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On Semidefinite Least Squares and Minimal Unsatisfiability

Miguel F. Anjos‡

Manuel V.C. Vieira§

September 2016

Abstract

This paper provides new results on the application of semidefinite optimization to satisfiabil-
ity by studying the connection between semidefinite optimization and minimal unsatisfiability.
We use a semidefinite least squares problem to assign weights to the clauses of a propositional
formula in conjunctive normal form. We then show that these weights are a measure of the ne-
cessity of each clause in rendering the formula unsatisfiable, the weight of a necessary clause is
strictly greater than the weight of any unnecessary clause. In particular, we show the following
results: first, if a formula is minimal unsatisfiable, then all of its clauses have the same weight;
second, if a clause does not belong to any minimal unsatisfiable subformula, then its weight is
zero. An additional contribution of this paper is a demonstration of how the infeasibility of
a semidefinite optimization problem can be tested using a semidefinite least squares problem
by extending an earlier result for linear optimization. The connection between the semidefinite
least squares problem and Farkas’ Lemma for semidefinite optimization is also discussed.

1 Introduction

The Boolean satisfiability (SAT) problem is at the crossroads of several important areas, including
logic, computer science, graph theory, and operations research. It has numerous practical appli-
cations in these fields and others, as documented in the Handbook [9]. The problem consists of
determining whether or not it is possible to satisfy a given propositional formula by at least one
assignment of the values true/false to the Boolean variables appearing in the formula. It is a famous
result that SAT is in general NP-complete [16], and it is in general a challenging problem to detect
that a SAT instance is unsatisfiable and to provide insight into its unsatisfiability.

Unsatisfiability can occur for multiple reasons, and explaining its causes is a key requirement in
a number of practical applications. There is an important body of literature concerned with, given
a propositional formula that is unsatisfiable, obtaining an unsatisfiable subformula, and proving
guarantees on the size of computed subformulas, see e.g. [22, 31, 30, 25]. Most of this work has
focused on computing one or all minimal unsatisfiable subformulas (MUSs). In particular, Kullmann
et al. [28] provided a differentiated analysis of the causes of unsatisfiability through a classification
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of single clauses based on the contribution of each clause to the causes of unsatisfiability. Their
classification varies from clauses that are necessary to prove unsatisfiability to unusable clauses. The
highest degree of necessity corresponds to necessary clauses, where a clause is said to be necessary
if every resolution refutation of the given formula must use this clause.

Unsatisfiability can also be expressed using optimization. This is known at least since the
pioneering work of Williams [37] and Blair et al. [10] on the connections between inference in
propositional logic and integer linear programming. The first optimization-based approaches to SAT
focused mostly on formulating SAT and maximum satisfiability (MAX-SAT) as 0/1 integer linear
programming problems whose linear programming relaxations can then be solved efficiently [15].
For certain classes of instances, including Horn formulas and their generalizations, the exactness of
the linear programming relaxation has been established, see e.g. [11].

Semidefinite optimization, or semidefinite programming (SDP) is the problem of optimizing a
linear function of a matrix variable subject to linear constraints on its elements and the additional
constraint that the matrix be positive semidefinite. The Handbooks [38] and [6] provide a wide
coverage of SDP theory, algorithms, software, and application areas in which SDP has had a major
impact. One of the best-known results in SDP is due to Goemans and Williamson who proposed
SDP-based polynomial-time approximation schemes for MAX-CUT and MAX-2-SAT [24]. Further
research has deepened the connections between SDP and the SAT and MAX-SAT problems, see
the recent survey chapter [5].

The SAT problem can be formulated as an SDP problem with a rank-one constraint, and
removing the rank constraint yields a convex optimization problem that is an SDP relaxation of
SAT, see e.g. [2]. This can be done in different ways. In [20, 21], de Klerk, van Maaren, and
Warners introduced the Gap SDP relaxation and showed that it is exact for some well-known
classes of SAT instances, in the sense that the Gap SDP is infeasible if and only if the SAT instance
is unsatisfiable. Subsequent papers by Anjos [1, 2, 3, 4] and van Maaren et al. [35, 36] proposed
several SDP relaxations for different versions of SAT, and some exactness results for particularly
structublack SAT formulas. An exact SDP relaxation for general SAT is obtained by formulating the
SAT instance as a binary optimization problem and then constructing the corresponding Lasserre
SDP relaxation [29]. Lasserre’s theory proves that this SDP relaxation is always exact. However,
because the size of the relaxation is exponential in the number of Boolean variables in the instance,
it is computationally impractical for all but very small instances of SAT.

A more direct connection between SAT and SDP was given in our recent paper [8] where we
proved that the process of resolution in SAT is equivalent to a linear transformation between
the feasible sets of SDP relaxations. This equivalence between resolution and SDP, called SDP
resolution, makes it possible to write a direct proof of the exactness of Lasserre’s SDP relaxation in
the specific context of SAT without recourse to Lasserre’s general theory. The exactness proof in
[8] shows that the exact relaxation implicitly deduces whether the empty clause can be derived by
a finite sequence of resolution steps starting from the SAT formula. It then follows that the SDP
relaxation is infeasible precisely when such a sequence of steps exists.

This paper provides new results on the application of SDP in the context of unsatisfiability.
Specifically we focus here is on the connection between SDP and minimal unsatisfiability. A CNF
formula (formally defined in Section 1.1) is minimal unsatisfiable (MU) if it is unsatisfiable but if
any clause is removed then the resulting formula is satisfiable. We establish a connection between
SDP and minimal unsatisfiability by using a semidefinite least squares (SLS) problem to associate
non-negative weights to the clauses in a formula. We then argue that these weights are a measure
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of the importance of each clause in rendering the formula unsatisfiable. In particular, we prove
that this approach identifies two important cases: first, if an unsatisfiable formula is MU, then all
of its clauses have the same weight; second, if a clause does not belong to any minimal unsatisfiable
subformula (MUS) of an unsatisfiable formula, then its weight is zero.

The computation of these weights is in general a hard problem. To show this, let F denote the
set of clauses in a CNF formula such that |F | ≥ 2, and for C ⊆ F , let w(C) be a assignment of
non-negative weights to the clauses in C. Consider the following decision problem (CW):

Given F , is w(C) constant for C ⊆ F?

We argue that (CW) is NP-hard by following the idea of the blackuction from SAT to minimal
unsatisfiability in Lemma 2 of [34]. Specifically we build an unsatisfiable set of clauses G′ by adding
the clause Y to the clause-set G from the proof of Lemma 1 of [34], where G is MU if and only if
F is unsatisfiable. Because Y has a clash with at least one clause of G, it follows that G′ contains
a clause that cannot be removed without destroying unsatisfiability. Thus, there is a polytime
blackuction that from F constructs G′ such that:

• if F is satisfiable then G′ is MU, and hence w(C) is constant (Theorem 5.2 in this paper).

