

Edinburgh Research Explorer

Multidirectional Transformations and Synchronisations
(Dagstuhl Seminar 18491)

Citation for published version:
Cleve, A, Kindler, E, Stevens, P & Zaytsev, V (eds) 2019, 'Multidirectional Transformations and
Synchronisations (Dagstuhl Seminar 18491)' Dagstuhl Reports, vol. 8, no. 12, pp. 1-48. DOI:
10.4230/DagRep.8.12.1

Digital Object Identifier (DOI):
10.4230/DagRep.8.12.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Dagstuhl Reports

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2019

https://doi.org/10.4230/DagRep.8.12.1
https://www.research.ed.ac.uk/portal/en/publications/multidirectional-transformations-and-synchronisations-dagstuhl-seminar-18491(4ab400f6-81f7-45e1-996b-2c6b1c118776).html

Report from Dagstuhl Seminar 18491

Multidirectional Transformations and Synchronisations
Edited by
Anthony Cleve1, Ekkart Kindler2, Perdita Stevens3, and
Vadim Zaytsev4

1 University of Namur, BE, anthony.cleve@unamur.be
2 Technical University of Denmark, DK, ekki@dtu.dk
3 University of Edinburgh, GB, perdita.stevens@ed.ac.uk
4 Raincode Labs, BE, vadim@grammarware.net

Abstract
Bidirectional transformations (bx) are a mechanism for maintaining the consistency of two (or
more) related sources of information, such as models in model-driven development, database
schemas, or programs. Bx technologies have been developed for practical engineering purposes in
many diverse fields. Different disciplines such as programming languages, graph transformations,
software engineering, and databases have contributed to the concepts and theory of bx.

However, so far, most efforts have been focused on the case where exactly two information
sources must be kept consistent; the case of more than two has usually been considered as an
afterthought. In many practical scenarios, it is essential to work with more than two information
sources, but the community has hardly started to identify and address the research challenges
that this brings.

Driven by the practical needs and usage scenarios from industry, this Dagstuhl Seminar
aimed to identify the challenges, issues and open research problems for multidirectional model
transformations and synchronisations and sketch a road map for developing relevant concepts,
theories and tools.

The report contains an executive summary of the seminar, reports from its working groups,
as well as descriptions of industrial and academic case studies that motivated the discussions.

Seminar December 2–7, 2018 – http://www.dagstuhl.de/18491
2012 ACM Subject Classification Information systems → Extraction, transformation and load-

ingSoftware and its engineering → Synchronization
Keywords and phrases bidirectional transformation, synchronisation
Digital Object Identifier 10.4230/DagRep.8.12.1

1 Executive Summary

Perdita Stevens (University of Edinburgh, GB)
Ekkart Kindler (Technical University of Denmark, DK)

License Creative Commons BY 3.0 Unported license
© Perdita Stevens, Ekkart Kindler

The Dagstuhl Seminar on “Multidirectional Transformations and Synchronisations” was
the latest on a sequence of events [1] (coordinated by the Bx Steering Committee [2]) on
bidirectional transformations (abbreviated bx) and related topics. Broadly speaking, the
concern of the growing community interested in this topic is the maintenance of consistency
between multiple data sources, in the presence of change that may affect any of them. The
focus of this Dagstuhl meeting, in particular, was the special issues that arise when one

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Multidirectional Transformations and Synchronisations, Dagstuhl Reports, Vol. 8, Issue 12, pp. 1–48
Editors: Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/18491
http://dx.doi.org/10.4230/DagRep.8.12.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 18491 – Multidirectional Transformations and Synchronisations

considers more than two data sources at one time. Technical definitions of bx have always
allowed for there to be more than two, but in practice, most work to date has focused
on maintaining consistency between two data sources. We abbreviate “multidirectional
transformation”, hereinafter and generally, to multx or mx1.

We began the week with a presentation of case studies and introductory tutorials, and
towards the end of the week we had several plenary talks, in cases where someone was able to
discuss work that seemed likely to be of general interest. Overall, though, this was a highly
interactive Dagstuhl: most of our time during the week was spent either in working groups or,
synergistically, discussing in plenary session the outcomes of those working groups and what
else needed to be addressed. Reports from each of those working groups, and descriptions
of the case studies, are found in the body of this report. Here we briefly introduce them.
Inevitably, the topics of the groups overlapped, and some topics that were proposed for
working groups were not reached during the week. We encouraged participants to move
freely between groups to foster cross-fertilisation of ideas. The names given are those of the
authors of the brief reports. Collectively, these topics comprise a research roadmap for the
subject.

WG1: Whether Networks of Bidirectional Transformations Suffice for Multidirectional
Transformations.
This group began what turned out to be a recurring theme of the week: see below.
WG2: Partial Consistency Notions.
This relates to handling situations in which consistency is not perfectly restored, but only
improved to some extent.
WG3: Semantics of Multidirectional Transformations.
This group raised questions about definitions of syntactic and semantic consistencies,
vertical and horizontal propagation, etc. After creating enough awareness of the import-
ance of this topic, the working group dissolved and its efforts were merged into others, in
particular WG4, WG8 and WG12.
WG4: Multiple Interacting Bidirectional Transformations.
This group started with an intention of providing a good example of a “truly” multidirec-
tional transformation and defined scenarios where several multx and bx work together
towards restoring consitency.
WG5: Mathematical Backgrounds for Multidirectional Transformations.
Following on from WG1, this group considered, from a theoretical perspective, handling
multx by the use of a common “federated” supermodel related by spans of asymmetric
lenses.
WG6: Synchronisation Policy.
Separate from the issue of what the mechanism is to restore consistency, when should the
mechanism be used, and whose decides that?
WG7: Use Cases and the Definition of Multidirectional Transformations.
When are multx really necessary in practice, and how?
WG8: Human Factors: Interests of Transformation Developers and Users.
Sometimes in our focus on technical aspects we lose the human element – who are the
humans involved and what do they need from whatever languages, tools and techniques
are developed for multx?
WG9: Provenance in Multidirectional Transformations.

1 Consensus on just one of those two options was not achieved by this workshop!

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 3

Information about what changed and why – provenance and traceability – are crucial to
trust in multx; how can that information be provided and handled?
WG10: Living in the Feet of the Span.
Following on from WG1 and WG5: what happens when one conceptually uses a common
supermodel, but does not wish to materialise it?
WG11: Programming Languages for Multidirectional Transformations.
This group discussed the challenges that need to be met to produce such languages, with
a focus on their type systems.
WG12: Verification and Validation of Multidirectional Transformations.
What needs to be verified or validated about multx, and in what ways do these needs
challenge the state of the art in verification and validation?

A recurring theme of the week, turning up in one guise or another in most of the working
groups, was the question of the extent to which excellent solutions to the two-source bx
problems would, or would not, automatically solve the multx problems. Do problems involving
multx really introduce new issues, or are they just more complicated than problems involving
bx, perhaps organised in networks? The bx problem is far from solved – we do not yet, for
example, have widely adopted and well-supported specialist bx languages – and so there was
some feeling that we lacked a firm foundation on which to address multx. More positively,
considering multx has the potential to help bx research make progress, by motivating areas
that still require more study in order to support the multx case. For example, heterogeneity
of the languages in which the data sources and the changes to them are expressed clearly
points to a need for bx, and hence multx, approaches that do not need to materialise edit
histories for all the sources, nor a common supermodel for them – even if the theory that
addresses them might still call on such things conceptually.

The following case study descriptions are also included in the report:
Multidirectional Transformations for Microservices
Multidirectionality in Compiler Testing
Bringing Harmony to the Web
A Health Informatics Scenario

Perhaps the most important observation from this Dagstuhl meeting, though, is how
broad the scope of the research necessary to address multx concerns is. The issues and
examples discussed by participants went far beyond multidirectional versions of issues and
examples already raised in earlier bx meetings. For example, microservices, the focus of the
case study presented by Albert Zündorf (§4.1), would not traditionally have fallen under the
bx umbrella, yet is clearly related.

This widening of scope is natural. As IT systems become more interdependent and
more important to our everyday lives, it is inevitable that data, and the (often separately
developed) behaviour it supports, reside in many places. They are coupled, in the sense
that changes in one place may mean that changes in another place are necessary, in order to
maintain all of these systems in useful operation. Making all such changes manually does not
scale: some degree of automated maintenance of consistency is inevitably required. Multx
thus subsumes much of software engineering and inherits its concerns.

Readers of this document may wish to join the Bx community by subscribing to its
mailing list and/or consulting the Bx wiki: see http://bx-community.wikidot.com/start.
There is also a catalogue of examples of bx and multx, including some that were discussed at
this Dagstuhl [3].

18491

http://bx-community.wikidot.com/start

4 18491 – Multidirectional Transformations and Synchronisations

References
1 Bidirectional Transformations Wiki: Bx Events, http://bx-community.wikidot.com/

bx-events, 2012.
2 Bidirectional Transformations Wiki: Bx Steering Committee, http://bx-community.

wikidot.com/bx-steering-committee, 2012.
3 Bidirectional Transformations Wiki: List of pages tagged with multxdagstuhl, http:

//bx-community.wikidot.com/system:page-tags/tag/multxdagstuhl, 2018.

http://bx-community.wikidot.com/bx-events
http://bx-community.wikidot.com/bx-events
http://bx-community.wikidot.com/bx-steering-committee
http://bx-community.wikidot.com/bx-steering-committee
http://bx-community.wikidot.com/system:page-tags/tag/multxdagstuhl
http://bx-community.wikidot.com/system:page-tags/tag/multxdagstuhl

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 5

2 Table of Contents

Executive Summary
Perdita Stevens, Ekkart Kindler . 1

Working Groups

WG1: Whether Networks of Bidirectional Transformations Suffice for Multidirec-
tional Transformations
Michael Johnson . 6
WG2: Partial Consistency Notions
Anthony Anjorin, Anthony Cleve, Sebastian Copei, Zinovy Diskin, Jeremy Gibbons,
Hsiang-Shang Ko, Nuno Macedo, James McKinna, Andy Schürr, Bran V. Selic,
Perdita Stevens, Jens Holger Weber, and Nils Weidmann 8
WG4: Multiple Interacting Bidirectional Transformations
Holger Giese, Gabor Karsai, and Vadim Zaytsev 10
WG5: Mathematical Backgrounds for Multidirectional Transformations
Hsiang-Shang Ko . 12
WG6: Synchronisation Policy
Jeremy Gibbons and James McKinna . 13
WG7: Use Cases and the Definition of Multidirectional Transformations
Fiona A.C. Polack, Anthony Cleve, Davide Di Ruscio, and Martin Gogolla 14
WG8: Human Factors: Interests of Transformation Developers and Users
Matthias Tichy and Heiko Klare . 16
WG9: Provenance in Multidirectional Transformations
Nils Weidmann . 21
WG10: Living in the Feet of the Span
Jeremy Gibbons and Michael Johnson . 21
WG11: Programming Languages for Multidirectional Transformations
Kazutaka Matsuda, James Cheney, and Soichiro Hidaka 23
WG12: Verification and Validation of Multidirectional Transformations
Perdita Stevens . 25

Case Studies

Multidirectional Transformations for Microservices
Sebastian Copei, Marco Sälzer and Albert Zündorf 26
Multidirectionality in Compiler Testing
Vadim Zaytsev . 42
Bringing Harmony to the Web
James Cheney . 43
A Health Informatics Scenario
Harald König . 46

Participants . 48

18491

6 18491 – Multidirectional Transformations and Synchronisations

3 Working Groups

3.1 WG1: Whether Networks of Bidirectional Transformations Suffice
for Multidirectional Transformations

Michael Johnson (Macquarie University, AU)

License Creative Commons BY 3.0 Unported license
© Michael Johnson

Introduction

A fundamental question about multx, which can be asked even before structures for multi-
directional transformations have been precisely defined, is whether a new contentful notion
of multidirectional transformations is necessary, or whether its intended outcomes can be
achieved with interlinked bidirectional transformations forming something that might be
called a network of bidirectional transformations. Accordingly, Working Group 1 was allocated
this question.

On Stevens’ counterexample

One answer to this question had already been proposed by Stevens [4] who presented an
example of a ternary relation R on sets A, B and C which cannot be defined by any collection
of binary relations among the three sets. Thus if R were the consistency relation for a
multidirectional transformation among A, B and C, then no collection of bidirectional
transformations between A, B and C, could properly maintain that consistency relation.

So, in one sense, bidirectional transformations cannot, of themselves suffice.
But it should be noted that this assumes that we restrict ourselves to bidirectional

transformations just between the three given systems, A, B and C. Of course, if we permit
ourselves to consider a fourth system, S say, then the ternary relation among A, B and C
can be obtained from binary relations, indeed functions, between S and A, S and B, and S
and C – the tabulation of the relation as a set of triples with projections onto A, B and C
provides a trivial example.

This reopens the question: Are there multidirectional transformations that cannot be
obtained from the interaction of arbitrarily many bidirectional transformations?

Working Group 1 approach

Working Group 1 decided to approach this problem by attempting again to construct an
example of a multidirectional transformation that could not be obtained from bidirectional
transformations.

A promising approach seemed to be to look for a collection of three or more systems
which would be required to satisfy an inter-model constraint that depended in a fundamental
way on the current state of all three systems. One of the working group participants, Harald
König, had already developed such an example in a health informatics scenario [2], see also
the case study later in this report (§4.4).

Working Group 1 initial outcomes

Working Group 1 developed a detailed analysis of König’s multimodel constraint with the aim
of locating the anticipated difficulties in building bidirectional transformations to support
the constraint.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 7

To our surprise, no difficulties were found. It seems that one can build sufficient complexity
into a system S which is only bidirectionally related to each of the systems A, B and C,
to encapsulate the intermodel constraint that needs to be maintained among A, B and C.
In a sense this parallels the response to Stevens’ counterexample – if we allow ourselves
to introduce extra systems, it seems possible to interact with them only via bidirectional
transformations, but to manipulate in them the multidirectional aspects of a given collection
of systems.

Work plan

These observations led to a plan of work which, with the agreement of workshop participants
over the next two days, was carried through in working groups WG5 and WG10.

Working Group 5 looked into the mathematical foundations of multidirectional trans-
formations as wide spans of bidirectional transformations (the topology that seemed in our
initial analysis to side-step the expected difficulties).

Working Group 10 was entitled “Living in the feet of the span”: It was premised
on the thought that if wide spans of bidirectional transformations do suffice to capture
multidirectional transformations in principle, they might nevertheless be undesirable to
build in engineering terms. Having such wide spans as theoretical constructs helps in
the mathematical analysis of multidirectional transformations, but experience in building
transformations among systems strongly suggests that there are substantial benefits to be
obtained from co-spans [1, 3] – small systems that capture the essential shared data among
other systems, rather than spans which seem to correspond to large federated systems of
systems. Working Group 10 would therefore analyse the interactions needed between the
extant systems to efficiently build the multidirectional transformation that might theoretically
be described by a wide span.

There are separate reports from each of WG 5 (§3.4) and WG 10 (§3.9).

To what extent do networks of bx suffice?

This might be a suitable place to reflect upon the overall outcome of all three groups.
WG1: Surprisingly the explored multimodel constraint did not yield any difficulties that
carried us beyond bx.

WG5: Mathematical foundations based on wide spans seemed to suffice.
WG10: Several approaches to building the interactions among the feet of a wide span hold
promise.

But it is in the results of Working Group 10 that the truly multidirectional aspects resurfaced,
and they present a body of future work that should be explored by the multidirectional
transformation community.

Summary

It seems likely that networks of bidirectional transformations suffice for specifying multi-
directional transformations and analysing some of their properties.
Indeed, wide spans of bidirectional transformations seem able to capture at least a wide
range of multidirectional transformations
But engineering such multidirectional transformations among extant systems in a minim-
ally invasive and reasonably efficient manner raises the kinds of questions that present a
body of work for future consideration by the multidirectional transformation community
including questions such as

18491

8 18491 – Multidirectional Transformations and Synchronisations

Atomicity
Concurrency
Sequentialisation
Side effects, and, in particular
Intermodel constraints – the problems that began Working Group 1’s deliberations may
necessitate cross model querying in calculating how to complete what would otherwise
be a propagation in a standard bidirectional transformation such as a symmetric lens.

