spacing departments needed.
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3.1. Theoretical Foundations for a Discrete Optimization Model

From the description of the (MRFLP) in the Introduction, it seems intuitive that the optimal distances between
departments can be arbitrary. However, Theorem 2 shows that the (MRFLP) with integer department lengths can
be modelled as a purely discrete optimization problem.

Theorem 2. If all the department lengths are integer, then there is always an optimal solution to the (MRFLP) on
the half grid.

Proof. Let an optimal multi-row layout of the departments be given. We define a half-integer grid such that the
centers of the departments with the most left centers are on a grid point. Note that if there are no spaces in the
optimal layout, then all departments centers are on the half-integer grid as defined, and we are done. Hence we
assume that there are spaces in the optimal layout, and that not all departments centers are on the grid. Let S be
the set containing every department such that its center is on the grid, and let 7' be the set containing the remaining
departments. Without loss of generality we assume that the indices of the departments in § are all smaller than
the indices of the departments in 7', i.e.,i < j, Vie S, jeT.

Observe that there exists £ > 0 such that we can move all the departments in 7 simultaneously by & either to
the left or to the right without overlapping with departments in S. The existence of € follows from the integrality
of the department lengths and the definitions of S and 7. The change in the objective function from shifting all
the departments in T by ¢ is equal to

6=Z & Z cij— & Z Cij

ieT \ jes, j<i jes. i<j

for a shift to the left, and to —¢ for a shift to the right, where i<j means that the center of j is to the right of the
center of i, and & is chosen small enough such that no center of a department in T traverses a half grid point. Due
to the optimality of the given layout, 6 must to be 0 (otherwise we could improve the objective value by a shift of
the departments in 7 in the appropriate direction, contradicting the assumption that the current layout is optimal).
Hence such a shift does not change the objective value.

Choosing ¢ such that the center of at least one department in 7 lies on a half grid point after the shifting
operation (to the left or right), and repeating this process allows us to arrange all departments on the grid in at
most n — 1 steps without changing the objective value. [

Corollary 3. If all the department lengths are integer, then for each instance of the (MRFLP) we obtain an
equivalent instance by adding spacing departments of length 0.5 such that the length of each row becomes equal
toM =37, L

Proof. After adding the spacing departments we know that all the department centers will lie on the half-grid.
Theorem 2 guarantees that there is always an optimal solution on the half-grid for every instance of the (MRFLP).
Moreover the row length M is sufficient: If there exists an interval that contains only spaces on all parallel rows,
the objective value can only improve if we remove the respective spaces from each row because the pairwise
center-to-center distances of the departments stay the same or are reduced by the removal. O

Finally we show by construction that the bound M on the lengths of the rows is tight for any given number of
rows. Let us start with the case of 2 rows; consider 5 departments with lengths £; = £, = {3 = {4 = 1, {5 = n and
connectivities cjp = ¢34 = n, ¢j5 = ¢35 = 1. Part a.) of Figure 4 illustrates the optimal layout for this instance. We
have M = n + 4 and

i Length of the shortest row in the optimal layout  n +2
im = =

= -1
s M n+4

This construction can be generalized to an arbitrary number of rows by simply adding for each additional row 2
departments of length 1 and connectivity n with 2 other departments of length 1 that are not connected with each
other. Specifically for 3 rows we add 2 departments with lengths £ = {; = 1 and connectivities ¢y = c47 = n; the
optimal layout for this extended instance is depicted in part b.) Figure 4. The cost of the optimal layout is n + 1
regardless of the number of rows considered.

11
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Figure 4: Examples for 2 and 3 rows showing that the choice of M is best possible.

3.2. Strategies for Reducing the Number of Spaces

The results in this section show that it is possible under certain assumptions to reduce the number and size of
the spacing departments.
Lemma 4 applies to instances with equidistant department locations.

Lemma 4. If all departments have the same length w, then spaces of size w are sufficient to preserve an optimal
solution.

Next we illustrate that M remains a tight bound using Figures 4 a.) and 5. While this illustration is for two rows,
it is straightforward to generalize it to an arbitrary number of rows in an identical manner to that in Figure 4. First
observe that the bound M from Theorem 2 on the lengths of the rows is tight if we further assume that the row
assignment is fixed. (This is a reasonable assumption because our proposed (SDP) approach enumerates the row
assignments.) For two rows we can simply replace department 5 from Figure 4 a.) by n departments of length 1
with connectivities c¢;ir1) = 1, 5 < i < n+ 3. Thus we obtain the following data: {; =&, = ... = =1, c12 =
€34 = C15 = C3u+a) = 1, cige1y = 1, 5 < i < n+ 3, with departments 1 and 3 assigned to row 1, and the remaining
departments assigned to row 2. The corresponding optimal double-row layout, with total cost 1 - 1-(n+1) = n+1,
is depicted in Figure 5.

Figure 5: Optimal layout for the reformulation of the problem in Figure 4 a.) according to Lemma 4.

Lemma 5 shows when it is allowed to enlarge the grid size and thus reduce the number of spaces.

Lemma 5. [fthe lengths of the departments have a greatest common divisor d, then we can divide all lengths by
d, solve the resulting problem (where all department lengths are still integer) and multiply the bounds obtained by
d to get bounds of the original problem.

Lemma 6 indicates how to further reduce the number of spaces by suitably modeling the possible distances
between the departments.

