

Edinburgh Research Explorer

Uniform sampling through the Lovasz local lemma

Citation for published version:
Guo, H, Jerrum, M & Liu, J 2019, 'Uniform sampling through the Lovasz local lemma' Journal of the ACM,
vol. 66, no. 3, 18. DOI: 10.1145/3310131

Digital Object Identifier (DOI):
10.1145/3310131

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the ACM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/196573717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3310131
https://www.research.ed.ac.uk/portal/en/publications/uniform-sampling-through-the-lovasz-local-lemma(77046a3b-6fad-42d3-809c-e9a3c0308d9c).html

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA

HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Abstract. We propose a new algorithmic framework, called “partial rejection sampling”, to
draw samples exactly from a product distribution, conditioned on none of a number of bad
events occurring. Our framework builds new connections between the variable framework of
the Lovász Local Lemma and some classical sampling algorithms such as the “cycle-popping”
algorithm for rooted spanning trees. Among other applications, we discover new algorithms to
sample satisfying assignments of k-CNF formulas with bounded variable occurrences.

1. Introduction

The Lovász Local Lemma [9] is a classical gem in combinatorics that guarantees the existence
of a perfect object that avoids all events deemed to be “bad”. The original proof is non-
constructive but there has been great progress in the algorithmic aspects of the local lemma.
After a long line of research [3, 2, 30, 8, 34, 37], the celebrated result by Moser and Tardos [31]
gives efficient algorithms to find such a perfect object under conditions that match the Lovász
Local Lemma in the so-called variable framework. However, it is natural to ask whether, under
the same condition, we can also sample a perfect object uniformly at random instead of merely
finding one.

Roughly speaking, the resampling algorithm by Moser and Tardos [31] works as follows. We
initialize all variables randomly. If bad events occur, then we arbitrarily choose a bad event
and resample all the involved variables. Unfortunately, it is not hard to see that this algorithm
can produce biased samples. This seems inevitable. As Bezáková et al. showed [4], sampling
can be NP-hard even under conditions that are stronger than those of the local lemma. On
the one hand, the symmetric Lovász Local Lemma only requires ep∆ ≤ 1, where p is the
probability of bad events and ∆ is the maximum degree of the dependency graph. On the
other hand, translating the result of [4] to this setting, one sees that as soon as p∆2 ≥ C for
some constant C, then even approximately sampling perfect objects in the variable framework
becomes NP-hard.

The starting point of our work is a new condition (see Condition 5) under which we show
that the output of the Moser-Tardos algorithm is in fact uniform (see Theorem 8). Intuitively,
the condition requires any two dependent bad events to be disjoint. Indeed, instances satisfying
this condition are called “extremal” in the study of Lovász Local Lemma. For these extremal
instances, we can in fact resample in a parallel fashion, since the occurring bad events form an
independent set in the dependency graph. We call this algorithm “partial rejection sampling”,1
in the sense that it is like rejection sampling, but only resamples an appropriate subset of
variables.

Our result puts some classical sampling algorithms under a unified framework, including the
“cycle-popping” algorithm by Wilson [39] for sampling rooted spanning trees, and the “sink-
popping” algorithm by Cohn, Pemantle, and Propp [7] for sampling sink-free orientations of
an undirected graph. Indeed, Cohn et al. [7] coined the term “partial rejection sampling” and
asked for a general theory, and we believe that extremal instances under the variable framework
is a satisfactory answer. With our techniques, we are able to give a new algorithm to sample
solutions for a special class of k-CNF formulas, under conditions matching the Lovász Local

1Despite the apparent similarity in names, our algorithm is different from “partial resampling” in [20, 21]. We
resample all variables in certain sets of events whereas “partial resampling” only resamples a subset of variables
from some bad event.

1

2 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Lemma (see Corollary 19), which is an NP-hard task for general k-CNF formulas. Further-
more, we provide explicit formulas for the expected running time of these algorithms (see The-
orem 13), which matches the running time upper bound given by Kolipaka and Szegedy [26]
under Shearer’s condition [35].

The next natural question is thus whether we can go beyond extremal instances. Indeed,
our main technical contribution is a general uniform sampler (Algorithm 6) that applies to
any problem under the variable framework. The main idea is that, instead of only resampling
occurring bad events, we resample a larger set of events so that the choices made do not block
any perfect assignments in the end, in order to make sure of uniformity in the final output.

As a simple example, we describe how our algorithm samples independent sets. The algorithm
starts by choosing each vertex with probability 1/2 independently. At each subsequent round,
in the induced subgraph on the currently chosen vertices, the algorithm finds all the connected
components of size ≥ 2. Then it resamples all these vertices and their boundaries (which are
unoccupied). And it repeats this process until there is no edge with both endpoints occupied.
What seems surprising is that this simple process does yield a uniformly random independent set
when it stops. Indeed, as we will show in Theorem 34, this simple process is an exact sampler for
weighted independent sets (also known as the hard-core model in statistical physics). In addition,
it runs in expected linear time under a condition that matches, up to a constant factor, the
uniqueness threshold of the model (beyond which the problem of approximate sampling becomes
NP-hard).

In the more general setting, we will choose the set of events to be resampled, denoted by Res,
iteratively. We start from the set of occurring bad events. Then we include all neighbouring
events of the current set Res, until there is no event A on the boundary of Res such that the
current assignment, projected on the common variables of A and Res, can be extended so that
A may happen. In the worst case, we will resample all events (there is no event in the boundary
at all). In that scenario the algorithm is the same as a naive rejection sampling, but typically we
resample fewer variables in every step. We show that this is a uniform sampler on assignments
that avoid all bad events once it stops (see Theorem 24).

One interesting feature of our algorithm is that, unlike Markov chain based algorithms, ours
does not require the solution space (or any augmented space) to be connected. Moreover, our
sampler is exact; that is, when the algorithm halts, the final distribution is precisely the desired
distribution. Prior to our work, most exact sampling algorithms were obtained by coupling
from the past [32]. We also note that previous work on the Moser-Tardos output distribution,
such as [19], is not strong enough to guarantee a uniform sample (or ε-close to uniform in terms
of total variation distances).

We give sufficient conditions that guarantee a linear expected running time of our algorithm
in the general setting (see Theorem 25). The first condition is that p∆2 is bounded above by
a constant. This is optimal up to constants in observance of the NP-hardness result in [4].
Unfortunately, the condition on p∆2 alone does not make the algorithm efficient. In addition,
we also need to bound the expansion from bad events to resampling events, which leads to an
extra condition on intersections of bad events. Removing this extra condition seems to require
substantial changes to our current algorithm.

To illustrate the result, we apply our algorithm to sample satisfying assignments of k-CNF
formulas in which the degree of each variable (the number of clauses containing it) is at most
d. We say that a k-CNF formula has intersection s if any two dependent clauses share at least
s variables. The extra condition from our analysis naturally leads to a lower bound on s. Let
n be the number of variables. We (informally) summarize our results on k-CNF formulas as
follows (see Corollary 30 and Theorem 32):

• If d ≤ 1
6e · 2

k/2, dk ≥ 23e and s ≥ min{log2 dk, k/2}, then the general partial rejection
resampling algorithm outputs a uniformly random solution to a k-CNF formula with
degree d and intersection s in expected running time O(n).
• If d ≥ 4 · 2k/2 (for an even k), then even if s = k/2, it is NP-hard even to approximately

sample a solution to a k-CNF formula with degree d and intersection s.

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 3

As shown in the hardness result, the intersection bound does not render the problem trivial.
Previously, sampling/counting satisfying assignments of k-CNF formulas required the formula

to be monotone and d ≤ k to be large enough [4] (see also [5, 28]). Although our result requires
an additional lower bound on intersections, not only does it improve the dependency of k and
d exponentially, but also achieves a matching constant 1/2 in the exponent. Furthermore the
samples produced are exactly uniform. Thus, if the extra condition on intersections can be
removed, we will have a sharp phase transition at around d = O(2k/2) in the computational
complexity of sampling solutions to k-CNF formulas with bounded variable occurrences. A
similar sharp transition has been recently established for, e.g., sampling configurations in the
hard-core model [38, 36, 12].

Simultaneous to our work, Hermon, Sly, and Zhang [24] showed that Markov chains for
monotone k-CNF formulas are rapidly mixing, if d ≤ c2k/2 for a constant c. In another parallel
work, Moitra [29] gave a novel algorithm to sample solutions for general k-CNF when d ≲
2k/60. We note that neither results are directly comparable to ours and the techniques are very
different. Both of these two samplers are approximate while ours is exact. Moreover, ours does
not require monotonicity (unlike [24]), and allows larger d than [29] but at the cost of an extra
intersection lower bound. Unfortunately, our algorithm can be exponentially slow when the
intersection s is not large enough. In sharp contrast, as shown by Hermon et al. [24], Markov
chains mix rapidly for d ≤ c2k/k2 when s = 1.

While the study of algorithmic Lovász Local Lemma has progressed beyond the variable
framework [22, 1, 23], we restrict our focus to the variable framework in this work. It is also
an interesting future direction to investigate and extend our techniques of uniform sampling
beyond the variable framework. For example, one may want to sample a permutation that
avoids certain patterns. The classical sampling problem of perfect matchings in a bipartite
graph can be formulated in this way.

Since the conference version of this paper appeared [18], a number of applications of the
partial rejection sampling method have been found [17, 16, 15]. One highlight is the first
fully polynomial-time randomised approximation scheme (FPRAS) for all-terminal network
reliability [17]. For the extremal instances, tight running time bounds have also been obtained
[14]. Moreover, partial rejection sampling is adapted to dynamic and distributed settings as
well [10].

2. Partial Rejection Sampling

We first describe the “variable” framework. Let {X1, . . . , Xn} be a set of random variables.
Each Xi can have its own distribution and range Di. Let {A1, . . . , Am} be a set of “bad” events
that depend on Xi’s. For example, for a constraint satisfaction problem (CSP) with variables
Xi (1 ≤ i ≤ n) and constraints Cj (1 ≤ j ≤ m), each Aj is the set of unsatisfying assignments
of Cj for 1 ≤ j ≤ m. Let var(Ai) be the (index) set of variables that Ai depends on.

