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Abstract 

The Late Cretaceous–Early Paleogene is the most recent period in Earth history that 

experienced sustained global greenhouse warmth on multi-million year timescales. Yet, 

knowledge of ambient climate conditions and the complex interplay between various forcing 

mechanisms are still poorly constrained. Here we present a 14.75 million year-long, high-

resolution, orbitally-tuned record of paired climate change and carbon-cycling for this 

enigmatic period (~67–52 Ma), which we compare to an up-to-date compilation of 

atmospheric pCO2 records. Our climate and carbon-cycling records, which are the highest 

resolution stratigraphically complete records to be constructed from a single marine site in 

the Atlantic Ocean, feature all major transient warming events (termed “hyperthermals”) 

known from this time period. We identify eccentricity as the dominant pacemaker of climate 

and the carbon cycle throughout the Late Maastrichtian to Early Eocene, through the 

modulation of precession. On average, changes in the carbon cycle lagged changes in climate 

by ~23,000 years at the long eccentricity (405,000 year) band, and by ~3,000–4,500 years at 

the short eccentricity (100,000 year) band, suggesting that light carbon was released as a 

positive feedback to warming induced by orbital forcing. Our new record places all known 

hyperthermals of the Late Maastrichtian–Early Eocene into temporal context with regards to 

evolving ambient climate of the time. We constrain potential carbon cycle influences of 

Large Igneous Province volcanism associated with the Deccan Traps and North Atlantic 

Igneous Province, as well as the sensitivity of climate and the carbon-cycle to the 2.4 million-

year-long eccentricity cycle. 

Plain language summary 

The study of globally warm climates and short-lived warming events in Earth’s past can 

provide unrivaled insights into the challenges that mankind may face over the next few 

generations. Using samples recovered from an ocean drill core in the deep South Atlantic, we 

have generated continuous temperature and carbon cycle records from the calcite shells of a 

single microfossil species, spanning a period of globally warm climate from 67 to 52 million 

years ago, before the development of permanent large-scale polar ice sheets. Our record 

contains a number of rapid warming events, allowing us to determine their origin. We find 

that changes in the shape of Earth’s orbit around the Sun initiated warming at Earth’s surface, 

which was then amplified by the release of greenhouse gases from temperature- or climate-

sensitive carbon stores (e.g., peat, permafrost or methane hydrates). These rapid warming 

events increased in frequency and magnitude during the warmer climate intervals 

characterized by significant volcanic activity, suggesting that such carbon stores become 

more unstable during warmer climates. As our climate warms at unprecedented rates, the 

release of greenhouse gases from naturally-occurring temperature- or climate-sensitive 

carbon stores could also form an additional and largely unconstrained contribution to future 

climate change. 
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1 Introduction 

The global greenhouse climate of the latest Cretaceous to Early Paleogene (~67–52 

million years ago, Ma) has been the subject of heightened interest in recent years, largely 

because this interval was punctuated by massive upheavals in both the geosphere and 

biosphere, including a bolide impact at the Cretaceous/Paleogene (K/Pg) boundary (66.02 

Ma; Schulte et al., 2010), LIP volcanism in the Deccan Traps (~66 Ma; Renne et al., 2015; 

Schoene et al., 2015), and North Atlantic Igneous Province (NAIP; ~63–60 & ~57.5–54 Ma; 

Sinton & Duncan, 1998), and transient “hyperthermals”, such as the Paleocene–Eocene 

Thermal Maximum (PETM, ~55.9 Ma; McInerney & Wing, 2011). The release of massive 

quantities of greenhouse gases (either carbon dioxide or methane) over a geologically brief 

time period of 10’s of thousands of years, rapid global warming at both Earth’s surface and in 

the deep-ocean, and acidification of the oceans resulting in enhanced dissolution of deep-sea 

carbonates, characterized many of these hyperthermal events (McInerney & Wing, 2011; 

Zachos et al., 2005). Many proxy and modeling studies have focused on the hyperthermal 

events (e.g., Panchuk et al., 2008; Zeebe et al., 2009), since they may represent the closest 

geological analogues for future anthropogenic climate change, but our knowledge of 

background ambient climate outside of these events is incomplete. 

Orbital cyclicity of varying frequencies acts as the pacemaker of Earth’s climate 

system and carbon cycle throughout the Cretaceous and Paleogene (e.g., Husson et al., 2011; 

Kirtland Turner et al., 2014; Sexton et al., 2011), with the well-studied Late Paleocene–Early 

Eocene hyperthermals known to be paced by the 100,000 and 405,000 year (100- and 405-

kyr) eccentricity beat (Littler et al., 2014; Westerhold et al., 2017; Zachos et al., 2010). While 

Eocene hyperthermals such as the PETM have been studied extensively with geochemical, 

paleontological, sedimentological and modeling techniques, much of the climate of the 

preceding Paleocene has been comparatively neglected, with only lower resolution semi-

continuous single-site records and stacked records from multiple sites spanning this time 

interval (Cramer et al., 2009; Westerhold et al., 2011, 2018; Zachos et al., 2001, 2008). 

Indeed, a number of smaller climatic perturbations have recently been proposed in the latest 

Maastrichtian (Late Maastrichtian warming event; LMWE; ~66.2 Ma; Barnet et al., 2017) 

and the Early–Middle Paleocene, including the Dan-C2 event (65.9–65.7 Ma; Quillévéré et 

al., 2008), the Latest Danian Event (LDE, ~62.1–62.0 Ma; Bornemann et al., 2009; Deprez et 

al., 2017; Westerhold et al., 2011), and the Danian/Selandian Transition Event (D/STE, 

~61.4–61.2 Ma; Arenillas et al., 2008). There is currently little evidence for a deep-sea 

temperature response for some of these events, such as the Dan-C2, as they have mainly been 

described from marine continental shelf settings. Establishing whether these and other events 

are global in scale, and placing them in the context of background orbital scale variability, is 

essential for ultimately understanding their origin and/or impacts. Moreover, with high-

fidelity records of the climate and carbon cycle extending over tens of millions of years, an 

opportunity exists to assess if and how Earth system sensitivity to cyclical forcing in 

insolation changes with baseline boundary conditions (e.g., continental geography, ocean 

gateways and atmospheric greenhouse gas levels). 