• if F is unsatisfiable then G′ contains a blackundant and a necessary clause, and hence w(C)
is not constant (Theorem 5.1 in this paper).

It follows that (CW) is NP-hard.
The motivation for this work is that, in spite of the hardness of the problem, the identification of

MUSs remains a need in practice. The optimization problem (14) is a convex optimization problem
that is in principle solvable in polynomial time except for the fact that the number of variables is
exponential in the number of Boolean variables. Moreover, problem (14) has a structure that may
be exploited in future to design a practical algorithm.

An additional contribution of this paper is an exploration of the use of SLS to test the in-
feasibility of an SDP problem. This is an extension of an earlier result of Dax [18] for linear
optimization. We also explain the connection between the SLS problem and a semidefinite version
of the well-known Farkas’ Lemma.

Farkas’ Lemma was used in the SAT context in [17] where a connection is made between a
non-trivial solution of an homogenous system and CNF formulas that are tautologies. The problem
of efficiently deleting clauses that do not contribute to any proof of unsatisfiability was studied
in [27]. Using a Farkas’ Lemma variant, classes of formulas where selecting a MUS is easy were
investigated in [13]. These and other results on unsatisfiability can be found in the major source
[14]. Practice-oriented papers to determine or approximate MUSs have been published by several
authors, see e.g. [13, 25, 32].

The results of this article are related to the class UMU of finite unions of minimal unsatisfiable
CNF formulas. This class first appeablack in [33] under the name “effective unsatisfiable set of
clauses”, while the class UMU was named and studied in [28] as “potentially necessary clauses”.
Trivially the union of all MUSs in some formula F is the largest UMU in F . Theorem 5.3 in this
paper shows that clauses outside of the largest UMU have weight zero.

This paper is structublack as follows. Section 1.1 formally introduces SAT and SDP, and
recalls the exact SDP formulation of SAT. In Section 2 we introduce the SLS problem for testing
infeasibility of a general SDP problem, and in Section 3 we show how the SLS approach can be
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used to obtain SLS certificates of infeasibility for SAT. We then recall in Section 4 the concept of
MUS and prove a new characterization of MUSs. In Section 5 we show the main results in this
paper. Specifically we show that the SLS certificate of infeasiblity for an unsatisfiable formula yields
a weight for each clause, and that these weights are a measure of the importance of each clause
in rendering the formula unsatisfiable (Theorem 5.1). We further show that if the unsatisfiable
formula is MU, then all of its clauses have the same weight (Theorem 5.2), and that if a clause does
not belong to any MUS, then its weight is zero (Theorem 5.3). Section 6 presents three examples
to illustrate our results, and Section 7 concludes the paper and proposes some directions for future
research.

1.1 The Exact SDP Formulation of SAT

We consider the SAT problem for instances in conjunctive normal form (CNF). Such instances are

specified by a set of Boolean variables x1, . . . , xn a propositional formula F =
m∧
j=1

Cj , with each

clause Cj having the form Cj =
∨

k∈Bj

xk ∨
∨

k∈B̄j

x̄k where Bj , B̄j ⊆ {1, . . . , n}, Bj ∩ B̄j = ∅, and x̄i

denotes the negation of xi. The SAT problem is: given a satisfiability instance, is F satisfiable,
that is, is there a truth assignment to the variables x1 . . . , xn such that F evaluates to TRUE?

We use the common description of the constraints of an SDP optimization problem (see e.g.
[7]):

Ai •X = bi, i = 1, . . . ,m, X � 0, (1)

where the matrices Ai and X are n× n real symmetric, b ∈ <m is a column vector, X � 0 denotes
that the matrix X ∈ Sn+, where Sn+ is the set of n×n real symmetric positive semidefinite matrices,
and M •N denotes the inner product of two real symmetric matrices:

M •N = trace (M N) =
n∑

i=1

n∑
j=1

Mi,jNi,j

We may write the equality constraints of (1) as A(X) = b, where the linear mapping A is defined
as A(X) = (A1 •X, . . . , Am •X)T . The adjoint of A is denoted AT (u) with u ∈ <m, and can be

expressed as
m∑
j=1

ujAj .

We use the fact that the SAT problem can be expressed in the form (1). First, we explain
how each clause can be expressed as a linear constraint. Let TRUE be denoted by 1 and FALSE
be denoted by −1, and express clause Cj as Cj =

∨
i∈Ij s

j
ixi, where Ij = Bj ∪ B̄j , xi are the

propositional variables, and the parameter sji indicates whether xi is negated or not in clause Cj ,
i.e., for i ∈ Ij , we let

sji =

{
1, if xi is not negated in clause Cj

−1, if xi is negated in clause Cj

Then clause Cj is satisfied by a truth assignment (of ±1) to the variables xi if and only if∏
i∈Ij

(1− sixi) = 0.
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Expanding this product, we have

1 +
∑
J⊆Ij

(−1)|J |
∏
i∈J

sixi = 0.

Setting yJ =
∏
i∈J

xi, y∅ = 1, and sJ =
∏
i∈J

si, s∅ = 1, we obtain

∑
J⊆Ij

(−1)|J |sJyJ = 0. (2)

Therefore (2) gives a way to represent each clause by means of a constraint that is linear in the
variables yJ . We illustrate this representation in the following example.

Example 1.1. Let C1 = x̄1 ∨ x2 ∨ x3. We have s1
1 = −1, s1

2 = 1, s1
3 = 1. Clause C1 is satisfied if

s1
ixi = 1 for at least one i, i.e., if

(1− s1
1x1)(1− s1

2x2)(1− s1
3x3) = 0.

Because (1− s1
1x1)(1− s1

2x2)(1− s1
3x3) = (1 + x1)(1− x2)(1− x3), this condition is equivalent to

1 + x1 − x2 − x3 − x1x2 − x1x3 + x2x3 + x1x2x3 = 0.

Setting y{1} = x1, y{2} = x2, y{3} = x3, y{12} = x1x2, y{13} = x1x3, y{23} = x2x3, y{123} = x1x2x3,
we obtain the expression of clause C1 in the form (2):

1 + y{1} − y{2} − y{3} − y{12} − y{13} + y{23} + y{123} = 0.

Second, to conform to the form (1), we need to express the nonlinear relationship between the
new formal variable yJ and the formal variables xi, i ∈ J , using only linear constraints and a
semidefinite constraint. Lasserre [29] proved that this can be done using semidefinite matrices of
size 2n × 2n. To use this result, fix an ordering O = {J1, J2, . . . , J2n} of the subsets of {1, . . . , n}
and define the column vector containing the variables yJ according to O:

y = (yJ1 , yJ2 , . . . , yJ2n )T .

Now define the 2n × 2n symmetric matrix Y as the rank-one matrix

Y = yyT .

Clearly the resulting matrix Y is positive semidefinite (see e.g. [7]), and the elements of Y equal

YI,J = yIyJ =

(∏
i∈I

xi

)(∏
i∈J

xi

)
.

