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THE FUNDAMENTAL GROUP AND BETTI NUMBERS
OF TORIC ORIGAMI MANIFOLDS

TARA S. HOLM AND ANA RITA PIRES

ABSTRACT. Toric origami manifolds are characterized by origami templates, which are combinato-
rial models built by gluing polytopes together along facets. In this paper, we examine the topology
of orientable toric oigami manifolds with coörientable folding hypersurface. We determine the fun-
damental group. In our previous paper [HP], we studied the ordinary and equivariant cohomology
rings of simply connected toric origami manifolds. We conclude this paper by computing some Betti
numbers in the non-simply connected case.
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INTRODUCTION

Smooth toric varieties and their generalizations are manifolds whose geometry and topology
can be characterized by combinatorial models. The interplay between geometry and topology on
the one hand and algebra, combinatorics, and discrete geometry on the other has been integral to
our understanding of toric varieties. In this paper, we study toric origami manifolds, a class of toric
manifolds that arise in symplectic geometry. The geometry of toric origami manifolds is encoded
in an origami template: a collection of (equi-dimensional) polytopes with certain facets identified.
In our previous paper [HP], we studied the simplest examples of toric origami manifolds, the
acyclic ones. In this manuscript, we develop new techniques to address the complications that
arise in the cyclic case.

We first study the fundamental group of a toric origami manifold. Building on work of Masuda
and Park [MPar] and others, we use the combinatorics of the origami template to determine the
fundamental group of a toric origami manifold (Theorem 2.14). The key trick is to build a simply
connected cover of the origami template. As a consequence of our result, we may deduce that
a toric origami manifold is simply connected if and only if it is acyclic. We can use our result
(namely, the form of the fundamental group) to show the existence of a 4-dimensional manifold
equipped with an effective T2 action which is not a toric origami manifold (Remark 2.18). We then
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turn to the Betti numbers of a toric origami manifold. When M is orientable, there is a natural
decomposition M = M+ ∪M−, where M+ ∩M−

∼= Z is the folding hypersurface. There are
situations in which we have control of the cohomology groups of Z andM+tM−

∼=M \Z, which
allows us to determine certain Betti numbers of M. In dimension 4, we may determine all Betti
numbers, and hence the Euler characteristic (Theorem 4.2). Again, this allows us to rule out a
possible toric origami structure on a specific 4-manifold which is known to admit an effective T2
action (Remark 4.3).

The results in this paper were developed simultaneously to those in the recent preprint of
Ayzenberg, Masuda, Park and Zeng [AMPZ]. Their techniques rely on the assumption that proper
faces of the origami template be acyclic. With this hypothesis, the authors are, for the most part,
able to determine the ring structure in cohomology, in terms of equivariant cohomology. Our re-
sults apply to all origami templates, but our cohomological results are only about Betti numbers.

The remainder of the paper is organized as follows. We outline the basic notions and notation
in Section 1, and compute the fundamental group of a toric origami manifold in Section 2. In
Section 3, we derive some auxiliary results that we then use in Section 4 to determine some of
the cohomology groups of toric origami manifolds. We enumerate all of the Betti numbers in
dimension 4. We conclude with the full details of an example in 6 dimensions, showing how our
techniques are tractable even in higher dimensions, when faced with specific examples.

Acknowledgements. We would like to thank Allen Hatcher, Allen Knutson, Nick Sheridan and
Reyer Sjamaar for useful conversations. Remarks 2.18 and 4.3 resulted from discussions of the
second author with Ana Cannas da Silva, and we are grateful for the possibility to include them
here.

1. ORIGAMI MANIFOLDS

This is a summary of the background and set-up described in our previous paper [HP, §2],
where there are more examples and details. We include it again here to set the notation. There is
one new item: toric origami manifolds with boundary, which are an ingredient in Section 2.

1.1. Symplectic manifolds. We begin with a very quick review of symplectic geometry, following
[C]. Let M be a manifold equipped with a symplectic form ω ∈ Ω2(M): that is, ω is closed
(dω = 0) and non-degenerate. In particular, the non-degeneracy condition implies that M must
be an even-dimensional manifold.

Suppose that a compact connected abelian Lie group T = (S1)n acts on M preserving ω. The
action is weakly Hamiltonian if for every vector ξ ∈ t in the Lie algebra t of T, the vector field

Xξ(p) =
d

dt

[
exp(tξ) · p

]∣∣∣∣
t=0

is a Hamiltonian vector field. That is, we requireω(Xξ, ·) to be an exact one-form1:

(1.1) ω(Xξ, ·) = dφξ.

Thus each φξ is a smooth function on M defined by the differential equation (1.1), so determined
up to a constant. Taking them together, we may define a moment map

Φ :M −→ t∗

p 7→ (
t −→ R
ξ 7→ φξ(p)

)
.

1 The one-formω(Xξ, ·) is automatically closed because the action preservesω.
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The action is Hamiltonian if the moment mapΦ can be chosen to be a T-invariant map. Atiyah
and Guillemin-Sternberg have shown that when M is a compact Hamiltonian T-manifold, the
imageΦ(M) is a convex polytope, and is the convex hull of the images of the fixed pointsΦ(MT)
[A, GS].

For an effective2 Hamiltonian T action on M, dim(T) ≤ 1
2 dim(M). We say that the action is

toric if this inequality is in fact an equality. A symplectic manifold M with a toric Hamiltonian
T action is called a symplectic toric manifold. Delzant used the moment polytope to classify
symplectic toric manifolds.

A polytope ∆ in Rn is simple if there are n edges incident to each vertex, and it is rational if
each edge vector has rational slope: it lies in Qn ⊂ Rn. A simple polytope is smooth at a vertex
if the n primitive vectors parallel to the edges at the vertex span the lattice Zn ⊆ Rn over Z. It
is smooth if it is smooth at each vertex. A simple rational smooth convex polytope is called a
Delzant polytope. We may now state Delzant’s result.

Theorem 1.2 (Delzant [De]). There is a one-to-one correspondence{
compact toric

symplectic manifolds

}
!
{

Delzant polytopes
}
,

up to equivariant symplectomorphism on the left-hand side and affine equivalence on the right-hand side.

1.2. Origami manifolds. We now relax the non-degeneracy condition on ω, following [CGP]. A
folded symplectic form on a 2n-dimensional manifold M is a 2-form ω ∈ Ω2(M) that is closed
(dω = 0), whose top power ωn intersects the zero section transversely on a subset Z and whose
restriction to points in Z has maximal rank. The transversality forces Z to be a codimension 1
embedded submanifold ofM. We call Z the folding hypersurface or fold.

Let i : Z ↪→ M be the inclusion of Z as a submanifold of M. Our assumptions imply that i∗ω
has a 1-dimensional kernel on Z. This line field is called the null foliation on Z. An origami man-
ifold is a folded symplectic manifold (M,ω) whose null foliation is fibrating: Z π−→ B is a fiber
bundle with orientable circle fibers over a compact base B. The form ω is called an origami form
and the bundle π is called the null fibration. A diffeomorphism between two origami manifolds
which intertwines the origami forms is called an origami-symplectomorphism. The definition of
a Hamiltonian action only depends on ω being closed. Thus, in the folded framework, we may
define moment maps and toric actions exactly as in Section 1.1.