We present the longest (14.75 million year), highest resolution (1.5–4 kyr), 

stratigraphically continuous, single-species benthic foraminiferal carbon (δ
13

Cbenthic) and 

oxygen (δ
18

Obenthic) isotope records for the Late Maastrichtian to Early Eocene (~67.1–52.35 

Ma) from a single site in the South Atlantic Ocean (Ocean Drilling Program [ODP] Site 

1262), calibrated to an updated orbitally-tuned age model. This record, generated by multiple 

studies, allows us to examine the evolution of climate and carbon-cycling during this 

enigmatic greenhouse world at unprecedented resolution. Spectral analysis of these records 

allows us to identify the principle forcing mechanisms, whilst phasing between the records 
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offers an insight into the genesis of cyclic perturbations to Earth’s climate and carbon cycle 

during this time. We further place all known hyperthermals into a robust cyclostratigraphic 

framework, and use our record to determine if the poorly studied Early Paleocene Dan-C2 

event can be classified as a global hyperthermal, with a pronounced deep-sea temperature 

response. 

2 Materials and Methods 

2.1 Stable isotope record 

This study is based on a stratigraphically continuous section of Late Maastrichtian–

Early Eocene clayey nannofossil ooze recovered from ODP Site 1262 on Walvis Ridge in the 

South Atlantic (27°11.15′S, 1°34.62′E; water depth 4759 m, paleo-water depth ~3000–3500 

m; Figure 1; Shipboard Scientific Party, 2004). We generated 873 new paired single-species 

(Nuttallides truempyi) δ
13

Cbenthic and δ
18

Obenthic data for the Early–Middle Paleocene on an 

IsoPrime 100 Gas Source Isotope Ratio Mass Spectrometer in dual inlet mode equipped with 

a Multiprep Device, at the Natural Environment Research Council (NERC) Isotope 

Geosciences Facility, British Geological Survey. Long-term analytical error (1σ) was 0.03 ‰ 

for δ
13

C and 0.05 ‰ for δ
18

O. We combined our new record with the Late Maastrichtian–

Early Danian (Barnet et al., 2017), Late Paleocene–Early Eocene (Littler et al., 2014), PETM 

(McCarren et al., 2008), Eocene Thermal Maximum 2 (Stap et al., 2010) and Early Eocene 

(Lauretano et al., 2015) records generated from the same site, to create continuous 14.75 

million year-long benthic stable isotope records spanning the Late Maastrichtian to Early 

Eocene (~67.10–52.35 Ma; Figure 2). Spectral analysis methods are described in Supporting 

Information Text S5. 

2.2 Age model 

An updated orbitally-tuned age model is provided for this site based on recognition 

and counting of the stable 405-kyr eccentricity cycle in our δ
13

Cbenthic dataset (Dinarès-Turell 

et al., 2014; Littler et al., 2014; Westerhold et al., 2008), correlated to the La2010b solution 

of Laskar et al. (2011) and anchored to astronomical ages of 66.0225 Ma and 55.93 Ma for 

the K/Pg boundary and PETM, respectively (Dinarès-Turell et al., 2014; Westerhold et al., 

2007). Whilst other orbital solutions are available, Westerhold et al. (2017) have recently 

shown that La2010b represents the optimal astronomical solution for orbital tuning of deep-

sea sediment cores older than 52 Ma, based on the modulation of short (100-kyr) eccentricity 

cycles by long (405-kyr) eccentricity, evident in high-resolution Fe intensity records from 

multiple Walvis Ridge sites. Age model tie points are provided in Table S3. 

2.3 Integration of other proxy data 

We use the difference between published bulk carbonate carbon isotope (δ
13

Cbulk; 

Kroon et al., 2007; Littler et al., 2014; Lourens et al., 2005; Zachos et al., 2005, 2010) and 

our benthic δ
13

C data (δ
13

Cbulk–δ
13

Cbenthic gradient) to qualitatively approximate the surface-

to-deep carbon isotope gradient and hence relative shifts in surface-ocean dissolved inorganic 

carbon (DIC) δ
13

C. We consider this to be a reasonable approach since the majority of the 

carbonate component of sediments from this site (δ
13

Cbulk) is composed of calcareous 

nannofossils and planktic foraminifera (Shipboard Scientific Party, 2004). Hence, we 

recognize that bulk carbonate δ
13

C can be influenced by other factors such as changes in 

assemblages and preservation. Furthermore, we use published elemental Fe intensities as a 

proxy for terrigenous clay content and therefore for carbonate dissolution (Westerhold et al., 
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2007, 2008).  We have also produced an up-to-date compilation of over 100 atmospheric 

pCO2 estimates from 18 different studies, placed onto a common age model. We have 

recalibrated the pCO2 estimates based on the pedogenic carbonate proxy using the Cerling 

paleobarometer (Cerling, 1999), with an updated soil-respired CO2 concentration of 2500 

ppm (Breecker et al., 2010; see Supporting Information), and have recalibrated those based 

on the stomatal index proxy after Barclay & Wing (2011), using a power curve regression 

method. 

3 Results and discussion 

 3.1 Late Maastrichtian–Early Eocene carbon cycle and climate evolution 

We observe an overall long-term decrease in δ
18

Obenthic values from +0.6 ‰ to –0.7 

‰, corresponding to warming of ~6.5°C, from the Late Maastrichtian (~67.1 Ma) to Early 

Eocene (~52.3 Ma; Figure 2f). This is accompanied by an overall decrease of ~1.4 ‰ in 

δ
13

Cbenthic values (Figure 2d), consistent with release of isotopically light carbon into the 

exogenic carbon cycle, and/or a shift in the relative fluxes of carbon between reservoirs 

(Komar et al., 2013). This long term decrease in δ
13

Cbenthic values is interrupted by a 

prominent high in the Late Paleocene corresponding to the well-known Paleocene Carbon 

Isotope Maximum (PCIM), which likely reflects sequestration of light carbon in reduced 

marine or terrestrial reservoirs. Although there is considerable scatter and a paucity of 

Paleocene data, atmospheric pCO2 values generally rise from ~100–700 ppm during the 

earliest Paleocene to ~100 to >1000 ppm during the Late Paleocene–Early Eocene (Figure 

2a), suggesting an overall increase in greenhouse gas levels during this time. Elemental Fe 

concentrations in sediments deposited at ODP Site 1262 also decreased markedly from the 

