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This paper presents the convergence proof and complexity analysis of an interior-point frame-
work that solves linear programming problems by dynamically selecting and adding inequali-
ties. First, we formulate a new primal-dual interior-point algorithm for solving linear programs
in nonstandard form with equality and inequality constraints. The algorithm uses a primal-
dual path-following predictor-corrector short-step interior-point method that starts with a
reduced problem without any inequalities and selectively adds a given inequality only if it
becomes active on the way to optimality. Second, we prove convergence of this algorithm
to an optimal solution at which all inequalities are satisfied regardless of whether they have
been added by the algorithm or not. We thus provide a theoretical foundation for similar
schemes already used in practice. We also establish conditions under which the complexity of
the algorithm is polynomial in the problem dimension.
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1. Introduction

Algorithms for linear programming (LP) typically assume that problems are given
in standard form in which all constraints are linear equalities and all variables
are nonnegative. Although inequalities can be converted to equalities using non-
negative slack variables in principle, this reformulation is generally inefficient if
only few inequalities are active at optimality, and impractical if their number is
much larger than the number of original variables. Common examples are semi-
infinite optimization problems and continuous relaxations of combinatorial prob-
lems, where large numbers of inequalities are typically handled most efficiently
using column-generation and cutting-plane methods [12, 27, 28] or other dual ap-
proaches including augmented Lagrangian relaxations [8, 15, 17]. Starting from an
initial relaxation, the conventional scheme of these methods is to repeatedly solve
and update successive relaxations by adding new inequalities that are violated at
the currently optimal point, until the new optimal solution is also feasible for the
original problem.

As an alternative to repeatedly solving relaxations especially if the number of
inequalities is not too large, several other methods modify this classical cutting-
plane scheme and propose to dynamically add and remove inequalities as an integral
part of the solution process, see e.g. [5, 7, 14, 16, 26]. In particular, and quite
different in spirit from a cutting-plane method, these algorithms do not necessarily
generate violated inequalities at infeasible, optimal solutions but try to predict such
inequalities already at feasible, intermediate iterates. They use different heuristic
strategies to augment or adjust problems and iterates for newly added constraints
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or variables. In practice, this may allow to resume the algorithm without having
to restart which can significantly reduce both computation times and costs. While
these papers report extensive computational results that demonstrate the promise
of such approaches when solving linear or semidefinite programs in practice, to the
best of our knowledge they have no supporting theoretical analysis with proofs of
convergence and worst-case complexity. The objective of this paper is to address
this remaining gap.

1.1. Scope of Paper and Related Literature

The algorithm and theoretical analysis presented in this paper seek to capture the
spirit of interior-point methods (IPMs) that dynamically add inequalities “on the
fly” and before they are actually violated. The prediction of inequalities to become
violated is typically based on one of several indicators [4, 9, 34] and the assumption
that candidate inequalities are not too many and known in advance. The main
practical challenge of these methods then is to avoid a phenomenon known as
jamming, when new inequalities must be added close to optimality so that step sizes
become small and the algorithm may fail to converge. The theoretical results of this
paper explain this practical challenge and provide conditions under which jamming
may occur or can be avoided. Hence, the scope of our paper is quite different from
convergence and complexity proofs or related interior-point cutting-plane methods
that separate violated inequalities at optimality or generate cuts using an oracle.
By repeatedly solving improved formulations, and under the assumption that the
separation oracle runs in polynomial time, the different challenges of these methods
is to prove that the number of required inequalities remains polynomial, as shown
under suitable conditions e.g. in [1, 10, 11, 25, 27].

Closer related to our own paper are several “build-up” (inequality-adding)
or “build-down” (inequality-removing) methods that employ constraint-reduction
techniques to lower the cost of computing search directions in variants of the dual
affine-scaling and potential-reduction algorithm [2, 19, 38]. Among these methods,
the build-up dual affine-scaling (BDAS) method [2] repeatedly solves a sequence
of ellipsoidal subproblems and updates the description of the ellipsoid by adding
new dual constraints including those that first block feasible movement into the
dual affine-scaling direction. The current iterate is kept constant until enough in-
equalities are added and a step into the new direction again becomes feasible. In a
related second paper [19], the authors propose an alternative decomposition vari-
ant based on a potential-reduction algorithm [38] that considers only “promising”
constraints with small dual slacks to form the ellipsoid at each iteration and unlike
BDAS is guaranteed to terminate in at most O(

√
nL) steps. Applying this method

to transportation problems, it is noted that “although BDAS is guaranteed to con-
verge, there is no known theoretical rate of convergence [. . . ] due to the fact that
there is also no worst case complexity result available for [. . . ] dual affine scal-
ing.” Moreover, these authors also encounter the problem of jamming and point
out the “bouncing” behavior of their method “which caused the algorithm to slow
considerably once it neared the optimal face.”

It is interesting that although our algorithm uses the different framework of a
primal-dual path-following IPM, its analysis suggests that a similar behavior near
the optimal solution may occur, and possibly be inherent in methods of this type.
Nonetheless, and in support of the favorable computational results in the literature,
we can theoretically explain under which conditions such slow convergence may oc-
cur, which are likely quite rare in practice. For path-following methods specifically,
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theoretical insight on other effects of adding, deleting, or shifting constraints has
also been utilized for a column generation and deletion variant of the logarithmic
barrier method [3]. The constraint selection and addition mechanism that we ana-
lyze in our paper is quite different, however: if feasible movement is blocked after
we add a new constraint, we do not simply return to one of the previous iterates
and try again but continue from the current iterate with a sequence of three newly
defined corrector steps. These new steps utilize recent progress in warm-starting
IPMs [5, 6, 13] which is challenging in itself and often perceived not to be possible
at all. Hence, the role of warm-starting in our analysis is another novel contribution
of this paper.

More recent research has also explored other constraint-reduced, adaptive vari-
ants of affine-scaling or predictor-corrector methods to reduce the computational
cost of generating search directions [18, 37, 39]. Applied to linear and more gen-
erally convex quadratic programs with large numbers of variables or constraints,
these algorithms do not assemble the exact normal-equation matrix, but rather
an approximate matrix which includes only a subset of working constraints that
seem to be most critical and may change from iteration to iteration. In addition to
significant cost savings, these methods achieve global convergence with a quadratic
local convergence rate. Finally, this technique has also been used within a predictor-
corrector algorithm for semidefinite programming [35] for which it is shown that
the impact on the search direction is sufficiently small so as not to impair the
polynomial-time convergence of the underlying algorithm [36].

1.2. New Contribution and Outline of Paper

The motivation of this paper stems from the good practical performance of “build-
up” interior-point algorithms that solve linear and more generally semidefinite
programs in nonstandard form by dynamically selecting and adding inequalities
only if they become active on the way to optimality. To the best of our knowl-
edge and our review of the literature, these methods currently remain without
supporting theoretical analysis and without proofs of convergence and worst-case
complexity. Hence, the new contribution of this paper is the formal statement of
a general algorithm of this type, together with a first proof of its convergence and
a detailed complexity analysis. To keep the proof relatively short in length, we
base our algorithm and analysis on the basic LP framework of a feasible short-step
method but believe that a similar analysis can also be extended to computationally
superior infeasible (long-step) methods such as the interior-point method (IPM)
implemented by the authors for solving semidefinite relaxations of binary quadratic
programs [7].

We emphasize that while the basic method may appear like a cutting-plane
method, there are substantial differences. First, unlike cutting-plane algorithms
that separate or generate cuts at infeasible, optimal solutions, this alternative
framework attempts to predict active inequalities before they become violated and
add them dynamically without restarting the algorithm. Matching the empirical
evidence in computational experiments [5, 7, 14, 16, 26], such methods can be ef-
fective in practice if the number of inequalities to be added is not too large. Indeed,
under this same condition, our analysis for the first time shows that such methods
are also efficient in theory. Second, and without further assumptions on the in-
equalities in the problem, however, we do not expect the algorithm presented here
to be significantly better in practice or have better worst-case complexity than a
standard method: some extra work is inevitable to choose and properly integrate
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selected inequalities, and of course all inequalities may be needed in the worst case.
In particular, and a third major difference from a cutting-plane method that shall
also be apparent from our problem formulation in Section 2, this general framework
is generally not applicable unless the candidate inequalities are known in advance.

Finally, while the dynamic inclusion of inequalities can be accomplished quite
“brutal” in practice, without restart this may also cause the algorithm to jam
especially when adding many constraints near the optimal solution. To analyze and
either prevent or explain such behavior in theory, our analysis requires a delicate
balance between predicted infeasibilities and measures of centrality and optimality
which may analogously result in exponential convergence in the worst case. Hence,
another contribution of this paper is that our analysis provides clear insight into
the conditions under which an algorithm of the proposed kind is polynomial or
may be exponential.

The remaining paper is structured as follows. Section 2 gives the problem formu-
lation with our assumptions and a small example that outlines the key mechanism
of the new algorithm to add inequalities dynamically. Section 3 collects prelimi-
naries and prepares our original analysis. In Section 3.1, we review some known
results and derive several generalizations for the different predictor and correc-
tor steps that are used in our method. Section 3.2 describes a standard feasible
predictor-corrector IPM and outlines its known complexity proof. Our new algo-
rithm and its significantly more intricate analysis are presented in Section 4. Some
concluding remarks and ideas for future work are given in Section 5.