Lemma 6. Let p; be the number of departments assigned to row i. Then we preserve an optimal solution to the
(MRFLP) if we use p; spaces of lengths 261k =0,1,2,...,h; where h; is chosen such that

h;

piy 2 Y a=M. ieml

k=0 ke[n], r(k)=i

Proof. We can model all feasible distances between all pairs of departments (all feasible layouts of the departments
on the half grid) with the suggested spaces. Note that we also need spaces to allow a gap between the left origin
the first department on each row. O
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Finally Lemma 7 builds on Lemma 6 and examines when additional spaces have no marginal value.

Corollary 7. Let a row assignment be given. If we add to each row (as per Lemma 6) ky spaces of the minimal
necessary lengths to get the lower bound vy,, and if we also add ky (> ki) spaces of minimal necessary lengths to
each row to get the lower bound vy,, then it follows from vy, = vy, that vy, is a lower bound for the (MRFLP) for
the given row assignment.

Proof. 1f adding additional spaces has no effect on the value of the (SDP) relaxation then adding even more
(possibly larger) spaces also does not have any effect. O

Corollary 7 leads to another way of reducing the computational effort. Indeed in Section 5.2 we propose
a computational strategy that does not solve the (MRFLP) directly but rather iteratively adds spaces of minimal
necessary length to the (SF-MRFLP). Unlike the (DRFLP) approaches reviewed in Section 2.3, our semidefinite
approach allows us to control both the number and the sizes of the spaces considered. This is a valuable feature in
practice because layout with less space are normally preferable. For computational experiments with a controlled
number of spaces see Sections 5.3 — 5.5.

4. Solving the (SDP) Relaxations

The core of our (SDP) approach is to solve the relaxation (SDPpeap) for every row assignment with sufficient
space added. The resulting fractional solutions provide lower bounds on the costs of the optimal layout for the
given row assignment. By rounding the fractional solutions, we can also obtain upper bounds, i.e., integer solutions
that describe feasible layouts for the given row assignment. By computing these lower and upper bounds for every
row assignement, we can obtain global bounds for the (MRFLP). In the following two subsections we discuss how
to solve (SDPcpeap) and how to round the fractional solutions.

4.1. Computing Lower Bounds

Looking at the constraint classes and their sizes in the relaxation (SDPcpeap), it is clear that explicitly main-
taining O(n>) or more constraints is not an attractive option. We therefore adapt an approach originally suggested
in Fischer et al. [21] that was successful for the max-cut problem [48] and several ordering problems [14, 33].

The idea is to combine the bundle method and an interior-point method. Initially, we only explicitly ensure
satisfaction of the constraints diag(Z) = e and Z > 0; this can be achieved with standard interior-point methods,
see e.g. Helmberg et al. [27]. All other constraints are handled using Lagrangian duality. However this makes the
objective function f non-smooth, hence the need for the bundle method. The bundle method iteratively evaluates
f at some trial points and uses subgradient information to obtain new iterates. Evaluating f amounts to again
solving an (SDP) with the constraints diag(Z) = e and Z = 0, which can be done efficiently using an interior-point
method. In this way we obtain an approximate minimizer of f that is guaranteed to yield a lower bound to the
optimal solution of (SDPcheap). In some experiments we also use the bundle method to obtain an initial set of
constraints to add to the relaxation (SDPys;ic) and then solved the resulting relaxation exactly using Sedumi [54].

4.2. Obtaining Feasible Layouts

To obtain feasible (MRFLP) layouts we use a rounding heuristic originally proposed by Hungerlinder and
Anjos [32]. First we apply the hyperplane rounding algorithm of Goemans and Williamson [25] to the solution
of the (SDP) relaxation, then we take the resulting vector w and flip the signs of some of its entries to make it
feasible with respect to the 3-cycle inequalities

1<y +yp—yu <1 (13)

within the rows, and with respect to the inequalities (10) for the inter-row variables.

Let us give a more detailed description of the implementation of our heuristic. Let W be the current fractional
(primal) solution of the semidefinite relaxation, and w’ be an initial vector that encodes a feasible layout of the
departments in all rows.

1. Compute the convex combination R := A(wW'w'") + (1 — )W” using a randomly generated A € [0.3,0.7].
Compute the Cholesky decomposition DD of R.

2. Apply the Goemans-Williamson hyperplane rounding to D and obtain a —1/+1 vector w (cf. Rendl et al.
[48]).
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T
3. Compute the induced objective value z(w) := (%) Cz (%) If z(w) > z(w’): go to step 2.
4. If w satisfies (13) and (10): set w’ := w and go to 2.
Otherwise: modify w by first changing the signs of one of three variables in all violated 3-cycle inequalities,
afterwards flipping signs of the inter-row ordering variables to satisfy (10) and go to step 3.

The algorithm stops after 100 executions of step 2. (Note that before the 51st execution of step 2, we perform step
1 again. As step 1 is quite expensive, we refrain from executing it too often.) The final w’ is the heuristic solution.
If the duality gap is not closed after the heuristic, we return to the (SDP) optimization algorithm, and then reapply
the heuristic (retaining the last vector w’).

5. Computational Results

We report the results for different computational experiments with the proposed semidefinite relaxation (SDPcpeap) -
All computations were conducted on an Intel Xeon E5160 (Dual-Core) with 24 GB RAM, running Debian 5.0
in 64-bit mode. The algorithm was implemented in Matlab 7.7. We enforced a time limit of 12 hours for all the
experiments.

