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Abstract
Time sliced networks describing human-human digital interactions are typically large
and sparse. This is the case, for example, with pairwise connectivity describing social
media, voice call or physical proximity, when measured over seconds, minutes or
hours. However, if we wish to quantify and compare the overall time-dependent
centrality of the network nodes, then we should account for the global flow of
information through time. Because the time-dependent edge structure typically allows
information to diffuse widely around the network, a natural summary of sparse but
dynamic pairwise interactions will generally take the form of a large dense matrix. For
this reason, computing nodal centralities for a time-dependent network can be
extremely expensive in terms of both computation and storage; much more so than for
a single, static network. In this work, we focus on the case of dynamic communicability,
which leads to broadcast and receive centrality measures. We derive a new algorithm
for computing time-dependent centrality that works with a sparsified version of the
dynamic communicability matrix. In this way, the computation and storage
requirements are reduced to those of a sparse, static network at each time point. The
new algorithm is justified from first principles and then tested on a large scale data set.
We find that even with very stringent sparsity requirements (retaining no more than
ten times the number of nonzeros in the individual time slices), the algorithm
accurately reproduces the list of highly central nodes given by the underlying full
system. This allows us to capture centrality over time with a minimal level of storage
and with a cost that scales only linearly with the number of time points. We also
describe and test three variants of the proposed algorithm that require fewer
parameters and achieve a further reduction in the computational cost.

Keywords: Dynamic network, Sparsification, Centrality, Katz centrality, Social network
analysis

Introduction
In network science, centrality measures assign to each node a value that summarizes some
aspect of its relative importance. Such measures arose in the social sciences, but have
now become very widely used by researchers who wish to summarize important features
of large, complex networks (Estrada 2010; Newman 2010; Wasserman and Faust 1994).
Because matrix representations of networks are typically sparse, and because centrality
measures typically involve the solution of linear systems or eigenvalue problems, it is fea-
sible to compute centrality measures on a current desktop computer for networks with,
say, a number of nodes in the millions.
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Our focus in this work is the case of time-dependent network sequences (Holme
and Saramäki 2011). Such data sets may be regarded as three-dimensional tensors,
where, along with the (i, j) coordinates that capture pairwise connectivity, we also have
a third coordinate that represents time (Acar et al. 2009). These types of connections
arise, for example, when we record human-human digital interaction through social
media, telecommunication or physical proximity. In (Grindrod et al. 2011) the con-
cept of a dynamic communicability matrix was introduced, which converted the time
sequence of networks into a single two-dimensional array, with (i, j) element summa-
rizing the ability of node i to communicate with node j, using the time-dependent
sequence of edges recorded in the data. From this matrix, it is straightforward to compute
centrality measures:

• dynamic broadcast centrality takes large values for nodes that are effective at
distributing information,

• dynamic receive centrality takes large values for nodes that are effective at gathering
information.

In a case study on Twitter data, this approach was seen to be successful, in the
sense of correlating well with the independent views of social media experts (Lafin
et al. 2013). It was also found to outperform the crude alternative of simply aggregating
all edges into a single static network that forgets the time-ordering of the interactions;
see (Mantzaris and Higham 2016) for further discussion. Tests in (Chen et al. 2016;
Mantaris and Higham 2013) also showed that dynamic broadcast centrality can be effec-
tive at quantifying the potential for the spread of disease across time-ordered interactions.
In (Fenu and Higham 2017) it is shown how to perform dynamic communicability com-
putations via a large block matrix that is amenable to modern iterative techniques.
A weaker version of dynamic broadcast communicability, essentially given by applying
the sign function, was proposed in (Lentz et al. 2013) to quantify what those authors
term accessibilty.
As we explain in the next section, the computation of dynamic centrality can be expen-

sive in terms of both storage and computational effort, as a result of inevitable matrix
fill-in as temporal information accumulates. Our overall aim here is to address this issue
by deriving a new algorithm that delivers good approximations to the original dynamic
broadcast centrality measure while retaining the benefits of the sparsity present in the
time slices.
We note that other approaches to computation of node centrality for time-dependent

networks have been put forward. For example, (Tang et al. 2009; 2010a, b) made use
of paths rather than walks, which, for our purposes, leads to an infeasibly expen-
sive algorithm. In (Taylor et al. 2017) a block-matrix approach was suggested which
allows centrality measures for static networks to be applied. However, as mentioned
in (Mantzaris and Higham 2016), that formulation does not fully respect the arrow
of time.
Compared with the earlier conference paper (Arrigo and Higham 2017), this article

includes further computational results and accompaining discussions, and in particu-
lar has a new section (“Further reduction” section) that shows how performance can be
improved by reducing the number of parameters.
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Background and notation
In this section we recall some definitions and notation that will be used throughout.
Let t0 < t1 < · · · < tM be an ordered sequence of time points and let

{
G[k]}M

k=0 =
{(
V [k], E [k])} be a time-ordered sequence of unweighted graphs defined over n nodes. A

graph is said to be unweighted when all its edges have the same weight, which can thus
be assumed to be unitary. Consider the adjacency matrices

{
A[k]}M

k=0 =
{(

a[k]ij

)}
∈ R

n×n

associated with these graphs at times {tk}Mk=0, whose entries are defined as

a[k]ij =
{
1 if (i, j) ∈ E [k]

0 otherwise.

