

Edinburgh Research Explorer

Preserving sparsity in dynamic network computation
Citation for published version:
Arrigo, F, Higham, DJ, Cherifi, H (ed.), Gaito, S (ed.), Quattrociocchi, W (ed.) & Sala, A (ed.) 2016,
Preserving sparsity in dynamic network computation. in H Cherifi, S Gaito, W Quattrociocchi & A Sala (eds),
Complex Networks & Their Applications V: Proceedings of the 5th International Workshop on Complex
Networks and their Applications (COMPLEX NETWORKS 2016). Springer-Verlag, Cham, Complex
Networks 2016 - 5th International Workshop on Complex Networks and their Applications, Milan, Italy,
30/11/16. DOI: 10.1007/978-3-319-50901-3_12

Digital Object Identifier (DOI):
10.1007/978-3-319-50901-3_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Complex Networks & Their Applications V

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/196573842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-50901-3_12
https://www.research.ed.ac.uk/portal/en/publications/preserving-sparsity-in-dynamic-network-computation(32128acf-5699-41ca-8887-1a0795dbfefd).html

Preserving Sparsity in Dynamic Network

Computations

Francesca Arrigo and Desmond J. Higham

Abstract Time sliced networks describing human-human digital interactions are

typically large and sparse. This is the case, for example, with pairwise connectiv-

ity describing social media, voice call or physical proximity, when measured over

seconds, minutes or hours. However, if we wish to quantify and compare the over-

all time-dependent centrality of the network nodes, then we should account for the

global flow of information through time. Because the time-dependent edge struc-

ture typically allows information to diffuse widely around the network, a natural

summary of sparse but dynamic pairwise interactions will generally take the form

of a large dense matrix. For this reason, computing nodal centralities for a time-

dependent network can be extremely expensive in terms of both computation and

storage; much more so than for a single, static network. In this work, we focus on

the case of dynamic communicability, which leads to broadcast and receive central-

ity measures. We derive a new algorithm for computing time-dependent centrality

that works with a sparsified version of the dynamic communicability matrix. In this

way, the computation and storage requirements are reduced to those of a sparse,

static network at each time point. The new algorithm is justified from first princi-

ples and then tested on a large scale data set. We find that even with very stringent

sparsity requirements (retaining no more than ten times the number of nonzeros in

the individual time slices), the algorithm accurately reproduces the list of highly

central nodes given by the underlying full system. This allows us to capture central-

ity over time with a minimal level of storage and with a cost that scales only linearly

with the number of time points.

Francesca Arrigo

University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, e-mail:

francesca.arrigo@strath.ac.uk

Desmond J. Higham

University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, e-mail: d.j.higham@strath.ac.uk.

The work of the authors was supported by the Engineering and Physical Sciences Research

Council under grant EP/M00158X/1.

1

2 Francesca Arrigo and Desmond J. Higham

1 Introduction

In network science, centrality measures assign to each node a value that summarises

some aspect of its relative importance. Such measures arose in the social sciences,

but have now become very widely used by researchers who wish to summarise im-

portant features of large, complex networks [5, 14, 19]. Because matrix represen-

tations of networks are typically sparse, and because centrality measures usually

involve the solution of linear systems or eigenvalue problems, it is feasible to com-

pute centrality measures on a current desktop computer for networks with, say, a

number of nodes in the millions.

Our focus in this work is the case of time-dependent network sequences [8].

Such data sets may be regarded as three-dimensional tensors, where, along with

the (i, j) coordinates that capture pairwise connectivity, we also have a third co-

ordinate that represents time [1]. These types of connections arise, for example,

when we record human-human digital interaction through social media, telecom-

munication or physical proximity. In [7] the concept of a dynamic communicability

matrix was introduced, which converted the time sequence of networks into a sin-

gle two-dimensional array, with (i, j) element summarising the ability of node i to

communicate with node j, using the time-dependent sequence of edges recorded in

the data. From this matrix, it is straightforward to compute centrality measures:

• dynamic broadcast centrality takes large values for nodes that are effective at

distributing information,

• dynamic receive centrality takes large values for nodes that are effective at gath-

ering information.

