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Multilevel Monte Carlo for stochastic differential

equations with small noise

David F. Anderson∗, Desmond J. Higham†, Yu Sun‡

December 10, 2014

Abstract

We consider the problem of numerically estimating expectations of solutions to
stochastic differential equations driven by Brownian motions in the small noise regime.
We consider (i) standard Monte Carlo methods combined with numerical discretiza-
tion algorithms tailored to the small noise setting, and (ii) a multilevel Monte Carlo
method combined with a standard Euler-Maruyama implementation. The multilevel
method combined with Euler-Maruyama is found to be the most efficient option un-
der the assumptions we make on the underlying model. Further, under a wide range
of scalings the multilevel method is found to be optimal in the sense that it has the
same asymptotic computational complexity that arises from Monte Carlo with direct
sampling from the exact distribution — something that is typically impossible to do.
The variance between two coupled paths, as opposed to the L2 distance, is directly
analyzed in order to provide sharp estimates in the multilevel setting.

1 Introduction

We study the problem of numerically estimating expectations of solutions to stochastic dif-
ferential equations (SDEs) with small noise via Monte Carlo and multilevel Monte Carlo
methods. Such models arise in a number of areas including electrical circuit simulation
[3], modeling of signal propagation in neurons [4], and biochemistry [2]. Our particular
motivation comes from biochemistry and cell biology where the diffusion and linear noise
approximations to the usual jump models are SDEs with small noise [2].

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space satisfying the usual conditions;
i.e. the filtration is complete and right-continuous. Let W (t) = (W1(t),W2(t), . . . ,Wm(t)) be
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an m-dimensional standard Wiener processes under {Ft}t≥0. Let ε > 0 be a small parameter
and let Dε be the solution to the following Ito SDE,

Dε(t) = D(0) +

∫ t

0

µ(Dε(s))ds+ ε

∫ t

0

σ(Dε(s))dW (s), (1)

where µ : Rd → R
d and σ : Rd → R

d×m are continuous functions.
Let f : Rd → R have bounded first and second partial derivatives and let T > 0 be a fixed

positive number. We are interested in the problem of numerically estimating E[f(Dε(T ))]
to an accuracy of δ > 0 in the sense of confidence intervals. In particular, we study the
computational complexity required to solve this problem utilizing both (i) standard Monte
Carlo methods combined with discretization methods tailored to the small noise setting
[10, 9], and (ii) multilevel Monte Carlo methods combined with Euler-Maruyama [5]. The
L2 bounds on the difference between exact and approximate processes that are already in
the literature [9] do not provide sharp estimates for the variance between two coupled paths;
an analogous issue was previously addressed in the jump process setting [1]. Our main effort
is therefore directed at analysing the variance between two coupled paths in the small noise
setting.

We note that if realizations of f(Dε(T )) could be generated with a single numerical
calculation, and if Var(f(Dε(T ))) = O(ε2), then the computational complexity of solving
the problem would be O(ε2δ−2). We show below that the multilevel Monte Carlo method
combined with a standard implementation of Euler-Maruyama solves the problem with this
same optimal computational complexity.

We make the following regularity assumption throughout the manuscript.

Running assumption. We suppose there are constants a, b > 0 such that for all x, y ∈ R
d

the following inequalities hold:

|∇µ(x)|2 ∨ |∇2µ(x)|2 ≤ a,

and

|µ(x)− µ(y)|2 ≤ a|x− y|2, |σ(x)− σ(y)|2 ≤ b|x− y|2,
and

|µ(x)|2 ≤ a(1 + |x|2), |σ(x)|2 ≤ b(1 + |x|2).

Under the above assumptions, the SDE (1) is known to have a unique strong solution (see,
for example, Theorem 3.1 on page 51 in [8]).

1.1 Euler-Maruyama and a statement of main mathematical result

We provide a continuous version of the Euler-Maruyama discretization method. Let h > 0
and let Dε

h be the solution to

Dε
h(t) = D(0) +

∫ t

0

µ(Dε
h(η(s))) ds+ ε

∫ t

0

σ(Dε
h(ηh(s))) dW (s), (2)
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where η(s)
def
= ⌊s/h⌋h. It is straightforward to see that the solution to (2) restricted to the

set of times {0, h, 2h, . . . } has the same distribution as the discrete time process generated
by the usual Euler-Maruyama method [7].

In order to understand the computational complexity of the multilevel scheme, we need
sharp estimates for the variance between two coupled paths. The following provides such
an estimate and is the main theorem provided in this manuscript. The result bounds the
variance between two coupled process; both are generated via (2), though they have different
time discretization parameters. See the beginning of section 3 for more details related to the
coupling.

Theorem 1. Suppose the functions µ and σ satisfy our running assumptions and that T > 0.
Suppose further that Dε

hℓ
(t) and Dε

hℓ−1
(t) satisfy (2) with time discretization parameters

hℓ = T ·M−ℓ and hℓ−1 = T ·M−(ℓ−1), respectively, where M is a positive integer, and that

these two processes are constructed with the same realization of Brownian motions. Assume

that f : Rd → R has continuous second derivative and there exists a constant CL such that

∥∥∥∥
∂f

∂xi

∥∥∥∥
∞

≤ CL and

∥∥∥∥
∂2f

∂xi∂xj

∥∥∥∥
∞

≤ CL for any i, j = 1, 2, ..., d.

Then,

max
0≤n≤Mℓ−1

Var(f(Dε
hℓ
(tn))− f(Dε

hℓ−1
(tn))) ≤ C̄1h

2
ℓ−1ε

2 + C̄2hℓ−1ε
4, (3)

where tn = n·hℓ−1, and C̄1 and C̄2 are positive constants only depending on a, b, d,m, T,D(0)
and CL.

In the context of analysing the classical mean-square error, it was shown by Milstein and
Tretyakov in [9] that under the same assumptions as in Theorem 1,

E[|f(Dε(T ))− f(Dε
h(T ))|2] = O(h2 + hε4), (4)

where Dε is the solution to (1). The bound (4) implies that for some C1, C2 > 0 we have
max0≤n≤Mℓ−1 Var(f(Dε

hℓ
(tn)) − f(Dε

hℓ−1
(tn))) ≤ C1h

2
ℓ−1 + C2hℓ−1ε

4, where, again, tn = n ·
hℓ−1. Theorem 1 sharpens this bound considerably, showing that the overall variance scales
favourably with ε, even though the Euler–Maruyama method has not been customized to
exploit the small noise property.

2 Complexity Analysis

2.1 Standard Monte Carlo methods

As a basis for comparison, we first analyze the complexity of standard Monte Carlo with a
general discretization method.

Suppose Dε
h is generated by a numerical scheme (not necessarily (2)) for which the bias

of the discretization method satisfies

|E[f(Dε
h(T ))]− E[f(Dε(T ))]| = O(hp + εrhq). (5)
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where q < p. In order to ensure that the bias (5) is smaller than δ, we require that

h = O(max(δ1/p, δ1/qε−r/q)).

Under our running assumptions and generalizing the analysis in Lemma 2 below, which
applies to Euler-Maruyama, implies

Var(f(Dε
h(T ))) = Var(f(Dε

h(T ))− f(zh(T ))) ≤ CE

[
sup
s≤T

|Dε
h(s)− zh(s)|2

]
= O(ε2),

where zh is the Euler solution to the associated deterministic model obtained when ε is set
to 0 in (1), see (13). Thus, the standard Monte Carlo estimator

E[f(Dε(T ))] ≈ E[f(Dε
h(T ))] ≈

1

n

n∑

i=1

f(Dε
h,[i](T )),

where Dε
h,[i] is the ith independent realization of the process, has a variance that is O(n−1ε2).