The dependency graph G = (V,E) has m vertices, identified with the integers {1, 2, . . . ,m},
corresponding to the events Ai, and (i, j) is an edge if Ai and Aj depend on one or more common
variables, and i ̸= j. In other words, for any distinct i, j, (i, j) ∈ E if var(Ai)∩ var(Aj) ̸= ∅. We
write Ai ∼ Aj if the vertices i and j are adjacent in G. The asymmetric Lovász Local Lemma
[9] states the following.

Theorem 1. If there exists a vector x ∈ [0, 1)m such that ∀i ∈ [m],

Pr(Ai) ≤ xi
∏

(i,j)∈E

(1− xj),(1)

then Pr

(
m∧
i=1

Ai

)
≥

m∏
i=1

(1− xi) > 0.

Theorem 1 has a condition that is easy to verify, but not necessarily optimal. Shearer [35]
gave the optimal condition for the local lemma to hold for a fixed dependency graph G. To state

4 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Shearer’s condition, we will need the following definitions. Let pi := Pr(Ai) for all 1 ≤ i ≤ m.
Let I be the collection of independent sets of G. Define the following quantity:

qI(p) :=
∑

J∈I, I⊆J

(−1)|J |−|I|
∏
i∈J

pi,

where p = (p1, . . . , pm). When there is no confusion we also simply write qI instead of the more
cumbersome qI(p). Moreover, to simplify the notation, let qi := q{i} for 1 ≤ i ≤ m. Note that
if I /∈ I, qI = 0.

Theorem 2 (Shearer [35]). If qI ≥ 0 for all I ⊆ V , then Pr
(∧m

i=1Ai

)
≥ q∅.

In particular, if the condition holds with q∅ > 0, then Pr
(∧m

i=1Ai

)
> 0.

Neither Theorem 1 nor Theorem 2 yields an efficient algorithm to find the assignment avoiding
all bad events, since they only guarantee an exponentially small probability. There has been a
long line of research devoted to an algorithmic version of LLL, culminating in Moser and Tardos
[31] with essentially the same condition as in Theorem 1. The Resample algorithm of Moser
and Tardos is very simple, described in Algorithm 1.

Algorithm 1: The Resample algorithm

(1) Draw independent samples of all variables X1, . . . , Xn from their respective
distributions.

(2) While at least one Ai holds, pick one such Ai arbitrarily and resample all variables in
var(Ai).

(3) Output the current assignment.

In [31], Moser and Tardos showed that Algorithm 1 finds a good assignment very efficiently.

Theorem 3 (Moser and Tardos [31]). Under the condition of Theorem 1, the expected number
of resampling steps in Algorithm 1 is at most

∑m
i=1

xi
1−xi

.

Unfortunately, the final output of Algorithm 1 is not distributed as we would like, namely as
a product distribution conditioned on avoiding all bad events.

In addition, Kolipaka and Szegedy [26] showed that up to Shearer’s condition, Algorithm 1
is efficient. Recall that qi := q{i} for 1 ≤ i ≤ m.

Theorem 4 (Kolipaka and Szegedy [26]). If qI ≥ 0 for all I ∈ I and q∅ > 0, then the expected
number of resampling steps in Algorithm 1 is at most

∑m
i=1

qi
q∅

.

On the other hand, Wilson’s cycle-popping algorithm [39] is very similar to the Resample
algorithm but it outputs a uniformly random rooted spanning tree. Another similar algorithm is
the sink-popping algorithm by Cohn, Pemantle, and Propp [7] to generate a sink-free orientation
uniformly at random. Upon close examination of these two algorithms, we found a common
feature of both problems.

Condition 5. If (i, j) ∈ E (or equivalently Ai ∼ Aj), then Pr(Ai ∧ Aj) = 0; namely the two
events Ai and Aj are disjoint if they are dependent.

In other words, any two events Ai and Aj are either independent or disjoint. These instances
have been noticed in the study of Lovász Local Lemma. They are the ones that minimize
Pr
(∧m

i=1Ai

)
given Shearer’s condition (namely Pr

(∧m
i=1Ai

)
= q∅). Instances satisfying Con-

dition 5 have been named extremal [26].
We will show that, given Condition 5, the final output of the Resample algorithm is a

sample from a conditional product distribution (Theorem 8). Moreover, we will show that
under Condition 5, the running time upper bound

∑m
i=1

qi
q∅

given by Kolipaka and Szegedy
(Theorem 4) is indeed the exact expected running time. See Theorem 13.

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 5

In fact, when Condition 5 holds, at each step of Algorithm 1, the occurring events form an
independent set of the dependency graph G. Think of the execution of Algorithm 1 as going
in rounds. In each round we find the set I of bad events that occur. Due to Condition 5,
var(Ai) ∩ var(Aj) = ∅ for any i, j ∈ I, i.e., I is an independent set in the dependency graph.
Therefore, we can resample all variables involved in the occurring bad events without interfering
with each other. This motivates Algorithm 2.

We call Algorithm 2 the Partial Rejection Sampling algorithm. This name was coined
by Cohn, Pemantle, and Propp [7]. Indeed, they ask as an open problem how to generalize their
sink-popping algorithm and Wilson’s cycle popping algorithm. We answer this question under
the variable framework. Partial Rejection Sampling differs from the normal rejection
sampling algorithm by only resampling “bad” events. Moreover, Algorithm 2 is uniform only
on extremal instances, and is a special case of Algorithm 6 given in Section 5, which is a uniform
sampler for all instances.

Algorithm 2: Partial Rejection Sampling for extremal instances

(1) Draw independent samples of all variables X1, . . . , Xn from their respective
distributions.

(2) While at least one bad event holds, find the independent set I of occurring Ai’s.
Independently resample all variables in

∪
i∈I var(Ai).

(3) Output the current assignment.

In fact, Algorithm 2 is the same as the parallel version of Algorithm 1 by Moser and Tardos [31]
for extremal instances. Suppose each event is assigned to a processor, which determines whether
the event holds by looking at the variables associated with the event. If the event holds then
all associated variables are resampled. No conflict will be created due to Condition 5.

In the following analysis, we will use the resampling table idea, which has appeared in both
the analysis of Moser and Tardos [31] and Wilson [39]. Note that we only use this idea to analyze
the algorithm rather than to really create the table in the execution. Associate each variable Xi

with an infinite stack of random values {Xi,1, Xi,2, . . . }. This forms the resampling table where
each row represents a variable and there are infinitely many columns, as shown in Table 1. In
the execution of the algorithm, when a variable needs to be resampled, the algorithm draws the
top value from the stack, or equivalently moves from the current entry in the resampling table
to its right.

Let t be a positive integer to denote the round of Algorithm 2. Let ji,t be the index of the
variable Xi in the resampling table at round t. In other words, at the t-th round, Xi takes value
Xi,ji,t . Thus, the set σt = {Xi,ji,t | 1 ≤ i ≤ n} is the current assignment of variables at round t.
This σt determines which events happen. Call the set of occurring events, viewed as a subset
of the vertex set of the dependency graph, It. (For convenience, we shall sometimes identify
the event Ai with its index i; thus, we shall refer to the “events in S” rather than the “events
indexed by S”.) As explained above, It is an independent set of G due to Condition 5. Then
variables involved in any of the events in It are resampled. In other words,

ji,t+1 =

{
ji,t + 1 if ∃ℓ ∈ It such that i ∈ var(Aℓ);

ji,t otherwise.

Table 1. A resampling table with 4 variables

X1 X1,1 X1,2 X1,3 . . .
X2 X2,1 X2,2 X2,3 . . .
X3 X3,1 X3,2 X3,3 . . .
X4 X4,1 X4,2 X4,3 . . .

6 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Therefore, any event that happens in round t + 1, must share at least one variable with some
event in It (possibly itself). In other words, It+1 ⊆ Γ+(It) where Γ+(·) denotes the set of all
neighbours of I unioned with I itself. This inspires the notion of independent set sequences
(first introduced in [26]).

Definition 6. A list S = S1, S2, . . . , Sℓ of independent sets in G is called an independent set
sequence if Si ̸= ∅ for all 1 ≤ i ≤ ℓ− 1 and for every 1 ≤ i ≤ ℓ− 1, Si+1 ⊆ Γ+(Si).

We adopt the convention that the empty list is an independent set sequence with ℓ = 0. Note
that we allow Sℓ to be ∅.

Let M be a resampling table. Suppose running Algorithm 2 on M does not terminate up to
some integer ℓ ≥ 1 rounds. Define the log of running Algorithm 2 on M up to round ℓ as the
sequence of independent sets I1, I2, . . . , Iℓ created by this run. Thus, for any M and ℓ ≥ 1, the
log I1, I2, . . . , Iℓ must be an independent set sequence. Moreover, if Algorithm 2 terminates at
round T , let σt := σT if t > T . Denote by µ(·) the product distribution of all random variables.

Lemma 7. Suppose Condition 5 holds. Given any log S = S1, S2, . . . , Sℓ of length ℓ ≥ 1
and conditioned on seeing the log S, σℓ+1 is a random sample from the product distribution
conditioned on the event

∧
i∈[m]\Γ+(Sℓ)

Ai, namely from µ
(
· |
∧

i∈[m]\Γ+(Sℓ)
Ai

)
.

We remark that Lemma 7 is not true for non-extremal instances (that is, if Condition 5 fails).
In particular, Lemma 7 says that given any log, every valid assignment is not only reachable,
but also with the correct probability. This is no longer the case for non-extremal instances —
some valid assignments from the desired conditional product distribution could be “blocked”
under the log S. In Section 5 we show how to instead achieve uniformity by resampling an
“unblocking” set of bad events.

Proof. The set of occurring events at round ℓ is Sℓ. Hence σℓ+1 does not make any of the
Ai’s happen where i /∈ Γ+(Sℓ). Call an assignment σ valid if none of the Ai’s happen where
i /∈ Γ+(Sℓ). To show that σℓ+1 has the desired conditional product distribution, we will show
that the probabilities of getting any two valid assignments σ and σ′ are proportional to their
probabilities of occurrence in µ(·).