Note that Y∅,J = yJ , and hence the ∅ row (and column) of Y contains the yJ variables. Because
xi = ±1, if i ∈ I ∩ J then the resulting x2

i term in the definition of YI,J equals 1 and can be
omitted. Thus we have that YI,J = yI∆J , where ∆ denotes the symmetric difference of the sets I
and J . Therefore, the diagonal elements YJ,J of Y equal 1. Furthermore, the element YI,J is equal
to each element of the form Y(I∆P ),(P∆J) for every nonempty subset P of {1, . . . , n}. The following
example illustrates these properties.
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Example 1.2. Considering the previous example, we note, for instance, that {23}∆{12} = {1, 3},
and therefore

Y{23},{12} = y{23}y{12} = x2x3x1x2 = x1x3 = y{13}.

Another example is
Y{23},{23} = y{23}y{23} = x2x3x2x3 = 1

because {23}∆{23} = ∅. Lastly, for P = {1}, we have

Y{2}∆{1},{1,3}∆{1} = Y{1,2},{3} = y{1,2,3} = x1x2x3 = y{2}∆{1,3} = Y{2},{1,3}.

The above discussion leads to the following definition of the set Ωn:

Definition 1.1. For n ∈ N and the ordering O of the subsets of {1, . . . , n}, define the set

Ωn = {Y ∈ R2n×2n |Y = Y T , Y � 0, YJ,J = 1, and Y(I∆P ),(P∆J) = YI,J , ∅ ( P ⊆ {1, . . . , n}}.

The entries of the matrices Y in Ωn are thus linearizations of the products of variables xi.
Third, we make a connection between the elements of Ωn and the valuations of the Boolean

variables xi. We encode each of the truth assignments to the variables xi in a vector xS of length
n as follows. For each S ⊆ {1, . . . , n}, the entries of xS are defined according to the following
recursive rule (used in [23]):

xS1 =

{
1 if 1 ∈ S
−1 if 1 /∈ S,

and for k = 2, . . . , n:

xSk =

{
−xSk−1 if k ∈ S
xSk−1 if k /∈ S

Example 1.3. If n = 3 and S = {1, 2}, then

• x{1,2}1 = 1 because 1 ∈ {1, 2},

• x{1,2}2 = −x{1,2}1 = −1 because 2 ∈ {1, 2}, and

• x{1,2}3 = x
{1,2}
2 = −1 because 3 /∈ {1, 2}.

Hence x{1,2} = (1,−1,−1)T .

Remark 1.1. For R,S ⊆ {1, . . . , n}, R 6= S, we have xS 6= xR because if p is the first element such
that p ∈ S and p /∈ R, then xSp+1 = −xSp , xRp+1 = xRp and xRp = xSp .

Note that the vectors xS are the vertices of the cube [−1, 1]n. In accordance with the above,
we write

yS∅ = 1, yS{k} = xSk , and ySJ =
∏
i∈J

xSi .

and
Y S = (yS)(yS)T .

The matrices Y S are the vertices of the set Ωn, and hence their convex hull is contained in Ωn.
Moreover Ωn is equal to this convex hull; this follows from applying [29, Theorem 3.2] to the
max-cut problem, as exemplified in [29, Section 3.1].

Because Ωn is equal to the convex hull of the rank-one matrices of the form Y S , an exact
formulation of SAT can be stated using the set Ωn plus the linear constraints corresponding to the
clauses:
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Definition 1.2. Let F be a CNF formula on the variables x1, . . . , xn and with Ii the index set of
variables of each clause i = 1, . . . ,m. We define the SDP representation of F as:∑

J⊆Ii

(−1)|J |siJY∅,J = 0, i = 1, . . . ,m

Y ∈ Ωn.

(SDP(F ))

The following example explicitly states an SDP formulation for a short CNF formula, and
illustrates the structure of the elements of Ωn.

Example 1.4. Let
F = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3)

be a CNF formula. The SDP formulation is

1− y{1} − y{2} + y{12} = 0 (3)

1 + y{1} − y{2} − y{3} − y{12} − y{13} + y{23} − y{123} = 0 (4)

Y ∈ Ω3, (5)

where Y ∈ Ω3 is equivalent to Y having the following structure:

Y =



1 y{1} y{2} y{3} y{12} y{13} y{23} y{123}
y{1} 1 y12 y{13} y{2} y{3} y{123} y{23}
y{2} y{12} 1 y{23} y{1} y{123} y{3} y{13}
y{3} y{13} y{23} 1 y{123} y{1} y{2} y{12}
y{12} y{2} y{1} y{123} 1 y{23} y{13} y{3}
y{13} y{3} y{123} y{1} y{23} 1 y{12} y{2}
y{23} y{123} y{3} y{2} y{13} y{12} 1 y{1}
y{123} y{23} y{13} y{12} y{3} y{2} y{1} 1


.

Here, equations (3) and (4) represent the clauses x1 ∨ x2 and x̄1 ∨ x2 ∨ x3, respectively.

It may happen that SDP(F ) has no solution, in which case we say that it is infeasible (see
also Definition 2.1 below). Lasserre’s result implies that SDP(F ) is infeasible if and only if F is
unsatisfiable [8].

In the next section, we explore a characterization of infeasibility for SDP(F ) via a least squares
problem.

2 A Certificate of SDP Infeasibility via Least-Squares

Unlike in linear programming, it is possible for a set of SDP constraints to be weakly infeasible, as
per the following definition [19, Definitions 2.4 and 2.5]:

Definition 2.1. The set of constraints (1) always satisfies one of the following three properties:

• it is feasible if there exists X � 0 such that Ai •X = bi, i = 1, . . . ,m;

• it is weakly infeasible if it is not feasible and for each ε > 0 there exists X � 0 such that

|Ai •X − bi| ≤ ε, i = 1, . . . ,m.

8



• it is strongly infeasible if it is not feasible and there exists ε > 0 such that for all X � 0 there
exists i ∈ {1, . . . ,m} such that

|Ai •X − bi| > ε.

In the following, we prove that SDP(F ) cannot be weakly infeasible. This is desirable because
it confirms that SDP(F ) can make a clear distinction between satisfiability and unsatisfiability of
F .

Theorem 2.1. The formulation SDP(F ) is either feasible or strongly infeasible.

Proof. Clearly, SDP(F ) is either feasible or infeasible. Let us assume that SDP(F ) is infeasible.
We prove that, for each Y ∈ Ωn, there is at least one equation such that its violation by Y is not
less than a positive quantity ε. Let qi denote the ith constraint in SDP(F ) formulation. For any
point Y S with S ⊆ V we have that

qi(Y
S) =

∑
J⊆Ii

(−1)|J |sJy
S
J =

∏
j∈Ii

(1− sjxj).