In (Grindrod et al. 2011) the concept of a dynamic walk of length p was introduced
to extend to the temporal case the well-known concept of a walk of length p in static
networks. Loosely, we have a (possibly repeated) sequence of p + 1 nodes connected by
edges that appear in a suitable order. More precisely, a dynamic walk of length p from
node i1 to node ip+1 consists of a sequence of nodes i1, i2, . . . , ip+1 and a sequence of
times tr1 ≤ tr2 ≤ · · · ≤ trp such that a[rm]imim+1

�= 0 for m = 1, 2, . . . , p. We stress that more
than one edge can share a time slot, and that time slots must be ordered but do not need
to be consecutive.
The concept of dynamic walk was used to motivate the definition of the dynamic

communicability matrix

Q[M] =
(
I − αA[0]

)−1 (
I − αA[2]

)−1 · · ·
(
I − αA[M]

)−1
, (1a)

which can be defined equivalently via the iteration

Q[k] = Q[k−1]
(
I − αA[k]

)−1
, k = 0, 1, . . . ,M, (1b)

where Q[−1] = I is the identity matrix of order n, 0 < α < 1/ρ∗, and ρ∗ =
max
k=0:M

{
ρ

(
A[k])} is the largest spectral radius among the spectral radii of the matrices

{
A[k]}. Here the free parameter α plays the same role as in the classical Katz centrality
measure for static networks (Estrada 2010; Katz 1953; Newman 2010). For simplicity, our
notation does not explicitly record the dependence of Q upon α.
To avoid overflow in the computations, a normalization stepQ �→ Q/‖Q‖ should follow

each iteration in (1b). Throughout this work we use the Euclidean norm.
The requirement α < 1/ρ∗ ensures that the resolvents in (1a) exist and can be

expanded as
(
I − αA[k])−1 = ∑∞

p=0
(
αA[k])p. It follows that the entries of Q[k] provide

a weighted count of the dynamic walks between any two nodes in the networks using
the ordered sequence of matrices A[0],A[1], . . . ,A[k], weighting walks of length p by a fac-
tor αp. Hence,

(
Q[k])

ij is an overall measure of the ability of node i to send messages to
node j.
Using the dynamic communicability matrix one can define and compare the broadcast

and receive centrality of nodes by taking row and column sums of thematrixQ[M], respec-
tively. The broadcast centrality of node i is defined as b[M]

i := eTi Q[M]1, where ei ∈ R
n

is the ith column of I, the superscript “T” denotes transposition, and 1 ∈ R
n is the vec-

tor of all ones. Similarly, the receive centrality of node j is defined as r[M]
j := 1TQ[M]ej.
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It is straightforward to show that the latter satisfies a lower-dimensional, vector-valued
iteration given by

r[k] := 1TQ[k] = r[k−1]
(
I − αA[k]

)−1
, k = 0, 1, . . .M.

The receive centrality of the nodes can thus be updated at each step by solving a single
sparse linear systemwhose coefficient matrix is the latest network time slice. In particular,
this means that we do not need to store and update the full matrix Q[k] to recover the
receive centrality of nodes at level k. By contrast, to compute the broadcast centrality
vector, b[M] = Q[M]1, we need access to the current dynamic communicability matrix at
each step. Intuitively, this difference arises because,

• given a summary of how much information is flowing into each node, we can
propagate this information forward when new edges emerge: receive centrality cares
about where the information terminates, but

• a summary of how much information is flowing out of each node cannot be
straightforwardly updated when new edges emerge: broadcast centrality cares about
where the information originates.

Our focus here is on the natural setting where data is processed sequentially, with
the centrality scores being updated as each new time slice A[k] arrives. As confirmed
in “Numerical tests” section on some real data sets, we then face a fundamental issue
with the use of the dynamic communicability matrix: although the time slices are typi-
cally sparse, Q[k] generally evolves into a dense matrix. At this stage, computing dynamic
communicability from (1b) requires us to store a full O

(
n2

)
matrix and solve at each sub-

sequent time point a corresponding full linear system. In the next section, we therefore
develop and justify an approximation where matrix fill-in is controlled so that the benefits
of sparse matrix storage and computation are recovered.

