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Abstract

A Generation Expansion Planning problem with load uncertainty is formulated based on

joint chance-constrained programming (CCP) and is solved by incorporating sensitivity into

iterative algorithms. These algorithms exploit the characteristics of the system and its re-

sponse to load variations. Sensitivities help to classify buses according to stress level, and

sensitivity-based iterative algorithms distinguish each bus based on its contribution to the

overall system reliability. The use of sensitivity overcomes some of the mathematical obsta-

cles to solving joint CCP problems and, in addition, leads to optimal expansion solutions

because uncertain loads are correctly estimated. The IEEE 30- and 118-bus test systems

are used to demonstrate the proposed algorithms, and the results of these algorithms are

compared with those of other algorithms for solving the joint CCP problem.

Keywords: Generation expansion planning, chance-constrained programming, sensitivity.

1. Introduction

Today’s power systems, be they regulated or deregulated, are exposed to ever more

sources of uncertainty, such as the integration of renewable sources, demand participation,
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and generation and transmission availability. This uncertainty and the increasing demand

for power raise new challenges for utility planners, whose goal is to provide reliable power to

consumers at the lowest possible cost.

Generation Expansion Planning (GEP) models are used to determine the size, type, and

location of the additional units required to satisfy the forecasted demand. GEP models

are often sensitive to uncertainty, so neglecting uncertainty may lead to unrealistic solu-

tions. Thus, stochastic-optimization approaches are used to incorporate uncertainty into

GEP models. A deterministic multiperiod and multi-objective GEP is solved in [18]. In [20],

a GEP model with uncertain demand is formulated and solved by using stochastic dynamic

programming. Different applications have led to different types of stochastic-optimization

models. One such model is the recourse-based model [8] in which, in a first step, optimal

decisions are taken and, after some of the uncertainty is resolved, a recourse is available

to re-optimize. Another model is the expected-value model, which minimizes the expected

value of the cost subject to the expected values of constraints [8, 14]. Yet another way to

handle uncertainty in probabilistic terms is chance-constrained programming (CCP).

The contribution of this paper is to incorporate sensitivity into the iterative algorithms

used to solve the GEP problem with load uncertainty for a vertically integrated power

system modeled by using joint CCP. The proposed iterative algorithm distinguishes between

stressed and nonstressed buses in the system, and the iterative updates for each bus are

different. Although joint CCP has several advantages, it is not widely used because of the

mathematical challenges involved. This work addresses several of those challenges and differs

from other similar algorithms [27, 19] in the way that different chance constraints are treated

differently as appropriate. The present study builds on [21], which only separated stressed

buses: herein we consider information from both stressed and nonstressed buses.

The rest of the paper is structured as follows: Section 2 briefly describes expansion

planning models and the optimization approaches that they use, with an emphasis on the

CCP approach. Section 3 uses CCP to formulate the GEP problem with load uncertainty.

Section 4 discusses previous iterative procedures to solve the CCP formulation, and Section
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5 explains the improved algorithms proposed herein that incorporate sensitivities. Section 6

reports and analyzes the computational results of applying the algorithms to two standard

test systems. Section 7 concludes the paper.

2. Background

Power system planning has become an intensive process and the investment in utility

planning is significant [22]. A survey of the optimization techniques used in utility planning is

given in [12], and of the several stochastic optimization techniques used to model uncertainty,

only robust optimization [6, 7] and CCP explicitly aim to achieve a prescribed reliability

level. When the probability distribution of the uncertain random variable is known, CCP

is a particularly suitable optimization technique for including uncertainty in the solution.

Although the GEP problem contains several sources of uncertainty, we concentrate in this

work on demand uncertainty, which is the main source of uncertainty. For power-system

demand, the probability distribution can be obtained by using historic data.

Unlike in deterministic optimization where all the constraints have to be satisfied, CCP

allows some or all of the constraints to be satisfied only with a given probability. It was first

introduced in [1] and has been applied extensively to a wide range of engineering, financial,

and management applications. Originally, CCP was used as an analytical tool for planning

problems because it explicitly incorporates risk.

