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ON A HIGHER DIMENSIONAL VERSION OF THE

BENJAMIN–ONO EQUATION

FELIPE LINARES, OSCAR G. RIAÑO, KEITH M. ROGERS, AND JAMES WRIGHT

Abstract. We consider a higher dimensional version of the Benjamin–Ono
equation, ∂tu − R1∆u + u∂x1

u = 0, where R1 denotes the Riesz transform
with respect to the first coordinate. We first establish space–time estimates
for the associated linear equation, many of which are sharp. These estimates
enable us to show that the initial value problem for the nonlinear equation is
locally well-posed in L2-Sobolev spaces Hs(Rd), with s > 5/3 if d = 2 and
s > d/2 + 1/2 if d > 3. We also provide ill-posedness results.

1. Introduction

With d > 2, we consider the initial value problem for a higher dimensional version
of the Benjamin–Ono equation;

(HBO)

{
∂tu−R1∆u+ u∂x1

u = 0, x ∈ R
d, t ∈ R,

u(x, 0) = u0.

Here R1 denotes the Riesz transform with respect to the first coordinate x1 and ∆
denotes the Laplacian with respect to the full spatial variable x ∈ R

d. If u(·, t)
solves (HBO) at a certain time t, then −u(·,−t) solves the analogous problem
with −R1 replaced by R1, and so the sign in the equation is not important.

Taking d = 1, the Riesz transform coincides with the Hilbert transform, and so
we recover the extensively studied Benjamin–Ono equation; see [3, 4, 20] and the
references therein. The equation maintains its physical interest with d = 2; see
for example [1, 19, 27] and the references therein. Indeed, Mariş [15] found that
solitary wave solutions can still propagate; of the form u(x1, x2, t) = ϕ(x1 − ct, x2).
Both the cases d = 1 and 2 have been used to model one dimensional internal waves
in stratified fluids of R3 (with a vertical discontinuity in the density of the fluid).

With d = 1, the available local well-posedness theory has been based on compact-
ness methods. Indeed, Molinet, Saut and Tzvetkov [17] proved that the problem
cannot be solved in L2-Sobolev spaces Hs by Picard iteration. We will show that
this remains true with d > 2, and so compactness methods will also play a role here.

Key words and phrases. Benjamin-Ono equation, Strichartz estimates, local well-posedness.
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In higher dimensions, the d = 2 case presents the most mathematical difficulties,
at least with the techniques that we will employ.

Combining the Kato–Ponce commutator estimate [10] with Gronwall’s inequality,
one can show that smooth solutions of (HBO) satisfy

(1.1) sup
[0,T ]

‖u(t)‖Hs 6 ‖u(0)‖Hs exp
(
c

∫ T

0

‖∇u(t)‖L∞ dt
)

for all T > 0. Thus, if we could control the argument of the exponential function
by the Hs-norm, we could argue by compactness in order to establish the existence
of solutions with less regularity. If this were to be done using Sobolev embedding,
the required order of regularity would be s > d/2 + 1. However this would fail to
take advantage of the additional dispersion of the higher dimensional equation.

Instead we follow the idea introduced by Koch and Tzvetkov [13] to study the
local well-posedness of the one dimensional Benjamin–Ono equation. Roughly this
consists of using Strichartz estimates rather than Sobolev embeddings. Extensions
of this method were given by Kenig and König [11]. This will be the starting point
in our analysis and so we first establish Strichartz estimates for the linear problem.

1.1. Main Results. Our first result is a sharp Strichartz estimate with d > 3.
More precisely, we consider the linear equation

(LHBO)

{
∂tv = R1∆v, x ∈ R

d, t ∈ R,

v(x, 0) = f(x),

where we can write R1 = −(−∆)−1/2∂x1
with the fractional Laplacian defined as

usual in terms of the Fourier transform (−∆)sf := (| · |sf̂ )∨. Smooth solutions
to (LHBO) can be similarly written as

v(x, t) = etR1∆f(x) :=
1

(2π)d

∫

Rd

eiξ·xeiξ1|ξ|tf̂(ξ) dξ.

We will prove the following theorem for data in homogeneous Sobolev spaces, with
norm given by ‖f‖Ḣs := ‖(−∆)s/2f‖L2. The estimate is sharp with respect to the
regularity and the Lebesgue exponents.

Theorem 1.1. Let d > 3 and q <∞. Then there is a constant C ≡ C(d, q, r) such
that

‖etR1∆f‖Lr
t (R,L

q
x(Rd)) 6 C‖f‖Ḣs(Rd)

holds for all f ∈ Ḣs(Rd) if and only if 2
q +

2
r 6 1 and s = d(12 − 1

q )− 2
r .

With d = 2, we prove the sharp dispersive estimate (there is slightly less decay than
in the higher dimensional cases), however we do not know if the Strichartz estimate
yielded by this could hold in a larger range or not. Kenig, Ponce and Vega [12,
Theorem 2.4] proved the analogous estimate for d = 1 with data in L2(R).
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Theorem 1.2. Let d = 2 and q < ∞. Then there is a constant C ≡ C(q, r) such

that

‖etR1∆f‖Lr
t (R,L

q
x(R2)) 6 C‖f‖Ḣs(R2)

holds for all f ∈ Ḣs(R2) if 10
q + 12

r 6 5 and s = 1− 2
q − 2

r .

We will also prove a local smoothing estimate. This kind of estimate was first proved
by Kato [9] for the Korteweg–de Vries equation, and by Vega [26] and Constantin–
Saut [5] for the Schrödinger equation. With d = 1, the following estimate follows
from an identity first observed by Kenig, Ponce and Vega [12, Lemma 2.1].

Theorem 1.3. Let α > 1/2. Then∫

Rd+1

|etR1∆f(x)|2 dxdt

(1 + |x|2)α 6 Cα‖f‖Ḣ−1/2(Rd).

As remarked in the introduction, one can prove that (HBO) is locally well-posed in
inhomogeneous Sobolev spaces Hs(Rd) for s > d/2+1 using standard compactness
methods. These spaces are defined in the same way as the homogeneous spaces,
with (−∆)s/2 replaced by Js := (I − ∆)s/2. Using the Strichartz estimates we
make the following improvement of the standard result. The Sobolev space W 1,∞

is defined as usual with norm ‖f‖W 1,∞ := ‖f‖L∞ + ‖∇f‖L∞.

Theorem 1.4. Let s > sd where sd = d/2 + 1/2 for d > 3 and s2 = 5/3. Then,

for any u0 ∈ Hs(Rd), there exist a time T = T (‖u0‖Hs) and a unique solution u
to (HBO) that belongs to

C
(
[0, T );Hs(Rd)

)
∩ L1

(
[0, T );W 1,∞(Rd)

)
.

Moreover, the flow map u0 7→ u(t) is continuous from Hs(Rd) to Hs(Rd).

As mentioned above, we will show that the flow map u0 7→ u(t) is not of class C2

for any s ∈ R. In particular, this implies that (HBO) cannot be solved using the
Duhamel formulation and the contraction mapping principle.

Theorem 1.5. Let s ∈ R. Then (HBO) does not admit a solution u such that the

flow map u0 7→ u(t) is C2-differentiable from Hs(Rd) to Hs(Rd).

With d = 2, we use the existence of solitary wave solutions [15] to show that the
flow map would not be uniformly continuous in L2(R2).

Proposition 1.6. Let d = 2. Then (HBO) does not admit a solution u such that

the flow map u0 7→ u(t) is uniformly continuous from L2(R2) to L2(R2).

Some remarks are in order:

(1) If u solves (HBO), then so does the scaled version uλ defined by

uλ(x, t) := λu(λx, λ2t),

for any positive λ. On the other hand, one can calculate that

‖uλ(·, t)‖Ḣs = λ1−d/2+s
∥∥u(·, λ2t)

∥∥
Ḣs .
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As a consequence, the scale-invariant regularity for (HBO) is s = d/2 − 1.
In particular, the d = 2 problem is L2-critical. Thus our results are far
from reaching the regularity suggested by scaling.

(2) The higher dimensional Benjamin–Ono equation has a Hamiltonian struc-
ture. Formally, there are at least three quantities conserved by the flow;

I(u) =

∫
u(x, t) dx,

M(u) =

∫
u2(x, t) dx,

H(u) =

∫ ∣∣∣(−∆)1/4u(x, t)
∣∣∣
2

− 1

3
u3(x, t) dx.

Note that H1/2(Rd) →֒ L3(Rd) by Sobolev embedding when d 6 3, so that
H(u) is well-defined in those cases. Unfortunately our local well-posedness
results require too much regularity to be able to take advantage of this.

(3) For the one dimensional Benjamin–Ono equation, Tao [23] introduced a
gauge transformation which allowed him to establish local and global results
in H1(R). In the end, it was possible to go all the way to L2(R) using this
gauge transformation; see [7] and [16]. We do not know if there is such a
gauge transformation for the higher dimensional Benjamin–Ono equation.

We will begin with the linear equation (LHBO). In the following section, we prove
the local smoothing estimate of Theorem 1.3. In the third section, we prove sharp
decay rates for certain relevant oscillatory integrals, and in the fourth section we use
a well-known variant of an argument due to Tomas [25] to establish the Strichartz
estimates of Theorems 1.1 and 1.2. We then proceed to consider the initial value
problem for the nonlinear equation (HBO). The fifth section is devoted to proving
Theorem 1.4. We conclude the paper with an appendix where we show the ill-
posedness results stated in Theorem 1.5 and Proposition 1.6.

2. Proof of Theorem 1.3

We will require the following trace estimate for domains with boundaries that can
be written as graphs of measurable functions.

Theorem 2.1. Let α > 1/2 and γ : Rd−1 → R be any measurable function. Then

the trace operator T : f 7→ f
(
·, γ(·)

)
satisfies

‖Tf‖L2(Rd−1) 6 Cα‖f‖Hα(Rd),

where Cα is a constant independent of γ.