Sparsification
To create a sparse approximation, Q̂[k], to the dynamic communicability matrix, Q[k], we
first observe that the original iteration (1b) includes some traversals that are not very
meaningful, e.g., repeated cycles i → j → i → j → i → j using the same undirected
edge at the same time point. We thus use an “at most one edge per time point” alternative
to (1b) so as to avoid considering these types of walks and similar ones:

Q̂[k] = Q̂[k−1]
(
I + αA[k]

)
, k = 0, 1, . . . ,M, (2)

with Q̂[−1] = I and α < 1/ρ∗, as before. As discussed in (Grindrod et al. 2011), this
matrix product can be interpreted in terms of network combinatorics; at each time step
a dynamic traversal can either wait, as described by the identity matrix I, or take a cur-
rent edge, as described by latest adjacency matrix, A[k]. In the latter case, the length of the
walk (i.e., the number of edges used) has increased by one, and thus we multiply the cor-
responding matrix by α. An alternative interpretation is that we are using a second order
Taylor approximation for each of the resolvents appearing in (1a). This simplification is
likely to be reasonable when either (a) α is chosen to be small, so that short walks are
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favoured, or (b) the powers of A[k] do not grow rapidly with k (which is typically the case
for sparse matrices).
As the time index k increases in (2) the number of nonzeros cannot decrease, and the

matrix Q̂[k] will generally fill in. In order to produce a sparse approximation we will pro-
ceed iteratively. At each step we threshold the matrix at a level θk—this type of approach
has been widely used in large scale machine learning, data mining, and signal processing;
see, e.g., (Achlioptas et al. 2013; Arora et al. 2006) and references therein. Hence, for
k = 0, 1, . . . ,M we redefine the iteration to be

Q̂[k] =
⌊
Q̂[k−1] (I + αA[k])⌋

θk∥∥∥
⌊
Q̂[k−1] (I + αA[k])⌋

θk

∥∥∥
2

, (3)

where Q̂[−1] = I and for any nonnegative matrix C, the matrix 
C�θk arises from setting
to zero all entries where cij ≤ θk .

Remark 1 The matrices
{
Q̂[k]}M

k=0 are nonnegative by construction.

A little twist

From a network science perspective, the approach just presented has a strong limitation.
Imagine a user i of Twitter who remains inactive for a long time after each tweet. After
such inactivity, the thresholding may zero out all entries in the ith row of one of the matri-
ces Q̂[k]. From that time, the ith row of the matrices appearing in (3) will always be zero,
and no subsequent activity of node i will be registered by this approach.
Tomitigate pathological behaviour of this type, wemodify (3) so as to keep track at each

step of the behaviour of those nodes corresponding to zero rows in the iteration matrix.
Our final version of the iteration goes as follows:

Q̂[k] =
⌊
Q̂[k−1]

(
I + αA[k]

)⌋

θk
+ mkA[k], k = 0, 1, . . . ,M, (4)

followed by normalization, where Q̂[−1] = I, mk is the smallest nonzero entry of
⌊
Q̂[k−1] (I + αA[k])⌋

θk
, A[k] = αW [k]A[k], and W [k] = diag (w1,w2, . . . ,wn) ∈ R

n×n is a
diagonal matrix whose entries are

wi =
{
1 if eTi

⌊
Q̂[k−1] (I + αA[k])⌋

θk
1 = 0

0 otherwise.

The matrix A[k] keeps track of those edges that appear at step k and would otherwise
get lost. Indeed, the matrix product W [k]A[k] returns a matrix that has nonzero entries
(if any) only in the rows corresponding to those nodes that have either been inactive
until step k or have broadcast very little information (which thus was thresholded in a
previous iteration). The penalisation by α is added because we are taking one hop in the
network. Finally, the multiplication by mk comes from the fact that a poor choice of the
parameter α may compromise the results. Indeed, the entries ofA[k] may be too large with
respect to those appearing in

⌊
Q̂[k−1] (I + αA[k])⌋

θk
, thus leading to a complete reshaping

of the rankings. We refer the reader to “Numerical tests” section for an example of
this issue.
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Remark 2 It is possible for the contribution added by mkA[k] to be zero. This happens
when the zero rows in

⌊
Q̂[k−1] (I + αA[k])⌋

θk
correspond to nodes that are not broadcasting

information at step k.

Remark 3 Note that if A[k] = 0 for some k, then Q̂[k] = Q̂[k−1], just as Q[k] = Q[k−1].

On the thresholding parameters

The thresholding parameters {θk} are a key part of the sparsification process. Before
explaining how we select these values in applications, we first describe the types of con-
tributions that are removed from the approximation to the dynamic communicability
matrix when the thresholding is performed. There are two key circumstances where the
thresholding has an effect:

• the value of αp dominates the contribution given by the products of the adjacency
matrices, i.e., there are not too many walks of length p between the two nodes under
consideration;

• the information has not moved from a certain node for a long time and the
normalization step has made the corresponding contribution smaller than the other
entries.

In both cases, we are dismissing information that has little potential, as it is not diffused
much. Clearly, an over-stringent selection of the parameters θk may lead to an excessive
penalization of these two types of behaviours. Our strategy is to make an initial choice
for the maximum number of nonzeros that we will allow in the matrices Q̂[k], for k = 0,
1, . . . ,M. Then, as the iteration proceeds, the thresholding value θk is chosen so as to
make

⌊
Q̂[k−1] (I + αA[k])⌋

θk
have approximately this desired level of sparsity.

We point out that the maximum number of nonzeros one wants to allow has to be
at least n + nnz

(
A[0]), where nnz

(
A[0]) is the number of nonzeros in the matrix A[0].