Early Paleocene through to the Early Eocene (Figure 2g), whilst sedimentation rates 

markedly increase (from ~0.2 to ~1.7 cm/kyr) over the same time interval (Figure 2h). This 

pattern could be interpreted to reflect increased CaCO3 preservation at the study site as a 

result of a progressively deepening lysocline, and a corresponding dilution of the terrestrially-

derived Fe content. Assuming the calcite compensation depth (CCD) exhibits a similar trend, 

this pattern would be consistent with proxy data from the Indian Ocean (Slotnick et al., 

2015), and modeling studies of the Atlantic and Pacific (Komar et al., 2013). As a result of 

the general rise in background atmospheric pCO2, lysocline deepening is likely related to a 

rise in alkalinity due to increased chemical weathering and delivery of solutes to the global 

ocean under increasingly warm and humid greenhouse conditions during the Late Paleocene 

to Early Eocene (Hilting et al., 2008). However, some of the Paleocene–Early Eocene 

elemental Fe intensity and sedimentation rate patterns could be explained by shifts in 

biogenic carbonate productivity and/or variations in the flux of wind-blown aeolian dust from 

the African continent, without invoking dissolution of calcium carbonate. This is particularly 

true for the first 1–2 million years of the Paleocene, when biogenic carbonate productivity 

was likely to have been significantly reduced following the K/Pg mass extinction (Zachos & 

Arthur, 1986), resulting in the highest elemental Fe intensities and lowest sedimentation rates 

(~0.2–0.5 cm/kyr) of the early Paleogene at ODP Site 1262 (Figure 2g,h). 

Superimposed on Late Maastrichtian to Early Eocene warming were shorter-term 

shifts in Earth’s climate and biosphere. At ODP Site 1262, the mass extinction within marine 

biota across the K/Pg boundary is accompanied by a highly unusual reversal of the surface-

to-deep carbon isotope gradient (δ
13

Cbulk shifts by > –2.5 ‰ whereas δ
13

Cbenthic changes by 

only ~–0.8 ‰; Figure 2c,d,e). This apparent reversal can be explained by extreme vital 

effects within the very small opportunistic planktic foraminifera species which evolved in the 

immediate aftermath of the K/Pg boundary (Birch et al., 2012, 2013), along with partial 

collapse of the biological pump following the K/Pg mass extinction (D’Hondt et al., 1998), 
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resulting in reduced surface water primary productivity and decreased remineralization of 

isotopically more negative Corg at depth (Birch et al., 2016). The pre-K/Pg surface-to-deep 

isotope gradient was not completely restored until the Danian/Selandian Transition Event 

(D/STE), over 4.5 million years after the K/Pg mass extinction, suggesting long-term 

disruption to marine ecosystems and the carbon cycle (Figure 2e).  

The coolest conditions of the Paleocene occurred between ~61–58 Ma, broadly 

coincident with the PCIM, when our study site was characterized by bottom water 

temperatures of ~7°C (Figure 2f). Cooler global temperatures at this time were likely 

facilitated by the burial of significant volumes of carbon in either biogenic CH4 hydrates 

beneath the continental shelves (Dickens, 2003), low-latitude peat deposits (Kurtz et al., 

2003), or high-latitude permafrost (DeConto et al., 2012), to produce the positive carbon 

isotope signature of the ocean-atmosphere system that we observe. This period of cool 

temperatures and carbon sequestration was followed by a long-term warming trend from the 

Late Paleocene–Early Eocene, triggered by rising atmospheric pCO2 levels and perhaps an 

intensification of bottom water mass exchange between the North and South Atlantic, 

enhancing poleward heat transport (Batenburg et al., 2018). Significant temperature- and 

climate-sensitive carbon reservoirs were therefore primed to be episodically released as 

ambient climate warmed and periodically crossed critical thresholds, resulting in pulsed 

release during the hyperthermals and smaller climatic perturbations of the Late Paleocene to 

Early Eocene (Zachos et al., 2010). 

 

3.2 Comparison between the South Atlantic and equatorial Pacific 

A comparison between the new benthic stable isotope records from ODP Site 1262 

and published coeval records from equatorial Pacific ODP Site 1209 (Westerhold et al., 2011, 

2018), highlights the synchronicity of the long-term trends exhibited by the deep-sea carbon 

isotopes and temperature between both ocean basins, demonstrating the trends are indeed 

global (Figure 3). Similarly, many of the hyperthermal events and smaller climatic 

perturbations identified within our records from ODP Site 1262 are also expressed within the 

equatorial Pacific record. Moreover, the ODP Site 1209 δ
13

Cbenthic data are generally offset 

from the ODP Site 1262 data towards more negative values, typically by ~–0.2–0.4 ‰, 

suggestive of an older deep-water mass (characterized by a lighter carbon isotope signature) 

bathing the equatorial Pacific site (Figure 3). This is broadly consistent with independent 

evidence for early Paleogene ocean circulation patterns inferred from neodymium isotope 

data, which suggest a bi-modal source of deep-water formation from North Pacific Deep 

Water (NPDW) and South Pacific Deep Water (SPDW) sources in the Pacific, but a single 

source from the Southern Ocean in the Atlantic (Batenburg et al., 2018; Thomas, D.J. et al., 

2003, 2008; Figure 1). Based on the paleo-latitudes of ODP Site 1262 and ODP Site 1209 

during the early Paleogene (Figure 1), ODP Site 1262 would have been located significantly 

closer to deep-water formation in the Atlantic sector of the Southern Ocean than ODP Site 

1209 would have been to the source regions of either SPDW or NPDW (Figure 1). 