Because we require an overall estimator variance of O(δ2), we require that n = O(ε2δ−2).
Assuming that the cost of generating a single path of the scheme scales like h−1, we obtain
an upper bound on the overall computational complexity of order

O(ε2δ−2h−1) = O

(
δ−2ε2

max(δ1/p, δ1/qε−r/q)

)
.

For example, for the Euler-Maruyama scheme (2), we have that p = q = 1, r = 0 yielding
a bias of O(h) in (5). In this case we select h = O(δ), and find a computational complexity
of O(ε2δ−3).

2.2 Euler-based multilevel Monte Carlo

Here we specify and analyze an Euler-Maruyama based multilevel Monte Carlo method for
the diffusion approximation. We follow the original framework of Giles [5].

For a fixed positive integer M we let hℓ = T ·M−ℓ for ℓ ∈ {0, . . . , L}. Reasonable choices
for M include M ∈ {2, 3, 4, . . . , 7}, and L is determined below. For each ℓ ∈ {0, 1, . . . , L},
let Dε

hℓ
denote the approximate process generated by (2) with a step size of hℓ. Note that

E[f(Dε(T ))] ≈ E[f(Dε
hL
(T ))] = E[f(Dε

h0
(T ))] +

L∑

ℓ=1

E[f(Dε
hℓ
(T ))− f(Dε

hℓ−1
(T ))],

with the quality of the approximation only depending upon hL. As mentioned in [9], the Euler
discretization has a weak order of one in the present setting for a large class of functionals
f . Hence, we set hL = δ in order for the bias to be O(δ). This choice yields L = O(| log(δ)|).
We now let

Q̂ε
0

def
=

1

n0

n0∑

i=1

f(Dε
h0,[i](T )), and Q̂ε

ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(Dε
hℓ,[i]

(T ))− f(Dε
hℓ−1,[i]

(T ))),
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for ℓ = 1, . . . , L, where n0 and the different nℓ have yet to be determined. Our estimator is
then

Q̂ε def
= Q̂ε

0 +
L∑

ℓ=1

Q̂ε
ℓ .

Set
δε,ℓ = Var(f(Dε

hℓ
(T ))− f(Dε

hℓ−1
(T ))).

By Theorem 1, we have δε,ℓ = O(h2
ℓε

2+hℓε
4) under a wide array of circumstances. Also note

that δε,0 = Var(f(Dε
0)) = O(ε2).

For ℓ ∈ {1, . . . , L}, let Cℓ be the computational complexity required to generate a single
pair of coupled trajectories at level ℓ. Let C0 be the computational complexity required to
generate a single trajectory at the coarsest level. To be concrete, we set Cℓ to be the number
of random variables required to generate the requisite path. To determine nℓ, we solve the
following optimization problem, which ensures a total variance of Q̂ε no greater than δ2:

minimize
nℓ

L∑

ℓ=0

nℓCℓ,

subject to

L∑

ℓ=0

δε,ℓ
nℓ

= δ2.

We use Lagrange multipliers. Since Cℓ = h−1
ℓ , the optimization problem above is solved at

solutions to

∇n0,...,nL,λ

(
L∑

ℓ=0

nℓh
−1
ℓ + λ

(
L∑

ℓ=0

δε,ℓ
nℓ

− δ2

))
= 0.

By taking a derivative with respect to nℓ we obtain,

nℓ =
√
λδε,ℓhℓ, for ℓ ∈ {0, 1, 2, . . . , L} (6)

and some λ ≥ 0. Thus,
L∑

ℓ=0

√
δε,ℓ
hℓ

=
√
λδ2

and, by Theorem 1,

√
λ = δ−2

L∑

ℓ=0

√
δε,ℓ
hℓ

≤ Cδ−2
L∑

ℓ=0

√
hℓε2 + ε4 ≤ C(δ−2ε+ δ−2ε2L). (7)

Recall that L = O(log 1
δ
). Hence, if δ ≥ e−

1

ε , which implies ε2L ≤ ε, then

λ = O(δ−4ε2).

In this case the overall computational complexity is

L∑

ℓ=0

nℓh
−1
ℓ =

L∑

ℓ=0

√
λ

√
δε,ℓ
hℓ

= δ2λ = O(δ−2ε2). (8)
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If δ < e−
1

ε , in which case ε2L > ε, then

λ = O(δ−4ε4L2),

and the overall computational complexity becomes

O(δ−2ε4| log(δ)|2). (9)

2.3 Comparison

The regime δ < e−
1

ε in which we derived (9) represents an extremely severe accuracy re-
quest that is unlikely to be relevant in practice. Hence, we focus on the complexity bound
O(δ−2ε2) in (8). This bound compares favourably with the bound O(ε2δ−3) that we derived
in subsection 2.2 for standard Monte Carlo with Euler–Maruyama, allowing us to carry
through a conclusion that applies to general SDEs [5]: multilevel Monte Carlo can improve
on the complexity of standard Monte Carlo by a factor δ−1, where δ is the required accuracy.
Furthermore, following the discussion in subsection 1, we note that this multilevel Euler
computational complexity is optimal in that we cannot do better—asymptotically in the
parameters δ or ε—even if we could generate independent realizations of f(Dε(T )) exactly
in a single step.

3 Proof of Theorem 1

Throughout this section, we assume the conditions of Theorem 1 are met with positive
integer M fixed.

The coupling of the two approximate processes, Dε
hℓ
(t) and Dε

hℓ−1
(t), takes the form

Dε
hℓ
(t) = D(0) +

∫ t

0

µ(Dε
hℓ
(η(s))) ds+ ε

∫ t

0

σ(Dε
hℓ
(ηhℓ

(s))) dW (s),

Dε
hℓ−1

(t) = D(0) +

∫ t

0

µ(Dε
hℓ−1

(η(s))) ds+ ε

∫ t

0

σ(Dε
hℓ−1

(ηhℓ−1
(s))) dW (s).

For n ∈ {0, 1, . . . ,M ℓ−1} and k ∈ {0, . . . ,M} let

tn = nhℓ−1, and tkn = nhℓ−1 + khℓ.

Note that for each n we have
t0n = tn, tMn = tn+1.

We use the following discretization scheme to simulate the coupling above. First, for each
n ∈ {0, 1, . . . ,M ℓ−1} and k ∈ {0, . . . ,M − 1}, let

Dε
hℓ
(tk+1

n ) = Dε
hℓ
(tkn) + µ(Dε

hℓ
(tkn))hℓ + ε

√
hℓσ(D

ε
hℓ
(tkn))W

k
n , (10)

6



where the random vector W k
n ∈ R

m has independent components (from each other and all
previous random variables), and each component is distributed as N(0, 1). Note that (10)
implies

Dε
hℓ
(tn+1) = Dε

hℓ
(tn) +

M−1∑

k=0

µ(Dε
hℓ
(tkn))hℓ + ε

√
hℓ

M−1∑

k=0

σ(Dε
hℓ
(tkn))W

k
n .

To simulate Dε
hℓ−1

, we then use

Dε
hℓ−1

(tn+1) = Dε
hℓ−1

(tn) + µ(Dε
hℓ−1

(tn))hℓ−1 + ε
√

hℓ−1σ(D
ε
hℓ−1

(tn))

M−1∑

k=0

W k
n .

We begin with a series of necessary lemmas.