Consequently, θ0 < α. Indeed, if this is not the case, then we will have θk ≥ α for all k and
therefore that Q̂[k] = I for all k.

Cost comparison

We are now in a position to quantify, at least approximately, the computational benefits of
using Q̂[k] in (4) rather than the exact matrix Q[k] in (1b) to compute dynamic broadcast
communicability. We will assume that at any time point all nodes have bounded out-
degree (independently of the number of nodes, n), so that there is a bounded number of
nonzeros per row in each A[k]. Our choice of thresholding parameters will then force Q̂[k]

to have the same property. Because the exact representation Q[k] becomes full in general,
it follows that:

• We have reduced storage requirements by a factor of n.
• We have reduced the dominant computational task at each time step from solving a

full linear system to solving a sparse linear system. For general complex networks
with no exploitable structure, it is difficult to be precise about the resulting gain, but
we note that if a standard iterative scheme is used, then the cost of each
matrix-vector multiplication is reduced by a factor of n.
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Comparing top K lists

The main goal of this work is to match the broadcast ranking of the nodes in an evolv-
ing network using a sparse approximation to the dynamic communicability matrix. As
usual in network science, we are not interested in matching exactly the rankings of all
nodes in the network, but rather to accurately capture the top K  n most influential
broadcasters. Although there is no perfect way to summarize and compare rankings, it is
clear that generic correlation coefficients like Pearson’s correlation coefficient or Kendall’s
tau have the major drawback in this context that they treat entire vectors, and hence all
network nodes.
In order to compare the top K entries of two ranking vectors, an appropriate index

is the intersection similarity (Fagin et al. 2003). This quantity is defined as follows:
given two ranked lists x and y, consider the top K entries of each, which we denote
xK and yK , respectively. Then, the top K intersection similarity between x and y is
defined as

isimK (x, y) = 1
K

K∑

i=1

∣∣xi�yi
∣∣

2i
, (5)

where � is the symmetric difference operator between two sets and |S| denotes the car-
dinality of the set S. When the sequences contained in x and y are completely different,
the intersection similarity between the two is maximum and equals 1. On the other hand,
when isimK (x, y) = 0 for all K, then the two lists are identical.
It happens sometimes that the two lists differ in the order, but not in the set of labels of

the nodes appearing in them. Behaviour of this type can be easily spotted by looking at
the quantity:

�K (x, y) = K · isimK (x, y) − (K − 1) · isimK−1(x, y), K = 2, 3, . . .

From (5) we have

�K (x, y) =
∣∣xK�yK

∣∣

2K
,

and hence if �K (x, y) = 0 for some K we know that xK and yK are permutations of the
same set of nodes.

Relationship with the Jaccard index

The Jaccard index (Jaccard 1901) quantifies the similarity between two sample sets by
measuring the percentage of elements that belong to both sets, thus ignoring the ordering
of the elements. It is defined, for two sets x and y, as

J(x, y) = |x ∩ y|
|x ∪ y| ∈[ 0, 1]

and it equals 1 when the two sets coincide. It can be related to the intersection similarity
and to the index �k through the Jaccard distance. This measure is defined for two sample
sets as

d(x, y) = 1 − J(x, y) = |x�y|
|x ∪ y|

and hence

�K ≤ d(xK , yK ) = 1 − J(xK , yK ).
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Fig. 1 Evolution of isimK . Evolution of the intersection similarity isimK
(
Q[M]1, Q̂[M]1

)
versus K, for different

choices of the downweighting parameter α. Left:mk ≡ 1. Right:mk is set at each iteration as the smallest
nonzero entry of

⌊
Q̂[k−1]

(
I + αA[k]

)⌋
θk
. Note the difference in vertical axis range

An easy computation thus shows that

isimK (x, y) ≤ 1 − 1
K

K∑

i=1
J(xi, yi).

Numerical tests
Our tests were performed on three different datasets with various values of the param-
eter α. The dataset Enron is available at (Leskovec 2014) and contains daily information
over 1138 days starting 11 May 1999 representing emails between 151 Enron employees,
including to, cc, and bcc. Many of the directed adjacency matrices are empty, mean-
ing that there are days during which no emails are sent. The largest spectral radius is
ρ∗ = 4.17, thus the upper limit for α is 0.24.
The undirected Real dataset is from (Eagle and Pentland 2006). Here, we have 106 nodes

representing people interacting over 365 days. In each of the 365 days interaction occurs
when two nodes communicate by telephone at least once. Here ρ∗ = 8.22 and thus we
have to impose α < 0.12.
Finally, the dataset FBsoc (Opsahl 2009; Opsahl and Panzarasa 2009) represents a

Facebook-like Social Network originating from an online community of students at

Fig. 2 Evolution of �K . Evolution of �K
(
Q[M]1, Q̂[M]1

)
versus K, for different choices of the downweighting

parameter α. Left:mk ≡ 1. Right:mk is set at each iteration as the smallest nonzero entry of⌊
Q̂[k−1]

(
I + αA[k]

)⌋
θk
. Note the difference in vertical axis range
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Fig. 3 Scatter plot. Enron: approximation using (4) with α = 0.01