References
1 S. Copei and A. Zündorf. MX for Microservices. https://materials.dagstuhl.de/files/18/

18491/18491.SWM.Preprint.pdf, 2018. See also §4.1.
2 H. König. Commonality Specifications, Merged Models, and Partial Morphisms (slides).

https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf.
Example in the BX Repository at http://bx-community.wikidot.com/examples:
patientappointmentbloodtest, 2018. See also §4.4

3 M. Johnson and R. Rosebrugh. Cospans and symmetric lenses. Conference Companion
of the 2nd International Conference on Art, Science, and Engineering of Programming.
pp. 21–29. https://doi.org/10.1145/3191697.3191717, 2018.

4 P. Stevens. Bidirectional Transformations In The Large. 20th International Conference
on Model Driven Engineering Languages and Systems (MoDELS), ACM/IEEE, pp. 1–11.
https://doi.org/10.1109/MODELS.2017.8, 2017.

3.2 WG2: Partial Consistency Notions
Anthony Anjorin (Universität Paderborn, DE), Anthony Cleve (University of Namur, BE),
Sebastian Copei (Universität Kassel, DE), Zinovy Diskin (McMaster University, CA), Jeremy
Gibbons (University of Oxford, GB), Hsiang-Shang Ko (National Institute of Informatics,
JP), Nuno Macedo (University of Minho, PT), James McKinna (University of Edinburgh,
GB), Andy Schürr (TU Darmstadt, DE), Bran V. Selic (Malina Software Corp., CA), Perdita
Stevens (University of Edinburgh, GB), Jens Holger Weber (University of Victoria, CA),
and Nils Weidmann (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Anthony Anjorin, Anthony Cleve, Sebastian Copei, Zinovy Diskin, Jeremy Gibbons,
Hsiang-Shang Ko, Nuno Macedo, James McKinna, Andy Schürr, Bran V. Selic, Perdita Stevens,
Jens Holger Weber, and Nils Weidmann

This working group discussed partial consistency for multx. We spent most of our time
discussing different reasons why partial consistency is relevant, especially in a multx setting.
Each of these “dimensions” explained in the following is not only a source of motivation for
supporting some notion of partial consistency, but also represents an initial understanding of
what partial consistency could mean to different people:

Generalising the way we measure and represent the “value” of consistency. Especially in
a bx network representing a multx, there can be local as well as global measures of
consistency. The “consistency as a surface” metaphor/model deliberately draws an
analogy with continuous dynamic systems, and their differential geometry [1]; the type-
theoretic account [2] emphasises a proof-relevant account of consistency. Each attempts
to expand our notion of “how consistency is measured” beyond a mere tt/ff distinction.
Stevens [3] has explicitly considered partial consistency as measured lattice-theoretically;

https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf
https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf
https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
https://doi.org/10.1145/3191697.3191717
https://doi.org/10.1109/MODELS.2017.8
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 9

other models, in metric spaces, try to capture the ‘least’ness of ‘least change’. In all cases,
being able to “measure” consistency in some way implies a notion of partial consistency
ranging from inconsistent to fully consistent.

An approximated, simplified, or incomplete notion of consistency can be viewed as an
emergent, provisional property of a modelling/development process. Especially in a multx
context, it might even be crucial (from an engineering point of view) to be able to develop
the multx incrementally and iteratively, producing, for example, an ordered collection
of restorers going from very tolerant to strict as the development process matures and
eventually concludes. To be able to work with and test the provisional versions of the
multx, therefore, some form of partiality is necessary, e.g., this or that “part” of the
models is not yet fully covered.

Accomodating a process where consistency can only be observed (and enforced) at specific
synchronisation points requires a means of tolerating continued model evolution in the
presence of (unobserved) “inconsistency” and thus partial consistency. Especially in a
multx setting, conflicts must be allowed as concurrent updates are unavoidable. It might
also be possible to check for local consistency after every change, while global checks can
only be conducted, e.g., when everyone else checks in a final version of their models at
some agreed upon point in time.

Enabling a decomposition of consistency restoration into phases or parts can be useful.
Examples include restoring consistency for more “important”, or the “simplest”, non-
contentious parts first. This might not only be necessary to make consistency restoration
feasible in a practical setting, but can also be used to simplify an integration with an
external component (a user, an optimiser, etc), as these parts can be postponed until
the external component provides the required input. As with all other dimensions, such
a staggered form of consistency restoration requires being able to handle (temporary)
inconsistencies (and thus partial consistency).

The working group concluded by briefly discussing what can constitute an inconsistency.
The general consensus was that this can be very different, depending on the approach used to
define consistency; It can range from (i) a violation of a constraint, (ii) a violation of a rule
application due to deletion of context or violation of application conditions, (iii) existence of
structure not described by any rule, or (iv) values that are not in the domain of a restorer.

References
1 Anthony Anjorin. An Introduction to Triple Graph Grammars as an Implementation of the

Delta-Lens Framework, Tutorial Lectures of the International Summer School on Bidirec-
tional Transformations, pp. 29–72, https://doi.org/10.1007/978-3-319-79108-1_2, 2016.

2 James McKinna. Complements Witness Consistency, Proceedings of the 5th International
Workshop on Bidirectional Transformations (BX), pp. 90–94, http://ceur-ws.org/Vol-1571/
paper_10.pdf, 2016.

3 Perdita Stevens. Bidirectionally Tolerating Inconsistency: Partial Transformations, Pro-
ceedings of the 17th International Conference on Fundamental Approaches to Software
Engineering (FASE), pp. 32–46, https://doi.org/10.1007/978-3-642-54804-8_3, 2014.

18491

https://doi.org/10.1007/978-3-319-79108-1_2
http://ceur-ws.org/Vol-1571/paper_10.pdf
http://ceur-ws.org/Vol-1571/paper_10.pdf
https://doi.org/10.1007/978-3-642-54804-8_3

10 18491 – Multidirectional Transformations and Synchronisations

3.3 WG4: Multiple Interacting Bidirectional Transformations
Holger Giese (Hasso-Plattner-Institut, DE), and Gabor Karsai (Vanderbilt University, US),
and Vadim Zaytsev (Raincode Labs, BE)

License Creative Commons BY 3.0 Unported license
© Holger Giese, Gabor Karsai, and Vadim Zaytsev

Most of the work of the working group was shaped, motivated and conceptually linked to
two case studies presented earlier during the week of the seminar: the cyber-physical system
case study by Holger Giese (cf. [2]) and the compiler case study by Vadim Zaytsev (§4.2,
also cf. [3]).

It seemed to us during the numerous discussions that syntactic consistency (achievable
with bx) can be viewed as a precondition for enforcing some more global constraints (name
uniqueness, deadlock freedom, simulation, model checking, etc.) with multx. This idea could
potentially serve as a framework to combine bx and multx into one network. Whether this
or another composition framework should be used in the future, it should be related to the
scheme proposed earlier in 2018 by Diskin, König and Lawford [1].

3.3.1 Taxonomy

During one of the sessions the working group has sketched a taxonomy that can be, with
sufficient domain research and linking to existing literature, worked on in the future and
expanded into a real taxonomy of multidirectional transformations.

Arity (of multx)
1 (internal consistency)
2 (bx)
> 2 (“true” multx)

Model relations/hierarchy
List or sequence
Tree
DAG
Graph
Hypergraph

Consistency
Representation
Structural consistency (“syntax”)
Behavioural consistency (“dynamic semantics”)
Static semantics

Versioning
Change action

Central
Distributed

Megamodel of multx
Authority
Conflict resolution
Policy or strategy

Lossy
Preserving

Precondition
bx–multx
multx–bx

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 11

3.3.2 Case Study

In an attempt to come up with a simpler case study that would still be capable of serving
as an example to demonstrate, we came up with the following. (NB: it was technically
impossible to design a truly simple scenario because truly simple scenarios are handled by bx
and other simpler frameworks and do not require multx).

Our domain is that of vending machines. The entity we would like to model, is of a
machine serving coffee and tea: when enough coins are inserted, and a choice is made by
pressing the right button, the machine produces the desired beverage to the best of its ability.
Consider three models: L, P and S.

L is a labelled transition system. Its metamodel concerns states and transitions between
them, with labels attached to both. L is good at modelling such aspects of the system as
various kinds of buttons that the machine may have, as well as consequences of activating
them. We also assume the labels have a way of representing sending and receiving messages
if buttons are to be understood as channels.

P is a Petri net. Its metamodel concerns places, transitions, arcs between them and
tokens that show which transitions can be fired according to the number of incoming arcs
matched against the number of available tokens. P is good at modelling counting of all kinds,
such as the number of inserted coins or the number of servings of coffee that can be made
from available coffee beans before the machine needs to be refilled.

S is a sequence diagram. Its metamodel concerns lifelines, agents, messages and their
relative timings. S is good at modelling sequences of events without knowing the internal
workings of involved agents. It can represent either valid scenarios of combining L and P ,
or invalid ones, or even constraints such as “there should always be a beverage served after
requesting it”. In general, L ‖ P |= S.

Tasks that are naturally implementable with bx, are of syntactic nature: for example, if
one is to edit L to add new actions, such changes need to be propagated to P . Such a bx
will contain, among other things, the alignment in the sense of matching elements of L to
elements of P , name-based or otherwise.

Tasks that cannot be handled naturally and gracefully by bx, are global and behavioural:
for example, simulating execution of L in parallel with P to see if they are capable of
producing the sequence of events specified by S.

References
1 Zinovy Diskin, Harald König, Mark Lawford. Multiple Model Synchronization with Mul-

tiary Delta Lenses, Proceedings of the 21st International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), LNCS 10802, pp. 21–37, https://doi.org/10.
1007/978-3-319-89363-1_2, Springer, 2018.

2 Holger Giese, Bernhard Rumpe, Bernhard Schätz, Janos Sztipanovits. Science and En-
gineering of Cyber-Physical Systems, Dagstuhl Seminar 11441. Dagstuhl Reports 1(11),
https://doi.org/10.4230/DagRep.1.11.1, 2011.

3 Vadim Zaytsev. An Industrial Case Study in Compiler Testing. Proceedings of the 11th
International Conference on Software Language Engineering (SLE), pp. 97–102, ACM,
https://doi.org/10.1145/3276604.3276619, 2018.

18491

https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.4230/DagRep.1.11.1
https://doi.org/10.1145/3276604.3276619

12 18491 – Multidirectional Transformations and Synchronisations

3.4 WG5: Mathematical Backgrounds for Multidirectional
Transformations

Hsiang-Shang Ko (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Hsiang-Shang Ko

Continuing with Harald König’s example (§4.4) about medical record systems from Working
Group 1, this working group discussed the idea of modelling multidirectional transformations
(multx) using a (wide) span of asymmetric lenses, treating systems/models to be synchronised
as views of a federated model incorporating all data in the relevant models and multiary
inter-model constraints. The aim (also inherited from Group 1) was to explore to what extent
multiary constraints can be handled using this span of lenses. It was emphasised a few times
during the session that the span, in particular the federated model, which is monolithic and
possibly gigantic, does not need to be actually constructed, and exists mainly for theoretical
purposes, namely providing a space where reasoning about the whole system can happen.
Some possible ways to avoid constructing the span were subsequently discussed in Working
Group 10, whose participants were mostly from this group.

The group first spent some time recapping and clarifying the medical system example,
which involved three models respectively responsible for bed assignments to patients (M1),
appointments for patients to meet doctors (M2), and blood tests taken by patients (M3).
There was a ternary inter-model constraint: “any patient who is assigned a bed (in M1) and
has a severe blood test (in M3) must have an appointment (in M2)”. The federated space
could then be constructed by merging the three models, making them share the same list of
patients, and adding some auxiliary queries that find all patients assigned a bed and having a
severe blood test (henceforth “qualifying patients”) so that the constraint can be formulated,
checked, etc. Quite a few remarks were made about making the models more precise and
comparing their categorical representation with UML, but these remarks did not directly
affect the rest of the session.

We went on to discuss the behaviour of putting an updated model into the federated
model, and an interesting case was the put transformation for M2 (where appointments are
managed). It is easy to add an appointment, whereas deleting an appointment is potentially
dangerous since that could be the only remaining appointment for a qualifying patient,
violating the constraint. One way to avoid the danger is to forbid deletion of appointments,
but Zinovy Diskin’s plenary talk on multiary delta lenses [1], in particular the idea of reflective
updates, inspired a new solution: further modifying M2 by making a new appointment for the
patient. While this opened up a new possibility, some were worried about how to establish
the new set of properties of multiary delta lenses and potential consequences of losing the
old and fundamental well-behavedness properties (PutGet for example).

The session closed with some general remarks: we may not have the luxury to add an
extra federated model, but on the other hand some kind of external solution is necessary
when existing models/systems cannot be modified. We also started to think about avoiding
the construction of the span, for example by maintaining the list of qualifying patients in M2,
whose put needs the list to determine whether the constraint is satisfied and what to do. A
more thorough discussion continued in Working Group 10.

References
1 Zinovy Diskin, Harald König, Mark Lawford. Multiple Model Synchronization with Mul-

tiary Delta Lenses, Proceedings of the 21st International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), LNCS 10802, pp. 21–37, https://doi.org/10.
1007/978-3-319-89363-1_2, Springer, 2018.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.1007/978-3-319-89363-1_2

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 13

3.5 WG6: Synchronisation Policy
Jeremy Gibbons (University of Oxford, GB) and James McKinna (University of Edinburgh,
GB)

License Creative Commons BY 3.0 Unported license
© Jeremy Gibbons and James McKinna

This working group discussed synchronisation policy for transformations—that is, considera-
tion of whose responsibility it is to decide to restore consistency, when that should be done,
and which participants should be considered authoritative and which should be updated.
(In particular, we did not mean the question of how to choose between different options
for restoring consistency when required to do so, which is sometimes also referred to as a
“policy”.)

One might take version control systems as an illustrative example: the man page for
git describes which commands are available and what they do, but a novice user needs
a separate tutorial that explains recommended patterns of use for the tool, and typical
workflows. A developer working on one part of a shared system might legitimately not
wish to get interrupted while “in the flow” of coding in order to mentally process repeated
synchronisation of updates from other parts of the system. Similarly, Stevens [1] recommends
that build systems for megamodels should be demand-driven, rather than attempting global
consistency restoration. As another analogy, James Cheney pointed out that the field of
computer security distinguishes between policy (what security properties to achieve) and
mechanism (how to achieve them).

The group spent some time discussing a number of existing studies and problems. Zinovy
Diskin described a taxonomy of 44 distinct bx synchronisation patterns [2]. Josh Ko
described a problem of coordinated consistency restoration when reconciling refactorings
of communication protocols and their abstractions as session types [3]. Albert Zündorf
showed how to express Harald König’s health informatics scenario [4] using synchronisation
based on event-driven programming [5]. (The latter two might be viewed in terms of
cospans of asymmetric lenses, synchronising on a communication channel that represents the
information shared between two parties.) Jens Weber observed that messaging applications
in complex environments (specifically, hospital information systems) absolutely need to
manage their inbox, and want to have routine messages batched up for efficient handling, only
synchronising immediately on truly urgent messages. The following day, Anthony Anjorin
described some consistency management scenarios based on examples from the industry
automation domain [6], which were also essentially synchronisation policies.

Most of our discussion applied as much to bidirectional transformations as to multi-
directional. But the landscape of options for synchronisation is much more interesting for
multidirectional transformations than for bidirectional, because there are more degrees of
freedom. For one, there is a question of how many participants to fix, and how many
may change in order to restore consistency; it is not all-or-nothing. For a second, one
need not restore consistency among all participants at once; there is a non-trivial choice
of schedules—perhaps one design approach for a multx language would be integrate a bx
language for one-to-one transformations with a process algebra for coordination. For a third,
whereas it makes sense to compose multiple spans of asymmetric lenses into a single wide
span, it does not make sense to compose multiple cospans of lenses into a single cospan—the
former represents the “union” of all data sources, and the latter their “intersection”, which is
typically empty.

