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On Constrained Langevin Equations and (Bio)Chemical Reaction
Networks

David F. Anderson1, Desmond J. Higham2, Saul C. Leite3, and Ruth J. Williams4

Abstract

Stochastic effects play an important role in modeling the time evolution of chemical reaction sys-
tems in fields such as systems biology, where the concentrations of some constituent molecules can be
low. The most common stochastic models for these systems are continuous time Markov chains, which
track the molecular abundance of each chemical species. Often, these stochastic models are studied by
computer simulations, which can quickly become computationally expensive. A common approach to
reduce computational effort is to approximate the discrete valued Markov chain by a continuous valued
diffusion process. However, existing diffusion approximations either do not respect the constraint that
chemical concentrations are never negative (linear noise approximation) or are typically only valid until
the concentration of some chemical species first becomes zero (chemical Langevin equation).

In this paper, we propose (obliquely) reflected diffusions, which respect the non-negativity of chem-
ical concentrations, as approximations for Markov chain models of chemical reaction networks. These
reflected diffusions satisfy “constrained Langevin equations,” in that they behave like solutions of chem-
ical Langevin equations in the interior of the positive orthant and are constrained to the orthant by in-
stantaneous oblique reflection at the boundary. To motivate their form, we first illustrate our constrained
Langevin approximations for two simple examples. We then describe the general form of our proposed
approximation. We illustrate the performance of our approximations through comparison of their sta-
tionary distributions for the two examples with those of the Markov chain model and through simulations
of more complex examples.

MSC 2010 subject classifications: Primary 60J28, 60J60, 65C30, 92C45; Secondary 60H10, 65C40, 92C40.
Keywords: Density dependent Markov chains, diffusion approximation, Langevin equation, linear noise approxi-

mation, chemical reaction networks, stochastic differential equation with reflection, systems biology.

1 Introduction

Reacting chemical species are often modeled by deterministic differential equations representing the time
evolution of molecular concentrations. Nonetheless, at a finer scale, chemical reaction systems are funda-
mentally stochastic in nature. Deterministic models provide a mean field approximation to these systems
and are generally good predictors when the abundances of all species are high enough to average out the
stochastic fluctuations. However, in some applications, such as in systems biology, not every molecular
species is present in large numbers. The most common stochastic model of chemical kinetics treats the
system as a continuous time Markov chain that tracks the (integer-valued) number of molecules of each
chemical species [2, 17, 43]. These Markov chain models are often studied by sample path simulation in or-
der to get Monte Carlo estimates for desired quantities [14, 15, 16]. However, these simulations can quickly
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become computationally expensive when some reactions are very fast, since every reaction is individually
accounted for. When the abundances of the chemical species are large (but not large enough to ignore the
influence of stochastic fluctuations) the units can be converted from abundances to concentrations and the
solutions to the continuous time Markov chain model can be approximated by solutions to Stochastic Dif-
ferential Equations (SDEs). The resulting solutions are usually called a diffusion approximation; see, for
example, [25]. These diffusion approximations can be simulated by numerical methods for SDEs, where a
fixed time step can be set, yielding more efficient simulations in most cases. While the standard continuous
time Markov chain model satisfies the natural condition that all abundances remain non-negative for all time,
diffusion approximations do not, in general, respect such a non-negativity condition.

There are two commonly used diffusion approximations for the Markov chain model, the linear noise
approximation [39, 40] and the chemical Langevin equation [18, 19, 25]. The linear noise approximation is
obtained by linearizing fluctuations about the deterministic approximation. Although this approximation is
well defined for all times, it typically diffuses outside of the positive orthant, predicting negative concentra-
tion values. In addition, it is well known [34, 41] that it can fail to capture fluctuations due to nonlinearities
in the reaction rate functions. On the other hand, the chemical Langevin equation is known to give better
approximations than the linear noise approximation when nonlinearities are present. However, the chemical
Langevin equation is usually not defined beyond the first time the boundary of the orthant is reached. In
fact, since the diffusion terms of the equation typically involve square roots of the molecular concentration,
the unstopped equation becomes ill posed [28, 36, 42].

For example, consider the following simple reaction system in which a molecule of S1 can be converted
to a molecule of S2 and vice versa:

S1
β1→ S2, S2

β2→ S1, (1)

where β1, β2 > 0 are the rate constants and we assume the corresponding propensities follow mass action
kinetics. When the number of S1 molecules reaches zero in the Markov chain model, the reaction S1 → S2

has zero intensity and cannot proceed until another S1 molecule is created via the reaction S2 → S1. In this
manner non-negativity of the number of S1 molecules is preserved. Of course, a symmetric argument shows
that the number of S2 molecules remains non-negative for all time. However, denoting the concentration of
Si at time t by xi(t), the usual chemical Langevin equation for this model consists of the system of SDEs:

dx1(t) = (−β1x1(t) + β2x2(t))dt− 1√
r

√
β1x1(t)dW1(t) +

1√
r

√
β2x2(t)dW2(t) (2)

dx2(t) = (β1x1(t)− β2x2(t))dt+
1√
r

√
β1x1(t)dW1(t)− 1√

r

√
β2x2(t)dW2(t), (3)

where W1 and W2 are independent Brownian motions, the equations are interpreted in the Itô sense, and r
is usually taken to be Avogadro’s number multiplied by the volume of the vessel in which the reactions are
taking place. Whenever x1(t) is near zero

β2x2(t)dt+
1√
r

√
β2x2(t)dW2(t) (4)

is the dominant term in the right hand side of equation (2). Because the term involving W2 in (4) is as likely
to push x1 in the negative direction as in the positive direction, x1 can become negative, thereby making
equation (2) nonsensical in our context. Of course, a symmetric argument shows that x2(t) can become
negative due to the stochastic forcing from W1.

In this paper, we propose a constrained Langevin approximation for chemical reaction systems which is
a reflected diffusion satisfying a non-negativity constraint. In order to motivate the approximation, we begin
with two simple, but natural, one-dimensional examples and then extend the approximation to the general
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multidimensional case. For the one-dimensional models, we also show how to compute stationary distri-
butions for the approximation. It is worth noting that because the constrained Langevin approximation is
developed via the same first principle arguments used in the development of the standard chemical Langevin
equation, solutions to the two models satisfy the same dynamics within the strictly positive orthant. This
fact is in contrast to other Langevin type models developed to fix the negativity problem that perturb the
dynamics globally to fix what is inherently a local (to the boundary) problem [42]. We emphasize that the
derivation in this paper of the constrained Langevin approximation is only formal. The paper [27] is a rigor-
ous technical complement to this paper. In [27], under mild conditions, the well posedness of the reflected
diffusion is proved and it is shown that this diffusion process can be achieved as a weak limit of a sequence
of jump-diffusion Markov processes that mimic the Langevin system in the interior of the positive orthant
and behave like a scaled version of the Markov chain on the boundary.

In related work, several authors have devised approaches that combine the accuracy and robustness of
the Markov chain model with the computational efficiency of the Langevin diffusion or ODE models; see,
for example, [4, 10, 13, 20] and the references therein. For example, hybrid models have been proposed that
exploit the existence of fast and slow reactions (determined either a priori or dynamically) [13, 20] or blend
the jump and diffusion models, depending on the current system state [4, 10]. In a different vein, in [33] it
has been proposed to extend the range of solutions for the Langevin equation to the complex numbers. The
authors of [33] illustrate their approximation for some unimolecular and bimolecular examples. Although
this state representation loses physical meaning, the authors show that this “complex Langevin equation”
can be used to give real-valued approximations to moments and first passage times. Our work has a different
focus to the references mentioned above. We operate entirely in the diffusion setting and introduce a general
strategy to respect non-negativity and well posedness. This permits simulation of sample paths and avoids
the need for ad hoc thresholding, blending parameters or introducing additional state variables and does not
require specialized assumptions on the structure of the reaction system.

The rest of this paper is organized as follows. Section 1.1 gives a short description of the notation which
will be used throughout the paper. In Section 2, we present the continuous time Markov chain model for
chemical reaction networks, beginning with its most common form in Section 2.1, where the state represents
the number of molecules of each species in the system. Next, in Section 2.2, we introduce the scaled Markov
chain model, where the state representation is converted from abundances to molecular concentrations. The
constrained Langevin approximation is presented in Section 3. We begin by introducing two motivating
one-dimensional examples in Section 3.1 and the ideas are then extended to the general multidimensional
case in Section 3.2. Section 4 is dedicated to numerical results, where we compare the constrained Langevin
approximation with the Markov chain model and the linear noise approximation. We begin by comparing
the stationary distributions of the one-dimensional examples in Section 4.1 and, later, in Section 4.2, we
present the result of computer simulations for two-dimensional examples.

1.1 Notation

For any integer m ≥ 1, let Zm denote the integer lattice and Zm≥0 denote the integer lattice of points with
non-negative components. Let Rm denote the m−dimensional Euclidean space and let Rm≥0 denote the
positive orthant in Rm (i.e., the set of points of Rm whose components are all non-negative). When m = 1,
we write Z1, Z1

≥0, R1, and R1
≥0 as Z, Z≥0, R and R≥0, respectively. For a vector x ∈ Rm, we denote by x′

its transpose and for a given set of vectors {x1, . . . , xd} ⊂ Rm, we denote by span{x1, . . . , xd} the set of
all linear combinations of its elements. For sets A and B such that A ⊂ B, we denote by 1A : B → R the
indicator function, where 1A(x) is defined to be 1 when x ∈ A and 0 otherwise, for all x ∈ B.