Fig. 4 Evolution of θk and nnz
(
Q[k]

)
. Enron: behaviour of θk and the number of nonzerso in Q[k] with respect

to k, using α = 0.01

0 50 100 150

0

50

100

150

nz = 1676

Fig. 5 Sparsity pattern. Enron: sparsity pattern of the final matrix Q̂[M] computed using (4) with α = 0.01
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Table 1 Enron: Top 10 ranked nodes: exact, approximate and with aggregate out-degree

Q[M]1 48 67 147 73 13 50 137 49 9 139

Q̂[M]1 48 67 147 73 13 50 137 49 9 139

Out-degree 67 50 141 13 48 69 107 147 73 70

the University of California. The directed dataset contains the 1899 users who sent or
received at least one message over a period of 191 days starting 19 April 2004. The largest
spectral radius is ρ∗ = 7.59 and hence α < 0.13.
In all tests, unless otherwise specified we allowed for a number of nonzeros propor-

tional to N = cn, where n = n + 1
M+1

∑M
k=0 nnz

(
A[k]) and c = 10. This is motivated

by our aim to work only with matrices whose sparsity level is compatible with that of the
individual network time slices.
All experiments were performed using MATLAB Version 9.1.0.441655 (R2016b) on an

HP EliteDesk running Scientific Linux 7.3 (Nitrogen), a 3.2 GHz Intel Core i7 processor,
and 4 GB of RAM.

Illustrative test with Enron dataset

Before testing the performance of (4), in this subsection we discuss the effect of including
the multiplication by mk . In “Sparsification” section we argue that setting mk ≡ 1 for all
k = 0, 1, . . . ,M in (4) may lead to poor results. Clearly, this is not always the case, but, as
we will see here, this choice together with a compounding choice of the downweighting
parameter α, may result in a complete misplacement of the top ranked broadcasters in
the network.
We compute the broadcast centrality vectorQ[M]1 and our approximation vector Q̂[M]1

for seven different values of the downweighting parameter:

α = 0.01
ρ∗ ,

0.1
ρ∗ ,

0.25
ρ∗ ,

0.5
ρ∗ ,

0.75
ρ∗ ,

0.85
ρ∗ ,

0.9
ρ∗ ,

where ρ∗ = 4.17 is the largest spectral radius among the spectral radii of the matrices
A[k], k = 0, 1, . . . ,M. Figure 1 displays the evolution of the intersection similarity between
the top K = 1, 2, . . . , 20 entries of the vectors Q[M]1 and Q̂[M]1 versus K for the different
values of α. The left plot contains the results when mk ≡ 1, while the right plot contains
the results when mk is adapted by setting it to be equal to the smallest nonzero entry
of the matrix

⌊
Q̂[k−1] (I + αA[k])⌋

θk
at each iteration. The results for the evolution of

�k
(
Q[M]1, Q̂[M]1

)
are displayed in Fig. 2.

These results show that when mk ≡ 1 the intersection similarity and the value of �K
between the two vectors can be maximum even when comparing only a few top ranked
nodes for α as small as 0.5/ρ∗. The right hand plots in the two figures show how an
adaptive choice ofmk can work successfully over a wide range of α choices.

Table 2 Enron: intersection similarity between the top K = 1, 2, . . . , 20 ranked nodes in Q[M]1 and
Q̂[M]1

K 1 2 3 4 5 6 7 8 9 10

isimK 0 0 0 0 0 0 0 0 0 0

K 11 12 13 14 15 16 17 18 19 20

isimK 0 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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Table 3 Enron: evolution of �K
(
Q[M]1, Q̂[M]1

)
for K = 2, 3, . . . , 20

K 1 2 3 4 5 6 7 8 9 10

�K - 0 0 0 0 0 0 0 0 0

K 11 12 13 14 15 16 17 18 19 20

�K 0 0.08 0.15 0.14 0.07 0 0.06 0 0.05 0

Enron dataset

We now assess the effectiveness of iteration (4) at approximating the broadcast centrality
rankings. For the Enron dataset we used α = 0.01. The dynamic communicability matrix
was computed in 2.62 s. The number of nonzero entries in this matrix is nnz

(
Q[M]) =

21097. Note that n2 = 22801, so the matrix is 92.5% full. Figure 3 scatter plots the
resulting approximation to the broadcast and receive centrality vectors againstQ[M]1 and
1TQ[M], respectively. We observe a good linear correlation at the high end for both cases,
indicating that our method correctly identifies important nodes. In Fig. 4 we plot the evo-
lution of the thresholding parameters θk and of the sparsity of the approximation matrix
Q̂[k] as k varies. We point out that our thresholding function sets to zero all entries of the
matrix that are smaller than or equal to θk , and this is the reason why we can find “drops”
in the number of nonzeros in Q̂[k], even after the desired sparsity has been reached at
around k = 500. In Fig. 5 we display the sparsity pattern, i.e., the pattern of non-zeros, of
the final approximating matrix Q̂[M], which was computed in 2.07 s. Here, the number of
nonzeros is = 1676, so the level of sparsity has been reduced to around 7.4%.
In Table 1 we list the top 10 ranked nodes according to the broadcast centrality. The

first row contains the true result, obtained by ranking the nodes according to Q[M]1; in
the second row we list the top 10 broadcasters according to the ranking derived from
Q̂[M]1 and, finally, the last row displays the result obtained when the nodes are ranked
according to their aggregate out-degree:

∑M
k=0 A[k]1. As α → 0, the ranking obtained

using the dynamic communicability matrix approaches that obtained using the aggregate
out-degree; see, e.g., (Chen et al. 2016; Grindrod et al. 2011). Clearly, however, α = 0.01
is not close enough to zero for this effect to be observed.
Tables 2 and 3 contain the values of isimK

(
Q[M]1, Q̂[M]1

)
for K = 1, 2, . . . , 20 and

�K
(
Q[M]1, Q̂[M]1

)
for K = 2, 3, . . . , 20. The new method correctly orders the top 11

broadcasters in the network and correctly identifies the top 20.

Fig. 6 Scatter plot. Real: approximation using (4) with α = 0.06
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Fig. 7 Evolution of θk and nnz
(
Q[k]

)
Real: behaviour of θk and the number of nonzerso in Q[k] with respect

to K, using α = 0.06

Real dataset

We move on to the Real dataset. The value of the downweighting parameter used in
this subsection is α = 0.06 < 0.12 = 1/ρ∗. The dynamic communicability matrix
is completely full, as nnz

(
Q[M]) = 11236 = n2. We refer to Figs. 6, 7 and 8 for

scatter plots of the ranking vectors and our approximation, the evolution of θk and
nnz

(
Q̂[k]), and the sparsity pattern of Q̂[M]. The original dynamic communicability

matrix was computed in 0.34 s, while the final approximating matrix Q̂[M] was obtained
in 0.71 s. We view the small size of the dataset as the main reason for the increase in
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nz = 2583

Fig. 8 Sparsity pattern. Real: sparsity pattern of the final matrix Q̂[M] computed using (4) with α = 0.06
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Table 4 Real: Top 10 ranked nodes: exact, approximate and with aggregate out-degree

Q[M]1 5 102 8 26 49 46 3 4 1 30

Q̂[M]1 5 8 102 26 49 46 3 4 1 30

out-degree 5 8 4 2 3 20 40 6 23 53

computational time, which is now dominated by the selection of the parameters at each
time step.
We see in Fig. 6 that the highly ranked nodes are well approximated. Even though the

original dynamic communicability matrix is full, we see from the zero rows in Fig. 8 that
many nodes have no activity recorded after our approximationmethod is applied. Overall,
Q̂[M] has 2583 nonzeros, corresponding to 23% sparsity.
Table 4 lists the top 10 ranked nodes according to the broadcast centrality. As before, the

first row contains the true result, obtained by ranking the nodes according toQ[M]1; in the
second row we list the top 10 broadcasters according to the ranking derived from Q̂[M]1
and, finally, the last row displays the result obtained when the nodes are ranked according
to their aggregate out-degree. As expected, the out-degree does not identify correctly the
top broadcasters in the network. By contrast, the new approximation method correctly
identifies the top 10 broadcasters.
Tables 5 and 6 contain the values of isimK

(
Q[M]1, Q̂[M]1

)
for K = 1, 2, . . . , 20 and

�K
(
Q[M]1, Q̂[M]1

)
for K = 2, 3, . . . , 20. The results in Table 5 indicate that the new

method performs well, in the sense that isimK is small for allK. Further Table 6 shows that
iteration (4) is able to correctly identify the top 19 broadcasters, albeit in the wrong order.
Increasing α to = 0.1, we look at the effect of varying c, the factor used to determine

the sparsity of the final matrix. Figure 9 shows the evolution of isimK
(
Q[M]1, Q̂[M]1

)
and

�K
(
Q[M]1, Q̂[M]1

)
versus K when c = 1, 2, . . . , 10. Larger values of c were tested (c =

15, 17) and found to provide the same results as c = 7, 8, 9. We conclude that for this data
set the results are not sensitive to the choice of c, and that c = 10 is a reasonable level.

FBsoc dataset

The last test has been performed on the dataset FBsoc with α = 0.1. Here Q[M] has
1872718 nonzeros, with n2 = 3606201, corresponding to 52% nonzeros. We refer to
Figs. 10, 11 and 12 for the plots of centralities, θk and nnz

(
Q̂[k]) evolution and the spar-

sity pattern of Q̂[M]. The number of nonzeros in the final approximation Q̂[M] is 19012,
giving 0.53% sparsity. This matrix was computed in 339.72 s, while the computation of
Q[M] required 398.39 s.
We note in Fig. 10 that, at least visually, the ranking of highly central nodes seems less

successful than for the previous two data sets.
Table 7 lists the top 10 ranked nodes according to the broadcast centrality (first row),

our approximation (second row), and the aggregate out-degree (third row). Using the

Table 5 Real: intersection similarity between the top K = 1, 2, . . . , 20 ranked nodes in Q[M]1 and
Q̂[M]1