Let M be the resampling table so that the log of the algorithm is S up to round ℓ ≥ 1, and
σℓ+1 = σ. Indeed, since we only care about events up to round ℓ+1, we may truncate the table
so that M = {Xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji,ℓ+1}. Let M ′ = {X ′

i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji,ℓ+1} be
another table where X ′

i,j = Xi,j if j < ji,ℓ+1 for any i ∈ [n], but σℓ+1 = σ′. In other words, we
only change the values in the final round (Xi,ji,ℓ+1

), and only to another valid assignment.
We claim that the algorithm running on M ′ generates the same log S. The lemma then

follows by the following argument. Assuming the claim holds, then conditioned on the log S,
every possible table M such that σℓ+1 = σ is one-to-one corresponding to another table M ′

so that σℓ+1 = σ′. It implies that for every pair of valid assignments σ, σ′, there is a bijection
between the resampling tables resulting in them. The ratio between the probability of two
corresponding tables is exactly the ratio between the probabilities of σ and σ′ under µ(·). Since
the probability of getting a particular σ in round ℓ + 1 is the sum over the probabilities of all
resampling tables (conditioned on the log S) leading to σ, the probability of getting σ is also
proportional to its weight under µ(·).

Suppose the claim fails and the logs obtained by running the algorithm on M and M ′ differ.
Let t0 ≤ ℓ be the first round where resampling changes. Without loss of generality, let A be
an event that occurs in St0 on M ′ but not on M . Moreover, there must be a non-empty set of
variables Y ⊆ var(A) that have values (Xi,ji,ℓ+1

), as otherwise the two runs would be identical.
Since resampling history does not change before t0, in the M ′ run, the assignment of variables
in Y must be (X ′

i,ji,ℓ+1
) at time t0.

We claim that Y = var(A). If the claim does not hold, then Z := var(A) \ Y ̸= ∅. Any
variable in Z has not reached final round, and must be resampled in the M run. Let Xj ∈ Z
be the first such variable being resampled at or after round t0 in the M run. (The choice of Xj

may not be unique, and we just choose an arbitrary one.) Recall that Y ̸= ∅, A can no longer

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 7

happen, thus there must be A′ ̸= A causing such a resampling of Xj . Then var(A)∩var(A′) ̸= ∅.
Consider any variable Xk with k ∈ var(A) ∩ var(A′). It is resampled at or after time t0 in the
M run due to A′. Hence Xk ∈ Z for any such k. Moreover, in the M run, until A′ happens,
Xk has not been resampled since time t0, because A′ is the first resampling event at or after
time t0 that involves variables in Z. On the other hand, in the M ′ run, Xk’s value causes A to
happen at time t0. Hence, there exists an assignment on variables in var(A)∩ var(A′) such that
both A and A′ happen. Clearly this assignment can be extended to a full assignment so that
both A and A′ happen. However, A ∼ A′ as they share the variable Xj . Due to Condition 5,
A ∩A′ = ∅. Contradiction! Therefore the claim holds.

We argue that the remaining case, Y = var(A), is also not possible. Since A occurs in the
M ′ run, we know, by the definition of σ′, that A ∈ Γ+(Sℓ). Thus, some event whose variables
intersect with those in A must occur in the M run. But when the algorithm attempts to update
variables shared by these two events in the M run, it will access values beyond the final round
of the resampling table, a contradiction. □

Theorem 8. When Condition 5 holds and Algorithm 2 halts, its output is the product distri-
bution µ(·) conditioned on avoiding all bad events.

Proof. Let an independent set sequence S of length ℓ be the log of any successful run. Then Sℓ =
∅. By Lemma 7, conditioned on the log S, the output assignment σ is µ

(
· |
∧

i∈[m]\Γ+(Sℓ)
Ai

)
=

µ
(
· |
∧

i∈[m]Ai

)
. This is valid for any possible log, and the theorem follows. □

In other words, let Σ be the set of assignments that avoid all bad events. Let U be the output
of Algorithm 2. In the case that all variables are sampled from the uniform distribution, we
have Pr(U = σ) = 1

|Σ| , for all σ ∈ Σ.

3. Expected running time of Algorithm 2

In this section we give an explicit formula for the running time of Algorithm 2. We assume
that Condition 5 holds throughout the section.

We first give a combinatorial explanation of qI for any independent set I of the dependency
graph G. To simplify the notation, we denote the event

∧
i∈S Ai, i.e., the conjunction of all

events in S, by A(S).
For any set I in the dependency graph, we denote by pI the probability Prµ(A(I)) that all

events in I happen (and possibly some other events too). If I is an independent set in the
dependency graph, any two events in I are independent and

pI =
∏
i∈I

pi.(2)

Moreover, for any set J of events that is not an independent set, we have pJ = 0 due to Condi-
tion 5.

On the other hand, the quantity qI is in fact the probability that exactly the events in I
happen and no others do. This can be verified using inclusion-exclusion, together with Condition
5:

Prµ

(∧
i∈I

Ai ∧
∧
i/∈I

Ai

)
=
∑
J⊇I

(−1)|J\I|pJ

=
∑

J∈I, J⊇I

(−1)|J\I|pJ = qI ,(3)

where I denotes the collection of all independent sets of G. Since the events (
∧

i∈I Ai∧
∧

i/∈I Ai)
are mutually exclusive for different I’s, ∑

I∈I
qI = 1.

8 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Moreover, since the event A(I) is the union over J ⊇ I of the events (
∧

i∈J Ai ∧
∧

i/∈J Ai), we
have

pI =
∑

J∈I, J⊇I

qJ .(4)

Lemma 9. Assume Condition 5 holds. Let S = S1, . . . , Sℓ be an independent set sequence of
length ℓ > 0. Then in Algorithm 2,

Pr
(
the log is S up to round ℓ

)
= qSℓ

ℓ−1∏
t=1

pSt .

Proof. Clearly, if qSℓ
= 0, then the said sequence will never happen. We assume that qSℓ

> 0
in the following.

Recall that µ is the product distribution of sampling all variables independently. We need
to distinguish the probability space with respect to µ from that with respect to the execution
of the algorithm. We write PrPRS(·) to refer to the algorithm, and write Prµ(·) to refer to the
(static) space with respect to µ. As noted before, to simplify the notation we will use A(S) to
denote the event

∧
i∈S Ai, where S ⊆ [m]. In addition, B(S) will be used to denote

∧
i∈S Ai.

For I ∈ I, define

∂I := Γ+(I) \ I, Ie := [m] \ Γ+(I), and Ic := [m] \ I = ∂I ∪ Ie.

So ∂I is the “boundary” of I, comprising events that are not in I but which depend on I,
and Ie is the “exterior” of I, comprising events that are independent of all events in I. The
complement Ic is simply the set of all events not in I. Note that B(Ic) = B(∂I) ∧ B(Ie). As
examples of the notation, Prµ(A(I)) =

∏
i∈I pi = pI is the probability that all events in I occur

under µ, and Prµ(A(I) ∧B(Ic)) = qI is the probability that exactly the events in I occur.
By the definition of Ie, we have that

Prµ (B(Ie) | A(I)) = Prµ(B(Ie)),(5)

and, by Condition 5, that

A(I) ∧B(∂I) = A(I).(6)

Hence for any I ∈ I,

qI = Prµ
(
A(I) ∧B(Ic)

)
= Prµ

(
A(I) ∧B(∂I) ∧B(Ie)

)
= Prµ

(
A(I) ∧B(Ie)

)
by (6)

= Prµ (A(I)) Prµ (B(Ie)) . by (5)(7)

We prove the lemma by induction. It clearly holds when ℓ = 1. At round ℓ ≥ 2, since we only
resample variables that are involved in Sℓ−1, we have that Sℓ ⊆ Γ+(Sℓ−1). Moreover, variables
are not resampled in any Ai where i ∈ Se

ℓ−1, and hence

B(Sc
ℓ) ∧B(Se

ℓ−1) = B(Sc
ℓ).(8)

Conditioned on Sℓ−1, by Lemma 7, the distribution of σℓ at round ℓ is the product distribution
conditioned on none of the events outside of Γ+(Sℓ−1) occuring; namely, it is Prµ

(
· | B(Se

ℓ−1)
)
.

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 9

Thus the probability of getting Sℓ in round ℓ is
PrPRS

(
A(Sℓ) ∧B(Sc

ℓ) holds in round ℓ
∣∣ prior log is S1, . . . , Sℓ−1

)
= Prµ

(
A(Sℓ) ∧B(Sc

ℓ) | B(Se
ℓ−1)

)
=

Prµ
(
A(Sℓ) ∧B(Sc

ℓ) ∧B(Se
ℓ−1)

)
Prµ(B(Se

ℓ−1))

=
Prµ

(
A(Sℓ) ∧B(Sc

ℓ)
)

Prµ(B(Se
ℓ−1))

by (8)

=
qSℓ

Prµ(B(Se
ℓ−1))

.(9)

By (9) and the induction hypothesis, we have

PrPRS (the log is S up to round ℓ) =
qSℓ

Prµ(B(Se
ℓ−1))

· qSℓ−1

ℓ−2∏
t=1

pSt

= qSℓ

ℓ−1∏
t=1

pSt ,

where to get the last line we used (7) on Sℓ−1. □

Essentially the proof above is a delayed revelation argument. At each round 1 ≤ t ≤ ℓ − 1,
we only reveal variables that are involved in St. Thus, at round ℓ, we have revealed all variables
that are involved in S. With respect to these variables, the sequence S happens with probability
pS . Condition 5 guarantees that what we have revealed so far does not interfere with the final
output (cf. Lemma 7). Hence the final state happens with probability qSℓ

.
We write pS =

∏ℓ
i=1 pSi for an independent set sequence S of length ℓ ≥ 0. Note the

convention that pS = 1 if S is empty and ℓ = 0. Then, Lemma 9 implies the following equality,
which is first shown by Kolipaka and Szegedy [26] in the more general (not necessarily extremal)
setting of the local lemma.

Corollary 10. Assume Condition 5 holds. If q∅ > 0, then∑
S s.t. S1=I

pSq∅ = qI ,

where S is an independent set sequence and I is an independent set of G.