We solve the (MRFLP) on (SRFLP) instances from the literature. Additionally we generated new equidistant
instances (instances with uniform department length = 1), denoted by E_x, with connectivities varying randomly
between 1 and 10 and density of either 50 % or 100 %. Table 1 gives the characteristics of the small (SRFLP)
instances together with their optimal (SRFLP) solutions and the computational time to solve them using the SDP
approach of Hungerldnder and Rendl [34] run on our computer. Table 7 does the same for the larger instances.
All the instances can be downloaded from http://anjos.mgi.polymtl.ca/flplib. In general, while for the
(SRFLP) we can round to the nearest integer because 0.5 can only occur in the constant term, for the (MRFLP) we
can round the lower bound only to 0.5 as the constant term is different for distinct row assignments.

First we apply our exact semidefinite approach to the (DRFLP) in Subsections 5.1 - 5.3. Then we expand our
experiments to the case of 3 and more rows in Subsection 5.4. Finally we examine the effects of adding space to
medium and larges instances with fixed row assignments in Subsection 5.5.

5.1. First Results for the (DRFLP)

For small (DRFLP) instances, the relaxation (SDPcpeap) can be solved for each of the 2=1 — 1 possible row
assignments. As per Corollary 3 we add sufficiently many spaces to the (DRFLP) instances and solve the resulting
(PROP) for each row assignment. From the obtained bounds, we can deduce global upper and lower bounds:
these are the minima of all upper and lower bounds respectively. The upper bounds were obtained using the SDP
rounding heuristic described in Subsection 4.2.

For reasons of efficiency we used 10 function evaluations of the bundle method applied to (SDPcheap) to
obtain an initial set of constraints to add to the relaxation (SDPy,sic). We then solved the resulting relaxation
using Sedumi [54]; added all violated inequality constraints from (SDPcneap); solved again using Sedumi; and
repeated this process until no more violations were found. We also tried to solve (SDPcyeap) directly but the
running times were at least one order of magnitude greater. Solving (SDPgtrong) instead of (SDPcpesp) resulted in
a few slightly improved lower bounds but tremendously larger running times because many of the O(n°) £S-cuts
are active at the optimum.

The computational results are summarized in Table 2. We exploit Lemma 5 to reduce the number of spaces and
hence speed up our algorithmic framework. For the equidistant instances we additionally use Lemma 6. Looking
at the running times and their growth rates, we deduce that this approach is realistic only for instances with up to
10 departments within the 12-hour time limit.

The ILP approaches by Chung and Tanchoco [16] and Amaral [4] focused exclusively on the (DRFLP) and
allowed them to solve instances with up to 13 departments to optimality with better results achieved by Amaral
[4]. Hence our semidefinite approach exhibits a weaker practical performance for the (DRFLP), especially when
we allow arbitrary lengths of the departments. Nevertheless the strengths of our approach are that it allows us
to control the number and sizes of spaces considered (for details see Subsections 5.3 - 5.5 below) and that it is
applicable to the (MRFLP) with more than two rows (for details see Subsection 5.4 below).

Finally let us compare our results with the ones obtained for the (SF-DRFLP) using the same algorithmic
framework on the same machine. We adopted part of the (SF-DRFLP) results from Hungerldnder and Anjos [32]
and summarized all the computational details in Table 3.

We observe that the global lower and upper bounds (especially for the E_s-instances) are often not improved.
But nonetheless the average lower and upper bounds are always significantly improved. Hence space especially
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Instance Source Size (SRFLP)
(n) | Optimal (SRFLP) Time (sec)
solution Hungerldnder and Rendl [34]

H.S [29] 5 800 0.1
H_6 [29] 6 1480 0.1
H.7 [29] 7 3680 0.6
H.8 [29] 8 4725 0.4
H_12 [29] 12 17945 7.9
Rand_5 [32] 5 147.5 0.1
Rand_6 [32] 6 420 0.4
Rand_7 [32] 7 344 0.3
Rand_8 [32] 8 382 1.3
Rand_9 [32] 9 1024.5 22
Rand_10 [32] 10 1697 3.1
Rand_11 [32] 11 1564 2.0
Rand_12 [32] 12 2088 8.4
Rand_13 [32] 13 3101.5 7.8
S8 [52] 8 801 0.6
SH_8 [52] 8 23245 2.3
SS9 [52] 9 2469.5 0.7
SH_9 [52] 9 4695.5 9.2
S_10 [52] 10 2781.5 0.6
S-11 [52] 11 6933.5 1.3
E5.50 This paper 5 30 0.1
E_5_100 | This paper 5 95 0.2
E_6.50 This paper 6 100 0.1
E_6_100 | This paper 6 216 0.2
E_7.50 This paper 7 106 0.2
E_7.100 | This paper 7 252 0.2
E_8.50 This paper 8 136 0.3
E_8_100 | This paper 8 397 0.3
E_9.50 This paper 9 240 0.4
E_9_100 | This paper 9 618 1.3
E_10.50 | This paper | 10 387 0.6
E_10_.100 | This paper | 10 873 0.7
E_11_100 | This paper | 11 1085 1.4

Table 1: Characteristics and optimal (SRFLP) results for the small instances.

helps to improve the bounds for unbalanced (“bad”) row assignments. The computation times show that including
space is quite expensive, especially if the lengths of the departments are diverse. Without using Lemmas 5 and 6
we could only compute bounds to the E_s-instances for up to 7 departments and the other instances for up to 5
departments within the time limit.