3



2 Markov chain model of chemical reaction systems

We consider a chemical reaction system consisting of a finite set of species {S1, S2, . . . , Sm} involved in
K possible reactions, where K is a positive integer. For k ∈ {1, . . . ,K}, we denote by v−k and v+

k the
vectors in Zm≥0 such that v−ik and v+

ik (the ith component of each) give the numbers of molecules of the ith
species consumed and produced in the kth reaction, respectively. For example, if the kth reaction in a system

consisting of just two species is 2S1 → S2, then v−k =

[
2
0

]
and v+

k =

[
0
1

]
. We denote by X(t) the

vector in Zm≥0 whose ith component gives the number of molecules of the ith species at time t. We note that
occurrence of the kth reaction at a time t changes the state of the system by addition of the reaction vector
vk = v+

k − v
−
k ; that is,

X(t) = X(t−) + vk.

We assume that vk 6= 0 for each k = 1, · · · ,K. In the next subsection, we describe the usual continuous
time Markov chain model for such systems.

2.1 Continuous time Markov chain model

The standard stochastic model for a chemical system treats the system as a continuous time, discrete state
Markov chain [17, 43]. To each reaction there is an associated real valued function of the state, Λk : Zm≥0 →
R≥0, called the propensity or intensity function, giving the rate at which the kth reaction occurs. Specifically,
it is assumed that for each k ∈ {1, . . . ,K}, x ∈ Zm≥0 and t ≥ 0,

P{X(t+ ∆t) = x+ vk | X(t) = x} = Λk(x)∆t+ o(∆t)

P{X(t+ ∆t) = x | X(t) = x} =

(
1−

K∑
k=1

Λk(x)∆t

)
+ o(∆t)

(5)

where o(∆t)/∆t→ 0, as ∆t→ 0. The usual assumption on the intensity functions Λk, and the assumption
we make throughout, is that they satisfy stochastic mass action kinetics: for x ∈ Zm≥0 the rate of the kth
reaction is

Λk(x) = κk

m∏
i=1

(xi)v−ik
, (6)

for some constant κk > 0, where

(xi)v−ik
= xi(xi − 1) . . . (xi − v−ik + 1) =

xi!

(xi − v−ik)!
. (7)

The constant κk is called the (stochastic) reaction rate constant.
For example, zeroth order reactions of the form ∅ → S1 have constant rate function Λk(x) = κk, first

order reactions of the forms S1 → S2 or S1 → ∅ have rate Λk(x) = κkx1, and second order reactions of the
forms S1 + S2 → S3 and 2S1 → S3 have respective rates Λk(x) = κkx1x2 and Λk(x) = κkx1(x1 − 1).
Thus, the rate (6) is proportional to the number of distinct subsets of the molecules present that can form the
inputs for the reaction. Intuitively, the mass action assumption reflects the idea that the system is well-stirred
in the sense that all molecules are equally likely to be at any location at any time.

There are different ways to represent the Markov chain model having the properties described in (5),
however we find the following endogenous representation for the Markov chain to be very useful. In this
representation, the Markov chain X(t) is given as the solution of the following equation:

X(t) = X(0) +
K∑
k=1

vkNk

(∫ t

0
Λk(X(s))ds

)
, (8)

4



where Nk, for k ∈ {1, . . . ,K}, are independent unit-rate Poisson processes1, and, for each k, the time
changed Poisson process Nk(

∫ t
0 Λk(X(s))ds) represents the number of times the kth reaction has occurred

by time t (for more on this representation see, for example, [2], Chapter 6 of [12], or [26]).

2.2 Scaled System

We may convert from abundances to concentrations. To indicate the dependence of quantities such as X
on the volume of the vessel in which the reactions are occurring, we let r denote the volume of the vessel
multiplied by Avogadro’s number and we append a superscript r to X (and other quantities that depend
on r). Define Xr

i (·) = 1
rX

r
i (·), for i = 1, . . . ,m. Note that Xr

i (t) is simply the concentration of the ith
species in moles per unit volume at time t ≥ 0. As the units of the stochastic rate law are in numbers of
molecules, but the units of Xr are moles per unit volume, to be able to write a sensible equation governing
the dynamics of Xr, the rates must also be scaled by r in an appropriate manner. The standard scaling (see
for example Chapter 6 of [43]) is the following: for zeroth order reactions, the stochastic rate constant κrk is
equal to rck for some ck > 0 that does not depend upon r; for first order reactions, κrk = ck; and for second
order reactions, κrk = ck/r. In general, for jth order reactions, κrk = ckr

−j+1.
Let Λrk denote the propensity function for the kth reaction that is associated with the system indexed

by r, when following stochastic mass action kinetics as in (6), with rate constant κrk satisfying the scaling
detailed in the previous paragraph. Define

λk(x) = ck

m∏
i=1

x
v−ik
i ,

for x ∈ Rm≥0, where we take 00 ≡ 1. This λk is the reaction rate function associated with deterministic mass
action kinetics, with reaction rate constant ck. It is an exercise to check that for any reaction, i.e., zeroth
order, first order, second order, etc.,

Λrk(X
r(t)) = rλk(X

r
(t)) + εrk(X

r
(t)),

where εrk(x) is a multivariate polynomial in the coordinates of x and 1/r that is uniformly bounded for all
r ≥ 1 as x varies in a compact set, and is non-zero only if the kth reaction consumes more than one molecule
of a particular species. For example, for the second order reaction S1 + S2 → S3 we have

Λrk(X
r(t)) =

ck
r

(
rX

r
1(t)
) (
rX

r
2(t)
)

= rckX
r
1(t)X

r
2(t) = rλk(X

r
(t)),

whereas for the second order reaction 2S1 → S3 we have

Λrk(X
r(t)) =

ck
r
rX

r
1(t)

(
rX

r
1(t)− 1

)
= rckX

r
1(t)2 − ckX

r
1(t) = rλk(X

r
(t)) + εrk(X

r
(t)),

with εrk(x) = −ckx1.
After performing the above scaling from numbers of molecules to concentrations, and defining

λrk(x) =
Λrk(rx)

r
= λk(x) + (1/r)εrk(x), (9)

equation (8) yields

X
r
(t) = X

r
(0) +

1

r

K∑
k=1

vkNk

(
r

∫ t

0
λrk(X

r
(s)) ds

)
. (10)

1Recall, Nk is a unit-rate Poisson process if Nk(0) = 0, Nk(·) has independent increments, and Nk(t + s) − Nk(s) has a
Poisson distribution with parameter t for all t, s ≥ 0.
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3 The constrained Langevin approximation

We start by presenting two examples that serve to motivate our constrained Langevin approximation for the
model (10). We stress that, as there are no limit theorems given here, the arguments are meant to show the
plausibility of the proposed approximation.

3.1 Motivating examples

Example 1. Consider the chemical reaction system with the two reactions

∅ α→ S1, S1
β→ ∅.

The constants α > 0 and β > 0 over the arrows here denote the (deterministic) reaction rate constants c1

and c2 for the two reactions. Then, with the scaling of propensities described in Section 2.2, the Markov
chain Xr(·), which models the stochastic dynamics of the number of molecules of S1 when the volume
measure is r, satisfies

Xr(t) = Xr(0) +N1(rαt)−N2

(∫ t

0
βXr(s)ds

)
, (11)

where N1 and N2 are independent, unit-rate Poisson processes.
Let G = [0,∞), G◦ = (0,∞), the interior of G, and Gb = {0}, the boundary of G. We now give an

equivalent in distribution representation of Xr, where we separately consider jumps of Xr from the interior
of G and from the boundary of G. Specifically, an equivalent in distribution representation for Xr is:

Xr(t) = Xr(0) +No
1

(
rα

∫ t

0
1{Xr(s)∈G◦}ds

)
+N b

1

(
rα

∫ t

0
1{Xr(s)∈Gb}ds

)
−No

2

(∫ t

0
βXr(s)1{Xr(s)∈G◦}ds

)
−N b

2

(∫ t

0
βXr(s)1{Xr(s)∈Gb}ds

)
,

(12)

where No
1 , N

b
1 , N

o
2 , N

b
2 are independent unit-rate Poisson processes. (The distributional equivalence of the

two solution processes in (11) and (12) can be understood informally via the superposition property of
Poisson processes. See Chapter 1 of [3] for a rigorous argument.)

Recall the definition from Section 2.2 of Xr
(·) = 1

rX
r(·), the normalized (concentration-valued) pro-

cess. For this example, the process satisfies

X
r
(t) = X

r
(0) +

1

r
No

1

(
rα

∫ t

0
1{Xr

(s)∈G◦}ds

)
+

1

r
N b

1

(
rα

∫ t

0
1{Xr

(s)∈Gb}ds

)
− 1

r
No

2

(
r

∫ t

0
βX

r
(s)1{Xr

(s)∈G◦}ds

)
− 1

r
N b

2

(
r

∫ t

0
βX

r
(s)1{Xr

(s)∈Gb}ds

)
.

(13)

We can center a unit-rate Poisson process N about its mean by defining N̂(t) = N(t) − t, for all t ≥ 0.
Centering No

1 and No
2 in this way, collecting terms in an obvious manner, and noting that the last term in

(13) is identically equal to zero (since x1{x=0} ≡ 0), we see that Xr satisfies

X
r
(t) = X

r
(0) + α

∫ t

0
1{Xr

(s)∈G◦}ds−
∫ t

0
βX

r
(s)1{Xr

(s)∈G◦}ds

+
1√
r

[
1√
r
N̂o

1

(
rα

∫ t

0
1{Xr

(s)∈G◦}ds

)
− 1√

r
N̂o

2

(
r

∫ t

0
βX

r
(s)1{Xr

(s)∈G◦}ds

)
+ Y̆ r(t)

]
,

(14)
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where Y̆ r(t) = 1√
r
N b

1

(
rα
∫ t

0 1{Xr
(s)∈Gb}ds

)
, t ≥ 0, defines a non-decreasing jump process, which can

only jump at times s for which Xr
(s−) is at the boundary of G.

Our goal is to propose a diffusion process defined on [0,∞) that approximatesXr for fixed r of moderate
size. By the functional central limit theorem for a centered, unit-rate Poisson process N̂ , we have that
1√
r
N̂(r·) is well approximated in distribution by Ŵ (·), a standard one-dimensional Brownian motion2.