Proof. Writing x = (x, xd), by duality, it will suffice to prove

(2.1)

∫

Rd

|ĝdσ(ξ)|2 dξ

(1 + |ξ|2)α 6 Cα‖g‖2L2(dσ),
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where dσ(x, xd) = δ
(
xd − γ(x)

)
. By squaring out and Fubini’s theorem, it would

suffice to prove
∫

Rd−1

∫

Rd−1

g(x)g(y)

∫

Rd

e−i
(
ξ·(x−y)+ξd(γ(x)−γ(y))

)
dξ

(1 + |ξ|2)α dxdy 6 Cs‖g‖2L2(dσ).

The inner integral is a Fourier transform, and so the left-hand side of this can be
written as

(2π)d
∫

Rd−1

∫

Rd−1

g(x)g(y)J−2α
(
(y − x, γ(y)− γ(x)

)
dxdy,

where the Bessel potential J−2α is well-known to satisfy

|J−2α(x)| 6 Cd,α

{
|x|−(d−2α), when |x| 6 1
|x|−d, when |x| > 1.

In particular, by simply ignoring the xd-variable, we have that

|J−2α
(
(y − x, γ(y)− γ(x)

)
| 6 φs(x− y)

where φs : R
d−1 → R is an integrable function as long as α > 1/2. Thus it remains

to prove ∫

Rd−1

∫

Rd−1

|g(x)g(y)|φs(x− y) dxdy 6 Cσ‖g‖2L2(dσ),

which follows by the Cauchy–Schwarz inequality and then Young’s inequality. �

Now, by Plancherel’s theorem,

(2π)2d+1

∫
|etR1∆f(x)|2dt =

∫ ∣∣∣
∫

Rd

f̂(ξ)δ(ξ1|ξ| − τ)eix·ξ dξ
∣∣∣
2

dτ,

so by changing variables u = ξ1|ξ|, we see that

(2π)2d+1

∫
|etR1∆f(x)|2dt =

∫ ∣∣∣
∫

Rd

f̂(ξ)δ(u − τ)eix·ξ
|ξ|dudξ

2ξ21 + |ξ|2
∣∣∣
2

dτ

=

∫ ∣∣∣∣∣∣

∫

Rd−1

f̂(γτ (ξ), ξ)e
i[x1γτ (ξ)+x·ξ]

√
γ2τ (ξ) + |ξ|2

2γ2τ (ξ) + |ξ|2
dξ

∣∣∣∣∣∣

2

dτ,

where γ2τ (ξ) =
√
τ2 + (12 |ξ|2)2− 1

2 |ξ|2. Now by integrating both sides with respect to

(1+ |x|2)−αdx, applying Fubini’s theorem and the trace theorem in dual form (2.1),
we obtain

∫

Rd+1

|etR1∆f(x)|2 dxdt

(1 + |x|2)α 6 Cα

∫ ∫

Rd−1

∣∣∣∣∣∣
f̂(γτ (ξ), ξ)

√
γ2τ (ξ) + |ξ|2

2γ2τ (ξ) + |ξ|2

∣∣∣∣∣∣

2

dξdτ.

Finally, we reverse the change of variables so that
∫

Rd+1

|etR1∆f(x)|2 dxdt

(1 + |x|2)α 6 Cα

∫

Rd

|f̂(ξ)|2 |ξ|dξ
2ξ21 + |ξ|2

,

which is slightly better than the desired bound.



6 FELIPE LINARES, OSCAR G. RIAÑO, KEITH M. ROGERS, AND JAMES WRIGHT

3. The oscillatory integral

An analogous estimate to the following with d = 1 was proven by Ponce and
Vega [21, Corollary 2.3] with decay of order |t|−1/2.

Proposition 3.1. If d > 3, then there is a constant C, depending only on the

Schwartz function ψ supported in [1/2, 2], such that

∣∣∣
∫

Rd

ψ(|ξ|) ei[tξ1|ξ|+x·ξ]dξ
∣∣∣ 6 C|t|−1, x ∈ R

d.

Moreover, with d = 2,
∣∣∣
∫

R2

ψ(|ξ|) ei[tξ1|ξ|+x·ξ]dξ
∣∣∣ 6 C|t|−5/6, x ∈ R

2.

Both rates of decay are optimal.

Proof. We write the integral as a two-fold iterated integral in radial and spherical
coordinates;
(3.1)

I(x, t) :=

∫

Rd

ψ(|ξ|) ei[tξ1|ξ|+x·ξ]dξ =

∫ ∞

0

ρ(r)
[∫

Sd−1

ei[tr
2ω1+x·rω]dσ(ω)

]
dr

=

∫ ∞

0

ρ(r)σ̂(y(r))dr

where ρ(r) = ψ(r)rd−1 and y(r) = yx,t(r) = (tr2 + x1r, x2r, . . . , xdr).

We consider first the easier higher dimensional cases, when d > 4, then d = 3,
finally treating the harder d = 2 case.

We first remark that the decay rate |t|−1 when d > 3 is best possible since a better
decay rate would lead to an improvement of Theorem 1.1 (and also a better decay
in Proposition 4.1 when d > 3) which is not possible.

Decay rate dimensions d > 4. Considering the second iterated integral in (3.1)
where the integral over the sphere Sd−1 is performed first and computed as a Fourier
transform σ̂(y(r)), we use the stationary phase estimate

|σ̂(y(r))| 6 Cdmin(1, ‖y(r)‖−(d−1)/2) 6 Cmin(1, |tr2 + x1r|−(d−1)/2)

to give a quick proof of the desired uniform estimate for I(x, t) for d > 4. We split
the radial integration via supp(ρ) = E1 ∪ E2 where

E1 = {r ∈ supp(ρ) : |tr2 + rx1| 6 1}
and decompose I(x, t) accordingly. On the one hand, we have the uniform estimate
|E1| 6 C|t|−1 for the measure of E1. On the other hand,
∫

E2

|tr2 + x1r|−(d−1)/2dr 6 Cd |t|−(d−1)/2

∫

E2

|r + (x1/t)|−(d−1)/2dr 6 C|t|−1

when d > 4, giving us the uniform estimate |I(x, t)| 6 C|t|−1 in that case.
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For the lower dimensional cases, we adjust the argument in the following way. We
proceed as before, splitting the radial integral into two parts via a decomposition
F 1 and F 2 where F 1 contains E1 (and hence F 2 will be contained in E2) however
will still satisfy the uniform bound |F 1| 6 C|t|−1. Thus we can estimate the part
of I(x, t) defined over F 1 by a constant multiple of |t|−1 as before – this only uses
the trivial bound |σ̂(y(r))| . 11 and the estimate |F 1| . |t|−1. For the part over
F 2, we need the more refined asymptotic expansion

σ̂(y(r)) = c1
ei‖y(r)‖

‖y(r)‖(d−1)/2
+ c2

e−i‖y(r)‖

‖y(r)‖(d−1)/2
+ Ex,t(r),

valid for large ‖y(r)‖, where c1 and c2 are constants depending only on d, and the
uniform estimate |Ex,t(r)| 6 Cd‖y(r)‖−(d+1)/2 holds. The argument above works
as before for the integral of Ex,t(r) over F 2 (since F 2 is contained in E2) but is now
valid for d = 2 and d = 3.

Hence matters are reduced to bounding integrals of the form

(3.2)

∫

F 2

e±iφ(r)ρ(r)φ(r)
−(d−1)/2

dr

where φ(r) = ‖y(r)‖. We will need to examine the phase φ(r) more closely; write

φ(r) =
√
f(r) where f(r) = (tr2 + x1r)

2 + r2‖x′‖2 and x′ = (x2, . . . , xd) so that
x = (x1, x

′).

Decay rate dimension d = 3. We may assume that |x1| ∼ t and ‖x′‖/t 6 c0 for
any small absolute constant c0 (to be determined later); otherwise, φ(r) & |t| on
the support of ρ. Then, no matter how we define F 1 and F 2 (in this case, we can
take F 1 = E1 and F 2 = E2), we obtain

∣∣∣
∫

F 2

e±iφ(r)ρ(r)φ(r)
−1
dr
∣∣∣ .

∫

F 2

|ρ(r)| |φ(r)|−1dr . |t|−1.

Now, when d = 3, we can write the integral in (3.2) as

(3.3) ∓ 2i

∫

F 2

d

dr

[
e±iφ(r)

]
ρ(r)f ′(r)−1dr.

Although the derivative f ′ can vanish to order two on the support of ρ, this cannot
happen when |x1| ∼ t and ‖x′‖/t is small. In this case, we enlarge the set E1 to
F 1 := E1 ∪ {r ∈ supp(ρ) : |f ′(r)| 6 t} and so

F 2 = {r ∈ supp(ρ) : |r + (x1/t)| > 1/t and |f ′(r)| > t}

which is contained in E2. We will see that the uniform estimate |F 1| . |t|−1 still
holds. On the other hand, the set F 2 can be written as a finite union of intervals
such that ρ/f ′ is monotone on each subinterval. Taking one such interval (a, b), we

1We write A . B if there exists a constant c > 0 such that A 6 cB. Also we write A ∼ B if
both A . B and B . A hold.
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then integrate by parts;

∣∣∣
∫ b

a

d

dr

[
e±iφ(r)

]
ρ(r)f ′(r)−1dr

∣∣∣(3.4)

6
∣∣∣
[
e±iφ(r)ρ(r)f ′(r)−1

]b
a

∣∣∣+
∫ b

a

∣∣∣e±iφ(r)
(
ρ(r)f ′(r)−1

)′∣∣∣dr

.
[

min
r∈(a,b)

|f ′(r)|
]−1

+
∣∣∣
∫ b

a

(
ρ(r)f ′(r)−1

)′
dr
∣∣∣

.
[

min
r∈(a,b)

|f ′(r)|
]−1

. |t|−1,

which yields the desired bound. To prove the bound on F 1, a computation shows
that f ′ has two real roots away from r = 0; f ′(t) = 4rt2(r − r+)(r − r−) where

r± = −3

4

x1
t

± 1

4

√
x21
t2

− 8
‖x′‖2
t2

.