In a case study on Twitter data, this approach was seen to be successful, in the

sense of correlating well with the independent views of social media experts [10]. It

was also found to outperform the crude alternative of simply aggregating all edges

into a single static network that forgets the time-ordering of the interactions; see [12]

for further discussion. Tests in [4, 13] also showed that dynamic broadcast centrality

can be effective at quantifying the potential for the spread of disease across time-

ordered interactions.

However, as we explain in the next section, the computation of dynamic broad-

cast centrality can be expensive in terms of both storage and computation, as a result

of inevitable matrix fill-in as temporal information accumulates. Our overall aim

here is to address this issue by deriving a new algorithm that delivers good approx-

imations to the original dynamic broadcast centrality measure while retaining the

benefits of the sparsity present in the time slices.

We note that other approaches to computation of node centrality for time-

dependent networks have been put forward. For example, [15, 16, 17] made use

of paths rather than walks, which, for our purposes, leads to an infeasibly expensive

algorithm. In [18] a block-matrix approach was suggested which allows centrality

measures for static networks to be applied. However, as mentioned in [12], that for-

mulation does not fully respect the arrow of time.

Preserving Sparsity in Dynamic Network Computations 3

2 Background and Notation

In this section we recall some definitions and notation that will be used throughout.

Let t0 < t1 < · · · < tM be an ordered sequence of time points and let {G [k]}M
k=0 =

{(V [k],E [k])} be a time-ordered sequence of unweighted graphs defined over n

nodes. A graph is said to be unweighted when all its edges have the same weight,

which can thus be assumed to be unitary. Consider the adjacency matrices {A[k]}M
k=0 =

{(a
[k]
i j)} ∈R

n×n associated with these graphs at times {tk}
M
k=0, whose entries are de-

fined as

a
[k]
i j =

{
1 if (i, j) ∈ E [k]

0 otherwise.

In [7] the concept of a dynamic walk of length p was introduced to extend to

the temporal case the well-known concept of a walk of length p in static networks.

Loosely, we have a (possibly repeated) sequence of p+1 nodes connected by edges

that appear in a suitable order. More precisely, a dynamic walk of length p from

node i1 to node ip+1 consists of a sequence of nodes i1, i2, . . . , ip+1 and a sequence

of times tr1
≤ tr2

≤ ·· · ≤ trp such that a
[rm]
imim+1

6= 0 for m = 1,2, . . . , p. We stress that

more than one edge can share a time slot, and that time slots must be ordered but do

not need to be consecutive.

The concept of dynamic walk was used to motivate the definition of the dynamic

communicability matrix

Q[M] = (I −αA[0])−1(I −αA[2])−1 · · ·(I −αA[M])−1, (1a)

which can be defined equivalently via the iteration

Q[k] = Q[k−1](I −αA[k])−1, k = 0,1, . . . ,M, (1b)

where Q[−1] = I is the identity matrix of order n, 0 < α < 1/ρ∗, and ρ∗ =
max

k=0:M
{ρ(A[k])} is the largest spectral radius among the spectral radii of the matrices

{A[k]}. Here the free parameter α plays the same role as in the classical Katz cen-

trality measure for static networks [5, 9, 14]. For simplicity, our notation does not

explicitly record the dependence of Q upon α .

To avoid overflow in the computations, a normalisation step Q 7→ Q/‖Q‖ should

follow each iteration in (1b). Throughout this work we use the Euclidean norm.

The requirement α < 1/ρ∗ ensures that the resolvents in (1a) exist and can be

expanded as (I−αA[k])−1 =∑∞
p=0(αA[k])p. It follows that the entries of Q[k] provide

a weighted count of the dynamic walks between any two nodes in the networks using

the ordered sequence of matrices A[0],A[1], . . . ,A[k], weighting walks of length p by

a factor α p. Hence, (Q[k])i j is an overall measure of the ability of node i to send

messages to node j.