This suggests that for an approximation, we replace 1√
r
N̂◦k (r·) by Ŵ ◦k (·), for k = 1, 2, in (14), where Ŵ ◦1

and Ŵ ◦2 are independent standard one-dimensional Brownian motions. Inserting these approximations in
equation (14) and replacing Xr

, Y̆ r with Zr, Y r, respectively, leads us to propose approximating Xr by a
jump-diffusion process Zr satisfying

Zr(t) = Zr(0) +

∫ t

0
(α− βZr(s))1{Zr(s)∈G◦}ds+

1√
r
Ŵ ◦1

(
α

∫ t

0
1{Zr(s)∈G◦}ds

)
− 1√

r
Ŵ ◦2

(∫ t

0
βZr(s)1{Zr(s)∈G◦}ds

)
+

1√
r
Y r(t), (15)

where Y r(t) = 1√
r
N b

1

(
rα
∫ t

0 1{Zr(s)∈Gb}ds
)

. By a martingale representation theorem (see e.g., Theorem

4.2 of [23], page 170), the difference of the two processes Ŵ ◦1

(
α
∫ t

0 1{Zr(s)∈G◦}ds
)

and

Ŵ ◦2

(∫ t
0 βZ

r(s)1{Zr(s)∈G◦}ds
)

(which are local martingales) can be represented as the single stochastic
integral process ∫ t

0

√
α+ βZr(s)1{Zr(s)∈G◦}dW (s), (16)

where W is a standard one-dimensional Brownian motion.
Since we seek a diffusion approximation that moves continuously and spends zero time (in the sense of

Lebesgue measure) at any particular point in [0,∞), it is reasonable to suppress the indicator functions in
(15) and to replace the jump process Y r by a continuous non-decreasing process that increases only when
our diffusion process is on the boundary. This leads to a proposed reflected diffusion approximation Z̃r for
X
r that satisfies

Z̃r(t) = Z̃r(0) +

∫ t

0
(α− βZ̃r(s))ds+

1√
r

∫ t

0

√
α+ βZ̃r(s) dW̃ (s) +

1√
r
Ỹ r(t), (17)

where W̃ is a standard one-dimensional Brownian motion, and where Ỹ r is a continuous, non-decreasing
process that only increases when Z̃r is zero. The process 1√

r
Ỹ r tracks the cumulative amount of pushing

at the boundary required to keep Z̃r non-negative and is usually referred to as the reflection or local time
term. Although the 1√

r
scale factor could be absorbed into Ỹ r, we keep it separate here to indicate that

this reflection term is expected to be of the same order as the noise term, i.e., of order 1√
r
, to counter the

excursions of the stochastic integral term involving W̃ that try to drive Z̃r negative. It is known3 that given
a pair (Z̃r(0), W̃ ), there exists a unique solution Z̃r to (17) that lives in [0,∞) and is adapted to Z̃r(0) and
W̃ . The process Z̃r is a diffusion on [0,∞) with state dependent drift coefficient x 7→ α − βx, dispersion
coefficient x 7→ 1√

r

√
α+ βx, and instantaneous reflection at the origin.

2Indeed, one can even do this in a strong way. One can construct N(·) and Ŵ (·) on the same probability space so that
N(t) = t+ Ŵ (t) + ξ(t) for all t ≥ 0, where supt≥0

ξ(t)
log(2∨t) is a random variable with a finite exponential moment (see Corollary

5.5 of [12, pg. 359] and [24]).
3This follows from the uniform Lipschitz property of the drift and dispersion coefficient, and the Lipschitz continuity of the

so-called Skorokhod map that defines the reflection at the origin (i.e., determines Ỹ r) in terms of the other parts of the equation. In
this case with normal reflection at the boundary, a rigorous justification follows from the work of Tanaka [37].
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Notice that ignoring terms in (17) of order 1√
r

leads to the usual deterministic approximation to the

scaled model (13). The term 1√
r

∫ t
0

√
α+ βZ̃r(s) dW̃ (s) captures stochastic fluctuations. The term 1√

r
Ỹ r

only comes into play when Z̃r is zero, and provides a minimal restoring force to keep Z̃r non-negative.

Example 2. Consider the chemical reaction system given in (1). For i ∈ {1, 2}, letXr
i (t) denote the number

of molecules of Si at time t. Let M r = Xr
1(0) +Xr

2(0), which is a conserved quantity. The process Xr
1 can

be represented as a solution to

Xr
1(t) = Xr

1(0)−N1

(∫ t

0
β1X

r
1(s)ds

)
+N2

(∫ t

0
β2(M r −Xr

1(s))ds

)
, (18)

where N1 and N2 are independent, unit-rate Poisson processes, and Xr
2(·) ≡M r −Xr

1(·).
In a similar manner to that used in Example 1, let Gr = [0,M r], G◦,r = (0,M r), the interior of Gr,

and Gb,r = {0,M r}, the boundary of Gr. A distributionally equivalent way to represent Xr
1 is as a solution

of

Xr
1(t) = Xr

1(0)−No
1

(∫ t

0
β1X

r
1(s)1{Xr

1 (s)∈G◦,r}ds

)
−N b

1

(∫ t

0
β1X

r
1(s)1{Xr

1 (s)∈Gb,r}ds

)
+No

2

(∫ t

0
β2(M r −Xr

1(s))1{Xr
1 (s)∈G◦,r}ds

)
+N b

2

(∫ t

0
β2(M r −Xr

1(s))1{Xr
1 (s)∈Gb,r}ds

)
,

(19)

where No
1 , N

b
1 , N

o
2 , N

b
2 are independent unit-rate Poisson processes.

Now for the normalized process Xr
1(·) = 1

rX
r
1(·), with M r

= 1
rM

r, the conserved quantity for the
normalized process, we have that Xr

1 satisfies

X
r
1(t) = X

r
1(0)− 1

r
No

1

(
r

∫ t

0
β1X

r
1(s)1{Xr

1(s)∈Ĝ◦,r}ds

)
− 1

r
N b

1

(
r

∫ t

0
β1X

r
1(s)1{Xr

1(s)∈Ĝb,r}ds

)
+

1

r
No

2

(
r

∫ t

0
β2(M

r −Xr
1(s))1{Xr

1(s)∈Ĝ◦,r}ds

)
+

1

r
N b

2

(
r

∫ t

0
β2(M

r −Xr
1(s))1{Xr

1(s)∈Ĝb,r}ds

)
,

(20)

where the normalized interior of the state space is Ĝ◦,r = (0,M
r
) and the normalized boundary is Ĝb,r =

{0,M r}. Centering No
1 and No

2 and collecting terms, we see that Xr
1 satisfies

X
r
1(t) = X

r
1(0)−

∫ t

0
β1X

r
1(s)1{Xr

1(s)∈Ĝ◦,r}ds+

∫ t

0
β2(M

r −Xr
1(s))1{Xr

1(s)∈Ĝ◦,r}ds

+
1√
r

[
− 1√

r
N̂o

1

(
r

∫ t

0
β1X

r
1(s)1{Xr

1(s)∈Ĝ◦,r}ds

)
+

1√
r
N̂o

2

(
r

∫ t

0
β2(M

r −Xr
1(s))1{Xr

1(s)∈Ĝ◦,r}ds

)
− Y̆ r

1 (t) + Y̆ r
2 (t)

]
,

(21)

where N̂o
1 and N̂o

2 are centered versions of the Poisson processes No
1 and No

2 , respectively, and for t ≥ 0

Y̆ r
1 (t) =

1√
r
N b

1

(
r

∫ t

0
β1M

r
1{Xr

1(s)=M
r}ds

)
, Y̆ r

2 (t) =
1√
r
N b

2

(
r

∫ t

0
β2M

r
1{Xr

1(s)=0}ds

)
,
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are non-decreasing jump processes that only jump at times s for whichXr
(s−) equalsM r or 0, respectively.

These processes push Xr
1 back into Ĝ◦,r. Note that some boundary jump terms in the expression for Xr

1(t)
have been eliminated here due to the facts that x1{x=0} = 0 and (M

r − x)1{x=M
r} = 0.

Proceeding in a similar manner to that for Example 1, we approximate 1√
r
N̂o
k (r·) by Ŵ o

k (·), for k = 1, 2,

where Ŵ o
1 and Ŵ o

2 are independent standard one-dimensional Brownian motions. This leads us to propose
approximating Xr

1 by a jump-diffusion process Zr1 that lives in [0,M
r
] and satisfies

Zr1(t) = Zr1(0) +

∫ t

0

(
−β1Z

r
1(s) + β2(M

r − Zr1(s))
)

1{Zr1 (s)∈Ĝ◦,r}ds

− 1√
r
W ◦1

(∫ t

0
β1Z

r
1(s)1{Zr1 (s)∈Ĝ◦,r}

)
ds+

1√
r
W ◦2

(∫ t

0
β2(M

r − Zr1(s)) 1{Zr1 (s)∈Ĝ◦,r}ds

)
− 1√

r
Y r

1 (t) +
1√
r
Y r

2 (t), (22)

Y r
1 (t) =

1√
r
N b

1

(
r

∫ t

0
β1M

r
1{Zr1 (s)=M

r}ds

)
, Y r

2 (t) =
1√
r
N b

2

(
r

∫ t

0
β2M

r
1{Zr1 (s)=0}ds

)
.