The constant c0 > 0 above is chosen small enough to guarantee that r± are real
and |r+ − r−| ∼ 1. From these observations, it is easy to verify the uniform bound
|F 1| . |t|−1 (if the roots r+ and r− were not separated, we would be stuck with
the bad bound |F 1| . t−1/2). This finishes the case d = 3.

For the case d = 2, observe that the above arguments break down and in particular
the argument allowing the restriction to ‖x′‖/t being small is not valid when d = 2.
We first study the sharpness of the decay rate.

Sharpness of the decay rate dimension d = 2. We begin by showing that the
decay bound |t|−1 is not possible. We examine the integral I(x, t) for t > 0 large

and x = (−(4/3)t, (
√
2/3)t). The reason for this particular choice of x is that

f(r) = t2[(r + 1/3)(r − 1)3 + 1/3] and f ′(r) = 4t2r(r − 1)2.

We choose ψ so that its support is a small neighborhood of r = 1 and so that ψ = 1
near r = 1 (hence ρ is supported in a small neighborhood of r = 1). We set g(r) =
f(r)/t2 = [φ(r)/t]2 and note that we may also write g(r) = r2[(r − 4/3)2 + 2/9],
showing in particular that g is smooth and uniformly bounded away from zero on
the support of ρ.

When d = 2, σ̂(y(r)) = cJ0(‖y(r)‖) where J0 is the Bessel function of order zero
which has the asymptotic expansion J0(s) = bs−1/2 cos(s − π/4) + O(s−3/2), and
so we see that for x = x(t) given above,

I(x(t), t) = c

∫
ρ(r)J0(‖y(r)‖)dr =

a√
t

∫
cos(t

√
g(r) − π/4)

g(r)1/4
ρ(r)dr + O(t−3/2)

for some a 6= 0. Let I denote the integral on the right so that

(3.5) I(x(t), t) = at−1/2 I + O(t−3/2).

We will attempt to evaluate I asymptotically by making a series of changes of
variables. First we make the change of variables s = (r + 1/3)1/3(r − 1) so that

I =

∫
ρ1(s) cos(t

√
s3 + 1/3− π/4)ds
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where ρ1(s) = ρ(r(s))g(r(s))−1/4s′(r(s))−1. Note that s = s(r) = (r+1/3)1/3(r−1)
is a nice smooth change of variables with a smooth inverse r(s) on the support
of ρ. We note that ρ1 is supported in a small neighborhood of 0, smooth and
ρ1(0) = ρ(1)31/4[3/4]1/3 6= 0.

We make a further change of variables u = [
√
s3 + 1/3− 1/

√
3]1/3 which leads to

I =

∫
ρ2(u) cos(tu

3 + t/
√
3− π/4) du

where ρ2 is smooth, supported in a small neighborhood of 0, and ρ2(0) 6= 0. Finally
the scaling v = t1/3u change of variables leads to

I =
1

t1/3

∫
ρ2(v/t

1/3) cos(v3 + t/
√
3− π/4) dv.

It is easy to see that the oscillatory integral A = A(t) :=
∫
cos(v3 + t/

√
3− π/4)dv

exists in the sense that

lim
R→∞

∫

|v|6R

cos(v3 + t/
√
3− π/4) dv

exists for every t > 0. We claim that

(3.6) I =
ρ2(0)

t1/3
A + O(t−2/3).

To see that the bound (3.6) is sufficient for our purposes, note first that it allows
us to write (3.5) as I(x(t), t) = bt−5/6A+O(t−7/6) for some b 6= 0. But writing

cos(v3 + t/
√
3− π/4) = cos(t/

√
3− π/4) cos(v3)− sin(t/

√
3− π/4) sin(v3)

and noting that sin(v3) is an odd function, we have

A = lim
R→∞

∫

|v|6R

cos(v3 + t/
√
3− π/4) dv = cos(t/

√
3− π/4)

∫

R

cos(v3)dv

which show that I(x(t), t) = b cos(t/
√
3 − π/4)t−5/6 + O(t−7/6) for t > 0 large.

Thus we arrive at the desired conclusion that the best possible uniform estimate
for I(x, t) is O(t−5/6) when d = 2.

Now to establish the claim (3.6), we write

ρ2(vt
−1/3)− ρ2(0) = vt−1/3

∫ 1

0

ρ′2(σvt
−1/3)dσ

and hence

t1/3I − ρ2(0)A = lim
R→∞

∫

|v|6R

vt−1/3
[∫ 1

0

ρ′2(σvt
−1/3)dσ

]
cos(v3 − t/

√
3− π/4) dv.

We fix R > 1 and interchange the order of integration so that the above iterated
integral is equal to

t−1/3

∫ 1

0

[∫

|v|6R

cos(v3 + t/
√
3− π/4)ρ′2(σvt

−1/3)v dv

]
dσ =: t−1/3

∫ 1

0

HR(σ)dσ.

Of course HR(σ) also depends on t but if we can show (a) HR = O(1), uni-
formly in σ, t and R and (b) limR→∞HR(σ) exists pointwise for every σ ∈ (0, 1),
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then Lebesgue’s Dominated Convergence Theorem implies that t1/3I − ρ2(0)A =
O(t−1/3), establishing the claim.

First we establish (a). We write HR(σ) = HR,1(σ) +HR,2(σ), where

HR,1(σ) =

∫

|v|61

cos(v3 + t/
√
3− π/3)ρ′2(σvt

−1/3)v dv

HR,2(σ) =

∫

16|v|6R

d

dv

[
sin(v3 + t/

√
3− π/4)

]
ρ3(v)dv

and ρ3(v) = ρ′2(σvt
−1/3)/3v. Clearly HR,1 = O(1), uniformly in σ and t, and is

independent of R. Carrying out the integration by parts in HR,2, we see that

HR,2 = B1(σ, t) +B2(σ, t, R)−
∫

16|v|6R

sin(v3 + t/
√
3− π/4)ρ′3(v) dv

where B1 = O(1) and B2 = O(R−1), uniformly in σ and t. Labelling the integral
above as B3(σ, t, R), we divide up the intervals [1, R] and [−R,−1] of integration
into subintervals ∪J so that ρ3 is monotone on each interval J . Note that the
specific subintervals will depend on σ and t but the number of subintervals will
not. With respect to the subintervals {J}, we decompose B3 =

∑
J B3,J(σ, t)

where

B3,J =

∫

J

sin(v3 + t/
√
3− π/4)ρ′3(v) dv

If J = [a, b] ⊂ R with a > 1 say, we have

(3.7) |B3,J | 6

∫

J

|ρ′3(v)|dv =
∣∣∣
∫

J

ρ′3(v) dv
∣∣∣ = |ρ3(b)− ρ3(a)| = O(1/a),

uniformly in σ, t and R, since ρ3(v) = O(1/v) uniformly in σ and t. This estab-
lishes (a) since O(1/a) = O(1) when a > 1 and the number of intervals {J} is
uniformly O(1), even if the intervals J themselves depend on σ, t and R.

For (b), it suffices to show that
∫

R6|v|6R′

d

dv

[
sin(v3 + t/

√
3− π/4)

]
ρ3(v)dv −→ 0

as R,R′ → ∞, for each fixed σ and t. This follows exactly in the same way as
(a), breaking up the above integral into subintervals on which ρ3 is monotone and
using (3.7) which is O(1/R) in this context.

Decay rate dimension d = 2. It remains to establish the uniform bound
|I(x, t)| . |t|−5/6. To do this, we go back to (3.2) with the choice F 1 = E1

and F 2 = E2 and write the integral appearing there as

(3.8)

∫

E2

e±iφ(r)ρ(r)φ(r)−(d−1)/2dr =
1√
t

∫

E2

e±it
√
g(r)ρ(r) g(r)−1/4dr

where g(r) = [φ(r)/t]2. Hence matters are reduced to showing that

(3.9) I :=

∫

E2

e±it
√
g(r)ρ(r) g(r)

−1/4
dr = O(t−1/3)
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holds uniformly in x. We begin by reducing the parameters to the region |x1| ∼ t
and |x2| . t. Recall that g(r)/r2 = [r + x1/t]

2 + x22/t
2 and so

(3.10)
g′(r)

2r
=
(
r +

x1
t

)(
2r +

x1
t

)
+

x22
t2
.

Hence if |x1| ≪ t, we have g′(r) ∼ 2r2 + x22/t
2 & 1 and g(r) ∼ r2 + x22/t

2 on the
support of ρ. We write

(3.11) I = ± 2

it

∫

E2

d

dr

[
e±it

√
g(r)
]
ρ(r)

g(r)
1/4

g′(r)
dr,

and breaking up E2 into intervals where g1/4/g′ is monotonic as before, this yields
the bound I = O(t−1) via integration by parts, noting that |g1/4/g′| . 1.

Next, if |x1| ≫ t, we have g′(r), g(r) ∼ (x21 + x22)/t
2 & 1 which again leads to the

bound I = O(t−1). Finally if |x1| ∼ t and |x2| ≫ t, we have g′(r), g(r) ∼ x22/t
2 & 1,

again leading to the bound I = O(t−1), all of which are better than the claimed
bound for I in (3.9).

Therefore we may assume that |x1| ∼ t and |x2| . t (recall that when d > 3, the
reduction to ‖x′‖ & t was straightforward – this is not the case when d = 2). Recall

that E2 = {r ∼ 1 : |r + x1/t| > 1/t}. If Φ(r) =
√
g(r), then Φ′(r) = g′(r)/2

√
g(r)

and

2Φ′′(r) =
g′′(r)g(r) + [g′(r)]2/2

g(r)3/2

where g′(r) is given in (3.10) and

(3.12) g′′(r)/2 = r2 + x22/t
2 + 5(r + x1/t)(r + x1/5t) = 6(r − r+)(r − r−).