18491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 18491 – Multidirectional Transformations and Synchronisations

References
1 Perdita Stevens. Towards Sound, Optimal, and Flexible Building from Megamodels. MoD-

ELS, p. 301–311, https://doi.org/10.1145/3239372.3239378, 2018.
2 Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki. A Three-

Dimensional Taxonomy for Bidirectional Model Synchronization. Journal of Systems and
Software 111:298–322, https://doi.org/10.1016/j.jss.2015.06.003, 2016.

3 Liye Guo, Hsiang-Shang Ko, Keigo Imai, Nobuko Yoshida, and Zhenjiang Hu. Towards Bi-
directional Synchronization between Communicating Processes and Session Types. Second
Workshop on Software Foundations for Data Interoperability (SFDI), 2019.

4 Harald König. Commonality Specifications, Merged Models, and Partial Morph-
isms (slides). https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.
Slides.pdf (2018). Example in the BX Repository at http://bx-community.wikidot.com/
examples:patientappointmentbloodtest.

5 Sebastian Copei and Albert Zündorf. MX for Microservices.
https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf, 2018.

6 Anthony Anjorin, Enes Yigitbas, Erhan Leblebici, Andy Schürr, Marius Lauder, and Martin
Witte. Description Languages for Consistency Management Scenarios Based on Examples
from the Industry Automation Domain. Programming Journal 2(3):7, https://doi.org/10.
22152/programming-journal.org/2018/2/7, 2018.

3.6 WG7: Use Cases and the Definition of Multidirectional
Transformations

Fiona A.C. Polack (Keele University, GB), Anthony Cleve (University of Namur, BE),
Davide Di Ruscio (University of L’Aquila, IT), and Martin Gogolla (Universität Bremen,
DE)

License Creative Commons BY 3.0 Unported license
© Fiona A. C. Polack, Anthony Cleve, Davide Di Ruscio, and Martin Gogolla

In practical terms, multiple models (in the widest sense) are used to simplify — either
because it is not possible, or because it is not efficient, to capture what is required in one
notation, view, tool, etc.

When more than one representation is used, information is lost. That information is
needed to establish or maintain consistency. In one sense, the technical debt incurred
in decomposing into multiple models must be repaid, at least in part, when establishing
cross-model features such as consistency.

We hypothesised that there are two sorts of case:
A network of bx can be used if (likely only if) all the information needed to establish a
particular feature (e.g. a specific form of consistency) is held in within the two linked
models – we think this is the situation that Zinovy Diskin describes when asserting
(informally) that multx are strictly unnecessary.
A multx is needed when the information necessary to establish the desired feature is held
separately from the two models between which the feature must be established.

Horizon 2020 project Typhon [1] has the example of a distributed data storage system. A
single conceptual model (CM) links to many different components including relational and
no-SQL databases, file stores, etc. Each component has its own logical schema (LSi) using
the internal concepts of that component (e.g. relational db; relational schema; rdb tables,
rdbms types and operations). There is a bx between each LSi and CM , which maintains

https://doi.org/10.1145/3239372.3239378
https://doi.org/10.1016/j.jss.2015.06.003
https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf
https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf
https://doi.org/10.22152/programming-journal.org/2018/2/7
https://doi.org/10.22152/programming-journal.org/2018/2/7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 15

Figure 1 The conceptual model and logical schemata in Typhon [2].

consistency between CM and LSi. However, to determine whether pairs or triples (up to all
LSi) of LSi are consistent requires reference to the CM , which abstracts the relationships
between all concepts. Thus, consistency between LS1 and LS2 references CM to establish
how concepts in each LSi are related in the overall system. This is a multx.

Albert’s micro-system (§4.1) could be interpreted similarly. However, Albert’s problem
required that other notions of consistency be established. For example, protocols defined by
outside committees or people needed to be enforced by both software (micro services based
on customer oriented views and the “databases” that hold the specific data). It did not
seem to be possible to define how overall consistency could be maintained because it was not
possible / feasible to establish how the non-software components could become or maintain
mutual consistency (i.e. where people change linked policies in such a way that software no
longer correctly enforces both parts of the pair). Whilst some desired consistency elements
could be multx-enforced because they could be expressed as constraints over the language(s)
of the software-related models, it was not possible to express all the desired consistency in
the same (set of) language.

Comparing the two examples, we see that the definition of the desired “feature” is critical.
In real cases, the third element (which we called the black box, simply because it was drawn
using a black pen) might be a collection of different, likely incompatible, boxes. It might also
include the need for a person or human role to make a choice or resolve an inconsistency. The
box (or collection of boxes) might also capture a synchronisation policy (human or logical).

Finally, we recognised that the black box – the multi part of the multx – was not, in
practice, fixed. Even in the case of stable models, it is possible that new forms of consistency
that need to be (re)established would be identified – for component models might have
an element that is not obviously expressing the same “thing”, but which is subsequently
recognised as having a dependency or other constraint-expressive relationship that must
be maintained. In real systems, it is also the case that the black boxes change over time.
For instance, the complex multi-way relationship between a programming language and
machine code would once have been a (or many) bx and multx, but has been replaced by a bx
model called a compiler. There is an open question concerning whether a black box element
is consistent with the element(s) that is replaces: is the set of rules defining compilation
consistent with the behaviour of the new compiler, and if not, what are the consistency
consequences elsewhere in the collection of models?

18491

16 18491 – Multidirectional Transformations and Synchronisations

References
1 Typhon: Polyglot and Hybrid Persistence Architectures for Big Data Analytics, https:

//www.typhon-project.org/, 2018.
2 Davide Di Ruscio, Fiona A.C. Polack, Martin Gogolla, Anthony Cleve, Dominique Blouin,

Nuno Macedo. Conceptual Schema to Multiple Logical Schemas, http://bx-community.
wikidot.com/examples:conceptualschematomultiplelogicalschemas, 2019.

3.7 WG8: Human Factors: Interests of Transformation Developers and
Users

Matthias Tichy (Universität Ulm, DE) and Heiko Klare (Karlsruhe Institute of Technology,
DE)

License Creative Commons BY 3.0 Unported license
© Matthias Tichy and Heiko Klare

3.7.1 Taxonomy

In order to provide a common terminology around the challenges w.r.t. users of multidirec-
tional transformations, we derived a taxonomy. The taxonomy covers the following (not
complete) set of aspects:

Different roles of users, e.g.:

Developer of a transformation
User of a modelling tool
Developer of a modelling language and corresponding tool
Developer of other aspects, e.g., Requirements Engineering, Architecture
Domain expert

Person characteristics

Experience
Knowledge

Processes

Tool Development
Model Development

Quality Attributes

Ease of Use
Expressive Power
Comprehensibility

Justification
Teaching
Understanding
Capability of Change
Number of people (individuals vs. group)

Learnability

https://www.typhon-project.org/
https://www.typhon-project.org/
http://bx-community.wikidot.com/examples:conceptualschematomultiplelogicalschemas
http://bx-community.wikidot.com/examples:conceptualschematomultiplelogicalschemas
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 17

*X-Req *X-Script

MM1

MM2

M1

M2 M*

MM*

Domain Expert

MX Developer Tool User
(M1 or M2)

Requirements
Engineering Formalization Execution

refers to

refers to

refers to

refers to

conforms to

conforms to

conforms to

Figure 2 Roles and artefacts involved in a consistency scenario for two or more types of models.

Artefacts

Transformation Script
Transformation Language
∗ Declarative
∗ Operational
Transformation Engine

Domain-specific Language
Syntax
Semantics

Model

For example, we have to distinguish between the developer of a modelling language, the
developer of a model transformation, and the developer of other aspects of a modelling tool,
as well as the user of the tool. Experience and knowledge of the different users w.r.t. to the
domain, the modelling tool, and the modelled system also have to be considered.

Figure 2 shows the roles and artefacts involved in a scenario, in which two or more types
of models shall be kept consistent with a bidirectional or multidirectional transformation
(referred to as *X), according to the previously introduced taxonomy. Given two model
types MM1 and MM2, a domain expert acquires the consistency relations between them
in a requirements elicitation process, leading to the requirements artefact *X-Req. An
*X-Developer then formalizes these requirements for a specific *X-Language. This leads to an
*X-Script, i.e., a transformation specification for that specific *X-Language. That *X-Script
can then be executed using the *X-Engine of the *X-Language by a tool user, who develops
a model M1 or M2 (or potentially other models denoted as M*) of the model types MM1
or MM2, respectively, to check and restore consistency with a model of the other model
type(s). We discussed interests and challenges for two central user roles in this scenario: the
transformation developer, who specifies consistency in transformations, and the tool user,
who uses those transformations for preserving consistency.

18491

18 18491 – Multidirectional Transformations and Synchronisations

3.7.2 The Transformation Developer Perspective

We considered the scenario that a transformation developer wants to define a new transform-
ation *X-Script, for example between model types MM1 and MM2. Other transformations,
for example between model types MM1 and MM*, may already be defined.

The good case

In the best case, the transformation operates correctly, i.e. conforming to the requirements
in *X-Req. It also interoperates correctly with other transformations, e.g. an existing
transformation between MM1 and MM*. Such proper operation should be validated by test
cases that indicate absence of errors to the transformation developer.

The bad case

In practice, a transformation developer will make errors while specifying a transformation
*X-Script. In that case, two types of errors can occur:

*X-Script does not fulfil *X-Req: Such errors should be identified by failing test cases or
at least through feedback from a tool user who experiences erroneous behaviour.
*X-Script does not properly interoperate with other *X-Scripts (e.g. between MM1 and
MM*): Such errors can be detected during development by test cases that investigate
certain combinations of *X-Scripts, or by a tool developer who combines independently
developed *X-Scripts in a specific scenario.

In both cases, an a-priori detection of errors by analysing or testing an *X-Script should
be preferred over an a-posteriori detection by a tool user. To support the transformation
developer in finding bugs during development, he requires support by the *X-Language and
its engine to find out why consistency is not preserved correctly. This especially comprises
tracing back a failure to the origin of the change that lead to the failure (provenance).
Additionally, a transformation developer requires appropriate debugging support to step
through an *X-Script execution, just like in ordinary code development.

3.7.3 The Tool User Perspective

We considered the role of a tool user, who performs modifications in one model and executes a
transformation to detect and resolve introduced inconsistencies to other models. We identified
two different scenarios that reveal different challenges that occur when a tool user applies a
transformation. The first scenario deals with the “good case”, in which the formalization of
consistency conforms to the actual consistency relations. The second scenario deals with the
“bad case”, in which consistency relations are not properly represented in their formalization,
leading to errors during execution of the transformation. For ease of understanding, the tool
user in the following scenarios will always be responsible for M1.

The good case

We assume that *X-Req and its formalization *X-Script represent all actually existing
consistency relations that exist between the model types MM1 and MM2 (and only those).
In that case, if a user applies changes to M1, which potentially introduces an inconsistency
regarding *X-Req to M2, the execution of *X-Script has to inform the user about potential
inconsistencies, provide him information about where the specification in *X-Req is violated
and provide options on how to make the models consistent again. When the user selects
one option to restore consistency, this can be either directly applied or trigger a consistency

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 19

restoration process, in which the modification is wrapped into a change request that has to be
sent to a person that is responsible for modifications in M2. After applying the changes, they
must be stored together with the decision rationale to ensure that developers understand the
reasons for the modifications.

The bad case

In practice, *X-Req and the derived *X-Script will potentially not cover exactly those
consistency relations that actually exist between the model types MM1 and MM2. If the
tool user performs a modification in M1 that is covered completely and correctly by *X-Req
and *X-Script, then still the previously presented “good case” applies. If that case is not
correctly covered by *X-Req and *X-Script, two cases can be distinguished:
1. An inconsistency is detected by *X-Script execution, although no inconsistency exists

(false positive)
2. No inconsistency is detected by *X-Script execution, although an inconsistency exists

(false negative)

There are different reasons why this can happen:
1. *X-Req is wrong, i.e., it contains faulty consistency relations
2. *X-Script is wrong, i.e., it does not conform to *X-Req
3. *X-Req is underspecified, i.e., it does not represent all existing consistency relations
4. *X-Req is overspecified, i.e., it contains consistency relations that do actually not exist

While the first two options can lead to both false positives and false negatives, an
underspecification of *X-Req will lead to false negatives, whereas an overspecification of
*X-Req will result in false positives. Depending on the reason for the faulty inconsistency
detection, it is either necessary to fix *X-Req or to fix *X-Script. A fix of those artefacts
may take some time, as the error usually occurs when a tool user executes the *X-Script, but
the *X-Script is implemented and thus fixed by different persons, the *X-Developers. Due
to that, it will be necessary to allow a manual override of decision taken by the *X-Script
execution to prevent delays in the development process. Afterwards the user can make a
change request to have *X-Req and *X-Script updated.

3.7.4 Challenges

The scenarios reveal different challenges that require further investigation.

C1: How to deal with a lack of domain understanding of M1 tool user about changes in
M2?
The M1 tool user has knowledge about MM1 and its instances but potentially not about
other domains, especially MM2, and the relations between them. Because in general the
execution of *X-Script can only support the user in making a decision on how to restore
consistency by showing and rating potential effects or recommending options, the M1 tool
user has to make the final decision on consistency restoration to M2. It is an open challenge
how to overcome the lack of necessary knowledge to make that decision.

C2: How to integrate the *X-Script execution into organizational processes and tools?
The *X-Script execution will in general not be fully automated but involve user decisions,
even of different roles. This may lead to a complex and time-consuming process that is
even influenced by organizational processes or existing development processes. Finally, the
consistency restoration process must be integrated into theses processes and especially tooling
that supports them. It is an open challenge how this integration should be made.

18491

20 18491 – Multidirectional Transformations and Synchronisations

C3: How to deal with confidential model parts in intra-organizational settings?
Models may contain parts that are only to be seen and modified by specific roles, e.g., because
they contain confidential information. If the modification of another model requires decisions
on restoring consistency with such confidential data, it must be ensured that only people
with appropriate roles see that data and perform the appropriate decisions. It is an open
challenge how to deal with confidential data or, in general, role-based access control during
consistency restoration.

C4: When, whom and how to allow a manual override of decisions of the *X-Script execution?
Due to the fact that in practice the specification of consistency will never fully or correctly
cover the actual consistency relations, it must be possible to overwrite decision of an *X-
Script whenever they are wrong. On the other hand, it should not be possible to always
make manual overrides and completely disable the defined consistency restoration process by
*X-Script. It is an open challenge when to allow such overwrites and whether that depends
on a certain role. In addition, it is yet unclear how to make the *X-Engine deal with ad-hoc,
manual overrides of the specified consistency relations, while still preserving traceability of
consistency-restoring decisions and their rationales.

C5: How much specification of *X-Req is enough? How to support users in understanding
limitations of *X-Req and *X-Script?
The specifications of consistency relations in *X-Req and *X-Script will potentially not
cover all relations that exist between two models types MM1 and MM2, either because some
relations are missed or because they are too complex to express in an appropriate formalism.
It is an open challenge to decide how much specification is enough and especially how to
support the user in understanding the limitations of the specifications, as he has to deal with
the rest of the relations that are not specified in *X-Script. Finally, this is a cost/benefit
estimation that has to be made by the domain expert who specifies *X-Req.

C6: How to increase the trust of a tool user in the execution of *X-Script?
Due to the fact that *X-Script can be incomplete or erroneous, as discussed in the bad case
scenario, the tool user can easily lose confidence in *X-Script if failures occur too often or
are too severe. It is therefore a general challenge to increase the trust of a user in such an
*X-Script and to find general ways how to achieve that. This is highly related to identifying
the appropriate extent of a specification as discussed in challenge C5.