Then using a martingale representation theorem, the difference of the two processes
Ŵ ◦1

(∫ t
0 β1Z

r
1(s)1{Zr1 (s)∈Ĝ◦,r}ds

)
and Ŵ o

2

(∫ t
0 β2(M

r − Zr1(s))1{Zr1 (s)∈Ĝ◦,r}ds
)

(which are local martin-
gales) can be represented as the single stochastic integral process∫ t

0

√
β1Zr1(s) + β2(M

r − Zr1(s)) 1{Zr1 (s)∈Ĝ◦,r}dW (s), (23)

where W is a standard one-dimensional Brownian motion.
As in Example 1, suppressing the indicator functions in (22) and replacing the jump processes Y r

1 , Y
r

2

by continuous non-decreasing processes Ỹ r
1 , Ỹ

r
2 that increase only when Z̃r1 is at M r or 0, respectively,

leads to a proposed reflected diffusion approximation Z̃r1 for Xr
1 that satisfies

Z̃r1(t) = Z̃r1(0) +

∫ t

0
(−β1Z̃

r
1(s) + β2(M

r − Z̃r1(s)))ds

+
1√
r

∫ t

0

√
β1Z̃r1(s) + β2(M

r − Z̃r1(s)) dW̃ (s)

− 1√
r
Ỹ r

1 (t) +
1√
r
Ỹ r

2 (t),

(24)

where W̃ is a standard, one-dimensional Brownian motion, and Ỹ r
1 ,Ỹ r

2 are continuous, non-decreasing pro-
cesses that only increase when Z̃r1 is at M r or 0, respectively. It is known4 that, given the pair (Z̃r1(0), W̃ ),
there exists a solution to (24) that lives in [0,M

r
] and is adapted to Z̃r1(0) and W̃ .

Notice again that ignoring terms in (24) of order 1√
r

leads to the usual deterministic approximation to the

scaled model (19). The term 1√
r

∫ t
0

√
β1Z̃r1(s) + β2(M

r − Z̃r1(s)) dW̃ (s) captures stochastic fluctuations.

The terms 1√
r
Ỹ r

1 and 1√
r
Ỹ r

2 only come into play when Z̃r1 is on the boundary of the domain of interest and

they provide a minimal restoring force to keep Z̃r1 in that domain.

4Similarly to what was mentioned in respect to the solution of equation (17), this also follows from the work of Tanaka [37]
by the uniform Lipschitz continuity of the drift, dispersion coefficient, and the Skorokhod map that defines the reflection, since the
direction of reflection in this case is normal to the boundary.
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In preparation for the general case, it is convenient to rewrite (24) as

Z̃r1(t) = Z̃r1(0) +

∫ t

0
µr(Z̃r1(s)) ds

+
1√
r

∫ t

0
σr(Z̃r1(s)) dW̃ (s) +

1√
r

∫ t

0
nr(Z̃r1(s)) dL̃r(s),

where µr(x) = −β1x+β2(M
r−x), σr(x) =

√
β1x+ β2(M

r − x), L̃r(t) = Ỹ r
1 (t)+ Ỹ r

2 (t) is continuous

and non-decreasing and increases only when Z̃r1 is on the boundary of Ĝ◦,r, and nr(x) = 1 if x = 0

and nr(x) = −1 if x = M
r is the inward unit normal to the boundary of Ĝ◦,r. The vector field nr

specifies the “direction” of reflection at the boundary. In this one-dimensional case, there is a unique (up to
normalization) inward pointing direction (which is normal to the boundary). In the general case treated in
the next subsection, more complicated boundary behavior occurs and the reflection direction is frequently
not normal to the boundary.

3.2 The general case

We now consider the general case of a process Xr satisfying (10). Let S = span{vk, k = 1, . . . ,K} and
let Ĝr = (X

r
(0) + S) ∩ Rm≥0. Considering Ĝr in Xr

(0) + S , let Ĝ◦,r and Ĝb,r denote the relative interior
and boundary of Ĝr, respectively. Proceeding in a similar manner to that for the two examples given in the
previous subsection, an equivalent in distribution representation for Xr is given by

X
r
(t) = X

r
(0) +

1

r

K∑
k=1

vkN
o
k

(
r

∫ t

0
λrk(X

r
(s))1{Xr

(s)∈Ĝ◦,r}ds

)

+
1

r

K∑
k=1

vkN
b
k

(
r

∫ t

0
λrk(X

r
(s))1{Xr

(s)∈Ĝb,r}ds

)
,

(25)

where No
k , N

b
k , k = 1, . . . ,K are independent unit-rate Poisson processes. Upon centering the Poisson

processes No
k , k = 1, . . . ,K, to obtain N̂o

k , k = 1, . . . ,K, we may rewrite the above as

X
r
(t) = X

r
(0) +

K∑
k=1

vk

∫ t

0
λrk(X

r
(s)) 1{Xr

(s)∈Ĝ◦,r} ds

+
1√
r

K∑
k=1

vk
1√
r
N̂o
k

(
r

∫ t

0
λrk(X

r
(s))1{Xr

(s)∈Ĝ◦,r}ds

)

+
1√
r

K∑
k=1

vkY̆
r
k (t),

(26)

where Y̆ r
k (t) = 1√

r
N b
k

(
r
∫ t

0 λ
r
k(X

r
(s))1{Xr

(s)∈Ĝb,r}ds
)

.

Noting the relation (9), it is natural to replace λrk with λk to obtain approximate dynamics for Xr. Also,
as in the examples in the previous section, we can approximate 1√

r
N̂o
k (r·) by Ŵ o

k (·), for k = 1, . . . ,K,

where Ŵ o
k , k = 1, . . . ,K, are independent standard one-dimensional Brownian motions. Let

µ(x) =
K∑
k=1

vkλk(x), (27)
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for each x ∈ Rm≥0. We suggest approximating Xr by a jump-diffusion Zr satisfying Zr(0) = X
r
(0) and

Zr(t) = Zr(0) +

∫ t

0
µ(Zr(s)) 1{Zr(s)∈Ĝ◦,r} ds

+
1√
r

K∑
k=1

vkŴ
◦
k

(∫ t

0
λk(Z

r(s))1{Zr(s)∈Ĝ◦,r}ds

)

+
1√
r

K∑
k=1

vkY
r
k (t),

(28)

where Y r
k (t) = 1√

r
N b
k

(
r
∫ t

0 λk(Z
r(s))1{Zr(s)∈Ĝb,r, Zr(s)≥v−k /r}

ds
)

. Note that in the definition of Y r
k , the

indicator function suppresses jumps from the boundary that would require consumption of a given species
when there is an insufficient amount of that species to make the transition possible. This is a small correction
needed to account for the fact that the interior diffusion might occasionally bring Zr to a point x on the
boundary of Ĝr that cannot be reached by the discrete-valued process Xr (which lives on a lattice), and
where λk(x) > 0, and from which movement by Zr along the vector −v−k would take Zr outside of the
positive orthant. Such occurrences are only possible when more than one component of Zr is small, that is,
whenever the process Zr is near the intersection of two or more faces of the positive orthant. It is known
that such occurrences are rare for some similar reflected diffusion processes5. Consequently, we anticipate
this correction will likely be a relatively small one.

Using a martingale representation theorem (see e.g., Theorem 4.2 of [23], page 170), on a possi-
bly enlarged probability space that accommodates a standard m-dimensional Brownian motion W , we
can express

∑K
k=1 vkŴ

o
k (
∫ t

0 λk(Z
r(s)) 1{Zr(s)∈Ĝ◦,r} ds) as the vector-valued stochastic integral process∫ t

0 σ(Zr(s))1{Zr(s)∈Ĝ◦,r} dW (s) where W is a standard m-dimensional Brownian motion, σ(x) =
√

Υ(x)

is the unique6 positive semi-definite matrix-valued square root of the m×m matrix

Υ(x) =
K∑
k=1

vkv
′
kλk(x), (29)

for x ∈ Rm≥0, and v′k is the transpose of vk.

Remark. The reader may note that the coefficients µ and σ in the above do not depend on r. Example 1 in
the previous subsection illustrates this, whereas our Example 2 has coefficients that appear to depend on r.
However, the latter dependence occurs because, in that example, we have eliminated one of the variables,
effectively projecting down to the concentration of S1 alone. Indeed, if we had written the approximation
(Z̃r1 , Z̃

r
2 ) for the concentrations of both species (X

r
1, X

r
2) satisfying Z̃r1 + Z̃r2 = M

r, then in the notation

of this subsection, µ(x1, x2) = (−β1x1 + β2x2)v where v = (1,−1)′, and σ(x1, x2) =
√

β1x1+β2x2
2 vv′,

which leads to an equivalent representation to that given for Z̃r1 in (24).

To obtain an equation for our proposed diffusion approximation, we remove the indicator functions in
the first two terms in (28), since the amount of time our diffusion approximation spends on the boundary is

5For some similar non-degenerate reflected diffusion processes (see Theorem 1 of [31] and Theorem 7.7 of [6]), it is known that
the total amount of “pushing” done by the local-time term at the intersection of two or more boundary faces of the positive orthant
is almost surely zero. Such local-time terms are approximate measures of the amount of time spent near boundary regions.

6The existence and uniqueness of a positive semi-definite square root for any positive semi-definite matrix is well known.
Furthermore, the mapping from the matrix Υ(x) to its square root σ(x) is Hölder continuous of order one-half. These results can
be found in the book by Bhatia [7], for example.
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zero (in the sense of Lebesgue measure). Furthermore, we want to replace the last term in (28), the boundary
term, by a continuous process whose paths are locally of bounded variation and that only changes when the
diffusion process is on the boundary Ĝb,r. In the examples in the previous section, the diffusion process was
one-dimensional and there was a unique (up to normalization) direction at each boundary point in which the
boundary process would push to keep the diffusion in the state space. In higher dimensions, there is much
more freedom in the choice of such a direction. In the following we motivate our choice for this “reflection
direction” in the general case.