The Atlantic-Pacific offset in δ
13

Cbenthic is not stable throughout the latest Cretaceous 

to Early Eocene, suggesting periodic decoupling between the two basins. Periods 

characterized by decoupling between the Atlantic and Pacific include the collapse of the 

gradient in the aftermath of the K/Pg boundary, apparently antiphase behavior during the 

latest Maastrichtian, and a reduction in the gradient following the PETM (Figure 3). The 

collapse in surface-ocean primary productivity following the K/Pg mass extinction is likely to 

be the primary explanation for the reduction in the Atlantic-Pacific gradient at the start of the 

Paleocene, which would have resulted in less negative δ
13

Cbenthic values in the oldest deep-

ocean water masses globally. There is also evidence, however, for transient shifts in the 

predominance of NPDW and SPDW sources in the equatorial Pacific during the Late 
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Maastrichtian based on neodymium isotopes (Dameron et al., 2017). These include an influx 

of older and more corrosive SPDW during the LMWE, and a reversal to younger less 

corrosive predominantly NPDW as the climate cooled during the LMWE recovery. Assuming 

there are no age model inconsistencies between the Atlantic and Pacific sites, the incursion of 

an older water mass during the LMWE may explain the antiphase behavior between the 

carbon isotope records across this event. Meanwhile, the incursion of younger NPDW 

immediately prior to the K/Pg boundary may also account for a portion of the collapse in the 

carbon isotope gradient immediately before and following the K/Pg boundary, as the relative 

difference in the age of the water masses bathing ODP Sites 1262 and 1209 during this time 

may have been reduced. Although the development of a low latitude source(s) of salty deep 

water proximal to the Pacific may have contributed to the reduction in the carbon isotope 

gradient between the Atlantic and Pacific during and following the PETM (Bice et al., 1997), 

a reduction in the volume of deep-water production in the Southern Ocean may have occurred 

due to polar amplification of surface-ocean warming in the high latitudes (Lunt et al., 2010). 

A change to a more slugglish thermohaline circulation during this time may have decreased 

ventilation of deep-ocean bottom waters, explaining evidence for benthic foraminiferal 

extinction (Thomas, E., 2003), as well as partially homogenized differences in age of the 

deep water masses between the Atlantic and Pacific. 
 

3.3 Was the Dan-C2 event a global hyperthermal? 

Our high-resolution records also shed new light on the Dan-C2 event of the Early 

Paleocene and whether this event can be classified as a small global hyperthermal, analogous 

to others of the Early Paleocene such as the LDE (Figure 4; Figure 5; see Figure 2 for 

stratigraphic positions of the Dan-C2 and LDE). The Dan-C2 event is characterized by 

significant negative excursions within planktic foraminiferal and bulk carbonate carbon and 

oxygen isotope data from the South Atlantic (Kroon et al., 2007), NW Atlantic (Quillévéré et 

al., 2008) and Tethyan margin (Coccioni et al., 2010; Figure 4b), and also appears to be 

orbitally-paced, with inception during the first 405-kyr eccentricity maximum (Pc4051) of the 

Paleocene, following the K/Pg boundary (Figure 4a). This led some to suggest that the Dan-

C2 event could represent the first hyperthermal of the Paleocene epoch (Quillévéré et al., 

2008; Coccioni et al., 2010), even though no existing benthic records exhibit a strong 

temperature response. We observe no transient bottom water warming in our new high-

resolution δ
18

Obenthic data from ODP Site 1262 during this supposed event, in agreement with 

lower resolution δ
18

Obenthic data from the equatorial Pacific and NW Atlantic (Quillévéré et 

al., 2008; Westerhold et al., 2011), strongly suggesting that the global deep ocean did not 

warm during Dan-C2 (Figure 4c; Figure 5b). Similarly, in contrast to the large negative 

excursion observed in δ
13

Cbulk (Kroon et al., 2007; Figure 4b), we also observe a muted 

response during the event in our δ
13

Cbenthic data from ODP Site 1262 (Figure 4c; Figure 5a). 

The significantly larger excursion in δ
13

Cbulk (Figure 4b), which is dominated by signals from 

calcareous nannofossils and planktic foraminifera, is likely an artefact due to a combination 

of: a) a significant reduction in surface-ocean productivity, and b) the proliferation of 

unusually small opportunistic planktic foraminifera species characterized by extreme vital 

effects immediately prior to the onset of Dan-C2 (Birch et al., 2012, 2013). Whilst the time 

interval immediately following the K/Pg mass extinction is characterized by the highest Fe 

intensities and lowest sedimentation rates at ODP Site 1262 (Figure 2g,h; Figure 4d; Figure 

5c), the lack of a significant change in preservation of benthic foraminifera during this event 

(Figure S1) suggests that these geochemical and sedimentological characteristics are the 

result of a significant reduction in biogenic carbonate productivity within the surface ocean 

(hence reduced dilution of Fe-rich terrigenous clay), rather than severe dissolution of calcium 

carbonate during Dan-C2 (Zachos & Arthur, 1986). Conversely, Westerhold et al. (2011) 
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describe a marked increase in sedimentation rates during the first 700 kyr of the Paleocene at 

ODP Site 1209 (i.e., a drop in Fe intensity and a spike in % coarse fraction), which may 

reflect a rise in carbonate saturation state and increased preservation of calcium carbonate in 

the deep ocean during this time. A global deepening of the CCD is believed to have occurred 

in the aftermath of the K/Pg mass extinction, following a reduction in surface ocean 

carbonate production (Zachos et al., 1989). Combined with the lack of evidence for deep-sea 

warming, we suggest that Dan-C2 cannot be classified as a typical global hyperthermal, 

analogous to the LDE (Figure 5). We propose that the Dan-C2 event could reflect a relatively 

small carbon cycle and climatic response to the first 405-kyr eccentricity maximum of the 

Paleocene, with a magnified expression within bulk carbonate and planktic carbon isotope 

records (Figure 4b), along with dissolution proxy records (Figure 4d), due to the peculiar 

oceanographic conditions (i.e., partial collapse of the biological pump and extreme vital 

effects within opportunistic planktic foraminifera taxa) following the K/Pg mass extinction 

(Birch et al., 2012, 2013, 2016; D’Hondt et al., 1998; Zachos & Arthur, 1986). Alternatively, 

the Dan-C2 could represent a climate and carbon cycle perturbation of regional but not global 

significance, with an expression confined to the surface ocean of the mid-latitude Atlantic 

and Tethys, but not affecting the high-latitude regions of deep-water formation (i.e., Southern 

Ocean and North Pacific). Furthermore, ongoing Deccan volcanism may have contributed to 

generally elevated atmospheric pCO2 levels and global temperatures during this time (Renne 

et al., 2015; Schoene et al., 2015; Figure 2i), potentially increasing the sensitivity of the 

climate and carbon cycle to the first 405-kyr eccentricity maximum of the Paleocene. 