An oriented origami manifold M with fold Z may be unfolded into a symplectic manifold as
follows. Consider the closures of the connected components of M \ Z, a manifold with boundary
which consists of two copies of Z. We collapse the fibers of the null fibration by identifying the
boundary points that are in the same fiber of the null fibration of each individual copy of Z. The
result,M0 := (M\Z)∪B1∪B2, is a (disconnected) smooth manifold that can be naturally endowed
with a symplectic form which onM0 \(B1∪B2) coincides with the origami form onM\Z. Because
this can be achieved using symplectic cutting techniques, the resulting manifold M0 is called the
symplectic cut space (and its connected components the symplectic cut pieces), and the process
is also called cutting. The symplectic cut space of a nonorientable origami manifold is the Z2-
quotient of the symplectic cut space of its orientable double cover.

The cut space M0 of an oriented origami manifold (M,ω) inherits a natural orientation. It is
the orientation on M0 induced from the orientation on M that matches the symplectic orientation
on the symplectic cut pieces corresponding to the subset ofM \ Zwhereωn > 0 and the opposite
orientation on those pieces whereωn < 0. In this way, we can associate a + or − sign to each of the

2 An action is effective if no non-trivial subgroup acts trivially.
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symplectic cut pieces of an orientend origami manifold, as well as to the corresponding connected
components ofM \ Z.

Remark 1.3. In this paper we restrict to origami manifolds whose fold is coörientable: that is,
the fold has an orientable neighborhood. Note that this not imply that the manifold is orientable.
Indeed, for an orientableM, the condition thatωn intersects the zero section transversally implies
that the connected components of M \ Z which are adjacent in M have opposite signs. Since M is
connected, picking a sign for one connected component ofM\Z determines the signs for all other
components. As a consequence, an origami manifoldMwith coörientable fold is orientable if and
only if it is possible to make such a global choice of signs for the connected components ofM \ Z.

Proposition 1.4 ([CGP, Props. 2.5 & 2.7]). Let M be a (possibly disconnected) symplectic manifold with
a codimension two symplectic submanifold B and a symplectic involution γ of a tubular neighborhood U of
B which preserves B3. Then there is an origami manifold M̃ such that M is the symplectic cut space of M̃.
Moreover, this manifold is unique up to origami-symplectomorphism.

This newly-created fold Z ⊂ M̃ involves the radial projectivized normal bundle of B ⊂ M, so
we call the origami manifold M̃ the radial blow-up of M through (γ, B). The cutting operation
and the radial blow-up operation are in the following sense inverse to each other.

Proposition 1.5 ([CGP, Prop. 2.37]). Let M be an origami manifold with cut space M0. The radial
blow-up M̃0 is origami-symplectomorphic toM.

There exist Hamiltonian versions of these two operations which may be used to see that the
moment map Φ for an origami manifold M coincides, on each connected component of M \ Z
with the induced moment map Φi on the corresponding symplectic cut piece Mi. As a result, the
moment imageΦ(M) is the union of convex polytopes ∆i.

Furthermore, if the circle fibers of the null fibration for a connected component Z of the fold
Z are orbits for a circle subgroup S1 ⊂ T, then Φ(Z) is a facet of each of the two polytopes cor-
responding to neighboring components of M \ Z. Let us denote these two polytopes ∆1 and ∆2.
We note that they must agree near Φ(Z): there is a neighborhood V of Φ(Z) in Rn such that
∆1 ∩ V = ∆2 ∩ V. The condition that the circle fibers are orbits is automatically satisfied when the
action is toric, and in that case there is a classification theorem in terms of the moment data.

The moment data of a toric origami manifold can be encoded in the form of an origami tem-
plate, originally defined in [CGP, Def. 3.12]. Definition 1.6 below is a refinement of that original
definition. Following [GGL, p. 5], a graphG consists of a nonempty set V of vertices and a set E of
edges together with an incidence relation that associates an edge with its two end vertices, which
need not be distinct. Note that this allows for the existence of (distinguishable) multiple edges
with the same two end vertices, and of loops whose two end vertices are equal. We introduce
some additional notation: let Dn be the set of all Delzant polytopes in Rn and En the set of all
subsets of Rn which are facets of elements of Dn.

Definition 1.6. An n-dimensional origami template consists of a graph G, called the template
graph, and a pair of maps ΨV : V −→ Dn and ΨE : E −→ En such that:

(1) if e is an edge of G with end vertices u and v, then ΨE(e) is a facet of each of the polytopes
ΨV(u) and ΨV(v), and these polytopes agree near ΨE(e); and

(2) if v is an end vertex of each of the two distinct edges e and f, then ΨE(e) ∩ ΨE(f) = ∅.

3 In the noncoörientable case, the involution must satisfy additional conditions, see [CGP, Def. 2.23]. In the
coörientable case, we have B = B1 ∪ B2 and the involution γ maps a tubular neighborhood of B1 to one of B2 and
vice versa.
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The polytopes in the image of the mapΨV are the Delzant polytopes of the symplectic cut pieces.
For each edge e, the set ΨE(e) is a facet of the polytope(s) corresponding to the end vertices of e.
We refer to such a set as a fold facet, as it is the image of the connected components of the folding
hypersurface4.

With these combinatorial data in place, we may now state the classification theorem.

Theorem 1.7 ([CGP, Theorem 3.13]). There is a one-to-one correspondence{
compact toric

origami manifolds

}
!
{

origami templates
}
,

up to equivariant origami-symplectomorphism on the left-hand side, and affine equivalence of the image of
the template in Rn on the right-hand side.

For the purposes of this paper, we need to work with toric origami manifolds with a certain
type of boundary. We begin by defining templates with boundary. To do so, we now allow our
graph G to have dangling edges: that is, an edge that has only one endpoint. Note that this is
different from a loop edge.

Definition 1.8. An n-dimensional origami template with boundary consists of a graph G, possi-
bly including dangling edges, called the template graph, and a pair of maps ΨV : V −→ Dn and
ΨE : E −→ En satisfying the conditions (1) and (2) in Definition 1.6.

Remark 1.9. Note that condition (1) of Definition 1.6 does not impose a constraint on a dangling
edge, but condition (2) may do so.

To define the toric origami manifold with boundary associated to an origami template with
boundary, we may use a construction motivated by Theorem 1.7. In this way, the boundary of
the origami manifold is contained in the fold. More specifically, the component of the boundary
corresponding to the dangling edge e is a principal circle bundle over the toric symplectic mani-
fold with moment image ΨE(e). If we collapse the circle fibers of this fibration, we obtain a toric
origami manifold, possibly with boundary, with the dangling edge e removed from the template
graph.

This is not the most general definition of a toric origami manifold with boundary, but it is the
version that we will need in the remainder of the paper.

The orbit space X =M/T of a toric origami manifold, possibly with boundary, is closely related
to the origami template. When M is a toric symplectic manifold, then the orbit space may be
identified with the corresponding Delzant polytope; this identification is achieved by the moment
map. For a toric origami manifold, possibly with boundary, the orbit space is realized as the
topological space obtained by gluing the polytopes in ΨV(V) along the fold facets as specified by
the map ΨE. More precisely, the orbit space is the quotient

(1.10) X =
⊔
v∈V

(v, ΨV(v))
/

∼ ,

where we identify (u, x) ∼ (v, y) if there exists an edge e with endpoints u and v and the points
x = y ∈ ΨE(e) ⊂ Rn. Again, this identification is achieved by the moment map. In simple low-
dimensional examples, we can visualize the orbit space by superimposing the polytopes ΨV(v) in
Rn and indicating which of their facets to identify. There is a deformation retraction from orbit
space X to the template graph.