Since then, CCP has been applied to power-system planning and operation problems. A

generation-planning model was introduced in [11], where a probabilistic reliability criterion

was considered for both discrete and continuous random generation. In [28], a CCP-based

formulation of transmission expansion planning was solved by using a genetic algorithm. The

effect of wind uncertainty in transmission expansion planning was discussed in [30], in which

the authors modeled wind uncertainty with a probability density function and the resulting

CCP-based problem was solved by using a genetic algorithm. In [13], a generation and

transmission expansion problem was modeled by using two-stage stochastic programming,

in which a risk factor is introduced into the objective function. The solution algorithm was

based on the minimum-variance approach [16], which minimizes the risk in an investment
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project. A market-based generation and transmission expansion planning model was solved

in [25] by using scenario-based formulation and Monte Carlo simulation (MCS). In that work,

a reduction technique was applied to reduce the number of scenarios considered. A GEP

problem for vertically integrated systems with load uncertainty was modeled by using CCP

and solved with a modified iterative algorithm in [19]; this approach proved to have fewer

iterations. CCP has also been applied to operation and stability problems; for example, a

unit-commitment problem was modeled by using CCP in [3] and was solved iteratively.

These previous applications of CCP to power system problems present two drawbacks:

separate chance constraints are used [11, 29] where only one probabilistic constraint is rele-

vant, and the solution approach for joint CCP is computationally costly. Problems based on

joint CCP are difficult to solve and therefore are usually transformed into equivalent deter-

ministic approximations, as proposed in [2]. In the present work, these approximations and

thus the resulting iterative algorithms are improved by including sensitivities, which leads

to better solutions.

3. Generation Expansion Planning under Uncertainty

The main objective in GEP is to minimize cost subject to the operational constraints

of the system. Mathematically, this can be expressed by using a modified version of the

following formulation [11]:

min

nbus∑
i=1

wiC
n
b,ip

n,max
g,i +

nbus∑
i=1

Cn
p,ip

n
g,i +

nbus∑
i=1

Ce
p,ip

e
g,i, (1a)

s.t.

png,i + peg,i − ps,i = pLi , i = 1, . . . , nbus, (1b)

ps,i =
∑
j

−bi,j(δi − δj), i = 1, . . . , nbus, (1c)

pmin
s,i ≤ ps,i ≤ pmax

s,i , i = 1, . . . , nbus, (1d)

pe,min
g,i ≤ peg,i ≤ p

e,max
g,i , i = 1, . . . , nbus, (1e)

wip
n,min
g,i ≤ png,i ≤ wip

n,max
g,i , i = 1, . . . , nbus, (1f)

wi ∈ {0, 1}, (1g)
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where

Cn
b,i, C

n
p,i are the investment and production cost of a new unit at bus i;

Ce
p,i is the production cost of an existing unit at bus i;

png,i, p
e
g,i are the active power levels of respectively new and existing units g at bus i;

pn,min
g,i and pn,max

g,i are the minimum and maximum active power levels of a new unit g

at bus i;

pe,min
g,i and pe,max

g,i are the minimum and maximum active power levels of existing units

g at bus i;

pLi is the load connected to bus i;

ps,i is the net power flow in all the lines connected to bus i;

pmin
s,i and pmax

s,i are the minimum and maximum net power flow in lines connected to

bus i;

δi is the voltage phase angle at bus i

bi,j is the susceptance of the line between buses i and j;

nbus is the number of buses in the system;

wi is the binary decision variable for new generation at bus i.

The objective function (1a) is the total of investment and operation costs, the constraint

(1b) is the real-power balance equation, and Eq. (1c) is the sum of the line flows over all lines

connected to bus i. Constraints (1d)–(1f) give the operational limits for the transmission

lines and generating units. Finally, constraint (1g) expresses the binary nature of the decision

variable wi.