5.2. Exploiting the Marginal Value of Spaces for the (DRFLP)

In this subsection we exploit Corollary 7 algorithmically and examine if this alternative strategy to handle
space allows us to improve on the computational results from the previous subsection.

First let us give a description of our approach: We start with computing bounds for the space free case for a
given row assignment and then

1. we add the smallest necessary space to the shortest row until the lower bound does not worsen any more,

2. and after that we add the smallest necessary spaces to all other rows. If the lower bound does not worsen
during step 2, we have found a valid lower bound for the (MRFLP) for the given row assignment due to
Corollary 7, otherwise we go back to step 1.

We summarize the results obtained by this alternative approach in Table 4.

For some instances, namely the E_x-instances with density 100 % and the Rand_s-instances, we are able to
reduce the running times compared with the results from the previous subsection summarized in Table 2. This
reduction in the running time is due to the reduction of the average number of spaces needed. Thus we solve
more but cheaper relaxations to obtain the same lower bounds. For some other instances we cannot significantly

15



Global bounds Statistics for the
(over all row assignments) 27=1 — 1 subproblems
Instance Lower | Upper Gap Largest | Average Average Average Average Total time
bound | bound (%) gap (%) | gap (%) | lower bound | upper bound | nbr spaces (sec)
E_5.50 13 13 0 0 0 17.6 17.6 4.7 12.0
E_5_100 44 46 4.55 4.62 1.15 533 53.9 4.7 11.1
E_6.50 45 45 0 3.77 0.18 58.3 58.4 5.1 40.2
E_6_100 91.5 99 8.20 8.20 2.54 119.5 122.1 5.1 35.1
E_7.50 51 51 0 3.23 0.23 63.5 63.7 6.3 177.7
E_7_100 119.5 126 5.44 5.44 1.32 145.2 147.0 6.3 167.2
E_8.50 64 64 0 6.67 1.00 79.3 80.0 6.9 716.4
E_8_100 175 191 9.14 12.47 3.73 218.6 226.3 6.9 538.5
E_9.50 112 118 5.36 13.96 2.55 137.1 140.4 8.2 4748.6
E_9_100 268 306 14.18 16.42 7.18 328.3 350.5 8.2 3530.9
E_10_50 181.5 191 5.23 16.79 2.97 219.8 226.1 8.8 24855.9
E_10.100 || 374.5 427 14.02 16.63 7.59 463.5 496.8 8.8 17109.2
H.5 350 350 0 1.94 0.20 501.0 502.0 7.7 411.8
Rand_5 52.5 52.5 0 10.00 1.21 88.0 89.1 9.9 944.0
H6 640 640 0 14.63 222 938.1 957.7 9.9 6609.7
Rand_6 188 190.5 1.33 8.43 2.37 253.9 259.5 11.1 24850.6

Table 2: Computational results for the (DRFLP) obtained by applying our semidefinite approach exploiting Lemmas 5 and 6 to (SDPcheap) -

reduce the number of spaces needed (see e.g. H_6) and thus the computationally effort grows. Further note that
the average upper bounds are better than in the previous section because we work with smaller SDPs (with fewer
spaces) for which the upper bound heuristic yields stronger feasible layouts.

5.3. Solving the (DRFLP) with Space Restrictions

Let us recall two findings concerning the usage space in our semidefinite approach from the previous subsec-
tions:

1. For promising balanced row assignments we need less space than for unbalanced ones, hence the global
bounds are similar and sometimes even the same for the cases with and without space.

2. The average number of spaces needed to find and prove the optimal layout is significantly lower than the
theoretical bound on their number (compare the “average nbr spaces” columns of Tables 2 and 4).

These points motivate us to examine how much the lower and upper bounds change if we allow only a few spaces
of predefined sizes and how much the running times can be reduced through this restriction. This question is also
interesting because in practice layouts with fewer spaces are usually preferable.

In our experiments we added four spaces with lengths 2k k e {—1,0, 1,2}, to the shorter row for each row
assignment. The results for the (DRFLP) are reported in Table 5. Here we do not consider the equidistant E_%-
instances because space has no effect on the global lower and upper bounds of these instances (compare Tables 3
and 4).

The global bounds for the instances with space restrictions coincide with the global (DRFLP) bounds as far
as they are available, i.e., for instances with at most 6 departments. For larger instances we compared the global
bounds with the exact solutions obtained by the ILP approach of Amaral: the global lower and upper bounds
are only slightly higher (and often the same). The results suggest that restricting the number of spaces is a
very good strategy to approximate the (DRFLP) for larger instances and also for obtaining layouts that yield a
good compromise between the number and sizes of spaces used and the corresponding layout costs induced.
Additionally our approach can easily handle particular requirements arising in practice regarding the assignment
of the departments and the spacing between them.