2. Problem Formulation and Main Result

We consider LP problems in the following nonstandard primal-dual form:

min cTx max bT y + qT z (1a)

s.t. Ax = b s.t. AT y + P T z + s = c (1b)

Px ≥ q z ≥ 0 (1c)

x ≥ 0, s ≥ 0. (1d)

Here c ∈ Rn is the objective vector for n primal variables, (A, b) ∈ Rm×n × Rm
correspond to m primal equality constraints, and (P, q) ∈ R`×n×R` correspond to
` primal inequalities. We use X and S as the usual notation for the diagonal square
matrices built of the elements of x and s, and whenever convenient we write I and
e := (1, 1, . . . , 1)T for the identity matrix and the vector of all ones of suitable
dimension, respectively. The following are our basic assumptions.

Assumption 1 Problem (1) has an optimal solution (x∗, y∗, z∗, s∗).

The primary reason for this assumption is to keep the paper shorter in length and
focused on our objective to demonstrate convergence to an optimal solution, if it
exists. To extend algorithm and analysis for the more practical aspects of detecting
unboundedness or infeasibility, we can adopt similar indicators and termination
criteria to those used by similar IPMs [22, 30, 40].

Assumption 2 Problem (1) has a feasible solution (x, y, z, s) that satisfies the
conditions (x, s) > 0, z = 0, ‖Xs− µe‖ ≤ (1/4)µ for µ = xT s/n, and Px > q, or
equivalently, Px− q ≥ (1/τ)µ for some τ > 0.
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Several papers describe how to modify a primal-dual LP such that an initial
(strictly) feasible point can be found [23, 24, 32, 33, among others]. However, we
do not require that problem (1) has a strictly feasible solution because we assume
that z = 0, [4.] which is a natural condition as a dual variable should
not be present in the problem when removing its primal inequality. In
particular, if there was some entry of z that was strictly positive for all feasible
points, then its corresponding inequality of Px > q must be active at optimality and
could immediately be handled as an equality constraint. For all other inequalities
that satisfy Px > q with x and s given, the inequality Px − q ≥ (1/τ)xT s/n can
always be satisfied as long as τ > 0 is chosen sufficiently large.

Assumption 3 There exists a sufficiently big number M <∞ such that the primal
residual r = Px− q at any feasible point is bounded from above by M .

Without loss of generality, we can always enforce this bound by adding the
additional inequalities Px ≤ q+Me for any M <∞ such that Px∗ ≤ q+Me. This
doubles the number of primal inequalities but has no impact on the asymptotic term
O(`) for the numbers of inequalities in problem (1). We will use this assumption
in the proof of Lemma 4.4 where it would also suffice that Px ≤ q + Me only for
all x that are actually encountered by the algorithm.

2.1. Outline of Algorithm and Main Result

Based on Assumption 2, we initialize the algorithm with a feasible iterate at which
all inequalities (1c) are inactive with a residual of at least ρ = µ/τ where µ is the
initial barrier parameter. After removing these inequalities, the algorithm starts
like a standard IPM and alternates between predictor steps to reduce µ and cor-
rector steps to recenter the iterates and keep them in sufficient proximity to the
central path. Unlike standard IPMs, however, whenever taking a primal step we
also check the removed inequalities and select new constraints for addition if their
corresponding residuals fall below the current threshold value ρ = µ/τ , indicating
that they tend to become active at optimality. The dependency of this threshold
on µ makes it an adaptive threshold that decreases in proportion to the barrier pa-
rameter so that only active inequalities would be added at optimality. Whenever a
new inequality is added, the algorithm augments both problem and iterate in such
a way that centrality, barrier parameter, and primal feasibility are preserved. It is
well known, however, that it is generally not possible to also maintain feasibility
in the dual so that the algorithm temporarily continues with a sequence of three
corrector steps that work together to fully absorb the new dual infeasibility:

(1) The first corrector step is a pure centering step that restore the iterate’s
proximity to the central path; it does not change the barrier parameter or
the primal and dual residuals.

(2) The second corrector step is a feasibility-restoring step that reduces the
amount of dual infeasibility; it does not modify the primal iterate but gener-
ally changes both centrality and the barrier parameter.

(3) The third corrector step is a modified centering step that does not change
centrality or residuals, but serves to restore the barrier parameter that may
have been changed in the second corrector step.

Whenever we change the primal iterate in the first and third corrector steps,
we continue to check the residuals of dropped inequalities and, if necessary, add
new inequalities and restore all infeasibilities inequality-wise starting from the last
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inequality added. This recursive nature of the algorithm leads to a possibly expo-
nential worst-case complexity, which is proved in detail in Section 4.

Theorem 2.1 Let problem (1) be given, and (x, y, s) be a strictly feasible point
that satisfies xT s ≤ (1/ε)κ [6.] with ε > 0 and κ > 0, and Assumption 1 with
τ > 0. If the problem satisfies Assumptions 2 and 3, then the new algorithm finds
an ε-optimal solution in O(((κ + τ + 1)/ε)l(n + l)1/2eθ/11) iterations, where θ =
O(l/

√
n+ l) and l is the number of inequalities that are added to the problem.

We note that the statement of Theorem 2.1 depends on the number l of in-
equalities added rather than the number ` of total inequalities in problem (1). In
particular, if l = O(

√
n) or l ≤ ` = O(

√
n), then θ = O(1) and eθ/11 = O(1) so

that the iteration bound reduces to O(((κ+τ+1)/ε)l(n+ l)1/2) and the complexity
is polynomial [8.] in the size of the problem. Based on additional parameters
defined in our algorithm and insight gained from its subsequent analysis, we es-
tablish much weaker conditions for polynomiality in Theorem 4.2 and Section 4.2
below.

2.2. An Example

To illustrate the algorithm’s key idea of adding relevant inequalities dynamically,
we use the following problem with the obvious optimal solution x∗ = 1:

minx s.t. x ≥ 1 and x ≥ 0. (2)

This problem is simple enough to be solved without centering steps so that we can
focus primarily on the augmentation mechanism to add the necessary inequality.
We start with the reduced problem in primal-dual standard form:

min x s.t. x ≥ 0, max 0 s.t. s = 1 and s ≥ 0. (3)

This problem is a well-defined LP with strict relative interiors x > 0 and s = 1 > 0,
and has standard form with an empty matrix A ∈ R0×1 so that the dual variable
y ∈ Rm does not appear in the problem. Hence, we can start from a strictly
feasible initial point (x, s) = (x0, 1) at which the dropped inequality is satisfied,
say x0 = 4 and µ = xs = x0 = 4 so that x0 − 1 = 3 ≥ (1/τ)4 for any τ ≥ 4/3.
Let us choose τ = 2. Independently of τ , the Newton direction at our initial
point is (∆x,∆s) = (−x0, 0) = −(4, 0) which targets the optimal point (0, 1) of
problem (3) in a single step. Because a full step into this direction violates the
dropped inequality x ≥ 1, we reduce the step length to some α < 1 and add the
primal constraint x− r = 1 with a strictly feasible primal slack r = x−1 > 0. This
yields the augmented (original) problem with Â = [1,−1], b̂ = 1, and ĉ = [1, 0]T

that now we write in primal-dual standard form:

min x max z (4a)

s.t. x− r = 1 s.t. z + s = 1, −z + t = 0 (4b)

(x, r) ≥ 0 (s, t) ≥ 0 (4c)

To preserve the barrier parameter µ(α) = x(α)T s for the augmented iterate
(x̂r, ŝt) =

(
(x(α), r)T , (s, t)T

)
with t = τ = 2, we compute the reduced step length

α = 1/2 as the largest value for which r = x(α) − 1 ≥ µ(α)/τ . This ensures that
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the resulting iterate (x, r) = (2, 1) remains primal feasible and perfectly centered
with µ̂ = µ(α) = 2. Similarly, for the dual problem we set z = 0 to maintain
feasibility of s = 1 for the constraint s + z = 1. However, note that the resulting
iterate (z, s, t) = (0, 1, 2) is not feasible for the new dual constraint −z + t = 0
but has negative residual ζ = 0 − (−z + t) = −τ = −2. Hence, we now continue
with a feasibility-restoring corrector step into the dual direction computed from
the following system for the augmented problem (4):

Â 0 0

0 ÂT I

Ŝt 0 X̂r

∆x̂r
∆ŷz
∆ŝt

 =


1 −1 0 0 0
0 0 1 1 0
0 0 −1 0 1
s 0 0 x 0
0 t 0 0 r




∆x
∆r
∆z
∆s
∆t

 =


0
0
ζ
0
0

 .

With (x, r) = (2, 1), (s, t) = (1, 2), and ζ = −2, the solution to this system is

(∆x,∆r,∆z,∆s,∆t) = (4/5, 4/5, 2/5,−2/5,−8/5)

from which we only use the dual directions to update the dual iterate:

(z, s, t) + (∆z,∆s,∆t) = (0, 1, 2) + (2/5,−2/5,−8/5) = (2/5, 3/5, 2/5).

After this step, the new point is again feasible and has reduced the barrier param-
eter to µ = (xs+ rt)/2 = (6/5 + 2/5)/2 = 4/5. The next direction from

1 −1 0 0 0
0 0 1 1 0
0 0 −1 0 1

3/5 0 0 2 0
0 2/5 0 0 1




∆x
∆r
∆z
∆s
∆t

 =


0
0
0
−6/5
−2/5


is (∆x,∆r,∆z,∆s,∆t) = (−10/7,−10/7, 6/35,−6/35, 6/35) and yields the opti-
mal solution after primal and dual steps with αp = 7/10 and αd = 7/2:

(x, r) = (2, 1) + (7/10)(−10/7,−10/7) = (1, 0)

(z, s, t) = (2/5, 3/5, 2/5) + (7/2)(6/35,−6/35, 6/35) = (1, 0, 1).