K 1 2 3 4 5 6 7 8 9 10

isimK 0 0.25 0.17 0.13 0.10 0.08 0.07 0.06 0.06 0.05

K 11 12 13 14 15 16 17 18 19 20

isimK 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
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Table 6 Real: evolution of �K
(
Q[M]1, Q̂[M]1

)
for K = 2, 3, . . . , 20

K 1 2 3 4 5 6 7 8 9 10

�K - 0.50 0 0 0 0 0 0 0 0

K 11 12 13 14 15 16 17 18 19 20

�K 0 0 0 0.07 0 0 0 0 0 0.05

aggregate out-degree returns poor results. Our method exactly matches the top two
broadcasters and is able to identify a few other top nodes, even if in the wrong order. This
observation is confirmed by the values of isimK

(
Q[M]1, Q̂[M]1

)
and �K

(
Q[M]1, Q̂[M]1

)
,

which are generally low (see Tables 8 and 9). Indeed, our method correctly matches only
the two top broadcasters in the network. The values of �K are small for all K, meaning that
we are mis-ordering nodes but still identifying most of the influential ones. For exam-
ple, the value of �20 = 0.20 shows that we are correctly identifying 16 out of the 20 top
broadcasters in the network.
The results for this network are not as good as those obtained for the previous two

treated in this paper. To investigate further, in Fig. 13 we plot, with a logarithmic ver-
tical axis, the broadcast centralities of nodes in non-increasing order (α = 0.1), while
the inset contains the broadcast centralities of the top 100 nodes in the network, again
in non-increasing order. This plot clearly shows that beyond the top few nodes (say,
4, 5 or 6), the broadcast centralities are tightly packed. Indeed, if we consider the
broadcast centrality vector components in non-increasing order and compute the aver-
age difference between two subsequent entries, we obtain 0.001 for this dataset, as
opposed to 0.018 for Enron and 0.016 for the Real dataset. Moreover, the largest gap
for FBsoc is 0.31, while it is 1.20 for Enron and 0.61 for Real. We view this cluster-
ing of the centrality values as the main reason for the degradation in performance on
this dataset.

Further reduction
In the previous Sections we have derived a sparsification technique that delivers accurate
approximations to the full-matrix broadcast centrality rankings. The iteration described
in (4) requires the selection, at each time stamp, of two parameters: θk and mk . In this
Section we discuss three different ways of selecting these parameters and provide the

Fig. 9 Vary c. Real: behaviour of isimK and �K with respect to K, using α = 0.1
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Fig. 10 Scatter plot. FBsoc: approximation using (4) with α = 0.1

Fig. 11 Evolution of θk and nnz
(
Q[k]

)
FBsoc: behaviour of θk and the number of nonzerso in Q[k] with

respect to K, using α = 0.1
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Fig. 12 Sparsity pattern. FBsoc: sparsity pattern of the final matrix Q̂[M] computed using (4) with α = 0.1
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Table 7 FBsoc: Top 10 ranked nodes: exact, approximate and with aggregate out-degree

Q[M]1 9 103 212 41 263 321 400 372 281 36

Q̂[M]1 9 103 41 212 400 321 36 372 44 713

out-degree 32 598 372 1624 42 103 713 638 495 617

results of some numerical tests in order to assess the effectiveness of the proposed varia-
tions of (4). From (4) it is clear thatmk > θk . In order to reduce the number of parameters
we can thus select at each time stamp mk = θk , which is smaller than the smallest pos-
tive entry of Q̂[k] := ⌊

Q̂[k−1] (I + αA[k])⌋
θk
. Unless the smallest nonzero entry of Q̂[k] is

much larger than θk , this selection ofmk should provide results as accurate as the one we
obtained using (4). The new iteration is thus:

Q̂[k] =
⌊
Q̂[k−1]

(
I + αA[k]

)⌋

θk
+ θkA[k], k = 0, 1, . . . ,M, (6a)

followed by normalization, where Q̂[−1] = I andA[k] = αW [k]A[k] as before.
In order to further reduce the number of parameters, one can use a fixed value for

the thresholding parameter θk . Indeed, one may want to retain only the information
contained in the iteration matrix that is above a certain value, or might have addi-
tional information about the structure of the matrix which allows one to customize
the choice of the thresholding parameter. In these cases, one can use a fixed value
for θk ≡ θ :

Q̂[k] =
⌊
Q̂[k−1]

(
I + αA[k]

)⌋

θ
+ mkA[k], k = 0, 1, . . . ,M, (6b)

followed by normalization, where Q̂[−1] = I and A[k] = αW [k]A[k] as before. It is easy to
see that the parameter θ cannot exceed the value of α. Indeed, if this was the case and θ ≥
α, then Q̂[k] = I for all k = 0, 1, . . . ,M, since Q̂[0] = I and thus

⌊
Q̂[k−1] (I + αA[k])⌋

θ
= I

andW [k] = 0 for all k = 1, 2, . . .M. Therefore, θ < α.
Finally, the two approaches previously described in (6a) and (6b) can be combined

to obtain:

Q̂[k] =
⌊
Q̂[k−1]

(
I + αA[k]

)⌋

θ
+ θA[k], k = 0, 1, . . . ,M, (6c)

returning an iteration that only requires the selection of one, fixed, thresholding
parameter θ < α.
We tested the performance of the methods just described on the datasets Enron and

Real. Before moving on to the discussion of the ranking performance of these variants
of (4), we want to list the timings required for their computation. Concerning the first
dataset, the timings required for the computation of the approximatingmatrices are 1.98 s
for (6a), 1.97 s for (6b) and 1.83 s for (6c). Concerning the Real dataset, the computations

Table 8 FBsoc: intersection similarity between the top K = 1, 2, . . . , 20 ranked nodes in Q[M]1 and
Q̂[M]1

K 1 2 3 4 5 6 7 8 9 10

isimK 0 0 0.11 0.08 0.11 0.12 0.12 0.12 0.13 0.14

K 11 12 13 14 15 16 17 18 19 20

isimK 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.17 0.17 0.17
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Table 9 FBsoc: evolution of �K
(
Q[M]1, Q̂[M]1

)
for K = 2, 3, . . . , 20

K 1 2 3 4 5 6 7 8 9 10

�K - 0 0.33 0 0.20 0.17 0.14 0.13 0.22 0.20

K 11 12 13 14 15 16 17 18 19 20

�K 0.09 0.17 0.23 0.22 0.20 0.19 0.24 0.28 0.26 0.20

were carried out in 0.67 s for (6a), 0.32 s for (6b) and 0.28 s for (6c). As one would expect,
the time required by the methods decreases with the number (and type) of parameters
that need to be estimated at each iteration.
Figure 14 displays the intersection similarity between the top K = 1, 2, . . . , n entries

of the vectors Q[M]1 and Q̂[M]1, when this latter is computed using the iterations
previously described (4), (6a), (6b), and (6c). The results are displayed for the networks
Enron (α = 0.01) and Real (α = 0.06). When iteration (6b) or (6c) is used, we set
θ = 10−5 for the network Enron and θ = 10−4 for the network Real. These val-
ues of θ correspond to the order of magnitude of the average value of the thresholding
parameters used in “Numerical tests” section. The methods are seen to perform well.
In both cases we obtain an intersection similarity that is, at each step, lower than 0.25.
The new iterations return results that are, in the worst case scenario, as good as those
obtained using (4). The number of nonzeros in the resulting matrix Q̂[M] for the dataset
Enron is 5847 when (6b) or (6c) is used, and 1676 for (6a). In the first two cases we
are achieving better results than those previously obtained, but the level of sparisty
of Q̂[M] is 25.6%; therefore, a better approximation of the broadcast centrality vector
is obtained because we are retaining more nonzeros in the matrix used to perform
the computation.
Overall, the method described in (6a) seems to be the one performing best, since it

returns a matrix that has the same level of sparsity of the one obtained using (4), but the
resulting ranking vector better matches Q[M]1.
If we now look at the results obtained for the network Real, we observe again that

the best performance, in terms of the intersection similarity between the top K entries
of Q̂[M]1 and Q[M]1, is achieved using iterations (6b) and (6c); the iteration described
in (6a) performs better than the original one. If we now look at the level of sparsity of the
final approximation matrices, we have that overall Q̂[M] computed using (6a) has 2581
nonzeros, corresponding to 23% sparsity. Both (6b) and (6c) return matrices that have
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Fig. 13 Ordered broadcast vector. FBsoc: ordered broadcast vector Q[M]1 (α = 0.1). Inset: broadcast
centralities of the top 100 nodes in the network
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Fig. 14 Further reduction. Evolution of the intersection similarity between Q̂[M]1 and Q[M]1 when the former
is computed using one among (4), (6a), (6b), or (6c). In the computations, θ = 10−5 for the network Enron
and θ = 10−4 for the network Real

4243 nonzeros, corresponding to 40.4% sparsity. Thus, as before, these two latter meth-
ods return better approximation to the ranking vector because they are retaining more
information in the matrices used in the computations.
Overall, a good compromise seems to be the use of (6a), which returns comparable

results to those obtained by the original iteration while retaining the same level of sparsity.

Conclusions
Time-dependency adds an extra dimension to network science computations, potentially
causing a dramatic increase in both strorage requirements and computation time. In the
case of Katz-style centrality measures, which are based on the solution of linear algebraic
systems, allowing for the arrow of time leads naturally to full matrices that keep track of all
possible routes for the flow of information. Such a build-up of intermediate data canmake
large-scale computations infeasible. In this work, we derived a sparsification technique
that delivers accurate approximations to the full-matrix centrality rankings, while retain-
ing the level of sparsity present in the network time-slices. With the new algorithm, as we
move forward in time the storage cost remains fixed and the computational cost scales
linearly, so the overall task is equivalent to solving a single Katz-style problem at each
new time point. We also proposed three variants of this algorithm that require the com-
putation of a smaller number of parameters. In particular, one of these variants requires
only one parameter and returns rankings that are comparable with those provided by the
original algorithm.
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