Lemma 1. For any T > 0 we have

E

[
sup

0≤s≤T
|Dε

hℓ
(s)|4

]
≤ C.

for some C = C(a, b, T,D(0)).

Proof. For any t > 0,

|Dε
hℓ
(t)|4 ≤ 27|D(0)|4 + 27

∣∣∣∣
∫ t

0

µ(Dε
hℓ
(η(s)))ds

∣∣∣∣
4

+ 27ε4
∣∣∣∣
∫ t

0

σ(Dε
hℓ
(η(s)))dW (s)

∣∣∣∣
4

.

Thus,

sup
0≤s≤t

|Dε
hℓ
(s)|4 ≤ 27|D(0)|4 + 27t3

∫ t

0

sup
0≤r≤s

|µ(Dε
hℓ
(η(r)))|4ds

+ 27ε4 sup
0≤s≤t

∣∣∣∣
∫ s

0

σ(Dε
hℓ
(η(r)))dW (r)

∣∣∣∣
4

, (11)

since the right-hand-side is monotonically increasing in t. Applying the Burkholder-Davis-
Gundy inequality [8] to the term (11) and taking expectations we get

E

[
sup
0≤s≤t

|Dε
hℓ
(s)|4

]
≤ 27|D(0)|4 + 27t3

∫ t

0

E

[
sup
0≤r≤s

|µ(Dε
hℓ
(η(r)))|4

]
ds

+K(T )ε4
∫ t

0

E[|σ(Dε
hℓ
(η(s)))|4]ds,

(12)

whereK(T ) is a generic constant only depending on T . Using (12) with t = nhℓ and s = mhℓ,

7



where n and m are nonnegative integers for which mhℓ ≤ nhℓ ≤ t ≤ T , we get

E

[
sup
m≤n

|Dε
hℓ
(mhℓ)|4

]
≤ 27|D(0)|4 + 27t3

n−1∑

i=0

E

[
sup
m≤i

|µ(Dε
hℓ
(mhℓ))|4

]
hℓ

+K(T )ε4
n−1∑

i=0

E
[
|σ(Dε

hℓ
(ihℓ))|4

]
hℓ

≤ 27|D(0)|4 + 54a2T 4 +K(T )b2ε4

+ (54a2T 3 +K(T )b2ε4)
n−1∑

i=0

E

[
sup
m≤i

|Dε
hℓ
(mhℓ)|2

]
hℓ,

where in the final inequality we applied the growth conditions for both µ and σ found in the
running assumption. We then use the discrete version of Gronwall’s Lemma to obtain

E

[
sup
m≤n

|Dε
hℓ
(mh)|4

]
≤ C1(a, b, T,D(0)).

Now we return to (12) and, after applying the growth conditions pertaining to both µ and
σ in our running assumption, conclude

E

[
sup

0≤s≤T
|Dε

hℓ
(s)|4

]
≤ C(a, b, T,D(0)),

for some new constant C.

Let z be the deterministic solution to

zh(t) = D(0) +

∫ t

0

µ(zh(η(s)))ds, (13)

which is an Euler approximation to the ODE obtained from (1) when ε is set to zero.

Lemma 2. For any T > 0 we have

E

[
sup

0≤s≤T
|Dε

hℓ
(s)− zhℓ

(s)|2
]
≤ Cε2,

for some C = C(a, b, T,D(0)).

Proof. For t ≤ T , we have

|Dε
hℓ
(t)− zhℓ

(t)|2 ≤ 2T

∫ t

0

|µ(Dε
hℓ
(η(s)))− µ(zhℓ

(η(s))|2ds+ 2ε2
∣∣∣∣
∫ t

0

σ(Dε
hℓ
(η(s)))dW (s)

∣∣∣∣
2

.

As a result of the Burkholder-Davis-Gundy inequality and our running assumptions,

E

[
sup
0≤s≤t

∣∣Dε
hℓ
(s)− zhℓ

(s)
∣∣2
]

≤ 2aT

∫ t

0

E

[
sup
0≤s≤r

|Dε
hℓ
(η(s))− zhℓ

(η(s))|2
]
dr + 8ε2

∫ t

0

E[|σ(Dε
hℓ
(η(s)))|2]ds

≤ 8bTE

[
sup
0≤s≤t

(1 + |Dε
hℓ
(s)|2)

]
ε2 + 2aT

∫ t

0

E

[
sup
0≤s≤r

|Dε
hℓ
(η(s))− zhℓ

(η(s))|2
]
dr.

(14)
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Specializing the above to t = nhℓ and s = mhℓ, where n and m are nonnegative integers
for which mhℓ ≤ nhℓ ≤ t ≤ T , we get

E

[
sup
m≤n

|Dε
hℓ
(mhℓ)− zhℓ

(mhℓ)|2
]

≤ 8bTE

[
sup
0≤s≤t

(1 + |Dε
hℓ
(s)|2)

]
ε2 + 2aT

n−1∑

i=0

hℓ · E
[
sup
m≤i

|Dε
hℓ
(mhℓ)− zhℓ

(mhℓ)|2
]

≤ 8bT (1 +K)ε2 + 2aT
n−1∑

i=0

hℓ · E
[
sup
m≤i

|Dε
hℓ
(mhℓ)− zhℓ

(mhℓ)|2
]
,

for some K = K(a, b, T,D(0)), where the first inequality follows from (14) and the second
utilizes Lemma 1.

By the discrete version of Gronwall’s inequality we see

E

[
sup
m≤n

|Dε
hℓ
(mhℓ)− zhℓ

(mhℓ)|2
]
≤ (8bT (1 +K))e2aT

2

ε2.

Since n satisfying nhℓ ≤ T was arbitrary, we return to (14) to conclude that for any 0 ≤ t ≤ T

E

[
sup
s≤t

|Dε
hℓ
(s)− zhℓ

(s)|2
]
≤ C(a, b, T,D(0))ε2.

Lemma 3.

max
0≤n≤Mℓ−1

1≤k≤M

|E[Dε
hℓ
(tkn)−Dε

hℓ
(tn)]| ≤ CMhℓ,

where C is a positive constant that only depends on a, b, T,m,D(0).

Proof. Iterating (10) yields

∣∣E
[
Dε

hℓ
(tkn)−Dε

hℓ
(tn)

]∣∣ ≤
∣∣∣∣∣E
[
k−1∑

i=0

µ(Dε
hℓ
(tin))hℓ

]∣∣∣∣∣ +
∣∣∣∣∣E
[
ε
√
hℓ

k−1∑

i=0

σ(Dε
hℓ
(tin))W

i
n

]∣∣∣∣∣

≤
k−1∑

i=0

E
[
|µ(Dε

hℓ
(tin))hℓ|

]

≤ hℓ

√
a

k−1∑

i=0

(1 + E[|Dε
hℓ
(tin)|]),

where the first inequality is simply the triangle inequality, the second follows from the triangle
inequality combined with the observation that the expectations of the diffusion terms are
zero, and the third inequality follows from our running assumptions. The proof is completed
by using Lemma 1 and recalling that k ≤ M .

Lemma 4.

max
0≤n≤Mℓ−1

1≤k≤M

E[|Dε
hℓ
(tkn)−Dε

hℓ
(tn)|4|] ≤ C1M

4h4
ℓ + C2ε

4M2h2
ℓ ,

where C1 and C2 are positive constants that only depend on a, b, T,m,D(0).

9



Proof. Iterating (10) yields

Dε
hℓ
(tkn)−Dε

hℓ
(tn) =

k−1∑

i=0

µ(Dε
hℓ
(tin))hℓ + ε

√
hℓ

k−1∑

i=0

σ(Dε
hℓ
(tin))W

i
n.