C7: How to deal with non-determinism w.r.t. user trust?
Non-determinism in *X-Script, e.g. due to different explanations for inconsistencies or reaching
consistency in different ways, can reduce the user trust into *X-Script. Tool users will usually
expect determinism from such an *X-Script and also assume that small differences in inputs
models should result in small differences in the target models by executing *X-Script. It is
an open challenge how to preserve user trust whenever non-determinism is inevitable or to
reduce evitable non-determinism.

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 21

3.8 WG9: Provenance in Multidirectional Transformations
Nils Weidmann (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Nils Weidmann

The role of provenance and traceability constitutes an important issue in a multx context.
Some ideas where exactly and why provenance is an interesting research topic with respect
to multx were discussed in this working group.

In the context of model-driven engineering (MDE), traceability is provided by the
correspondence model of a triple graph grammar (TGG). Seminal work on the various
roles of correspondence nodes in different TGG tools already exists. Depending on the
concrete implementation, correspondence links can be attributed, as the original formalism
does not say anything about that. However, a certain state defined by the source, target
and correspondence model is not unique, e.g. in case of confluent TGGs. Therefore, the
correspondence model itself does not provide enough traceability information. As a proof
object, an additional protocol is required that tracks the sequence of rule applications. In
the context of software engineering, the OSLC (Open Services for Lifecycle Collaboration)
standard could provide software engineers with useful ideas how to keep multiple models
consistent.

Another topic of interest is traceability in mega modeling for object-relational mapping
(ORM). It is possible to have arbitrarily nested containers, whereas it is possible to have
correspondences between those containers.

In general, traceability links provide more than a binary information about the relation
between two model elements. The concrete use cases in a multx context have to be defined,
though. On the one hand, they can be used to give evidence that some relationship exists
in an abstract sense. On the other hand, they can also be used for a special purpose like
navigation in data models. In this case, the importance of a link can be measured in terms
of how often it is used for navigation.

When restoring consistency, the multx context poses far more challenges with respect to
provenance than the binary case. The possibility of consistency restoration within one step
is a common case in bx, but very unlikely in multx situations. Therefore, versioning gets
more and more important, which means that each rule application creates a new version of
the data model.

References
1 James Cheney. Provenance – a Dagstuhl presentation, https://materials.dagstuhl.de/files/

18/18491/18491.JamesCheney1.Slides.pdf, 2018.

3.9 WG10: Living in the Feet of the Span
Jeremy Gibbons (University of Oxford, GB) and Michael Johnson (Macquarie University,
AU)

License Creative Commons BY 3.0 Unported license
© Jeremy Gibbons and Michael Johnson

This working group followed on from Group 1 discussing whether multx are necessary or
whether networks of bx suffice (§3.1), and Group 5 discussing mathematical foundations
of multx (§3.4). Those two groups had already spent some time discussing Harald König’s

18491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://materials.dagstuhl.de/files/18/18491/18491.JamesCheney1.Slides.pdf
https://materials.dagstuhl.de/files/18/18491/18491.JamesCheney1.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 18491 – Multidirectional Transformations and Synchronisations

health informatics scenario [1] (§4.4): three independent systems, M1 recording patients and
their possible assignment to beds, M2 recording appointments between patients and doctors,
and M3 recording blood tests, synchronised on the sets of patients, becoming subject to the
additional inter-model integrity constraint I that any patient assigned a bed and in receipt
of a severe test result must also have a doctor’s appointment.

In particular, as discussed in Group 5, one implementation strategy for incorporating
I into M1,M2,M3 is to build a federated system M recording all three collections of data,
with asymmetric lenses reconstructing M1,M2,M3 as views of M ; this forms a three-legged
span of lenses. Without considering I, it is easy to implement puts and gets for patients etc,
since the individual systems are just projections from the federated system. To address I
as well, puts require a bit more work: for example, when assigning a patient to a bed in
M1, if that patient already has a severe test result in M3 then they should also be given an
appointment in M2.

The particular focus in this working group was to discuss alternative implementation
strategies, in case one chooses not actually to implement M itself but simply to treat
it as a specification of the required behaviour of M1,M2,M3 and I. What alternative
implementation strategies are there? We identified four, in two groups of two:
1. modify one or more of the “feet” M1,M2,M3 of the span to implement the constraint I

(for example, in our scenario, modifying the appointments database to know about beds
and severe test results);

2. as (1), but adapt the foot by applying some kind of wrapper (a “sock”) to it rather than
modifying it;

3. add a coordinating façade component [3], which intercepts puts to the components
M1,M2,M3, and applies the additional get and put operations required to re-establish I;

4. as (3), but materialise as a separate componentM4 the queries required for re-establishing I.

Alternative (1) may be unacceptable–perhaps the components to be modified are propri-
etary systems, or otherwise unchangeable. Alternatives (1) and (2) both awkwardly duplicate
some of the logic required to implement I; in our scenario, the behaviour of M1 will need
to change to possibly create an appointment when assigning a patient to a bed, and the
behaviour of M3 similarly when recording a severe test result.

Alternative (3) entails several additional operations on the separate components to
implement a put; this at least introduces issues of atomicity and transactional updates.
Moreover, when the components M1,M2,M3 are distributed, put must be allowed to perform
I/O actions rather than being a pure function, becoming an effectful lens [4]. Alternative
(4) saves the additional queries on other components for determining what reconciliation is
required, but cannot help with the additional puts; it also introduces an additional component,
which must itself be synchronised.

References
1 Harald König. Commonality Specifications, Merged Models, and Partial Morph-

isms (slides). https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.
Slides.pdf, 2018. Example in the BX Repository at http://bx-community.wikidot.com/
examples:patientappointmentbloodtest. See also §4.4.

2 Sebastian Copei and Albert Zündorf. MX for Microservices. https://materials.dagstuhl.de/
files/18/18491/18491.SWM.Preprint.pdf, 2018. See also §4.1.

3 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

4 Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens.
Notions of Bidirectional Computation and Entangled State Monads. MPC, LNCS 9129,
pp. 187-214, https://doi.org/10.1007/978-3-319-19797-5_9, 2015.

https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf
https://materials.dagstuhl.de/files/18/18491/18491.HaraldK%C3%B6nig.Slides.pdf
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
http://bx-community.wikidot.com/examples:patientappointmentbloodtest
https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf
https://materials.dagstuhl.de/files/18/18491/18491.SWM.Preprint.pdf
https://doi.org/10.1007/978-3-319-19797-5_9

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 23

3.10 WG11: Programming Languages for Multidirectional
Transformations

Kazutaka Matsuda (Tohoku University, JP), James Cheney (University of Edinburgh, GB),
and Soichiro Hidaka (Hosei University, JP)

License Creative Commons BY 3.0 Unported license
© Kazutaka Matsuda, James Cheney, and Soichiro Hidaka

This working group has discussed language supports for multi-directional transformations,
mainly on the two topics: representation of consistency relation and coordination languages.

3.10.1 Consistency Relations by Types

A consistency relation, a relation that any updates must fulfil (after consistency resolution if
necessary), is one of the important notions in bidirectional and multi-directional transform-
ations. Thus, a representation of a consistency relation in a programming language is an
important research question.

It would be a natural idea to represent such constraints as types in a programming
language. In response to the discussions in WG 5, which discussed a category-theoretic
solution to the hospital example presented by Harald König, we have observed that a type
system must be able to represent the following constraints to handle the hospital example:

Functional dependencies and key dependencies
Join dependencies

We find that refinement types and dependent types (see Baltopoulos et al. [2] and Xi et
al. [9] for examples) would be useful for addressing the problem of representing consistency
relation. Here, by a refinement type, we mean a type refined by a predicate, such as
{a : Int | a > 0}. In a dependent type system, a type can depend on values, by special
forms of types called dependent products (also known as

∏
types) and dependent sums (also

known as
∑

types).
Among the two, a dependent sum is especially useful for representing what is called

inter-model constraints in the software engineering community. A dependent sum type∑
(a:σ) τ represent a set of pairs (u, v) such that u has type σ and v has the type obtained

from τ by replacing a by u. For example, the type
∑
a:Int{b : Int | a < b} represents a set of

pairs (a, b) of Int values satisfying a < b.
Also, it is convenient if type check can be done locally (i.e., on each component inde-

pendently for a dependent sum) instead of globally (i.e., on both components of a dependent
sum). To do so, for a dependent sum

∑
{a:A|φ(a)}{b : ψ(a, b)}, it is convenient if we can find a

weak enough constraint φ′(b) such that φ′(b) implies φ(a, b), so that we can check the global
constraint φ(a, b) only when the local check φ′(b) fails.

Thus, a research question is: can we design a refinement type system that satisfies the
above criteria? A good start would be extending the relational lens framework [3], which does
not have dependent sums but a sort of refinement types that consider functional dependencies.

As a side note, a sophisticated type system would sometimes be useful for users to give
valid updates especially when they support holes. A successful example is a dependent
programming language Agda [1], which allows users to specify a well-typed term interactively
to fill a hole with editor’s support.

18491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24 18491 – Multidirectional Transformations and Synchronisations

3.10.2 Coordination Language

One of the lessons that we have learned from this Dagstuhl seminar is that there should
be a separation of concerns, especially when we realize multi-directional transformations
by combining bidirectional transformations; one concern is how to specify bidirectional
transformations between two objects, and the other is how to use bidirectional transformations
to make a whole system in sync. So far, though there have been a lot of studies addressing
the former issue, the latter has been overlooked in the programming language context.

Thus, a research question is: how can we design a programming language for using
bidirectional transformations? It is expected that such a language should support:

describing where and when to apply bidirectional transformations (cf. synchronization
policies discussed in WG 6),
declaring datatypes for “virtual” data that do not correspond to any concrete target data
in sync, such as spans [6], and
mixing bidirectional transformations defined in different systems such as the lens [4] and
the triple graph grammar [8].

We may call this kind of languages coordination languages or strategy languages. This needs
of coordination languages may be similar to how a multi-tier programming language [7] is
about session types [5].

References
1 Agda, The Agda Wiki, https://wiki.portal.chalmers.se/agda/pmwiki.php, 2008.
2 Ioannis G. Baltopoulos, Johannes Borgström, Andrew D. Gordon: Maintaining Data-

base Integrity with Refinement Types. ECOOP, pp. 484–509, https://doi.org/10.1007/
978-3-642-22655-7_23, 2011.

3 Aaron Bohannon, Benjamin C. Pierce, Jeffrey A. Vaughan: Relational lenses: a language
for updatable views. PODS, pp. 338–347, https://doi.org/10.1145/1142351.1142399, 2006.

4 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, Alan
Schmitt: Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and Systems (TO-
PLAS), Volume 29, Number 3, p. 17, https://doi.org/10.1145/1232420.1232424, 2007.

5 Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo: Language Primitives and
Type Discipline for Structured Communication-Based Programming. ESOP, pp. 122–138,
https://doi.org/10.1007/BFb0053567, 1998.

6 Michael Johnson, Robert D. Rosebrugh: Spans of lenses. EDBT/ICDT Workshops, pp.
112–118, http://ceur-ws.org/Vol-1133/paper-18.pdf, 2014.

7 Matthias Neubauer, Peter Thiemann: From sequential programs to multi-tier applications
by program transformation. POPL, pp. 221–232, https://doi.org/10.1145/1040305.1040324,
2005.

8 Andy Schürr: Specification of Graph Translators with Triple Graph Grammars. WG, pp.
151–163, https://doi.org/10.1007/3-540-59071-4_45, 1994.

9 Hongwei Xi, Frank Pfenning: Eliminating Array Bound Checking Through Dependent
Types. PLDI, pp. 249–257, https://doi.org/10.1145/277650.277732, 1998.

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1007/978-3-642-22655-7_23
https://doi.org/10.1007/978-3-642-22655-7_23
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/BFb0053567
http://ceur-ws.org/Vol-1133/paper-18.pdf
https://doi.org/10.1145/1040305.1040324
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1145/277650.277732

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 25

3.11 WG12: Verification and Validation of Multidirectional
Transformations

Perdita Stevens (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Perdita Stevens

The purpose of this working group was to discuss issues relating to verification and validation
that will arise when multidirectional transformations (hereinafter: multx) are used.

Verification and validation of software, let alone of bx, is not a fully solved problem. We
tried to focus on the specific new issues raised by having multx as opposed to bx, but it was
hard to do so and much of what we discussed applies equally to bx.

We talked both about validating the multx themselves, and about validating their
implementations (i.e. on the assumption that the specification of the multx was clear) –
sometimes it is important to separate these. Most of our discussion focused on V&V of the
multx themselves (i.e., whether what is written in the multx formalism is what was intended
and has the properties intended, assuming that it is then “correctly” implemented according
to whatever semantics the multx formalism has).

We discussed different aspects of what we need to do, including:
Validate that the definition of consistency we have is the one we want. (Part of validating
Bx is to give examples (e.g., examples of consistent and of inconsistent model pairs). This
helps students to understand what they have written. We would expect it to extend (by
be harder) for multx.)
Verify that a particular collection of models is consistent
Verify that consistency restoration “worked” on a particular occasion – meaning not only
that the resulting set of models is consistent, but perhaps also that any intended properties
such as variants of “least change” were obeyed (see below for more on properties);
At the next level up, verify that the consistency restoration procedure embodied by a
particular bx will always work (in all the above senses). Depending on the formalism used
this might include checking that consistency restoration is a function (e.g. terminates;
for rule-based systems, is confluent).
Perhaps: at the next level up, verify that any multx written in a particular language/fol-
lowing a particular method/using a particular toolset will “work”.
Check the “ilities” of the multx, e.g.,

feasibility, both in terms of
∗ use of computing resource e.g. where a SAT solver is used – no point in defining a

multx if it can’t be applied in less than the lifetime of the universe
∗ use of human resource (e.g. it won’t work to present too many decisions to the

human user)
scalability, considering the sizes of instances that must be allowed for
in control theory senses: observability, controllability

We briefly discussed coverage issues, relating to the question of how we know, in a
test-based verification scenario, when we have enough tests. In a bx setting, with TGGs,
one sometimes looks for coverage of each rule as a basic standard, going on to look at
combinations of two rules.

People are often unwilling to invest in verifying or validating their early models because
they don’t trust the subsequent tool chain and transformations – so such V&V work would
be duplicating work that will have to happen later anyway. To look at it positively, this
suggests that getting better at automatable V&V of transformations and their tools has
potential to move manual validation work earlier in the process with consequent benefits.

18491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

26 18491 – Multidirectional Transformations and Synchronisations

There are also practical issues that need to be solved and become worse in a multx
setting than they are in a bx setting: if, for example, our conceptual multx is embodied in a
distributed collection of models and transformations, we may need ways to mock out parts
of the system.

We discussed properties of multx that we might want to verify. These often depend on
the specific setting, but might include:

correctness, i.e. consistency really is restored
hippocraticness, i.e. if the current state is already consistent, restoring consistency does
nothing
least change/least surprise properties of some kind: but NB there are many, many
possibilities for such properties
in rule-based systems, properties of being terminating/deterministic/confluent (i.e. caus-
ing consistency restoration to be a function
some notion of reachability of states, or progress: in some settings we need to be sure to
rule out the trivial consistency restoration which is “discard recent changes and return to
a previous known-consistent state”
some notion of non-redundancy, e.g. in a rule-based system, that each rule will actually
sometimes need to be invoked

Examples of settings include

systems of MGGs [1]
a megamodel-based network of models connected by bx with consistency restoration in
the network done with reference to an orientation model [2]

References
1 Frank Trollmann and Sahin Albayrak. Extending Model Synchronization Results from

Triple Graph Grammars to Multiple Models. ICMT, LNCS 9765, pp. 91–106, Springer,
https://doi.org/10.1007/978-3-319-42064-6_7, 2016.

2 Perdita Stevens. Towards Sound, Optimal, and Flexible Building from Megamodels. MoD-
ELS, pp. 301–311, ACM, https://doi.org/10.1145/3239372.3239378, 2018.