Using the dynamic communicability matrix one can define and compare the

broadcast and receive centrality of nodes by taking row and column sums of the

matrix Q[M], respectively. The broadcast centrality of node i is defined as b
[M]
i :=

4 Francesca Arrigo and Desmond J. Higham

eT
i Q[M]1, where ei ∈ R

n is the ith column of I, the superscript “T ” denotes transpo-

sition, and 1 ∈ R
n is the vector of all ones. Similarly, the receive centrality of node

j is defined as r
[M]
j := 1T Q[M]e j. It is straightforward to show that the latter satisfies

a lower-dimensional, vector-valued iteration given by

r[k] := 1T Q[k] = r[k−1](I −αA[k])−1, k = 0,1, . . .M,

with r[−1] = 1. The receive centrality of the nodes can thus be updated at each step by

solving a single sparse linear system whose coefficient matrix is the latest network

time slice. In particular, this means that we do not need to store and update the

full matrix Q[k] to recover the receive centrality of nodes at level k. By contrast,

to compute the broadcast centrality vector, b[M] = Q[M]1, we need access to the

current dynamic communicability matrix at each step. Intuitively, this difference

arises because,

• given a summary of how much information is flowing into each node, we can

propagate this information forward when new edges emerge: receive centrality

cares about where the information terminates, but

• a summary of how much information is flowing out of each node cannot be

straightforwardly updated when new edges emerge: broadcast centrality cares

about where the information originates.

Our focus here is on the natural setting where data is processed sequentially, with

the centrality scores being updated as each new time slice A[k] arrives. As confirmed

in Section 4 on a real data set, we then face a fundamental issue with the use of

the dynamic communicability matrix: although the time slices are typically sparse,

Q[k] generally evolves into a dense matrix. At this stage, computing dynamic com-

municability from (1b) requires us to store a full O(n2) matrix and solve at each

subsequent time point a corresponding full linear system. In the next section, we

therefore develop and justify an approximation where matrix fill-in is controlled so

that the benefits of sparse matrix storage and computation are recovered.

3 Sparsification

To create a sparse approximation, Q̂[k], to the dynamic communicability matrix,

Q[k], we first observe that the original iteration (1b) includes some traversals that are

not very meaningful, e.g., repeated cycles i → j → i → j → i → j using the same

undirected edge at the same time point. We thus use an “at most one edge per time

point” alternative to (1b) so as to avoid considering these types of walks and similar

ones:

Q̂[k] = Q̂[k−1](I +αA[k]), k = 0,1, . . . ,M, (2)

with Q̂[−1] = I. As discussed in [7], this matrix product can be interpreted in terms

of network combinatorics; at each time step a dynamic traversal can either wait, as

described by the identity matrix I, or take a current edge, as described by latest adja-

Preserving Sparsity in Dynamic Network Computations 5

cency matrix, A[k]. In the latter case, the length of the walk (i.e., the number of edges

used) has increased by one, and thus we multiply the corresponding matrix by α .

An alternative interpretation is that we are using a second order Taylor approxima-

tion for each of the resolvents appearing in (1a). This simplification is likely to be

reasonable when either (a) α is chosen to be small, so that short walks are favoured,

or (b) the powers of A[k] do not grow rapidly with k (which is typically the case for

sparse matrices).

As the time index k increases in (2) the number of nonzeros cannot decrease, and

the matrix Q̂[k] will generally fill in. In order to produce a sparse approximation we

will proceed iteratively. At each step we threshold the matrix at a level θk—this type

of approach has been widely used in large scale machine learning, data mining, and

signal processing; see, e.g., [2, 3] and references therein. Hence, for k = 0,1, . . . ,M
we redefine the iteration to be

Q̂[k] =
⌊Q̂[k−1](I +αA[k])⌋θk

‖⌊Q̂[k−1](I +αA[k])⌋θk
‖2

, (3)

where Q̂[−1] = I and for any nonnegative matrix C = (ci j), the matrix ⌊C⌋θk
arises

from setting to zero all entries where ci j ≤ θk.