Denoting ‖X‖L4(Ω,Rd) = (E[|X|4])1/4 and σj to be the jth column of σ, we use the inequality
(a+ b)4 ≤ 8a4 + 8b4 to conclude

E
[
|Dε

hℓ
(tkn)−Dε

hℓ
(tn)|4

]
≤ 8M3

k−1∑

i=0

E
[
|µ(Dε

hℓ
(tin))hℓ|4

]
+ 8ε4h2

ℓE



∣∣∣∣∣

k−1∑

i=0

σ(Dε
hℓ
(tin))W

i
n

∣∣∣∣∣

4



≤ C(a, b, T,D(0))M4h4
ℓ + 2048ε4h2

ℓ

(
M−1∑

i=0

m∑

j=1

‖σj(Dε
hℓ
(tin))‖2L4(Ω,Rd)

)2

≤ C(a, b, T,D(0))4M4h4
ℓ + 2048bε4M2h2

ℓm
2(2 + 2 max

0≤i≤M−1
‖Dε

hℓ
(tin)‖4L4(Ω,Rd))

≤ C(a, b, T,D(0))4M4h4
ℓ + C2ε

4M2h2
ℓ ,

where the second inequality follows from Lemma 1 and Lemma 3.8 in [6], the last inequality
follows from Lemma 1, and C1 and C2 are constants only depending on a, b, T,m,D(0).

The following is a Taylor expansion of the drift coefficient.

Lemma 5. Let µi(x) be the ith component of µ(x), then

µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)) = Ak +Bk + Ek, (15)

where

Ak :=

∫ 1

0

[
∇µi(D

ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))

]
ds ·

(
hℓ

k−1∑

j=0

µ(Dε
hℓ
(tjn))

)
,

Bk := ∇µi(D
ε
hℓ
(tn)) ·

(
ε
√

hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)
, (16)

and

Ek :=

(∫ 1

0

∫ s

0

[
∇2µi(D

ε
hℓ
(tn) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))(D

ε
hℓ
(tkn)−Dε

hℓ
(tn))

]
drds

)

·
(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)
.

10



Proof. Using Taylor’s expansion (see Lemma 12 in the appendix) we see

µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn))

=

∫ 1

0

[
∇µi(D

ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))

]
ds · (Dε

hℓ
(tkn)−Dε

hℓ
(tn))

=

∫ 1

0

[
∇µi(D

ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))

]
ds ·

(
hℓ

k−1∑

j=0

µ(Dε
hℓ
(tjn))

)

+

∫ 1

0

[
∇µi(D

ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))

]
ds ·

(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)
.

Applying a multidimensional version of Lemma 12,

∫ 1

0

[∇µi(D
ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))]ds ·

(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)

= ∇µi(D
ε
hℓ
(tn)) ·

(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)

+

(∫ 1

0

∫ s

0

[
H(µi)(D

ε
hℓ
(tn) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))(D

ε
hℓ
(tkn)−Dε

hℓ
(tn))

]
drds

)

·
(
ε
√

hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)
.

Therefore,

µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn))

=

∫ 1

0

[∇µi(D
ε
hℓ
(tn) + s(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))]ds ·

(
hℓ

k−1∑

j=0

µ(Dε
hℓ
(tjn))

)

+∇µi(D
ε
hℓ
(tn)) ·

(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)

+

(∫ 1

0

∫ s

0

[∇2µi(D
ε
hℓ
(tn) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))(D

ε
hℓ
(tkn)−Dε

hℓ
(tn))]drds

)

·
(
ε
√
hℓ

k−1∑

j=0

σ(Dε
hℓ
(tjn))W

j
n

)

= Ak +Bk + Ek.

The following result is similar to the L2 bound found in [9] in the case where the numerical
discretization method is Euler–Maruyama.

Lemma 6.

max
0≤n≤Mℓ−1

E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] ≤ d1h

2
ℓ−1 + d2ε

4hℓ−1,

where d1 and d2 are positive constants that depend on a, b, T,m,D(0).

11



Proof. For n ≤ M ℓ−1 − 1 we have

Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1) = Dε

hℓ
(tn)−Dε

hℓ−1
(tn) + hℓ

M−1∑

k=0

(µ(Dε
hℓ
(tkn))− µ(Dε

hℓ−1
(tn)))

+ ε
√

hℓ

M−1∑

k=0

(σ(Dε
hℓ
(tkn))− σ(Dε

hℓ−1
(tn)))W

k
n

= Dε
hℓ
(tn)−Dε

hℓ−1
(tn) + hℓ

M−1∑

k=0

(µ(Dε
hℓ
(tkn))− µ(Dε

hℓ
(tn)))

+ hℓ

M−1∑

k=0

(µ(Dε
hℓ
(tn))− µ(Dε

hℓ−1
(tn)))

+ ε
√

hℓ

M−1∑

k=0

(σ(Dε
hℓ
(tkn))− σ(Dε

hℓ
(tn)))W

k
n

+ ε
√

hℓ

M−1∑

k=0

(σ(Dε
hℓ
(tn))− σ(Dε

hℓ−1
(tn)))W

k
n ,

where the final equality simply comes from adding and subtracting some terms. After some
manipulation the above implies

|Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)|2 ≤ |Dε

hℓ
(tn)−Dε

hℓ−1
(tn)|2 + 4h2

ℓ |
M−1∑

k=0

(µ(Dε
hℓ
(tkn))− µ(Dε

hℓ
(tn)))|2

+ 4h2
ℓ |

M−1∑

k=0

(µ(Dε
hℓ
(tn))− µ(Dε

hℓ−1
(tn)))|2

+ 4|ε
√
hℓ

M−1∑

k=0

(σ(Dε
hℓ
(tkn))− σ(Dε

hℓ
(tn)))W

k
n |2

+ 4|ε
√
hℓ

M−1∑

k=0

(σ(Dε
hℓ
(tn))− σ(Dε

hℓ−1
(tn)))W

k
n |2

+ 2hℓ

M−1∑

k=0

〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tkn))− µ(Dε

hℓ
(tn))〉

+ 2hℓ

M−1∑

k=0

〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tn))− µ(Dε

hℓ−1
(tn))〉

+ 2ε
√
hℓ

M−1∑

k=0

〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), (σ(D

ε
hℓ
(tkn))− σ(Dε

hℓ
(tn)))W

k
n 〉

+ 2ε
√
hℓ

M−1∑

k=0

〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), (σ(D

ε
hℓ
(tn))− σ(Dε

hℓ−1
(tn)))W

k
n 〉,

12



where 〈u, v〉 denotes the inner product of u and v. Therefore,

E[|Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)|2]

≤ E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] + 4Mh2

ℓ

M−1∑

k=0

E[|µ(Dε
hℓ
(tkn)− µ(Dε

hℓ
(tn))|2]

+ 4Mh2
ℓ

M−1∑

k=0

E[|µ(Dε
hℓ
(tn))− µ(Dε

hℓ−1
(tn))|2]

+ 4ε2hℓ

M−1∑

k=0

E[|(σ(Dε
hℓ
(tkn))− σ(Dε

hℓ
(tn)))W

k
n |2]

+ 4ε2hℓ

M−1∑

k=0

E[|(σ(Dε
hℓ
(tn))− σ(Dε

hℓ−1
(tn)))W

k
n |2]

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tkn))− µ(Dε

hℓ
(tn))〉]