Following a generic IPM, the algorithm may also take the same step size in pri-
mal and dual space, and restrict the step size to at most 1 especially if we intend
to stay in proximity to the central path. In that case, the algorithm would con-
tinue analogously with several shorter steps into the primal and dual directions
(∆x,∆r) = (−1,−1) and (∆z,∆s,∆t) = (1,−1, 1) until terminating within some
sufficiently small threshold of the optimal solution.

3. Preliminaries and New Results

In this section, we first collect some of the relevant preliminaries of primal-dual
path-following interior-point algorithms and then characterize four different vari-
ants of the resulting search directions in predictor or corrector steps using several
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known properties and some new results that we prove in this paper. To begin, let
us consider an LP in standard form with n primal variables:

min cTx max bT y (5a)

s.t. Ax = b s.t. AT y + s = c (5b)

x ≥ 0, s ≥ 0. (5c)

The associated (primal) logarithmic barrier formulation for problem (5) is

min cTx− µ
n∑
i=1

log(xi) s.t. Ax = b

with positive barrier parameter µ > 0 and first-order optimality conditions

Ax = b (6a)

AT y + s = c (6b)

XSe = µe. (6c)

We refer to these conditions as primal feasibility, dual feasibility, and comple-
mentarity, respectively. It is well-known that if problem (5) has a strictly feasible
solution, then the nonlinear system (6) has a unique solution for every µ > 0. The
set of these solutions is the so-called central path [40]. Starting from a (strictly)
feasible initial point, primal-dual path-following methods in each iteration compute
a Newton direction from (6) for a decreasing sequence of values for the barrier pa-
rameter µ. An additional step size condition guarantees that all new iterates belong
to some suitable neighborhood of the central path and converge to an optimal so-
lution of problem (5) as µ is reduced to zero. Specifically, in this paper we will use
the short-step neighborhood

N n
2 (γ) :=

{
(x, s) ∈ Rn × Rn : (x, s) > 0, ‖Xs− µe‖2 ≤ γµ for µ = xT s/n

}
.

To simplify notation, we also write ‖·‖ := ‖·‖2 without subscript to denote the
canonical 2-norms for both vectors or matrices, and we frequently drop the super-
script n if the dimension of x and s is clear from the context. Unlike definitions
in other papers, here it is important that N n

2 (γ) only depends on the problem
dimension n and the centrality parameter γ but is independent of the actual cen-
tral path or the set of feasible solutions. This is convenient to clearly distinguish
between centrality and feasibility and significantly facilitates our notation later.
While inherently infeasible IPMs can be designed to move along infeasible iterates
and establish feasibility as part of the algorithm, we have chosen to work with a
class of feasible IPMs which in every iteration require a (strictly) feasible iterate
and generally allow to use less notation.

3.1. Predictor and Corrector Steps

Now let (x, y, s) be a strictly feasible primal-dual iterate for problem (5) with
Ax = b and AT y + s = c. Set β ≥ 0, µ = xT s/n, and define

ξβµ := βµe−Xs = β(xT s/n)e−Xs.

8
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For β = 0 or β = 1 respectively, the standard feasible predictor and corrector
directions are Newton directions of (6) and can be computed from the following
linear system: A 0 0

0 AT I
S 0 X

∆x
∆y
∆s

 =

 0
0
ξβµ

 . (7)

Given a direction (∆x,∆y,∆z) at an iterate (x, y, s) with step size α, we write

(x(α), y(α), s(α)) := (x, y, s) + α(∆x,∆y,∆s)

where Ax(α) = Ax = b and AT y(α) + s(α) = AT y + s = c because A∆x = 0 and
AT∆y + ∆s = 0 for all directions computed from (7). We also know that

x(α)T s(α) = (1− α(1− β))xT s (8a)

X(α)s(α) = (1− α)Xs+ αβ(xT s/n)e+ α2∆X∆s; (8b)

see e.g. [31, 40]. In particular, equation (8a) implies that

µ(α) := x(α)T s(α)/n = (1− α(1− β))µ =

{
(1− α)µ if β = 0;

µ if β = 1.
(9)

This also shows that even though steps are in both x(α) and s(α), the barrier
parameter µ(α) is a linear function of α so that specific values that achieve or not
exceed certain reductions can be found relatively easily. Furthermore, for α ∈ [0, 1]
and general β ≥ 0, we directly find µ(α) = βµ if α = 1 so that∣∣∣∣1− µ(1)

µ(α)

∣∣∣∣ =

∣∣∣∣1− β

1− α(1− β)

∣∣∣∣ =

∣∣∣∣(1− α)(1− β)

1− α+ αβ

∣∣∣∣ ≤ |1− β|. (10)

Another result in [40] provides bounds on the term ∆X∆s in equation (8b) and
is used in our proof of Lemma 3.6 in Section 3.1.4. Note that the parameters σ and
θ in the original statement are replaced by β and γ in this paper.

Lemma 3.1 (Lemma 5.4 in [40]) Let β ≥ 0, γ ∈ (0, 1), (x, s) ∈ N2(γ) with
µ = xT s/n, and (∆x,∆s) be obtained from system (7). Then

‖∆X∆s‖ ≤ (
√

2/4)
((
n(1− β)2 + γ2

)
/(1− γ)

)
µ.

3.1.1. The Predictor Step: Reducing the Barrier Parameter

If we set β < 1, then we call the direction obtained from system (7) a predictor
direction. In particular, if we set β = 0 so that ξβµ = −Xs, then we obtain the
affine-scaling direction, and a full step into this direction reduces µ to 0 according
to (9). However, especially for small values of β, it is usually not possible to take
a full step and at the same time maintain centrality and nonnegativity of x and
s. The following result gives a lower bound on the guaranteed minimum step size
into the affine-scaling direction when γ = 1/4, and is well known and widely used
in the IPM literature [31, 40, among others].

9
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Lemma 3.2 (Lemma 4 in [31]) Let β = 0, γ = 1/4, (x, s) ∈ N2(γ), and (∆x,∆s)
be obtained from system (7) with ξβµ = −Xs. Let ᾱ be the largest step size such
that (x(α), s(α)) ∈ N2(2γ) for every α ∈ [0, ᾱ]. Then

ᾱ ≥ min
{

0.5, 8−1/4n−1/2
}
.

From (9), we see that this predictor step reduces the barrier parameter µ(ᾱ) =
(1− ᾱ)xT s/n proportionally to the step length. Moreover, Lemma 3.2 implies that
the new iterate (x(ᾱ), y(ᾱ), s(ᾱ)) still belongs to the wider neighborhood N2(2γ)
so that a single centering corrector step can be taken to restore centrality of the
new iterate in the original neighborhood N2(γ).

3.1.2. The First Corrector Step: Restoring Centrality

If we set β = 1 so that ξβµ = µe − Xs, then we call the direction obtained from
system (7) the pure centering direction. It is pure in the sense that a step into
this direction restores only centrality but does not change the barrier parameter,
because x(α)T s(α) = xT s for all α from (8a).

Lemma 3.3 (Lemma 3 in [31] / Lemma 4.2 in [30]) Let β = 1, γ = 1/4, (x, s) ∈
N2(2γ) with µ = xT s/n, and (∆x,∆s) be obtained from (7) with ξβµ = µe −Xs.
Then (x̄, s̄) = (x, s) + (∆x,∆s) ∈ N2(γ) with µ̄ = x̄T s̄/n = µ.

Hence, given an iterate in the wider neighborhood N2(2γ), it suffices to take a
single full step into [9.] this direction to recenter the iterate in the narrower
neighborhood N2(γ) with no change in its barrier parameter.

3.1.3. The Second Corrector Step: Restoring Dual Feasibility

Let us now consider the situation where we have a dual infeasible point (x, y, s)
so that Ax = b but AT y + s 6= c. The following analysis can be repeated similarly
for primal infeasibility, but we omit this discussion because our method is always
primal feasible. Let µ = xT s/n as before and define the dual residual

ξc := c−AT y − s.

We call the direction (∆x,∆y,∆s) obtained from the modified Newton systemA 0 0
0 AT I
S 0 X

∆x
∆y
∆s

 =

 0
ξc
0

 (11)

a feasibility-restoring direction. Indeed, given a step size α, it follows that

ξc(α) := c−AT y(α)− s(α) = (1− α)ξc (12)

so that a full dual step with step size α = 1 completely restores dual feasibility.
However, it is not guaranteed that a full step also maintains centrality and non-
negativity unless the initial infeasibility is sufficiently small. The following lemma
is especially important for our analysis and gives a slightly extended version of
the original result in [13] by including the lower and upper bounds on the new
barrier parameter in (a) and upper bounds on the centrality norm in (b) that are

10
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derived within the original proof. Note that the parameters θ and β in the original
statement are replaced by γ and δ in this paper.

Lemma 3.4 (Lemma 3.3 in [13]) Let (x, s) ∈ N2(γ) with µ = xT s/n, δ <
√
n, and

(∆y,∆s) be the dual direction obtained from system (11). If

∥∥S−1ξc
∥∥ ≤ δ√

n
·
(

1 + γ

1− γ

)1/2

then the new point (x̄, ȳ, s̄) = (x, y + ∆y, s+ ∆s) absorbs the total infeasibility ξc.
Furthermore, the new barrier parameter µ̄ = x̄T s̄/n satisfies

(a) (1− δ/
√
n)µ ≤ µ̄ ≤ (1 + δ/

√
n)µ;

(b)
∥∥X̄s̄− µ̄e∥∥ ≤ ((1 + γ)δ + γ + δ)µ.