5.4. The (MRFLP) with more than 2 Rows

Next we extend the results from the previous subsections by considering 3 to 5 rows. The number of different
row assignments is given by the recursive formula

m—1
_m" Rk, n)
RO =0 ™ LG —tor
k=1
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Global bounds Statistics for the
(over all row assignments) 2"=1 — 1 subproblems
Instance | Lower | Upper Gap Largest | Average Average Average Total time
bound | bound (%) gap (%) | gap (%) | lower bound | upper bound (sec)
E_5.50 13 13 0 0 0 18.7 18.7 3.0
E_5.100 44 46 4.55 4.55 0.79 57.1 57.5 5.0
E_6.50 45 45 0 3.64 0.36 61.2 61.5 9.5
E_6.100 91.5 99 8.20 9.87 4.54 126.0 131.2 12.9
E_7.50 51 51 0 2.70 0.13 65.4 65.5 30.2
E_7_100 119.5 126 5.44 5.44 1.83 151.1 153.7 32.0
E_8.50 64 64 0 8.91 1.31 83.6 84.7 78.3
E_8_100 175 191 9.14 17.89 5.93 229.6 242.0 86.2
E 950 112 118 5.36 9.49 2.51 143.2 146.8 223.4
E_9.100 268 306 14.18 16.42 7.70 344.0 368.8 251.5
E_10.50 | 181.5 191 5.23 15.93 4.18 229.4 238.7 649.9
E_10_100 | 374.5 427 14.02 18.84 8.44 482.7 520.4 815.2
E_11_100 | 481 539 12.06 17.07 7.69 598.8 642.4 1742.3
H.5 410 450 9.76 9.76 2.31 564.7 576.0 4.8
Rand.5 52.5 52.5 0 8.93 1.78 97.9 99.6 4.5
H.6 665 720 8.27 16.58 5.55 1050.6 1103.5 11.1
Rand_6 188.5 190.5 1.06 6.65 2.59 280.0 286.7 13.8
H.7 1630 1700 4.29 15.17 3.65 2334.9 2413.0 252
Rand_7 166 166 0 13.82 3.16 239.4 246.3 31.7
H._8 2355 2385 1.27 21.15 5.72 3185.6 3355.6 91.3
S8 380.5 408 7.23 20.10 5.87 494.8 521.8 91.6
SH_8 990.5 | 11355 | 14.64 17.00 10.85 1299.6 1424.2 87.4
Rand_8 192 205 6.77 28.10 4.77 246.7 258.0 82.2
S99 1163 | 1181.5 | 1.59 13.63 3.42 1518.9 1567.5 253.4
SH_9 1974.5 | 22945 | 16.21 18.87 11.31 2556.1 2814.9 251.9
Rand_9 447.5 | 4925 10.06 19.73 5.61 629.5 662.3 252.6
S_10 1314 | 13745 | 4.60 10.77 4.20 1726.7 1796.3 713.0
Rand_10 779 838 7.57 15.16 5.68 1023.0 1077.8 698.2
S-11 33255 | 34395 | 3.43 14.92 5.16 4094.5 4297.2 2127.0
Rand_11 | 643.5 708 10.02 23.95 5.76 1054.6 11134 2048.5
H_12 8450 8995 6.45 17.30 6.25 10611.8 11247.7 5943.3
Rand_12 | 775.5 799 3.03 17.69 6.21 1327.8 1408.1 6389.5
Rand_13 1058 1070 1.13 19.11 5.98 1865.5 1974.1 20636.9

Table 3: Computational results for the (SF-DRFLP) by applying our semidefinite approach to (SDPcheap) -
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Global bounds Statistics for the
(over all row assignments) 2"-! — 1 subproblems
Instance | Lower | Upper Gap Largest | Average Average Average Average Total time
bound | bound (%) gap (%) | gap (%) | lower bound | upper bound | nbr spaces (sec)
E_5.50 13 13 0 0 0 17.6 17.6 23 20.0
E_5.100 44 46 4.55 4.62 1.15 533 539 2.4 21.3
E_6.50 45 45 0 3.77 0.18 58.3 58.4 2.6 68.8
E_6_.100 91.5 99 8.20 8.20 2.54 119.5 122.1 2.9 65.7
E_7.50 51 51 0 3.23 0.22 63.5 63.7 34 288.5
E_7_100 119.5 126 5.44 5.44 1.20 145.2 146.8 3.0 212.8
E_8.50 64 64 0 5.97 0.98 79.3 80.0 44 1809.6
E_8_100 175 191 9.14 10.29 3.40 218.6 225.6 3.0 481.0
E_9.50 112 118 5.36 7.88 1.77 137.1 1394 4.8 6714.8
E_9_100 268 306 14.18 14.93 6.12 328.3 347.3 2.7 1650.6
E_10.50 181.5 191 5.23 9.71 221 219.8 224.5 5.0 38993.4
E_10_100 | 374.5 427 14.02 14.02 6.47 463.5 491.8 2.6 4313.6
E_11_100 481 539 12.06 13.72 5.30 578.2 607.2 2.9 13869.1
H.5 350 350 0 0 0 501.0 501.0 6.5 3233
Rand_5 52.5 52.5 0 0 0 88.0 88.0 4.9 66.2
H.6 640 640 0 7.58 0.71 938.1 943.5 9.9 16014.4
Rand_6 188 190.5 1.33 4.22 0.63 253.9 255.3 7.6 4190.2

Table 4: Computational results for the (DRFLP) using (SDPcheap) and Corollary 7.

where m is the number of rows and r is the number of departments. Applying m € {2, 3,4, 5} to the above formula
yields:

3l _on g
R2,n)=2""1-1, R(3,n) = —
gr=t 3y 3.0m71 Ly L, I L L |
R(4,n) = R = :
4,n) ; , (5,n) 7

We use the same algorithmic approach and setup as above and again restrict the running time per instance to 12
hours. Firstly in Table 6 we summarize the computational results obtained for the general (MRFLP). We also
restate the corresponding results for the (DRFLP) to facilitate the comparison. Note that both strategies “Direct
Approach” and “Marginal value” yield the same global bounds for all instances, whereas the average upper bounds
are again slightly better for the approach exploiting the marginal value of spaces.