Since F is unsatisfiable, for every truth assignment xS there is at least one clause which evaluates
false. Thus, for any point Y S not satisfying qi(Y

S) = 0 we have

qi(Y
S) =

∏
j∈Ii

(1− sjxSj ) = 2|Ii|.

Any Y ∈ Ωn is a convex combination of the extreme points Y S = yS(yS)
T

, S ⊆ V , i.e.,

Y =
n∑

S⊆V
αSY

S , with 0 ≤ αS ≤ 1, S ⊆ V and
∑
S⊆V

αS = 1. (6)

Then

qi(Y ) =
∑
S⊆V

αSqi(Y
S) ≥ αSqi(Y

S) ≥ 1

2n
2|Ii| =

2|Ii|

2n
,

where we chose the constraint qi not satisfied by Y S such that its coefficient αS is at least 1
2n .

Setting ε = 1
2n , the result is proved.

Let Ai, i = 1, . . . ,m be n×n real symmetric matrices and b a nonzero m-vector. Then we have
the following variant of Farkas’ Lemma [26, Lemma 2.2.4]:

Lemma 2.1. Suppose that the set {A(X) : X � 0} is closed and let b ∈ Rm. Then exactly one of
the following systems has a solution:

(i) The primal system Ai •X = bi, i = 1, . . . ,m and X � 0.

(ii) The dual system
∑m

i=1 uiAi � 0, bTu > 0 with u ∈ Rm.

In the following, we give a statement of Farkas’ Lemma using an SLS problem. This is an
extension of the theorem of Dax [18] for linear programming. The idea is that determining which
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of the two systems has a solution can be answeblack by considering the bounded least squares
problem:

min ‖b−A(X)‖2
s.t. X � 0,

(SLS)

where ‖ ‖ denotes the Euclidean norm. The minimum is attained if the set {A(X) |X � 0} is
closed. For X ∈ Sn+, define the corresponding residual vector as r(X) = b − A(X). We have the
following result.

Lemma 2.2. Suppose that {A(X) : X � 0} is closed. If X∗ ∈ Sn+ and r∗ = r(X∗) is its residual
vector, then X∗ solves (SLS) if and only if X∗ and r∗ satisfy

X∗ � 0, AT (r∗) � 0, and X∗ • AT (r∗) = 0. (7)

Proof. Assume that X∗ solves (SLS) and consider the following family of quadratic functions
parametrized by θ:

fi(θ) = ‖b−A(X∗ + θUi)‖2 = ‖r∗ − θA(Ui)‖2,

where Ui = uiu
T
i and ui ∈ Rn is the normalized eigenvector associated to the eigenvalue λi(X

∗).
Since X∗ solves (SLS), then the minimum of the problem

min fi(θ)
s.t. λi(X

∗) + θ ≥ 0.
(8)

is attained when θ = 0. Observe that f ′i(0) = −2A(Ui)
T r∗. We have two cases:

1. if λi(X
∗) > 0, then θ = 0 is a stationary point, implying f ′i(0) = 2A(Ui)

T r∗ = 0;

2. if λi(X
∗) = 0, then θ = 0 may not be a stationary point, implying f ′i(0) = −2A(Ui)

T r∗ ≥ 0.

Thus

X∗ • AT (r∗) = A(X∗)T r∗ = A

(
n∑

i=1

λi(X
∗)Ui

)T

r∗ =

n∑
i=1

λi(X
∗)A(Ui)

T r∗ = 0.

To prove the remaining condition, we similarly define

fi(θ) = ‖r∗ − θA(U)‖2,

for any extreme direction U ∈ Sn+. Again, θ = 0 solves the problem

min fi(θ)
s.t. θ ≥ 0,

which implies f ′i(0) = −2A(U)T r∗ ≥ 0. Thus, U • AT (r∗) ≤ 0 gives that Z • AT (r∗) ≤ 0 for any
Z ∈ Sn+. Hence AT (r∗) � 0.

Conversely, we assume that (7) holds and let Z � 0. Let U ∈ Sn be defined by U = Z −X∗.
Then

0 = X∗ • AT (r∗) = (Z − U) • AT (r∗) = Z • AT (r∗)− U • AT (r∗),

which leads to
U • AT (r∗) = Z • AT (r∗) ≤ 0.

10



Hence, the identity

‖b−A(Z)‖2 = ‖b−A(U)−A(X∗)‖2 = ‖b−A(X∗)‖2 −A(U)T r∗ + ‖A(U)‖2

shows that
‖b−A(Z)‖2 ≥ ‖b−A(X∗)‖2.

Condition (7) gives

bT r∗ = (A(X∗) + r∗)T r∗ = X∗AT (r∗) + (r∗)T r∗ = ‖r∗‖2

and the following variant of Farkas’ lemma follows.

Theorem 2.2 (SLS form of Farkas’ Lemma). Suppose that X∗ solves (SLS) and that r∗ = b−A(X∗)
is the corresponding residual vector. Then

(i) If r∗ = 0, then Ai •X∗ = bi, i = 1, . . . ,m and X∗ � 0 (i.e., X∗ satisfies the primal system);

(ii) Otherwise
∑m

i=1 r
∗
iAi � 0, bT r∗ > 0 (i.e., r∗ satisfies the dual system), and bT r∗ = ‖r∗‖2.

Clearly r∗ 6= 0 is a certificate that the primal system has no solution.

Corollary 2.1. Let X∗ and r∗ be as in Theorem 2.2 and assume that r∗ 6= 0. Then the vector
r∗/‖r∗‖ solves the problem

max bTu
s.t. AT (u) � 0

‖u‖ = 1.
(9)

Proof. Let u ∈ Rn be a feasible point of (9). Then

X∗ • AT (u) ≤ 0

and the Cauchy-Schwartz inequality gives

|(r∗)Tu| ≤ ‖r∗‖‖u‖ = ‖r∗‖.

Combining these relations we show that

bTu = (A(X∗) + r∗)Tu = X∗ • AT (u) + (r∗)Tu ≤ (r∗)Tu ≤ ‖r∗‖.

Therefore, since bT (r∗/‖r∗‖) = ‖r∗‖, the result is proved.

3 A Semidefinite Least Squares Formulation of SAT

The formulation SDP(F ) can be expressed in the form Ac(Y ) = bc, As(Y ) = bs, Y � 0, where
Ac(Y ) = bc denotes the m equality constraints representing the clauses:∑

J⊆Ii

(−1)|J |siJY∅,J = 0, i = 1, . . . ,m,

11



and As(Y ) = bs denotes the equality constraints in the definition of Ωn:

YJ,J = 1, J ∈ O, and Y(I∆P ),(P∆J) = YI,J , ∅ ( P ⊆ {1, . . . , n}, I, J ∈ O.