The original formulation of this lemma also states that (x̄, s̄) ∈ N2(2γ) for γ =
1/4, δ = 1/10, and

√
n ≥ 100. Similar to this observation, from (a) we first notice

that µ ≤ µ̄/(1− δ/
√
n) ≤ µ̄/(1− δ) so that∥∥X̄s̄− µ̄e∥∥ ≤ (((1 + γ)δ + γ + δ)/(1− δ)) µ̄

from (b). In particular, because ((1 + γ)δ + γ + δ)/(1− δ) = 1/2 for γ = 1/4 and
δ = 1/11, this implies that (x̄, s̄) ∈ N2(2γ) independent of n for γ = 1/4 and
δ ≤ 1/11. These two observations form the basis of our new Lemma 3.5.

Lemma 3.5 (Corollary to Lemma 3.4) Let γ = 1/4, (x, s) ∈ N2(γ) with µ =
xT s/n, δ ≤ 1/11, λ = (δ/

√
n)((1 + γ)/(1 − γ))1/2, σ = λ/

∥∥S−1ξc
∥∥ and (∆y,∆s)

be the dual direction obtained from system (11). Let ᾱ ≤ 1 be the largest step size
such that

(x, s(α)) ∈ N2(2γ) (13a)(
1− δ√

n

)
xT s ≤ xT s(α) ≤

(
1 +

δ√
n

)
xT s (13b)

for all α ∈ [0, ᾱ], and let (x̄, ȳ, s̄) = (x, y(ᾱ), s(ᾱ)) and ξ̄c = c−AT ȳ − s̄.

(a) If σ ≥ 1, then ᾱ = 1 and ξ̄c = 0.
(b) If σ ≤ 1, then ᾱ ≥ σ and

∥∥ξ̄c∥∥ ≤ (1− σ)‖ξc‖.

Proof. If σ ≥ 1, or equivalently, if
∥∥S−1ξc

∥∥ ≤ λ, then the above observation and
Lemma 3.4 imply that the full dual step (∆y,∆s) satisfies the conditions in (13)
and absorbs the total dual infeasibility ξc, so ᾱ = 1 and ξ̄c = 0. On the other
hand, if σ ≤ 1, then let (∆ỹ,∆s̃) = σ(∆y,∆s) correspond to the dual solution of

system (11) with a scaled right-hand side ξ̃c = σξc. Because
∥∥∥S−1ξ̃c

∥∥∥ = λ, by the

same arguments as above this shortened step satisfies the conditions in (13) and
absorbs the partial infeasibility ξ̃c, so ᾱ ≥ σ and

∥∥ξ̄c∥∥ = ‖ξc(ᾱ)‖ = (1 − ᾱ)‖ξc‖ ≤
(1− σ)‖ξc‖ from (12).

We highlight that the primal iterate x̄ = x in Lemmata 3.4 and 3.5 does not
change, which is important later because this implies that no new primal inequal-
ities will become violated when restoring dual feasibility in the second corrector
step. Furthermore, because (x̄, s̄) remains in the neighborhood N2(2γ), it again
suffices to eventually take a single full first corrector step to restore centrality in

11
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N2(γ). First, however, we introduce a new third corrector step that restores the
barrier parameter after it has changed from µ to µ̄.

3.1.4. The Third Corrector Step: Restoring the Barrier Parameter

Similar to the first corrector step, this third step is a modified centering step that
does not restore centrality but adjusts the barrier parameter from µ to βµ for some
value of β that is close to 1, but generally can be either smaller or larger. The next
lemma gives a new, general result that is based on Lemma 3.1.

Lemma 3.6 Let γ = 1/4, δ ≤ 2/5, (x, s) ∈ N2(2γ) with µ = xT s/n, and (∆x,∆s)
be the direction from system (7) with ξβµ = βµe − Xs. If |1− β| ≤ δ/

√
n, then

(x(α), s(α)) = (x, s) + α(∆x,∆s) ∈ N2(2γ) for all α ∈ [0, 1].

Proof. From (8), Lemma 3.1, (9), and the stated assumptions we see that

‖X(α)S(α)e− µ(α)e‖

≤ (1− α)‖Xs− µe‖+ α2‖∆X∆s‖

≤ (1− α)(2γ)µ+ α2(
√

2/4)
((

(2γ)2 + δ2
)
/(1− 2γ)

)
µ

≤
(

(1− α)/2 + α2(
√

2/2)(1/4 + δ2)
)
µ(α)/(1− α(1− β)).

With δ ≤ 2/5, it follows that
√

2(1/4+δ2) ≤ 41
√

2/100 < 3/5, and β ≥ 1−δ/
√
n ≥

1− δ ≥ 3/5. Because α ≥ α2 for all α ∈ [0, 1], the above yields

‖X(α)S(α)e− µ(α)e‖ ≤ 1− α+ α2
√

2(1/4 + δ2)

1− α(1− β)
· µ(α)

2

≤
1− α

(
1−
√

2(1/4 + δ2)
)

1− α(1− β)
· µ(α)

2
≤ µ(α)

2

and thus X(α)s(α) ≥ (1/2)µ(α)e > 0. This also implies that (x(α), s(α)) > 0 by
continuity and thus shows that (x(α), s(α)) ∈ N2(2γ) for all α ∈ [0, 1].

The final result in this section follows as a corollary specifically for restoring the
barrier parameter after it has changed from µ to µ̄ in the second corrector step of
Lemma 3.5, by setting β = µ/µ̄. The upper bound of δ ≤ 2/7 compared to δ ≤ 2/5
in Lemma 3.6 is intentional as will become clear from the proof.

Lemma 3.7 (Corollary to Lemma 3.6) Let β = µ/µ̄, γ = 1/4, δ ≤ 2/7, (x̄, s̄) ∈
N2(2γ) with x̄T s̄ = µ̄, and (∆x,∆s) be the direction obtained from system (7) at
(x̄, s̄) with ξβµ = µe− X̄s̄. If

(
1− δ/

√
n
)
µ ≤ µ̄ ≤

(
1 + δ/

√
n
)
µ (14)

then (x̄(α), s̄(α)) = (x̄, s̄) + α(∆x,∆s) ∈ N2(2γ) for all α ∈ [0, 1].

Proof. Let β1 = (1 + δ/
√
n)−1 and β2 = (1− δ/

√
n)−1 so that the two inequalities

12
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in (14) can equivalently be written as β1 ≤ β ≤ β2. From

1− β1 = 1−
(

1 +
δ√
n

)−1

= 1−
√
n√

n+ δ
=

δ√
n+ δ

> 0

1− β2 = 1−
(

1− δ√
n

)−1

= 1−
√
n√

n− δ
=

−δ√
n− δ

< 0

we see that |1− β2| = δ/(
√
n− δ) > δ/(

√
n+ δ) = |1− β1| which implies that

|1− β| ≤ max{|1− β1|, |1− β2|} = δ/
(√
n− δ

)
.

With δ ≤ 2/7, it now follows that |1− β| ≤ 1/((7/2)
√
n − 1) ≤ 1/((5/2)

√
n) =

(2/5)/
√
n and the result follows immediately from Lemma 3.6.

Finally, from (9) and (10) we see that a full step with α = 1 recovers the old
barrier parameter µ = βµ̄ whereas a general step with α ∈ [0, 1] still achieves a
new value µ̄(α) whose difference to µ is no more than that between µ̄ and µ.

3.2. Polynomiality of a Feasible Predictor-Corrector Method

After the first polynomiality proofs for LP using the projective-scaling method by
Karmarkar [20] and the ellipsoid method by Khachiyan [21], a variety of conceptu-
ally and notationally much simpler IPMs was proposed and subsequently proved to
converge in polynomial time by Kojima et al. [22] and Mizuno [29, 30], among many
others. We base the formulation in this paper on the feasible predictor-corrector
algorithm described by Mizuno et al. [31] that alternates between affine-scaling
predictor steps within the wider neighborhood N2(1/2) and pure-centering correc-
tor steps that recenter each iterate within N2(1/4). [11/15.] Without changing
the resulting worst-case complexity bound, we apply the termination
condition in Step 2 onto the barrier parameter µ rather than its (larger)
duality gap xT s = nµ to facilitate our later comparison.

Algorithm 1 (Feasible Predictor-Corrector IPM in [31]) Let problem (5) be
given.

Step 1 (Initialization): Set γ = 1/4 and ε > 0. Let (x1, y1, s1) be a strictly
feasible iterate with (x1, s1) ∈ N2(γ). Set µ1 = (x1)T s1/n, and let κ > 0 such
that µ1 ≤ (1/ε)κ. Set k = 1.

Step 2 (Termination): If µk ≤ ε stop with

(x∗, y∗, s∗) = (xk, yk, sk).

Step 3 (Predictor Step): Set (x, y, s, µ) = (xk, yk, sk, µk), β = 0, and compute
(∆x,∆y,∆s) from system (7) at (x, s) with ξβµ = −Xs. Let ᾱ be the largest
step size such that (x(α), s(α)) ∈ N2(2γ) for all α ∈ [0, ᾱ], and set

(x̄, ȳ, s̄, µ̄) = (x(ᾱ), y(ᾱ), s(ᾱ), µ(ᾱ)).

Step 4 (Corrector Step): Set β = 1, compute (∆x̄,∆ȳ,∆s̄) from system (7) at
(x̄, s̄) with ξβµ = µ̄e− X̄s̄, and set

(xk+1, yk+1, sk+1, µk+1) = (x̄, ȳ, s̄, µ̄) + (∆x̄,∆ȳ,∆s̄, 0).