 

3.4 Spectral analysis 

3.4.1 Orbital pacing of Late Maastrichtian–Early Eocene changes in climate and the 

carbon cycle 

Similar to the findings of other studies of the early Paleogene (Husson et al., 2011; 

Kirtland Turner et al., 2014; Littler et al., 2014; Sexton et al., 2011; Westerhold & Röhl, 

2009; Westerhold et al., 2011, 2018), our benthic records spanning the Late Maastrichtian to 

Early Eocene from ODP Site 1262 are characterized by the existence of a strong imprint of 

orbital cyclicity (Figure 6; Figure 7). The presence of peaks of spectral power at the long 

(405-kyr) and short (100-kyr) eccentricity bands in both our orbitally-tuned δ
13

Cbenthic (Figure 

7a) and δ
18

Obenthic (Figure 7b) data suggests that changes in climate and the carbon cycle were 

paced predominantly by an eccentricity beat through modulation of precession. The weakness 

of high-latitude forcing in this warm greenhouse world, as suggested previously (Littler et al., 

2014; Zeebe et al., 2017), is confirmed by the weak expression of 41 kyr-paced obliquity in 

both records (Figure 7a,b). This conclusion is consistent with our estimates of generally 

warm ocean bottom water temperatures of ~7–14°C (Figure 2f). 

To examine for temporal changes in dominant periodicities over time, including the 

hitherto poorly studied interval encompassing the Late Maastrichtian–Middle Paleocene, we 

filtered our data at 405-kyr, 100-kyr and 21-kyr frequencies to identify the varying amplitude 

of eccentricity and precession cycles through the record (Figure 6c,d,e). We also further 

divided our isotope records into 5 discrete time windows (Figure 2f) based on paleoclimatic 

trends and ambient climate states (i.e., warming/warmer or cooling/cooler intervals), and 

generated Multi-Taper Method (MTM) power spectra for each interval (Figure 8). Lastly, we 

generated evolutionary wavelet spectra for the complete δ
13

Cbenthic (Figure 9a) and δ
18

Obenthic 

(Figure 9b) records. Long and short eccentricity have the greatest concentration of spectral 

power within the Early Paleocene (64–61.25 Ma) and Late Paleocene–Early Eocene (58.75–

52.35 Ma) time slices in both δ
13

Cbenthic and δ
18

Obenthic (Figure 8b,d,e; Figure 9), which may 

be expected given larger amplitude variations within the 405-kyr and 100-kyr filters 

corresponding to larger hyperthermal events within our record (Figure 6c,d). By contrast, 
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more significant power is concentrated in the δ
13

Cbenthic record at 19–23 kyr frequencies 

during the Late Maastrichtian–Early Paleocene (67.0–64.0 Ma) time slice (Figure 8a). The 

21-kyr filter (Figure 6e) and wavelet spectrum (Figure 9a) show that this amplified 

precession cyclicity occurs exclusively during the Late Maastrichtian, with an abrupt 

decrease in power across the K/Pg boundary. This feature is also present in the elemental Fe 

record, especially during the LMWE (Figure 2g), suggesting amplified carbon cycle 

sensitivity to precession during this Late Maastrichtian greenhouse event (Barnet et al., 

2017). On the other hand, the Late Maastrichtian interval characterized by amplified 

precession cyclicity is also characterized by significantly higher sedimentation rates than the 

rest of the record (Figure 2h), therefore the apparent amplified precession signal may simply 

reflect weaker bioturbational smoothing within this part of the record. Interestingly, and in 

contrast to most of the record, there are also peaks in spectral power close to 41-kyr obliquity 

in the Late Maastrichtian–Early Paleocene portion of our record (Figure 8a,b), which may 

indicate a more significant role of high-latitude insolation forcing on global climate during 

this period characterized by the coolest climates within the record. Based on comparable 

δ
18

O-derived Southern Ocean temperatures during the Maastrichtian to those during the Late 

Eocene, when full-scale Antarctic glaciation was initiated, Huber et al. (2018) suggested the 

possible build-up of small ephemeral ice sheets on Antarctica during the Maastrichtian. 

However, the development of ice sheets during the Cretaceous remains a controversial topic 

and direct evidence for glaciation (e.g., unequivocal ice rafted debris) is still lacking. 

 

3.4.2 Phasing between climate and the carbon cycle 

Cross spectral analysis of the complete ODP Site 1262 δ
18

Obenthic and δ
13

Cbenthic 

records (Figure 7c), and of their five discrete time windows (Figure 10), is used to 

characterize the phasing of orbital-scale climate and carbon cycle variations during the Late 

Maastrichtian–Early Eocene. Across the entire record, changes in the carbon cycle 

(δ
13

Cbenthic) lag changes in climate (δ
18

Obenthic) by ~22.8 ±5.7 kyr at the 405-kyr band, ~4.5 ± 

2.2 kyr at the 125-kyr band, and ~3 ± 0.7 kyr at the 95-kyr band, but within error, are almost 

in phase at precession frequencies (19–23 kyr; Figure 7c). These observations suggest that 

changes in orbital configuration, namely eccentricity modulation of precession, were 

sufficient to induce deep-sea warming. This initial warming was amplified via a positive 

feedback by the release of isotopically light carbon from temperature-sensitive (e.g., biogenic 

CH4 or high-latitude permafrost) or climate-sensitive (e.g., low-latitude peat) stocks 

(DeConto et al., 2012; Dickens, 2003; Kurtz et al., 2003; Zachos et al., 2010).  

We observe a comparable lag (δ
13

Cbenthic lagging δ
18

Obenthic) at the 405-kyr frequency 

within the Late Maastrichtian–Early Paleocene (~23.0 ± 11.5 kyr; Window 1), Early 

Paleocene (~22.0 ± 4.8 kyr; Window 2) and Early Eocene (~25.1 ± 5.0 kyr; Window 5) time 

slices, with smaller lags of 0.7–5.3 ± 0.7–5.4 kyr within the 100-kyr band (Figure 10a,b,e). 