In our reflected diffusion approximation, the role of the boundary term is to counteract fluctuations of
the term driven by white noise that tends to take the diffusion process outside of the orthant. Since the
fluctuations are of order 1√

r
, we expect this boundary term to be of order 1√

r
. This leads us to approximate

N b
k(·) in Y r

k by its deterministic rate process, and to ignore higher order terms, resulting in the following
(formal) approximation:

K∑
k=1

vkY
r
k (t) ≈

K∑
k=1

vk√
r

∫ t

0
rλk(Z

r(s))1{Zr(s)∈Ĝb,r, Zr(s)≥v−k /r}
ds

≈
∫ t

0
γ(Zr(s))dLr(s)

(30)

where

γ(x) =
µ(x)

|µ(x)|
1{|µ(x)|6=0} for x ∈ Ĝb,r, (31)

for µ(x) given by (27), and where

Lr(t) =
√
r

∫ t

0
|µ(Zr(s))|1{Zr(s)∈Ĝb,r}ds. (32)

Note here that we have approximated the indicator function in (30) with the simpler indicator function in
(32) (ignoring the rare effect mentioned after (28)).

The process Lr is a weighted and scaled version of the amount of time that Zr spends on the boundary.
In our diffusion approximation, we approximate this by a continuous non-decreasing process L̃r that can
increase only when our diffusion process is on the boundary Ĝb,r. Indeed, in [27], under certain conditions,
a more extensive rationale is given for approximating Lr by L̃r. This involves showing that if the jump size
δ = 1√

r
in Y r

k is sent to zero and at the same time the order of magnitude of the speed of jumping, δ−2 = r,
is sent to infinity, while keeping the other r dependencies fixed, then Lr converges (weakly) to the process
L̃r.

This leads us to propose the following equation for our diffusion approximation Z̃r for Xr:

Z̃r(t) = Z̃r(0) +

∫ t

0
µ(Z̃r(s)) ds+

1√
r

∫ t

0
σ(Z̃r(s)) dW (s) +

1√
r

∫ t

0
γ(Z̃r(s)) dL̃r(s), (33)

where Z̃r is a continuous process living in Ĝr and L̃r is a continuous, one-dimensional, increasing process
that starts from zero and that can only increase when Z̃r is on the boundary Ĝb,r of Ĝr. The vector field
γ defines the “reflection” vector field on the boundary for the process Z̃r. This is the direction in which
Z̃r is “pushed” to keep it in the set Ĝr. The process L̃r is the cumulative amount of “pushing” done at the
boundary. For more detail on reflected diffusion processes see Appendix A.

In [27], Leite and Williams prove well posedness of equation (33), under the assumption that the reaction
network satisfies a mass-conserving (or mass-dissipating) assumption, augmented by inflows and outflows
on all species. The latter means that the reactions

∅ −→ Si, Si −→ ∅, (34)
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are part of the set of reactions for each i = 1, . . . ,m7. Systems without some of these inflow/outflow
reactions can be approximated by including such reactions with very small rate constants ck, so that the
reactions rarely occur. If one does not make this assumption, issues regarding existence and uniqueness of
the diffusion process can arise. These are related to the fact that σ might only be Hölder continuous near
the boundary in some places, the vector field γ on the boundary might degenerate to either become zero or
not point strictly into the interior of the state space Ĝr at some places on Ĝb,r. The mass-conserving/mass-
dissipating assumption, in combination with outflows on all species, is used to ensure non-explosion of the
diffusion process. These assumptions can sometimes be relaxed, especially when Ĝr is one-dimensional (or
effectively so, as in Example 2), and in some cases in higher dimensions, if one can show that problematical
boundary regions are not reached by the diffusion and there is no explosion in finite time. However, a
systematic treatment of these matters requires new developments for the theory of reflected diffusions in
polyhedral domains with degenerate dispersion coefficients and reflection vector fields. Nevertheless, we
conjecture that a process Z̃r satisfying (33) will be a good approximation to Xr, whenever the former is
well defined. In the next section, we give examples that illustrate how well our diffusion approximation
works, despite the informal nature of our derivation. Further examples can be found in [27]8.

A problem for further investigation is to develop estimates of the error between Xr and Z̃r, assuming
the latter is well defined. While this can be done when Z̃r is one-dimensional, a systematic treatment of this
is a promising area for future investigation.

4 Examples

We begin this section by showing how the stationary distributions for the constrained Langevin approxi-
mation can be computed for the two examples given in Section 3.1. The results are then compared with
the stationary distributions for the Markov chain model and for the linear noise approximation. Later, in
Section 4.2, we further illustrate the constrained Langevin approximation by comparing its simulation for
some two-dimensional examples with those for the Markov chain model, the linear noise approximation,
and the complex Langevin approximation introduced in [33].

4.1 Stationary distributions

The approximations proposed in Section 3 are for stochastic processes over compact time intervals. In this
subsection we look for insights into the long time behavior by considering stationary distributions for some
examples where analytical expressions are available.

Example 1 (revisited). We begin by noting that for a fixed r > 0, the stationary distribution of the (scaled)
jump model (13) satisfies [1]:

π(x) = e−rα/β
(rα/β)rx

(rx)!
, x ∈

{
0,

1

r
,
2

r
, . . .

}
. (35)

Turning to our constrained Langevin approximation, by (17) and Itô’s formula [9], for f ∈ C2
c ([0,∞))

7This assumption ensures that σ is strictly positive definite and locally Lipschitz continuous on Ĝr = Rm≥0, that γ never vanishes
on Ĝb,r and it points strictly in to the interior of Ĝr . As shown in [27], the conditions given there are sufficient to prove existence,
uniqueness and non-explosion of the diffusion process Z̃r .

8It is also shown in [27], under mild conditions, that a sequence of jump-diffusion processes, in which the jumps at the boundary
are allowed to shrink to zero at the same time that the rate of jumping goes to infinity, converges weakly to a solution of (33).
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(two times continuously differentiable functions with compact support),

f(Z̃r(t))− f(Z̃r(0)) =

∫ t

0
(α− βZ̃r(s))f ′(Z̃r(s))ds+

1√
r

∫ t

0

√
α+ βZ̃r(s)f ′(Z̃r(s)) dW̃ (s)

+
1

2r

∫ t

0
(α+ βZ̃r(s))f ′′(Z̃r(s))ds+

1√
r

∫ t

0
f ′(Z̃r(s))dỸ r(s).

Suppose now that f ′(0) = 0. Then the last term is zero because Ỹ r can only increase when Z̃r is at
zero. The integral with respect to dW̃ defines a martingale and so, taking expectations when Z̃r(0) has the
stationary distribution π with density ρ, we obtain

0 =

∫ t

0
Eπ

[
Lf(Z̃r(s))

]
ds for all t ≥ 0,

where

(Lf)(x) = (α− βx)f ′(x) +
1

2r
(α+ βx)f ′′(x)

= µ(x)f ′(x) +
1

2r
Υ(x)f ′′(x),

for µ(x) = α− βx and Υ(x) = α+ βx. Hence ρ must satisfy∫ ∞
0

(Lf)(x)ρ(x)dx = 0,

∫ ∞
0

ρ(x)dx = 1. (36)

Integration by parts yields∫ ∞
0

(Lf)(x)ρ(x)dx =

∫ ∞
0

f(x)

(
1

2r

d2

dx2
[Υ(x)ρ(x)]− d

dx
[µ(x)ρ(x)]

)
dx

− f(0)

(
µ(0)ρ(0)− 1

2r

d

dx
(Υ(x)ρ(x))

∣∣
x=0

)
,

where we have used the facts that f ′(0) = 0 and f has compact support in the above calculation. As the
above must hold for all f ∈ C2

c ([0,∞)) with f ′(0) = 0, we see that ρ must satisfy

(L∗ρ)(x) = − d

dx
(µ(x)ρ(x)) +

1

2r

d2

dx2
(Υ(x)ρ(x)) = 0, for all x ∈ (0,∞), (37)

where L∗ denotes the adjoint of L, with the boundary condition(
µρ− 1

2r

d

dx
(Υρ)

)∣∣∣∣
x=0

= 0. (38)

Integrating (37) shows that

− µ(x)ρ(x) +
1

2r

d

dx
(Υ(x)ρ(x)) = 0, for all x ≥ 0, (39)

where the value of zero on the right hand side follows from the boundary condition (38). Solving equation
(39), noting that Υ(x) > 0 for all x ≥ 0, yields

ρ(x) =
c

Υ(x)
exp

{∫ x

0

2rµ(s)

Υ(s)
ds

}
, for x ≥ 0, (40)
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where c is a suitable normalizing constant. After substituting for our specific µ and Υ, we obtain

ρ(x) = ce−2xr (α+ βx)(4rα/β)−1 , for x ≥ 0, (41)

where

c =

(∫ ∞
0

e−2xr (α+ βx)(4rα/β)−1 dx

)−1

, (42)

is the normalizing constant.
The linear noise approximation [40] for the Markov chain Xr

1 has as its stationary distribution, ρLN , the
steady-state distribution for the Ornstein-Uhlenbeck type process Ẑ1 that describes the linearized fluctua-
tions ofXr

1 about x̄ = α
β , the (stable) steady-state for the deterministic reaction rate equation approximation

to Xr
1 satisfying µ(x̄) = 0. This process Ẑr1 satisfies

Ẑr1(t) = x̄+

∫ t

0
µ′(x̄)(Ẑr1(s)− x̄) ds+

1√
r

∫ t

0
σ(x̄) dŴ (s), (43)

where µ′(x̄) = −β, σ(x̄) =
√

Υ(x̄) =
√
α+ βx̄ =

√
2α and Ŵ is a standard one-dimensional Brownian

motion. The stationary distribution for Ẑr1 is the Gaussian distribution with mean α
β and variance α

rβ [40],
so that

ρLN (x) =

√
rβ

2πα
exp

(
−
rβ(x− α

β )2

2α

)
, x ∈ (−∞,∞). (44)

We now wish to compare the probability mass function in (35) with the densities in (41) and (44). Notice
that the probability that a continuous model with strictly positive density function f takes a value in the
interval [x−1/(2r), x+1/(2r)) can be well approximated by f(x) ·r−1. So in order to compare the density
for the stationary distribution of the linear noise approximation with the stationary distribution of the Markov
chain, we define πLN (x) = ρLN (x)·r−1 for x in the lattice (1/r)Z, with ρLN as in (44). For the constrained
Langevin approximation, we define the discretization πCLA(x) = ρ(x) · r−1 for x ∈ {1/r, 2/r, . . .}, with
ρ as in (41). Since the density of the constrained Langevin approximation has no mass for x < 0, we let
πCLA(0) = ρ(0) · r−1/2, which is an approximation of the probability that the model takes a value in the
interval [0, 1/(2r)). The result is shown in Figure 1 for the system with parameters α = β = 1 and r = 100.
Note that πLN is defined for all x, whereas π and πCLA are only defined for x ≥ 0.