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tn))− µ(Dε

hℓ−1
(tn))〉],

where we used that W k
n is independent from Dε

hℓ
(tn), D

ε
hℓ−1

(tn), and Dε
hℓ
(tkn). Hence, by

Lemma 4, there are positive constants C1 and C2 that only depend on a, b, T,m,D(0), such
that

E[|Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)|2]

≤ E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] + 4aC1M

4h4
ℓ + 4aC2ε

2M3h3
ℓ

+ 4aMh2
ℓ

M−1∑

k=0

E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] + 4bC1ε

2M3h3
ℓ + 4bC2ε

4M2h2
ℓ

+ 4bε2hℓ

M−1∑

k=0

E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2]

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tkn))− µ(Dε

hℓ
(tn))〉]

+ 2hℓ

√
aME[|Dε

hℓ
(tn)−Dε

hℓ−1
(tn)|2],

where the final term follows from the Cauchy-Schwarz inequality. Continuing,

E[|Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)|2]

≤ E[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] + (2

√
a+ 4aMhℓ + ε24b)MhℓE[|Dε

hℓ
(tn)−Dε

hℓ−1
(tn)|2]

+ 4aC1M
4h4

ℓ + 4aC2ε
2M3h3

ℓ + 4bC1ε
2M3h3

ℓ + 4bC2ε
4M2h2

ℓ

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tkn))− µ(Dε

hℓ
(tn))〉]. (17)

13



We turn to the term (17). Applying Lemma 5, we know

µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)) = Ak +Bk + Ek.

Also we notice,
E[|Ak|2] ≤ K1M

2h2
ℓ ,

where K1 is a constant that only depends on a, b, T,m,D(0). Utilizing Lemmas 1 and 4

E[|Ek|2] ≤ ahℓε
2
E

[
|Dε

hℓ
(tkn)−Dε

hℓ
(tn)|2

k−1∑

j=0

|σ(Dε
hℓ
(tjn))W

j
n|2
]

≤ ahℓε
2
(
E[|Dε

hℓ
(tkn)−Dε

hℓ
(tn)|4]

)1/2
(
k

k−1∑

j=0

E
[
|σ(Dε

hℓ
(tjn))W

j
n|4
]
)1/2

≤ K2M
3h3

ℓε
2 +K3M

2h2
ℓε

4,

(18)

where K2 and K3 are constants depending only on a, b, T,m,D(0). As a result,

2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), µ(D

ε
hℓ
(tkn))− µ(Dε

hℓ
(tn))〉]

= 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), Ak〉]

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), Bk〉] (19)

+ 2hℓ

M−1∑

k=0

E[〈Dε
hℓ
(tn)−Dε

hℓ−1
(tn), Ek〉]

≤ 2MhℓE[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] + hℓ

M−1∑

k=0

E[|Ak|2] + hℓ

M−1∑

k=0

E[|Ek|2]

≤ 2MhℓE[|Dε
hℓ
(tn)−Dε

hℓ−1
(tn)|2] +K1M

3h3
ℓ +K2M

4h4
ℓε

2 +K3M
3h3

ℓε
4,

where the first inequality follows from: (i) the observation that the expectation (19) is zero,
(ii) the Cauchy-Schwarz inequality, and (iii) the inequality 2ab ≤ a2 + b2. Combining all the
estimates above, we find

E[|Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)|2]

≤ E

[
|Dε

hℓ
(tn)−Dε

hℓ−1
(tn)|2

]

+ (2 + 2
√
a + 4aMhℓ + 4bε2)MhℓE

[
|Dε

hℓ
(tn)−Dε

hℓ−1
(tn)|2

]

+ 4aC1M
4h4

ℓ + 4aC2ε
2M3h3

ℓ + 4bC1ε
2M3h3

ℓ + 4bC2ε
4M2h2

ℓ

+K1M
3h3

ℓ +K2M
4h4

ℓε
2 +K3M

3h3
ℓε

4.

Noting that the dominant terms above are of order h2
ℓ−1ǫ

4 and h3
ℓ−1, an application of Gron-

wall’s inequality completes the proof.
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We are now ready to prove our main result.

Proof of Theorem 1. Following [1], we first prove the result in the case that f(x) = xi for
some i ∈ {1, . . . , d}. We have that for n ≤ M ℓ−1 − 1,

[Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)]i

= [Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]i + hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)))

+ hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tn))− µi(D

ε
hℓ−1

(tn))) + ε
√
hℓ

M−1∑

k=0

(σi(D
ε
hℓ
(tkn))− σi(D

ε
hℓ
(tn)))W

k
n

+ ε
√
hℓ

M−1∑

k=0

(σiD
ε
hℓ
(tn))− σi(D

ε
hℓ−1

(tn)))W
k
n ,

where µi is the ith component of µ and σi is the ith row of σ. As a result, and after some
manipulation,

Var([Dε
hℓ
(tn+1)−Dε

hℓ−1
(tn+1)]i)

≤ (1 +Mhℓ)Var([D
ε
hℓ
(tn)−Dε

hℓ−1
(tn)]i)

+ 4h2
ℓM

M−1∑

k=0

Var(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn))) (20)

+ (4Mhℓ + 1)MhℓVar(µi(D
ε
hℓ
(tn))− µi(D

ε
hℓ−1

(tn))) (21)

+ 4ε2hℓ

M−1∑

k=0

Var((σi(D
ε
hℓ
(tkn))− σi(D

ε
hℓ
(tn)))W

k
n ) (22)

+ 4ε2hℓ

M−1∑

k=0

Var((σi(D
ε
hℓ
(tn))− σi(D

ε
hℓ−1

(tn)))W
k
n ) (23)

+ 2Cov([Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)))). (24)

We must bound each of the terms above in order to apply Gronwall’s inequality. We first
consider (22), which leads to a dominant factor. Lemma 4 implies that

M−1∑

k=0

Var((σi(D
ε
hℓ
(tkn))− σi(D

ε
hℓ
(tn)))W

k
n ) ≤

M−1∑

k=0

E[|σi(D
ε
hℓ
(tkn))− σi(D

ε
hℓ
(tn)))|2]

≤ Mb(c1M
2h2

ℓ + c2ε
2Mhℓ).

Similarly, by Lemma 6 we may bound (23), which also yields a dominant factor,

M−1∑

k=0

Var((σi(D
ε
hℓ
(tn))− σi(D

ε
hℓ−1

(tn)))W
k
n ) ≤

M−1∑

k=0

E[|σi(D
ε
hℓ
(tn))− σi(D

ε
hℓ−1(tn)))|2]

≤ Mb(d1M
2h2

ℓ + d2ε
4Mhℓ),
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where c1, c2, d1 and d2 are positive constants only depending on a, b, T,m,D(0).

Turning to (20), we have the following lemma.

Lemma 7.

Var
(
µi(D

ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn))

)
≤ CMhℓε

2,

where C is a positive constant that only depends on a, b, T, d,m,D(0).

Proof. From Lemma 12 in the appendix (Taylor approximation), we have

µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)) = ρk(tn) · (Dε

hℓ
(tkn)−Dε

hℓ
(tn)), (25)

where

ρk(tn) =

∫ 1

0

[
∇µi(D

ε
hℓ
(tn)) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn))

]
dr.