Here the roots r± may be complex but when |x2| ≪ t, the roots are real and

r± ∼ −x1/2t(1± 1/
√
3).

We split E2 = E2
1 ∪ E2

2 where E2
1 = {r ∼ 1 : 1/t 6 |r + x1/t| 6 ǫ0} for some small

ǫ0 > 0 and decompose I = I1 + I2 accordingly. Hence on E2
1 , g

′′(r) ∼ 1 if ǫ0 is
suffficently small (less than 1/100 is enough). To analyse I1 we consider two cases:
|x2| ∼ t and |x2| ≪ t. In the first case, both g(r), g′(r) ∼ 1 and so an integration
by parts argument, as shown in (3.11), shows |I1| . t−1 as before. In the second
case, fix a small positive (absolute) δ > 0 such that |x2| 6 δt. In this case, we split
E2

1 = E2
1,1 ∪ E2

1,2 further where E2
1,1 = {r ∈ E2

1 : |r + x1/t|2 6 ǫx22/t
2} for some

small ǫ > 0 and write I1 = I1,1 + I1,2 accordingly.

On E2
1,1, g(r) ∼ x22/t

2 and |g′(r)| 6 10|r+x1/t|+x22/t2 implying g′(r)2 6 10−2x22/t
2

if ǫ > 0 is small enough. Therefore

|Φ′′(r) | & 1/
√
g(r) ∼ t/|x2|

on E2
1,1. Since the amplitude ρ(r)/g(r)1/4 in (3.8) is ∼ t1/2/|x2|1/2 on E2

1,1, an
application of van der Corput’s lemma, together with an integration by parts ar-
gument (see for example [22, pp. 234]), gives the bound |I1.1| . t−1/2.

On E2
1,2, g(r) ∼ |r + x1/t|2 and

|g′(r)| & |r + x1/t| − 10ǫ−1|r + x1/t|2 & |r + x1/t|
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if we choose ǫ0 6 10−2ǫ. Hence by integrating by parts, as in (3.11), we have

|I1,2| . t−1 max
r∈E2

|r + x1/t|−1/2 . t−1/2

which, together with our bound on I1,1, implies |I1| . t−1/2 in this second case.

Hence in either case, we have I1 = O(t−1/2).

To estimate I2, we note that g(r) ∼ 1 on E2
2 . By splitting the set E2

2 into two parts
where g′(r) is respectively small and large, one can easily take care of the part where
g′(r) is bounded away from zero by integrating by parts (recall now g(r) ∼ 1) as in
(3.11), obtaining a contribution of O(t−1) for this part of the integral I2. Hence we
may assume that on E2

2 , we have the further restriction that |g′(r)| 6 η for some
small absolute constant η > 0.

To understand the size of g′′(r), we split E2
2 = E2

2,1 ∪ E2
2,2 where

E2
2,1 = {r ∈ E2

2 : |r + x1/2t| 6 ǫ0}

and write I2 = I2,1 + I2,2 accordingly. On E2
2,1, since |g′(r)| 6 η, we see from

(3.10) that |x2|2/t2 6 10[ǫ0 + η]. Hence by (3.12), we see that |g′′(r)| ∼ 1 on
E2

2,1. Therefore, since g ∼ 1 on E2
2 , we see that |Φ′′(r)| & 1 on E2

2,1 and now an

application of van der Corput’s lemma as before shows that |I2,1| . t−1/2.

Finally we turn to I2,2 where we are integrating over E2
2,2 and in particular we have

|g′′′(r)| > 24ǫ0 since g′′′(r) = 24[r + x1/2t]. We also have |g′(r)| 6 η and g(r) ∼ 1
for r ∈ E2

2 and so we compute

d3

dr3

√
g(r) =

g′′′(r)g(r)2 − (3/2)g′(r)[g′′(r)g(r) − (1/2)g′(r)2]

2g(r)5/2

and deduce the bound |d3/dr3
√
g(r)| & 1 on E2

2,2 if ǫ0 and η are chosen so that
η ≪ ǫ0. Hence a final application of van der Corput’s lemma, together with an
integration by parts argument, gives the bound |I2,2| . t−1/3 which implies that

|I2| . t−1/3 and this completes the proof of the claim I = O(t−1/3).

This finishes the proof of the proposition. �

4. Proof of Theorems 1.1 and 1.2

A dispersive estimate of the following type with d = 1 was proven by Ponce and
Vega [21, Lemma 2.4] with decay of the order |t|−(1/2−1/p). Thus one could argue
that we have more dispersion in the higher dimensional cases, however the decay
rate does not continue to increase with the dimension. This is somehow consistent
with the notion that the higher dimensional equation continues to model unidimen-
sional behaviour.

Proposition 4.1. Let d > 3 and 2 6 p <∞. Then
∥∥etR1∆f

∥∥
Lp(Rd)

6 Cp|t|−2( 1
2
− 1

p )
∥∥(−∆)(d−2)( 1

2
− 1

p )f
∥∥
Lp′(Rd)

,
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and the rate of decay is optimal. Moreover, with d = 2,

∥∥etR1∆f
∥∥
Lp(R2)

6 Cp|t|−
5
3
( 1
2
− 1

p )
∥∥(−∆)(d−

5
3
)( 1

2
− 1

p )f
∥∥
Lp′(R2)

.

Proof. First we calculate the necessary condition. Letting φ be a smooth Schwartz
function, supported on (−π/2, π/2) and equal to one on (−1, 1), we define f by

f(x) = R−1φ∨(R−1x1)φ
∨(x2) . . . φ

∨(xd),

so that, for all β > 0,

(4.1) ‖(−∆)βf‖p′ 6 cR−1+1/p′ = cR−1/p.

On the other hand,

etR1∆f(x) =
1

(2π)d

∫
. . .

∫
φ(Rξ1)φ(ξ2) . . . φ(ξd)e

it|ξ|ξ1ei[x1ξ1+...+xdξd] dξ1 . . . dξd,

so we see that as long as |t| 6 R
2 , |x1| 6 R

2d and |x2|, . . . , |xd| 6 1
2d , then

|etR1∆f(x)| > 1

(2π)d

∫ R−1

0

∫ 1

0

. . .

∫ 1

0

cos(1) dξ1 . . . dξd > cR−1.

Thus, for |t| = R
4 , we have that

(4.2) ‖etR1∆f‖Lp(Rd) > cR−1+1/p.

Comparing (4.1) and (4.2) and letting R tend to infinity, we see that the rate of
decay cannot exceed 1− 2/p.

Then, by the change of variables ξ → Rξ, x→ R−1x and t→ R−2t, and letting R
tend to zero and infinity, one can calculate that, given the decay rates, the loss of
regularity is necessary.

Now to prove the estimates, we consider ψ as defined in the previous section, and the
smooth partition of unity

∑
k∈Z

ψ(2−k|·|) = 1. Defining the projection operators Pk
by

(4.3) Pkf =
(
ψ(2−k| · |)f̂

)∨
,

the Littlewood–Paley inequality yields

‖etR1∆f‖Lp(Rd) 6 C
∥∥∥
(∑

k∈Z

|etR1∆Pkf |2
)1/2∥∥∥

Lp(Rd)

6 C
(∑

k∈Z

∥∥etR1∆Pkf
∥∥2
Lp(Rd)

)1/2
,

where in the final estimate we use the triangle inequality in Lp/2. Thus, with d > 3,
it will suffice to prove that, for all k ∈ Z,

(4.4) ‖etR1∆Pkf‖Lp(Rd) 6 C|t|−2( 1
2
− 1

p )2(d−2)(1− 2
p )k‖f‖Lp′(Rd).
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Then, with P̃k defined in the same way as Pk but with cut-off function equal to one
on the support of ψ, we would obtain

‖etR1∆f‖Lp(Rd) 6 C|t|−2( 1
2
− 1

p )
(∑

k∈Z

2(d−2)(1− 2
p )k‖P̃kf‖2Lp′(Rd)

)1/2

6 C|t|−2( 1
2
− 1

p )
∥∥∥
(∑

k∈Z

2(d−2)(1− 2
p )k|P̃kf |2

)1/2∥∥∥
Lp′(Rd)

,

and the desired inequality would follow by a further Littlewood–Paley application.

By scaling invariance, it will suffice to prove (4.4) with k = 0. That is to say, an
estimate for the operator T defined by

Tf(x, t) =

∫

Rd

ψ(|ξ|)f̂(ξ) ei[tξ1|ξ|+x·ξ]dξ

with data f ∈ Lp
′

(Rd). By Plancherel’s theorem, we have that

(4.5) ‖Tf(·, t)‖2 6 C‖f‖2.

On the other hand, recalling that the Fourier transform is defined by

f̂(ξ) =

∫

Rd

f(y) e−iy·ξ dy,

by Fubini’s theorem, we can write

(4.6) Tf(x, t) =

∫

Rd

f(y)

∫

Rd

ψ(|ξ|) ei[tξ1|ξ|+(x−y)·ξ]dξ dy.

Applying Lemma 3.1, we obtain

∣∣∣
∫

Rd

ψ(|ξ|)ei[tξ1|ξ|+(x−y)·ξ]dξ
∣∣∣ 6 C|t|−1.

Substituting into (4.6), this yields a dispersive estimate,

‖Tf(·, t)‖L∞(Rd) 6 C|t|−1‖f‖L1(Rd),

so that by Riesz–Thorin interpolation with our L2 estimate (4.5), we obtain

(4.7) ‖Tf(·, t)‖Lp(Rd) 6
C

|t|1−2/p
‖f‖Lp′(Rd), p > 2,

which is (4.4) with k = 0, and so we are done.