Remark 1. The matrices {Q̂[k]}M
k=0 are non-negative by construction.

3.1 A little twist

From a network science perspective, the approach just presented has a strong lim-

itation. Imagine a user i of Twitter who remains inactive for a long time after each

tweet. After such inactivity, the thresholding may zero out all entries in the ith row

of one of the matrices Q̂[k]. From that time, the ith row of the matrices appearing

in (3) will always be zero, and no subsequent activity of node i will be registered by

this approach.

To mitigate pathological behaviour of this type, we modify (3) so as to keep

track at each step of the behaviour of those nodes corresponding to zero rows in the

iteration matrix. Our final version of the iteration goes as follows:

Q̂[k] = ⌊Q̂[k−1](I +αA[k])⌋θk
+mkA

[k], k = 0,1, . . . ,M, (4)

followed by normalisation, where Q̂[−1] = I, mk is the smallest nonzero entry of

⌊Q̂[k−1](I +αA[k])⌋θk
, A [k] = αW [k]A[k], and W [k] = diag(w1,w2, . . . ,wn) ∈ R

n×n is

a diagonal matrix whose entries are

wi =

{
1 if eT

i ⌊Q̂[k−1](I +αA[k])⌋θk
1 = 0

0 otherwise.

6 Francesca Arrigo and Desmond J. Higham

The matrix A [k] keeps track of those edges that appear at step k and would otherwise

get lost. Indeed, the matrix product W [k]A[k] returns a matrix that has nonzero entries

(if any) only in the rows corresponding to those nodes that have either been inactive

until step k or have broadcast very little information (which thus was thresholded

in a previous iteration). The penalisation by α is added because we are taking one

hop in the network. Finally, the multiplication by mk comes from the fact that a

poor choice of the parameter α may compromise the results. Indeed, the entries of

A [k] may be too large with respect to those appearing in ⌊Q̂[k−1](I+αA[k])⌋θk
, thus

leading to a complete reshaping of the rankings. We refer the reader to Section 4 for

an example of this issue.

Remark 2. It is possible for the contribution added by mkA
[k] to be zero. This hap-

pens when the zero rows in ⌊Q̂[k−1](I +αA[k])⌋θk
correspond to nodes that are not

broadcasting information at step k.

Remark 3. Note that if A[k] = 0 for some k, then Q̂[k] = Q̂[k−1], just as Q[k] = Q[k−1].

3.2 On the thresholding parameters

The thresholding parameters {θk} are a key part of the sparsification process. Before

explaining how we select these values in applications, we first describe the types of

contributions that are removed from the approximation to the dynamic communica-

bility matrix when the thresholding is performed. There are two key circumstances

where the thresholding has an effect:

• the value of α p dominates the contribution given by the products of the adjacency

matrices, i.e., there are not too many walks of length p between the two nodes

under consideration;

• the information has not moved from a certain node for a long time and the nor-

malisation step has made the corresponding contribution smaller than the other

entries.

In both cases, we are dismissing information that has little potential, as it is not dif-

fused much. Clearly, an over-stringent selection of the parameters θk may lead to an

excessive penalisation of these two types of behaviours. Our strategy is to make an

initial choice for the maximum number of nonzeros that we will allow in the matri-

ces Q̂[k], for k = 0,1, . . . ,M. Then, as the iteration proceeds, the thresholding value

θk is chosen so as to make ⌊Q̂[k−1](I +αA[k])⌋θk
have approximately this desired

level of sparsity.

We point out that the maximum number of nonzeros one wants to allow has to be

at least n+nnz(A[0]), where nnz(A[0]) is the number of nonzeros in the matrix A[0].

Consequently, θ0 < α . Indeed, if this is not the case, then we will have θk ≥ α for

all k and therefore that Q̂[k] = I for all k.

Preserving Sparsity in Dynamic Network Computations 7

3.3 Cost Comparison

We are now in a position to quantify, at least approximately, the computational ben-

efits of using Q̂[k] in (4) rather than the exact matrix Q[k] in (1b) to compute dynamic

broadcast communicability. Because the exact representation Q[k] becomes full in

general, it follows that:

• We have reduced storage requirements by a factor of n.