In order to bound the right hand side of (25), we will apply Lemma 11 in the appendix
with Aε,hℓ−1 = [ρk(tn)]j and Bε,hℓ−1 = [Dε

hℓ
(tkn)−Dε

hℓ
(tn)]j . Hence, we must find appropriate

bounds on these components.
We begin with Bε,hℓ−1. We use Lemmas 1 and 2 after iterating (10) to find

Var([Dε
hℓ
(tkn)−Dε

hℓ
(tn)]j)

≤ 2Var

(
hℓ

k−1∑

r=0

µj(D
ε
hℓ
(trn))

)
+ 2Var

(
ε
√
hℓ

k−1∑

r=0

σj(D
ε
hℓ
(trn))W

r
n

)

≤ 2h2
ℓVar

(
k−1∑

r=0

(µj(D
ε
hℓ
(trn))− µj(zhℓ

(trn)))

)
+ 2ε2hℓE



∣∣∣∣∣

k−1∑

r=0

σj(D
ε
hℓ
(trn))W

r
n

∣∣∣∣∣

2



≤ C1M
2h2

ℓε
2 + C2Mhℓε

2,

(26)

where C1 and C2 are positive constants that only depend on a, b, T,m,D(0).
Turning to Aε,hℓ−1, we apply Lemma 10 in the appendix with X1(s) = Dε

hℓ
(s), X2(s) =

Dε
hℓ
(η(s)), x1(s) = zh(s), x2(s) = zh(η(s)) and u(x) = ∇jµi(x) to obtain

Var([ρk(tn)]j) = Var

(∫ 1

0

[∇jµi(D
ε
hℓ
(tn) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))]dr

)
≤ Kε2,

where K is positive constant that only depends on a, b, T,m,D(0).
We may now combine Lemma 11 with Lemma 3 to conclude

Var
(
[ρk(tn)]j · [Dε

hℓ
(tkn)−Dε

hℓ
(tn)]j

)
≤ ĈKM2h2

ℓε
2 + 15aVar([Dε

hℓ
(tkn)−Dε

hℓ
(tn)]j)

≤ (ĈK + 15aC1)M
2h2

ℓε
2 + 15C2Mhℓε

2

≤ Ĉ1Mhℓε
2,

where Ĉ1 is positive and does not depend on ε and hℓ, and we applied (26) in the second
inequality.

Returning to (25), the above allows us to conclude

Var(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn))) ≤ d2Ĉ1Mhℓε

2.
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We now turn to the first term of (21).

Lemma 8.

Var
(
µi(D

ε
hℓ
(tn))− µi(D

ε
hℓ−1(tn))

)

≤ 15ad

d∑

j=1

Var([Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]j) +K1M

2h2
ℓε

2 +K2Mhℓε
6,

where K1, K2 are positive constants that only depend on a, b, T, d,m,D(0).

Proof. We first write

µi(D
ε
hℓ
(tn))− µi(D

ε
hℓ−1(tn)) = ρ(tn) · (Dε

hℓ
(tn)−Dε

hℓ−1(tn)),

where

ρ(tn) =

∫ 1

0

[∇µi(D
ε
hℓ−1(tn) + r(Dε

hℓ
(tn)−Dε

hℓ−1(tn)))]dr.

We will again apply Lemma 11 to get the necessary bounds. Therefore, we let Aε,h = [ρ(tn)]j
and Bε,h = [Dε

hℓ
(tn)−Dε

hℓ−1(tn)]j.
Letting X1(s) = Dε

hℓ
(s), X2(s) = Dε

hℓ−1
(s), x1(s) = zhℓ

(s), x2(s) = zhℓ−1
(s) and u(x) =

∇jµi(x) for an application of Lemma 10, we have

Var(Aε,h) ≤ Kε2,

for some K(a, b, T,m,D(0)), where we recall the running assumption that |[∇µi]j |2 is uni-
formly bounded by a. Hence, applying Lemmas 6 and 11 we see there are positive constants
K1, K2 depending only on a, b, T,m,D(0), such that,

Var([ρ(tn)]j([D
ε
hℓ
(tn)−Dε

hℓ−1(tn)]j))

≤ K1M
2h2

ℓε
2 +K2Mhℓε

6 + 15aVar([Dε
hℓ
(tn)−Dε

hℓ−1(tn)]j ,

and

Var(µi(D
ε
hℓ
(tn))− µi(D

ε
hℓ−1

(tn)))

≤ 15ad
d∑

j=1

Var([Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]j) + d2K1M

2h2
ℓε

2 + d2K2Mhℓε
6.

Finally, we turn to the term (24).

Lemma 9.

Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)))

)

≤ MhℓVar([D
ε
hℓ
(tn)−Dε

hℓ−1
(tn)]i) +K1M

3h3
ℓε

2 +K2M
5h5

ℓε
2 +K3M

3h3
ℓε

4,

where K1, K2 and K3 are positive constants that only depend on a, b, T,m,D(0).
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Proof. As a result of combining (15) in Lemma 5 with

Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

Bk

)
= 0,

where we recall the definition of Bk in (16), we have

Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)))

)

= Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

(Ak + Ek)

)

+ Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

Bk

)

≤ MhℓVar([D
ε
hℓ
(tn)−Dε

hℓ−1
(tn)]i) +

1

2
hℓ

M−1∑

k=0

Var (Ak) +
1

2
hℓ

M−1∑

k=0

Var (Ek) .

(27)

First we want to estimate Var (Ak). Applying Lemma 11 with

Aε,hℓ−1 =

∫ 1

0

[
∇jµi(D

ε
hℓ
(tn) + r(Dε

hℓ
(tkn)−Dε

hℓ
(tn)))

]
dr

and

Bε,hℓ−1 = hℓ

k−1∑

r=0

µj(D
ε
hℓ
(trn)),

we can get for some K1(a, b, T,m, d,D(0)) that may change from line to line,

Var(Ak) ≤ K1M
2h2

ℓε
2 + 15ad

d∑

i=1

Var

(
hℓ

k−1∑

r=0

µi(D
ε
hℓ
(trn))

)

≤ K1M
2h2

ℓε
2 + 15ad

d∑

i=1

E


h2

ℓ

(
k−1∑

r=0

µi(D
ε
hℓ
(trn))− µj(zhℓ

(trn))

)2



≤ K1M
2h2

ℓε
2,

where we also use Lemma 2 for the last line. On the other hand, from (18)

Var(Ek) ≤ E[|Ek|2] ≤ K2M
4h4

ℓε
2 +K3M

2h2
ℓε

4.

Returning to (27), we see,

Cov

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i, hℓ

M−1∑

k=0

(µi(D
ε
hℓ
(tkn))− µi(D

ε
hℓ
(tn)))

)

≤ Mhℓ

d∑

j=1

Var([Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]j) +

1

2
K1M

3h3
ℓε

2 +
1

2
K2M

5h5
ℓε

2 +
1

2
K3M

3h3
ℓε

4.
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Now we return to (20)–(24) and combine all the estimates above to conclude that there
exist C1, C2, and C3 which only depend on a, b, T,m, d,D(0) such that

Var

(
[Dε

hℓ
(tn+1)−Dε

hℓ−1
(tn+1)]i

)
≤ Var[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i + C1M

3h3
ℓε

2 + C2M
2h2

ℓε
4

+ C3Mhℓ

d∑

j=1

Var([Dε
hℓ
(tn)−Dε

hℓ−1
(tn)]j).

Therefore,

max
i=1,2,··· ,d

Var

(
[Dε

hℓ
(tn+1)−Dε

hℓ−1
(tn+1)]i

)

≤ max
i=1,2,··· ,d

Var

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i

)
+ C1M

3h3
ℓε

2 + C2M
2h2

ℓε
4

+ C3dMhℓ max
i=1,2,··· ,d

Var

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i

)
.