4 A noncoörientable connected component of the folding hypersurface corresponds to a loop edge e.
5



There is a natural description of the faces of X. The facets of a polytope are well-understood.
The set of facets of X is ⊔

v∈V
F facet of ΨV (v)
F not a fold facet

(v, F)
/

∼ ,

where the equivalence relation is induced by the one in (1.10). The faces of X are non-empty
intersections of facets in X, together with X itself. This notion of face of the orbit space agrees with
Masuda and Panov’s definition [MPan, §4.1].

2. THE FUNDAMENTAL GROUP OF TORIC ORIGAMI MANIFOLDS

We now proceed to compute the fundamental group of a toric origami manifold M. As our
manifolds are always connected, we suppress the notation of a basepoint. Key to this calculation
are two lattices that arise in the definition ofM by its origami template.

Definition 2.1. The Delzant polytopes are subsets of Rn, and the Delzant condition refers to a
fixed choice of lattice N = Zn ⊂ Rn. An important sublattice of N is NX, the sublattice spanned
(over Z) by the normal vectors to the facets of X =M/T.

Masuda and Park have investigated the relationship between the fundamental group of M, that
of X, and N/NX.

Proposition 2.2 ( [MPar, Proposition 3.1]). Let M be an orientable toric origami manifold and let NX
be as in Definition 2.1. Let q∗ : π1(M) −→ π1(X) be the homomorphism induced from the quotient map
q : M −→ X. Then there is an epimorphism

ρ : N/NX × π1(X) −→ π1(M)

such that the composition q∗ ◦ ρ : N/NX × π1(X) −→ π1(X) is the projection on the second factor, in
particular, ker(ρ) is contained in N/NX.

Remark 2.3. As Masuda and Park note,N/NX is trivial, finite cyclic or infinite cyclic. WhenN/NX
is trivial, then ρ is an isomorphism.

We aim to show that ρ is an isomorphism. We now introduce several auxiliary spaces that will
allow us to identify π1(M). Let X̃ denote the universal cover of the orbit space X. Let M̃ be the toric
origami manifold corresponding to X̃. Note that M̃ is non-compact unless the original template
graph is a tree. Then there is a covering map V : M̃ −→M and an injection V∗ : π1(M̃) −→ π1(M).

Choose a fundamental domain D for the action of the deck transformations on X̃ and consider
its closure X̃0 = D inside X̃. This has template graph G̃0, a spanning tree of the original template
graph G for M, together with some extra dangling edges. More explicitly, for every edge e in G
that is not in the spanning tree, there are now two dangling edges in G̃0, one emanating from each
end vertex of e. The manifold M̃0 is an origami manifold with boundary. Note that in the same
way that X can be recovered from X̃0 by gluing along some of the facets, and G may be recovered
from G̃0 by splicing the dangling edges described above, the origami manifoldM can be recovered
from M̃0 by appropriately identifying boundary components to each other.

Recall that the fundamental group of X is a free group Fk, since X deformation retracts to the
template graph. The Cayley graph of the free group Fk is an infinite regular tree of degree 2k. We
may think of X̃ in terms of this infinite tree, where each vertex represents a copy of X̃0 and the
edges represent the facets by which the copies of X̃0 are glued together. We introduce auxiliary
spaces X̃i, for i ≥ 0, which consist of the (2k)i+1−1

2k−1 copies of X̃0 that are distance at most i from the
6



“identity” copy of X̃0 in the Cayley graph of Fk. We then may define the origami manifold with
boundary M̃i to have template with boundary X̃i.

We note that the spaces X̃i and the spaces M̃i are nested. That is, we have a commutative
diagram

M

��

M̃ ⊇ · · ·coveroo

��

M̃2⊇

��

M̃1⊇

��

M̃0⊇

��

X X̃ ⊇ · · ·univ.
cover
oo X̃2⊇ X̃1⊇ X̃0.⊇

We also include a figure showing X, X̃0, X̃1 and X̃2.

FIGURE 2.4. From left to right: the moment map image of a toric origami manifold
M whose template graph has two vertices and three edges (the polytopes corre-
sponding to the two vertices are identical and appear superimposed); and repre-
sentations of X̃0, X̃1 and X̃2, drawn “unfolded” and with shrinking polytopes to
prevent too many overlaps. The red “boundary” facets correspond to the dangling
edges of the template graph. The moment images of each of these 3 spaces looks
like the leftmost figure, but their templates are all different.

We now wish to compute the fundamental groups π1(M̃i) and π1(M̃). Danilov computed the
fundamental group of a normal toric variety associated to a fan [Da, Proposition 9.3]; a detailed
proof is given in [CLS, Theorem 12.1.10].

Theorem 2.5. Let Σ be a fan in NR and let NΣ be the sublattice of N generated by |Σ| ∩ N. Then the
fundamental group of the normal toric variety XΣ is π1(XΣ) ∼= N/NΣ.

We begin by computing π1(M̃i).

Lemma 2.6. Let M be an origami manifold, possibly with boundary, such that the orbit space X is simply
connected (or equivalently, the template graph G ofM is a tree). LetNX be the sublattice ofN generated by
the rays of the multi-fan corresponding toM. Then the fundamental group π1(M) ∼= N/NX.

Proof. We proceed by induction on the number of vertices in the template graph G. The base
case is when there is a single vertex. Then the manifold M is a symplectic manifold (possibly
with boundary), and the corresponding multi-fan is in fact a fan Σ. Then M is homeomorphic the
normal toric variety XΣ, and the result is a direct application of Theorem 2.5.

For the induction step, we pick a leaf vertex v ofG. Denote the vertex set ofG by V and the edge
set E. Given the leaf vertex v, let e be the edge that connects it to the rest of G and f1, f2, . . . the
(possibly empty) list of dangling edges emanating from v. Let Star(v) be the graph with a single
vertex v and dangling edges ẽ, f1, f2, . . ., where ẽ is the new dangling edge obtained from e. Next,

7



let Star(V \ v) be the graph with vertex set V \ {v} and edge set E \ {e, f1, f2, . . . , } ∪ {ẽ}, where ẽ is
the new dangling edge obtained from e.

We now describe a cover ofMwith two open sets. The first set,A, is a small neighborhood inM
of the toric origami manifold with boundary M1 whose template graph is Star(v) and orbit space
is X1. We may choose A so that it deformation retracts to M1. By Theorem 2.5, π1(A) ∼= N/NX1 .
The second set, B, is a small neighborhood in M of the toric origami manifold with boundary M2

whose template graph is Star(V \ v) and orbit space is X2. We may choose B so that it deformation
retracts toM2. By the induction hypothesis, π1(B) ∼= N/NX2 .

We note that the intersection A ∩ B is the tubular neighborhood of the connected component Z
of the fold Z corresponding to the edge e. It is homeomorphic to the toric variety whose fan has
rays the normals to the facets in the polytope ΨV(v) that are adjacent to the fold facet ΨE(e). Thus,
we may apply Theorem 2.5 to deduce that π1(A ∩ B) ∼= N/NA∩B, where NA∩B is the sublattice of
N spanned by the rays described in the previous sentence.

We may apply the Seifert–van Kampen Theorem to deduce that

π1(M) ∼= N/NX1∗N/NA∩BN/NX2 .

As in [CLS, Proof of Theorem 12.1.10], the final step is to use presentations of the groups N/NX1 ,
N/NX2 and N/NA∩B in terms of generators and relations to conclude that

N/NX1∗N/NA∩BN/NX2 = N/(NX1 +NX2) = N/NX.

This completes the proof. �

We may now compute π1(M̃i).

Corollary 2.7. Let M̃i be the origami manifold with boundary with orbit space X̃i, as described above. For
each i ≥ 0, the fundamental group is π1(M̃i) ∼= N/NX̃i

= N/NX.