• We have reduced the dominant computational task at each time step from solving

n sparse linear systems to multiplying two sparse matrices. For general complex

networks with no exploitable structure, if a standard iterative scheme is used to

solve a sparse linear system, each matrix vector multiplication will cost O(n)
and thus the total cost to compute Q[k] by solving n such linear systems will be

at least O(n2). Instead, the overall cost of computing the product of Q̂[k−1] times

A[k] is O(n), if we assume that there is a fixed number of active nodes at each

time point. Thus, the cost has been reduced by a factor of n.

3.4 Comparing top K lists

The main goal of this work is to match the broadcast ranking of the nodes in an

evolving network using a sparse approximation to the dynamic communicability

matrix. As usual in network science, we are not interested in matching exactly the

rankings of all nodes in the network, but rather to accurately capture the top K ≪ n

most influential broadcasters. Although there is no perfect way to summarise and

compare rankings, it is clear that generic correlation coefficients like Pearson’s cor-

relation coefficient or Kendall’s tau have the major drawback in this context that

they treat entire vectors, and hence all network nodes.

In order to compare the top K entries of two ranking vectors, an appropriate

index is the intersection similarity [6]. This quantity is defined as follows: given

two ranked lists x and y, consider the top K entries of each, which we denote xK and

yK , respectively. Then, the top K intersection similarity between x and y is defined

as

isimK(x,y) =
1

K

K

∑
i=1

|xi∆yi|

2i
, (5)

where ∆ is the symmetric difference operator between two sets and |S| denotes the

cardinality of the set S. When the sequences contained in x and y are completely

different, the intersection similarity between the two is maximum and equals 1. On

the other hand, when isimK(x,y) = 0 for all K, then the two lists are identical.

It happens sometimes that the two lists differ in the order, but not in the set of

labels of the nodes appearing in them. Behaviour of this type can be easily spotted

by looking at the quantity

8 Francesca Arrigo and Desmond J. Higham

ℓK(x,y) =
|xK∆yK |

2K
, K = 2,3, . . .

If ℓK(x,y) = 0 for some K we know that xK and yK are permutations of the same set

of nodes.

4 Numerical tests

We have tested the new algorithm on large scale data sets involving email, voice

call and on-line social interaction, and with various values of the parameter α . Due

to space limitations we give representative results with the email data set Enron

[11]. Here, a directed edge from node i to node j indicates that at least one message

was sent from i to j in a one day period, including to, cc, and bcc. We have

information over 1138 days starting 11 May 1999 for 151 Enron employees, Many

of the adjacency matrices are empty, meaning that there are days during which no

emails are sent. The largest spectral radius is ρ∗ = 4.17, thus the upper limit for α
is 0.24.

We allowed for a number of nonzeros proportional to N = cn, where n = n+
1

M+1 ∑M
k=0 nnz(A

[k]) and c = 10. This is motivated by our aim to work only with

matrices whose sparsity level is compatible with that of the individual network time

slices. Further testing has shown that the performance is not sensitive to c.

4.1 Adaptive Scaling

Before testing the performance of (4), in this subsection we discuss the effect of

including the multiplication by mk. In Section 3 we argue that setting mk ≡ 1 for

all k = 0,1, . . . ,M in (4) may lead to poor results. Clearly, this is not always the

case, but, as we will see here, this choice together with a compounding choice of

the downweighting parameter α , may result in a complete misplacement of the top

ranked broadcasters in the network.

We compute the broadcast centrality vector Q[M]1 and our approximation vector

Q̂[M]1 for seven different values of the downweighting parameter:

α =
0.01

ρ∗
,

0.1

ρ∗
,

0.25

ρ∗
,

0.5

ρ∗
,

0.75

ρ∗
,

0.85

ρ∗
,

0.9

ρ∗
.