Proof. First we claim that if q∅ > 0, then Algorithm 2 halts with probability 1. Conditioned
on any log S = S1, . . . , Sℓ−1, by Lemma 7, the distribution of σℓ at round ℓ is µ

(
· | B(Se

ℓ−1)
)
.

The probability of getting a desired assignment is thus µ
(
B([m]) | B(Se

ℓ−1)
)
= µ(B([m]))

µ(B(Se
ℓ−1))

≥
µ(B([m])) = q∅. Hence the probability that the algorithm does not halt at time t is at most
(1− q∅)

t, which goes to 0 as t goes to infinity.
Then we apply Lemma 9 when ∅ is the final independent set. The left hand side is the total

probability of all possible halting logs whose first independent set is exactly I. This is equivalent
to getting exactly I in the first step, which happens with probability qI . □

As a sanity check, the probability of all possible logs should sum to 1 when q∅ > 0 and the
algorithm halts with probability 1. Indeed, by Corollary 10,∑

S
pSq∅ =

∑
I∈I

∑
S s.t. S1=I

pSq∅ =
∑
I∈I

qI = 1,

where S is an independent set sequence. In other words,∑
S

pS =
1

q∅
,(10)

10 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

where S is an independent set sequence. This fact is also observed by Knuth [25, Page 86,
Theorem F] and Harvey and Vondrák [23, Corollary 5.28] in the more general settings. Our
proof here gives a combinatorial explanation of this equality.

Equation (10) holds whenever q∅ > 0. Recall that q∅ is the shorthand of q∅(p), which is

q∅(p) =
∑
I∈I

(−1)|I|
∏
i∈I

pi,(11)

where I is the collection of independent sets of the dependency graph G.

Lemma 11. Assume Condition 5 holds. If q∅(p) > 0, then q∅(p1, . . . , piz, . . . , pm) > 0 for any
i ∈ [m] and 0 ≤ z ≤ 1.

Proof. By (11),

q∅(p1, . . . , piz, . . . , pm) =
∑

I∈I, i/∈I

(−1)|I|
∏
j∈I

pj + z
∑

I∈I, i∈I
(−1)|I|

∏
j∈I

pj .

Notice that
∑

I∈I, i∈I(−1)|I|
∏

j∈I pj = −qi(p) < 0 (qi(p) is the probability of exactly event Ai

occurring). Hence q∅(p1, . . . , piz, . . . , pm) ≥ q∅(p) > 0. □

Let Ti be the number of resamplings of event Ai and T be the total number of resampling
events. Then T =

∑m
i=1 Ti.

Lemma 12. Assume Condition 5 holds. If q∅(p) > 0, then ETi = q∅(p)
(

1
q∅(p1,...,piz,...,pm)

)′ ∣∣∣∣
z=1

.

Proof. By Lemma 11, Equation (10) holds with pi replaced by piz where z ∈ [0, 1]. For a given
independent set sequence S, let Ti(S) be the total number of occurences of Ai in S. Then we
have that ∑

S
pSz

Ti(S) =
1

q∅(p1, . . . , piz, . . . , pm)
.(12)

Take derivative with respect to z of (12):∑
S

Ti(S)pSzTi(S)−1 =

(
1

q∅(p1, . . . , piz, . . . , pm)

)′
.

Evaluate the equation above at z = 1:∑
S

Ti(S)pS =

(
1

q∅(p1, . . . , piz, . . . , pm)

)′ ∣∣∣∣
z=1

.(13)

On the other hand, we have that

ETi =
∑
S

PrPRS (the log is S)Ti(S)

=
∑
S

pSq∅(p)Ti(S)(by Lemma 9)

= q∅(p)
(

1

q∅(p1, . . . , piz, . . . , pm)

)′ ∣∣∣∣
z=1

.(by (13))

This completes the proof. □

Theorem 13. Assume Condition 5 holds. If q∅ > 0, then ET =
∑m

i=1
qi
q∅

.

Proof. Clearly ET =
∑m

i=1 ETi. By Lemma 12, all we need to show is that

q∅(p)
(

1

q∅(p1, . . . , piz, . . . , pm)

)′ ∣∣∣∣
z=1

=
qi(p)
q∅(p)

.(14)

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 11

This is because
q′∅(p1, . . . , piz, . . . , pm) =

∑
i∈J, J∈I

(−1)|J |
∏
j∈J

pj

= −qi(p),
and thus (

1

q∅(p1, . . . , piz, . . . , pm)

)′
=
−q′∅(p1, . . . , piz, . . . , pm)

q∅(p1, . . . , piz, . . . , pm)2

=
qi(p)

q∅(p1, . . . , piz, . . . , pm)2
.

It is easy to see that (14) follows as we set z = 1 and the theorem is shown. □

The quantity
∑m

i=1
qi
q∅

is not always easy to bound. Kolipaka and Szegedy [26] have shown
that when the probability vector p satisfies Shearer’s condition with a constant “slack”, the
running time is in fact linear in the number of events in the more general setting. We rewrite
it in our notations.

Theorem 14 ([26, Theorem 5]). Let d ≥ 2 be a positive integer and pc = (d−1)(d−1)

dd
. Let

p = maxi∈[m]{pi}. If G has maximum degree d and p < pc, then ET ≤ p
pc−p ·m.

4. Applications of Algorithm 2

4.1. Sink-free Orientations. The goal of this application is to sample a sink-free orientation.
Given a graph G = (V,E), an orientation of edges is a mapping σ so that σ(e) = (u, v) or (v, u)
where e = (u, v) ∈ E. A sink under orientation σ is a vertex v so that for any adjacent edge
e = (u, v), σ(e) = (u, v). A sink-free orientation is an orientation so that no vertex is a sink.

Name: Sampling Sink-free Orientations
Instance: A Graph G.
Output: A uniform sink-free orientation.

The first algorithm for this problem is given by Bubley and Dyer [6], using Markov chains
and path coupling techniques.

In this application, we associate with each edge a random variable, whose possible values are
(u, v) or (v, u). For each vertex v, we associate it with a bad event Av, which happens when v is
a sink. Thus the graph G itself is also the dependency graph. Condition 5 is satisfied, because
if a vertex is a sink, then none of its neighbours can be a sink. Thus we may apply Algorithm
2, which yields Algorithm 3. This is the “sink-popping” algorithm given by Cohn, Pemantle,
and Propp [7].

Algorithm 3: Sample Sink-free Orientations

(1) Orient each edge independently and uniformly at random.
(2) While there is at least one sink, re-orient all edges that are adjacent to a sink.
(3) Output the current assignment.

Let Zsink,0 be the number of sink-free orientations, and let Zsink,1 be the number of orientations
having exactly one sink. Then Theorem 13 specializes into the following.

Theorem 15. The expected number of resampled sinks in Algorithm 3 is Zsink,1

Zsink,0
.

It is easy to see that a graph has a sink-free orientation if and only if the graph is not a tree.
The next theorem gives an explicit bound on Zsink,1

Zsink,0
when sink-free orientations exist.

12 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Theorem 16. Let G be a connected graph on n vertices. If G is not a tree, then Zsink,1

Zsink,0
≤ n(n−1),

where n = |V (G)|.

Proof. Consider an orientation of the edges of G with a unique sink at vertex v. We give
a systematic procedure for transforming this orientation to a sink-free orientation. Since
G is connected and not a tree, there exists an (undirected) path Π in G of the form v =
v0, v1, . . . , vℓ−1, vℓ = vk, where the vertices v0, v1, . . . , vℓ−1 are all distinct and 0 ≤ k ≤ ℓ− 2. In
other words, Π is a simple path of length ℓ−1 followed by a single edge back to some previously
visited vertex. We will choose a canonical path of this form (depending only on G and not on
the current orientation) for each start vertex v.

We now proceed as follows. Since v is a sink, the first edge on Π is directed (v1, v0). Reverse
the orientation of this edge so that it is now oriented (v0, v1). This operation destroys the sink
at v = v0 but may create a new sink at v1. If v1 is not a sink then halt. Otherwise, reverse
the orientation of the second edge of Π from (v2, v1) to (v1, v2). Continue in this fashion: if we
reach vi and it is not a sink then halt; otherwise reverse the orientation of the (i + 1)th edge
from (vi+1, vi) to (vi, vi+1). This procedure must terminate with a sink-free graph before we
reach vℓ. To see this, note that if we reach the vertex vℓ−1 then the final edge of Π must be
oriented (vℓ−1, vℓ), otherwise the procedure would have terminated already at vertex vk(= vℓ).

The effect of the above procedure is to reverse the orientation of edges on some initial segment
v0, . . . , vi of Π. To put the procedure into reverse, we just need to know the identity of the
vertex vi. So our procedure associates at most n orientations having a single sink at vertex v
with each sink-free orientation. There are n(n − 1) choices for the pair (v, vi), and hence
n(n− 1) single-sink orientations associated with each sink-free orientation. This establishes the
result. □

Remark. The bound in Theorem 16 is optimal up to a factor of 2. Consider a cycle of length
n. Then there are 2 sink-free orientations, and n(n− 1) single-sink orientations.

Theorem 16 and Theorem 15 together yield an n2 bound on the expected number of resamplings
that occur during a run of Algorithm 3. A cycle of length n is an interesting special case.
Consider the number of clockwise oriented edges during a run of the algorithm. It is easy to
check that this number evolves as an unbiased lazy simple random walk on [0, n]. Since the walk
starts close to n/2 with high probability, we know that it will take Ω(n2) steps to reach one of
the sink-free states, i.e., 0 or n.

On the other hand, if G is a regular graph of degree ∆ ≥ 3, then we get a much better linear
bound from Theorem 14. In the case ∆ = 3, we have pc = 4/27, p = 1/8 and p/(pc − p) =
27/5. So the expected number of resamplings is bounded by 27n/5. The constant in the bound
improves as ∆ increases. Conversely, since the expected running time is exact, we can also
apply Theorem 14 to give an upper bound of Zsink,1

Zsink,0
when G is a regular graph.

4.2. Rooted Spanning Trees. Given a graph G = (V,E) with a special vertex r, we want to
sample a uniform spanning tree with r as the root.

Name: Sampling Rooted Spanning Trees
Instance: A Graph G with a vertex r.
Output: A uniform spanning tree rooted at r.