When d = 2, the same argument applies. In that case, the estimate (4.7) takes the
form

‖Tf(·, t)‖Lp(R2) 6
C

|t| 56 (1−2/p)
‖f‖Lp′(R2), p > 2,

and so (4.4) is changed accordingly. �

We now continue with the proof of the main Theorem 1.1.
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Proof. Proof of Theorem 1.1 First we calculate the necessary condition in a similar
fashion to the previous proposition. By the change of variables ξ → Rξ, x→ R−1x
and t→ R−2t, then letting R tend to zero and infinity, one can calculate that it is
necessary that s = d(12 − 1

q )− 2
r for such an estimate to hold. Now define f by

f̂(ξ) = χ[0,R−1](ξ1)χ[0,1](ξ2) . . . χ[0,1](ξd),

so that

(4.8) ‖f‖Ḣs 6 cR−1/2.

On the other hand,

etR1∆f(x) =
1

(2π)d

∫ R−1

0

∫ 1

0

. . .

∫ 1

0

eit|ξ|ξ1ei[x1ξ1+...+xdξd] dξ1 . . . dξd.

We see that as long as |t|, |x1| 6 R
2d and |x2|, . . . , |xd| 6 1

2d , then

|etR1∆f(x)| > 1

(2π)d

∫ R−1

0

∫ 1

0

. . .

∫ 1

0

cos(1) dξ1 . . . dξd > cR−1.

Thus,

(4.9) ‖etR1∆f‖Lr
t (R,L

q
x(Rd)) > cR1/q+1/r−1

and so by comparing (4.8) and (4.9) and letting R tend to infinity, we see that the
condition 2

q +
2
r 6 1 is necessary.

For the positive part, the argument is completed using a variant of the TT ∗ argu-
ment of Tomas [25]. We consider first the estimates on the sharp line 2

q + 2
r = 1.

Note that the r = ∞ estimate is a consequence of (4.5), so we can suppose r is
finite. By duality it will suffice to prove

∥∥∥(−∆)−s/2
∫
e−tR1∆F (·, t) dt

∥∥∥
L2

x(R
d)

6 C‖F‖
Lr′

t L
q′
x
,

where s = d(12 − 1
q )− 2

r , which is equivalent to

∫ ∫ 〈
(−∆)−se−tR1∆F (·, τ), e−τR1∆G(·, t)

〉
x
dtdτ 6 C ‖F‖

Lr′
t L

q′
x
‖G‖

Lr′
t L

q′
x
.

This can be rewritten as
∫ 〈 ∫

(−∆)−se−(t−τ)R1∆F (·, τ) dτ,G(·, t)
〉
x
dt 6 C ‖F‖

Lr′
t L

q′
x
‖G‖

Lr′
t L

q′
x
,

which would follow, by Hölder’s inequality, from

∥∥∥
∫
(−∆)−se−(t−τ)R1∆F (·, τ) dτ

∥∥∥
Lr

tL
q
x

6 C ‖F‖
Lr′

t L
q′
x

This is a consequence of Minkowski’s integral inequality, the decay estimate of
Proposition 4.1, and the one dimensional Hardy–Littlewood–Sobolev inequality;
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see for example [18, Proposition 7.8],

∥∥∥
∫
(−∆)−se−(t−τ)R1∆F (·, τ) dτ

∥∥∥
Lr

tL
q
x

6
∥∥∥
∫ ∥∥(−∆)−se−(t−τ)R1∆F (·, τ)

∥∥
Lq

x
dτ
∥∥∥
Lr

t

6
∥∥∥
∫ ‖F (·, τ)‖

Lq′
x

|t− τ |1− 2
q

dτ
∥∥∥
Lr

t

6 C ‖F‖
Lr′

t L
q′
x
,

noting that on the sharp line s = (d− 2)(12 − 1
q ). For the application of the Hardy–

Littlewood–Sobolev inequality we require that 0 < 1 − 2
q = 2

r < 1, which follows

from the fact that q and r are finite.

Finally, in order to take q larger than those on the sharp line 1
2 = 1

q + 1
r , we can

apply the Hardy–Littlewood–Sobolev inequality in the form; see [18, Corollary 7.9]

‖etR1∆f‖Lq̃(Rd) 6 C‖(−∆)s/2etR1∆f‖Lq(Rd), s = d
(
1
q − 1

q̃

)
,

and so the proof for d > 3 is complete.

When d = 2, the only thing that changes from above is that we initially consider
estimates on the line 10

q + 12
r = 5, so that s = d(12 − 1

q )− 2
r becomes

s = (d− 5/3)
(
1
2 − 1

q

)

and the condition 0 < 1− 2
q = 2

r < 1 becomes 0 < 5
6 − 10

6q = 2
r < 1. This completes

the proof. �

5. Proof of Theorem 1.4

After using our linear estimates to prove some a priori nonlinear estimates, we
present the proof of Theorem 1.4 in the final three subsections. In the first of these
three parts we prove uniqueness, using the fact that u ∈ L1([0, T ),W 1,∞(Rd)).
Then, we prove existence using a compactness argument. Finally we deduce con-
tinuous dependence.

5.1. Linear estimates. By an application of Sobolev embedding in the spatial
variable and an application of Hölder’s inequality in the time variable, our Strichartz
estimates of Theorems 1.1 and 1.2 yield the following corollary.

Corollary 5.1. Let s > sd − 3/2 where sd = d/2 + 1/2 for d > 3 and s2 = 5/3.
Then

(∫ 1

0

∥∥etR1∆f
∥∥2
L∞

dt
)1/2

6 Cs ‖f‖Hs .

This will be a key ingredient in the proof of the following inhomogeneous Strichartz
estimate.
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Lemma 5.2. Let s > sd − 1 where sd = d/2 + 1/2 for d > 3 and s2 = 5/3. Then
∫ T

0

‖w(·, t)‖L∞ dt 6 CsT
1/2

(
sup
t∈[0,T ]

‖w(·, t)‖Hs +

∫ T

0

‖F (·, t)‖Hs−1 dt

)

whenever T 6 1 and w is a solution to ∂tw −R1∆w = F.

Proof. We again consider the smooth partition of unity
∑

k∈Z
ψ(2−k| · |) = 1 and

the Littlewood–Paley projection operators Pk defined by

Pkf :=
(
ψ(2−k| · |)f̂

)∨
, k > 2.

This time we consider the lower frequencies together; P1f =
∑
k61

(
ψ(2−k| · |)f̂

)∨
.

By the triangle inequality and summing a geometric series, it will suffice to prove
that, for all k > 1 and s > sd − 1,
∫ T

0

‖Pkw(·, t)‖L∞ dt 6 CsT
1/2

(
sup
t∈[0,T ]

‖Pkw(·, t)‖Hs +

∫ T

0

‖PkF (·, t)‖Hs−1 dt

)
.

Following the arguments of [11], we split the interval [0, T ] =
⋃
m Im into 2k intervals

Im = [am, bm] with (bm − am) ∼ 2−kT and use the Cauchy–Schwarz inequality to
estimate

(5.1)

∫ T

0

‖Pkw(·, t)‖L∞ dt . (2−kT )1/2
∑

m

(∫

Im

‖Pkw(·, t)‖2L∞ dt
)1/2

.

Now to estimate the right-hand side, we employ Duhamel’s principle on each Im,
so that

Pkw(·, t) = e(t−am)R1∆Pkw(·, am) +

∫ t

am

e(t−t
′)R1∆PkF (·, t′) dt′

whenever t ∈ Im. Then by an application of Minkowski’s integral inequality and
applications of Corollary 5.1, we find that (5.1) can be bounded by

. (2−kT )1/2
∑

m

(
‖Pkw(·, am)‖Hs−1/2 +

∫

Im

‖PkF (·, t′)‖Hs−1/2 dt
′

)

. T 1/2

(
sup
t∈[0,T ]

‖Pkw(·, t)‖Hs +

∫ T

0

‖PkF (·, t′)‖Hs−1 dt
′

)
,

which completes the proof. �

5.2. Energy estimates. We will need the Kato–Ponce commutator estimates.

Lemma 5.3. [6, 10] Let s > 0 and write [Js, f ]g := Js(fg)− fJsg. Then
∥∥[Js, f ]g

∥∥
L2 . ‖∇f‖L∞

∥∥Js−1g
∥∥
L2 + ‖Jsf‖L2 ‖g‖L∞ .

Moreover

‖Js(fg)‖L2 . Cs ‖Jsf‖L2 ‖g‖L∞ + ‖f‖L∞ ‖Jsg‖L2 .

Using these we deduce the following a priori energy estimate for smooth solutions
which we take in Hd+1(Rd) from now on for definiteness.



18 FELIPE LINARES, OSCAR G. RIAÑO, KEITH M. ROGERS, AND JAMES WRIGHT

Lemma 5.4. Let s ∈ (0, d+ 1]. Then, there is a constant cs > 0 such that

sup
t∈[0,T ]

‖u(t)‖2Hs 6 ‖u0‖2Hs + cs sup
t∈[0,T ]

‖u(t)‖2Hs

∫ T

0

‖∇u(t)‖L∞ dt

whenever u0 ∈ Hd+1(Rd) and u ∈ C
(
[0, T ];Hd+1(Rd)

)
solves (HBO).

Proof. Applying Js to the higher dimensional Benjamin–Ono equation, multiplying
by Jsu and integrating in space yields

1

2

d

dt

∫

Rd

(Jsu)2 dx = −
∫

Rd

[Js, u]∂x1
uJsu dx−

∫

Rd

uJs∂x1
uJsu dx.

The Riesz transform term is easily seen to be zero using the fact that it is skew-self-
adjoint. The first term on the right-hand side is bounded by the Cauchy–Schwarz
inequality and the commutator estimate of Lemma 5.3. Noting that Js∂x1

uJsu =
1
2∂x1

(Jsu)2, the second term is controlled by integrating by parts and using Hölder’s
inequality. Together we deduce

d

dt
‖Jsu‖2L2 . ‖∇u‖L∞ ‖Jsu‖2L2 .