13
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Step 5: (Reiteration): Increase k by 1 and go to Step 2.

To analyze the above algorithm, we recall that the predictor step maintains in-
termediate iterates (x̄, s̄) ∈ N2(1/2) so that Lemma 3.3 implies that every iteration
achieves a new point (xk, yk, sk) that satisfies (xk, sk) ∈ N2(1/4). Hence, the pre-
dictor step size is bounded from below by

ᾱ ≥ α∗ = min{0.5, 8−1/4n−1/4}

according to Lemma 3.2 and reduces the barrier parameter by a factor of at least
1−α∗. From (9) together with the result of Lemma 3.3 that the barrier parameter
remains unchanged during the corrector step, it follows that

µk+1 ≤ (1− 8−1/4n−1/2)µk ≤ (1− 8−1/4n−1/2)kµ1 (15)

by induction, where µ1 ≤ (1/ε)κ. Solving (1 − 8−1/4n−1/2)k(1/ε)κ ≤ ε for k ≥
(κ+ 1) log(ε)/ log(1− 8−1/4n−1/2) and using the relationship that

lim
n→∞

log(1 + Ln−K)/n−K = L

for K > 0, we find that log(1−8−1/4n−1/2) = −O(n−1/2). Finally combining terms,
the following result is shown and corresponds to Theorem 1 in [31].

Theorem 3.8 (Theorem 1 in [31]) Algorithm 1 finds an ε-optimal solution to
problem (5) in O ((κ+ 1) log(1/ε)

√
n) iterations, if it exists.

We remark that when rewriting the original problem (1) in primal-dual stan-
dard form, the result in Theorem 3.8 provides a worst-case iteration bound of
O
(
(κ+ 1) log(1/ε)

√
n+ `

)
. [13.] Hence, despite the difference in ε and miss-

ing constant τ , this bound depends on the number ` of total inequalities and thus
could be much worse than the bound in Theorem 2.1, which only depends on the
number l of those inequalities that need to be added at optimality. Conditions for
polynomiality of our bound are given in Theorem 4.2 and Section 4.2 below.

4. New Algorithm

In this section, we formulate and analyze the new algorithm for solving LP prob-
lems in the non-standard form (1). For clarity, we refer to the full problem as the
original problem, and we call each reduced problem in which some or all of the in-
equalities are removed an instance of the original problem, denoted by (A, b, c, P, q).
In this notation, (A, b, c) represent the data that is currently used, whereas (P, q)
are the inequality data currently removed from the problem. In particular, at the
beginning all inequalities are removed so that P and q are of full dimension `.
As the algorithm selects inequalities for inclusion, these are used to augment (A, b)
and correspondingly removed from (P, q) which therefore decrease in size (compare
Step 4.5 and the Augment function in Algorithm 3 below). The description of the
algorithm is given in two parts.

(1) All feasible predictor-corrector steps are taken in Algorithm 2 which is analo-
gous to Algorithm 1. We only ensure to keep a sufficient slack for all inequal-
ities that are currently dropped by shortening step sizes, if necessary. We use

14
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the counter k for the number of iterations that guarantee the minimum step
length of Lemma 3.2 and thus reduce µ according to (15).

(2) To add new inequalities, we use a separate function Augment in Algorithm 3
that consists primarily of the three corrector steps discussed in Section 3.1.
We use the counter l for the total number of calls to this function, or equiv-
alently, for the total number of inequalities added to the problem.

In addition, we use a third counter h for the number of nested recursive calls to
the function Augment after the third corrector step (from Step 4.5) in Algorithm 3.
The counters k, l, and h are needed for our subsequent complexity discussion. To
only gain a general understanding of how the algorithm works, these counters can
be ignored.

Algorithm 2 (Feasible Predictor-Corrector IPM with Selective Addition of In-
equalities) Let problem (1) be given.

Step 1 (Initialization): Set γ = 1/4, δ = 1/11, and ε > 0. Let (x1, y1, s1) ∈
Rn × Rm × Rn with (x1, s1) ∈ N n

2 (γ) be a strictly feasible iterate for the
initial instance (A, b, c, P, q) ∈ Rm×n × Rm × Rn × R`×n × R` in which all
inequalities Px ≥ q are removed from the problem. Set µ1 = (x1)T s1/n, and
let κ > 0 and τ > 0 such that (x1)T s1 ≤ (1/ε)κ and Px1 − q ≥ (1/τ)µ1e. Set
k = 1 and l = h = 0.

Step 2 (Termination): If µk ≤ ε stop with

(x∗, y∗, z∗) = (xk, yk, sk).

Step 3 (Predictor Step): Set (x, y, s, µ) = (xk, yk, sk, µk), β = 0, Pred = True,
and compute (∆x,∆y,∆s) from system (7) at (x, s) with ξβµ = −Xs. Let ᾱ

be the largest step size such that (x(α), s(α)) ∈ Nn+l
2 (2γ) and

Px(α)− (1/τ)µ(α)e ≥ q (16a)

µ(α) ≥ ε (16b)

for all α ∈ [0, ᾱ], and set

(x̄, ȳ, s̄, µ̄) = (x(ᾱ), y(ᾱ), s(ᾱ), µ(ᾱ)).

If ᾱ was determined by one of the conditions in (16), set Pred = False.
Step 3.5 (Augmentation): If ᾱ was decided by (16a) call Algorithm 3 and set

(A, b, c, P, q, x̄, ȳ, s̄, l, h) = Augment(A, b, c, P, q, x̄, ȳ, s̄, l, h).

Step 4 (Corrector Step): Set β = 1 and compute (∆x̄,∆ȳ,∆s̄) from system (7)
at (x̄, s̄) with ξβµ = µ̄e− X̄s̄. Let α̃ ≤ 1 be the largest step size such that

Px̄(α)− (µ̄/τ)e ≥ q (17)

for all α ∈ [0, α̃], and set

(x̃, ỹ, s̃) = (x̄(α̃), ȳ(α̃), s̄(α̃)).

15
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Step 4.5 (Augmentation): If α̃ < 1 was determined by (17) call Algorithm 3
and repeat Step 4 with

(A, b, c, P, q, x̄, ȳ, s̄, l, h) = Augment(A, b, c, P, q, x̃, ỹ, s̃, l, h).

Step 5 (Reiteration): Increase k by 1 if Pred = True and go to Step 2 with

(xk, yk, sk, µk) = (x̃, ỹ, s̃, µ̄).

We point out and explain the differences between Algorithms 1 and 2. First, the
new condition (16b) implies that Algorithm 2 never reduces the barrier parameter
µ below ε in the predictor step. We utilize this condition later in the proof of
Lemma 4.4. Similarly, conditions (16a) and (17) imply that the residuals r = Px−q
are never reduced below the residual threshold ρ = µ/τ : whenever an inequality
reaches that threshold and thus determines the maximum step size, we call the
function Augment in Algorithm 3 to add that inequality. In particular, this implies
that in Algorithm 3 we can always select at least one inequality (pT , π) from (P, q)
that satisfies pTx − ρ = π with equality at the current primal iterate. Besides ρ,
the other parameters γ, δ, and τ are as in Algorithm 2. The variables ι and ζ refer
to a specific inequality and its residual, and their relevance for our analysis will
become clear later in this section.

Algorithm 3 (Augment(A, b, c, P, q, x, y, s, l, h)) Let (x, y, s) ∈ Rn+l × Rm+l ×
Rn+l be the current iterate for a problem instance (A, b, c, P, q) ∈ R(m+l)×(n+l) ×
Rm+l × Rn+l × R(`−l)×(n+l) × R`−l with l (slacked) inequalities, and let h be the
current number of nested recursive calls to the function Augment after the third
corrector step (from Step 4.5 below) in previous instances of Algorithm 3.

Step 1 (Augmentation): Let µ = xT s/(n + l), ρ = µ/τ , and select a sin-
gle inequality (pT , π) from (P, q) such that pTx − ρ = π. Let (P̌ , q̌) ∈
R(`−l−1)×(n+l)×R`−l−1 be the subsystem of (P, q) without this inequality and
augment instance and iterate by adding it as slacked equality constraint:(

Â, b̂, ĉ, P̂ , q̂
)

:=

([
A 0
pT −1

]
,

[
b
π

]
,

[
c
0

]
,
[
P̌ 0
]
, q̌

)
(18a)

(x̂, ŷ, ŝ) = (x̂r, ŷz, ŝt) :=

([
x
r

]
,

[
y
z

]
,

[
s
t

])
=

([
x
ρ

]
,

[
y
0

]
,

[
s
τ

])
. (18b)

Increase l by 1 and (locally) set ζ = −τ and ι = l (for later reference).
Step 2 (First Corrector/Recentering Step): Set β = 1 and compute the so-

lution (∆x̂,∆ŷ,∆ŝ) of the augmented system (7) at (x̂, ŝ) with ξβµ = µe−X̂ŝ.
Let α′ ≤ 1 be the largest step size such that

P̂ x̂(α)− (µ/τ)e ≥ q̂ (19)

for all α ∈ [0, α′], and set(
x̂′, ŷ′, ŝ′

)
=
(
x̂(α′), ŷ(α′), ŝ(α′)

)
. (20)