Of course, any given spanning tree may be rooted at any vertex r, so there is no real differ-
ence between rooted and unrooted spanning trees. However, since this approach to sampling
generates an oriented tree, it is easier to think of the trees as being rooted at a particular
vertex r.

For all vertices other than r, we randomly assign it to point to one of its neighbours. This
is the random variable associated with v. We will think of this random variable as an arrow
v → s(v) pointing from v to its successor s(v). The arrows point out an oriented subgraph of G
with n − 1 edges {{v, s(v)} : v ∈ V \ {r}} directed as specified by the arrows. The constraint
for this subgraph to be a tree rooted at r is that it contains no directed cycles. Note that there

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 13

are 2|E|−|V |+κ(G) (undirected) cycles in G, where κ(G) is the number of connected components
of G. Hence, we have possibly exponentially many constraints.

Two cycles are dependent if they share at least one vertex. We claim that Condition 5 is
satisfied. Suppose a cycle C is present, and C ′ ̸= C is another cycle that shares at least one
vertex with C. If C ′ is also present, then we may start from any vertex v ∈ C ∩ C ′, and then
follow the arrows v → v′. Since both C and C ′ are present, it must be that v′ ∈ C ∩C ′ as well.
Continuing this argument we see that C = C ′. Contradiction!

As Condition 5 is met, we may apply Algorithm 2, yielding Algorithm 4. This is exactly the
“cycle-popping” algorithm by Wilson [39], as described in [33].

Algorithm 4: Sample Rooted Spanning Trees

(1) Let T be an empty set. For each vertex v ̸= r, randomly choose a neighbour u ∈ Γ(v)
and add an edge (v, u) to T .

(2) While there is at least one cycle in T , remove all edges in all cycles, and for all vertices
whose edges are removed, redo step (1).

(3) Output the current set of edges.

Let Ztree,0 be the number of possible assignments of arrows to the vertices of G, that yield
a (directed) tree with root r, and Ztree,1 be the number of assignments that yield a unicyclic
subgraph. The next theorem gives an explicit bound on Ztree,1

Ztree,0
.

Theorem 17. Suppose G is a connected graph on n vertices, with m edges. Then Ztree,1

Ztree,0
≤ mn.

Proof. Consider an assignment of arrows to the vertices of G that forms a unicyclic graph. This
unicyclic subgraph has two components: a directed tree with root r, and a directed cycle with
a number of directed subtrees rooted on the cycle. This is because if we remove the unicyclic
component, the rest of the graph has one less edge than vertices and no cycles, which must be
a spanning tree.

As G is connected, there must be an edge in G joining the two components; let this edge
be {v0, v1}, where v0 is in the tree component and v1 in the unicyclic component. Now extend
this edge to a path v0, v1, . . . , vℓ, by following arrows until we reach the cycle. Thus, v1 →
v2, v2 → v3, . . . , vℓ−1 → vℓ are all arrows, and vℓ is the first vertex that lies on the cycle. (It
may happen that ℓ = 1.) Let vℓ → vℓ+1 be the arrow out of vℓ. Now reassign the arrows from
vertices v1, . . . , vℓ thus: vℓ → vℓ−1, . . . , v2 → v1, v1 → v0. Notice that the result is a directed
tree rooted at r.

As before, we would like to bound the number of unicyclic subgraphs associated with a given
tree by this procedure. We claim that the procedure can be reversed given just two pieces of
information, namely, the edge {vℓ, vℓ+1} and the vertex v0. Note that, even though the edge
{vℓ, vℓ+1} is undirected, we can disambiguate the endpoints, as vℓ is the vertex closer to the
root r. The vertices vℓ−1, . . . , v1 are easy to recover, as they are the vertices on the unique path
in the tree from vℓ to v0. To recover the unicyclic subgraph, we just need to reassign the arrows
for vertices v1, . . . , vℓ as follows: v1 → v2, . . . , vℓ → vℓ+1.

As the procedure can be reversed knowing one edge and one vertex, the number of unicyclic
graphs associated with each tree can be at most mn. □

Theorem 17 combined with Theorem 13 yields an mn upper bound on the expected number
of “popped cycles” during a run of Algorithm 4.

On the other hand, take a cycle of length n. There are n spanning trees with a particular
root v, and there are Ω(n3) unicyclic graphs (here a cycle has to be of length 2). Thus the ratio
is Ω(n2) = Ω(mn) since m = n, matching the bound of Theorem 17. Moreover, it is known
that the cycle-popping algorithm may take Ω(n3) time, for example on a dumbbell graph [33].

14 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

4.3. Extremal CNF formulas. A classical setting in the study of algorithmic Lovász Local
Lemma is to find satisfying assignments in k-CNF formulas2, when the number of appearances
of every variable is bounded by d. Theorem 1 guarantees the existence of a satisfying assignment
as long as d ≤ 2k

ek + 1. On the other hand, sampling is apparently harder than searching in
this setting. As shown in [4, Corollary 30], it is NP-hard to approximately sample satisfying
assignments when d ≥ 5 · 2k/2, even restricted to the special case of monotone formulas.

Meanwhile, sink-free orientations can be recast in terms of CNF formulas. Every vertex in the
graph is mapped to a clause, and every edge is a variable. Thus every variable appears exactly
twice, and we require that the two literals of the same variable are always opposite. Interpreting
an orientation from u to v as making the literal in the clause corresponding to v false, the “sink-
free” requirement is thus “not all literals in a clause are false”. Hence a “sink-free” orientation
is just a satisfying assignment for the corresponding CNF formula.

To apply Algorithm 2, we need to require that the CNF formula satisfies Condition 5. Such
formulas are defined as follows.

Definition 18. We call a CNF formula extremal if for every two clauses Ci and Cj, if there is
a common variable shared by Ci and Cj, then there exists some variable x such that x appears
in both Ci and Cj and the two literals are one positive and one negative.

Let C1, . . . , Cm be the clauses of a formula φ. Then define the bad event Ai as the set
of unsatisfying assignments of clause Ci. For an extremal CNF formula, these bad events
satisfy Condition 5. This is because if Ai ∼ Aj , then by Definition 18, there exists a variable
x ∈ var(Ai) ∩ var(Aj) such that the unsatisfying assignment of Ci and Cj differ on x. Hence
Ai ∩Aj = ∅.

In this formulation, if the size of Ci is k, then the corresponding event Ai happens with
probability pi = Pr(Ai) = 2−k, where variables are sampled uniformly and independently.3
Suppose each variable appears at most d times. Then the maximum degree in the dependency
graph is at most ∆ = (d − 1)k. Note that in Theorem 14, pc = (∆−1)(∆−1)

∆∆ ≥ 1
e∆ . Thus if

d ≤ 2k

ek + 1, then pi = 2−k < pc and we may apply Theorem 14 to obtain a polynomial time
sampling algorithm.

Corollary 19. For extremal k-CNF formulas where each variable appears in at most d clauses,
if d ≤ 2k

ek +1, then Algorithm 2 samples satisfying assignments uniformly at random, with O(m)
expected resamplings where m is the number of clauses.

The condition in Corollary 19 essentially matches the condition of Theorem 1. On the other
hand, if we only require Shearer’s condition as in Theorem 2, Algorithm 2 is not necessarily
efficient. More precisely, let ZCNF,0 be the number of satisfying assignments, and ZCNF,1 be the
number of assignments satisfying all but one clause. If we only require Shearer’s condition in
Theorem 2, then the expected number of resamplings ZCNF,1

ZCNF,0
can be exponential, as shown in

the next example.

Example. Construct an extremal CNF formula φ = C1∧C2∧· · ·∧C4m as follows. Let C1 := x1.
Then the variable x1 is pinned to 1 to satisfy C1. Let C2 := x1 ∨ y1 ∨ y2, C3 := x1 ∨ y1 ∨ y2,
and C4 := x1 ∨ y1 ∨ y2. Then y1 and y2 are also pinned to 1 to satisfy all C1 − C4.

We continue this construction by letting
C4k+1 := y2k−1 ∨ y2k ∨ xk+1,

C4k+2 := xk+1 ∨ y2k+1 ∨ y2k+2,

C4k+3 := xk+1 ∨ y2k+1 ∨ y2k+2,

C4k+4 := xk+1 ∨ y2k+1 ∨ y2k+2,

2As usual in the study of Lovász Local Lemma, by “k-CNF” we mean that every clause has exactly size k.
3We note that to find a satisfying assignment it is sometimes beneficial to consider non-uniform distributions.

See [13].

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 15

for all 1 ≤ k ≤ m − 1. It is easy to see by induction that to satisfy all of them, all xi’s and
yi’s have to be 1. Moreover, one can verify that this is indeed an extremal formula. Thus
ZCNF,0 = 1. Moreover, since φ has a satisfying assignment and is extremal, Shearer’s condition
is satisfied. Note also that φ is not a 3-CNF formula as C1 contains a single variable.

On the other hand, if we are allowed to ignore C1, then x1 can be 0. In that case, there are
3 choices of y1 and y2 so that x2 to be 0 as well. Thus, there are at least 3m assignments that
only violate C1, where x1 = x2 = · · · = xm = 0. It implies that ZCNF,1 ≥ 3m. Hence we see that
ZCNF,1

ZCNF,0
≥ 3m. Due to Theorem 13, the expected running time of Algorithm 2 on this formula φ

is exponential in m.

We will discuss more on sampling satisfying assignments of a k-CNF formula in Section 7.1.

5. General Partial Rejection Sampling

In this section we give a general version of Algorithm 2 which can be applied to arbitrary
instances in the variable framework, even without Condition 5.

Recall the notation introduced at the beginning of Section 2. So, {X1, . . . , Xn} is a set
of random variables, each with its own distribution and range Di, and {A1, . . . , Am} is a set
of bad events that depend on Xi’s. The dependencies between events are encoded in the
dependency graph G = (V,E). As before, we will use the idea of a resampling table. Recall
that σ = σt = {Xi,ji,t | 1 ≤ i ≤ n} denotes the current assignment of variables at round t, i.e.,
the elements of the resampling table that are active at time t. Given σ, let Bad(σ) be the set
of occurring bad events; that is, Bad(σ) = {i | σ ∈ Ai}. For a subset S ⊂ V , let ∂S be the
boundary of S; that is, ∂S = {i | i /∈ S and ∃j ∈ S, (i, j) ∈ E}. Moreover, let

var(S) :=
∪
i∈S

var(Ai).