Integrating in time, the desired inequality follows. �

5.3. Nonlinear estimates. As in the previous section we will prove a priori esti-
mates for smooth solutions with respect to norms of lower regularity. The following
estimate for the Lipschitz norm is a consequence of the inhomogeneous Strichartz
estimate of Lemma 5.2.

Lemma 5.5. Let s ∈ (sd, d+1] where sd = d/2+ 1/2 for d > 3 and s2 = 5/3. For
T 6 1, let

K(T ) :=

∫ T

0

‖u(t)‖L∞ + ‖∇u(t)‖L∞ dt.

Then there is a constant Cs > 0 such that

K(T ) 6 CsT
1/2 sup

t∈[0,T ]

‖u(t)‖Hs

(
1 +K(T )

)
,

whenever u0 ∈ Hd+1(Rd) and u ∈ C
(
[0, T ];Hd+1(Rd)

)
solves (HBO).

Proof. Taking first w = u and F = −u∂x1
u, then w = ∇u and F = −∇(u∂x1

u), by
Lemma 5.2 we have

(5.2) K(T ) 6 CsT
1/2

(
sup
t∈[0,T ]

‖u(t)‖Hs +

∫ T

0

‖(u∂x1
u)(t′)‖Hs−1 dt

′

)

Then using the second estimate of Lemma 5.3,

‖(u∂x1
u)(t)‖Hs−1 . ‖u(t)‖L∞

∥∥Js−1∂x1
u(t)

∥∥
L2 +

∥∥Js−1u(t)
∥∥
L2 ‖∂x1

u(t)‖L∞

.
(
‖u(t)‖L∞ + ‖∇u(t)‖L∞

)
sup
t∈[0,T ]

‖u(t)‖Hs ,

which can be plugged into (5.2) to yield the desired inequality. �
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With s > d/2+ 1, Theorem 1.4 follows by a parabolic regularization of (HBO); an
additional term −µ∆u is added, after which the limit µ→ 0 is taken. The argument
also yields a blow-up criteria. The result follows directly from the arguments of
Iorio [8] and so is omitted.

Lemma 5.6. Let s > d/2 + 1. Then, for any u0 ∈ Hs(Rd), there exists a time

T = T (‖u0‖Hs) and a unique maximal solution u to (HBO) in C([0, T ∗);Hs(Rd)).
Moreover, if the maximal time of existence T ∗ is finite, then

lim
t→T∗

‖u(t)‖Hs = ∞,

and the flow map u0 7→ u(t) is continuous from Hs(Rd) to Hs(Rd).

Given this lemma, we first prove that the smooth solutions exist long enough for
our purposes, taking advantage of the blow-up criteria. We then provide another
nonlinear estimate. The proof follows closely the arguments of [14].

Lemma 5.7. Let s ∈ (sd, d+1] where sd = d/2+1/2 for d > 3 and s2 = 5/3. Then
there is a constant As > 0 such that, for all u0 ∈ Hd+1(Rd), there is a solution

u ∈ C([0, T ∗);Hd+1(Rd)) of (HBO) with T ∗ > (1+As ‖u0‖Hs)−2. Moreover, there

is a constant Ks > 0 such that

sup
t∈[0,T ]

‖u(t)‖Hs 6 2 ‖u0‖Hs , and K(T ) 6 Ks

whenever T 6 (1 +As ‖u0‖Hs)−2.

Proof. Set As = 8(1 + max{cs, cd+1})Cs where cs and cd+1 are the constants ap-
pearing in Lemma 5.4 and Cs is the constant of Lemma 5.5. We consider any time
T 6 (1 +As ‖u0‖Hs)−2 for which

(5.3) sup
t∈[0,T ]

‖u(t)‖Hs 6 2 ‖u0‖Hs

for all u0 ∈ Hd+1. Then, by Lemma 5.5,

K(T ) 6 2CsT
1/2 ‖u0‖Hs

(
1 +K(T )

)
.

Calculating we find

K(T ) 6
1

3max{cs, cd+1}
.

From the energy estimates of Lemma 5.4 we deduce that both

sup
t∈[0,T ]

‖u(t)‖2Hs 6
3

2
‖u0‖2Hs and sup

t∈[0,T ]

‖u(t)‖2Hd+1 6
3

2
‖u0‖2Hd+1

for all u0 ∈ Hd+1. In view of the blow-up criteria of Lemma 5.6, the latter esti-
mate implies that we can take T ∗ > T . On the other hand, the former estimate
and continuity implies that T was not the largest time for which (5.3) holds. We
conclude that the largest such T must be as least as large as (1 + As ‖u0‖Hs)−2

which completes the proof. �
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5.4. Uniqueness. Let u1 and u2 be two solutions of (HBO) in our class

C
(
[0, T );Hs(Rd)

)
∩ L1

(
[0, T );W 1,∞(Rd)

)
,

with respective initial data u1(·, 0) = φ1 and u2(·, 0) = φ2. By setting v := u1−u2,
we find that

∂tv −R1∆v + u1∂x1
u1 − u2∂x1

u2 = 0,

which can be rewritten as

∂tv −R1∆v +
1
2∂x1

(
(u1 + u2)v

)
= 0.

Taking the inner product in L2(Rd) with v, we arrive at

1

2

d

dt

∫

Rd

v2 dx = −1

4

∫

Rd

∂x1
(u1 + u2)v

2 dx.

Again by skew-adjointness, the Riesz transform term is zero, and one can arrive to
the form of the right-hand side by integrating by parts twice. Thus,

1

2

d

dt
‖v‖2L2 .

(
‖∇u1‖L∞ + ‖∇u2‖L∞

)
‖v‖2L2 .

An application of Gronwall’s inequality (see for example [24, Theorem 1.12]) gives

sup
t∈[0,T ]

‖u1(t)− u2(t)‖L2 6 ‖φ1 − φ2‖L2 exp
(
c

∫ T

0

‖∇u1‖L∞ + ‖∇u2‖L∞

)

from which uniqueness follows.

5.5. Existence. We mollify the initial datum as in the Bona–Smith argument [2].
Consider a radial and positive ρ ∈ C∞

0 (Rd) such that ρ(ξ) = 1 for |ξ| 6 1/2 and
ρ(ξ) = 0 for |ξ| > 1, and define

u0,n :=
(
ρ(n−1·)û0

)∨

for any integer n > 1. First we state some properties of the regularized initial data.

Lemma 5.8. Let m > n > 1 and α 6 s. Then

‖u0,n − u0,m‖Hα . n−(s−α)‖u0‖Hs .

Moreover, with u0 ∈ Hs,

‖u0,n − u0,m‖Hs →
n→∞

0.

Proof. By support considerations, we observe

|〈ξ〉α(ρ(ξ/m)− ρ(ξ/n))û0(ξ)|2 . n−2(s−α)
∣∣(ρ(ξ/m)− ρ(ξ/n))

∣∣2 |〈ξ〉sû0(ξ)|2

and so the first estimate follows by integrating and Plancherel’s identity. With
α = s, the result follows by the Lebesgue dominated convergence theorem. �

Let s ∈ (sd, d+1] where sd = d/2+1/2 for d > 3 and s2 = 5/3 and take α ∈ (sd, s].
For integers n > 1, we consider solutions un ∈ C([0, T ];Hd+1(Rd)) of the higher
dimensional Benjamin–Ono equation with mollified initial data u0,n;

(5.4)

{
∂tun −R1∆un + un∂x1

un = 0, x ∈ R
d, t ∈ R,

un(x, 0) = u0,n(x).
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As ‖u0,n‖Hα 6 ‖u0,n‖Hs 6 ‖u0‖Hs , from Lemma 5.7, we find that

(5.5) sup
t∈[0,T ]

‖un(t)‖Hα 6 2 ‖u0‖Hα , α ∈ (sd, s]

whenever T 6 (1 +As ‖u0‖Hs)−2, and

(5.6) K := sup
n>1

∫ T

0

‖un(t)‖L∞ + ‖∇un(t)‖L∞ dt <∞.

Now we set vn,m := un − um, so that vn,m satisfies

(5.7) ∂tvn,m −R1∆vn,m + un∂x1
un − um∂x1

um = 0,

with initial datum vn,m(·, 0) = u0,n − u0,m. Arguing as in the uniqueness Subsec-
tion 5.4 and using Lemma 5.8, we deduce

sup
t∈[0,T ]

‖vn,m(t)‖L2 6 ecK ‖u0,n − u0,m‖L2 . n−s‖u0‖Hs .

Interpolating with (5.5) we immediately get that

(5.8) sup
t∈[0,T ]

‖vn,m(t)‖Hα . n−(s−α)‖u0‖Hs

so that {vn,m} is a Cauchy sequence in C([0, T ];Hα(Rd)) for all 0 6 α < s.

Below we will find that {vn,m} is also Cauchy in C([0, T ];Hs(Rd)), but first we show
that the sequence is Cauchy in L1([0, T ];W 1,∞(Rd)). In fact we prove something
stronger that will help later.

Lemma 5.9. Let m > n > 1. Then

∫ T

0

n ‖vn,m(t)‖L∞ + ‖∇vn,m(t)‖L∞ dt →
n→∞

0.

Proof. Let α ∈ (sd, s) and rewrite the nonlinear term in (5.7) as

un∂x1
un − um∂x1

um = 1
2∂x1

(
(un + um)vn,m

)
.