Applying Gronwall’s lemma, we obtain,

max
0≤n≤Mℓ−1

max
1≤i≤d

Var

(
[Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]i

)
≤ C1M

2h2
ℓε

2 + C2Mhℓε
4,

where C1 and C2 are some universal constants which only depend on a, b, T,m, d,D(0).

We have shown the result under the assumption that f(x) = xi. To show the general
case, note that from Lemma 12 in the appendix we have

f(Dε
hℓ
(tn))−f(Dε

hℓ−1
(tn)))

=

∫ 1

0

[∇f(Dε
hℓ
(tn) + r(Dε

hℓ
(tn)−Dε

hℓ
(tn)))]dr · (Dε

hℓ
(tn)−Dε

hℓ−1
(tn)).

We let X1(t) = Dε
hℓ
(t), X2(t) = Dε

hℓ−1
(t), x1(t) = zhℓ

(t), x2(t) = zhℓ−1
(t) and u(x) = ∇jf(x)

in an application of Lemma 10 which yields

Var

(∫ 1

0

[∇jf(D
ε
hℓ
(tn) + r(Dε

hℓ
(tn)−Dε

hℓ
(tn)))]dr

)
≤ Kε2,

where K is a universal constant that depends on CL, D, a, b, T,D(0). Hence, by an applica-
tion of Lemmas 6 and 11 and the work above we see,

Var

(∫ 1

0

∇jf(D
ε
hℓ
(tn) + r(Dε

hℓ
(tn)−Dε

hℓ
(tn)))dr · [Dε

hℓ
(tn)−Dε

hℓ−1
(tn)]j

)

≤ K(d1M
2h2

ℓ + d2Mhℓε
4)ε2 + 15dC2

LVar([D
ε(s)−Dε

hℓ
(s)]j)

≤ (Kd1 + 15dC2
LC1)M

2h2
ℓε

2 + (15dC2
LC2 +Kd2)Mhℓε

4.

Thus

Var(f(Dε
hℓ
(tn))− f(Dε

hℓ−1
(tn))) ≤ d2(Kd1 + 15dC2

LC1)M
2h2

ℓε
2 + d2(15dC2

LC2 +Kd2)hℓε
4,

giving the result.
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(a) ε = 2−6 fixed while h is varied. The best fit
curve is y = 1.03x− 19.68.
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(b) ε = 2−17 fixed while h is varied. The best fit
curve is y = 1.99x− 28.43.

Figure 1: Log-log plots of Var(Dε
hℓ
(1)−Dε

hℓ−1
(1)) with ε held constant and hℓ−1 varied. The

best fit curves for all data are overlain in the dashed blue line. Each data point in (a) was
generated using 2,000 independent samples and each data point in (b) was generated using
5,000 independent samples.

4 Numerical Test

In this section we provide numerical evidence for the sharpness of both Theorem 1 and
the computational complexity analyses provided in sections 2.1 and 2.2. We consider the
following simple one dimensional model,

Dε(t) = 1−
∫ t

0

Dε(s)ds+ ε

∫ t

0

Dε(s)dW (s),

where we simulate until T = 1.
To gather evidence in support of the sharpnesss of the bound Var(Dε

hℓ
(t) − Dε

hℓ−1
(t)) =

O(h2ε2+ hε4), we fix one of h or ε in different scaling regimes and vary the other parameter
in order to generate log-log plots. We note that there are four exponents to discover, and
so four log-log plots are used. Note also that h2ε2 is the dominant term in h2ε2 + hε4 if and
only if h ≥ ε2. We emphasize that these experiments use extreme parameter choices solely
for the purpose of testing the sharpness of the delicate asymptotic bound.

The exponent of h in hε4. We fix ε = 2−6 and vary

hℓ−1 ∈ {2−13, 2−14, 2−15, 2−16, 2−17, 2−18}

to ensure hℓ−1 ≤ ε2. As a result, hℓ−1ε
4 is likely to be the dominant term in (3). See Figure

1(a), where the log-log plot is consistent with the functional form

Var(Dε
hℓ
(T )−Dε

hℓ−1
(T )) = O(hℓ−1).

The exponent of h in h2ε2. We fix ε = 2−17 and vary

hℓ−1 ∈ {2−12, 2−13, 2−14, 2−15, 2−16, 2−17}
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(a) hℓ−1 = 2−20 fixed while ε is varied. The best
fit curve is y = 3.93x− 17.54.
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(b) hℓ−1 = 2−10 fixed while ε is varied. The best
fit curve is y = 2.00x− 18.62.

Figure 2: Log-log plots of Var(Dε
hℓ
(1)−Dε

hℓ−1
(1)) with hℓ−1 held constant and ε varied. The

best fit curves for all data are overlain in the dashed blue line. Each data point was generated
using 2,000 independent samples.

to ensure hℓ−1 ≥ ε2. As a result, h2
ℓ−1ε

2 is likely to be the dominant term in (3). See Figure
1(b), where the log-log plot is consistent with the functional form

Var(Dε
hℓ
(1)−Dε

hℓ−1
(1)) = O(h2

ℓ−1).

The exponent of ε in hε4. We fix hℓ−1 = 2−20 and vary

ε ∈ {2−5, 2−6, 2−7, 2−8, 2−9, 2−10}

to ensure hℓ−1 ≤ ε2. As a result, hℓ−1ε
4 is likely to be the dominant term in (3). See Figure

2(a), where the log-log plot is consistent with the functional form

Var(Dε
hℓ
(1)−Dε

hℓ−1
(1)) = O(ε4).

The exponent of ε in h2ε2. We fix hℓ−1 = 2−10 and vary

ε ∈ {2−12, 2−13, 2−14, 2−15, 2−16, 2−17}

to ensure hℓ−1 ≥ ε2. As a result, h2
ℓ−1ε

2 is likely to be the dominant term in (3). See Figure
2(b), where the log-log plot is consistent with the functional form

Var(Dε
hℓ
(1)−Dε

hℓ−1
(1)) = O(ε2).

We turn to numerically demonstrating our conclusions related to the complexity of Euler
based multilevel Monte Carlo and the complexity of Euler based standard Monte Carlo. We
will measure complexity in two ways, by total number of random variables utilized and by
required CPU time. Our implementation of MLMC proceeded as follows. We chose hℓ = 2−ℓ

and for each δ > 0 we set L = ⌈log(δ)/ log(2)⌉. For each level we generated 200 independent
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(a) ε = 0.1 held constant and δ varied. The best
fit lines are y = −1.96x − 15.65 for Euler based
MLMC and y = −2.91x− 5.44 for standard Euler
based Monte Carlo.

ln(ε)
-3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7 -2.6

ln
(R

u
n
ti
m
e)

1.5

2

2.5

3

3.5

4

4.5

Multilevel MC
Best fit curve
Standard MC
Best fit curve

(b) δ = 2−14 held constant and ε varied. The best
fit lines are y = 2.07x+9.18 for Euler based MLMC
and y = 1.99x + 9.58 for standard Euler based
Monte Carlo.

Figure 3: Log-log plots of runtime (in seconds) for both multilevel and standard Euler based
Monte Carlo.

sample trajectories in order to estimate δǫ,ℓ, as defined in section 2.2. According to (6) and
(7) we then selected

nℓ =

⌈
δ−2
√
δε,ℓhℓ

L∑

j=0

√
δε,j
hj

⌉
, for ℓ ∈ {0, 1, 2, . . . , L}.