We dismiss an apparent 7.3 ± 14.6 kyr lag of δ
18

Obenthic behind δ
13

Cbenthic in the Late 

Paleocene Window 4 (Figure 10d), since phasing at the 405-kyr frequency is less coherent 

and uncertainty is much greater (± 14.6 kyr) within that window compared to the other time 

slices. The lower level of coherency during Window 4 may be related to a temporary 

decoupling between the carbon and oxygen isotope records at the 405-kyr frequency within 

the older portion of this time window at ~58.5 Ma (Figure 6c). The similar lag between the 

warmest climate characterized by the highest atmospheric pCO2 levels within the record, the 

Early Eocene (Window 5), and the coolest, the Late Maastrichtian (Window 1), suggests a 

lack of sensitivity to ambient climate state, at least within the relatively warm and 

predominantly ice-free climatic range defined within this time interval. 
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3.5 Placing the hyperthermal events into an orbital cyclostratigraphic framework 

The majority of Paleogene hyperthermals and smaller climatic perturbations occur 

during maxima in the 405-kyr eccentricity cycle (Figure 2b; Figure 6a), when Earth’s orbit 

around the Sun was most elliptical, leading to an enhanced expression of the two 100-kyr 

cycles coeval with the 405-kyr maximum. The majority of the climatic perturbations during 

the Paleocene–Eocene are therefore characteristically double-spiked, such as ETM2-H2 and 

I1-I2 of the Early Eocene, or the LDE and Middle C27r events of the Early Paleocene (Figure 

6). Variations in orbital eccentricity have little effect on the total amount of solar radiation 

received by Earth’s surface, but these cycles do modify the difference between perihelion 

temperatures (when Earth passes closest to the Sun) and aphelion temperatures (when Earth 

is farthest from the Sun), which will be greatest during eccentricity maxima (Laskar et al., 

2011). Precession cycles can therefore be significantly amplified during eccentricity maxima, 

which enhances seasonal contrast and has the potential to push temperature- or climate-

sensitive carbon reservoirs over a critical threshold leading to their catastrophic release. Due 

to the double-spiked nature of many hyperthermals, the carbon source cannot have been 

completely depleted during the first event, in order to generate the second, typically slightly 

smaller event, less than 100 kyr later. Furthermore, such a short time period between events 

supports the release of carbon from a dynamic reservoir which could be replenished quickly, 

arguing against carbon stores characterized by long refueling times such as biogenic methane 

hydrates as the source for these cyclic orbitally-paced hyperthermals. 

The length and resolution of the new benthic records also allow us to examine 

whether the frequency and magnitude of hyperthermal events and smaller climatic 

perturbations of the early Paleogene were sensitive to the low frequency orbital cycles, e.g., 

very long eccentricity (2.4 million years) or long-obliquity (1.2 million years), which was not 

possible with the previously published shorter records (Littler et al., 2014). An apparent 

concentration of spectral power corresponding to the long-obliquity (1200 kyr) band on the 

MTM plots of the entire Late Maastrichtian– Early Eocene record (Figure 7a,b) could suggest 

some long-obliquity modulation during this time, although power at this frequency could be 

an artefact as it is a multiple of the 405-kyr eccentricity cycle. We consider a strong role for 

long-obliquity forcing on climate and the carbon cycle to be very unlikely during this time, 

since there is very little spectral power concentrated within the 41-kyr band (Figure 7a,b). We 

see no such peak corresponding to the very long eccentricity cycle on the MTM plots (Figure 

7a,b); however, comparison of the La2010b orbital solution at the 2.4 million year band 

reveals that many of the smaller hyperthermals and climatic perturbations of the Early–

Middle Paleocene appear to cluster close to or during maxima in the very long eccentricity 

cycle (Figure 6a). This relationship does not, however, appear to hold true for the larger 

hyperthermals of the Late Paleocene–Early Eocene, when lower amplitude cyclicity is 

evident within the 2.4 million year band in the La2010b orbital solution (Figure 6a). More 

likely, sensitivity to 405-kyr eccentricity maxima increased during the generally warmer 

background climate of the Late Paleocene–Early Eocene, in response to the second phase of 

NAIP volcanism (Figure 2f,i), thereby masking the expression of low amplitude 2.4 million 

year cycles during this time. Increased climate and carbon cycle sensitivity to orbital forcing 

has been previously noted during the high pCO2 greenhouse world of the LMWE, associated 

with Deccan Traps volcanism (Barnet et al., 2017). Double-spiked hyperthermals of a larger 

magnitude than those of the Paleocene are characteristic of every 405-kyr eccentricity 

maxima of the Early Eocene from ~54 Ma, i.e., commencing with ETM-2/H2 (Figure 2b; 

Figure 6a), further suggesting the release of carbon from a dynamic reservoir with a short 

refueling time. This period was characterized by the warmest background bottom water 

temperatures at ODP Site 1262 of the entire time period considered here (~12–14°C; Figure 

2f), suggesting that increased carbon cycle and climate sensitivity to orbital forcing also 
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occurred within the warm greenhouse, high pCO2 world of the Late Paleocene and especially 

during the Early Eocene, during the onset of the Early Eocene Climatic Optimum (EECO; 

~53–49 Ma; Westerhold et al., 2018). Clearly, caution should be emphasized when 

interpreting the significance of longer-term (>1 million year) cycles, including the apparent 

broad swathe of spectral power concentrated between ~1.0–2.4 million year frequencies on 

the evolutionary wavelet spectra (Figure 9a,b), due to the possible distorting effects of pre-

spectral analysis detrending, which specifically removes long-term (tectonic-scale) trends in 

order to amplify orbital-scale cyclicity (Zeebe et al., 2017; see Supporting Information). 

Whilst the majority of hyperthermals and smaller climatic perturbations appear to be 

paced by eccentricity, the LMWE and PETM appear to represent notable exceptions, as their 

inceptions do not occur during 405-kyr eccentricity maxima and they lack the characteristic 

orbitally-paced double spike of most other hyperthermals (Figure 6a,b,f). Even though the 

peak of these events may be broadly in phase with a 100-kyr eccentricity maximum (Barnet 

et al., 2017; Zachos et al., 2010), they are unlikely to have been triggered solely by orbital 

forcing. Deccan Traps volcanism and the second phase of NAIP volcanism likely represent 

important non-orbital triggers for the LMWE and PETM, respectively (Barnet et al., 2017; 

Gutjahr et al., 2017; Renne et al., 2015; Schoene et al., 2015; Sinton & Duncan, 1998; Fig. 