4 Case Studies

4.1 Multidirectional Transformations for Microservices
Sebastian Copei (Universität Kassel, DE), Marco Sälzer (Universität Kassel, DE) and Albert
Zündorf (Universität Kassel, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Copei, Marco Sälzer and Albert Zündorf

4.1.1 Introduction

We would like to use theory and techniques from bidirectional transformations (BX) [6] for
microservices. Especially, we look for microservices that share a certain amount of data with
several other microservices and that need to synchronize on this data regularly. While our
microservices share some common data, we want to be able to develop them as independently
as possible, i.e. we want independent release cycles and separate internal data models. This
allows to build these microservices by independent development teams and to have a data
model that fits the purpose of each microservice, specifically. To achieve collaboration and

https://doi.org/10.1007/978-3-319-42064-6_7
https://doi.org/10.1145/3239372.3239378
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 27

data synchronization for our microservices, we need reliable techniques that require only
minimal interaction between the development teams.

For our microservices we adapt two main ideas from the area of Domain Driven Design [3, 7]
i.e. Bounded Contexts and Event Sourcing. Bounded Contexts propose that each microservice
may use its own internal data model that fits its needs best. For example the Students’ Office
of Kassel University may have some data model for student data. The Students’ Office stores
your name and student id and your major topic and the history of courses and exams that
you have completed. Some other microservice e.g. within the software engineering group
of Kassel University might also deploy some student data. However, the SE Group is not
interested in the other courses a student is doing or has done. Instead, the SE Group needs
to store your achievements in various assignments during the term. While the SE Group
manages Students’ achievements, the Theory Group might run seminars and needs to manage
presentations that have a different grading scheme. In addition, different research groups
of Kassel University may share some data about which students work for which groups as
Teaching Assistants (TA). In our example we use a dedicated TA Pool microservice where
the TA data is synchronized.

In former times we would have used a huge monolith system with an enterprise or
university wide common data model. This common data model would have to cover the
needs of the central Students’ Office as well as the needs of all research groups and also all
the TA data. We might end up with a Student table that has some hundred columns and no
one knows which of these columns are used for which purpose. To avoid this mess, Evans
and Szpoton [3] propose bounded contexts. This means, instead of one common enterprise
wide data model each group within the university just creates its own small data model that
fits its own Bounded Context. While this avoids the problems of one big global data model,
it creates the new problem of integrating all these Bounded Contexts’ models.

To address the integration problem for bounded context, [3, 7] propose an event based
communication between bounded contexts. To make this successful, [3, 7] also propose that
each bounded context uses events internally to log all state changing operations. If you use
such an event log also for persistence, i.e. for restoring the state of your system after restart
we call this mechanism Event Sourcing.

The idea of this paper is to come up with a formalization for microservices that use
Event Sourcing and with a formalization of bidirectional synchronization mechanisms for
multiple microservices that share common data via Event Sourcing. From this formalization
we derive design and implementation guide lines that shall result in reliable synchronization
mechanisms.

In Section 4.1.2 we come up with a formalization of our ideas. In Section 4.1.3 we derive
some guidelines for the design and implementation of event sourcing and event sharing for
microservices. This is followed by a case study description in Section 4.1.4. There are still
many open question to be discussed at our Dagstuhl seminar. Some of these questions are
outlined in Section 4.1.5.

4.1.2 Formalizing Event Sourcing

First let us set up some basic notations: like [6] we use capital letters such as M , N for
metamodels i.e. for sets of models (that adhere to a common class diagram). O denotes an
empty model. We denote events with e and a set of events with E. An event e = (t, x1, ..., xn)
has the event type t ∈ T and a number of parameters xi ∈ R ∪ CHAR∗, i.e. parameters are
arbitrary numbers or strings. We will also use series of events e = (e1, ..., en) and denote by
E the set of all possible event series with events from E.

18491

28 18491 – Multidirectional Transformations and Synchronisations

Events may be applied to (or synchronized with) models via function apply(e,m), which
generates a possibly new model m′. Furthermore, we define the application of an event series
e = (e1, . . . , en) to a model m as apply(e,m) = apply(en, . . . , apply(e2, apply(e1,m)) . . .).

Now we are able to define Event Sourcing and some conditions on these. First of all we
require that any valid model can be constructed by a series of events:

I Proposition 1 (completeness). For all models m ∈M exists a series of events e ∈ E such
that m = apply(e,O).

This simply means, that for every possible model there exists a generating event series.
With this we can understand apply formally as: If m is generated by an event series e, then
applying e on m means appending e to e, written as e+ e, which in turn generates a possibly
new model m′. Next, we require that you can go from one model to another via events:

I Proposition 2 (undoability). For all models m1,m2 ∈ M exists a series of events e ∈ E
such that m2 = apply(e,m1).

Note, this corresponds to undoability known for BX transformations: We can always find
events that undo a modification and we can always go back to the empty model.

Two events that modify the same elements of a model m cancel each other, i.e. when
both are applied, the effects of the second event overwrites all effects of the first event:

I Definition 1. Let e1, e2 ∈ E be event series with e ∈ e1 and e2 = e1 \ e. We say that e is
ineffective in e1 if apply(e1, O) = apply(e2, O). Otherwise, e is called effective in e1.

Furthermore, we say that an event e′ overwrites an event e in an event series e if e is effective
in e (or respectively a corresponding model m) and ineffective in e+ e′.

Using modern messaging services, it is easy to guarantee that an event send from one
microservice to another is received, but you usually have to prepare for multiple deliveries.
Thus, if we apply an event a second time, it should have no effect:

I Proposition 3 (hippocraticness). For all models m ∈ M and all events e ∈ E holds that
apply(e,m) = apply(e, apply(e,m))

This corresponds to hippocraticness in BX.
Now we want events that keep models consistent: For the definition of consistency we

introduce common event types Tcom ⊆ T . An event s with type t ∈ Tcom is called shared
event. The set of all possible shared events is denoted by S.

I Proposition 4 (uniqueness). For all shared events s ∈ S, for all models m ∈ M and all
e ∈ E with m = apply(e,O) holds that m = apply(s,m) if and only if s is effective in e.

We call Prop. 4 the uniqueness property of shared events: Each effective, shared event
s is associated with a unique element in model m and only s is able to create that unique
model element and if we apply s on m with no effect, than the only possible reason for not
modifying m is that m already contains the corresponding unique effect due to an earlier
application of s. In addition Prop. 4 requires that the application of s on m must have an
effect, if (the effect of) s is not already contained in m. Thus, shared events are not veto-able.

Overall, we require that for any shared model element there shall be a unique shared
event that creates or modifies it and all these shared events must be contained in the Event
Source of the corresponding model. While these are pretty strong requirements (and we seek
for some weaker condition here), it turned out to be quite straight forward to implement
these requirements as discussed in Section 4.1.3.

In contrast to shared events all other events shall affect only the source model or only
the target model:

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 29

I Proposition 5. Let m ∈M be a source model and n ∈ N be a target model. For all events
e ∈ E \ S follows that: If apply(e,m) 6= m then apply(e, n) = n and if apply(e, n) 6= n then
apply(e,m) = m.

With 4(e) we denote the set {e | e ∈ e and e is effective } and 4s(e) the set {e | e ∈ e
and e is effective and shared}. This means that 4(e) is the set of effective events in e and
4s(e) is the subset of effective events in e that are also shared. Furthermore we understand
the expression 4s(m) as the set of shared and effective events of a model m ∈M , this means
if m = apply(e,O) than 4s(m) = 4s(e).

The set 4s is unique for a model m, i.e. any series of events that constructs m contains
the same set of shared (effective) events:

I Theorem 2. For all models m ∈M and all event series e1, e2 ∈ E with m = apply(e1, O)
and m = apply(e2, O) follows that 4s(e1) = 4s(e2).

Proof. Let m ∈ M be a model and e1, e2 ∈ E be event series with m = apply(e1, O) and
m = apply(e2, O). From Prop. 4 follows for all effective s ∈ 4s(e1) that m = apply(s,m).
With the fact that m = apply(e2, O) and the reverse direction of Prop. 4 follows that
s ∈ 4s(apply(e2, O)) which means s ∈ 4s(e2). That all s ∈ 4s(e2) are elements of 4s(e1)
can be shown in the exact same way. J

I Definition 3. Let m ∈ M be a model with m = apply(e1, O), and n ∈ N be a model
with n = apply(e2, O). We say that m and n are consistent and write m ' n if and only if
4s(e1) = 4s(e2).

Note that with Th. 2 the set 4s(m) is unique independent of the chosen e, which means
that this is well-defined. In other words, we consider two models consistent if and only if
they contain (the effects of) the same set of shared events.

I Definition 4. Let m ∈ M be a source model and n ∈ N be a target model. We define
Get : M × N → N with Get(m,n) := apply(4s(m), n) and Put : M × N → M with
Put(m,n) := apply(4s(n),m).

Thus, Get computes the shared (effective) events contained in the source model m and
applies them to the target model n. Similarly, Put applies the shared (effective) events of
the target to source.

With these defintions we can show that our events fulfill the GetGet and PutPut rules:

I Theorem 5. For all source models m ∈ M and all target models n ∈ N holds that
Get(m,Get(m,n)) = Get(m,n) and that Put(Put(m,n), n) = Put(m,n).

Proof. Let m ∈ M be a source model and n ∈ N a target model. Per Def. 4 follows
that Get(m,Get(m,n)) equals Get(m, apply(4s(m), n)), which in turn equals apply(4s(m),
apply(4s(m), n)). Due to our hippocraticness Prop. 3 this reduces to apply(4s(m), n), which
is per definition the same as Get(m,n). The PutPut case can be shown in the exact same
way. J

To show that our events guarantee the GetPut and PutGet rules we need the following
lemma.

I Lemma 6. For all models m1,m2,m3 ∈ M with m3 = apply(4s(m1),m2) holds that
4s(m3) = 4s(m1) ∪ (4s(m2) \ 4s(m1)).

18491

30 18491 – Multidirectional Transformations and Synchronisations

Proof. To proof Lem. 6 we show the cases ⊆ and ⊇ separately. Let s ∈ 4s(m3), which
means that s is an effective shared event in m3. With the fact that m3 was generated
by applying all shared and effective events from m1 to m2 follows that s ∈ 4s(m1) or
s ∈ 4s(m2) \ 4s(m1), because it was either in the model m1 or in the model m2 and
not overwritten by the application because it is still effective. This obviously means that
s ∈ 4s(m1) ∪ (4s(m2) \ 4s(m1)).

For the other direction let s ∈ 4s(m1) ∪ (4s(m2) \ 4s(m1)). Per assumption m3 is
generated by apply(4s(m1),m2). This means that 4s(m3) includes all effective, shared
events that were in m1 or m2 and not overwritten in this application. Therefore s ∈ 4s(m3),
independent of its origin 4s(m1) or 4s(m2) \ 4s(m1). � J

With this we can proof that our events guarantee the GetPut and PutGet rules:

I Theorem 7. For all source models m ∈ M and all target models n ∈ N holds that
Put(m,Get(m,n)) ' Get(m,n) and that Get(Put(m,n), n) ' Put(m,n).

Proof. To prove that Put(m,Get(m,n)) ' Get(m,n) holds we have to show that
4s(Put(m,Get(m,n))) = 4s(Get(m,n)). By Def. 4 4s(Put(m,Get(m,n))) is the same as
4s(apply(4s(Get(m,n)),m)) and with Lem. 6 it can be seen that 4s(apply(4s(Get(m,n)),
m)) is the same as 4s(Get(m,n)) ∪ (4s(m) \ 4s(Get(m,n))). Here we can replace the
second 4s(Get(m,n)) with the use of Def. 4 and Lem. 6, which results in 4s(Get(m,n)) ∪
(4s(m) \ (4s(m) ∪ (4s(n) \ 4s(m)))). It can be seen, that the right subterm is equivalent
to O, because we subtract from 4s(m) the set 4s(m) ∪ (4s(n) \ 4s(m), which is obviously
a superset of 4s(m). But this means that 4s(Get(m,n)) ∪ (4s(m) \ (4s(m) ∪ (4s(n) \
4s(m)))) = 4s(Get(m,n)). Thus if you go back to the beginning of this proof it says
4s(Put(m,Get(m,n))) equals 4s(Get(m,n)). The GetPut rule can be proven analogous. �

J

Note, Get(m,n) and Get(Put(m,n), n) are usually not equal as the Put may overwrite some
shared events in m and thus a subsequent Get applies fewer events to n. Thus, if you have
two models synchronizing with GetPut is not equal to synchronizing with PutGet. In both
cases the models will be synchronized but in the GetPut case the source model will still have
all its old shared events (plus some from the target model). In the PutGet case the source
model will loose some shared events that are overwritten by events of the target model but
it will get all shared events from the target model. Altogether we consider two models as
consistent if they contain equivalent sets of shared events in their Event Sourcing history.

For BX the differences between GetPut and PutGet just correlate to preferences for
the handling of conflicting changes (i.e. shared events that overwrite each other). For
MX we need to take additional care: let us assume we have three microservices named O
(for the Students’ Office, E (for the Software Engineering Group), and T (for the Theory
Group). Let us now assume there is a student with studentId m4242 and microservice E
has named this student Alice while microservice T has named this student Alexa. If we do a
Get(Put(O,E), E) microservices O and E share the name Alice while T still believes in Alexa.
If we now do a Get(Put(O, T), T) O and T agree on Alexa while E still believes in Alice. We
may do these two synchronizations as often as we want, we do not reach global consistency.

We could achieve global consistency in above case easily, if one or both synchronizations
would use a PutGet instead of a GetPut. This would introduce some kind of priority ordering
for the microservices such that conflicting events do not travel in opposite order. However such
a global organization scheme for a (large) set of microservices requires a lot of coordination
of the different development teams that develop the individual microservices, independently.

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 31

In order to avoid the need for a global coordination scheme, in our implementation we use
time-stamps in order to number the events within each Event Source, cf. Section 4.1.4. Then,
before applying an (external) event, we check our Event Source for a conflicting events. In
case of a conflict, the latest event wins, i.e. if an event arrives late, it is ignored. We still
need to incorporate this strategies into our formalization.

From our consistency conditions we now derive properties for the implementation of our
Event Sourcing and synchronization mechanisms.

4.1.3 Implied Properties and Guidelines

Proposition 1 (completeness) requires that any valid model can be created by applying a
series of events. In implementing a microservice A this requires that our microservice offers
a dedicated API (application programmer’s interface) for creating and modifying its internal
data model. The internal data model shall be modified only via this API and each API
method (invocation) that actually modifies the internal model shall raise an event with an
event type and parameters corresponding to the invocation of the API method. Applying
an event thus corresponds to the invocation of the corresponding API with the contained
parameters.

Proposition 2 (undoability) requires that for any change done our API shall provide
appropriate reverse methods that allow to undo that change. Thus, if we have an API
operation that e.g. adds a student to a university, we shall also provide a possibility to
remove that student from that university. While this is a reasonable property for APIs, it is
not mandatory for consistency.

Proposition 3 (hippocraticness or idem potent) requires that any API method has to
check whether the internal model already contains the intended model changes and the
API method executes the change only if it is not yet contained. Note that our events have
only parameters of types number or string. We may not pass references to model objects
as parameters. This allows us to use events for persistence and to send events via some
messaging service. Having only parameters of number or string types require that these
parameters have to form some kind of primary key that allows to identify the model elements
to be modified or that have already been modified, uniquely. Generally, each API method
must implement some kind of getOrCreate semantics thus calling it the first time new model
elements are created and thereafter these elements are just retrieved.

Proposition 4 (uniqueness) requires that two microservices A and B that share some
events of certain event types ci must provide corresponding API methods A :: mi() and
B :: ni() that use exactly the same parameters as provided by the events of the corresponding
types and these API methods raise exactly the events of the corresponding types and with
the corresponding parameters (when they result in an model modification). Although the
shared API methods need to stick to a common parameter signature they may implement
the corresponding changes differently in their internal models. We only require that the
uniqueness Proposition 4 is met, i.e. when we receive a shared event we must be able to
tell whether we already contain the corresponding changes or not. This means, we need to
guarantee the one to one correspondence between shared events and affected model elements.