We implemented Euler’s method combined with standard Monte Carlo by selecting the
number of paths by

N =
⌈
δ−2

Var(Dε
h(1))

⌉

where h = 2−L and the parameter Var(Dε
h(1)) was estimated using 500 independent realiza-

tions of the relevant processes.
In Figures 3(a) and 4(a), we provide log-log plots of runtime (in seconds) and complexity

(quantified by the total number of random variables utilized) for our implementation of
multilevel and standard Monte Carlo with ε = 0.1 fixed and

δ ∈ {0.00032, 0.00016, 0.00008, 0.00004, 0.00002},

which ensures δ > 1
3
e−

1

ε (see section 2.2). The best fit curves are consistent with the
conclusion that the computational complexity of the Euler based multilevel Monte Carlo
method is O(δ−2) while that of standard Monte Carlo method is O(δ−3) when ε is fixed.
The Monte Carlo estimates which came from these simulations are detailed in tables 1 and
2. Notice that E[Dε(1)] can be found explicitly in this case,

E[Dε(1)] = e−1 ≈ 0.3678794.

In Figure 3(b) and 4(b), we provide similar log-log plots of runtime and computational
complexity for Euler based multilevel Monte Carlo and standard Monte Carlo when δ = 2−14

is fixed and ε is varied as
ε ∈ {0.07, 0.06, 0.05, 0.04, 0.03},
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(a) ε = 0.1 held constant and δ varied. The best
fit lines are y = −2.04x− 3.33 for MLMC and y =
−2.91x− 22.95 for standard MC.
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(b) δ = 2−14 held constant and ε varied. The best
fit lines are y = 2.06x+ 21.13 for MLMC and y =
1.99x+ 27.12 for standard MC.

Figure 4: Log-log plots of computational complexity, quantified by the number of random
variables used.

δ Mean Standard deviation of estimator
0.00032 0.367944 0.000305
0.00016 0.367906 0.000153
0.00008 0.367891 0.000077
0.00004 0.367863 0.000039
0.00002 0.367883 0.000020

Table 1: Result of Euler based multilevel Monte Carlo for fixed ε = 0.1 and varying δ.

δ Mean Standard deviation of estimator
0.00032 0.367449 0.000320
0.00016 0.368028 0.000160
0.00008 0.367839 0.000080
0.00004 0.367941 0.000040
0.00002 0.367851 0.000020

Table 2: Result of Euler based standard Monte Carlo for fixed ε = 0.1 and varying δ.
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ε Mean Standard deviation of estimator
0.07 0.367834 0.000059
0.06 0.367920 0.000059
0.05 0.367819 0.000059
0.04 0.367856 0.000059
0.03 0.367925 0.000059

Table 3: Results of Euler based multilevel Monte Carlo for fixed δ = 2−14 ≈ 0.000061 and
varying ε.

ε Mean Standard deviation of estimator
0.07 0.367830 0.000061
0.06 0.367755 0.000061
0.05 0.367933 0.000061
0.04 0.367809 0.000061
0.03 0.367879 0.000061

Table 4: Results of Euler based standard Monte Carlo for fixed δ = 2−14 ≈ 0.000061 and
varying ε.

which ensures δ > e−
1

ε . The best fit curves are again consistent with the conclusion that the
complexity of Euler based multilevel Monte Carlo and standard Monte Carlo Methods are
both O(ε−2) when δ is fixed. The Monte Carlo estimates which came from these simulations
are detailed in tables 3 and 4.

5 Summary

This work focussed on Monte Carlo methods for approximating expectations arising from
SDEs with small noise. Our motivation was that for the highly effective multilevel approach,
the classical strong error measure is less relevant than the variance between coupled pairs
of paths at different discretization levels. By analyzing this variance directly, we showed
that, under reasonable assumptions, a basic Euler–Maruyama discretization leads to optimal
asymptotic computational complexity when used in a multilevel setting.

A Some Technical Lemmas

We provide here some technical lemmas which were used in section 3.
The following is Lemma 5 in the appendix of [1].

Lemma 10. Suppose X1(s) and X2(s) are stochastic processes on R
d and that x1(s) and

x2(s) are deterministic processes on R
d. Further, suppose that

sup
s≤T

E
[
|X1(s)− x1(s)|2

]
≤ Ĉ1(T )ε

2, sup
s≤T

E
[
|X2(s)− x2(s)|2

]
≤ Ĉ2(T )ε

2,
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for some Ĉ1, Ĉ2 depending upon T . Assume that u : Rd → R is Lipschitz with Lipschitz

constant CL. Then,

sup
s≤T

Var

(∫ 1

0

u(X2(s) + r(X1(s)−X2(s)))dr

)
≤ C2

Lmax(Ĉ1, Ĉ2)ε
2.

The following lemma is only a slight perturbation of Lemma 6 in [1]. A proof is therefore
omitted.

Lemma 11. Suppose that Aε,h and Bε,h are families of random variables determined by

scaling parameters ε and h. Further, suppose that there are C1 > 0, C2 > 0 and C3 > 0 such

that for all ε > 0 the following three conditions hold:

1. Var(Aε,h) ≤ C1ε
2 uniformly in h.

2. |Aε,h| ≤ C2 uniformly in h.

3. |E[Bε,h]| ≤ C3h.

Then

Var(Aε,hBε,h) ≤ 3C2
3C1h

2ε2 + 15C2
2Var(B

ε,h).

The following lemma is standard, but is included for completeness.

Lemma 12. Let f : Rd → R have continuous first derivative. Then, for any x, y ∈ R
d,

f(x) = f(y) +

∫ 1

0

∇f(sx+ (1− s)y)ds · (x− y).

References

[1] D. F. Anderson, D. J. Higham, and Y. Sun, Complexity analysis of multilevel

Monte Carlo tau-leaping. Accepted for publication to SIAM Journal on Numerical
Analysis, 2014.

[2] D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chem-

ical reaction networks, in Design and Analysis of Biomolecular Circuits: Engineering
Approaches to Systems and Synthetic Biology, H. Koeppl, D. Densmore, G. Setti, and
M. di Bernardo, eds., Springer, 2011, pp. 3–42.

[3] G. Denk and R. Winkler, Modelling and simulation of transient noise in circuit

simulation, Mathematical and Computer Modelling of Dynamical Systems, 13 (2007),
pp. 383–394.

[4] A. A. Faisal, J. A. White, and S. B. Laughlin, Ion-channel noise places limits

on the miniaturization of the brain’s wiring, Current Biology, 15 (2005), pp. 1143–1149.

[5] M. Giles, Multilevel Monte Carlo path simulation, Operations Research, 56 (2008),
pp. 607–617.

25



[6] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden, Strong convergence of an

explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients,
The Annals of Applied Probability, 22 (2012), pp. 1611–1641.

[7] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equa-

tions, vol. 23 of Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992.

[8] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing
Ltd., Chichester, 1997.

[9] G. N. Milstein and M. V. Tretyakov,Mean-square numerical methods for stochas-

tic differential equations with small noises, SIAM J. Sci. Comput., 18 (1997), pp. 1067–
1087.

[10] , Numerical methods in the weak sense for stochastic differential equations with

small noise, SIAM Journal on Numerical Analysis, 34 (1997), pp. 2142–2167.

26


	1 Introduction
	1.1 Euler-Maruyama and a statement of main mathematical result

	2 Complexity Analysis
	2.1 Standard Monte Carlo methods
	2.2 Euler-based multilevel Monte Carlo
	2.3 Comparison

	3 Proof of Theorem ??
	4 Numerical Test
	5 Summary
	A Some Technical Lemmas