Proof. The only missing ingredient is to notice that N
X̃i

= NX for each i. �

Now we may compute π1(M̃).

Corollary 2.8. Let M̃ be the toric origami manifold with boundary with orbit space X̃, as described above.
The fundamental group is π1(M̃) ∼= N/NX.

Proof. We may describe M̃ as a direct limit M̃ = lim−→ M̃i, and so we apply Corolloary 2.7 and
Exercise 2.4.11 from [Mas, pp. 67–68] to deduce that π1(M̃) ∼= lim−→π1(M̃i) ∼= lim−→N/NX = N/NX.

�

We next show that N/NX is a subgroup of π1(M).

Corollary 2.9. Let M be the toric origami manifold with orbit space X, let X̃ be the universal cover of X,
and M̃ the toric origami manifold with boundary with orbit space X̃, as described above. Then there is an
injection N/NX ↪→ π1(M).

Proof. As noted above, we have a covering map V : M̃ −→ M and therefore there is an injection
V∗ : π1(M̃) ↪→ π1(M). The result now follows from Corollary 2.8. �

The group N/NX must be trivial or cyclic. When it is trivial, then ρ provides an isomorphism
π1(M) ∼= π1(X) in Proposition 2.2. We now tackle the two separate cases when N/NX is finite and
when it is isomorphic to Z.

Proposition 2.10. LetM be the toric origami manifold with orbit space X. IfN/NX is a finite cyclic group,
then the surjection ρ from Proposition 2.2 is an isomorphism.

8



Proof. We know that π1(M) ∼= (N/NX × π1(X))/ker(ρ), and that the kernel ker(ρ) ⊂ N/NX. Be-
causeN/NX is finite, we have an isomorphism π1(M) ∼= Z/kZ×F`, where F` ∼= π1(X) is a free group
on ` generators. The image of N/NX under the injection V∗ must be in the Z/kZ factor, since F` is
free. The only way for the finite group N/NX to be a subgroup of Z/kZ ∼= (N/NX)/ker(ρ) is for
ker(ρ) = {1}. This completes the proof. �

Finally, we turn to the case when N/NX ∼= Z. This situation turns out to be quite rigid.

Proposition 2.11. The quotientN/NX ∼= Z if and only if the toric origami manifoldM2n is equivariantly
homeomorphic to T2 × Y, where Y = YF is a toric symplectic manifold of dimension 2n− 2, the torus T2 is
a toric origami manifold.

Proof. (=⇒) We begin by assuming that N/NX ∼= Z. This means that NR/(NX)R ∼= R, and so
U = (NX)R is a hyperplane in NR = Rn. Let u be a non-zero vector orthogonal to U.

We fix a choice of a single polytope P = ΨV(v) in the moment image, and fix F a fold facet of
P, that is, F = ΨE(e) for some edge e in the template. Let η denote the normal vector to F. Let
F1, . . . , Fs be the facets of P adjacent to F, and let η1, . . . , ηs denote the normal vectors to the facets.
Because P is a Delzant polytope, η, η1, . . . , ηs spanN. The vectors η1, . . . , ηs must span a subspace
of U. Combined with the fact that P is Delzant, we may conclude that η1, . . . , ηs span an (n − 1)-
dimensional subspace, so they must span all of U. Each hyperplane η⊥i contains R · u. Thus, the
affine hyperplanes Hi that define the facets Fi all contain an affine translation of R ·u. This means
that the intersection of affine half-spaces

s⋂
i=1

H+
i

used to define part of P can be described as an infinite prism
s⋂
i=1

H+
i = F+ R · u,

where + denote the Minkowski sum. There cannot be another non-fold facet of P because the
Delzant condition would force that facet to have a normal vector pointing out of U, contradicting
the hypothesis that N/NX ∼= Z. Therefore, there are only fold facets remaining, and because fold
facets must be isolated, there can be only one additional fold facet F̃ capping off P. Note that the
infinite prism F̃ + R · u is identical to F + R · u, and indeed F and F̃ have the same combinatorial
type. This description as a subset of an infinite prism is valid for each polytope in the image of ΨV .
Moreover, because adjacent polytopes must agree near their shared fold facet, the infinite prism is
identical in each case. This implies that the moment image of M is contained in the infinite prism
F+ R · u. Moreover the template graph must be a cycle.

For our fixed choice of P and F, we have a hyperplane UF = η⊥ ∼= Rn−1, with lattice UF ∩ N.
Let Y = YF denote the toric symplectic manifold of dimension 2n−2 corresponding to the Delzant
polytope F ⊂ UF. We now consider the closure Mj in M of a connected component Wj of M \ Z.
This corresponds to a vertex vj in the template graph, and hence a polytope Pj = ΨV(vj). We want
to show that Mj is equivariantly homeomorphic to YF × S1 × [aj, bj]. To do so, we will think of
constructing a toric symplectic manifold in the topological manner, by taking a quotient of P×T by
an equivalence relation to get YP = P×T/ ∼. In this way, if Pj = F× [aj, bj], then we get a splitting
of the symplectic cut piece Cj = YF × Y[aj,bj] = YF × S2[aj,bj], and henceMj = YF × S1 × [aj, bj].

For the general case, we proceed as follows: let h : F×[aj, bj] −→ Pj be a linear homeomorphism,
preserving faces, and consider the homeomorphism h × 1Tn : F × [aj, bj] × Tn −→ Pj × Tn. The
closure Mj of Wj is obtained from Pj × Tn by collapsing the appropriate S1 ⊂ Tn fibers over
those facets of Pj which are in the image h(∂F × [aj, bj]). Note that the symplectic cut piece Cj
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corresponding toWj would be obtained by further collapsing the appropriate S1 ⊂ Tn fibers over
the remaining facets of Pj, namely h(F× {aj}) and h(F× {bj}). In the topological construction, the
circle subgroup of Tn that we collapse over a particular facet is indicated by the normal vector
to that facet. Because the homeomorphism h does not change the normal vectors to the facets
in the image h(∂F × [aj, bj]), the map h × 1Tn induces an equivariant homeomorphism between
YF × S1 × [aj, bj] andMj, as desired.

Thus, we have seen that the closureMj of each connected component ofM\Z is a manifold with
boundary homeomorphic to YF × S1 × [aj, bj], with two boundary components that correspond to
the two fold facets of the polytope Pj. The whole manifold M is obtained from the collection of
Mjs by identifying them along their boundaries as prescribed by ΨE. Thus, we may deduce that
M is equivariantly homeomorphic to the union of the YF × S1 × [aj, bj]’s along their boundaries,
and therefore is equivariantly homeomorphic to YF × T2.

(⇐=) If M is equivariantly homeomorphic to T2 × Y with Y toric symplectic and T2 toric origami,
then its moment image is as described in the paragraphs above: see [CGP, Figure 14] for the
moment image of a toric origami T2. Thus we must have that N/NX ∼= Z. �

Definition 2.12. In the case when the quotient N/NX ∼= Z and M ∼= T2 × Y, we call the toric
origami manifold prismatic.

Corollary 2.13. If a toric origami manifoldM is prismatic, then its fundamental group is π1(M) = Z2.

Proof. The fundamental group is a homeomorphism invariant, and π1(T2 × Y) = π1(T2) × π1(Y),
where π1(T2) = Z2 and Y is simply connected because it is a toric symplectic manifold. �

We now have all the necessary ingredients to compute π1(M).

Theorem 2.14. Let M be an orientable toric origami manifold with orbit space X, and let N and NX be as
in Definition 2.1. Then the fundamental group ofM is

π1(M) ∼= N/NX × π1(X).