Taking w = ∇vn,m and F = − 1
2∇∂x1

(
(un + um)vn,m

)
, by Lemma 5.2,

∫ T

0

‖∇vn,m(t)‖L∞dt

. T 1/2

(
sup
t∈[0,T ]

‖vn,m(·, t)‖Hα +

∫ T

0

∥∥∂x1

(
(un + um)vn,m

)
(·, t)

∥∥
Hα−1 dt

)

. T 1/2

(
sup
t∈[0,T ]

‖vn,m(·, t)‖Hα +

∫ T

0

‖u0‖Hα‖vn,m(·, t)‖Hα dt

)
,

where the second inequality follows from Lemma 5.3 and Sobolev embedding. The
desired convergence for this part then follows by applying (5.8).
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On the other hand, taking w = vn,m and F = − 1
2∂x1

(
(un+um)vn,m

)
in Lemma 5.2,

we also have
∫ T

0

‖vn,m(t)‖L∞dt

. T 1/2

(
sup
t∈[0,T ]

‖vn,m(·, t)‖Hα−1 +

∫ T

0

‖u0‖Hα−1‖vn,m(·, t)‖Hα−1 dt

)
,

and so we obtain an extra factor of n−1 when applying (5.8). �

Proposition 5.10. Let m > n > 1. Then

sup
t∈[0,T ]

‖vn,m(t)‖Hs →
n→∞

0.

Proof. Applying the operator Js to (5.7), rewriting the nonlinearity as

un∂x1
un − um∂x1

um = vn,m∂x1
un + um∂x1

vn,m,

and then multiplying the equation by Jsvn,m and integrating in space, we obtain

1

2

d

dt
‖Jsvn,m‖2L2 = −

∫

Rd

Js
(
um∂x1

vn,m
)
Jsvn,m −

∫

Rd

Js
(
vn,m∂x1

un
)
Jsvn,m

=: −(A1 +A2).

Now by integrating by parts, we can write

A1 =

∫

Rd

[Js, um]∂x1
vn,mJ

svn,m − 1

2

∫

Rd

∂x1
um(J

svn,m)2,

from which it follows from the Cauchy–Schwartz inequality and the commutator
estimate of Lemma 5.3 that

|A1| . ‖∇um‖L∞ ‖Jsvn,m‖2L2 .

On the other hand, we can write

A2 =

∫

Rd

[Js, vn,m]∂x1
unJ

svn,m +

∫

Rd

vn,m(Js∂x1
un)J

svn,m.

Again by the Cauchy–Schwarz inequality and the commutator estimate of Lemma 5.3,

|A2| . ‖∇un‖L∞ ‖Jsvn,m‖2L2 + ‖∇vn,m‖L∞
‖Jsun‖L2 ‖Jsvn,m‖L2

+ ‖vn,m‖L∞

∥∥Js+1un
∥∥
L2 ‖Jsvn,m‖L2 .

Now arguing as in the proof of Lemma 5.4, we have

d

dt

∥∥Js+1un
∥∥2
L2 . ‖∇un‖L∞

∥∥Js+1un
∥∥2
L2 ,

so, by Gronwall’s inequality,
∥∥Js+1un

∥∥
L2 6 ecK

∥∥Js+1u0,n
∥∥
L2 . n ‖u0‖Hs .

where K is defined as in (5.6). In view of (5.5), we can bound both ‖Jsun‖L2 and
‖Jsvn,m‖L2 by a constant multiple of ‖u0‖Hs , so that

|A2| . ‖∇un‖L∞ ‖Jsvn,m‖2L2 +
(
n ‖vn,m‖L∞ + ‖∇vn,m‖L∞

)
‖u0‖2Hs .
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Summing up our estimates for A1 and A2, we find that

(5.9)
d

dt
‖Jsvn,m(t)‖2L2 6 a(t) ‖Jsvn,m(t)‖2L2 + b(t)

where

a(t) = C0

(
‖∇un(t)‖L∞ + ‖∇um(t)‖L∞

)
,

b(t) = C1

(
n ‖vm,m(t)‖L∞ + ‖∇vn,m(t)‖L∞

)
‖u0‖2Hs .

Now if g(t) solves 



d

dt
g(t) = a(t)g(t) + b(t),

g(0) = ‖u0,n − u0,m‖2Hs ,

then
d

dt

(
‖Jsvn,m(t)‖2L2 − g(t)

)
6 a(t)

(
‖Jsvn,m(t)‖2L2 − g(t)

)

with initial condition, ‖Jsvn,m(0)‖2L2 − g(0) = 0. Then by an application of Gron-

wall’s inequality, we find that ‖Jsvn,m(t)‖2L2 6 g(t) for all t > 0. Now as g(t) has
the explicit form

g(t) = g(0)e
∫

t
0
a(t′) dt′ +

∫ t

0

b(τ)e
∫

t
τ
a(t′) dt′ dτ,

we find that supt∈[0,T ] ‖Jsvn,m(t)‖2L2 is bounded by

ecK
(
‖u0,n − u0,m‖2Hs + ‖u0‖2Hs

∫ T

0

n ‖vn,m(t)‖L∞ + ‖∇vn,m(t)‖L∞ dt
)

=
n→∞

0,

where the convergence follows from Lemmas 5.8 and 5.9. �

We deduce from Proposition 5.10 and Lemma 5.9 that un has a limit u in

C
(
[0, T ];Hs(Rd)) ∩ L1([0, T ];W 1,∞(Rd)

)
.

Now recalling that

(5.10) un(t) = etR1∆u0,n − 1

2

∫ t

0

e(t−t
′)R1∆∂x1

[un(t
′)]2 dt′,

and noting that
∥∥∥∥
∫ t

0

e(t−t
′)R1∆∂x1

[
un(t

′)2 − u(t′)2
]
dt′
∥∥∥∥
Hs−1

6

∫ t

0

∥∥un(t′)2 − u(t′)2
∥∥
Hs dt

′

.

∫ t

0

‖un(t′) + u(t′)‖Hs ‖un(t′)− u(t′)‖Hs dt
′,

we see that u also solves the integral formulation of (HBO) in the C([0, T ];Hs−1(Rd))
sense.
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5.6. Continuity of the flow map. Let s > sd where sd = d/2 + 1/2 for d > 3
and s2 = 5/3. Fix u0 ∈ Hs and t < T = T (‖u0‖Hs). We are required to prove that
for all ǫ > 0, there exists δ > 0 such that for all data v0 such that ‖u0 − v0‖Hs < δ,
we have

(5.11) ‖u(t)− v(t)‖Hs < ǫ.

For n > 1, we regularize the initial data as in the previous section. Then from the
triangle inequality we obtain

‖u(t)− v(t)‖Hs 6 ‖u(t)− un(t)‖Hs + ‖un(t)− vn(t)‖Hs + ‖vn(t)− v(t)‖Hs .

By the definitions of u and v, we can take n sufficiently large so that

(5.12) ‖u(t)− un(t)‖Hs + ‖vn(t)− v(t)‖Hs < ǫ/2.

On the other hand,

‖u0,n − v0,n‖Hd+1 . nd+1−s ‖u0 − v0‖Hs 6 nd+1−sδ.

Then using the continuity of the flow map for smooth solutions, we can choose
δ > 0 small enough to ensure

(5.13) ‖un(t)− vn(t)‖Hs 6 ‖un(t)− vn(t)‖Hd+1 6 ǫ/2.

Therefore estimate (5.11) follows by combining (5.12) and (5.13).

6. Appendix: Ill-posedness results

Here we prove that (HBO) cannot be solved in Hs(Rd) by a Picard iterative scheme
based on the Duhamel formula. This result can be viewed as an extension of [17],
where the C2 ill-posedness in Hs(R) is established for the Benjamin–Ono equation.

Proof of Theorem 1.5. Suppose that there exists T > 0 such that (HBO) is locally
well-posed in Hs(Rd) on the time interval [0, T ) and such that the flow map

Φ(t) : Hs(Rd) → Hs(Rd), u0 7→ u(t)

is C2 differentiable at the origin. When φ ∈ Hs(Rd), we have that Φ(·)φ is a
solution of (HBO) with initial data φ so by Duhamel’s principle Φ(t)φ must satisfy
the integral equation

Φ(t)φ = etR1∆φ− 1

2

∫ t

0

e(t−t
′)R1∆∂x1

[
Φ(t′)φ

]2
dt′.

We compute the Fréchet derivative of Φ(t) at ψ with direction φ1,

(6.1) dψΦ(t)(φ1) = etR1∆φ1 −
∫ t

0

e(t−t
′)R1∆∂x1

[
Φ(t′)ψ dψΦ(t

′)(φ1)
]
dt′.
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Supposing that (HBO) is well-posed, uniqueness implies that Φ(t)(0) = 0, so that
d0Φ(t)(φ1) = etR1∆φ1. Differentiating again we find that

d20Φ(t)(φ1, φ2) =
∂

∂γ

(
γ 7→ dγφ2

Φ(t)(φ1)
)∣∣∣∣
γ=0

= −
∫ t

0

e(t−t
′)R1∆∂x1

[
dγφ2

Φ(t)(φ2)dγφ2
Φ(t)(φ1)

]
dt′
∣∣∣∣
γ=0

−
∫ t

0

e(t−t
′)R1∆∂x1

[
Φ(t)(γφ2)d

2
γφ1

Φ(t)(φ1, φ2)
]
dt′
∣∣∣∣
γ=0

,

so that

d20Φ(t)(φ1, φ2) = −
∫ t

0

e(t−t
′)R1∆∂x1

[
(et

′R1∆φ1)(e
t′R1∆φ2)

]
dt′.

Now, if the flow map were C2 then d20Φ(t) would be bounded from Hs×Hs to Hs;
∥∥∥∥
∫ t

0

e(t−t
′)R1∆∂x1

[
(et

′R1∆φ1)(e
t′R1∆φ2)

]
dt′
∥∥∥∥
Hs

. ‖φ1‖Hs ‖φ2‖Hs .

We will prove that this does not hold in general, following the arguments in [17].