The constraints (1b) and (1c) are the DC power flow equations. Although there are

models for transmission network expansion planning that enable the use of AC power flow

equations [31, 24] and could arguably be used here, we chose to use the DC formulation

because our algorithms are for the initial stages of planning that are carried out several

years before the actual situation, and the DC approximation suffices for this purpose. If

desired, an AC power flow can be computed afterwards to confirm feasibility.
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Note that the above formulation ignores load uncertainty. The load represented here is

the average forecasted load. The loading level appears in Eq. (1b), so to include uncertainty

in probabilistic terms, we change constraint (1b) to

Prob

(
nbus⋂
i=1

(png,i + peg,i − ps,i ≥ pLi )

)
≥ α, (2)

where α is a user-defined probability threshold that represents the confidence level (or re-

liability level). Traditional GEP usually uses the loss of load expectation or the installed

reserve margin as the reliability criterion. However, it was shown in [11] that modeling

transmission-line constraints in terms of reliability criteria is advantageous in GEP. If the

optimization becomes infeasible with this type of modeling and load curtailment is not al-

lowed, a transmission upgrade is needed in the first stage of planning. This helps to identify

the equilibrium conditions whereby the demand is matched with installed generation and

does not account for any contingency studies. The left-hand side of Eq. (2) is a joint proba-

bility, i.e., it is the probability of nbus events occurring simultaneously; thus constraint (2) is

a joint chance constraint [23]. This probability can be calculated by numerical integration,

but this technique is limited by dimensionality [23] and is only possible in practice for small

problems.

A practical means to address this difficulty is to convert the joint chance constraint (2)

into a set of individual constraints. First, observe that Eq. (2) can be reformulated as

Prob

{
nbus⋃
i=1

(png,i + peg,i − ps,i ≥ pLi )c

}
≤ 1− α (3)

where the exponent c denotes the complementary event (in this case, the inequality inside

the parentheses not holding), because the sum of the probabilities of an event and of its

complementary event is 1. Now we can write a set of sufficient conditions for Eq. (3) to

hold:

Prob
{

(png,i + peg,i − ps,i ≥ pLi )c
}
≤ 1− α

nbus

,

i = 1, . . . , nbus. (4)
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Therefore, the probabilistic real-power flow equation (2) can be approximated as

Prob
{
png,i + peg,i − ps,i ≥ pLi

}
≥ 1− 1− α

nbus

,

i = 1, . . . , nbus, (5)

where (5) holds because the two probabilities in (4) and (5) add up to 1. In short, the

constraint (2) can be replaced with the stronger set of constraints (5).

If the probability distribution of the load is known, each of the constraints in Eq. (5)

can be replaced by its deterministic equivalent. For GEP, it is reasonable to assume that

the load at bus i follows a normal distribution [15]. If µL
i denotes its mean and σL

i denotes

its variance, then we can rewrite the constraints (5) as

Prob

{
png,i + peg,i − ps,i − µL

i

σL
i

≥ pLi − µL
i

σL
i

}
≥

1− 1− α
nbus

, i = 1, . . . , nbus. (6)

Because (pLi − µL
i )/σL

i is a standard normal random variable, Eq. (6) is equivalent to

φ

{
png,i + peg,i − ps,i − µL

i

σL
i

}
≥ 1− 1− α

nbus

, (7)

where φ is the normal probability distribution function. Finally, let Zα be the inverse cumu-

lative distribution of 1− (1− α)/nbus, i.e., Zα = φ−1{1− (1− α)/nbus}. Then, Eq. (7) can

be rewritten as
png,i + peg,i − ps,i − µL

i

σL
i

= Zα, (8)

or equivalently,

png,i + peg,i − ps,i = µL
i + σL

i Zα. (9)

The remainder of this paper is concerned with improving the choice of Z at each bus so

as to reduce the the total cost of implementing the resulting generation expansion plan. In

particular, although the derivation detailed above assumes that the load uncertainty is the

same for every bus, this is generally not the case. Therefore, it makes sense to adjust, or

update, Z for each bus; doing so reduces the cost of achieving the required level of reliability.
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4. Previously Proposed Z-Update Algorithms

4.1. Uniform Z-update algorithm

Given the desired probability level α, the general framework for solving the GEP problem

by using the deterministic formulation described above is as follows:

(1) A set of new generations is computed by solving the mixed-integer linear program-

ming (MILP) problem (1a)–(1g) with the constraint (1b) replaced by the approximate

deterministic equivalent (9).