Clearly the computation times grow for an increasing number of rows, especially as the average number of
spaces per row assignment increases (and also the overall number of row assignments for larger n). Interestingly
the global bounds become tighter as m increases. We also observe that exploiting the marginal value of spaces
becomes more effective for a larger number of rows as the absolute gap increases between the number of spaces
theoretically needed and the number relevant in practice; this is observed by comparing the first columns of “Direct
approach” and “Marginal value” in Table 6.

Next we extend the experiments from Subsection 5.3 by considering up to 5 rows. We add four spaces with
lengths 2k, ke {-1,0,1,2}, to the shortest row and summarize the corresponding results in Table 8.

The results clearly show that adding only a few spaces to the shortest row help to considerably improve the
optimal objective value without increasing the running time too much. Hence the layouts obtained again yield a
good compromise between the number and size of spaces used and the corresponding layout costs induced. We
further observe that for a growing number of rows the average impact of spaces added on the objective function
increases. On the other hand there seems to be no clear connection between the spaces added and the tightness of

(SDPcheap) .

5.5. The (PROP) with Additional Spaces on Medium and Large Instances
For our final set of experiments, we consider the (PROP) using the data from selected (SRFLP) instances with
between 20 and 70 departments. For each value of n we choose one instance from the literature. Table 7 lists the
characteristics of the instances together with their optimal (SRFLP) solutions and corresponding running times.
We suggest to select balanced row assignments because similar row lengths are often of interest in the design
of layouts in practice, see e.g. Langevin et al. [38]. To do so we use the following simple heuristic: First we
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Global bounds Statistics for the
(over all row assignments) 27=1 — 1 subproblems
Instance | Lower | Upper Gap Largest | Average Average Average Total time
bound | bound (%) gap (%) | gap (%) | lower bound | upper bound (sec)
H.5 350 350 0 6.25 1.08 501.7 506.3 11.0
Rand_5 52.5 52.5 0 4.27 0.32 88.4 88.7 11.5
H.6 640 640 0 7.58 0.90 938.7 946.0 333
Rand_6 188 190.5 1.33 422 0.74 254.0 255.7 34.9
H.7 1600 1660 3.75 6.48 1.47 2204.0 22342 111.5
Rand_7 159 159 0 11.38 2.19 216.6 221.4 118.3
H.8 2265 2265 0 14.86 2.49 2870.0 2945.3 423.7
S8 380.5 396 4.07 11.43 3.24 462.5 477.1 409.1
SH_8 990.5 | 1125.5 | 13.63 14.90 9.52 1218.8 1329.7 406.6
Rand_8 189.5 189.5 0 7.51 1.88 229.0 233.3 416.3
S9 1162 1179 1.46 10.08 2.31 1445.6 1479 1146.1
SH_9 1974.5 | 2294.5 | 16.21 17.10 11.52 2409.6 2675.7 1199.2
Rand 9 | 4475 486.5 8.72 16.72 393 591.0 613.9 1071.3
S_10 1314 | 13535 | 3.01 10.89 2.81 1642.5 1689.2 3663.3
Rand_10 | 778.5 821 5.46 11.52 4.15 962.3 1002.3 3392.7
S_11 3325.5 | 34245 | 2.98 13.59 4.23 3916.5 4081.6 11553.8
Rand_11 | 633.5 697 10.02 14.61 3.92 989.2 1028.1 11212.1
H_12 8385 8875 5.84 13.94 4.93 10002.6 10493 39927.9
Rand_12 768 788 2.60 15.10 5.15 12423 1306.9 39409.3