Proof. By Remark 2.3, Proposition 2.10 and Corollary 2.13, the only thing missing is to check that
for M prismatic, the fundamental group of the orbit space is π1(X) = Z. This is true because X
deformation retracts onto the template graph, which as remarked in the proof of Proposition 2.11
is a cycle. �

In particular, this allows us to deduce that Masuda and Park’s map ρ [MPar] is an isomorphism.

Corollary 2.15. The epimorphism ρ : N/NX×π1(X) −→ π1(M) from Proposition 2.2 is an isomorphism.

Proof. By Remark 2.3, Proposition 2.10, we are only left with checking that ρ is an isormorphism
whenM is prismatic. Recall that in that case N/NX = Z and π1(X) = Z.

We know that π1(M) ∼= (N/NX × π1(X))/ker(ρ) ∼= Z2/ker(ρ), and that ker(ρ) ⊂ N/NX ∼= Z.
Since π1(M) = Z2, the only possibility is that the kernel is the trivial subgroup ker(ρ) = {1}. �

Another consequence of Theorem 2.14 is a characterization of simply connected toric origami
manifolds. The following result indicates that the key assumption in our previous work [HP],
namely that the origami template be acyclic, is a natural topological hypothesis.

Corollary 2.16. A toric origami manifold is simply connected if and only if its origami template is acyclic.

Proof. If M is a toric origami manifold and has at least one cycle in its template graph, then there
must be at least one infinite cyclic factor in π1(M) andM not simply connected.

If the template graph is acyclic, then the π1(X) factor of π1(M) is trivial. In addition, any poly-
tope corresponding to a leaf of the template graph has at least one vertex not contained in a fold
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facet. By the Delzant condition at that vertex, the lattice quotientN/NX is trivial. Thus π1(M) = {1}

andM is simply connected. �

In Table 2.17 below, we show examples where N/NX takes on all possible types of group.

M S2 × S1 × S1 ∼= S2 ×T2 S3 × S1 L(k; 1)× S1

Φ(M)

N/NX Z {1} Z/kZ
π1(M) Z× Z Z Z/kZ× Z

TABLE 2.17. Examples of the possible types of N/NX. In each case, the template
graph has two vertices, connected to one another by two edges. Each quotient
space has two facets, with facet normals indicated in the figures.

Remark 2.18. The form of the fundamental group of a toric origami manifold given by Theorem
2.14 excludes certain manifolds from admitting such a structure. For example, a non-trivial finite
cyclic group Z/kZ cannot occur as the fundamental group of a toric origami manifold (as noted in
the Proof of [MPar, Corollary 3.2] for the non-simply connected case). To verify this, we note that
ifM is a toric origami manifold and has at least one cycle in its template graph, then there must be
at least one infinite cyclic factor in π1(M). On the other hand, if the template graph is acyclic, then
M is simply connected by Corollary 2.16. Orlik and Raymond introduced manifolds so-called
“of type L” as some of the building blocks for 4-manifolds admitting toric actions [OR]. More
precisely, [P, Theorem VI.1] states that every orientable compact smooth 4-manifold that admits
an effective smooth action of T2 with at least one fixed point is diffeomorphic to a connected sum
of copies of S4, CP2 , CP2, S2 × S2, S1 × S3, Ln and L ′n, for n ≥ 2. The fundamental group of the
manifolds of type L is π1(Ln) = π1(L

′
n) = Z/nZ (see [P, p. 296]), which implies that they do not

admit a toric origami structure. It is easy to see that all the other building blocks do admit toric
origami structures.

3. THE COHOMOLOGY OF M \ Z

In this section we obtain results about the cohomology of open toric symplectic manifolds of the
form Y \ B, where Y is a compact toric symplectic manifold and B is a (not necessarily connected)
codimension two toric symplectic submanifold of Y. This is exactly the form that the connected
components of M \ Z take. In the following section, we will assemble these pieces in a Mayer-
Vietoris sequence and deduce facts about the cohomology ofM.

In this and the following section, we write

bi(X) = rank
(
Hi (X;Z)

)
and bi(X) = rank

(
Hi(X;Z)

)
to denote the ith (respectively, homology and cohomology) Betti numbers of the space X.

We begin by stating a result about the Euler characteristic of a manifold Y\B. This fact is known
in greater generality, see for example [Fu, §4.5].

Proposition 3.1. The Euler characteristics of Y and B are additive:

χ(Y \ B) = χ(Y) − χ(B).
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Proof. We consider the long exact sequence for the pair (Y, Y \ B), with integer coefficients under-
stood:

(3.2) · · · // H∗(Y \ B) // H∗(Y) // H∗(Y, Y \ B) // H∗−1(Y \ B) // · · · .

By [Hat, Proposition 3.46], noting that B is compact and locally contractible and Y is an orientable
manifold, and by Poincaré duality for the manifold B, we can replace the relative terms:

(3.3) H∗(Y, Y \ B) ∼= H2n−∗(B) ∼= H∗−2(B).

For simplicity of bookkeeping, we write b−2(B) = b−1(B) = 0, since these ranks correspond,
via the Poincaré duality in (3.3), to

H−2(B) ∼= H2n(B) = 0 and H−1(B) ∼= H2n−1(B) = 0.

Now taking the alternating sum of the ranks of the terms in the sequence (3.2), we obtain:

0 =

2n∑
k=0

(−1)k [bk(Y \ B) − bk(Y) + bk−2(B)]

=

2n∑
k=0

(−1)kbk(Y \ B) −

2n∑
k=0

(−1)kbk(Y) +

2n−2∑
j=0

(−1)jbj(B)

= χ(Y \ B) − χ(Y) + χ(B).

This completes the proof. �

We now prove a Lemma related to [Hat, Proposition 3.46] that is a dual version of what is com-
monly called Alexander-Lefschetz duality. We adapt the very explicit proof given by Møller [Mø,
Theorem 4.92] to this dual version, taking into account our special case that B is a submanifold of
Y, suitably oriented.

Lemma 3.4. There is an isomorphism Hj(Y, Y \ B;Z) ∼= H2n−j(B;Z).

Proof. Let U be an open neighborhood of B in Y. We begin by recalling the particulars of cap
products. Both Y and B are Z-orientable manifolds, and so we have the following maps induced
by taking a cap product with appropriate orientation classes.

¬ For the compact manifold Y, we have orientation class µY ∈ H2n(Y;Z), which gives

Hj(Y;Z)
µY∩− // H2n−j(Y;Z).

 For the manifold with boundary Y \U, we have the relative orientation class

µY\U ∈ H2n(Y \ B, U \ B;Z),

which gives

Hj(Y \ B;Z)
µY\U∩−

// H2n−j(Y \ B, U \ B;Z).

® For the compact manifold B, we have the relative orientation class

µB ∈ H2n(U,U \ B;Z).

By pre-composing with the excision isomorphism, we have

Hj(Y, Y \ B;Z) ∼= Hj(U,U \ B;Z)
µB∩− // H2n−j(U;Z).

12



We use these maps to produce a diagram, with integer coefficients,

· · · // Hj−1(Y \ B) //


��

Hj(Y, Y \ B) //

®
��

Hj(Y) //

¬
��

Hj(Y \ B) //


��

· · ·

· · · // H2n−(j−1)(Y \ B, U \ B) // H2n−j(U) // H2n−j(Y) // H2n−j(Y \ B, U \ B) // · · ·

where the top row is the long exact sequence of the pair (Y, Y \ B), and the bottom row is the long
exact sequence of the pair (Y,U) where the terms Hk(Y,U) are replaced by Hk(Y \ B, U \ B) via
excision. This diagram commutes: the “up to sign” discrepancy in [Mø, Proof of Theorem 4.92]
disappears because we may choose Y and B to be compatibly oriented.