(2) Sample load scenarios are randomly generated by a MCS, and the optimal power flow

(OPF) is obtained based on the solution from step (1). Because the new generation is

fixed, wi is not a variable and there is no investment cost in the objective function. The

number of feasible cases divided by the total number of scenarios gives the estimate of

the probability.

(3) If the estimated probability is not acceptable, then the Z value is updated and the

process is repeated from step (1) until the target probability is achieved.

The update of Z implies a change in the load conditions pLi and is likely to significantly

impact the new optimal generation decisions. The Z-update method proposed in [27] is based

on interpolating the univariate and multivariate variables and the false-position method [17].

The steps in this algorithm are as follows:

(1) The GEP problem is initially solved twice with values ZHi and ZLo that are chosen so

that ZLo is a value below Zα obtained by generating a small random deviation from

Zα, and ZHi is a random value above Zα also chosen using a small random deviation.

Thus ZHi and ZLo correspond to probabilities pHi and pLo, which are, respectively,

higher and lower than the desired probability α.

(2) The probabilities pHi and pLo are determined by obtaining OPFs for various normally

distributed load samples generated by a MCS. These probabilities are converted to

the corresponding univariate-space Z equivalents Z1 and Z2 by using the probability

distribution function of the random variable.
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(3) Based on these univariate Z and multivariate probability values, Zα is updated for the

next iteration by using the formula

Zα ← ZLo +

[
Zα − Z2

Z1 − Z2

(
ZHi − ZLo

)]
. (10)

The iterative algorithm basically tries to shrink the interval [ZHi, ZLo]. We refer to it

as the uniform Z-update algorithm because the same Z value is used to update the

constraint (9) for every bus.

(4) The GEP problem is solved with the updated Zα, then the OPF is obtained to deter-

mine the probability Pfeas of the new solution and the corresponding Zn is calculated.

(5) If | Pfeas − α |≤ 4α, then the algorithm terminates. Here, 4α is a small tolerance

allowed in the target probability. Whenever Pfeas > α ±4α, i.e., the tolerance is not

satisfied, the false-position method [17] is used to choose new lower and higher values

for Z:

(a) If Zn < Zα then ZLo and Z2 are replaced with the new Zα and Zn, respectively.

(b) If Zn > Zα then ZHi and Z1 are replaced with the new Zα and Zn, respectively.

(6) The process is repeated until the target probability is reached.

Thus, by updating the Z value, the loading conditions and the expansion decisions are

modified to reach the target confidence level.

4.2. Sensitivity-based Z update and stressed-bus-classification–based Z update algorithm

In the uniform Z-update algorithm, Z is updated uniformly for every bus. Thus, the

individual impact of each bus on the system reliability is not considered. This drawback of

this algorithm was addressed in our earlier paper [21] by using bus sensitivity. By focusing

on the impact of the stressed buses, the cost was reduced.

The outline of this algorithm is similar to that of the uniform Z-update algorithm. The

main difference is the identification of the stressed buses and updating Z independently for

each bus. Given the desired probability α, the steps of the algorithm are the same except

for a modification in Eq. (10). The modified steps for this algorithm are as follows:
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(1) After applying a MCS, the success probability achieved with the current expansion

solution is known. The infeasible OPF cases imply that at least one bus has insuf-

ficient generation to meet the load. These are the stressed buses of the system. To

identify them, we solve a different GEP problem with a positive “slack” variable and

a corresponding penalty is introduced for each bus:

min

nbus∑
i=1

Cn
p,ip

n
g,i +

nbus∑
i=1

Ce
p,ip

e
g,i +

nbus∑
i=1

Cpensi, (11a)

s.t.

png,i + peg,i − ps,i = pLi − si, i = 1, . . . , nbus, (11b)

si ≥ 0, i = 1, . . . , nbus, (11c)

Constraints(1c)–(1f), (11d)

where Cpen is the penalty cost for the slack variables. Provided that Cpen is chosen

sufficiently large, the slack variables will be nonzero only when no other way exists to

make the OPF feasible, and only at those buses where reducing the load makes the

OPF feasible.