Indeed, we will construct two sequences of functions, φ1,N and φ2,N , such that

(6.2) ‖φ1,N‖Hs , ‖φ2,N‖Hs 6 C

and

(6.3) lim
N→∞

∥∥∥∥
∫ t

0

e(t−t
′)R1∆∂x1

[
(et

′R1∆φ1,N )(et
′R1∆φ2,N )

]
dt′
∥∥∥∥
Hs

= ∞.

We define φ1,N and φ2,N via their Fourier transforms as



φ̂1,N (ξ) = λ

1−2d
2d N−sχD1

(ξ), with D1 = [N,N + λ]× [λ1/d/2, λ1/d]d−1,

φ̂2,N (ξ) = λ
1−2d
2d χD2

(ξ), with D2 = [3λ, 4λ]× [λ1/d/2, λ1/d]d−1

where N ≫ 1, λ = N−(1+ǫ) and 0 < ǫ < 1/(2d− 1). First, we observe that φ1,N
and φ2,N satisfy (6.2).

On the other hand, taking the Fourier transform with respect to the space variable,

(6.4)

ÎN (ξ, t) :=

{∫ t

0

e(t−t
′)R1∆∂x1

[
(et

′R1∆φ1,N )(et
′R1∆φ2,N )

]
dt′
}∧

(ξ)

=

∫

Kξ

ξ1e
itξ1|ξ|

eiσ(ξ,η)t − 1

σ(ξ, η)
φ̂1,N (η)φ̂2,N (ξ − η) dη

where the resonant function is given by

σ(ξ, η) = −ξ1|ξ|+ (ξ1 − η1)|ξ − η|+ η1|η|
and

Kξ =
{
η ∈ R

d : η ∈ D1, ξ − η ∈ D2

}
.

When η ∈ D1 and ξ − η ∈ D2, we claim that

(6.5) |σ(ξ, η)| ∼ λN.
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Indeed, using that ÎN (ξ) is supported on

D3 = [N + 3λ,N + 5λ]× [λ1/d, 2λ1/d]d−1

we easily obtain

(6.6) (ξ1 − η1)|ξ − η| ∼ λ(d+1)/d.

Moreover, from the inequality

|ξ| 6
(
(N + 5λ)2 + 4(d− 1)λ2/d

)1/2
6 N + 6λ

which holds for N large, λ = N−(1+ǫ) with 0 < ǫ < 1/(2d− 1), we have

(6.7) (N + 3λ)2 6 ξ1|ξ| 6 (N + 6λ)2.

Analogously, we get

(6.8) N2 6 η1|η| 6 (N + 2λ)2.

Then, (6.5) follows from (6.6), (6.7) and (6.8).

Now, since λN = N−ǫ and |σ(ξ, η)| ∼ λN it follows

(6.9)

∣∣∣∣
eiσ(ξ,η)t − 1

σ(ξ, η)

∣∣∣∣ = |t|+O

(
1

N ǫ

)
.

From (6.9) and |Kξ| ∼ λ(2d−1)/d, we infer that

|ÎN (ξ, t)|χD3
(ξ) &

Nλ(2d−1)/d

Nsλ(2d−1)/d
|t|χD3

(ξ).

Therefore we arrive at

‖IN (t)‖Hs & Nλ(2d−1)/2d|t| = N1/2d−ǫ((2d−1)/2d)|t|.
Now as 0 < ǫ < 1/(2d−1), from this we deduce (6.3), which completes the proof. �

The following corollary (of the proof) shows that it is not possible to solve (HBO)
in Hs(Rd) via the usual contraction argument.

Corollary 6.1. Let s ∈ R and T > 0. Then there does not exist a space XT

continuously embedded in C([0, T ];Hs(Rd)) such that

(6.10)
∥∥etR1∆φ

∥∥
XT

6 C ‖φ‖Hs

and

(6.11)

∥∥∥∥
∫ t

0

e(t−t
′)R1∆

[
F (·, t′)∂x1

F (·, t′)
]
dt′
∥∥∥∥
XT

6 C ‖F (·, t)‖2XT
.

Proof. We write F = F1 + F2 and note that
∥∥∥
∫ t

0

e(t−t
′)R1∆

[
F∂x1

F (·, t′)
]
dt′
∥∥∥
XT

>

∥∥∥∥
∫ t

0

e(t−t
′)R1∆∂x1

[
F1F2(·, t′)

]
dt′
∥∥∥∥
XT

−
∥∥∥∥
∫ t

0

e(t−t
′)R1∆

[
F1∂x1

F1(·, t′)
]
dt′
∥∥∥∥
XT

−
∥∥∥∥
∫ t

0

e(t−t
′)R1∆

[
F2∂x1

F2(·, t′)
]
dt′
∥∥∥∥
XT

.
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Now taking F1(·, t′) = et
′R1∆φ1,N and F2(·, t′) = et

′R1∆φ1,N , by (6.10) and (6.2),
we have

‖F‖XT , ‖F1‖XT , ‖F2‖XT 6 C.

Thus, if (6.11) held, we would find that
∥∥∥∥
∫ t

0

e(t−t
′)R1∆∂x1

[
(et

′R1∆φ1,N )(et
′R1∆φ2,N )

]
dt′
∥∥∥∥
XT

is uniformly bounded in N , contradicting (6.3). �

Next we prove that the flow map could not be uniformly continuous in L2(R2). We
recall that Mariş [15] proved that there exists solitary wave solutions of the form
uc(x1, x2, t) = ϕ(x1 − ct, x2) with c > 0. That is to say, ϕc is a solution of the time
independent equation

(6.12) − c∂x1
ϕ−R1∆ϕ+ ϕ∂x1

ϕ = 0

where ϕc ∈ Hs(R2) for all s > 0.

Proof of Proposition 1.6. Let ϕc(x1, x2) = cϕ1(cx1, cx2) where ϕ1 solves (6.12)
with c = 1. Then ϕc solves (6.12) with c > 0 and we consider solutions

uc(x1, x2, t) = cϕ1(cx1 − c2t, cx2)

to (HBO). In particular we will consider solutions uc1 and uc2 with c1 6= c2.

By a change of variables it is easy to see that, for all t > 0,

‖uc1(·, t)‖L2 = ‖ϕ1‖L2 = ‖uc2(·, t)‖L2 ,

so that

(6.13) ‖uc1(·, t)− uc2(·, t)‖2L2 = 2 ‖ϕ1‖2L2 − 2〈uc1(·, t), uc2(·, t)〉L2 .

Changing variables by c2x1 − c22t→ x1 and c2x2 → x2, we see that

〈
uc1(·, t), uc2(·, t)

〉
L2 =

c1
c2

∫
ϕ1

(
c1
c2
(x1 − c2(c1 − c2)t),

c1
c2
x2
)
ϕ1(x) dx.

Therefore, taking c1 = n + 1, c2 = n, from the Lebesgue dominated convergence
theorem, it follows that, for all t > 0,

〈
uc1(·, t), uc2(·, t)

〉
L2 =

c1
c2

∫
ϕ1

(
c1
c2
(x1 − nt, x2)

)
ϕ1(x) dx→ 0 as n→ ∞,

while 〈
uc1(·, 0), uc2(·, 0)

〉
L2 → ‖ϕ1‖2L2 as n→ ∞.

Thus, in view of (6.13), we deduce

‖uc1(·, 0)− uc2(·, 0)‖L2 → 0 as n→ ∞,

while on the other hand, for all t > 0,

‖uc1(·, t)− uc2(·, t)‖L2 → 21/2 ‖ϕ1‖L2 as n→ ∞,

completing the proof. �
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[15] M. Mariş. On the existence, regularity and decay of solitary waves to a generalized Benjamin–
Ono equation. Nonlinear Analysis, 51(6):1073–1085, 2002.

[16] L. Molinet and D. Pilod. The Cauchy problem for the Benjamin–Ono equation in L2 revisited,
Analysis and PDE, 5(2):365–395, 2012.

[17] L. Molinet, J. Saut, and N. Tzvetkov. Ill-posedness issues for the Benjamin–Ono and related

equations. SIAM Journal on Mathematical Analysis, 33(4):982–988, 2001.
[18] C. Muscalu and W. Schlag. Classical and Multilinear Harmonic Analysis, volume 1 of Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, 2013.
[19] D. E. Pelinovsky and V. I. Shrira. Collapse transformation for self-focusing solitary waves in

boundary-layer type shear flows. Physics Letters A, 206(3):195 – 202, 1995.
[20] G. Ponce. On the global well-posedness of the Benjamin–Ono equation. Differential Integral

Equations, 4(3):527–542, 1991.
[21] G. Ponce and L. Vega. Nonlinear small data scattering for the generalized Korteweg–de Vries

equation. Journal of Functional Analysis, 90(2):445–457, 1990.
[22] E. M. Stein. Harmonic Analysis (PMS-43): Real-Variable Methods, Orthogonality, and Os-

cillatory Integrals. (PMS-43). Princeton University Press, 1993.
[23] T. Tao. Global well–posedness of the Benjamin–Ono equation inH1(R). Journal of Hyperbolic

Differential Equations, 01(01):27–49, 2004.
[24] T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis. 106 in Conference Board

of the Mathematical Sciences. American Mathematical Society, 2006.
[25] P. A. Tomas. A restriction theorem for the Fourier transform. Bulletin of the American

Mathematical Society, 81(2):477–478, 03 1975.
[26] L. Vega. Schrödinger equations: pointwise convergence to the initial data. Proceedings of the

American Mathematical Society, 102(4):874–878, 1988.
[27] V. V. Voronovich and V. I. Shrira. Internal wave–shear flow resonance and wave breaking

in the subsurface layer. In Nonlinear instability analysis, volume II of Advances in fluid
mechanics, 133–177, WIT Press, 2001.



ON A HIGHER DIMENSIONAL VERSION OF THE BENJAMIN–ONO EQUATION 29

IMPA, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, RJ Brasil

E-mail address: linares@impa.br

IMPA, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, RJ Brasil

E-mail address: ogrianoc@impa.br
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