Motivated by the discussion in Section 2, we consider the SLS problem associated with F :

min ‖bc −Ac(Y )‖2
s.t. As(Y ) = bs

Y � 0,
(SLSF )

Problem (SLSF ) requires that the constraints defining the structure of Ωn be satisfied, and seeks the
matrix Y that minimizes the infeasibility of the clause constraints. The SAT instance is satisfiable
if and only if the optimal value of (SLSF ) is zero. Equivalently, SDP(F ) is infeasible if and only if
r∗c = bc −Ac(Y

∗) 6= 0, where Y ∗ is the optimal solution of problem (SLSF ).
Problem (SLSF ) minimizes a strictly convex function over a convex set containing at least one

positive definite matrix, namely the identity matrix, therefore the Karush-Kuhn-Tucker (KKT)
optimality conditions (see e.g. [12]) are necessary and sufficient for optimality, and Y ∗ and u∗s are
primal and dual optimal if and only if they satisfy

AT
c (bc −Ac(Y

∗)) +AT
s (u∗s) � 0

As(Y
∗) = bs

(AT
c (bc −Ac(Y

∗)) +AT
s (u∗s)) • Y ∗ = 0

Y ∗ � 0.

Lemma 3.1. The vector (r∗c , u
∗
s) with r∗c 6= 0 is an infeasibility certificate for SDP(F ).

Proof. We have to prove that (r∗c , u
∗
s) satisfies conditions (ii) of Lemma 2.1. From the first KKT

condition we have that AT (r∗c , u
∗
s) � 0. Moreover

bT (r∗c ;u∗s) = bTc r
∗
c + bTs u

∗
s

= (r∗c +Ac(Y
∗))T r∗c +As(Y

∗)Tu∗s
= (r∗c )T r∗c + Y ∗ • AT

c (r∗c ) + Y ∗ • AT
s (u∗s)

= ‖r∗c‖2 +AT (r∗c , u
∗
s) • Y ∗

= ‖r∗c‖2 > 0,

where the last equality follows by the third KKT condition.

We call r∗c > 0 an SLS certificate of infeasibility. Note that each component of r∗c corresponds
to a clause of the SAT instance.

4 Minimal Unsatisfiability

We now turn our attention to exploring how the SDP approach can provide information about
minimal unsatisfiability. We state in this section some preliminaries to the main results in Section
5.

A classification of single clauses based on their contribution to the causes of unsatisfiability was
proposed in [28]. The highest degree of necessity is given by “necessary clauses”, where a clause
C ∈ F is called necessary if every resolution refutation of F must use C.

12



Definition 4.1. Let F be an unsatisfiable formula. A clause C ∈ F is said to be necessary if and
only if there exists a partial assignment satisfying F \ C.

The corresponding notion of blackundancy is that of clauses which are unnecessary.

Definition 4.2. Let F be an unsatisfiable formula. A clause C ∈ F is said to be unnecessary if
and only if F \ C remains unsatisfiable. Equivalently, there exist resolution refutations of F that
do not use C.

Next we formally introduce minimal unsatisfiability.

Definition 4.3. We say that F is minimal unsatisfiable (MU) if and only if F is unsatisfiable and
F \ C is satisfiable for any clause C in F .

Whenever we have an unsatisfiable formula, it is clear that it must contain at least one minimal
unsatisfiable subformula within it. This motivates the next definition.

Definition 4.4. Let F be an unsatisfiable CNF formula. We say that G ⊆ F is a minimal
unsatisfiable sub-formula (MUS) of F if G is minimal unsatisfiable.

For each clause Ci we define the set of truth assignments for which Ci evaluates to false:

Ti = T (Ci) = {S ⊆ V | xS evaluates false clause Ci}.

Clearly |Ti| = 2n−|Ii|, where Ii is the index set of variables appearing in clause Ci.
The following lemma characterizes (trivially) minimal unsatisfiabilty in terms of the sets T (C).

Lemma 4.1. The CNF formula F is minimal unsatisfiable if and only if

T (Ci) *
⋃

k=1,...,m
k 6=i

T (Ck), i = 1, . . . ,m (10)

m⋃
k=1

T (Ck) = P(V ). (11)

Corollary 4.1. Let F be an unsatisfiable CNF formula and Ci ∈ F . Then F \ Ci is unsatisfiable
if and only if

T (Ci) ⊆
⋃

k=1,...,m
k 6=i

T (Ck). (12)

5 Semidefinite Least Squares Residuals and Minimal Unsatisfiable
Formulas

This section presents the main results of this paper.
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5.1 Characterization of the Solutions of (SLSF )

Using the expression (6) for Y ∈ Ωn, we have

qj(Y ) =
∑
S⊆V

αSqj(Y
S) =

∑
S∈Tj

αS2|Ij | = 2|Ij |
∑
S∈Tj

αS , (13)

because

qj(Y
S) =

{
2|Ij | if Y S does not satisfy constraint j

0 if Y S satisfies constraint j.

Substituting this expression into the objective function of (SLSF ), we have:

‖bc −Ac(Y )‖2 =

m∑
j=1

q2
j (Y ) =

m∑
j=1

2|Ij |
∑
S∈Tj

αS

2

=

m∑
j=1

4|Ij |

∑
S∈Tj

αS

2

.

Therefore, minimizing ‖b−A(Y )‖2 over Ωn is equivalent to

min
m∑
j=1

4|Ij |

∑
S∈Tj

αS

2

s.t.
∑
S⊆V

αS = 1

αS ≥ 0, ∀S ⊆ V.

(14)

The KKT conditions for (14) are:

2
∑
j∈MS

∑
J∈Tj

4|Ij |αJ − λS − z = 0, S ⊆ V, (15)

λSαS = 0, S ⊆ V, (16)∑
S⊆V

αS = 1, (17)

αS , λS ≥ 0, S ⊆ V, (18)

where MS = {j | S ∈ Tj} is the set of clauses falsified by xS . Moreover, we have the following
simple property: j ∈MS if and only if S ∈ Tj .

5.2 Technical lemmas

We present here technical lemmas, with sufficient conditions, that allow us to know if the values
of αS , as a solution of (15)-(18), should be set to zero or not.

The following lemma shows that if xS falsifies clause Ck and Ci, and there is xR such that only
falsifies clause Ci, then αS = 0.

Lemma 5.1. Let F be an unsatisfiable CNF formula such that there is S ∈ Tk ∩ Ti with k 6= i
and R ∈ Ti such that R /∈ Tj for all j 6= i. Let α = (αJ)J⊆V be a solution of (14). Then we have
αS = 0.
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Proof. We consider the following conditions

2
∑
J∈Tk

4|Ik|αJ + 2
∑
J∈Ti

4|Ii|αJ + 2
∑

j∈MS\{i,k}

∑
J∈Tj

4|Ij |αJ − λS − z = 0

and for some R ∈ Ti such that R /∈ Tj for all j 6= i,

2
∑
J∈Ti

4|Ii|αJ − λR − z = 0.

Combining these equations we obtain

2
∑
J∈Tk

4|Ik|αJ + 2
∑

j∈MS\{i,k}

∑
J∈Tj

4|Ij |αJ − λS = −λR. (19)

If λS 6= 0, then αS = 0. If λS = 0, then equation (19) is satisfied only if λR = 0 and αS = 0. The
result is proved.