(2) The Zi
α value for bus i is then updated as

Zi
α ← ZLo +

[
Zα − Z2

Z1 − Z2

(
ZHi − ZLo

)] ( s̄i
ŝ

)
, (12)

where s̄i is the sum of the slack variables for bus i over all MCS scenarios, and

ŝ = max
i=1,...,nbus

s̄i.

The idea is that the ratio s̄i/ŝ reflects the relative failure rate of bus i. In particular,

Z is increased for stressed buses according to the magnitude of the ratio, and it is

maintained at ZLo for nonstressed buses.

(3) The GEP problem is again solved by using the new Z values, and the process is repeated

until the target probability is reached.

The results in [21] show that this approach lowers the GEP total cost with respect to the

uniform Z-update method.
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4.3. Conceptual example contrasting the two previously proposed Z-update algorithms

To illustrate the difference between the algorithms in Sections 4.1 and 4.2, consider a

system such as the Nordic32 test system [10]. This test system, developed by CIGRE task

force 38-02-08, was inspired by the Nordic Power System, and can be generally characterized

as a generation-rich area in the north, while the demand is greater than generation in the

central and southern regions. From a stability point of view, transmission limits generally

restrict the power flow from north to south. For the sake of simplicity, the system can be

considered a two-bus system (north and south/central). Using this system as a base for a

long-term planning problem, the uniform Z-update algorithm (where demand is increased

throughout the system) will lead to increased generation in both the north and the south,

even though there is no need for generation in the north and there are significant transmission

constraints to transmit power out of that region. Incorporating slack variables to determine

stressed and non-stressed buses provides a means to indicate that relative to the north,

increased generation is needed in the other regions. By allowing an increased emphasis on

the demand in the central and southern regions, generation will be installed in these regions

and unnecessary generation is not added to an already generation-rich north.

5. Improved Z-Update Algorithms

We now study further ways to improve the choice of Z, and thereby create improved

algorithms for solving the chance-constrained GEP problem.

5.1. Nonstressed-Bus-Classification–Based Z Update

The algorithm in Section 4.2 aims to increase Z in the chance constraints corresponding

to stressed buses. Similarly, certain buses in the system could have the lowest impact on the

overall system reliability. For these buses, the loading level can be reduced, so ZLo can be

reduced. In this way, the total cost can be further reduced for the same confidence level.

To determine the buses that are least sensitive to load fluctuations, slack variables are

again used but in a different way. Although the slack variables in Section 4.2 reduce the load

at a bus, these new slack variables attempt to increase the load at each bus. We therefore
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refer to them as “negative-slack” variables. These negative-slack variables are added to

the real-power-balance constraint of the feasible OPF scenarios. They serve to increase the

load for certain buses such that the OPF remains feasible after the increase. In this way,

the additional load each bus can accept is quantified without affecting the reliability of the

system. In other words, the higher the value of the negative-slack variable for a particular

bus, the more the bus is nonstressed.

The steps in this algorithm are as follows:

(1) The GEP problem is solved for a ZLo chosen so that the probability of success with

ZLo is much lower than the target probability.

(2) After determining the probability of success by using normally distributed load sam-

ples, the feasible samples are selected and their loads are modified by using the following

optimization problem where the negative-slack variables have been introduced:

max

nbus∑
i=1

mi, (13a)

s.t.

png,i + peg,i − ps,i = pLi +mi, i = 1, . . . , nbus, (13b)

mi ≥ 0, i = 1, . . . , nbus, (13c)

Constraints (1c)− (1f). (13d)

Note that the objective is to maximize the sum of the negative-slack variables, i.e., to

determine the maximum-load point of each bus. A nonzero optimal mi indicates that

bus i has the capacity to handle a higher load. Thus, the negative-slack values reflect

the sensitivity of the buses to the loading conditions.