Let σ|S be the partial assignment of σ restricted to var(S). For an event Ai and S ⊆ V , we
write Ai ⊥ σ|S if either var(Ai)∩var(S) = ∅, or there is no way to extend the partial assignment
σ|S to all variables so that Ai holds. Otherwise Ai ̸⊥ σ|S .

Definition 20. A set S ⊆ V is unblocking under σ if for every i ∈ ∂S, Ai ⊥ σ|S.

Given σ, our goal is to resample a set of events that is unblocking and contains Bad(σ). Such
a set must exist because V is unblocking (∂V is empty) and Bad(σ) ⊆ V . However, we want to
resample as few events as possible.

Algorithm 5: Select the resampling set Res(σ) under an assignment σ

R← Bad(σ) ; // R is the set of events that will be resampled.
N ← ∅ ; // N is the set of events that will not be resampled.
U ← ∂R \N ;
while U ̸= ∅ do

for i ∈ U do
if Ai ̸⊥ σ|R then

R← R ∪ {i};
else

N ← N ∪ {i};
end

end
U ← ∂R \N ;

end
return R

Intuitively, we start by setting the resampling set R0 as the set of bad events Bad(σ). We
mark resampling events in rounds, similar to a breadth first search. Let Rt be the resampling

16 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

set of round t ≥ 0. In round t+ 1, let Ai be an event on the boundary of Rt that hasn’t been
marked yet. We mark it “resampling” if the partial assignments on the shared variables of Ai

and Rt can be extended so that Ai occurs. Otherwise we mark it “not resampling”. We continue
this process until there is no unmarked event left on the boundary of the current R. An event
outside of Γ+(R) may be left unmarked at the end of Algorithm 5. Note that once we mark
some event “not resampling”, it will never be added into the resampling set. This is because R
is only grow in size during the algorithm.

In Algorithm 5, we are dynamically updating R during each iteration of going through U .
This is potentially beneficial as an event Ai may become incompatible with R after some event
Aj is added, where both i, j ∈ U .

We fix a priori an arbitrary ordering while choosing i ∈ U in the “for” loop of Algorithm 5.
Then the output of Algorithm 5 is deterministic under σ. Call it Res(σ).

Lemma 21. Let σ be an assignment. For any i ∈ ∂Res(σ), Ai ⊥ σ|Res(σ).

Proof. Since i ∈ ∂Res(σ), it must have been marked. Moreover, i ̸∈ Res(σ), so it must be
marked as “not resampling”. Thus, there exists an intermediate set R ⊆ Res(σ) during the
execution of Algorithm 5 such that Ai ⊥ σ|R and i ∈ ∂R. It implies that Ai is disjoint from the
partial assignment of σ restricted to var(Ai) ∩ var(R). However,

var(Ai) ∩ var(R) ⊆ var(Ai) ∩ var(Res(σ))

as R ⊆ Res(σ). We have that Ai ⊥ σ|Res(σ). □
If Condition 5 is met, then Res(σ) = Bad(σ). This is because at the first step, R = Bad(σ).

By Condition 5, for any i ∈ ∂Bad(σ), Ai is disjoint from all Aj ’s where j ∈ Bad(σ) and Ai ∼ Aj .
Since Aj occurs under σ, Ai ⊥ σ|R. Algorithm 5 halts in the first iteration. In this case, since
the resampling set is just the (independent) set of occurring bad events, the later Algorithm 6
coincides with Algorithm 2.

The key property of Res(σ) is that if we change the assignment outside of Res(σ), then Res(σ)
does not change, unless the new assignment introduces a new bad event outside of Res(σ). More
formally, we have the following lemma.

Lemma 22. Let σ be an assignment. Let σ′ be another assignment such that Bad(σ′) ⊆ Res(σ)
and such that σ and σ′ agree on all variables in var(Res(σ)) =

∪
i∈Res(σ) var(Ai). Then, Res(σ′) =

Res(σ).

Proof. Let Rt(σ), Nt(σ) be the intermediate sets R,N , respectively, at time t of the execution
of Algorithm 5 under σ. Thus R0(σ) = Bad(σ) and R0(σ) ⊆ R1(σ) ⊆ · · · ⊆ Res(σ). Moreover,
N0(σ) ⊆ N1(σ) ⊆ · · · . We will show by induction that Rt(σ) = Rt(σ

′) and Nt(σ) = Nt(σ
′) for

any t ≥ 0.
For the base case of t = 0, by the condition of the lemma, for every i ∈ Bad(σ) ⊆ Res(σ),

the assignments σ and σ′ agree on var(Ai); or equivalently σ|Res(σ) = σ′|Res(σ). Together with
Bad(σ′) ⊆ Res(σ), it implies that Bad(σ) = Bad(σ′) and R0(σ) = R0(σ

′). Moreover, N0(σ) =
N0(σ

′) = ∅.
For the induction step t > 0, we have that Rt−1(σ) = Rt−1(σ

′) ⊆ Res(σ) and Nt−1(σ) =
Nt−1(σ

′). Let R = Rt−1(σ) = Rt−1(σ
′) and N = Nt−1(σ) = Nt−1(σ

′). Then we will go
through U = ∂R \N , which is the same for both σ and σ′. Moreover, while marking individual
events “resampling” or not, it is sufficient to look at only σ|R = σ′|R since R ⊆ Res(σ). Thus the
markings are exactly the same, implying that Rt(σ) = Rt(σ

′) ⊆ Res(σ) and Nt(σ) = Nt(σ
′). □

To prove the correctness of Algorithm 6, we will only use three properties of Res(σ), which
are intuitively summarized as follows:

(1) Bad(σ) ⊆ Res(σ);
(2) For any i ∈ ∂Res(σ), Ai is disjoint from the partial assignment of σ projected on var(Ai)∩

var(Res(σ)) (Lemma 21);
(3) If we fix the partial assignment of σ projected on var(Res(σ)), then the output of Algo-

rithm 5 is fixed, unless there are new bad events occurring outside of Res(σ) (Lemma 22).

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 17

Algorithm 6: General Partial Rejection Sampling

(1) Draw independent samples of all variables X1, . . . , Xn from their respective
distributions.

(2) While at least one bad event occurs under the current assignment σ, use Algorithm 5
to find Res(σ). Resample all variables in

∪
i∈Res(σ) var(Ai).

(3) When none of the bad events holds, output the current assignment.

Similarly to the analysis of Algorithm 2, we call S = S1, . . . , Sℓ the log, if Si is the set of
resampling events in step i of Algorithm 6. Note that for Algorithm 6, the log is not necessarily
an independent set sequence. Also, recall that σi is the assignment of variables in step i, and
σt = σT if T is when Algorithm 6 terminates and t > T . The following lemma is an analogue
of Lemma 7.

Lemma 23. Given any log S of length ℓ ≥ 1, σℓ+1 has the product distribution conditioned on
none of Ai’s occurring where i /∈ Γ+(Sℓ), namely from µ

(
· |
∧

i∈[m]\Γ+(Sℓ)
Ai

)
.

Proof. Suppose i /∈ Γ+(Sℓ). By construction, Sℓ contains all occurring bad events of σℓ, and
hence Ai does not occur under σℓ. In step ℓ, we only resample variables that are involved in Sℓ,
so σℓ+1 and σℓ agree on var(Ai). Hence Ai cannot occur under σℓ+1. Call an assignment σ valid
if none of Ai occurs where i /∈ Γ+(Sℓ). To show that σℓ+1 has the desired conditional product
distribution, we will show that the probabilities of getting any two valid assignments σ and σ′

are proportional to their probabilities of occurrence under the product distrbution µ(·).
Let M be the resampling table so that the log of Algorithm 6 is S up to round ℓ, and σℓ+1 = σ.

Indeed, since we only care about events up to round ℓ + 1, we may truncate the table so that
M = {Xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji,ℓ+1}. Let M ′ = {X ′

i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji,ℓ+1} be
another table where X ′

i,j = Xi,j if j < ji,ℓ+1 for any i ∈ [n], and σ′ = (X ′
i,ji,ℓ+1

: 1 ≤ i ≤ n) is a
valid assignment. In other words, we only change the last assignment (Xi,ji,ℓ+1

: 1 ≤ i ≤ n) to
another valid assignment. We will use σ′

t = (X ′
i,ji,t

) to denote the active elements of the second
resampling table at time t; thus σ′ = σ′

ℓ+1.
The lemma follows if Algorithm 6 running on M ′ generates the same log S up to round ℓ,

since, if this is the case, then conditioned on the log S, every possible table M where σℓ+1 = σ
is one-to-one correspondence with another table M ′ where σ′

ℓ+1 = σ′. Hence the probability of
getting σ is proportional to its weight under µ(·).

Suppose otherwise and the log of running Algorithm 6 on M and M ′ differ. Let t0 ≤ ℓ be
the first round where resampling changes, by which we mean that Res(σt0) ̸= Res(σ′

t0). By
Lemma 22, either Bad(σ′

t0) ̸⊆ Res(σt0), or σt0 |Res(σt0)
̸= σ′

t0 |Res(σt0)
. In the latter case, there

must be a variable Xi with i ∈ var(Res(σt0)) and index ji,ℓ+1. However, i ∈ var(Res(σt0))
means that Xi is resampled at least once more in the original run on M , and its index goes
up to at least ji,ℓ+1 + 1 at round ℓ + 1. A contradiction. Thus, σt0 |Res(σt0)

= σ′
t0 |Res(σt0)

and
Bad(σ′

t0) ̸⊆ Res(σt0).
As Bad(σ′

t0) ̸⊆ Res(σt0), there must be a variable Xi0 such that ji0,t0 = ji0,ℓ+1 (otherwise
Xi0,ji0,t0

= X ′
i0,ji0,t0

) and an event Ak such that i0 ∈ var(Ak), k ∈ Bad(σ′
t0) but k ̸∈ Res(σt0).