The following lemma is a general version of the previous one. From condition R ∈ Ti such that
R /∈ Tj for all j 6= i, we have that MR = {i}. Since {i, k} ⊆ MS , we have MR ⊂ MS . This is the
sufficient condition of the following lemma.

Lemma 5.2. Let F be an unsatisfiable CNF formula such that there are R,S ⊆ V satisfying
MR ⊂MS. Then αS = 0.

Proof. We have to use the KKT condition (15) respecting R,S. Thus,

2
∑
j∈MS

∑
J∈Tj

4|Ij |αJ − λS = 2
∑
j∈MS

∑
J∈Tj

4|Ij |αJ − λR

Since MR ⊂MS , we get

2
∑

j∈MS\MR

∑
J∈Tj

4|Ij |αJλS = λS − λR. (20)

We have the following two cases:

- if λS 6= 0, then by complementary αS = 0;

- if λS = 0, then, since the left side of (20) is non-negative and the left side is non-positive,
αS = 0.

The result is proved.

The following lemma says that if xS only falsifies clause Ck then the correspondent coefficient
αS can not be set to zero.

Lemma 5.3. Let F be an unsatisfiable CNF formula such that there is S ∈ Tk with S /∈ Tj for all
j 6= k. Then αS 6= 0.
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Proof. Since
∑

J⊆V αJ = 1 there is R ∈ Ti such that αR 6= 0. If R = S, then there is nothing to
prove. Thus, we assume that R /∈ Tk (if R ∈ Tk, then by Lemma 5.1 αR = 0). Let us consider the
KKT condition (15) with respect to S and R.

2
∑
J∈Tk

4|Ik|αJ − λS = z

2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ − λR = z,

respectively. Combining these equations we get that

2
∑
J∈Tk

4|Ik|αJ − λS = 2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ − λR.

If αJ = 0 for all J ∈ Tk, then

2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ = λR − λS .

Since αR 6= 0, together with λRαR = 0 implies that λR = 0. Thus we obtain

2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ = −λS ,

which is impossible. Note that the left-hand side is positive (αR 6= 0) and the right-hand side is
non-positive. Therefore, there is S′ ∈ Tk such that αS′ 6= 0. Let us assume S′ 6= S. We consider
the S′ KKT condition,

2
∑

j∈MS′

∑
J∈Tj

4|Ij |αJ − λS′ = z.

Thus, we get that

2
∑
J∈Tk

4|Ik|αJ − λS = 2
∑

j∈MS′

∑
J∈Tj

4|Ij |αJ − λS′ .

Simplifying it,

−λS = 2
∑

j∈MS′\{k}

∑
J∈Tj

4|Ij |αJ − λS′ . (21)

We consider two cases:

(i) if λS′ 6= 0 then αS′ = 0;

(ii) if λS′ = 0 then, from (21), λS = 0 and αS′ = 0.

Hence, in any case, αS′ = 0, which is a contradiction. We conclude that S = S′.

If there is a clause Ci under the assumptions of the previous lemma we deduce that ri 6= 0.

Lemma 5.4. If F is minimal unsatisfiable, then for each Ck ∈ F , there is S ∈ Tk such that αS 6= 0.
Moreover, S /∈ Tj for j 6= k.

Proof. Since F is minimal unsatisfiable, by Lemma 4.1 there is S ∈ Tk such that S /∈ Tj with j 6= k.
The result follows, applying Lemma 5.3.
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5.3 Clause Weights and their Properties

Let us define a weight for each clause/constraint using the residuals from the SLS problem. We
recall from (13) that

rj = qj(Y ) =
∑
S⊆V

αSqj(Y
S) =

∑
S∈Tj

αS2|Ij | = 2|Ij |
∑
S∈Tj

αS ,

where Ij is the set of indices of the Boolean variables in clause Cj .

Definition 5.1. For each clause Cj we define the corresponding weight w(Cj):

wj = w(Cj) = 2|Ij |rj .

The first result indicates how the weights can be used as a measure of hardness of satisfying a
clause. In other words, a necessary clause has weight strictly greater than any unnecessary clause.

Theorem 5.1. Let F be an unsatisfiable CNF formula and Ci, Ck two clauses of F such that F \Ci

is satisfiable and F \ Ck is unsatisfiable. We have

wk < wi.

Proof. There is at least a point Y R such that R ∈ Ti and R /∈ Tj for j 6= i. For R ∈ Ti and S ∈ Tk
we consider the following KKT conditions

2
∑
j∈MS

∑
J∈Tj

4|Ij |αJ − λS = z

2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ − λR = z.

From here, we obtain

2
∑
j∈MS

∑
J∈Tj

4|Ij |αJ − λS = 2
∑
j∈MR

∑
J∈Tj

4|Ij |αJ − λR,

which is equivalent to

2
∑
J∈Tk

4|Ik|αJ + 2
∑

j∈MS\{k}

∑
J∈Tj

4|Ij |αJ − λS = 2
∑
J∈Ti

4|Ii|αJ − λR,

because R /∈ Tj for all j 6= i. By Lemma 5.3 αR 6= 0, which implies that λR = 0. Thus,

2
∑
J∈Tk

4|Ik|αJ + 2
∑

j∈MS\{k}

∑
J∈Tj

4|Ij |αJ − λS = 2
∑
J∈Ti

4|Ii|αJ .

If αJ = 0 for all J ∈ Tk clearly the result follows, because
∑

J∈Tk
4|Ik|αJ = 0. If there is S ∈ Tk

such that αS 6= 0, then λS = 0. Hence, we obtain

2
∑
J∈Tk

4|Ik|αJ + 2
∑

j∈MS\{k}

∑
J∈Tj

4|Ij |αJ = 2
∑
J∈Ti

4|Ii|αJ ,

which implies that

2
∑
J∈Tk

4|Ik|αJ < 2
∑
J∈Ti

4|Ii|αJ .

The result follows from the definition of the weights in Definition 5.1.
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We illustrate by example the theorem above.

Example 5.1. Consider be the following SAT instance F with 3 variables and 7 clauses:

F =



c1 : x1 ∨ x2

c2 : x̄2 ∨ x3

c3 : x̄1 ∨ x2

c4 : x̄2 ∨ x̄3

c5 : x1 ∨ x̄2

c6 : x̄1 ∨ x̄2

c7 : x2 ∨ x3

The possible truth assignments are shown in the following table:

J x1 x2 x3 MJ

1 1 1 1 {4,6}
2 1 1 -1 {2,6}
3 1 -1 1 {3}
4 1 -1 -1 {3,7}
5 -1 1 1 {4,5}
6 -1 1 -1 {2,5}
7 -1 -1 1 {1}
8 -1 -1 -1 {1,7}

Let us index the sets J ⊆ V by 1, 2, . . . , 23. We have

T1 = {7, 8}, T2 = {2, 6}, T3 = {3, 4}, T4 = {1, 5}, T5 = {5, 6}, T6 = {1, 2}, T7 = {4, 8}.