(3) The nonstressed buses identified in the previous step are the candidate buses for de-

creasing Z. The Z value for each bus i is thus updated as follows:

Zi
α ← ZLo

(
1− m̄i

m̂

)
, (14)

where m̄i is the sum over all the scenarios of the negative-slack variables for bus i, and

m̂ = max
i=1,...,nbus

m̄i.
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Similar to the ratio s̄i/ŝ in Eq. (12), the ratio m̄i/m̂ reflects the relative stress level

of bus i. The buses that can accept the largest additional load have a ratio of unity,

whereas the buses unable to handle any additional load have a ratio of zero.

(4) The GEP problem is again solved with the updated Z, and the process is repeated

until the target probability is achieved.

5.2. Combined-bus-classification–based Z-update approach

Because both the stressed and nonstressed bus-classification–based Z approaches are

advantageous compared with the uniform Z-update method, we now consider combining

both approaches into a single approach.

First, after running the initial MCS to compute the success probability, the infeasible

and feasible scenarios are separated. The load samples are modified by using the respective

slack variables and an optimization is run. Based on these results, both the stressed and

nonstressed buses are determined. This classification is done after the first iteration. Once

the classification is made, it is maintained for all other iterations to ensure that Z does not

oscillate around ZLo. A bus that was neither stressed nor nonstressed in the first iteration

can become either stressed or nonstressed in subsequent iterations. However, we ensure that

if a bus was a stressed in the first iteration, it cannot later become a nonstressed bus (and

vice versa) by not allowing the slack variables at that bus to change in subsequent iterations.

The Z value for the stressed (nonstressed) buses is increased (decreased). Thus, this

combined-bus-classification method updates Z in both directions.

The steps in the combined-bus-classification–based Z-update approach are thus as fol-

lows:

(1) The GEP problem is solved for two initial values ZLo and ZHi.

(2) Given the initial points ZLo and ZHi, the probability of success is determined by using

a MCS and obtaining the OPF. The probabilities must be less (more) than the target

probabilities pLo (pHi).

(3) The infeasible and feasible samples are grouped separately. The infeasible samples are

optimized as described by Eqs. (11a)–(11d), and the feasible samples are optimized

13



according to Eqs. (13a)–(13d). Thus the type of bus and its stress level are determined

by the slack value and the slack ratio.

(4) From the previous step, the bus classification is known and maintained throughout the

process. New buses can be added to this classification during the iteration process, but

modifications of the existing classification are not allowed. Based on this classification,

if (si 6= 0 )

Z is updated by using Eq. (12)

elseif (mi 6= 0)

Z is updated by using Eq. (14).

(5) With the new Z for each bus, the GEP problem is solved again. A line search is used in

to update the stressed buses, so bounds are swapped after every update. The iterative

process is repeated until the target probability is reached.

6. Computational results

The proposed algorithms were implemented and applied to the IEEE 30-bus and IEEE

118-bus test systems [4] and the computational results are given herein. The base loading

levels were the same as given in the test system. A reserve capacity of 5% was added to

the load for both systems. For the IEEE 30-bus system, a load growth of 3% per year was

assumed, whereas the load growth was assumed to be a one-time increase of 40% for the

118-bus system. The latter choice demonstrates that the algorithms can work even for a

multiyear formulation. The uncertainty in the load was modeled as a normal distribution

satisfying the three standard-deviation criteria 3µ = 0.25σ, where µ and σ are the mean and

standard deviation of the normalized load growth.