Table 5: Computational results for the (DRFLP) using (SDPcneap) and adding four spaces to the shorter row.
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Global bounds Direct Marginal
(over all row assignments) approach value
Nbr | Nbrrow | Instance Lower | Upper Gap Average | Total time Average | Total time
rows | assignm. bound | bound (%) nbr spaces (sec) nbr spaces (sec)
15 E_5.50 13 13 0 4.7 12.0 2.3 20.0
15 E_5_100 44 46 4.55 4.7 11.1 24 21.3
31 E_6.50 45 45 0 5.1 40.2 2.6 68.8
31 E_6_100 91.5 99 8.20 5.1 35.1 29 65.7
63 E_7.50 51 51 0 6.3 177.7 3.4 288.5
63 E_7_100 119.5 126 5.44 6.3 167.2 3.0 212.8
127 E_8.50 64 64 0 6.9 716.4 44 1809.6
’ 127 E_8_100 175 191 9.14 6.9 538.5 3.0 481.0
255 E_9.50 112 118 5.36 8.2 4748.6 4.8 6714.8
255 E_9_100 268 306 14.18 8.2 3530.9 2.7 1650.6
511 E_10.50 181.5 191 5.23 8.8 248559 5.0 38993.4
511 E_10_100 || 374.5 427 14.02 8.8 17109.2 2.6 4313.6
15 H.S 350 350 0 7.7 411.8 6.5 3233
15 Rand_5 52.5 52.5 0 9.9 944.0 49 66.2
31 H.6 640 640 0 9.9 6609.7 9.9 16014.4
31 Rand_6 188 190.5 1.33 11.1 24850.6 7.6 4190.2
25 E_5.50 6 6 0 8.6 70.9 4.7 64.4
25 E_5_100 27 27 0 8.6 70.8 4.0 62.8
90 E_6.50 29 29 0 8.8 380.8 4.0 309.5
90 E_6_100 56 56 0 8.8 479.0 43 419.3
301 E_7.50 31 31 0 10.8 7982.0 5.0 44272
3 301 E_7_100 76 79 3.95 10.8 7770.5 4.6 2900.3
966 E_8.50 37 37 0 11.2 49437.5 52 32955.9
966 E_8_100 116 125 7.76 11.2 51625.2 4.6 12088.3
25 H.S 175 175 0 132 9566.7 10.3 680.6
25 Rand_5 18 18 0 16.1 22475.0 10.4 893.2
10 E_5.50 4 4 0 12.0 257.8 6.4 44.0
10 E_5_100 17 17 0 12.0 188.5 53 37.9
65 E_6.50 22 22 0 12.0 2665.9 49 3359
4 65 E_6.100 49 49 0 12.0 2736.0 5.0 386.0
350 E_7.50 17 17 0 14.1 72976.5 6.1 16082.9
350 E_7_100 50 50 0 14.1 72174.1 5.8 5961.8
10 H.5 105 105 0 16.9 11796.5 14.1 2287.4
10 Rand_5 10 10 0 20.4 327344 15.1 4360.1
1 E_5.50 0 0 0 15.0 39.5 7.0 5.1
1 E_5_100 0 0 0 15.0 80.9 7.0 6.2
15 E_6.50 12 12 0 15.0 1585.6 5.7 103.7
5 15 E_6.100 29 29 0 15.0 1755.8 5.0 81.6
1 H.5 0 0 0 20.0 2517.9 15.0 271.3
1 Rand_5 0 0 0 24.0 7275.6 22.0 6252.4

Table 6: Computational results for the (MRFLP) obtained by applying our semidefinite approach to (SDPcneap) -
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Instance Source | Size (SRFLP)
(n) Best Best Time (sec)
lower bound layout Hungerldnder and Rendl [34]
H_20 [29] 20 15549 54
N25.05 [9] 25 15623 211
H_30 [29] 30 44965 547
N30.05 [9] 30 115268 1110
Am33.03 [2] 33 69942.5 2193
Am35.03 [2] 35 69002.5 3194
ste36.5 [10] 36 91651.5 1078
N40_5 [34] 40 103009 8409
sko42-5 [10] 42 248238.5 4122
sko49-5 [10] 49 666130 666143 34222
sko56-5 [10] 56 591915.5 592335.5 64006
AKV-60-05 [11] 60 318801 318805 99106
sko64-5 [10] 64 501342.5 502063.5 119158
AKV-70-05 [11] 70 4213774.5 | 4218002.5 101765

Table 7: Characteristics and optimal solutions for larger (SRFLP) instances.
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(44

Results without space

Results with spaces added

Global bounds Statistics for the Global bounds Statistics for the
(over all row assignments) R(m, n) subproblems (over all row assignments) R(m, n) subproblems
Nbr | Nbrrow | Instance Lower | Upper Gap Largest | Average | Total time Lower | Upper Gap Largest | Average | Total time
rows | assignm. bound | bound (%) gap (%) | gap (%) (sec) bound | bound (%) gap (%) | gap (%) (sec)
25 HS 284.5 290 1.93 13.76 1.81 8.0 235 250 6.38 13.04 2.70 28.8
25 Rand_5 34.5 34.5 0 11.64 1.46 7.6 19 19 0 4.86 0.70 22.8
90 H-6 489.5 560 14.40 43.30 6.68 32.8 425 440 3.53 47.25 6.92 117.5
90 Rand_6 101 110.5 9.41 9.54 2.13 36.4 96.5 100.5 4.15 12.18 2.78 117.6
301 H.7 1074.5 1190 10.75 23.52 5.94 139.2 1060 1155 8.96 16.32 4.73 585.0
301 Rand_7 108 108 0 13.79 1.92 157.0 105 105 0 13.35 247 566.1
3 966 H.8 1393 1515 8.76 27.20 6.71 638.0 1350 1430 5.93 25.84 6.38 3283.1
966 S8 244 260 6.56 17.79 5.66 709.1 239 250 4.60 20.13 6.03 3251.5
966 SH.-8 647 740.5 14.45 21.01 10.17 633.6 647 739.5 14.30 20.49 11.81 2564.2
966 Rand_8 128 138 7.81 21.61 471 653.3 123.5 132.5 7.29 24.15 5.66 3087.1
3025 S9 758 771.5 1.78 16.15 451 3074.5 757.5 770 1.65 15.94 4.88 17025.5
3025 SH.9 1257.5 | 14315 | 13.84 21.80 11.78 2883.7 1257.5 | 14135 | 12.41 21.94 13.01 11039.1
3025 Rand 9 291.5 317.5 8.92 23.47 5.30 3055.0 290.5 298.5 2.75 20.35 5.83 17631.1
10 HS 140 140 0 222 0.22 35 140 140 0 0 0 6.3
10 Rand_5 48.5 48.5 0 2.02 0.58 4.5 38.5 38.5 0 2.14 0.37 5.9
65 H-6 410 410 0 25.71 2.73 349 340 340 0 28.00 4.07 56.8
65 Rand_6 98.5 98.5 0 5.85 0.83 40.0 82 82 0 7.10 1.29 66.1
4 350 H.7 820 820 0 28.89 4.44 2322 765 780 1.96 32.34 5.86 457.1
350 Rand_7 77 77 0 8.21 0.89 190.1 73 73 0 13.93 1.60 455.7
1701 H_8 1135 1135 0 39.04 4.96 1211.1 1050 1125 7.14 29.39 6.78 3403.5
1701 S8 177.5 188 5.92 20.80 5.19 1461.4 172 182 5.81 17.85 6.14 3343.7
1701 SH_8 467 491.5 5.25 14.25 6.75 1292.7 466.0 483.5 3.76 15.83 8.26 3240.5
1701 Rand_8 98 98 0 19.84 2.90 1411.1 94 98 4.26 24.41 4.35 3209.9
1 HS 200 200 0 0 0 0.2 140 140 0 0 0 0.6
1 Rand_5 445 44.5 0 0 0 0.2 38.5 38.5 0 0 0 0.6
15 H-6 260 260 0 2.46 0.37 7.0 190 190 0 5.26 0.57 114
15 Rand_6 94.5 94.5 0 0.91 0.10 6.7 83.5 83.5 0 6.09 0.47 13.3
5 140 H.7 650 650 0 18.84 2.04 87.6 600 600 0 20.43 2.76 220.9
140 Rand_7 61 61 0 6.14 0.38 83.3 61 61 0 6.25 0.54 170.2
1050 H-_8 875 875 0 29.53 3.28 981.6 865 865 0 33.46 4.55 5331.4
1050 S8 141.5 146 3.18 13.81 3.51 1194.8 80.5 82 1.86 17.49 2.55 3793.2
1050 SH_8 413.5 413.5 0 9.52 3.25 911.8 133 136 2.26 16.06 4.94 4259.8
1050 Rand_8 82 82 0 14.29 1.36 967.2 413.5 413.5 0 11.06 4.24 3832.9