We next take a limit over the poset U of neighborhoodsU containing B to obtain a limit diagram

(3.5)

· · · // Hj−1(Y \ B) //

·
��

Hj(Y, Y \ B) //

¸
��

Hj(Y) //

¶
��

Hj(Y \ B) //

·
��

· · ·

· · · // H2n−(j−1)(Y \ B) // H2n−j(B)
J
// H2n−j(Y) // H2n−j(Y \ B) // · · ·

which still commutes, and the bottom sequence remains exact under the limit. We observe that
the map J is induced by inclusion. We also note that ¶ and · are Poincaré Duality isomorphisms.
We now apply the Five Lemma to deduce that ¸ is an isomorphism, completing the proof. �

We return to the long exact sequence of the pair (Y, Y \ B), which is the top row in the diagram
(3.5), with integer coefficients understood. The toric symplectic manifold Y has cohomology con-
centrated in even degrees, up to degree 2n. The space B is a disjoint union of toric symplectic
manifolds, therefore its homology is concentrated in even degrees up to degree 2n − 2. Then by
Lemma 3.4 the long exact sequence splits into 4-term exact sequences, with integer coefficients,

(3.6) 0 −→ H2k−1(Y \ B) −→ H2k(Y, Y \ B)
ϕk−→ H2k(Y) −→ H2k(Y \ B) −→ 0.

Thus, we may always identify H2k−1(Y \ B) ∼= ker(ϕk) and H2k(Y \ B) ∼= coker(ϕk).
Let us now look more carefully at the map ϕk. We have a diagram

(3.7)

H2k(Y, Y \ B)
ϕk //

¸
��

H2k(Y)

¶
��

H2n−2k(B)
J
//

∼= PD
��

H2n−2k(Y)

∼= PD
��

H2k−2(B)
ϕ̃k

//_____ H2k(Y)

,

where all vertical maps are isomorphisms, and we define ϕ̃k to be the map that makes the bottom
square commute. Recall from the comments after (3.5) that J is the natural map induced by the
inclusion i : B ↪→ Y. The homology groups of Y and B are isomorphic to the Chow homology
groups of those varieties. The Chow groups of smooth toric varieties are very explicitly under-
stood: they are spanned by classes, one for each T-invariant subvariety. A subvariety in B may be
regarded as a subvariety of Y, and so the map J maps the corresponding class on B to the class
on Y.

When we apply Poincaré duality, we have very explicit presentations of the cohomology rings
H∗(Y;Z) and H∗(B;Z) as the face rings of the corresponding polytopes, modulo linear relations.
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That is, when the moment polytope ∆Y for Y has facets F1, . . . , Fd, we may describe

(3.8) H∗(Y;Z) ∼=
Z[y1, . . . , yd]〈 ∏

i∈I yi

∣∣∣ ⋂i∈I Fi = ∅
+ linear terms

〉 ,

where each yi has degree 2, and is the Poincaré dual of the codimension 2 toric symplectic subman-
ifold corresponding to the facet Fi. The linear terms are determined by the geometry of the normal
vectors to the facets. We note, for bookkeeping purposes, that there are precisely n = 1

2 dim(Y)

independent linear relations. That is, rank(H2(Y)) = d − n. Equation (3.8) is the content of the
Danilov-Jurkiewicz Theorem, which is carefully described in [CLS, Theorem 12.4.4].

For a connected component Bs ⊂ B, the moment image ∆Bs of Bs is one of the facets Fs. The
facets of ∆Bs are each an intersection Fs ∩ Fj, and so as above, we may describe

H∗(Bs;Z) ∼=
Z[bj1 , . . . , bjm ]〈 ∏

i∈I bji

∣∣∣ (⋂i∈I Fji) ∩ Fs = ∅
+ linear terms

〉 .

Because the yi and bi are Poincaré duals to explicit submanifolds of Y and Bs respectively, and
because J is induced by inclusion, we may derive an explicit formula for ϕ̃k. For the component
Bs ⊂ B and a single monomial

∏
i∈I bji ∈ H2k−2(Bs;Z),

ϕ̃k

(∏
i∈I
bji

)
= ys ·

∏
i∈I
yji .

This is not a ring map, as expected.
The following definition extends the notion of prismatic origami manifold (Definition 2.12) to a

wider context. Let A be an open toric symplectic manifold with open moment polytope ∆A. The
lattice N∆A is the sublattice of N spanned by the normal vectors to the facets of ∆A.

Definition 3.9. An open toric symplectic manifoldAwith moment polytope ∆A is prismatic if the
quotient of lattices N/N∆A is Z.

We now turn to ϕ̃1 : H0(B;Z) −→ H2(Y;Z). The group H0(B;Z) ∼= Zr has one generator for
each connected component of B, each corresponding to a facet in ∆Y . The group H2(Y;Z) has one
generator for each facet of ∆Y , modulo linear relations. By our explicit description above, the map
ϕ̃1 takes the generator of H0(B) corresponding to a facet Fs of the polytope ∆Y to the generator
ys ∈ H2(Y;Z) corresponding to the same facet. We may use our explicit description of ϕ̃1 to
determine ker(ϕ̃1) ∼= H1(Y \ B;Z) in general.

Lemma 3.10. The kernel of the map ϕ̃1 : H0(B;Z) −→ H2(Y;Z) is ker(ϕ̃1) ∼= Z if Y \B is prismatic and
trivial otherwise.

Proof. Without loss of generality, we may assume that B corresponds to the disjoint union of facets
F1, . . . , Fr of ∆Y . Let u1, . . . , ud be the primitive outward pointing normals to all the facets of ∆Y .
Then

H0(B;Z) = Zx1 ⊕ . . .⊕ Zxr and H2(Y;Z) = Zy1 ⊕ . . .⊕ Zyd/J,

where J is the ideal of linear relations, which are
∑d
i=1〈v, ui〉yi, for all v ∈ N. Henceforth, we will

abuse notation, and let yi denote the equivalence class yi + J ∈ H2(Y;Z).
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The map ϕ̃1 is given by ϕ̃1(xi) = yi. Therefore an element
∑r
i=1 aixi ∈ H0(B;Z) is in the kernel

of ϕ̃1 if and only if there exists a v ∈ N such that

r∑
i=1

aiyi =

d∑
i=1

〈v, ui〉yi.

Equivalently, v ∈ Nmust satisfy

(3.11) 〈v, ui〉 = ai for i = 1, . . . , r and 〈v, ui〉 = 0 for i = r+ 1, . . . , d.

The second half of (3.11) means that v ∈ (N∆Y\B)
⊥.

If Y \ B is not prismatic, then the lattice quotientN/N∆Y\B is either trivial or finite cyclic, which
implies that (N∆Y\B)

⊥ is trivial and so ker(ϕ̃1) is trivial as well.
If Y \ B is prismatic, then (N∆Y\B)

⊥ ∼= Z and a generator v of (N∆Y\B)
⊥ will provide a non-zero

element
∑d
i=1〈v, ui〉yi ∈ J, and therefore gives a generator

∑r
i=1〈v, ui〉xi of ker(ϕ̃1). �

We can now prove the main result of the section.

Theorem 3.12. Let Y be a 2n-dimensional toric symplectic manifold with moment polytope ∆Y , and let d
denote the number of facets of ∆Y . Let B be a non-empty codimension 2 toric symplectic submanifold with
r connected components. We may compute the following Betti numbers of Y \ B.