Proposition 4 (non veto-able) also requires that the shared events must always work.
Thus, if we have e.g. a shared event (examCreated, “modelling”, “2019-03-12”) this creates
an exam for a modelling course. If the modeling course not yet exists, we must create it on
the fly by calling the appropriate API method. In order to do this, the examCreated event
must provide sufficient parameters to denote the course uniquely and sufficient parameters
to be able to call the corresponding API method. Note, in our example the creation of the

18491

32 18491 – Multidirectional Transformations and Synchronisations

modeling course will internally generate an (courseCreated, “modeling”) event. When this
event arrives later, we ignore it as its effects have already been achieved.

From our experience, the discussed implementation requirements provide a pretty good
guide line for the design and implementation of a micro service and the API of its model.
The developers have quite a freedom in designing their models and their API and to develop
their microservices, independently. When integrating two microservices the developers have
to agree only on the signatures of the shared API methods.

Usually, the microservices have a customer supplier relationship [3], i.e. the supplier
microservice predefines the shared API and the customer microservice adapts the shared API
methods. Ideally, the customer microservice just adapts some of its existing API methods
to meet the signature of the shared supplier API methods. Sometimes, the customer will
also need to extend or restructure its API and to extend and restructure its internal model,
accordingly.

For multiple microservices, we also need to take care of event conflict handling strategies
that guarantee global consistency. A simple way is to apply events not just in order of arrival
but ordered by some time stamp. Such a functionality is easily provided by a generic Event
Source implementation.

In practical cases, we also need to take care of access rights, not every microservice might
be allowed to call every API method on every other microservice (or to send the corresponding
Event) and not every microservice might have the right to read all data (or to receive all
Events) of all other microservices. In our example implementation, each microservice has a
REST interface that handles Get and Put requests. This REST interface is the place, where
we handle all access rights. By controlling which events we send out to whom and which of
the received events we apply to our internal data model, the REST interface as a good place
to handle all access right issues for a given microservice.

Altogether, we believe that our consistence conditions provide very good and easy to
follow guide lines for the implementation of microservices that share some common data. We
would like to extend this work with compile time checks and validation mechanisms that
allow to guarantee data consistency between microservices.

In the next section we discuss a simple case study that uses our ideas.

4.1.4 Student Affairs Sample Implementation

Our our Student Affairs case study employs four microservices that all deal with student
data at Kassel University, cf. Fig. 3. The Students’ Office deals with course programs
and all the examinations of the students. The SE Group deals e.g. with assignments in
the modelling course. The Theory Group provides a specific grading scheme for seminar
presentations. And the two research groups exchange data on Teaching Assistant students
via the TA Pool. Each microservice is developed independently and uses its own bounded
context data model [3]. As shown in Fig. 3 the microservices use Event Sourcing [3] to store
data persistently. Each microservice also provides an API that is used by the corresponding
GUIs as well as for loading and logging events as well as for the synchronization of the
microservices. For example, each time a student enrolls for a certain examination within
the Students’ Office, a corresponding event is raised and added to the Students’ Office’s
Event Source. At any time, e.g. the SE Group may issue a getEvents request causing the
Students’ Office to respond with all studentEnrolled events referring to courses run by the
SE Group. The SE Group may now do the grading of these students with the help of the
students’ performance data gathered locally. Each grading operation will raise and record a
studentGraded event within the SE Group microservice. After the grading, the SE Group

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 33

Theory
Group
Event

Source

Theory
Group

Microservice

Theory
Group
GUI

TA
Pool
Event

Source

TA
Pool

Microservice

TA
Pool
GUI

SE
Group
Event

Source

SE
Group

Microservice

SE
Group
GUI

Student's
Office
Event

Source

Student's
Office

Microservice

Student's
Office
GUI

getEvents
putEvents

getEvents
putEvents

getEvents
putEvents

getEvents
putEvents

Figure 3 Example Architecture.

may submit the studentGraded events (that of course include the achieved grades) to the
Students’ Office via a putEvents request.

Similarly, the SE Group may hire some of its (excellent) students as Teaching Assistant.
The corresponding studentHired event may then be send to the TA Pool. Then the Theory
Group may retrieve all studentHired events. Thus the research groups may avoid to hire the
same student twice.

Instead of a class diagram, Figure 4 shows a simple object diagram for an example
state / model of our Students’ Office microservice. Our Students’ Office deploys objects of
type UniStudent to represent students, e.g. object alice4. alice4 has CS as major subject.
StudyProgram CS contains courses on math and modeling. For the modeling course the
Students’ Office has scheduled an examination e6 on 2019-03-19. alice4 has enrolled for this
examination as indicated by object e9.

Figure 5 shows an example object model for our SE Group microservice. In this situation,
the data from our Students’ Office has already been integrated and the SE Group has already
graded the single student of its modeling class. The SE Group microservice does not store
student’s names but only their studentId. Thus our student Alice is represented by object s3
of type SEStudent. In the SE Group model, students have Achievement objects like a7 that
model their participation in an SEClass like the modeling class s2 of term 2018-10. The
SEClass s2 has two Assignments a5 and a6. Students hand in their Solutions like s8 and
s9. The Solutions of one student are collected under the corresponding Achievement object.
In our example the Solutions have already been graded by some achieved points. From the
points achieved by their Solutions, a grade is computed and stored within the corresponding
Achievement object. In our case Alice has scored an A in modeling.

18491

34 18491 – Multidirectional Transformations and Synchronisations

topic

exams

courses

programs

students

majorSubject

students

department

students

department

lecturers

department

s1 :StudentOffice

 department = "FB16"

albert2 :Lecturer

 name = "Albert"

s3 :StudyProgram

 subject = "CS"

programs

department

alice4 :UniStudent

 name = "Alice"
 studentId = "m4242"

bob5 :UniStudent

 majorSubject = null
 name = "Bob"
 studentId = "m2323"

e6 :Examina�on

 date = "2019-03-19"

examina�ons

lecturer

c7 :Course

 �tle = "math"

c8 :Course

 �tle = "modeling"

courses

programs

e9 :Enrollment

 grade = null

enrollments

student

enrollments

exam

Figure 4 Object Diagram for Student’s Office.

s1 :SEGroup

 head = "Albert"

s2 :SEClass

 term = "2018-10"
 topic = "modeling"

classes

group

s3 :SEStudent

 studentId = "m4242"
 teachingAssistantFor = null

students

group

s4 :SEStudent

 studentId = "m2323"
 teachingAssistantFor = null students

group

a5 :Assignment

 points = 23.0
 task = "mid_term"

assignments

seClass

a6 :Assignment

 points = 42.0
 task = "finals"

assignments

seClass

a7 :Achievement

 grade = "A"
 officeStatus = "enrolled"

par�cipa�ons

seClass

achievements

student

s8 :Solu�on

 gitUrl = "gitlab.com/alice/modeling"
 points = 20.0

solu�ons

assignment

s9 :Solu�on

 gitUrl = "gitlab.com/alice/modeling"
 points = 40.0

solu�ons

assignment

solu�ons

achievement

solu�ons

achievement

Figure 5 Object Diagram for SE Group.

t1 :TheoryGroup

head = "Mar�n"

s2 :Seminar

term = "2019.03.23"
topic = "Automata"

seminars

group

alice3 :TheoryStudent

name = "Alice"
studentId = "m4242"
ta_4 = "Mar�n"

students

group

bob4 :TheoryStudent

name = "Bob"
studentId = "m2323"
ta_4 = null

students

group

p5 :Presenta�on

content = 9
grade = "A"
officeStatus = null
scholarship = 9
slides = 9
total = 0

presenta�ons

seminar

presenta�ons

student

Figure 6 Object Diagram for Theory Group.

t1 :TAPool

alice2 :TAStudent

 name = "Alice"
 studentId = "m4242"
 teachingAssistantFor = "Mar�n"

students

pool

Figure 7 Object Diagram for Theory Group.

The Theory Group of Kassel University runs e.g. a seminar on Automata at 2019.03.23,
cf. Figure 6. Our student Alice has given a Presentation in this seminar and scored 9 points
for the content, the scholarship, and the slides, each. Martin, the head of the Theory Group
has hired Alice as Teaching Assistant for his group, cf. attribute ta_4 of object alice3.

Finally, Figure 7 shows the object model of the TA Pool microservice used by the research
groups in order to exchange data on Teaching Assistants. Currently the TA Pool only records
that Alice works for Martin.

As you may have noticed, our four microservices deploy quite different data models. There
is some data in the Students’ Office that SE Group and Theory Group do not care about e.g.
study programs. Vice versa, the SE Group deploys Assignments and Solutions, that do not
bother the Students’ Office. For some other data there are correspondences, e.g. Courses
and Examinations from the Students’ Office correspond to SEClasses within SE Group and
to Seminars in the Theory Group. And of course, UniStudents correspond to SEStudents
corresponds to TheoryStudent corresponds to TAStudent. A less obvious correspondence
exists between Enrollment and Achievement objects and Presentation objects.

The challenge for our case study is to keep the corresponding data of the four microservices
consistent. Listing 1 shows method applyEvents of our Students’ Office microservice.
Listing 2 shows some example Yaml [2] string for shared events as it may be passed to the
applyEvents method. (Actually, this Yaml string has been derived from shared events raised
through the getOrCreateStudent and enroll method of the Students’ Office’s API.)

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 35

Method applyEvents uses a yamler to decode the yaml string into a List of Maps. Each
such map contains the tag values of one event. Thus, the for loop iterates over all events
and for each event we run through a chain of if else if statements. As soon as the eventType
matches a certain case e.g. studentCreated, the corresponding API operation is called, e.g.
getOrCreateStudent. The additional event parameters are passed to the API method in order
to denote the exact model element to be affected.

In case of a studentEnrolled event, the Students’ Office wants to call API method
enroll(student, exam) passing an UniStudent and an Examination object as parameters, cf.
last statement of Listing 1. To retrieve the student parameter we use the studentId passed
within the studentEnrolled event. Similarly, we use the courseName to call getOrCreateCourse
and lecturerName in order to get or create the responsible lecturer. With course and lecturer
and date we call getOrCreateExamination to create or retrieve the required examination
object. Finally, we are ready to call enroll(student, exam).

Note, if methods getOrCreateStudent, getOrCreateExamination, or enroll actually create
internal objects, then the corresponding event is raised and added to the internal event
source of our microservice. Similarly, if one of the API methods is called via the graphical
user interface, the corresponding events are automatically added to the event source of our
microservice. A careful reader may have noticed that Listing 1 and Listing 3 employ two
variants of method getOrCreateStudent, one with studentId and student name as parameters
and one with only studentId as parameter. The reason is that some shared events refer to
the affected student only via the studentId. If the corresponding studentCreated event did
not yet reach us, we still need to create a student with the corresponding studentId. Usually,
creating a student requires to provide the student’s name, too. If we do not have the student
name at hand, we just create an half done student object assigning only the studentId. When
later on the studentCreated event with the corresponding studentId and with the required
name arrives, we finish the construction of the student object and only then we raise the
internal studentCreated event to be added to the local Event Source.

Listing 3 shows method applyEvents of our SE Group microservice. The SE Group
microservice handles studentCreated events quite similar to the Students’ Office. However
the getOrCreateStudent API method of SE Group internally creates an SEStudent object and
drops the student’s name. Despite SE Group does not store the student’s name, internally,
the method handling the studentCreated event within method applyEvents of SE Group
requires a name as parameter. Having the student’s name here became mandatory due to our
requirements on shared events: If we create a new SEStudent object within our SE Group
microservice we must eventually raise the corresponding shared studentCreated event that
will be used to synchronize with the Students’ Office. As the Students’ Office stores student’s
names, the corresponding shared event needs to provide this information and thus the SE
Group has to collect this information. Thus, although the SE Group does not store student’s
names in its SEStudent objects, it must store student’s names in its internal event source
in order to retrieve valid studentCreated events for the synchronization with the Students’
Office.

The SE Group microservice deals with shared events in quite the same way as the Students’
Office does. Mainly, the SE Group uses other names for similar things. However, the first
version of the SE Group API did not have an enroll operation nor did it support studentEn-
rolled events, at all. This part has been added for synchronization purposes later on. SE
Group already had a getOrCreateClass method and when it came to microservice integration
it became clear that SEClass objects corresponds to Examination objects, somehow. Both
represent that a certain course is given in a certain term. Similarly, SE Group Achievements

18491

36 18491 – Multidirectional Transformations and Synchronisations

pub l i c void applyEvents (S t r ing yaml){
Yamler yamler = new Yamler () ;
L i s t<Map<Str ing , Str ing>> l i s t

= yamler . decodeL i s t (yaml) ;
f o r (Map<Str ing , Str ing> map : l i s t) {

. . .
e l s e i f (STUDENT_CREATED

. equa l s (map . get (EVENT_TYPE))) {
getOrCreateStudent (map . get (NAME) ,

map . get (STUDENT_ID)) ;
}
e l s e i f (STUDENT_ENROLLED

. equa l s (map . get (EVENT_TYPE))) {
UniStudent student =

getOrCreateStudent (
map . get (STUDENT_ID)) ;

Course course =
getOrCreateCourse (

map . get (COURSE_NAME)) ;
Lecturer l e c t u r e r =

getOrCreateLecturer (map ,
LECTURER_NAME) ;

Examination exam =
getOrCreateExamination (course ,

l e c t u r e r , map . get (DATE)) ;
e n r o l l (student , exam) ;

}
e l s e i f (EXAMINATION_GRADED

. equa l s (map . get (EVENT_TYPE))) {
UniStudent student =

getOrCreateStudent (
map . get (STUDENT_ID)) ;

Course course =
getOrCreateCourse (

map . get (COURSE_NAME)) ;
Lecturer l e c t u r e r =

getOrCreateLecturer (map ,
LECTURER_NAME) ;

Examination exam =
getOrCreateExamination (course ,

l e c t u r e r , map . get (DATE)) ;
Enrol lment enro l lment =

e n r o l l (student , exam) ;
gradeExamination (enrol lment ,

map . get (GRADE)) ;
}

. . .
}

}

Listing 1 applyEvents method of our Student’s Office.

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 37

− eventType : studentCreated
studentId : m2323
name : Bob
. eventNumber : 7

− eventType : studentCreated
studentId : m4242
name : A l i c e
. eventNumber : 8

− eventType : s tudentEnro l l ed
studentId : m4242
courseName : modeling
lecturerName : Albert
date : "2019−03−19"
. eventNumber : 10

Listing 2 Yaml Encoded Shared Events.

correspond to Enrollments within the Students’ Office. However, due to regulations in Kassel
University, students may attend a class and do some assignments in one term and they
may enroll for the official examination within another term. Thus, the SE Group may have
Achievement objects that do not (yet) correspond to Enrollment objects and we shall not
send studentEnrolled events to the Students’ Office each time an Achievement is created.
We solved this problem by extending our Achievement objects with an officeStatus attribute,
cf. Figure 5. This attribute is open on creation of an Achievement and it changes to enrolled
when the corresponding studentEnrolled event is applied.

The SEGroup also has a hireStudent(stud, lecturerName) API method that marks the
corresponding student as Teaching Assistant for the given lecturer. This API method raises
a shared studentHired event that may be send to the TA Pool. The Theory Group has a
similar implementation of method applyEvents that matches events to the API of the Theory
Group.