Figure 1 displays the evolution of the intersection similarity between the top K =
1,2, . . . ,20 entries of the vectors Q[M]1 and Q̂[M]1 versus K for the different values

of α . The left plot contains the results when mk ≡ 1, while the right plot contains

the results when mk is adapted by setting it to be equal to the smallest nonzero entry

of the matrix ⌊Q̂[k−1](I +αA[k])⌋θk
at each iteration.

Preserving Sparsity in Dynamic Network Computations 9

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2
mk ≡ 1

is
im

K
(Q

[M
] 1
,Q̂

[M
] 1
)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

varying mk

α = 0.01/ρ∗ 0.1/ρ∗ 0.25/ρ∗ 0.5/ρ∗ 0.75/ρ∗ 0.85/ρ∗ 0.9/ρ∗

Fig. 1 Evolution of the intersection similarity isimK(Q
[M]1, Q̂[M]1) versus K, for different choices

of the downweighting parameter α . Left: mk ≡ 1. Right: mk is set at each iteration as the smallest

nonzero entry of ⌊Q̂[k−1](I +αA[k])⌋θk
. Note the difference in vertical axis range.

These results show that when mk ≡ 1 the intersection similarity between the two

vectors can be maximum even when comparing only a few top ranked nodes for α
as small as 0.5/ρ∗. The right hand plot in the figure shows how an adaptive choice

of mk can work successfully over a wide range of α choices.

4.2 Centrality Approximation

We now assess the effectiveness of iteration (4) at approximating the broadcast cen-

trality rankings. Using α = 0.01, the number of nonzero entries in the dynamic

communicability matrix is nnz(Q[M]) = 21097. Note that n2 = 22801, so the matrix

is 92.5% full. Figure 2 scatter plots the resulting approximation to the broadcast

and receive centrality vectors against Q[M]1 and 1T Q[M], respectively. We observe

a good linear correlation at the high end for both cases, indicating that our method

correctly identifies important nodes. The number of nonzeros in the final approxi-

mation matrix Q̂[M] is = 1676, so the level of sparsity has been reduced to around

7.4%.

In Table 1 we list the top 10 ranked nodes according to the broadcast centrality.

The first row contains the true result, obtained by ranking the nodes according to

Q[M]1; in the second row we list the top 10 broadcasters according to the ranking

derived from Q̂[M]1 and, finally, the last row displays the result obtained when the

nodes are ranked according to their aggregate out-degree: ∑M
k=0 A[k]1. As α → 0,

the ranking obtained using the dynamic communicability matrix approaches that

obtained using the aggregate out-degree; see, e.g., [4, 7]. Clearly, however, α = 0.01

is not close enough to zero for this effect to be observed.

10 Francesca Arrigo and Desmond J. Higham

10 -3 10 -2 10 -1 10 0 10 1

Q[M]
1

10 -3

10 -2

10 -1

10 0

10 1

Q̂
[M

] 1

BROADCAST CENTRALITY

10 -3 10 -2 10 -1 10 0 10 1

1
TQ[M]

10 -3

10 -2

10 -1

10 0

10 1

1
T
Q̂

[M
]

RECEIVE CENTRALITY

Fig. 2 Comparison of exact (horizontal) and approximate (vertical) centralities.

Table 1 Top 10 ranked nodes: exact, approximate and with aggregate out-degree.

Q[M]1 48 67 147 73 13 50 137 49 9 139

Q̂[M]1 48 67 147 73 13 50 137 49 9 139

out-degree 67 50 141 13 48 69 107 147 73 70

Tables 2-3 contain the values of isimK(Q
[M]1, Q̂[M]1) for K = 1,2, . . . ,20 and

ℓK(Q
[M]1, Q̂[M]1) for K = 2,3, . . . ,20. We see that the new method correctly orders

the top 11 broadcasters in the network and correctly identifies the top 20.

Table 2 Intersection similarity between the top K = 1,2, . . . ,20 ranked nodes in Q[M]1 and Q̂[M]1.

K 1 2 3 4 5 6 7 8 9 10

isimK 0 0 0 0 0 0 0 0 0 0

K 11 12 13 14 15 16 17 18 19 20

isimK 0 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 3 Evolution of ℓK(Q
[M]1, Q̂[M]1) for K = 2,3, . . . ,20.