The line limits of the 30-bus system were modified as follows: The transfer capacity

of the line connecting buses 5 and 7 was reduced to 0.45 from 0.7, and the capacity of

the line between buses 6 and 8 was reduced to 0.28 from 0.32. The results for the 30-bus

system were computed with these modified line limits. The 118-bus system had sufficient

transmission-line capacity, so no modifications were made to this system.
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The simulation uses the system configuration, transmission-line characteristics, generator-

capacity limits, and transmission-line flow limits given for the test system. The installation

cost for a new unit is 260 000 $/MW [5], and the production cost for both existing and new

generation units is 45 $/MWh [5]. Another scenario that considers different generation tech-

nologies and thus different investment and operation costs is also shown. The MCS generates

1000 samples of normally distributed demand per run. The iterative algorithm stops when

Pfeas is within ±0.5% of the target probability. The MILP problems were solved by using

the bonmin [9] solver accessed via gams [26]. The computations were done on a personal

computer, and the computation time was less than 1 hour for all the approaches.

Figures 1 and 2 show the frequency distribution of the load samples at a node of the

system. These samples are used to compare the generation expansion solution at the end of

the iterative procedure with different algorithms for the IEEE 30- and 118-bus test systems,

respectively. Tables 1 and 2 show the variation in the number of new units built according

to the proposed algorithms and also compares the results with the stressed-bus-classification

method.

Fewer new units are built with the proposed algorithms, so the investment cost decreases,

as shown in Figs. 3 and 4. The variation in investment cost reveals that the cost increases

with increasing reliability level. Thus, CCP helps to inform users of the extra cost involved

to increase the reliability of the system. Also, the results indicate that the combined bus-

classification method involves the least investment cost. When compared with the uniform

method, stressed-bus classification will always result in reduced cost because sensitivity is

included. The other two methods try to reduce the expansion cost by incorporating different

forms of sensitivity. Sometimes, an additional generation unit may be necessary, so no other

expansion solution is better and the same investment cost is obtained.

This reduction in investment cost is possible because of the variation in updating Z.

The Z-update variations for the IEEE 30- and 118-bus test systems are shown in Figs. 5

and 6, respectively. The results indicate that, for stressed-bus classification, Z increases

for the identified stressed buses. Similarly, for the nonstressed-bus-classification method,
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Z decreases for the identified nonstressed buses. The combined-bus-classification method

updates Z in both directions, i.e., it increases Z for stressed buses and decreases Z for

nonstressed buses.

To further show the effectiveness of the above algorithms, we tested them on an IEEE

30-bus test system under different scenarios. A power system will contain different gener-

ation technologies, each with different installation and operation costs. Here, two different

generation technologies (coal and gas) are considered. The installation cost of a coal (gas)

plant is taken to be 260 000 (120 000) $/MW [5]. The operation cost of a coal (gas) plant

is taken to be 45 (84) $/MWh [5]. In general, gas plants have lower installation costs but

higher operation costs so they are used for peak loads, while coal plants are used as base

plants. For the candidate buses considered for new generation units, any type of unit can

be installed. Among the six existing generation units, three units were considered to be coal

type and the remaining three were considered to be gas type. The generators for buses 1,

2, and 13 were considered to be coal type and the generators for buses 22, 23, and 27 were

considered to be gas type. The other parameters used for the MCS were the same as in

Section 6, and the same load samples were used (see Fig. 1).

Table 3 gives the variation in the number of new units installed for different confidence

levels and proposed Z-update algorithms, and Fig. 7 shows the variation in the correspond-

ing investment costs. As expected, fewer new units are built by using the stressed-bus-

classification–based Z-update method than by using the uniform Z-update method because

of the identification of stressed buses and the incorporation of the corresponding sensitiv-

ity. Although the installation costs of gas units are lower, the operation costs are higher,

so no gas units are installed until a 94% confidence level is reached in the stressed-bus-

classification–based Z-update method. Using the nonstressed-bus-classification–based and

combined-bus-classification–based Z-update methods results in no change in the installation

of new generations. This is again due to the higher operation costs of gas units. Although

the expansion costs do not decrease, neither do they increase, which proves again that these

methods are more beneficial than the uniform Z-update method.
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7. Conclusion