Suppose first that ∀i ∈ var(Ak), ji,t0 = ji,ℓ+1, which means that all variables of Ak have reached
their final values in the M run at time t0. This implies that k /∈ Γ+(St) for any t ≥ t0 as
otherwise some of the variables in var(Ak) would be resampled at least once after round t0. In
particular, k /∈ Γ+(Sℓ). This contradicts with σ′ being valid.

Otherwise there are some variables in var(Ak) that get resampled after time t0 in the M run.
Let t1 be the first such time and Y ⊂ var(Ak) be the set of variables resampled at round t1;
namely, Y = var(Ak) ∩ var(Res(σt1)). We have that σt1 |Y = σt0 |Y because t1 is the first time of
resampling variables in Y . Moreover, as variables of Y have not reached their final values yet
in the M run, σt0 |Y = σ′

t0 |Y . Thus, σt1 |Y = σ′
t0 |Y .

18 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Assuming k ∈ Res(σt1) would contradict the fact that Xi0 has reached its final value in the
M run. Hence k /∈ Res(σt1), but nevertheless variables in Y ⊂ var(Ak) are resampled. This
implies that k ∈ ∂Res(σt1). By Lemma 21, Ak ⊥ σt1 |Res(σt1)

. As var(Ak) cannot be disjoint from
var(Res(σt1)), this means that Ak is imcompartible with the partial assignment of σt1 restricted
to var(Ak)∩var(Res(σt1)) = Y . Equivalently, Ak ⊥ σt1 |Y . However we know that σt1 |Y = σ′

t0 |Y ,
so Ak ⊥ σ′

t0 |Y , contradicting k ∈ Bad(σ′
t0). □

Theorem 24. If Algorithm 6 halts, then its output has the product distribution conditioned on
none of Ai’s occurring.
Proof. Let a sequence S of sets of events be the log of any successful run. Then Sℓ = ∅. By
Lemma 23, conditioned on the log S, the output assignment σ is µ

(
· |
∧

i∈[m]\Γ+(Sℓ)
Ai

)
= µ

(
· |∧

i∈[m]Ai

)
. This is valid for any possible log, and the theorem follows. □

6. Running Time Analysis of Algorithm 6

Obviously when there is no assignment avoiding all bad events, then Algorithm 6 will never
halt. Thus we want to assume some conditions to guarantee a desired assignment. However,
the optimal condition of Theorem 2 is quite difficult to work under. Instead, in this section we
will be working under the assumption that the asymmetric LLL condition (1) holds. In fact, to
make the presentation clean, we will mostly work with the simpler symmetric case.

However, as mentioned in Section 4.3, [4, Corollary 30] showed that even under the asym-
metric LLL condition (1), sampling can still be NP-hard. We thus in turn look for further
conditions to make Algorithm 6 efficient.

Recall that µ(·) is the product distribution of sampling all variables independently. For two
distinct events Ai ∼ Aj , let Rij be the event that the partial assignments on var(Ai) ∩ var(Aj)
can be extended to an assignment making Aj true. Thus, if Ai ̸⊥ σ|S for some event set S, then
Rji must hold for all Aj ∈ S and Aj ∼ Ai. Conversely, it is possible that each individual Rji is
true for all Aj ∈ R and Aj ∼ Ai, and yet Ai ⊥ σ|S . Also note that Rij is not necessarily the
same as Rji. Let rij := µ(Rij).

Define p := max
i∈[m]

pi and r := max
Ai∼Aj , i ̸=j

rij . Let ∆ be the maximum degree of the dependency

graph G. The main result of the section is the following theorem.
Theorem 25. Let m be the number of events and n be the number of variables. For any ∆ ≥ 2,
if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, then the expected number of resampled events of Algorithm 6 is
O(m).

Moreover, when these conditions hold, the number of rounds is O(logm) and the number of
variable resamples is O(n logm), both in expectation and with high probability.

The first condition 6ep∆2 ≤ 1 is stronger than the condition of the symmetric Lovász Local
Lemma, but this seems necessary since [4, Corollary 30] implies that if p∆2 ≥ C for some
constant C then the sampling problem is NP-hard. Intuitively, the second condition 3er∆ ≤ 1
bounds the expansion from bad events to resampling events at every step of Algorithm 6. We
will prove Theorem 25 in the rest of the section.

Let S ⊆ [m] be a subset of vertices of the dependency graph G. Recall that A(S) is the
event

∧
i∈S Ai and B(S) is the event

∧
i∈S Ai. Moreover, Sc is the complement of S, namely

Sc = [m] \ S, and Se is the “exterior” of S, namely Se = [m] \ Γ+(S).
Lemma 23 implies that if we resample S at some step t of Algorithm 6, then at step t + 1

the distribution is the product measure µ conditioned on none of the events in the exterior of
S holds; namely Prµ(· | B(Se)).

Let E be an event (not necessarily one of Ai) depending on a set var(E) of variables. Let
Γ(E) := {i | i ∈ [m], var(Ai)∩ var(E) ̸= ∅} if E is not one of Ai, and Γ(Ai) := {j | j ∈ [m], j ̸=
i and var(Aj) ∩ var(Ai) ̸= ∅} is defined as usual. Let S ⊆ [m] be a subset of vertices of G. The
next lemma bounds the probability of E conditioned on none of the events in S happening. It
was first observed in [19]. We include a proof for completeness (which is a simple adaption of
the ordinary local lemma proof).

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 19

Lemma 26 ([19, Theorem 2.1]). Suppose (1) holds. For an event E and any set S ⊆ [m],

Prµ(E | B(S)) ≤ Prµ(E)
∏

i∈Γ(E)∩S

(1− xi)
−1,

where xi’s are from (1).

Proof. We prove the inequality by induction on the size of S. The base case is when S is empty
and the lemma holds trivially.

For the induction step, let S1 = S ∩ Γ(E) and S2 = S \ S1. If S1 = ∅, then the lemma holds
trivially as E is independent from S in this case. Otherwise S2 is a proper subset of S. We
have that

Prµ(E | B(S)) =
Prµ(E ∧B(S1) | B(S2))

Prµ(B(S1) | B(S2))

≤ Prµ(E | B(S2))

Prµ(B(S1) | B(S2))

=
Prµ(E)

Prµ(B(S1) | B(S2))
,

where the last line is because E is independent from B(S2). We then use the induction hypoth-
esis to bound the denominator. Suppose S1 = {j1, j2, . . . , jr} for some r > 0. Then,

Prµ(B(S1) | B(S2)) = Prµ

∧
i∈S1

Ai

∣∣∣∣∣ ∧
i∈S2

Ai


=

r∏
t=1

Prµ

Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
i∈S2

Ai


=

r∏
t=1

1− Prµ

Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
i∈S2

Ai

 .

By the induction hypothesis and (1), we have that for any 1 ≤ t ≤ r,

Prµ

Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
i∈S2

Ai

 ≤ Prµ(Ajt)
∏

i∈Γ(jt)

(1− xi)
−1

≤ xjt
∏

i∈Γ(jt)

(1− xi)
∏

i∈Γ(jt)

(1− xi)
−1

= xjt .

Thus,
Prµ(B(S1) | B(S2)) ≥

∏
i∈S1

(1− xi) .

The lemma follows. □
Typically we set xi = 1

∆+1 in the symmetric setting. Then (1) holds if ep(∆+1) ≤ 1. In this
setting, Lemma 26 is specialized into the following.

Corollary 27. If ep(∆ + 1) ≤ 1, then

Prµ(E | B(S)) ≤ Prµ(E)

(
1 +

1

∆

)|Γ(E)|
.

In particular, if ep(∆ + 1) ≤ 1, for any event Ai where i ̸∈ S, by Corollary 27,

Prµ(Ai | B(S)) ≤ pi

(
∆+ 1

∆

)∆

≤ ep.(15)

20 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Let Rest be the resampling set of Algorithm 6 at round t ≥ 1, and let Badt be the set of bad
events present at round t. If Algorithm 6 has already stopped at round t, then Rest = Badt = ∅.
Furthermore, let Bad0 = Res0 = [m] since in the first step all random variables are fresh.

Let C := 1− p.

Lemma 28. For any ∆ ≥ 2, if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, then,

E (|Rest+1| | Res0, . . . ,Rest) ≤ C |Rest| .

Proof. Clearly for any ∆ ≥ 2, the condition 6ep∆2 ≤ 1 implies that ep(∆ + 1) ≤ 1. Therefore
the prerequisite of Corollary 27 is met. Notice that, by Lemma 23, we have that

E (|Rest+1| | Res0, . . . ,Rest) = E (|Rest+1| | Rest) .

We will show in the following that

E
(
|Rest+1|

∣∣ the set of resampling events at round t is (exactly) Rest
)
≤ C |Rest| ,

where C = 1− p. This implies the lemma.
Call a path i0, i1, . . . , iℓ where ℓ ≥ 0 in the dependency graph G bad if the following holds:
(1) i0 ∈ Badt+1;
(2) the event Rik−1ik holds for every 1 ≤ k ≤ ℓ;
(3) any ik (k ∈ [ℓ]) is not adjacent to ik′ unless k′ = k − 1 or k + 1.

Indeed, paths having the third property are induced paths in G. If i ∈ Rest+1, Ai must be added
by Algorithm 5 during some iteration of the while loop. In the 0th iteration, all of Badt+1 are
added. We claim that for any i ∈ Rest+1 added in ℓ ≥ 0 iteration by Algorithm 5, there exists
at least one bad path such that i0, i1, . . . , iℓ = i. We show the claim by an induction on ℓ.

• The base case is that ℓ = 0, and thus i ∈ Badt+1. The bad path is simply i itself.
• For the induction step ℓ ≥ 1, due to Algorithm 5, there must exist iℓ−1 adjacent to iℓ = i

such that iℓ−1 has been marked “resampling” during iteration ℓ− 1, and Riℓ−1iℓ occurs.
By the induction hypothesis, there exists a bad path i0, . . . , iℓ−1. Since i is not marked
at iteration ℓ− 1, i is not adjacent to any vertices that has been marked up to iteration
ℓ− 2. Thus iℓ is not adjacent to any ik where k ≤ ℓ− 2, and the path i0, . . . , iℓ−1, iℓ is
bad.