K 2 3 4 5 6 7 8 9 10

ℓK 0 0 0 0 0 0 0 0 0

K 11 12 13 14 15 16 17 18 19 20

ℓK 0 0.08 0.15 0.14 0.07 0 0.06 0 0.05 0

Preserving Sparsity in Dynamic Network Computations 11

5 Conclusions

Time-dependency adds an extra dimension to network science computations, po-

tentially causing a dramatic increase in both storage requirements and computation

time. In the case of Katz-style centrality measures, which are based on the solution

of linear algebraic systems, allowing for the arrow of time leads naturally to full

matrices that keep track of all possible routes for the flow of information. Such a

build-up of intermediate data can make large-scale computations unfeasible. In this

work, we derived a sparsification technique that delivers accurate approximations

to the full-matrix centrality rankings, while retaining the level of sparsity present in

the network time-slices. With the new algorithm, as we move forward in time the

storage cost remains fixed and the computational cost scales linearly, so the overall

task is equivalent to solving a single Katz-style problem at each new time point.

References

1. Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor

factorizations. In: ICDMW’09: Proceedings of the 2009 IEEE International Conference on

Data Mining Workshops, pp. 262–269 (2009). DOI 10.1109/ICDMW.2009.54

2. Achlioptas, D., Karnin, Z.S., Liberty, E.: Near-optimal entrywise sampling for data matri-

ces. In: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (eds.)

Advances in Neural Information Processing Systems 26, pp. 1565–1573. Curran Asso-

ciates, Inc. (2013). URL http://papers.nips.cc/paper/5036-near-optimal-entrywise-sampling-

for-data-matrices.pdf

3. Arora, S., Hazan, E., Kale, S.: A fast random sampling algorithm for sparsifying matrices.

In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques, pp. 272–279. Springer (2006)

4. Chen, I., Benzi, M., Chang, H.H., Hertzberg, V.S.: Dynamic communicability

and epidemic spread: a case study on an empirical dynamic contact network.

Journal of Complex Networks (2016). DOI 10.1093/comnet/cnw017. URL

http://comnet.oxfordjournals.org/content/early/2016/06/07/comnet.cnw017.abstract

5. Estrada, E.: The Structure of Complex Networks. Oxford University Press, Oxford (2011)

6. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on Discrete Math-

ematics 17(1), 134–160 (2003)

7. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving net-

works. Physical Review E 83(4), 046,120 (2011)

8. Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519, 97–125 (2011)

9. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43

(1953)

10. Laflin, P., Mantzaris, A.V., Grindrod, P., Ainley, F., Otley, A., Higham, D.J.: Discovering and

validating influence in a dynamic online social network. Social Network Analysis and Mining

3, 1311–1323 (2013)

11. Leskovec, J.: SNAP: Network dataset. https://snap.stanford.edu/data/

12. Mantzaris, A.V., Higham, D.J.: Asymmetry through time dependency. Eur. Phys. J. B 89(3),

71 (2016). DOI 10.1140/epjb/e2016-60639-0. URL http://dx.doi.org/10.1140/epjb/e2016-

60639-0

13. Mantzaris, A.V., Higham, D.J.: Dynamic communicability predicts infectiousness. In:

P. Holme, J. Saramäki (eds.) Temporal Networks, pp. 283–294. Springer, Berlin (2103)

14. Newman, M.E.J.: Networks: An Introduction. Oxford Univerity Press, Oxford (2010)

12 Francesca Arrigo and Desmond J. Higham

15. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network

analysis. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Online Social Networks

(WOSN09). Barcelona (2009)

16. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reacha-

bility in mobile and online social networks. SIGCOMM Comput. Commun. Rev. 40, 118–124

(2010)

17. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-

varying graphs. Physical Review E 81, 05,510 (2010)

18. Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality

measures for temporal networks (2015). ArXiv:1507.01266

19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge

University Press, Cambridge (1994)