2h). The potential release of significant quantities of thermogenic methane during extrusion 

of NAIP volcanism subaqueously into marine organic-rich shales may also help to explain 

the significantly greater magnitude of the PETM, compared to other Early Paleogene 

hyperthermals (Gutjahr et al., 2017; Svensen et al., 2004). Similarly, the first phase of NAIP 

volcanism temporally coincides with three consecutive orbitally-paced climate and carbon 

cycle perturbations, the Latest Danian Event (LDE), Lower Chron 26r event, and 

Danian/Selandian Transition Event (D/STE; Sinton & Duncan, 1998). NAIP volcanism may 

have also played a role in the larger magnitude of these events compared to others of the 

Early–Middle Paleocene, due to elevated background global temperatures and increased 

sensitivity to orbital forcing (Figure 2b,i). 

4 Conclusions 

We present new high-resolution South Atlantic benthic isotope records spanning the 

Late Maastrichtian to Early Eocene, documenting the evolution of the carbon cycle and 

climate in unprecedented detail. We show that the Early Paleocene Dan-C2 event does not 

represent a typical global hyperthermal due to the lack of evidence for significant warming 

and carbonate dissolution in the bottom waters of the South Atlantic and elsewhere, although 

it may have a regional climate and carbon cycle expression in the surface ocean of the mid-

latitude Atlantic and Tethys. Comparison to published lower resolution records from the 

equatorial Pacific suggests a broadly synchronous evolution in carbon cycle and climate 

between the Atlantic and Pacific oceans on multi-million year, and even orbital timescales. 

Spectral analysis of these paired δ
13

Cbenthic and δ
18

Obenthic records document long (405-kyr) 

and short (100-kyr) eccentricity as the dominant pacemakers of the climate and carbon cycle 

dynamics during the Late Maastrichtian to Early Eocene, through modulation of precession. 

Perturbations to the global carbon cycle lag changes to global climate during this time, 

suggesting that temperature-sensitive light carbon was released as a positive feedback to an 

initial warming induced by changes in orbital configuration. The frequency of hyperthermal 

events suggests that isotopically light carbon was periodically released from a dynamic 

reservoir which could be replenished quickly, arguing against carbon stores characterized by 

long refueling times such as biogenic methane hydrates as the source for these cyclic 

orbitally-paced hyperthermals. By placing all known hyperthermals into a cyclostratigraphic 

framework, we identify that all occur during maxima in the 405-kyr cycle and appear to be 

orbitally-paced, with the exception of the PETM and LMWE, which are likely to have been 
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triggered or augmented by LIP volcanism. Furthermore, whilst many hyperthermal events of 

the Early–Middle Paleocene appear to cluster around maxima in the 2.4 million year 

modulation of eccentricity, the larger hyperthermal events of the Late Paleocene–Early 

Eocene occur during almost every 405-kyr eccentricity maximum, potentially due to a 

relatively minor influence of the 2.4 million year eccentricity cycle during this time, coupled 

with heightened carbon cycle and climate sensitivity to orbital forcing in the high pCO2 

greenhouse world during and following the second phase of NAIP volcanism. 
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Figure 1. Paleogeographic reconstruction for the K/Pg boundary (66 Ma) and location of sites used in this 

study. Ocean Drilling Program sites are highlighted by red circles and labels; onshore sites by black circles 

and labels. Regions of deep-water formation are schematically highlighted by dark blue polygons. NPDW 

= North Pacific Deep Water. SPDW = South Pacific Deep Water. Adapted from Ocean Drilling 

Stratigraphic Network (ODSN) Paleomap Project 

(http://www.odsn.de/odsn/services/paleomap/paleomap.html). 
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Figure 2. Recalibrated proxies for atmospheric pCO2 along with stable carbon and oxygen isotope records 

and elemental Fe intensities from ODP Site 1262, calibrated against the updated orbitally-tuned age model. 

Previously described hyperthermals and smaller climatic perturbations are indicated by labelled grey 

bands, with the following abbreviations: LMWE – Late Maastrichtian warming event; Dan-C2 – Dan-C2 

event; L. C29n – Lower Chron 29n event; M. C27r – Middle Chron 27r event; LDE – Latest Danian Event; 

L. C26r – Lower Chron 26r event; D/STE – Danian/Selandian Transition Event; ELPE – Early Late 

Paleocene Event; PETM – Paleocene-Eocene Thermal Maximum; ETM-2 – Eocene Thermal Maximum 2; 

ETM-3 – Eocene Thermal Maximum 3. Core photo from Shipboard Scientific Party (2004). (a) 

Recalibrated atmospheric pCO2 data (see Supplementary Figure S2 for legend and literature sources). 

Horizontal dashed lines indicate pre-industrial (1), and 2018 (2) levels, along with the most pessimistic 

emission scenario (RCP8.5) for the year 2100 (3), from Cubasch et al. (2013). (b) La2010b orbital solution 

(Laskar et al., 2011), with long eccentricity (405-kyr) maxima illustrated in dark brown and the filtered 

~2.4 million year modulation of eccentricity illustrated in pale brown. 405-kyr eccentricity maxima are 

labelled in red following the nomenclature of Husson et al. (2011) for the Maastrichtian, Dinarès-Turell et 

al. (2014) for the Paleocene, and Westerhold and Röhl (2009) for the Eocene. Panels c–g, new and 

published stable isotope and geochemical records from ODP Site 1262: (c) Bulk carbonate δ
13

C; (d) 

Benthic δ
13

C; (e) Bulk δ
13

C to benthic δ
13

C (representing surface to deep) gradient; (f) Benthic δ
18

O, with 

distribution of discrete time windows used in Figure 8 and Figure 10. The sources of all stable isotope data 

are illustrated in Supplementary Figure S2. (g) Elemental Fe intensity (Westerhold et al., 2007, 2008). (h) 

Sedimentation rate based on new age model. (i) Timing of Large Igneous Province volcanism (Renne et 

al., 2015; Schoene et al., 2015; Sinton & Duncan, 1998).  
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Figure 3. δ

13
Cbenthic and δ

18
Obenthic records from ODP Site 1262 (South Atlantic) and ODP Site 1209 

(equatorial Pacific; Westerhold et al., 2011, 2018), spanning the Late Maastrichtian–Early Eocene. Both 

datasets are calibrated to a common orbitally-tuned age model correlated to the La2010b orbital solution 

(Laskar et al., 2011). See Figure 1 for site locations. Condensed intervals at ODP Site 1209 are highlighted 

beneath the δ
13

Cbenthic record by black bars. Hyperthermals and smaller climatic perturbations are 

illustrated by labelled grey vertical bars. 
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Figure 4. Compilation of stable isotope and dissolution proxy data for the Dan-C2 event, correlated to the 

La2010b orbital solution (Laskar et al., 2011). Locations of ODP sites and onshore outcrops are shown in 

Figure 1, with further details for each site listed in Table S1. (a) La2010b orbital solution (Laskar et al., 

2011), with long eccentricity (405-kyr) maxima labelled in red following the nomenclature of Husson et al. 