Step 2.5 (Augmentation): If α′ < 1 call Algorithm 3 and repeat Step 2 with

(Â, b̂, ĉ, P̂ , q̂, x̂, ŷ, ŝ, l, h) = Augment(Â, b̂, ĉ, P̂ , q̂, x̂′, ŷ′, ŝ′, l, h).
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Step 3 (Second Corrector/Feasibility Step): Let ξc ∈ Rn+l be the vector with
entry ζ in component n+ι and zero everywhere else, and compute the solution
(∆x̂′,∆ŷ′,∆ŝ′) of the augmented system (11) at (x̂′, ŝ′) with ξc as defined
above. Let α′′ ≤ 1 be the largest step size such that

(x̂′, ŝ′(α)) ∈ N n+l
2 (2γ) (21a)(

1− δ√
n+ l

)
(x̂′)T ŝ′ ≤ (x̂′)T ŝ′(α) ≤

(
1 +

δ√
n+ l

)
(x̂′)T ŝ′ (21b)

for all α ∈ [0, α′′], reduce ζ to (1− α′′)ζ, and set(
x̂′′, ŷ′′, ŝ′′

)
=
(
x̂′, ŷ′(α′′), ŝ′(α′′)

)
. (22)

Step 4 (Third Corrector/Barrier Step): Set µ̂ = (x̂′′)T ŝ′′/(n + l), β = µ/µ̂,
and compute the solution (∆x̂′′,∆ŷ′′,∆ŝ′′) of the augmented system (7) with

ξβµ = µe− X̂ ′′ŝ′′. Let α′′′ ≤ 1 be the largest step size such that

P̂ x̂′′(α)− (1/τ)µ̂(α)e ≥ q̂ (23)

for all α ∈ [0, α′′′], and let

(x̂, ŷ, ŝ) =
(
x̂′′(α′′′), ŷ′′(α′′′), ŝ′′(α′′′)

)
.

Step 4.5 (Augmentation): If α′′′ < 1 increase h by 1 (nested call from
Step 4.5), call Algorithm 3, decrease h by 1 (upon return), and repeat Step 4
with

(Â, b̂, ĉ, P̂ , q̂, x̂′′, ŷ′′, ŝ′′, l, h) = Augment(Â, b̂, ĉ, P̂ , q̂, x̂′′, ŷ′′, ŝ′′, l, h).

Step 5 (Reiteration/Return): If |ζ| > 0 go back to Step 2 and repeat; otherwise

return (Â, b̂, ĉ, P̂ , q̂, x̂, ŷ, ŝ, l, h).

Before we formally analyze Algorithm 3, we briefly explain its basic ideas. In
Step 1, we remove the selected inequality pTx ≥ π from (P, q) and add it as slacked

equality to the augmented instance (Â, b̂, ĉ). At the same time, we also augment the
current iterate (x, y, s) with variables (r, z, t) = (ρ, 0, τ) whose values are chosen so
that rt = ρτ = µ, pTx−r = pTx−ρ = π, and ξc = c−AT y−zpT −s = c−AT y−s.
By Lemma 4.3 below, these choices guarantee that the augmented iterate (x̂r, ŷz, ŝt)
preserves centrality, the barrier parameter µ, primal feasibility, and the amounts
of dual infeasibility in all existing dual constraints, if any. In particular, it follows
that the only new infeasibility in the augmented residual ξ̂c = [ξc, ζ]T is caused
by the new dual constraint −z + t = 0 which has an initial residual of ζ = −τ
in the last component of ξ̂c indexed by ι = l. As already outlined in Section 2.1,
the three subsequent corrector steps work together to successively reduce ζ to zero
while maintaining centrality, the current barrier parameter, and all other residuals.

(1) The first corrector step in Step 2 corresponds to the regular centering step
from Section 3.1.2. Like Step 4 in Algorithm 2, this step does not change
the barrier parameter or any residuals and only serves to guarantee sufficient
centrality before taking the second corrector step.

(2) The second corrector step in Step 3 corresponds to the feasibility step from
Section 3.1.3 to reduce ζ. It updates the dual iterate and keeps all residuals
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other than ζ the same. However, because the complementarity products are
not recentered the barrier parameter µ may generally change to a new µ̂
within the bounds imposed in the step size condition (21b).

(3) The third corrector step in Step 4 corresponds to the modified centering
step from Section 3.1.4 with β = µ/µ̂ and is designed to restore the barrier
parameter without any other changes to centrality, primal feasibility, and
dual residuals. The counter h keeps track of the current number of nested
recursive calls to the function Augment after this step (from Step 4.5), which
is useful for our later discussion of the algorithm’s complexity.

In addition, whenever taking a primal step in the first and third corrector step
we continue to use conditions (19) and (23) to check whether we need to add new

inequalities from (P̂ , q̂). In this case, the algorithm temporarily “freezes” the re-

maining infeasibility ζ in the component n+ι of ξ̂c, calls itself recursively to absorb
the new infeasibility of the last added inequality first (“last-in-first-feasible”), and
continues to reduce ζ only after all other residuals in those components indexed by
n+ ι+ 1, . . . , n+ l are successfully reduced to zero.

4.1. Main Results

To analyze this mechanism and the new algorithm in more detail, we begin by
considering Algorithm 3 for a general call to the Augment function of the form

(Â, b̂, ĉ, P̂ , q̂, x̂, ŷ, ŝ, l, H) = Augment(A, b, c, P, q, x, y, s, j, h). (24)

Here (A, b, c) ∈ R(m+j)×(n+j)×Rm+j×Rn+j is the input instance with j inequalities
that are already added as slacked equality constraints, (P, q) ∈ R(`−j)×(n+j)×R`−j
is the system of inequalities that remain dropped for the input instance (the j
extra columns are all zero and correspond to the new slacks), and (x, y, s) ∈ Rn+j×
Rm+j×Rn+j is the current iterate. Similarly, (Â, b̂, ĉ) ∈ R(m+l)×(n+l)×Rm+l×Rn+l

is the output instance with l > j inequalities, (P̂ , q̂) ∈ R(`−l)×(n+l) × R`−l is the
system of inequalities that remain dropped, and [12.] (x̂, ŷ, ŝ) ∈ Rn+l×Rm+l×Rn+l

is the new, augmented iterate. If a single inequality is added, then l = j + 1, but
due to the possibility of recursive calls l ≥ j + 1 in general. [13.] Finally, the
additional counter h is only changed in Step 4.5 of Algorithm 3 to keep
track of the number of recursive calls after the third corrector step.
Theorem 4.1 and its proof in Subsections 4.1.1 and 4.1.2 are the main contribution
of this paper.

Theorem 4.1 Let γ = 1/4, δ = 1/11, and ε and τ be as in Algorithms 2 and 3. Let
(x, y, s) be the an iterate for instance (A, b, c, P, q) of problem (1) with j inequalities

that satisfies (x, s) ∈ N n+j
2 (2γ), µ = xT s/(n + j), Ax = b, Px − (1/τ)µ ≥ q, and

ξc = c − AT y − s when calling Augment from Step 3.5 or 4.5 in Algorithm 2,
or Step 2.5 or 4.5 in Algorithm 3. Algorithm 3 returns the output of call (24)
in O((τ/ε)(n + l)1/2eδθ) iterations and l − j − 1 recursive calls to itself, where
θ = h/

√
n+ l, [14.] h is the maximum number of nested recursive calls to

Algorithm 3 after the third corrector step, (x̂, ŝ) ∈ N n+l
2 (2γ), µ̂ = x̂T ŝ/(n+

l) = µ, Âx̂ = b̂, P̂ x̂− (1/τ)µ̂ ≥ q̂, and ξ̂c = ĉ− ÂT ŷ− ŝ = [ξc, 0]T with 0 ∈ Rl−j−1.
In particular, if (y, s) is dual feasible, then (ŷ, ŝ) is dual feasible.

Starting from a primal-dual feasible point in Algorithm 2, Theorem 4.1 implies
that the integration of new inequalities in Algorithm 3 does not change the current
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iterate’s feasibility, its centrality in a wide neighborhood, and its current barrier
parameter. However, if the Augment function is called from Step 3.5 in Algorithm 2,
then the step size ᾱ in the predictor step is determined by (16a) so that we can-
not guarantee the minimum step length from Lemma 3.2 and the corresponding
reduction of the barrier parameter in (15). Hence, we do not increase the iteration
counter k if an inequality is added after the predictor step, so that the estimate
in (15) is still valid, and we count those iterations in which we call Algorithm 3
to add an inequality separately using the inequality counter l. Similarly, if the
Augment function is called from Step 4.5, then the step size ᾱ in the corrector step
is determined by (17) and although we know from (9) and Lemma 3.3 that we have
not changed the barrier parameter, we cannot guarantee that the new iterate is
sufficiently recentered. Because Lemma 3.7 with δ = 0 implies that the new iterate
still satisfies (x, s) ∈ N n+l

2 (2γ), we can repeat this step until no new inequality
needs to be added and a full corrector step can be taken to recenter the current
iterate. Hence, the following theorem is a corollary of Theorems 3.8 and 4.1.

Theorem 4.2 Algorithm 2 finds an ε-optimal solution to problem (1) in O((κ+
1) log(1/ε)(n+l)1/2) iterations and O(l) calls to Algorithm 3, where l is the number
of inequalities added to the problem at optimality.

(a) The combined algorithm terminates in O(((κ + τ + 1)/ε)l(n + l)1/2eδθ) it-
erations, where θ = O

(
h/
√
n+ l

)
and h is the maximum number of nested

recursive calls to Algorithm 3 after the third corrector step.
(b) If h ∈ O

(√
n+ l

)
, then θ = O(1) and the combined algorithm terminates in

O((κ+ τ + 1)/ε)l(n+ l)1/2) iterations.