The KKT conditions for SDP(F ) are

32(α1 + α5) + 32(α1 + α2)− λ1 = z
32(α1 + α2) + 32(α2 + α6)− λ2 = z
32(α3 + α4)− λ3 = z
32(α3 + α4) + 32(α4 + α8)− λ4 = z
32(α1 + α5) + 32(α5 + α6)− λ5 = z
32(α2 + α6) + 32(α5 + α6)− λ6 = z
32(α7 + α8)− λ7 = z
32(α7 + α8) + 32(α4 + α8)− λ8 = z
αiλi = 0, i = 1, . . . , 8

8∑
i=1

αi = 1.
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and a possible solution for the KKT system is given by

α1 = α2 = α5 = α6 =
1

12
,

α3 = α7 =
1

3
,

α4, α8 = 0,

λi = 0, i = 1, . . . , 8,

z =
32

3
.

Note that this solution is not unique; for example, α1 = α4 = α6 = α8 = 0, α2 = α5 = 1
6 and

α3 = α7 = 1
3 is also a solution. However, the residual components are the same for different

solutions of the KKT system. The residual components are

r1 = 4(α7 + α8) = 4

(
1

3
+ 0

)
=

4

3

r2 = 4(α2 + α6) = 4

(
1

12
+

1

12

)
=

2

3

r3 = 4(α3 + α4) = 4

(
1

3
+ 0

)
=

4

3

r4 = 4(α1 + α5) = 4

(
1

12
+

1

12

)
=

2

3

r5 = 4(α5 + α6) = 4

(
1

12
+

1

12

)
=

2

3

r6 = 4(α1 + α2) = 4

(
1

12
+

1

12

)
=

2

3

r7 = 4(α4 + α8) = 0.

c1 : x1 ∨ x2 c2 : x̄2 ∨ x3

c3 : x̄1 ∨ x2 c4 : x̄2 ∨ x̄3

c5 : x1 ∨ x̄2 c7 : x2 ∨ x3

c6 : x̄1 ∨ x̄2

Figure 1: MUSs of F

In Figure 5.1 we identify MUSs of F . If we remove clause c1 or c3 we obtain a satisfiable
sub-formula. However, if we remove one of the other clauses, the sub-formula obtained is still
unsatisfiable. Note that w1, w3 > wi with i 6= 1, 3. This follows Theorem 5.1. Moreover, c7 does
not belong to any MUS of F and we have w(C7) = 0, accordingly with Theorem 5.3.

Each set {T1, T2, T3, T4} and {T1, T3, T5, T6} defines a MUS of F (see Lemma 4.1). In this sense
each MUS defines a covering of the truth assignments.
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The second result is that for a minimal unsatisfiable formula, all the clauses have the same
weight.

Theorem 5.2. Let F be an unsatisfiable CNF formula. If F is minimal unsatisfiable, then

wi = wk, ∀i, k ∈ {1, . . . ,m}.

Proof. Let Ci, Ck two clauses in F . Let R ∈ Ti and R /∈ Tj for all j 6= i and S ∈ Tk and S /∈ Tj for
all j 6= i. From KKT conditions, (15), we obtain∑

j∈MS

∑
J∈Tj

4|Ij |αJ − λS =
∑
j∈MR

∑
J∈Tj

4|Ij |αJ − λR,

which is equivalent to∑
J∈Tk

4|Ik|αJ +
∑

j∈MS\{k}

∑
J∈Tj

4|Ij |αJ − λS =
∑
J∈Ti

4|Ii|αJ +
∑

j∈MR\{i}

∑
J∈Tj

4|Ij |αJ − λR.

Since R /∈ Tj for j 6= i and S /∈ Tj for j 6= k, this gives∑
J∈Tk

4|Ik|αJ − λS =
∑
J∈Ti

4|Ii|αJ − λR.

Applying Lemma 5.4, αS , αR 6= 0, which implies λS = λR = 0. Thus∑
J∈Tk

4|Ik|αJ =
∑
J∈Ti

4|Ii|αJ .

Hence, w(Ci) = w(Ck) and the result is proved.

Note that the converse of Theorem 5.2 does not hold in general. This is shown by the following
example.

Example 5.2. Let F be the following SAT instance:

F =



c1 : x1

c2 : x̄2

c3 : x3

c4 : x̄1 ∨ x2

c5 : x2 ∨ x̄3

c6 : x̄1 ∨ x̄3.

In this example, we illustrate that the converse of Theorem 5.2 is not valid in general, namely
that having all equal weights for the clauses does not imply that the CNF formula is minimal
unsatisfiable.

We list below the possible truth assignments:
For simplicity of the notation we indexed the sets J ⊆ V to numbers 1, 2, . . . , 23. We have

T1 = {5, 6, 7, 8}, T2 = {1, 2, 5, 6}, T3 = {2, 4, 6, 8}, T4 = {3, 4}, T5 = {3, 7}, T6 = {1, 3}.
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J x1 x2 x3 MJ

1 1 1 1 {2,6}
2 1 1 -1 {2,3}
3 1 -1 1 {4,5,6}
4 1 -1 -1 {3,4}
5 -1 1 1 {1,2}
6 -1 1 -1 {1,2,3}
7 -1 -1 1 {1,5}
8 -1 -1 -1 {1,3}

The KKT conditions for the instance SDP(F ) are

8(α1 + α2 + α5 + α6) + 32(α1 + α3)− λ1 = z
8(α1 + α2 + α5 + α6) + 8(α2 + α4 + α6 + α8)− λ2 = z
32(α3 + α4) + 32(α3 + α7) + 32(α1 + α3)− λ3 = z
8(α2 + α4 + α6 + α8) + 32(α3 + α4)− λ4 = z
8(α5 + α6 + α7 + α8) + 8(α1 + α2 + α5 + α6)− λ5 = z
8(α5 + α6 + α7 + α8) + 8(α1 + α2 + α5 + α6) + 8(α2 + α4 + α6 + α8)− λ6 = z
8(α5 + α6 + α7 + α8) + 32(α3 + α7)− λ7 = z
8(α5 + α6 + α7 + α8) + 32(α3 + α7)− λ8 = z
αiλi = 0, i = 1, . . . , 8

8∑
i=1

αi = 1.