Y \ B prismatic Y \ B not prismatic
b0(Y \ B) 1 1

b1(Y \ B) 1 0

b2(Y \ B) d− n− 1 d− n− r

b2n−1(Y \ B) 1 r− 1

b2n(Y \ B) 0 0

Proof. We begin by noting that if Y \B is prismatic then B necessarily has r = 2 connected compo-
nents. Using this, we will determine all rows simultaneously in the prismatic and non-prismatic
cases.

Computation of b0(Y \ B). The manifold Y \ B is connected, so b0(Y \ B) = 1. 4

Computation of b1(Y \ B). Recall that ker(ϕ̃1) ∼= H1(Y \ B;Z). Lemma 3.10 says b1(Y \ B) = 1

when Y \ B is prismatic, and b1(Y \ B) = 0 otherwise. 4

Computation of b2(Y \ B). We now identify the terms of (3.6) in the case k = 1:

0 // H1(Y \ B) // H2(Y, Y \ B) ∼= H2(B) ∼= Zr // H2(Y) ∼= Zd−n // H2(Y \ B) // 0 .

A dimension count proves that

b2(Y \ B) = b1(Y \ B) + d− n− r.

Substituting b1(Y \ B), and r = 2 in the prismatic case, completes the calculation. 4

Computation of b2n(Y \ B). We note that Y \ B is homotopy equivalent to a manifold X with
boundary Z. Poincaré duality for manifolds with boundary implies that

H2n(Y \ B;Z) ∼= H2n(X;Z) ∼= H0(X,Z;Z).
15



We note that relative cohomology H0(X,Z;Z) ∼= H̃0((X/Z;Z), and this is 0 because X/Z is con-
nected. 4

Computation of b2n−1(Y \ B). We now identify the terms of (3.6) in the case k = n:

0 −→ H2n−1(Y \ B) −→ H2n(Y, Y \ B) ∼= H2n−2(B) ∼= Zr −→ H2n(Y) ∼= Z −→ H2n(Y \ B) = 0 −→ 0

We have the rightmost equality H2n(Y \ B) = 0 by the previous computation. A dimension count
now proves that b2n−1(Y \ B) = r − 1. Substituting r = 2 in the prismatic case completes the
calculation. 4 �

We note that when n = 2, Theorem 3.12 gives all the Betti numbers of Y \ B. Even in higher
dimensions, in specific examples, it is often tractable to compute the various maps ϕ̃k, and to
compute all of the Betti numbers, as well as torsion in the cohomology groups H∗(Y \ B;Z). We
conclude the section with such an example.

Example 3.13. Let Y be the toric variety CP1×CP1×CP1 blown up at one fixed point. This has the
moment polytope shown in Figure 3.14. In our calculations below, we will use the linear relations

x
yz

F0

F1

F2

F3

F5

F4

F6

x
yz

FIGURE 3.14. The moment map image for the T3 action on CP1×CP1×CP1 blown
up at one fixed point. The polytope is a cube truncated at one vertex.

to simplify the presentations of the cohomology rings: that is, we will use them to reduce the
number of degree 2 generators. We have:

H∗(Y;Z) =
Z[y0, y1, y2, y3, y4, y5, y6]〈

y1y2 , y3y4 , y5y6 , y0y1 , y0y3 , y0y5 , y2y4y6

−y0 + y3 − y4 , −y0 + y5 − y6 , −y0 + y1 − y2

〉
∼=

Z[y0, y2, y4, y6]〈
y20 − y

2
2 , y

2
0 − y

2
4 , y

2
0 − y

2
6

y20 + y0y2 , y
2
0 + y0y4 , y

2
0 + y0y6 , y2y4y6

〉 .
We next compute the cohomology of B:

H∗(B0;Z) =
Z[b2, b4, b6]

〈b2b4b6 , b4 − b6 , b2 − b4〉
∼=

Z[b2]〈
b32
〉 ; and

H∗(B1;Z) =
Z[b3, b4, b5, b6]

〈b3b4 , b5b6 , b3 − b4 , b5 − b6〉
∼=

Z[b4, b6]〈
b24 , b

2
6

〉 .
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Putting these two calculations together, and using x0 and x1 as degree zero dummy variable place-
holders, we have

H∗(B;Z) = x0
Z[b2]〈
b32
〉 ⊕ x1

Z[b4, b6]〈
b24 , b

2
6

〉 .
We know that ϕ̃k maps bi to yi, and xi to yi. It is only a matter of bookkeeping to compute

H0(Y \ B;Z) = Z
H1(Y \ B;Z) = ker(ϕ̃1) = 0

H2(Y \ B;Z) = coker(ϕ̃1) = span{y4 , y6} ∼= Z2

H3(Y \ B;Z) = ker(ϕ̃2) = 0

H4(Y \ B;Z) = coker(ϕ̃2) = span{y4y6} ∼= Z
H5(Y \ B;Z) = ker(ϕ̃3) = span{x0b22 − x1b4b6} ∼= Z
H6(Y \ B;Z) = coker(ϕ̃3) = 0.

4. ASSEMBLING H∗(M) FROM H∗(M \ Z)

In this section, we study the cohomology of toric origami manifolds. There are a number of
cases where we can already deduce a number of facts about the cohomology of a toric origami
manifold. We begin by reviewing these.

The first case is when the template graph is acyclic: this is the topic of or first paper [HP]. In
that case, the cohomology of M is concentrated in even degrees and the equivariant cohomology
is given by a GKM-type description as detailed in [HP], or a Stanley-Reisner face ring [MPan,
Theorem 7.7]. Furthermore, the ring structure on H∗(M;Z) can be determined completely from
the discrete geometry of the orbit space, as described in [MPan, Corollary 7.8].

The second case where the cohomology ring is determined is when M is prismatic. Then by
Proposition 2.11, M is homeomorphic to Y × T2, for a toric symplectic manifold Y. Therefore the
cohomology ring is determined by the Künneth formula, even over Z since the cohomology of
each factor is torsion-free.

We now focus on the non-prismatic case, where we can obtain some partial results even for
the cyclic case. We will use a Mayer-Vietoris sequence to obtain the Betti numbers of an arbitrary
non-prismatic 4-dimensional toric origami manifold. We first note that in general,

H0(M;Z) ∼= H2n(M;Z) = Z

because M is a connected 2n-dimensional manifold. Less trivially, H2n−1(M;Z) ∼= H1(M;Z) is
the abelianization of π1(M). By Theorem 2.14, it is thus N/NX × Z`, where ` = 1 + R − L is the
number of linearly independent cycles in the template graph, which has L vertices and R edges.
We also note that the universal coefficients theorem then guarantees that H1(M;Z) ∼= Z` and that
the torsion in H2(M;Z) is precisely N/NX.

We now proceed with our Mayer-Vietoris sequence. We enumerate the connected components
A1, . . . , AL of M \ Z and cover M by open neighborhoods of each Ai. These open neighborhoods
may be chosen so that they deformation retract to the Ai, and their intersections deformation

17



retract onto components of Z. The Mayer-Vietoris sequence, with integer coefficients, is
(4.1)
0 // H0(M) //

⊕L
i=1H

0(Ai) // H0(Z) // H1(M) //
⊕L
i=1H

1(Ai) // H1(Z) EDBC
GF@A

// H2(M) //
⊕L
i=1H

2(Ai) // H2(Z) // H3(M) //
⊕L
i=1H

3(Ai) // H3(Z) EDBC
GF@A

// H4(M) //
⊕L
i=1H

4(Ai) // . . . .