Note that the above statements about the combined algorithm use the weak es-
timate log(1/ε) = O(1/ε) to combine the complexities from Algorithms 2 and 3.
Also note that in the worst-case, h may be as large as l in which case Theorem 4.2
reduces to Theorem 2.1 as stated in Section 2.1. Nevertheless, Theorem 4.2 implies
that the algorithm remains polynomial even for an arbitrarily large number l, as
long as the maximum value of h stays sufficiently small. The reason and other im-
plications of this condition are revealed in the following proof and further discussed
in Section 4.2.

4.1.1. Proof of Theorem 4.1 when Adding a Single Inequality

The proof of Theorem 4.1 is split into two parts and starts with the analysis of
Algorithm 3 when called from Step 3.5 or 4.5 of Algorithm 2 such that we can take
full Newton steps in all first and third corrector steps. In particular, this means
that only a single inequality is added so that j = l − 1 and H = h = 0 in the
function call (24), which therefore can be written as

(Â, b̂, ĉ, P̂ , q̂, x̂, ŷ, ŝ, l, 0) = Augment(A, b, c, P, q, x, y, s, l − 1, 0). (25)

The first result addresses the initial augmentation step.

Lemma 4.3 Let (x, y, s) be the current iterate for instance (A, b, c, P, q) of prob-
lem (1) with l − 1 inequalities. Denote µ = xT s/(n + l − 1), ρ = µ/τ , and let
pTx − ρ = π and (x̂, ŷ, ŝ) = (x̂r, ŷz, ŝt) be the added inequality and the augmented
iterate defined in (18) in Step 1 of Algorithm 3, respectively.

(a) If (r, t) = (ρ, τ), (x, s) ∈ N n+l−1
2 (2γ), Ax = b, and Px − ρe ≥ q, then

19



November 28, 2014 Optimization paper-new

µ̂ = x̂T ŝ/(n+ l) = µ, (x̂, ŝ) ∈ N n+l
2 (2γ), Âx̂ = b̂, and P̂ x̂− µ̂/τ ≥ q̂.

(b) If ξc = c − AT y − s, then ξ̂c := ĉ − ÂT ŷ − ŝ = [ξc, ζ]T with ζ = −τ . In

particular, if (y, s) is dual feasible, then ξc = 0 and ξ̂c = [0,−τ ]T .

Proof. Let (x, s) and (r, t) satisfy the assumptions of the lemma. For (a), we first
compute that

µ̂ =
x̂Tr ŝt
n+ l

=
xT s+ rt

n+ l
=

(n+ l − 1)µ+ µ

n+ l
= µ.

Second, from (x, s) ∈ N n+l−1
2 (2γ) we know ‖Xs− µe‖ ≤ (2γ)µ which implies∥∥∥X̂rŝt − µ̂e

∥∥∥ =
∥∥∥X̂rŝt − µe

∥∥∥ =

∥∥∥∥[Xs− µert− µ

]∥∥∥∥ = ‖Xs− µe‖ ≤ (2γ)µ = (2γ)µ̂

so that (x̂, ŝ) ∈ N n+l
2 (2γ). Third, using (18) we can explicitly write down the new

system of primal constraints and substitute r = ρ = pTx− π to find that

Âx̂r =

[
A 0
pT −1

] [
x
r

]
=

[
Ax

pTx− r

]
=

[
Ax

pTx− ρ

]
=

[
b
π

]
= b̂

which shows that the augmented iterate remains primal feasible for the augmented
instance. Fourth, for the new system of dropped inequalities (P̂ , q̂) =

([
P̌ 0
]
, q̌
)
∈

R(`−l)×(n+l) × R`−l defined in Step 1 of Algorithm 3, we have

P̂ x̂r − ρe =
[
P̌ 0
] [x
r

]
− ρe = P̌ x− ρe ≥ q̌ = q̂

because all inequalities in (P̌ , q̌) are also contained in (P, q) for which Px−ρe ≥ q.
Fifth and finally, similar to primal feasibility we can explicitly write down the new
dual residual vector and substitute (z, t) = (0, τ) to verify that

ξ̂c =

[
c
0

]
−
[
AT p
0 −1

] [
y
z

]
−
[
s
t

]
=

[
c−AT y − zp− s

0− (−z)− t

]
=

[
ξc
−τ

]
.

Lemma 4.3 shows that for an initial iterate (x, y, s) that satisfies the given as-
sumptions, the augmented iterate (x̂, ŷ, ŝ) preserves centrality, barrier parameter,
primal feasibility, dual residuals of all former constraints, if any, and sufficient
slack P̂ x̂− q̂ ≥ ρe for all those inequalities that remain dropped from the problem.
This also means that α′ = 0 satisfies the step size conditions in the first corrector
step so that the algorithm will continue. Furthermore, by our current assumption
that we can take a full first corrector step, Lemma 3.3 implies that the next iter-
ate (x̂′, ŷ′, ŝ′) = (x̂(1), ŷ(1), ŝ(1)) defined in (20) satisfies (x̂′, ŝ′) ∈ N n+l

2 (γ) with

(x̂′)T ŝ′/(n + l) = µ, and P̂ x̂′ − (µ/τ)e ≥ q according to (19). Again, this means
that α′′ = 0 satisfies the step size conditions in the subsequent second corrector
step.

The next lemma gives an improved lower bound on this step size and the amount
of infeasibility that can be absorbed, which depend on the termination criterion
ε > 0 in Algorithm 2 and the upper bound M from Assumption 3. Currently
dealing with the addition of a single inequality only, we have written ξc = [0, ζ]T
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with the only nonzero entry in the last component; this choice is without loss of
generality, however, and can be modified to the more general ξc in the second
corrector step of Algorithm 3 upon sorting inequalities. In that case, recall that
despite the possibility of remaining nonzero residuals in other components, those
are temporarily set to zero to restore feasibility for a single inequality at a time.
This mechanism is addressed further in Subsection 4.1.2.

Lemma 4.4 (Corollary to Lemma 3.5) Let γ = 1/4, δ = 1/11, and (x̂′, ŷ′, ŝ′)
be the iterate in the second corrector step of Algorithm 3 with (x̂′, ŝ′) ∈ N n+l

2 (γ),

µ = (x̂′)T (ŝ′)/(n + l), P̂ x̂′ − (µ/τ)e ≥ q̂, and step direction (∆x̂′,∆ŷ′,∆ŝ′). Let
ξc = [0, ζ]T with |ζ| ≤ τ , α′′ ≤ 1, and (x̂′′, ŷ′′, ŝ′′) = (x̂′, ŷ′(α′′), ŝ′(α′′)) be defined
as in the second corrector step of Algorithm 3.

(a) If α′′ = 1, then |ζ| is reduced to zero.
(b) If α′′ < 1, then the step size satisfies α′′ ≥ (1−γ2)1/2δε/

(
M(n+ `)1/2τ

)
and

|ζ| is reduced by at least (1− γ2)1/2δε/
(
M(n+ `)1/2

)
.

Proof. Part (a) is clear from (12). For part (b), we first collect several bounds and
then apply Lemma 3.5. Writing (x̂′, ŷ′, ŝ′) = (x̂′r, ŷ

′
z, ŝ
′
t) for clarity, from (x̂′r, ŝ

′
t) ∈

N n+l
2 (γ) with µ =

(
(x̂′r)

T ŝ′t
)
/(n+ l) =

(
(x′)T s′ + r′t′

)
/(n+ l) we know that

r′t′ ≥ (1− γ)µ

where r′ ≤M by Assumption 3 and µ ≥ ε by (16b). Together, these imply

t′ ≥ (1− γ)ε/M, (26)

and using ξc = [0, ζ]T we find

∥∥∥(Ŝ′t)
−1ξc

∥∥∥ =

∥∥∥∥∥
[
S′ 0
0 t′

]−1 [
0
ζ

]∥∥∥∥∥ =
|ζ|
t′
≤ Mτ

(1− γ)ε
. (27)

Hence, using Lemma 3.5 the first statement of part (b) follows from

α′′ ≥ σ ≥ λ∥∥∥(Ŝ′t)
−1ξc

∥∥∥ ≥ δ√
n+ l

(
1 + γ

1− γ

)1/2 (1− γ)ε

Mτ
=

(1− γ2)1/2δε

M(n+ l)1/2τ
.

Combining the above with (26), (27), and Lemma 3.5, the second statement is
shown similarly by writing

|ζ| − (1− α′′)|ζ| = α′′|ζ| ≥ σ|ζ| = λ|ζ|
‖S−1ξc‖

= λt′ ≥ (1− γ2)1/2δε

M(n+ l)1/2
.

After the second corrector step, we know from (21) that the new iterate
(x̂′′, ŷ′′, ŝ′′) defined in (22) satisfies (x̂′′, ŝ′′) ∈ N n+l

2 (2γ) and the bounds in (14)
with n+ l for µ̄ = (x̂′′)T ŝ′′/(n+ l). In particular, because x̂′′ = x̂′ from before, we

still have P̂ x̂′′ − ρe = q̂. Hence α′′′ = 0 satisfies the step size conditions for the
third corrector step. In particular, under our assumption that a full Newton step is
feasible, now equation (9) implies that this step recovers the barrier parameter µ
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from µ̄ and achieves a new iterate (x̂, ŷ, ŝ) that still satisfies (x̂, ŝ) ∈ N n+l
2 (2γ) by

Lemma 3.7 and again satisfies all properties of Lemma 4.3(a). By induction, this
shows that in every iteration of Algorithm 3 that does not add a new inequality,
we maintain centrality, the barrier parameter, primal feasibility, and dual residuals
in all but the new dual constraint, in which we continue to absorb infeasibility
according to Lemma 4.4. Because the initial residual is |ζ| = τ , it follows that the
number of steps required to fully restore feasibility is bounded from above by

τM(n+ l)1/2
/

((1− γ2)1/2δε) = O((τ/ε) (n+ l)1/2).