We have as a possible solution for the KKT system,

α1 = α4 = α7 =
2

15
,

α2 = α5 = α8 =
3

15
,

α3 = α6 = 0,

λ3 = λ6 =
64

15
, λi = 0, i 6= 3, 6,

z =
128

15
.
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The residual components are

r1 = 2(α5 + α6 + α7 + α8) = 2

(
3

15
+ 0 +

2

15
+

3

15

)
=

16

15

r2 = 2(α1 + α2 + α5 + α6) = 2

(
2

15
+

3

15
+

3

15
+ 0

)
=

16

15

r3 = 2(α2 + α4 + α6 + α8) = 2

(
3

15
+

2

15
+ 0 +

3

15

)
=

16

15

r4 = 4(α3 + α4) = 4

(
0 +

2

15

)
=

8

15

r5 = 4(α3 + α7) = 4

(
0 +

2

15

)
=

8

15

r6 = 4(α1 + α3) = 4

(
2

15
+ 0

)
=

8

15
.

Thus, weights of each clause are

w1 = w2 = w3 = w4 = w5 = w6 =
32

15
.

c4 : x̄1 ∨ x2

c1 : x1 c2 : x̄2

c6 : x̄1 ∨ x̄3 c3 : x3 c5 : x2 ∨ x̄3

Figure 2: MUSs of F

The third result is that if a clause does not belong to any MUS, then its corresponding residual,
and hence its weight, is zero. To prove this, we first prove the following propositions.

Proposition 5.1. For any minimal unsatisfiable sub-formula G of F , Ck /∈ G if and only if for
any J ∈ T (Ck) there is S /∈ T (Ck) such that MS ⊂MJ .

Proof. We assume that for any J ∈ Tk there is S /∈ Tk such that MS ⊂ MJ . Any clause falsified
by xS is also falsified by xJ . Thus, to form a MUS of F , we have to choose some clause Cj with
j ∈MS . But this clause is also falsified by xJ , therefore Ck is never chosen to form a MUS.

Now, we prove the opposite direction. Assume that there is J ∈ Tk for all S /∈ Tk such that
MS * MJ . By construction MS 6= MJ , because k ∈ MJ but k /∈ MS . Thus, we can form MUS of
F , containing Ck, in the following way:

(i) for each S ∈ P(V ) \ Tk we choose a clause indexed by jS ∈MS such that jS /∈MJ ;
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(ii) if jS have been chosen before, we move to the next point xS , with S ∈ P(V ) \ Tk;

(iii) let G′ be the set of chosen clauses. Clearly, at least the point xJ with J ∈ Tk satisfies G′;

(iv) let G = G′ ∪ {C};

(v) G is unsatisfiable and if it is not minimal, we just can remove clauses from G′ until G is
minimal unsatisfiable.

The result is proved.

Proposition 5.2. If for any J ∈ T (C) there is S /∈ T (C) such that MS ⊂MJ then w(C) = 0.

Proof. The proposition follows by Lemma 5.2.

Theorem 5.3. Let F be an unsatisfiable CNF formula and C a clause in F . If C is not in the
largest UMU of F , then w(C) = 0.

Proof. It follows by Propositions 5.2 and 5.1.

Example 5.1 illustrates the result of Theorem 5.3. Note that the question of whether the
converse of Theorem 5.3 holds remains open.

6 Application to an Example from [25]

We conclude with the application of our results to an instance from [25].
The propositional formula is

F =



c0 : x4

c1 : x2 ∨ x3

c2 : x1 ∨ x2

c3 : x1 ∨ x̄3

c4 : x̄2 ∨ x̄5

c5 : x̄1 ∨ x̄2

c6 : x1 ∨ x5

c7 : x̄1 ∨ x̄5

c8 : x2 ∨ x5

c9 : x̄1 ∨ x2 ∨ x̄3

c10 : x̄1 ∨ x2 ∨ x̄4

c11 : x1 ∨ x̄2 ∨ x3

c12 : x1 ∨ x̄2 ∨ x̄4

Using Lemma 5.2 we obtain

αi = 0, ∀i ∈ Λ0 = {1, 3, 4, 5, 7, 8, 26, 27, 28, 30, 31, 32}.
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To guarantee that complementary condition is satisfied we assume that λi = 0 for i /∈ Λ0. With
this assumption, and using the KKT conditions, we deduce that

w4 = w6 = w7 = w8,

w0 = w10 = w12,

w1 = w3 = w9 = w11,

w2 = w0 + w6,

w5 = w2 + w3.

Note that our approach generates a set of equations on the weights that identifies the same
pattern for MUSs as identified by algorithm HYCAM [25] and depicted in Figure 6. Specifically,
the equations show that:

• for each area of the diagram in Figure 3 that does not represent an intersection, the weights
of the clauses in that area will be equal. Specifically for the example: the weights of c4, c6, c7

and c8 are equal, as are the weights of c0, c10 and c12, and those of c1, c3, c9 and c11.

• for the areas that represent intersections, the weight of the clause in the intersection is equal
to the sum of weights obtained by taking one clause from the non-intersecting part of each of
the areas that form the intersection. Specifically for the example:

– clause c2 is in the intersection of two MUSs, and one of our equations states that w2 =
w0 + w6, i.e., the weight of c2 is equal to the sum of the weight of c0 and the weight of
c6; but as observed earlier, c0 could be replaced by c10 or c12, and c6 could be replaced
by c4, c7 or c8.

– clause c5 is in the intersection of the three MUSs, and w5 = w2 + w3 so that its weight
is equal to the weight of c3 (or any one of c1, c9, c11) plus the weight of c2, which in turn
is the sum of two weights as observed already. The conclusion is that the weight of c5

is equal to the sum of three weights, one from each of the areas forming the intersection
where c5 lies.

c1 : x2 ∨ x3

c3 : x1 ∨ x̄3

c9 : x̄1 ∨ x2 ∨ x̄3 c5 : x̄1 ∨ x̄2 c0 : x4

c11 : x1 ∨ x̄2 ∨ x3 c10 : x̄1 ∨ x2 ∨ x̄4

c12 : x1 ∨ x̄2 ∨ x̄4

c2 : x1 ∨ x2

c4 : x̄2 ∨ x̄5

c6 : x1 ∨ x5

c7 : x̄1 ∨ x̄5

c8 : x2 ∨ x5

Figure 3: MUSs of F
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7 Conclusion and Future Research

In this paper we showed how a semidefinite least squares problem can be used to associate weights
to the clauses in a propositional formula. We then showed that the weight of a necessary clause
is strictly greater than the weight of any unnecessary clause. We also showed that if a formula is
minimal unsatisfiable, then all of its clauses have the same weight, and that if a clause does not
belong to any minimal unsatisfiable formula, then its weight is zero. As mentioned in the Intro-
duction, the optimization problem (14) is a convex optimization problem with a special structure
that may be exploited in the design of a computational algorithm. This is a promising direction
for future research.

Another contribution of this paper is the consideration of how the infeasibility of a semidefinite
optimization problem can be tested using a semidefinite least squares problem, and a discussion of
the connection between the SLS problem and Farkas’ Lemma for semidefnite optimization. Future
research in this direction could look into the potential application of the SLS approach as described
in Section 3 for SAT to other combinatorial problems where the understanding of why solutions of
a certain type may or may not exist.
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