Example 2 (revisited). For fixed r > 0, the stationary distribution of the (scaled) Markov chain jump model
(20) satisfies

π(x) = π(0)

(
β2

β1

)rx (M r + 1− rx)(M r + 2− rx) · · ·M r

(rx)!
, for x ∈

{
1

r
,
2

r
, . . . ,M

r
}
, (45)

where π(0) is determined so that
∑M

r

x=0 π(x) = 1.
Turning to our constrained Langevin approximation, the density function ρ of the stationary distribution

for Z̃r1 , satisfying (24), is supported on [0,M
r
] and, similarly to how (36) was derived, must satisfy the

following two conditions [22]:∫ M
r

0
(Lf)(x)ρ(x)dx = 0,

∫ M
r

0
ρ(x)dx = 1,

for all f ∈ C2
(
[0,M

r
]
)

satisfying f ′(0) = f ′
(
M

r)
= 0, where

(Lf)(x) =
(
β2M

r − (β1 + β2)x
)
f ′(x) +

1

2r

(
β2M

r
+ (β1 − β2)x

)
f ′′(x)

= µ(x)f ′(x) +
1

2r
Υ(x)f ′′(x),
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Figure 1: (Left) Comparison of log(π(x)), log(πCLA(x)), and log(πLN (x)), where log(·) denotes the nat-
ural logarithm, for Example 1 with α = β = 1 and r = 100. (Right) Absolute difference between the
stationary distribution for the Markov chain and those given by the constrained Langevin and linear noise
approximations (i.e., |πCLA(x)−π(x)| and |πLN (x)−π(x)|). Values of x are taken from the lattice (1/r)Z
and linear interpolation is used to connect the values.

for µ(x) = β2M
r − (β1 + β2)x and Υ(x) = β2M

r
+ (β1 − β2)x. Here, to simplify notation, we have

suppressed the explicit dependence of µ and Υ on r (which occurs through M r). Integration by parts gives∫ M
r

0
(Lf)(x)ρ(x)dx =

∫ M
r

0
f(x)

(
1

2r

d2

dx2
[Υ(x)ρ(x)]− d

dx
[µ(x)ρ(x)]

)
dx

+

[
f

(
µρ− 1

2r

d

dx
(Υρ)

)]Mr

x=0

.

Therefore, as the above must hold for all such f , we must have

(L∗ρ) (x) = − d

dx
(µ(x)ρ(x)) +

1

2r

d2

dx2
(Υ(x)ρ(x)) = 0, for all x ∈ (0,M

r
), (46)

where L∗ is the adjoint of L, and(
µρ− 1

2r

d

dx
(Υρ)

)∣∣∣∣
x=0

=

(
µρ− 1

2r

d

dx
(Υρ)

)∣∣∣∣
x=M

r
= 0. (47)

Integrating (46) gives

− µ(x)ρ(x) +
1

2r

d

dx
(Υ(x)ρ(x)) = 0, for all x ∈ [0,M

r
], (48)

where the value of zero on the right hand side follows from the boundary conditions (47). Solving equation
(48) yields a solution of the form (40), which after substituting for our specific µ and Υ becomes

ρ(x) =


c exp

{
−2(β1+β2)

β1−β2 rx
}(
β2M

r
+ (β1 − β2)x

)−1+
4M

r
rβ1β2

(β1−β2)2 , if β1 6= β2,

c exp

{
− (x− 1

2
M
r
)2

M
r
/2r

}
, if β1 = β2,

(49)
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Figure 2: (Left) Comparison of log(π(x)), log(πCLA(x)), and log(πLN (x)), where log(·) denotes the natu-
ral logarithm, for Example 2 with β1 = 5 and β2 = 1, M r = 400 and r = 100. (Right) Absolute difference
between the stationary distribution for the Markov chain and those given by the constrained Langevin and
linear noise approximations (i.e., |πCLA(x)− π(x)| and |πLN (x)− π(x)|). Values of x are taken from the
lattice (1/r)Z and linear interpolation is used to connect the values.

for 0 ≤ x ≤M r, where c is the normalizing constant chosen so that
∫Mr

0 ρ(x)dx = 1. Note that in the case
of β1 = β2, the stationary distribution is a Gaussian distribution restricted to [0,M

r
].

The linear noise approximation [40] for the Markov chain X
r
1 in this example has as its stationary

distribution, ρLN , the steady-state distribution for the Ornstein-Uhlenbeck type process Ẑr1 that describes
the linearized fluctuations of Xr

1 about x̄ = β2M
r

β1+β2
, the (stable) steady-state for the deterministic reaction

rate equation approximation to Xr
1 satisfying µ(x̄) = 0. This process Ẑr1 satisfies

Ẑr1(t) = x̄+

∫ t

0
µ′(x̄)(Ẑr1(s)− x̄) ds+

1√
r

∫ t

0
σ(x̄) dŴ (s) (50)

where µ′(x̄) = −(β1 + β2), σ(x̄) =
√

Υ(x̄) =
√
β2M

r
+ (β1 − β2)x̄ =

√
2β1β2M

r

β1+β2
and Ŵ is a standard

one-dimensional Brownian motion. The stationary distribution for Ẑr1 is the Gaussian distribution with mean
x̄ = β2M

r

β1+β2
and variance Υ(x̄)

2r|µ′(x̄)| = β1β2M
r

r(β1+β2)2
[40], so that

ρLN (x) =

√
r

2πβ1β2M
r (β1 + β2) exp

−r(β1 + β2)2
(
x− β2M

r

β1+β2

)2

2β1β2M
r

, x ∈ (−∞,∞). (51)

In a similar manner to that for the previous example, we want to compare the probability mass function in
(45) with the densities in (49) and (51). Again, in order to compare the density for the stationary distribution
of the linear noise approximation with the stationary distribution of the Markov chain, we define πLN (x) =
ρLN (x) · r−1 for x in the lattice (1/r)Z, with ρLN as in (51). For the constrained Langevin approximation,
we define the discretization πCLA(x) = ρ(x) ·r−1 for x ∈ {1/r, 2/r, . . . ,M r−1/r}, with ρ as in (49) and,
since the density of the constrained Langevin approximation has no mass for x < 0 or for x > M

r, we let
πCLA(0) = ρ(0) · r−1/2 and πCLA(M

r
) = ρ(M

r
) · r−1/2, which is an approximation of the probability
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that the model takes a value in the interval [0, 1/(2r)) and [M
r − 1/(2r),M

r
], respectively. The result is

shown in Figure 2 for the system with parameters β1 = 5, β2 = 1, M r = 400 and r = 100. Note that πLN
is defined for all x, whereas π and πCLA are only defined for 0 ≤ x ≤M r.

For the cases illustrated in Figures 1 and 2, we see that, in addition to having the correct support, the
stationary distribution for the constrained Langevin approximation captures the behavior of the Markov
chain model more accurately than the linear noise approximation.

4.2 Simulation examples

Example 3. We now consider a chemical reaction system involving two molecular species S1 and S2 with
the following set of reactions:

2S1 + S2
ν→ 3S1, S1

β1→ ∅, S2
β2→ ∅, ∅ α1→ S1, ∅ α2→ S2. (52)

This reaction set is a simple mass-action kinetic system whose reaction rate equation (deterministic model)
exhibits a limit cycle [32]. For this example, the constrained Langevin approximation, given by equation
(33), has drift and diffusion matrix given by:

µ(x) =

(
νx2

1x2 − β1x1 + α1

−νx2
1x2 − β2x2 + α2

)
, Υ(x) =

(
νx2

1x2 + β1x1 + α1 −νx2
1x2

−νx2
1x2 νx2

1x2 + β2x2 + α2

)
,

and the reflection vector field is given by

γ(x) =


(

α1

α2 − β2x2

)
/
√
α2

1 + (α2 − β2x2)2, for x1 = 0(
α1 − β1x1

α2

)
/
√

(α1 − β1x1)2 + α2
2, for x2 = 0.

(53)

We compare the constrained Langevin approximation (CLA) with the Markov chain (MC) model, the linear
noise approximation (LNA), and a Langevin equation with normal reflection at the boundaries (LEN). That
is, LEN is given as in equation (33) with the exception that the direction of reflection is normal to the
boundary. The MC model was simulated using Gillespie’s Algorithm (or SSA) [16]. For the LNA, we
used a fourth order Runge-Kutta method for the deterministic part and the Euler-Maruyama method for the
stochastic diffusion. For the CLA and LEN, we used Bossy et al.’s algorithm [8], which is a numerical
method for simulating obliquely reflected stochastic differential equations based on the Euler-Maruyama
method. The simulation codes were written in the R programming language [30].

We consider two sets of parameters for this reaction system. First, we set r = 100, ν = 10, β1 = 0.2,
β2 = 10−9 and α1 = α2 = 0.1. For this choice, the reaction rate equation does not exhibit a limit cycle,
but it spends most of its time near the boundary x2 = 0. The time step for the numerical methods used
for the diffusion approximations and the deterministic reaction rate equation were set to h = 0.01 and the
simulations were performed up to time T = 104. The simulations were initialized at the stationary point
for the deterministic model. Figure 3 shows the scatter plot of the points generated by the simulations.
For the CLA and the LEN, we also display the reflection directions at the boundary and the drift vector
field inside the state-space, which is normalized to have unit length to improve the display. Notice that the
LNA permits negative concentrations. In addition, LEN produces a shift to the right due to the effect of the
normal reflection directions. Such a shift is not seen in the CLA simulation, since the reflection on x2 = 0
is oblique, pointing towards the left of the plot.