To meet the requirements of Section 4.1.2 we need to guarantee that methods are
Hippocratic or idem potent, i.e. if we call a getOrCreate operation twice with the same
parameters the second call will only retrieve the corresponding model element but not modify
it. To achieve this we use certain event parameters as primary keys. For example, if we
call getOrCreateStudent(“Alexa”, “m4242”) then the student id m4242 serves as unique
key. If we call getOrCreateStudent(“Alexa”, “m4242”) again, method getOrCreateStudent
will find the student object with studentId m4242 and return it. In addition, method
getOrCreateStudent will assign the name “Alexa”, again. As this does not change the
underlying student object, that is OK. If we call getOrCreateStudent(“Alice”, “m4242”) now,
again the underlying student object is retrieved and the new name is assigned. However,
this time the underlying model element is changed and thus a new studentCreated event is
raised and added to the internal event source. This new studentCreated event overwrites
the previous studentCreated event that has the same studentId but the former name was
“Alexa”. With this implementation we meet Prop. 4 and this guarantees data consistency
between our two microservices. Note, our implementation achieves uniqueness for studentIds
by construction. Whenever you use studentId m4242 it refers to the student object. We
never create two student objects with the same studentId.

18491

38 18491 – Multidirectional Transformations and Synchronisations

pub l i c void applyEvents (S t r ing yaml){
Yamler yamler = new Yamler () ;
L i s t<Map<Str ing , Str ing>> l i s t

= yamler . decodeL i s t (yaml) ;
f o r (Map<Str ing , Str ing> map : l i s t) {

. . .
e l s e i f (STUDENT_CREATED

. equa l s (map . get (EVENT_TYPE))) {
getOrCreateStudent (map . get (NAME) ,

map . get (STUDENT_ID)) ;
}
e l s e i f (STUDENT_ENROLLED

. equa l s (map . get (EVENT_TYPE))) {
SEStudent student =

. getOrCreateStudent (
map . get (STUDENT_ID)) ;

SEClass s eC la s s =
. getOrCreateSEClass (

map . get (COURSE_NAME) ,
map . get (DATE)) ;

Achievement achievement =
getOrCreateAchievement (student ,

s eC la s s) ;
e n r o l l (achievement) ;

}
e l s e i f (EXAMINATION_GRADED

. equa l s (map . get (EVENT_TYPE))) {
SEStudent student =

getOrCreateStudent (
map . get (STUDENT_ID)) ;

SEClass s eC la s s =
getOrCreateSEClass (

map . get (COURSE_NAME) ,
map . get (DATE)) ;

Achievement achievement =
getOrCreateAchievement (student ,

s eC la s s) ;
gradeExamination (achievement) ;

} . . .
}

}

Listing 3 applyEvents method of our SE Group.

Similarly, the title of a Course serves as primary key for Course objects and the name
of a Lecturer serves as key for Lecturer and SEGroup objects. As there may be multiple
Examinations scheduled for the same day and as a Course may have multiple Examinations
in different terms, you need the title of the corresponding Course and a date in order to
identify an Examination. We assume that there is only one Examination per Course and
term, thus the SE Group uses the Examination date to find the SEClass for that term i.e. we
use the SEClass with a term attribute that is less than half a year in front of the Examination.
Thus, we are able to synchronize Examinations and SEClasses without sharing the exact

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 39

Examination date or term start. While this is unnecessary complicated, it exemplifies how
two microservices may choose their own model design and how we achieve bidirectional model
synchronization for models with varying design.

In our Student Affairs example our microservices synchronize via REST APIs offered by
the Students’ Office and the TA Pool. At any time, the SE Group or the Theory Group
service may initiate an http based getEvents call to e.g. the Students’ Office, cf. Figure 3.
Then the Students’ Office goes to its Event Source and retrieves the current list of shared
events. This list is encoded as Yaml string and returned to the calling micro service. The
calling micro service then calls its applyEvents method and the getEvents call is completed.
Now e.g. the SE Group may ask its own Event service to retrieve the shared events known
by SE Group. At this time, this will include all just received and applied shared events that
have had an effect on the model of the SE Group. Now we decode the SE Group shared
events as Yaml string and send it over to the Students’ Office via an http based putEvents
call. This causes the Students’ Office to call its applyEvents methods. The shared events
that have been send to the SE Group and that have now been send back will not cause any
modifications within the Students’ Office data model. Only the shared events that have been
raised by the SE Group genuinely will be incorporated into the Students’ Office data model
(and Event Source). Now both microservices are synchronized. Guaranteed. (If we did the
implementation right.)

In order to minimize communication, our Event Sources number all events with time
stamps (milliseconds). Thus, once we received (and incorporated) an event with e.g. time
stamp 42424242, the next time we do a getEvents call we are interested only in new shared
events. Therefore, our http based getEvents call has a lastKnownTimeStamp parameter
telling the Students’ Office to retrieve and send only later events. Similarly, the SE Group
keeps track of the lastKnownTimeStamp it has send to the Students’ Office and sends only
newer Events on subsequent putEvents calls. Note, if we receive e.g. a studentCreated event
with time stamp 42424223 at the SE Group and we do not yet have a student with that
studentId, the SE Group will create a new SEStudent and raise a new studentCreated event
that will get a new time stamp e.g. 42424246 in the Event Source of the SE Group. This re
stamping of events works as we use two different lastKnownTimeStamps: one for the last
event that the SE Group has received and another for the last event that we have send. To
avoid the problem that the SE Group and the Theory Group send different name updates
for student m4242 in an alternating fashion, before applying an event we additionally ask
our Event Source if it already has an event of the same type with the same primary keys
that has a larger / later time stamp. In this case the earlier event shall be overwritten by
the already arrived later event and thus we do not apply the earlier event. Thus, our conflict
is resolved in favor of the event that has the larger / later time stamp or in other words
the last edit wins. To make this work, in our implementation each shared event needs an
explicit key that identifies the object that is finally edited and two events with the same key
overwrite each other with the policy ’last edit wins’.

To summarize, in our implementation it was surprisingly easy to meet the pretty strong
requirements of Section 4.1.2. Actually, the formal requirements gave us clear design guidelines
for the development of our microservices. First of all, Prop.1 and Prop. 3 forced us to develop
a model API totally with getOrCreate methods. This also forced us to design our model and
events such that we have sufficient primary keys for all relevant model elements. Here it
was very helpful, that the getOrCreate methods implement a very constructive approach to
primary keys. The getOrCreate methods just deliver only one element for the primary key
information you provide. For example, if we use only the date to denote an Examination,

18491

40 18491 – Multidirectional Transformations and Synchronisations

it is not possible to have different Examinations on the same day any more. This becomes
evident in test scenarios pretty soon. Thus you may add the Course name to the primary
key of an examination. This suffices to denote the Examination, uniquely. In our example we
also use a Lecturer name within the examinationCreated event. This is used to connect the
new Examination to the responsible Lecturer. It may also be used to filter studentEnrolled
events to be send only to the research group that is responsible for the corresponding class
in that term (or to the research group with the head named as lecturer).

The need to solve alternating changes of the same attribute caused us to add another
event key that tells the Event Source to overwrite the earlier event with the later event. This
again is easy to test by doing alternating changes to a certain attribute and by then asking
the Event Source for the list of all stored events. If the conflict is detected only the later
event is retrieved.

Prop. 2 challenged our implementation as you are not allowed to reject (veto) a shared
event. If you receive a shared event you must incorporate its effects in your model in order
to stay consistent. This may become a problem if events build upon each other e.g. if the
application of a studentEnrolled event requires that the corresponding SEClass must already
exist. To avoid such a dilemma our implementation just uses the getOrCreate methods to
retrieve the required Examination or SEClass. Thus, if the Examination (or SEClass) does
not yet exist, we create it on the fly. On the downside, this requires the studentEnrolled
event to provide sufficient parameters to create an Examination (or an SEClass) on the fly,
if necessary. This is the reason for including the Lecturer name in the studentEnrolled event.

After studying the Student Affairs case there are still a lot of

4.1.5 Open Questions

At the Transformation Tool Contest 2017 we studied the Families 2 Persons case [1, 8].
We would really like to go through this case and variants of this case from the perspective
of Event Sourcing. We expect that our formal requirements give good guidelines on how
the case needs to be extended or modified in order to achieve guaranteed consistency. For
example, the Families to Persons case uses family names to identify family objects. However,
there may be multiple families with the same family name. According to our requirements
this is not allowed. Thus, you need to extend the primary key for families by some additional
information. You may e.g. add the parents’ first names to the key for families. Thus it
would be family Homer and Marge Simpson. Accordingly a person like Bart would have Bart
(Homer and Marge) Simpson as full name. However, it would become pretty complicated
when Bart marries and creates his own family.

On the 2017 BX Workshop in Shonan, Michael Johnson presented a case where a
manufacturing enterprise wanted to exchange customer data with a marketing enterprise.
The main concern in this case is security: The manufacturing enterprise does not want to
give the marketing enterprise full access to its technical documents. However, access to a
cutout of customer data is OK. We would like to investigate whether our shared event based
collaboration is an easy means to control which data is accessed by other microservices.
Actually, the getEvents method provided by our Students’ Office does already a lot of filtering.
For example, you cannot access the grades of students of courses that have not been given by
your group. From a software engineering point of view, method getEvents is the single access
point for other microservices and it is also a good place in order to control access rights and
to control which information is send to which partner.

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 41

We believe that there is a close correspondence between our shared events and triple
graph grammar rules [5]. Each shared event is implemented by two methods one in the
source microservice and one in the target microservice. These two methods correspond to
the left and right rule of a triple graph grammar rule and the shared event itself corresponds
to the middle rule. With triple graph grammars a forward transformation requires to collect
all occurrences of the left sides of the triple rules that have not yet been transformed towards
the target model and then to apply the corresponding right sides of that rules. This is quite
similar to collecting shared events in our Event Source and to send those shared events to
the target model and to apply them there. This correlations needs further investigation.

We really want to use the Dagstuhl meeting in order to discuss the relationship of
our Event Sourcing based theory with traditional BX theory in further detail. How does
our approach fit into the existing literature and what are related ideas. Somehow, our
formalization proposes that the API of a microservice is a set of functions that together
may be interpreted as a kind of meta model for the microservice’s internal states. Each API
function forms an editing operation and altogether these editing operations describe the set
of all reachable models. Similarly, each model is created by a series of API function calls.
And these function calls have algebraic properties like idem potent and commutative (if all
function calls are effective). And together these algebraic properties guarantee BX behavior.
To come up with more reliable MX behavior we may need to add time stamps to our theory,
but we are not sure that this finally solves all these issues.

We would really like to provide compile time verification means in order to ensure that the
implementations of two microservices that share some events are correct and do guarantee
consistency. As verification is probably difficult within plain old Java code, we might require
that the event handling API is implemented using some model transformation language. A
high level model transformation language might simplify the verification of properties like
hippocraticness and uniqueness. We might also add some explicit declaration of primary
keys to the specification of shared events in order to leverage this information in correctness
verification tasks.

We are looking forward to the discussions at Dagstuhl.

References
1 A. Anjorin, T. Buchmann, and B. Westfechtel, The Families to Persons Case, in Proceedings

of the 10th Transformation Tool Contest, a part of the Software Technologies: Applications
and Foundations (STAF 2017) federation of conferences (A. Garcia-Dominguez, G. Hinkel,
and F. Krikava, eds.), CEUR Workshop Proceedings, CEUR-WS.org, http://ceur-ws.org/
Vol-2026/paper2.pdf, 2017.

2 Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML: YAML Ain’t Markup Language
(yamlTM) version 1.1., Tech. Rep: 23, https://yaml.org, 2005.

3 Eric Evans and Rafał Szpoton. Domain-Driven Design. Helion, 2015.
4 Michael Johnson, Perdita Stevens, Confidentiality in the process of (model-driven) software

development. Programming 2018: 1–8, https://doi.org/10.1145/3191697.3191714, 2018.
5 Andy Schürr. Specification of graph translators with triple graph grammars. International

Workshop on Graph-Theoretic Concepts in Computer Science. https://doi.org/10.1007/
3-540-59071-4_45, Springer, 1994.

6 Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and
open questions. Software and System Modeling 9(1): 7-20, https://doi.org/10.1007/
s10270-008-0109-9, 2010.

7 Vaughn Vernon. Implementing domain-driven design. Addison-Wesley, 2013.
8 Zündorf, Albert, and Alexander Weidt. The SDMLib Solution to the TTC 2017 Families 2

Persons Case, http://ceur-ws.org/Vol-2026/paper9.pdf, 2017.

18491

http://ceur-ws.org/Vol-2026/paper2.pdf
http://ceur-ws.org/Vol-2026/paper2.pdf
https://yaml.org
https://doi.org/10.1145/3191697.3191714
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
http://ceur-ws.org/Vol-2026/paper9.pdf

42 18491 – Multidirectional Transformations and Synchronisations

4.2 Multidirectionality in Compiler Testing
Vadim Zaytsev (Raincode Labs, BE)

License Creative Commons BY 3.0 Unported license
© Vadim Zaytsev

A classical software language processor can be viewed as a chain of transformations, most of
them even unidirectional, going through most of the following intermediate artefacts [1]:

Program text
Preprocessed program text
Parse tree as a structural model of a program
Abstract syntax graph as a conceptual model
Annotated graph with types and other information
Code model suitable for optimisations
Executable code
Computation result

Each of these artefacts/models conforms to a different metamodel. Examples of bidirec-
tional transformations in this chain, are:

Error correction facilities [2], where a “later” and more rich artefact can be used to point
out errors in an “earlier” and more primitive artefact, such as misplaced punctuation or
parenthesis in the text of the program.
Semantic-driven disambiguation [3], where the structure or a model of a program can
only be decisively determined after semantic analysis. The need and necessity for such
techniques is caused by having constructs like “x * y” in C (which can either mean
declaring a variable y typed as a pointer to a value of type x, or a multiplication of two
variables named x and y), dangling clauses in COBOL (a language where it is not always
straightforward to determine where one statement ends and the next one begins), offside
rule in languages like SASL, Python or Haskell (where statement affiliation with a block
depends on the indentation of a piece of code), as well as various ambiguities in 4GLs
caused by bad language design [4].
Incremental techniques where the change that needs to be propagated in either direction,
is several orders of magnitude smaller than the entire model. For example, many legacy
systems have flat hierarchies of interlinked and intercommunicating entities spanning over
millions of lines of code, but the evolution they undergo on a daily basis, covers small
scale bug fixes, rarely even multiline. Implementations of incremental synchronisation
techniques usually involve some sort of bx.

At Raincode Labs, which is commonly employed as a team of compiler mercenaries, we
are being asked to implement some of these features regularly, so having some bx is a norm
rather than something exotic.

A typical compiler test is a tuple, which elements correspond to some of the artefacts
listed in the beginning of this section. In the simplest case, it is a tuple with a program text
and its expected execution results. However, such simplistic test cases are only useful with
mature projects [5]. Compilers under active development require a much more elaborate
framework for testing, capable of forming hypotheses, crystallising them as specifications
and testing them differentially on available oracles (such as working legacy implementations
or remaining living domain experts). It is not uncommon for such a test spec to include all
or almost all of the artefacts, allowing for testing whether the parser could recognise the
input as correct, whether it succeeded building a proper parse tree, whether in its turn a

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 43

corresponding syntax graph was constructed correctly, etc, all the way to the execution of
the compiled code and comparing the result with the baseline [4, 5]. In practice it helps
enormously to have the capability to locate the exact point of failure.

So, since a test case is an n-tuple, a collection of them (known as a test suite) can be
seen as a specification of an n-ary relationship. When it gets broken (by a change in a
compiler, or, even more commonly during development, by the customer providing additional
information that conflicts with the contemporary understanding of the intended language
semantics), it needs to be restored, and that can/should be done by a multx. In general, all
connected artefacts are needed as inputs to make a consistency restoration decision, and all
of them have a chance to be changed as its result.

Unfortunately, the state of the art is to accomplish this with a combination of manual
programming and bespoke proprietary tools. The main intention behind exposing this
case study during the seminar as well as in this report, is to provide a somewhat detailed
description of an open problem that seems suitable to be solved with multx.

References
1 Vadim Zaytsev, Anya Helene Bagge. Parsing in a Broad Sense, Proceedings of the 17th

International Conference on Model Driven Engineering Languages and Systems (MoDELS),
LNCS 8767, pp. 50–67, https://doi.org/10.1007/978-3-319-11653-2_4, Springer, 2014.