(2011) for the Maastrichtian and Dinarès-Turell et al. (2014) for the Paleocene; (b) Surface planktic 

(δ
13

Cplanktic and δ
18

Oplanktic) and bulk carbonate (δ
13

Cbulk and δ
18

Obulk) stable isotope data from ODP Site 

1049, NW Atlantic (Quillévéré et al., 2008), along with bulk isotope data from ODP Site 1262, South 

Atlantic (Kroon et al., 2007) and Gubbio, Italy (Coccioni et al., 2010); (c) Benthic (δ
13

Cbenthic and 

δ
18

Obenthic) stable isotope data from ODP Site 1262, South Atlantic (Barnet et al., 2017; this study), ODP 

Site 1209, central Pacific (Westerhold et al., 2011) and ODP Site 1049, NW Atlantic (Quillévéré et al., 

2008); (d) Dissolution proxy data from ODP Site 1262, with % coarse fraction (% CF; this study) and Fe 

intensity data (Westerhold et al., 2008).  
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Figure 5. Comparison between the stable isotope and geochemical expressions of the Dan-C2 event and 

Latest Danian Event (LDE) at ODP Site 1262, plotted relative to time since onset of the respective events: 

(a) benthic stable carbon isotope (δ
13

Cbenthic) records; (b) benthic stable oxygen isotope (δ
18

Obenthic) 

records; (c) Fe intensity records (Westerhold et al., 2008). 
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Figure 6. Gaussian filters at the principle Milankovitch frequencies for the benthic stable carbon isotope 

record (δ
13

Cbenthic, red) and benthic stable oxygen isotope record (δ
18

Obenthic, blue) from ODP Site 1262. (a) 

La2010b orbital solution (Laskar et al., 2011), with long eccentricity (405-kyr) maxima illustrated in dark 

brown and the filtered ~2.4 million year modulation of eccentricity illustrated in pale brown. 405-kyr 

eccentricity maxima are labelled in red following the nomenclature of Husson et al. (2011) for the 

Maastrichtian, Dinarès-Turell et al. (2014) for the Paleocene, and Westerhold and Röhl (2009) for the 

Eocene. (b) Detrended δ
13

Cbenthic data. (c) Long eccentricity (405-kyr) filter. (d) Short eccentricity (100-

kyr) filter. (e) Precession (21-kyr) filter. (f) Detrended δ
18

Obenthic data. (g) Temporal distribution of discrete 

time windows used in Figure 8 and Figure 10. 
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Figure 7. Multi-Taper Method (MTM) power spectra and phasing for the δ
13

Cbenthic and δ
18

Obenthic records 

from ODP Site 1262. (a) MTM power spectra for the complete Late Maastrichtian–Early Eocene (67.10–

52.35 Ma) δ
13

Cbenthic record. The resolution of our δ
13

Cbenthic record enables the split eccentricity peaks at 

~125 and ~95 kyr to be resolved. (b) MTM power spectra for the complete Late Maastrichtian–Early 

Eocene (67.10–52.35 Ma) δ
18

Obenthic record. (c) Average coherence and phasing between the ODP Site 

1262 δ
13

Cbenthic and δ
18

Obenthic records spanning the Late Maastrichtian–Early Eocene (67.10–52.35 Ma). 

On the coherence spectra, frequencies above the 97.5% confidence level are considered coherent, for 

which the phasing between δ
13

Cbenthic and δ
18

Obenthic was calculated. Negative values for the phasing (lag) 

in blue indicate that δ
13

Cbenthic lags δ
18

Obenthic (i.e., carbon cycle lags climate), whilst positive values in red 

indicate δ
18

Obenthic lags δ
13

Cbenthic (i.e., climate lags carbon cycle). Values for the mean lag (in kyr) are 

indicated, with error at the 97.5% confidence level indicated by vertical bars. 
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Figure 8. Multi-Taper Method (MTM) power spectra for the δ
13

Cbenthic record (in red) and δ
18

Obenthic record 

(in blue) for the 5 discrete time windows. (a) Window 1, Late Maastrichtian–Early Paleocene (67.1–64.0 

Ma). (b) Window 2, Early Paleocene (64.0–61.25 Ma). (c) Window 3, Middle Paleocene (61.25–58.75 

Ma). (d) Window 4, Late Paleocene (58.75–55.93 Ma). (e) Window 5, Early Eocene (55.83–52.35 Ma). 

Temporal distribution of the time windows is illustrated in Figure 2f and Figure 6g. 
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Figure 9. Evolutionary wavelet spectra for the complete Late Maastrichtian–Early Eocene records from 

ODP Site 1262. Milankovitch cycles (in kyr) are indicated by dashed lines across the spectra and labelled 

with arrows along the right-hand margin. (a) δ
13

Cbenthic. (b) δ
18

Obenthic. 
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Figure 10. Coherence and phasing between the δ
13

Cbenthic and δ
18

Obenthic records for the 5 discrete time 

windows. On the coherence spectra, frequencies above the 97.5% confidence level are considered 

coherent, for which the phasing between δ
13

Cbenthic and δ
18

Obenthic was calculated. Negative values for the 

phasing (lag) in blue indicate that δ
13

Cbenthic lags δ
18

Obenthic i.e., carbon cycle lags climate, whilst positive 

values in red indicate δ
18

Obenthic lags δ
13

Cbenthic i.e., climate lags carbon cycle. Values for the mean lag (in 

kyr) are indicated, with the range of values indicated by error bars. (a) Window 1, Late Maastrichtian–

Early Paleocene (67.1–64.0 Ma). (b) Window 2, Early Paleocene (64.0–61.25 Ma). (c) Window 3, Middle 

Paleocene (61.25–58.75 Ma). (d) Window 4, Late Paleocene (58.75–55.93 Ma). (e) Window 5, Early 

Eocene (55.83–52.35 Ma). Temporal distribution of the time windows is illustrated in Figure 2f and Figure 

6g. 