This completes the analysis of a single instance of Algorithm 3 and proves the
following lemma as a special case of Theorem 4.1.

Lemma 4.5 If (x, s, y) satisfies the assumptions in Lemma 4.3, then Algorithm 3
returns the output of the function call (25) with j = l − 1 and H = h = 0 in
O((τ/ε)(n+ l)1/2) iterations and with a new iterate (x̂, ŷ, ŝ) that satisfies the prop-

erties in Lemma 4.3(a) and has a dual residual ξ̂c = [ξc, 0]T .

4.1.2. Proof of Theorem 4.1 when Adding Multiple Inequalities

Next, we analyze the case where we also detect and add new inequalities within
Algorithm 3 after taking a primal step in either the first or third corrector step,
when the step size α is determined by (19) or (23). Because both of these steps
maintain iterates in N2(2γ) and also satisfy all other assumptions of Lemma 4.3,
the augmentation step works exactly the same and maintains centrality and barrier
parameter at the current iterate, and primal feasibility. In particular, whereas ξc =
0 when starting from a dual feasible point and adding only a single inequality, now
we typically have one or more remaining, only partially absorbed residuals from
previously added inequalities.

In this case, Algorithm 3 restores feasibility of all such inequalities in a last-in-
first-feasible fashion: whenever a new inequality is added (“last-in”), we “freeze” all
remaining previous residuals by setting the corresponding entries in ξc to zero and
only work towards feasibility of this new inequality (“first-feasible”). Similarly,
whenever the Augment function returns to a previously added inequality with a
remaining residual |ζ| ≤ τ , we can set ξc = [0, ζ, 0]T where the trailing zero-vector
corresponds to those inequalities that had been added later and whose residuals
are therefore already fully restored. By sorting inequalities so that ζ occurs in
the last component, like before we can use Lemma 4.4 to predict the amount by
which |ζ| will be reduced. Because there is only a finite number of inequalities, this
also implies that the process will eventually terminate and recursively return to
every inequality that has been added to restore full dual feasibility and continue
in Algorithm 2.

We now look at this basic mechanism in a little more detail. First, we observe
that Steps 2 and 2.5 in Algorithm 3 are basically identical to Steps 4 and 4.5
in Algorithm 2, and that the barrier parameter at the iterate defined in (20) is
identical to that of the initial iterate (x, y, s) independent of the step size α′.
Hence, like before it suffices to repeat this step upon return from the recursive call
of Algorithm 3 to ensure that centrality is fully restored.

In the second case in which we call Algorithm 3 from Step 4.5, however, the
barrier parameter µ that we wish to restore from µ̄ by setting β = µ/µ̄ may have
been only partially restored to µ(α) and generally be still smaller or larger than
µ. Nonetheless, in this case we can still repeat this step upon return from the
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recursive call of Algorithm 3 because equation (10) implies that the assumptions
of Lemma 3.7 remain valid for the new choice of β = µ/µ̄(α).

However, our analysis of Algorithm 3 now differs from that in Section 4.1.1
because the change in the barrier parameter may also change our estimate in
Lemma 4.4. In particular, when calling Algorithm 3 from Algorithm 2 with a barrier
parameter µ ≥ ε, after h nested recursive calls from the augmentation Step 4.5 in
Algorithm 3 the new barrier parameter could have increased or decreased and tend
toward (1+δ/

√
n+ l)hµ or (1−δ/

√
n+ l)hµ, respectively. Whereas the increase is

unproblematic because our estimate µ ≥ ε in Lemma 4.4 remains valid, the decrease
is more critical because this estimate now must be replaced by the bound µ ≥
(1−δ/

√
n+ l)hε to account for the worst case, in which it may vanish exponentially.

Lemma 4.6 (Corollary to Lemma 4.5) Let θ = h/
√
n+ l. If (x, y, s) satisfies the

assumptions in Lemma 4.3, then Algorithm 3 returns the output of the function
call (24) in O((τ/ε)(n+l)1/2eδθ) iterations, with j recursive functions calls to itself,
and with a new iterate (x̂, ŷ, ŝ) that satisfies the properties in Lemma 4.3(a) and

has dual residual ξ̂c = [ξc, 0]T with 0 ∈ Rl−j−1.

Proof. In large parts identical to our above analysis, the proof follows analogously
to that of Lemma 4.5 from Lemmata 4.3 and 4.4 if the bound µ ≥ ε in (26), or
equivalently, the bound 1/µ ≤ 1/ε in the rest of the proof is replaced by

1/µ ≤ (1/ε)(1− δ/
√
n+ l)−h

= (1/ε)
(

(1− δ/
√
n+ l)

√
n+l
)−h/√n+l

= O
(

(1/ε)eδθ
)
.

To establish the remaining parts of Theorems 4.1 and 4.2, it is now sufficient to
note that if h ∈ O(

√
n+ l), then θ = O(1) so that the above bound reduces to

O((1/ε)(n+ l)1/2) which is polynomial in the problem dimension.

4.2. Polynomiality Conditions and Discussion

We conclude the analysis of Algorithms 2 and 3 with some further observations
about their possible worst-case performance. First, we are currently not able to
confirm general polynomial time complexity if large numbers of inequalities must
be added at iterates that are already very close to optimality. In this case, we
find that barrier parameter and primal slacks may vanish relatively faster than
the (dual) residual of newly added inequalities and prematurely fall below the
termination tolerance ε. This confirms the well-known, similar observation when
using IPMs for warmstarts at optimal or near-optimal solutions in practice: if the
barrier parameter vanishes or becomes very small, then the amount of infeasibility
that can be absorbed in every step can also be very small and IPMs tend to jam
[5]. It is interesting to note, however, that our primal iterates are always feasible
so that the algorithm [20.] may always be stopped (in polynomial time) with a
nearly-optimal solution.

Second, our analysis specifically finds that the exponential worst-case behavior
of the algorithm is an implication of a large number of successive, recursive nested
calls after the third predictor step of Algorithm 3, that occur close to optimality
and in which the preceding feasibility step draws the current barrier parameter µ
to its lower permissible bound. Without such level of detail, we decided to count
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all recursive calls using the parameter h to shorten the proofs and explanations of
Theorems 4.1 and 4.2, but the deeper theoretical insight implies that the worst-case
iteration complexity of the full algorithm will be polynomial under the following
decreasingly restrictive assumptions:

(i) if the total number of inequalities or the total number of inequalities added
is of order O(

√
n) (stated after Theorem 2.1);

(ii) if (i) holds only for those inequalities that are added recursively in nested
calls to the Augment function after the third corrector step (from Step 4.5)
of Algorithm 3 (stated in Theorem 4.2);

(iii) if (ii) holds only for those inequalities for which the preceding second corrector
step reduces the barrier parameter toward its lower possible bound;

(iv) if (iii) holds only for those inequalities for which this lower bound is less than
the termination tolerance ε.

Whether it is possible to modify the algorithm or its analysis in order establish
polynomiality without any of these additional assumptions is one of our ongoing
research questions.

5. Concluding Remarks

We have presented the first convergence proof and complexity analysis for an
interior-point framework that solves LP problems by dynamically selecting and
adding inequalities as an integral part of the algorithm. Such algorithms have been
implemented and used in practice by several groups of authors; they are motivated
by applications with a large number of known inequalities for which only a rela-
tively small, yet a priori unknown, subset of the inequalities is active at optimality.
In particular, this situation occurs frequently for linear (or more generally conic)
relaxations of discrete optimization problems in which the inequalities are large
classes of cutting planes that are available in advance.

To show convergence and analyze the complexity of this framework, we formu-
lated a new primal-dual interior-point algorithm for solving linear programs in
nonstandard form with equality and inequality constraints. The algorithm uses
a primal-dual path-following predictor-corrector short-step IPM that differs from
both standard IPMs and cutting-plane methods in how it handles the inequality
constraints. Unlike most standard IPMs for which the primal problem is written
in standard form by adding nonnegative slack variables to convert each inequality
into an equality constraint, our algorithm starts with an initially reduced problem
without any inequalities and selectively adds new constraints only if the reduction
in their residuals indicates that they tend to become active at optimality. This
also avoids the need to decide how many and which violated inequalities to add
by a cutting-plane method, which has no best answer and is typically based on
some heuristic. In particular, the algorithm maintains feasibility with respect to all
primal constraints throughout, and can be terminated prematurely to find feasible
nearly-optimal solutions.

Our analysis proves convergence of the new algorithm to an optimal solution
at which all inequalities are satisfied regardless of whether they are added to the
problem or not. It thus provides a theoretical foundation for similar schemes used in
practice. We also establish conditions under which the complexity of the algorithm
is polynomial in the problem dimension.

While the implementation of similar algorithms has already shown encouraging
results in practice [5, 7, 14, 16, 26, among others], it now becomes interesting to take
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a closer look at if and how any of these previous techniques could benefit from the
new theoretical insights of the analysis given in this paper. Other research directions
that emerge from our work include possible enhancements in the algorithm or
theoretical analysis to establish an improved complexity, either with or without
additional assumptions. Specifically, a variation of the feasibility-restoring step
that works to restore dual feasibility simultaneously rather than recursively for
each newly added inequality may remedy the current need for recursive corrector
steps and potentially lead to a new infeasible method with a significant impact also
on actual implementations in practice.
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