In order to have a more precise measure of error, we estimate a discrete density for each of the simula-
tions. This density estimation is calculated by dividing the state space into a regular grid of square bins and
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(a) Markov Chain (MC) (b) Constrained Langevin Approximation (CLA)

(c) Linear Noise Approximation (LNA) (d) Langevin with Normal Reflection (LEN)

Figure 3: Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively, generated from
simulations of the MC, CLA, LNA and LEN for the system given by (52) with parameters r = 100, ν = 10,
β1 = 0.2, β2 = 10−9, and α1 = α2 = 0.1. For the Markov chain, the plotted points were magnified in
order to improve the display, since the values are within the lattice (1/r)Z2. For (b) CLA and (d) LEN we
also show the directions of reflection at the boundary x2 = 0 and the normalized drift vector field inside the
state space. Notice that the distribution of points for (d) LEN is shifted to the right from the other plots, due
to the normal reflection, and that (c) LNA permits negative concentrations for S2.
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counting the number of simulation points present in each of these bins. These square bins have a side length
of 1/r and are centered around each state of the Markov chain model. The total number of points inside
each square bin is normalized by the total number of points in the simulation and the area of the square. In
order to measure statistical variation among different simulation runs, the experiment was repeated 10 times,
using the same data from the previous paragraph. Table 1 shows the integral (with respect to Lebesgue mea-
sure) of the absolute difference between the discrete density calculated for the Markov chain simulation and
those generated by the simulation of each approximation. Notice that the maximum possible value for these
integrals is 2.

Table 1: Integral of the absolute difference between the discrete densities calculated for the approximation
processes and that for the Markov chain simulation (for parameters as in Figure 3). The values displayed
are averages of 10 independent runs. The 95% confidence intervals for these averages are also shown.

Integral of Absolute Difference 95% C. I.
Linear Noise Approximation (LNA) 0.2762 (0.2716, 0.2808)
Constrained Langevin Approximation (CLA) 0.2432 (0.2373, 0.2490)
Langevin with Normal Reflection (LEN) 1.1710 (1.1529, 1.1892)

For the second set of parameters, we let r = 100, ν = 1, β1 = 1, β2 = 10−9, α1 = 0.1 and α2 = 0.5.
This time, the reaction rate equation for this system exhibits a limit cycle which lives near the boundaries
x1 = 0 and x2 = 0. For this example, we used a time step of h = 0.1 for the numerical methods, simulations
were performed up to time T = 105, and the initial condition was set to x0 = (1, 1). The scatter plots for
the simulations of MC and CLA are shown in Figure 5. The paths generated by the simulations of LNA
and LEN grow without bound. For this reason, the scatter plots for these simulations are not shown. For
the LNA, this divergence occurs despite the fact that the deterministic part of the model exhibits a stable
limit cycle. This type of behavior of the LNA is known [34, 38, 41]. Although some corrective measures
have been proposed for similar examples (see [29] and references therein), this illustrates the incapability of
LNA to characterize non-linear behavior adequately. From Figure 4, we see that the path generated by the
simulation of the LEN becomes unstable after it hits a reflection from the boundary x2 = 0, which is normal
and pushes the process towards higher concentrations of x1, as can be seen from the vector field of Figure
5(b). This path is reflected again (perpendicularly) from the x2 = 0 boundary, making the concentration of
x1 increasingly larger, which leads to numerical instability and divergence for the chosen step size.

Similarly to the previous example, a discrete density estimation was calculated for the constrained
Langevin approximation (it was not possible to perform this calculation for the Langevin with normal re-
flection and the linear noise approximations since these simulations diverge). The integral of the absolute
difference between the discrete density calculated for the constrained Langevin approximation and that for
the Markov chain was given by 0.3058 with a 95% confidence interval of (0.3044, 0.3072) among the 10
independent runs.

Example 4. Now we consider a different example in order to compare the constrained Langevin approxi-
mation proposed here with the complex Langevin approximation introduced in [33]. The examples in [33]
involve unimolecular and bimolecular reactions. Here, we consider the following example involving such
reactions for species S1 and S2:

S1 + S2
ν→ 2S2, S1

β1→ ∅, S2
β2→ ∅, ∅ α1→ S1, ∅ α2→ S2. (54)
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Figure 4: Plot of the concentrations of S1 and of S2 given by x1 and x2, respectively, versus time. The paths
were generated from simulations for the system given by (52) with parameters r = 100, ν = 1, β1 = 1,
β2 = 10−9, α1 = 0.1 and α2 = 0.5. Here we see that the LNA is unstable from early on in the simulation
and that the LEN hits an unstable path near t = 50, where the normal reflection at the level x2 = 0 pushes
the process to take a path with increasingly higher concentrations of x1, leading the simulation to diverge.
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(a) Markov Chain (MC) (b) Constrained Langevin Approximation (CLA)

Figure 5: Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively, generated from
simulations of the MC and CLA for the system given by (52) with parameters r = 100, ν = 1, β1 = 1,
β2 = 10−9, α1 = 0.1 and α2 = 0.5. For (b), for the CLA, we show the reflection directions at the boundaries
used by the approximation and the normalized drift vector field. The paths for the LNA and LEN generated
by simulation diverge from the limit cycle and are not shown here.

The drift and diffusion matrix of the constrained Langevin approximation for this example is given by

µ(x) =

(
−νx1x2 − β1x1 + α1

νx1x2 − β2x2 + α2

)
, Υ(x) =

(
νx1x2 + β1x1 + α1 −νx1x2

−νx1x2 νx1x2 + β2x2 + α2

)
,

with the reflection vector field at the boundary given by (53), since on the boundaries x1 = 0 and x2 = 0,
the reflection vector field for (52) is the same as for (54).

Simulations were performed for the Markov chain model (MC), constrained Langevin approximation
(CLA), the linear noise approximation (LNA), and the complex Langevin approximation (Complex-LE).
We used the Euler-Maruyama method for the Complex-LE, similarly to what was done in [33], and we used
Bossy et al.’s method [8] for the CLA. For the LNA, we used a fourth order Runge-Kutta method for its
deterministic part and the Euler-Maruyama for its diffusion part. The simulations were performed up to
time T = 105 and the time steps for the numerical methods were set to h = 0.01. The initial condition
used for the simulations was set to x0 = (1, 1)/r, with r = 100, and the samples from the simulations were
collected after an initial time of duration one was completed.

Since the Complex-LE predicts real-valued moments, we compare the approximations by calculating
mean concentration values, their variances and covariance. In order to account for statistical variation among
different runs and calculate confidence intervals, we repeated the simulations 10 times. Table 2 gives the
results for the parameters r = 100, ν = α1 = α2 = β2 = 1 and β1 = 25. The predicted moments are
fairly closely matched for all simulations. In Figure 6, we give the scatter plot for the simulations. For the
complex Langevin approximation, only the real parts of the simulation points are shown. Although these
simulation points appear to be similarly distributed to those in the Markov chain simulation, like the linear
noise approximation, the real part of the complex Langevin approximation permits values outside of the
positive orthant.
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(a) Markov Chain (MC) (b) Constrained Langevin Approximation (CLA)

(c) Linear Noise Approximation (LNA) (d) Complex Langevin Approximation
(Complex-LE)

Figure 6: Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively, generated from
simulations of the MC, CLA, LNA, and Complex-LE for the system given by (54) with parameters r = 100,
ν = α1 = α2 = β2 = 1 and β1 = 25. For the Complex-LE, only the real parts of the variables are shown.
Notice that LNA and the Complex-LE predict negative values for x1 at some times.
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Table 2: Means, variances and covariance for the concentration of each molecular species calculated by
Markov chain (MC) simulation, the constrained Langevin approximations (CLA), the linear noise approxi-
mation (LNA), and the complex Langevin approximation (Complex-LE) (associated with the parameters as
in Figure 6). The concentrations of species S1 and S2 are represented by x1 and x2, respectively. The table
displays the average values among 10 independent runs and also the value that should be added/subtracted
to the mean to get the 95% confidence intervals.

MC CLA LNA Complex-LE
E[x1] 3.854e-02 ±3.29e-05 3.898e-02 ±3.13e-05 3.836e-02 ±5.03e-05 3.835e-02 ±3.32e-05

E[x2] 1.040e+00 ±2.74e-04 1.040e+00 ±3.41e-04 1.040e+00 ±2.89e-04 1.040e+00 ±2.68e-04

var(x1) 3.839e-04 ±1.08e-06 4.214e-04 ±1.58e-06 4.408e-04 ±1.10e-06 4.413e-04 ±2.21e-06

var(x2) 1.080e-02 ±3.72e-05 1.070e-02 ±3.95e-05 1.082e-02 ±3.35e-05 1.086e-02 ±3.78e-05

cov(x1, x2) -1.582e-05 ±5.30e-06 -1.924e-05 ±3.36e-06 -1.603e-05 ±4.25e-06 -1.857e-05 ±3.69e-06

Since the real part of the complex Langevin approximation can take values outside of the positive orthant,
its behavior depends on the values of the drift and dispersion coefficients there. We found that, for some
examples, the drift vector field used by the complex Langevin approximation outside of the positive orthant
can lead the process to have paths that diverge. One such example is found by considering the same example
(54) with the following set of parameters r = 100, α1 = β1 = 1, ν = 10, α2 = 0.02, and β2 = 5. For
this example, the simulation of the complex Langevin approximation using the Euler-Maruyama method
diverges even with step sizes as small as h = 0.001. In order to illustrate this, we simulated the complex
Langevin approximation with the time step h = 0.001 up to time T = 105. The simulation hits a divergent
path and stops at time t = 6665.421. Figure 7 shows the evolution of the real parts of the complex Langevin
approximation for the molecular concentrations of species S1 and S2, represented by variables x1 and x2,
respectively, prior to divergence. From this figure, we observe that the process has crossed the x2 = 0
boundary, where the drift vector field pushes the process to higher concentrations of x1 and negative values
of x2.