The techniques of Section 3 often allow us to compute the ranks of the terms
⊕L

i=1H
k(Ai). The

connected components of Z are S1-bundles over compact toric symplectic manifolds of dimension
2n−2. In some cases, we may identify these explicitly. If we can make both of these computations,
it may then be possible to determine the Betti numbers of M. In particular, when 2n = 4, we may
complete all of these steps. We will also include an example in dimension 2n = 6.

Theorem 4.2. LetM be a 4-dimensional toric origami manifold. IfM is prismatic, then it is homeomorphic
to S2 × T2 and its Betti numbers are

b0(M) = b4(M) = 1 and b1(M) = b2(M) = b3(M) = 2.

If M is non-prismatic, let L be the number of vertices and R the number of edges of its template graph, and
MT denote the set of (isolated) fixed points. Then

bi(M) =


1 i = 0 , 4

1+ R− L i = 1 , 3

#
(
MT)+ 2R− 2L i = 2

In particular, in both cases the Euler characteristic is χ(M) = #
(
MT).

Proof. In the prismatic case, the result is a consequence of Proposition 2.11 and the Künneth for-
mula. In this case, χ(M) = #

(
MT) = 0.

We now turn to the non-prismatic case. Let X =M/T be the orbit space of M. The fixed points
MT correspond to vertices of X (not to be confused with vertices of the template graph!).

We first consider the terms
⊕L

i=1H
∗(Ai) in (4.1). We begin by noting that when dim(M) = 4,

Theorem 3.12 determines all the Betti numbers of each piece Ai. Let P be the number of prismatic
Ai’s. Note that for 2-dimensional polytopes the number of facets (i.e. edges!) equals the number
of vertices. A careful application of Theorem 3.12 now gives us:

N∑
i=1

b1(Ai) = P ;

N∑
i=1

b2(Ai) = #
{

vertices of X
}
+ 2R− 2L+ P;

N∑
i=1

b3(Ai) = 2R− L;

N∑
i=1

b4(Ai) = 0.
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We now turn to the terms H∗(Z) in (4.1). When dimM = 2n = 4, each Z is an S1-bundle over
a toric symplectic 2-sphere, and is therefore diffeomorphic to S1 × S2, to S3 or to a 3-dimensional
lens space L = L(p; 1). The Betti numbers of these spaces are:

bj(S1 × S2) =

{
1 if j = 0, 1, 2, 3
0 otherwise

and bj(S3 or L) =

{
1 if j = 0, 3
0 otherwise

.

We do know that b0(M) = b4(M) = 1 and b1(M) = b3(M) = 1 + R − L. Thus, the only group
in the sequence (4.1) whose rank we do not know is H2(M). We proceed by dimension count. Let
Q be the number of connected components of Z diffeormorphic to S1 × S2. Taking the alternating
sum of the dimensions of the groups in the Mayer-Vietoris sequence (4.1), we have

1− L+ R− (1+ R− L) + P −Q+ b2(M) −
(
#
{

vertices of X
}
+ 2R− 2L+ P

)
+

+Q− (1− R+ L) + (2R− L) − R+ 1 = 0⇔b2(M) = #
{

vertices of X
}
+ 2R− 2L,

completing the proof. �

Remark 4.3. An edge (1-dimensional face) of the orbit space X of a toric origami manifold M is
either is a loop or has two end vertices. In the first case the edge is the moment image of a 2-torus,
in the second it is the moment image of a sphere, with the end vertices being the image of the north
and south poles of that sphere. As a consequence, X can never have exactly one vertex, and M
can never have exactly one fixed point. Thus, the Euler characteristic of a toric origami manifold
cannot be equal to 1.

The manifold CP2#(S1 × S3), made up of the building blocks mentioned in Remark 2.18, has
Euler characteristic

χ
(
CP2#(S1 × S3)

)
= χ(CP2) + χ(S1 × S3) − χ(S4) = 3+ 0− 2 = 1

and therefore does not admit a toric origami structure.

Remark 4.4. The second Betti number of a toric origami manifold bears a resemblance to that of a
toric symplectic manifold. We have just seen that for a 4-dimensional toric origami manifold M,
setting ` = 1+ R− L,

b2(M) = #
{

vertices inM/T
}
− 2+ 2` .

For a toric symplectic manifold Y of dimension 2n,

(4.5) b2(Y) = #
{

facets in Y/T
}
− n .

In dimension 4, we can rewrite (4.5) as

b2(Y) = #
{

vertices in Y/T
}
− 2 .

Thus, these two descriptions are the same, up to a correction for the rank ` of π1(M/T).

Example 4.6. Let M1 be the toric origami manifold described in Figure 4.7, left and center. This
information completly determines the template and therefore the manifold. Its template graph
has 4 vertices and 4 edges, and the manifold has 4 fixed points. Using Theorem 4.2 we conclude
that the Betti numbers of this manifold are:

b0(M1) = b
1(M1) = b

3(M1) = b
4(M1) = 1 and b2(M1) = 4.
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FIGURE 4.7. Left: the template graph of a toric origami manifoldM1.
Center: the moment image of the toric origami manifoldM1.
Right: the template graph of a toric origami manifold M2 obtained from taking
two copies ofM1 and gluing their orbit spaces along 4 pairs of non-folded facets.

The orbit space of M1 has 4 non-folded facets, each corresponding to a symplectic 2-sphere em-
beded in M1. Let M2 be the toric origami manifold obtained by taking two copies of M1 and
gluing them together along each of the 4 pairs of symplectic 2-spheres with the same moment
image. The resulting template graph is on the right hand side of Figure 4.7 and has 8 vertices and
12 edges. The vertices and edges that appear in each of the two concentric square rings of this
template graph correspond to the two copies of M1, the remaining 4 edges in the template graph
correspond to the new connected components of the fold. The manifold M2 thus created has no
fixed points. Using Theorem 4.2 we obtain its Betti numbers:

b0(M2) = b
4(M2) = 1, b

1(M2) = b
3(M2) = 5, b

2(M2) = 8.

Example 4.8. We now turn to a higher dimensional example for which the computations are still
tractable and for which we can obtain all the Betti numbers. Let M be obtained from two copies
of the manifold examined in Example 3.13, glued together along the two agreeing pairs of facets
marked in red.
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FIGURE 4.9. Left: the template graph of the manifold M. Right: each vertex of
the template correponds to a copy of the toric symplectic manifold with moment
image a truncated cube (the same as in Figure 3.14). One edge of the template
graph corresponds to gluing together the pair of facets F0, the other edge to gluing
togehter the pair of facets F1.

Most of the terms in the Mayer Vietoris sequence with integer coefficients (4.1) are known, the⊕L
i=1H

∗(Ai) terms from Example 3.13 and the H∗(Z) terms from direct computation. Indeed, Z is
the disjoint union Z = S5 t

(
S2 × S2 × S1

)
, the first with moment moment image the facet F0 and
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the second with moment image the facet F1 in Figure 4.9, and therefore:

Hk(Z;Z) =

{
Z2 for k = 0, 2, 3, 5

Z for k = 1, 4.

Furthermore, we know that H0(M;Z) = H6(M;Z) = Z because M is a 6-dimensional connected
manifold and that H1(M;Z) = Z and H5(M;Z) = Z because π1(M) = Z. Taking an alternating
sum of the ranks of the groups in the sequence (4.1), we obtain the remaining Betti numbers ofM:

b0(M) = b1(M) = b3(M) = b5(M) = b6(M) = 1 and b2(M) = b4(M) = 2.
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