Table 8: Computational results for (SDPcneap) for 3 to 5 rows without space and with specified spaces.




randomly assign 25% of the departments to each of the two rows; then the remaining 50% of the departments are
added one at a time by taking the longest remaining department and adding it to the shorter row. Our heuristic
quickly yields assignments for which the total row lengths are very close, in average they differ by less than length
2.

To examine the effect of spaces for medium and large instances we add few spaces to each row (as they are
balanced). More precisely we add five spaces with lengths 2k k = —1,0,1,2,3 to each row. As the considered
row assignments (which are the most promising ones) are balanced, the results from Subsection 5.3 suggest that
we do not have to insert a lot of spaces to find a strong layout for the given row assignment.

We again apply our algorithmic framework to the semidefinite relaxation (SDPcpeap) for the selected row
assignments. To be able to solve this relaxation for medium and large instances we have to slightly adapt our
algorithmic approach: We use only the bundle method (without Sedumi) to obtain reasonable bounds as solving
the relaxations exactly with Sedumi becomes way too time-consuming due to the large number of constraints
involved. Since the bundle method has a rather weak local convergence behavior, we limit the number of function
evaluations to 125 to control the overall computational effort. In fact these evaluations constitute the computational
bottleneck as they are responsible for more than 95% of the required running time. This limitation of the number
of function evaluations sacrifices some possible incremental improvement of the bounds. Similar experiments
showed [32] that the lower bounds of the bundle method quickly get close to the exact (SDPcheap) bounds even
though the number of function evaluations is capped at 125. (Note that the results in Table 7 required a higher
number of function evaluations and hence higher computation times.) We summarize the results averaged over 10
row assignments selected by our heuristic in Table 9.

Examining the results in Table 9 we observe that the running times are dependent on the number of departments
plus the number of spaces. The lower bound slightly decreases when we add the spaces. Nonetheless the results
clearly suggest that especially for large instances the space-free layout yields a very good approximation of the
(MRFLP) layout. In contrast to the previous subsections spaces do not always help to reduce the costs of the
best layout found because the spaces enlarge the size of the instances and hence can have a bad effect on the
performance of the rounding heuristic.

We conclude with a mention that we extended the computations to instances of (kPROP) with 3 to 5 rows, but
as the results exhibited the same trends as for the double-row case, we chose not to report them.

6. Summary and Future Research Directions

This paper proposed a new model for the (MRFLP) that expresses the problem as a discrete optimization
problem. This makes it possible to exploit the underlying combinatorial structure, and in particular to explicitly
control the number and size of the spaces between departments. This discrete optimization model is an extension
of our recent approach for the (SF-MRFLP) to the more general (MRFLP) and also captures some of its important
special cases. We constructed a semidefinite relaxation of the discrete optimization formulation and presented
computational results showing that the proposed approach gives promising results for several variants of multi-
row layout problems on a variety of benchmark instances.

There is a large variety of important layout problems both in the literature and in practice. Future research will
study the application of the discrete modelling approach proposed in this paper, particularly Theorem 2, to other
classes of layout problems.
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Results without spaces

Results with spaces added

Instance Lower Upper Average Average Average Lower Upper Average Average Average
bound bound lower upper time bound bound lower upper time
bound bound (sec) bound bound (sec)
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Table 9: Computational results for the (PROP) averaged over 10 row assignments. We again apply our semidefinite approach to (SDPcheap) and compare space-free layouts with layouts where five spaces with
lengths 2", k € {-1,0,1,2,3}, are present in both rows.
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