The same experiment was repeated for the Markov chain (MC), the constrained Langevin approximation
(CLA), and the linear noise approximation (LNA), using the time step of h = 0.01 for the numerical
methods. The scatter plot for a simulation with duration T = 105 is given in Figure 8. We also calculated
the integral of the absolute difference between the discrete density calculated for the Markov chain and those
calculated for the constrained Langevin and the linear noise approximations. The result is given in Table 3.

Table 3: Integral of the absolute difference between the discrete density calculated for the Markov chain
simulation and those calculated for the constrained Langevin approximation and the linear noise approxi-
mation (for parameters as in Figure 8). The values displayed are averages of 10 independent runs. The 95%
confidence intervals for these averages are also shown.

Integral of Absolute Difference 95% C. I.
Constrained Langevin Approximation (CLA) 0.2299 (0.2283, 0.2315)
Linear Noise Approximation (LNA) 0.4953 (0.4934, 0.4971)
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Figure 7: (Left) Real parts (x1 and x2, representing concentration for species S1 and S2, respectively) for a
simulation of the complex Langevin approximation of the system given by (54) with parameters r = 100,
α1 = β1 = 1, ν = 10, α2 = 0.02, and β2 = 5. (Right) Direction vector field for the drift (normalized
to have unit length) of the complex Langevin approximation computed for the same simulation at time
t = 6665, where the real parts of x1 and x2 are given by 1.0655 and −0.0483, respectively, (shown as a red
dot) and their imaginary parts are given by −0.0227 and 0.0376, respectively. The vector field shown was
computed for values in the real x1-x2 plane with the imaginary parts fixed to −0.0227 and 0.0376 for x1

and x2, respectively.

(a) Markov Chain (MC) (b) Constrained Langevin Approxi-
mation (CLA)

(c) Linear Noise Approximation
(LNA)

Figure 8: Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively, generated from
simulations of the MC, CLA and LNA for the system given by (54) with parameters r = 100, α1 = β1 = 1,
ν = 10, α2 = 0.02, and β2 = 5. The complex Langevin approximation is not shown here since the
approximation diverges during a long simulation (see Figure 7).
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5 Summary and Discussion

It is attractive, both analytically and computationally, to approximate a continuous time, discrete state space
Markov chain by a continuous time, continuous state diffusion process. From a modeling perspective this
step involves replacing integer-valued molecule counts by real-valued concentration levels. It is intuitively
clear that this modeling choice is likely to run into difficulties when one or more species has a small molecule
count. This issue may manifest itself at a practical level by the solution path taking non-physical negative
values. From a technical perspective, the diffusion process may not remain well-defined. Our aim in this
work was to address this issue by introducing obliquely reflected diffusions as constrained Langevin ap-
proximations. The behavior of these diffusions matches that of solutions to the standard chemical Langevin
equation in the interior of the positive orthant and introduces an appropriate minimal perturbation at the
boundary. Our formal derivation of the constrained Langevin approximation was backed up by analytical
and computational examples that illustrate the benefits of the approach. A complementary, more rigorous,
derivation of this diffusion approach, which includes existence and uniqueness proofs, has been developed
in [27].

A direction for further work that we are pursuing is the development of error estimates for the con-
strained Langevin approximation as an approximation to the underlying Markov chain, both at the transient
and steady-state level. In another vein, the type of diffusion approximation proposed here is also likely to
be of interest for researchers considering other continuous time Markov chains that live in the positive or-
thant, e.g., in population genetics and neuroscience. The authors would appreciate hearing from researchers
interested in such models and approximations.
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A Brief introduction to obliquely reflected diffusion processes

In this appendix, for the benefit of the reader, we give a very brief summary of some aspects of obliquely
reflected diffusion processes as they pertain to the constrained Langevin approximation (CLA) described in
this paper.

Let Go be a non-empty domain in Rm, γ : ∂G → Rm be a unit length vector field defined on the
boundary ∂G of Go, and µ : G → Rm and σ : G → Sm+ be continuous functions defined on the closure, G,
of Go. Here Sm+ denotes the set of m ×m positive semi-definite matrices. Informally, a reflected diffusion
associated with the parameters (Go, γ, µ, σ) is a continuous (strong) Markov process that behaves in the
domain Go like a solution of the Langevin equation with (state-dependent) drift µ and dispersion σ, and that
is constrained to live in the closure G of Go by a control at the boundary which acts in the (state-dependent)
direction of the vector field γ. This type of control is often referred to as a singular control because it
only acts when the diffusion process is on the boundary, and typically the amount of time that the diffusion
process spends on the boundary has zero Lebesgue measure (and so the control acts only at a singular set of
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times).
One possible way9 to try to define such a process precisely is to require it to be a continuous process

Z taking values in G that is a solution of the following Stochastic Differential Equation with Reflection
(SDER):

Z(t) = Z(0) +

∫ t

0
µ(Z(s)) ds+

∫ t

0
σ(Z(s)) dW (s) +

∫ t

0
γ(Z(s)) dL(s), t ≥ 0, (55)

where W is a standard m-dimensional Brownian motion, the stochastic integral with respect to W is an Itô
integral, and L is a continuous, non-decreasing, one-dimensional process that satisfies L(0) = 0 and L can
only increase when Z is on ∂G, that is,

∫∞
0 1{Z(s)/∈∂G}dL(s) = 0. Here L(t) is the cumulative amount of

control (or “pushing”) exerted at the boundary, in the direction of the vector field γ, up to time t. Note that
with Z, L replaced by Z̃r, 1√

r
L̃r, and σ replaced by 1√

r
σ, (55) has the form of our CLA (33).

For historical reasons, a solution Z of (55) is called a reflected diffusion process, although the constrain-
ing action at the boundary is more like regulation or control. The origin of the term “reflection” lies in the
fact that when m = 1, Go = (0,∞), µ = 0, σ = 1, γ = 1 and Z(0) = 0, (Z,L) is equivalent in distri-
bution to (|B|, L) where B is a standard one-dimensional Brownian motion, |B| is its reflection about the
origin, and L is the “local time” of |B| at the origin, which satisfies L(t) = limε→0

1
2ε

∫ t
0 1[0,ε)(|B|(s))ds

almost surely, and is a normalized measure of the amount of time that |B| spends near the origin. Indeed,
by Tanaka’s formula [9],

|B(t)| =
∫ t

0
sgn(B(s)) dB(s) + L(t), t ≥ 0, (56)

where sgn(x) = +1 if x > 0, = −1 if x < 0, and = 0 if x = 0; and {
∫ t

0 sgn(B(s)) dB(s), t ≥ 0}
defines another standard one-dimensional Brownian motion. On setting W (t) =

∫ t
0 sgn(B(s)) dB(s) for

t ≥ 0, we see that (Z,L) = (|B|, L) is a solution of (55) when (Go, µ, σ, γ) = ((0,∞), 0, 1, 1). For more
details on this reflected Brownian motion case, see Chapters 7 and 8 of [9]. Although a mirror reflection
construction of solutions of (55) does not generally hold for non-zero µ, state-dependent σ, or γ and Go
in higher dimensions, the term “reflected diffusion” has nevertheless been widely used in the literature for
processes of the form (55). We now describe the results relevant to existence and uniqueness of solutions of
(55) beyond the simple one-dimensional Brownian motion case just described.

Of course, in general, additional conditions need to be imposed on Go, γ, µ and σ in order for (55) to be
well posed. For our CLA, Go is naturally a polyhedral domain, and in all but one-dimension, or in situations
that can be reduced to such, the boundary will be nonsmooth, although it will be piecewise smooth. Also, if
µ 6= 0 on ∂G, then γ = µ/|µ| can be extended to a smooth (in fact, C∞) function in a neighborhood of ∂G.

In [11], Dupuis and Ishii considered the problem of existence and uniqueness of solutions of equations
like (55) when the boundary of G is not smooth. The first of two cases that they treated is relevant to CLAs
as it allows for a smooth, state-dependent vector field γ defined on a nonsmooth boundary. For that case,
they assume that Go is a bounded domain, γ can be extended to a C2, unit-length vector field on all of Rm,
and µ and σ are uniformly Lipschitz continuous on G. They formulate sufficient conditions for the existence
and uniqueness of “strong”10 solutions of (55). The critical condition (3.2) in their paper requires that, at
each point on the boundary, the vector field γ points into Go in a suitably strong way. Unfortunately, due
to topological constraints, such an inward pointing vector field cannot be globally extended to be smooth
and of unit length on all Rm (see [27] for a counterexample). However, as shown in Section 5 of [27], the
existence and uniqueness result of [11] is in fact true with only local extendability of γ. In [27], Leite and

9An alternative approach is to try to characterize such processes in a distributional sense via submartingale problems, as first
introduced by Stroock and Varadhan [35] for reflected diffusions in smooth domains and extended by various authors. See [21] for
references on the two approaches and development of the relationship between them.

10A strong solution is required to be adapted to the filtration generated by W and the initial condition Z(0).
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Williams further show that this existence and uniqueness result can be extended to where G is the unbounded
positive orthant in Rm, under the assumptions described in our paragraph containing (34). In particular, with
the results of Dupuis and Ishii (as extended in [27]) for bounded domains and those in [27] for the orthant,
existence and uniqueness of solutions of our CLA (33) for all of the examples considered in this paper, as
well as many others, can be obtained. We refer the interested reader to [11, 21, 27] for more details on
reflected diffusions, especially in nonsmooth domains.
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