2 Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, Emma Söderberg. Natural and Flexible
Error Recovery for Generated Modular Language Environments. ACM Transactions on
Programming Languages and Systems, 34(4): 15:1-15:50, https://doi.org/10.1145/2400676.
2400678 2012.

3 Mark van den Brand, Steven Klusener, Leon Moonen, Jurgen J. Vinju. Generalized Pars-
ing and Term Rewriting: Semantics Driven Disambiguation. Proceedings of the Third
Workshop on Language Descriptions, Tools and Applications (LDTA), ENTCS 82(3),
https://doi.org/10.1016/S1571-0661(05)82629-5, 2003.

4 Vadim Zaytsev. Open Challenges in Incremental Coverage of Legacy Software Languages.
Proceedings of the Third Edition of the Programming Experience Workshop (PX/17.2),
pp. 1–6, https://dl.acm.org/citation.cfm?id=3167105, 2017.

5 Vadim Zaytsev. An Industrial Case Study in Compiler Testing. Proceedings of the 11th
International Conference on Software Language Engineering (SLE), pp. 97–102, https://
doi.org/10.1145/3276604.3276619, ACM, 2018.

4.3 Bringing Harmony to the Web
James Cheney (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© James Cheney

A driving vision of the Harmony project [1] was to support synchronization of (differently)
structured data to bridge and integrate data on the Web. A substantial amount of data is
stored in relational databases (or graph databases that are gradually reinventing relational
databases). Synchronizing such data in a principled way requires foundations. Schema
mappings [2] are one well-explored approach to relational data integration, while bidirectional
techniques have seen much less attention, including initial steps such as relational lenses by
Bohannon et al. [3]; however, that work constituted a theoretical development without an
efficient implementation. In recent work, Horn et al. [4] showed how to implement relational
lenses efficiently using incrementalization. However, much remains to be done to build this

18491

https://doi.org/10.1007/978-3-319-11653-2_4
https://doi.org/10.1145/2400676.2400678
https://doi.org/10.1145/2400676.2400678
https://doi.org/10.1016/S1571-0661(05)82629-5
https://dl.acm.org/citation.cfm?id=3167105
https://doi.org/10.1145/3276604.3276619
https://doi.org/10.1145/3276604.3276619
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

44 18491 – Multidirectional Transformations and Synchronisations

A

B C ab

A B

abC C

Figure 8 A multx with pairwise relations.

A

B C ab

A B

abC C
Figure 9 A multx with a T-shape.

approach into a principled and efficient approach to synchronizing multiple large-scale Web
data sources. Among the many challenges are:

extending (incremental) relational lenses from the asymmetric to symmetric (incremental)
case, or further to “webs” of symmetric bx constituting a multidirectional bx
understanding how (invertible, composable) schema mappings and bx relate: are (some)
schema mappings (underdetermined) relational lenses? are (some) relational lenses schema
mappings?
can we compose lenses over other formats (text, graph, tree) with relational lenses?
given that timeliness, history/archiving, citation/attribution, and provenance are con-
sidered critical for Web data to assess its quality, can some of these requirements be
integrated into a BX-based formalism?

Concretely, suppose there are three databases, no two of which are controlled by the same
administrator / community, for example:
(A) Wikipedia (HTML/XML text)
(B) DBpedia (RDF triples)
(C) some organization’s relational knowledge base, e.g. a social science database project.

There is considerable overlap between the first two and some overlap between their
common data and the third: for example, perhaps C wants to import some information
about cities and populations from Wikipedia and/or DBPedia (and it is hoped that these
will remain consistent with each other too).

We could imagine (at least) two multidirectional BXs relating these three (where ⇒
denotes an asymmetric lens):

A⇐ AB ⇒ B ⇐ BC ⇒ C ⇐ AC ⇒ A

that is, an equilateral triangle of (spans of) lenses, with each “edge” AB, BC, AC a
database containing the aligned union of each pair of databases (Figure 8); or

A⇒ ab⇐ B

ab⇐ abC ⇒ C

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 45

i.e. a “T” shape where the top is a cospan centered on ab, which involves only the
information common to A and B, and there is a span ab ⇐ abC ⇒ C (maintained by C)
that explicitly aligns (the relevant parts of) ab with C (Figure 9).

In either case, criteria for success might include:
When one data source changes, it can publish its changes to the others and some
synchronization process takes place that restores the overall network to consistency.
Consistency restoration need not take place in a synchronized way. One data source
doesn’t have to wait for all of the others to complete synchronizing before allowing further
local changes.
Users of the system have a way to determine whether the version of the data they looked
at was up-to-date (or more accurately, how out-of-date it was), and revisit results later.
The amount of shared/duplicated data and coordination between the sources is manage-
able; small changes to one source are translated to small changes to another source when
this is possible.
Each source has the capability to monitor and reject ill-founded or catastrophic changes,
possibly according to an independently-specified access control policy (e.g. a change to
Wikipedia/DBpedia source inadvertently requiring the deleting of all of C should be
rejected). Ideally, users can inspect and accept/reject individual changes.
Each system should be able to work with its own native data model, including any
associated query or update languages.

These requirements suggest the need for capabilities that go well beyond the bare-bones
round-tripping laws of BX, for example to retain history, coordinate distributed systems,
and map between different data models. Some of these issues are also well-explored in the
conventional relational data integration literature too, and it may be that existing solutions
can be transferred to a BX-based setting without difficulty in some cases.

This case study aspires to assess the state of the art of different parts of the BX and
data integration landscape, understand what subproblems are solved and what are the open
subproblems, and understand whether solutions to the high-level problems are feasible yet
(perhaps stipulating solutions to well-defined subproblems) or whether integrating these
different approaches introduces new challenges.

References
1 Harmony project. https://alliance.seas.upenn.edu/~harmony/old/index.html
2 AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration, http://

research.cs.wisc.edu/dibook/, Morgan Kaufmann, 2012.
3 Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational Lenses: A Lan-

guage for Updatable Views, PODS, pp. 338–347, https://doi.org/10.1145/1142351.1142399,
2006.

4 Rudi Horn, Roly Perera, and James Cheney. Incremental Relational Lenses, ICFP, pp. 74:1-
74:30, https://doi.org/10.1145/3236769, http://arxiv.org/abs/1807.01948, 2018.

18491

https://alliance.seas.upenn.edu/~harmony/old/index.html
http://research.cs.wisc.edu/dibook/
http://research.cs.wisc.edu/dibook/
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.1145/3236769
http://arxiv.org/abs/1807.01948

46 18491 – Multidirectional Transformations and Synchronisations

Figure 10 Three Systems for Medical Data with Common Terminology.

4.4 A Health Informatics Scenario
Harald König (University of Applied Sciences FHDW Hannover, DE)

License Creative Commons BY 3.0 Unported license
© Harald König

Figure 10 shows (excerpts of) underlying data models of three medical record systems (M1,
M2, and M3) together with a correspondence specification scheme M0. The data models
represent a typical arrangement of a hospital’s information system architecture, which leads
to the problem of heterogenous data integration. M1 stores patient records. It aims at
providing caregivers with assigned beds and stations and with simplified descriptions of
medical observations. M2 is a web application tracking appointments between patients and
doctors, and M3 maintains blood test results.2

Rules for joint data consistency usually contain terminology from all three systems. It is
thus essential to specify common terminology of the systems, i.e. correspondences between
same terms or concepts in the models. In the example, M0 specifies these correspondences
grafically: Patient represents sameness of M1.Patient, M2.Patient, and M3.Subject (despite
different names, concepts may coincide). Similarly, Obs represents the fact that each
M3.BloodProbe is an M1.Observation. Moreover, arrow of in M0 specifies sameness of
properties M1.of and M3.takenFrom.

Now consider the following rule for joint consistency:

If there is a cholesterol test based on a severe blood probe, and if there is already a bed
assigned to the patient the probe is taken from, then there must be an appointment scheduled

for this patient.

At first glance, validity of this so-called inter-model constraint [1] can not be treated
with bidirectional transformations among the models M1, M2, M3 alone, because the
dependencies arising from the constraint cannot be reduced to a family of binary relations:
The variation in severity of the cholesterol test’s blood probe yields two different sets
of valid bed-appointment constellations, an assignment of a bed influences correctness of
appointment-severity occurences, and statements on valid bed-bloodprobe relations depend
on the existence of certain appointments.

2 Note that there are usually many more distributed sources of patient’s data, e.g. in file systems of
general practitioners or medical specialists as well as in databases of health insurances.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 47

Thus several research questions arise: Let M1, . . . ,Mn be a set of models with common
terminology M0 and C be a set of inter-model constraints imposed on some (or all) of these
models. Given database states A1, . . . , An, such that each Ai conforms to Mi:
1. How can we conceptually delineate an extension of bx, with which validity of inter-model

constraints C can be checked after a local update of some Ai.
2. In case of a violation of some constraints: how can joint consistency be restored?
3. Do we need a more sophisticated “multx”-framework or is a framework sufficient that is

based on a network of bx?
4. If a network of bx is enough, can we avoid introduction of extra systems?

Solutions: A conceptual consistency checking framework for the case of an arbitrary
number n ≥ 2 of model spaces was presented in [2]: Correspondences are formalized as
(possibly) partial morphisms in an appropriate catagory of graph-like structures, see the
dashed arrows in Fig. 10: Each mi highlights existing commonalities in Mi (i ∈ {1, 2, 3}).
Whereas m1 and m3 are total, m2 is properly partial, because Observations do not exist in
M2. In practice, morphisms mi : M0 → Mi are specified with statements of a respective
DSL, e.g.

relate (M1.Observation,M3.BloodSample) as Obs

for the assignments m1(Obs) = Observation and m3(Obs) = BloodProbe, such that there
is no need to introduce a database for M0. A category-theoretic solution is to encode the
complete picture in Fig. 10 as a “diagram” in a category. Any inter-model constraint is then
imposed on the colimit of this diagram. This colimit can be interpreted as the merge or the
union of models M1, M2, and M3 modulo their commonalities. To check whether database
states (snapshots) A1, A2, and A3 satisfy an inter-model constraint, we must also compute
the colimit of these snapshots modulo their commonalities (if the same real-world object
is simultaneously recorded in two or more databases). Clearly, reasoning about properties
of this validation can be carried out on a “virtually” computed colimit. Moreover, it can
be shown that it is sufficient to investigate only the colimit of the data portion, which is
affected by the constraints under consideration [3], such that the complete colimit must not
physically be computed. Thus there is no need to introduce a fourth extra database.

Open problems: Up to now, however, there is no general solution (based on bx-methods)
for appropriate update propagation and consistency restoration, if n > 2. “Multidirectional
Transformations and Synchronisations” seems to be a promising research direction, which
may provide means to answer this open research question. At best a methodology can be
proposed, which enables consistency restoration without introducing extra systems.

References
1 Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki. Specifying Overlaps of Heterogen-

eous Models for Global Consistency Checking, Proceedings of the First International
Workshop on Model-Driven Interoperability (MDI MoDELS), https://doi.org/10.1007/
978-3-642-21210-9_16, 2010.

2 Patrick Stünkel, Harald König, Yngve Lamo, Adrian Rutle. Multimodel Correspondence
through Inter-model Constraints, Seventh International Workshop on Bidirectional Trans-
formations (BX), Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming, pp. 9–17, https://doi.org/10.1145/3191697.
3191715, 2018.

3 Harald König and Zinovy Diskin. Efficient Consistency Checking of Interrelated Models,
Proceedings of the 13th European Conference on Modelling Foundations and Applications
(ECMFA), pp. 161–178, https://doi.org/10.1007/978-3-319-61482-3_10, 2017.

18491

https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1145/3191697.3191715
https://doi.org/10.1145/3191697.3191715
https://doi.org/10.1007/978-3-319-61482-3_10

48 18491 – Multidirectional Transformations and Synchronisations

Participants

Anthony Anjorin
Universität Paderborn, DE

Gabor Bergmann
Budapest Univ. of Technology &
Economics, HU

Dominique Blouin
Telecom ParisTech, FR

James Cheney
University of Edinburgh, GB

Anthony Cleve
University of Namur, BE

Sebastian Copei
Universität Kassel, DE

Davide Di Ruscio
University of L’Aquila, IT

Zinovy Diskin
McMaster University –
Hamilton, CA

Jeremy Gibbons
University of Oxford, GB

Holger Giese
Hasso-Plattner-Institut –
Potsdam, DE

Martin Gogolla
Universität Bremen, DE

Soichiro Hidaka
Hosei University – Tokyo, JP

Michael Johnson
Macquarie University –
Sydney, AU

Tsushima Kanae
National Institute of Informatics –
Tokyo, JP

Gabor Karsai
Vanderbilt University, US

Ekkart Kindler
Technical University of Denmark
– Lyngby, DK

Heiko Klare
KIT – Karlsruher Institut für
Technologie, DE

Hsiang-Shang Ko
National Institute of Informatics –
Tokyo, JP

Harald König
FHDW – Hannover, DE

Ralf Lämmel
Facebook – London, GB

Yngve Lamo
West. Norway Univ. of Applied
Sciences – Bergen, NO

Théo Le Calvar
Université d’Angers, FR

Nuno Macedo
University of Minho – Braga, PT

Kazutaka Matsuda
Tohoku University – Sendai, JP

James McKinna
University of Edinburgh, GB

Fiona A. C. Polack
Keele University –
Straffordshire, GB

Blake S, Pollard
Carnegie Mellon University –
Pittsburgh, US

Robert Rosebrugh
Mount Allison University –
Sackville, CA

Bernhard Rumpe
RWTH Aachen, DE

Andy Schürr
TU Darmstadt, DE

Bran V. Selic
Malina Software Corp. –
Nepean, CA

Friedrich Steimann
Fernuniversität in Hagen, DE

Perdita Stevens
University of Edinburgh, GB

Matthias Tichy
Universität Ulm, DE

Frank Trollmann
TU Berlin, DE

Jens Holger Weber
University of Victoria, CA

Nils Weidmann
Universität Paderborn, DE

Bernhard Westfechtel
Universität Bayreuth, DE

Vadim Zaytsev
RainCode Labs, BE

Albert Zündorf
Universität Kassel, DE

	Executive Summary Perdita Stevens, Ekkart Kindler
	Table of Contents
	Working Groups
	WG1: Whether Networks of Bidirectional Transformations Suffice for Multidirectional Transformations Michael Johnson
	WG2: Partial Consistency Notions Anthony Anjorin, Anthony Cleve, Sebastian Copei, Zinovy Diskin, Jeremy Gibbons, Hsiang-Shang Ko, Nuno Macedo, James McKinna, Andy Schürr, Bran V. Selic, Perdita Stevens, Jens Holger Weber, and Nils Weidmann
	WG4: Multiple Interacting Bidirectional Transformations Holger Giese, Gabor Karsai, and Vadim Zaytsev
	WG5: Mathematical Backgrounds for Multidirectional Transformations Hsiang-Shang Ko
	WG6: Synchronisation Policy Jeremy Gibbons and James McKinna
	WG7: Use Cases and the Definition of Multidirectional Transformations Fiona A.C. Polack, Anthony Cleve, Davide Di Ruscio, and Martin Gogolla
	WG8: Human Factors: Interests of Transformation Developers and Users Matthias Tichy and Heiko Klare
	WG9: Provenance in Multidirectional Transformations Nils Weidmann
	WG10: Living in the Feet of the Span Jeremy Gibbons and Michael Johnson
	WG11: Programming Languages for Multidirectional Transformations Kazutaka Matsuda, James Cheney, and Soichiro Hidaka
	WG12: Verification and Validation of Multidirectional Transformations Perdita Stevens

	Case Studies
	Multidirectional Transformations for Microservices Sebastian Copei, Marco Sälzer and Albert Zündorf
	Multidirectionality in Compiler Testing Vadim Zaytsev
	Bringing Harmony to the Web James Cheney
	A Health Informatics Scenario Harald König

	Participants