The GEP problem with load uncertainty was modeled by using chance-constrained pro-

gramming. This model was solved by using new iterative-solution algorithms that identify

a system’s stressed and nonstressed buses. The algorithms emphasize or de-emphasize cer-

tain buses in the system depending on the response of the system to load. Computational

results for the IEEE 30- and 118-bus systems are presented and compared with the results

of previous approaches. The results indicate that generation expansion solutions obtained

by using the proposed approach deliver the required reliability at lower cost. This work can

be extended to any joint application.
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Figure Captions:

Fig. 1. Frequency distribution of load samples for the IEEE 30-bus system.
Fig. 2. Frequency distribution of load samples for the IEEE 118-bus system.
Fig. 3. Variation in investment cost for IEEE 30-bus system.
Fig. 4. Variation in investment cost for IEEE 118-bus system.
Fig. 5. Z compared for IEEE 30-bus system and 92% target probability.
Fig. 6. Z compared for IEEE 118-bus system and 92% target probability.
Fig. 7. Comparison of investment cost for GEP considering different generation technologies
for IEEE 30-bus test systems.
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Figure 1: Frequency distribution of load samples for the IEEE 30-bus system.
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Figure 2: Frequency distribution of load samples for the IEEE 118-bus system.

Figure 3: Variation in investment cost for IEEE 30-bus system.
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.

Figure 4: Variation in investment cost for IEEE 118-bus system.
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Figure 5: Z compared for IEEE 30-bus system and 92% target probability.
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Figure 6: Z compared for IEEE 118-bus system and 92% target probability.

Figure 7: Comparison of investment cost for GEP considering different generation technologies for IEEE
30-bus test system.
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Table 1: Variation in number of new units installed for IEEE 30-bus test system using different Z-update
approaches.

α

Stressed-bus
classification–based

Z update

Nonstressed-bus
classification– based

Z update

Combined-bus
classification–based

Z update
No. of new units
{5MW,3MW,1MW}

Investment
cost (M$)

No. of new units
{5MW,3MW,1MW}

Investment
cost (M$)

No. of new units
{5MW,3MW,1MW}

Investment
cost (M$)

0.92 {1,1,1} 2.08 {1,0,1} 1.56 {1,0,1} 1.56
0.93 {2,0,1} 2.86 {1,1,0} 2.08 {1,1,0} 2.08
0.94 {2,1,0} 3.38 {2,0,0} 2.60 {1,1,1} 2.34
0.95 {2,1,0} 3.38 {2,1,0} 3.38 {2,0,1} 2.86

Table 2: Variation in number of new units installed for IEEE 118-bus test system using different Z-update
approaches.

α

Stressed-bus
classification–based

Z update

Nonstressed-bus
classification–

based Z update

Combined-bus-
classification–based

Z update
No. of new
5 MW units

Investment
cost (M$)

No. of new
5 MW units

Investment
cost (M$)

No. of new
5 MW units

Investment
cost (M$)

0.92 31 40.3 31 40.3 30 39.0
0.93 34 44.2 33 42.9 32 41.6
0.94 45 58.5 44 57.2 43 55.9
0.95 51 66.3 50 65.0 49 63.7

Table 3: Variation in number of new units installed using different Z-update algorithms in IEEE 30-bus
system and for different generation technologies {coal,gas}.

α
Uniform Z update

Stressed-bus
classification–based

Z update

Nonstressed-bus
classification–based

Z update

Combined-bus
classification–based

Z update
New units
of 5 MW

Investment
cost (M$)

New units
of 5 MW

Investment
cost (M$)

New units
of 5 MW

Investment
cost (M$)

New units
of 5 MW

Investment
cost (M$)

0.92 {5,3} 8.3 {4,0} 5.2 {4,0} 5.2 {4,0} 5.2
0.93 {6,4} 10.2 {4,0} 5.2 {4,0} 5.2 {4,0} 5.2
0.94 {6,4} 10.2 {4,0} 5.2 {4,0} 5.2 {4,0} 5.2
0.95 {8,3} 14.3 {4,1} 5.8 {4,0} 5.2 {4,0} 5.2
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