We next turn to bounding the number of bad paths. It is straightforward to bound the size
of Badt+1 ⊆ Γ+(Rest). If i ∈ Badt+1, then there are two possibilities. The first scenario is that
i ∈ Rest and then all of its random variables are fresh. In this case it occurs with probability
pi ≤ p. Otherwise i ∈ ∂Rest. Recall that by Lemma 23, the distribution at round t + 1 is
Prµ(· | B(Reset)). By Corollary 27, for any i ∈ ∂Rest,

Prµ (Ai | B(Reset)) ≤ p

(
1 +

1

∆

)∆

≤ ep.

This implies that

E (|Badt+1| | the set of resampling events at round t is (exactly) Rest)

≤ p |Rest|+ ep |∂Rest| ≤ p(1 + e∆) |Rest| .(16)

Next we bound the size of |Rest+1 \ Badt+1|. Let P = i0, . . . , iℓ be an induced path; that is,
for any k ∈ [ℓ], ik is not adjacent to ik′ unless k′ = k − 1 or k + 1. Only induced paths are
potentially bad. Moreover, P contributes to |Rest+1 \ Badt+1| only if its length ℓ ≥ 1. Let DP

be the event that P is bad. In other words, DP := Ai0 ∧Ri0i1 ∧ · · · ∧Riℓ−1iℓ . By Lemma 23, we
have that

Pr(P is bad at round t+ 1 | the set of resampling events at round t is Rest)

= Prµ(DP | B(Reset)),(17)

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 21

where we recall that we denote Reset = [m] \ Γ+(Rest). Applying Corollary 27 with S = Reset ,
we have that

Prµ(DP | B(Reset)) ≤ Prµ(DP)

(
1 +

1

∆

)|Γ(DP)|
.(18)

Note that Γ(Rikik+1
) ⊆ Γ+(Aik) for all 0 ≤ k ≤ ℓ− 1. By the definition of DP ,

Γ(DP) ⊆ Γ(Ai0) ∪ Γ(Ri0i1) ∪ · · · ∪ Γ(Riℓ−1iℓ)

⊆ Γ+(Ai0) ∪ Γ+(Ai1) ∪ · · · ∪ Γ+(Aiℓ−1
),

implying that

|Γ(DP)| ≤ ℓ(∆ + 1),(19)

as |Γ+(Ak)| ≤ ∆+ 1 for all 0 ≤ k ≤ ℓ− 1.
We claim that Ai0 is independent from Rik−1ik for any 2 ≤ k ≤ ℓ. This is because ik is not

adjacent to i0 for any k ≥ 2, implying that

var(Rik−1ik) ∩ var(Ai0) = var(Aik−1
) ∩ var(Aik) ∩ var(Ai0)

⊆ var(Aik) ∩ var(Ai0) = ∅.

Moreover, any two events Rik−1ik and Rik′−1ik′ are independent of each other as long as k < k′.
This is also due to the third property of bad paths. Since k < k′, we see that |k′ − (k − 1)| ≥ 2
and ik′ is not adjacent to ik−1. It implies that

var(Rik−1ik) ∩ var(Rik′−1ik′) = var(Aik−1
) ∩ var(Aik) ∩ var(Aik′−1

) ∩ var(Aik′)

⊆ var(Aik−1
) ∩ var(Aik′) = ∅.

The consequence of these independences is

Prµ(DP) ≤ Prµ(Ai0 ∧Ri1i2 ∧ · · · ∧Riℓ−1iℓ)

= Prµ(Ai0)
ℓ∏

k=2

Prµ(Rik−1ik)

≤ prℓ−1.(20)

Note that in the calculation above we ignore Ri0i1 as it can be positively correlated to Ai0 .
Combining (17), (18), (19), and (20), we have that

Pr(DP | the set of resampling events at round t is (exactly) Rest)

≤ prℓ−1

(
1 +

1

∆

)ℓ(∆+1)

≤ p

r

((
1 +

1

∆

)
er

)ℓ

.(21)

In order to apply a union bound on all bad paths, we need to bound their number. The first
vertex i0 must be in Badt+1, implying that i0 ∈ Γ+(Rest). Hence there are at most (∆+1) |Rest|
choices. Then there are at most ∆ choices of i1 and (∆−1) choices of every subsequent ik where
k ≥ 2. Hence, there are at most ∆(∆− 1)ℓ−1 induced paths of length ℓ ≥ 1, originating from a

22 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

particular i0 ∈ Γ+(Rest). Thus, by a union bound on all potentially bad paths and (21),
E
(
|Rest+1 \ Badt+1|

∣∣ the set of resampling events at round t is (exactly) Rest
)

≤
∞∑
ℓ=1

(∆ + 1) |Rest|∆(∆− 1)ℓ−1p/r

((
1 +

1

∆

)
er

)ℓ

=
(∆+ 1)∆p

(∆− 1)r
|Rest|

∞∑
ℓ=1

((
∆2 − 1

∆

)
er

)ℓ

≤ (∆ + 1)∆p

(∆− 1)r
|Rest|

∞∑
ℓ=1

(er∆)ℓ =
(∆+ 1)∆p

(∆− 1)r
· er∆

1− er∆
|Rest|

≤ ∆+ 1

∆− 1
· 3
2
· ep∆2 |Rest| ,(22)

where we use the condition that er∆ ≤ 1/3.
Combining (16) and (22), we have that

E (|Rest+1| | the set of resampling events at round t is (exactly) Rest)

≤ ∆+ 1

∆− 1
· 3
2
· ep∆2 |Rest|+ p(1 + e∆) |Rest|

= p

(
∆+ 1

∆− 1
· 3
2
· e∆2 + (1 + e∆)

)
|Rest| .

All that is left is to verify that

p

(
∆+ 1

∆− 1
· 3
2
· e∆2 + (1 + e∆)

)
≤ C,

where C = 1− p. This is straightforward by the condition 6ep∆2 ≤ 1 and ∆ ≥ 2, as

C − p

(
∆+ 1

∆− 1
· 3
2
· e∆2 + (1 + e∆)

)
≥ 6ep∆2 − p− p

(
∆+ 1

∆− 1
· 3
2
· e∆2 + (1 + e∆)

)
≥ p

(
6e∆2 − 1− ∆+ 1

∆− 1
· 3
2
· e∆2 − (1 + e∆)

)
≥ 0. □

For t ≥ 1, by Lemma 28 and the law of iterated expectations,
E |Rest| ≤ C E |Rt−1| .

Thus, E |Rest| ≤ Ct |R0| = Ctm. As C < 1, the expected number of resampling events is
∞∑
t=0

E |Rest| ≤
∞∑
t=0

Ctm =
1

1− C
·m.

This implies the first part of Theorem 25. For the second part, just observe that after O(logm)
rounds, the expected number of bad events is less than m−c for any constant c, and Markov
inequality applies.

The first condition of Theorem 25 requires p to be roughly O(∆−2). This is necessary, due to
the hardness result in [4] (see also Theorem 32). Also, in the analysis, it is possible to always
add all of ∂Badt into Rest. Consider a monotone CNF formula. If a clause is unsatisfied, then all
of its neighbours need to be added into the resampling set. Such behaviours would eventually
lead to the O(∆−2) bound. This situation is in contrast to the resampling algorithm of Moser
and Tardos [31], which only requires p = O(∆−1) as in the symmetric Lovász Local Lemma.

Also, we note that monotone CNF formulas, in which all correlations are positive, seem to be
the worst instances for our algorithms. In particular, Algorithm 6 is exponentially slow when
the underlying hypergraph of the monotone CNF is a (hyper-)tree. This indicates that our
condition on r in Theorem 25 is necessary for Algorithm 6. In contrast, Hermon et al. [24]
show that on a linear hypergraph (including the hypertree), the Markov chain mixes rapidly for

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 23

degrees higher than the general bound. It is unclear how to combine the advantages from these
two approaches.

7. Applications of Algorithm 6

7.1. k-CNF Formulas. Consider a k-CNF formula where every variable appears in at most d
clauses. Then Theorem 1 says that if d ≤ 2k/(ek)+1, then there exists a satisfying assignment.
However, as mentioned in Section 4.3, [4, Corollary 30] showed that when d ≥ 5 · 2k/2, then
sampling satisfying assignments is NP-hard, even restricted to monotone formulas.

To apply Algorithm 6 in this setting, we need to bound the parameter r in Theorem 25.
A natural way is to lower bound the number of shared variables between any two dependent
clauses. If this lower bound is s, then r = 2−s since there is a unique assignment on these s
variables that can be extended in such a way as to falsify the clauses.

Definition 29. Let d ≥ 2 and s ≥ 1. A k-CNF formula is said to have degree d if every
variable appears in at most d clauses. Moreover, it has intersection s if for any two clauses Ci

and Cj that share at least one variable, |var(Ci) ∩ var(Cj)| ≥ s.

Note that by the definition if k < s then the formula is simply isolated clauses. Otherwise,
k ≥ s and we have that pi = p = 2−k and r ≤ 2−s. A simple double counting argument indicates
that the maximum degree ∆ in the dependency graph satisfies ∆ ≤ dk

s .
We claim that for integers d and k such that d ≥ 3 and dk ≥ 23e, conditions d ≤ 2k/2

6e and
s ≥ min{log2 dk, k/2} imply the conditions of Theorem 25, namely, 6ep∆2 ≤ 1 and 3er∆ ≤ 1.
In fact, if s ≥ log2 dk ≥ log2 d, then

6ep∆2 ≤ 6e2−k

(
dk

s

)2

≤ 6e2−k

(
dk

log2 d

)2

≤ 6e

(
k

6e (k/2− log2 6e)

)2

< 1,

as d
log2 d

is increasing for any d ≥ 3. Moreover,

3er∆ ≤ 3edk

2ss
≤ 3e

log2(dk)
≤ 1.

Otherwise k/2 ≤ s ≤ log2 dk, which implies that

6ep∆2 ≤ 6e2−k

(
dk

s

)2

≤ 6e2−k

(
dk

k/2

)2

≤ 6e2−k

(
2k/2

3e

)2

< 1,

and

3er∆ ≤ 3edk

2ss
≤ 6edk

k2k/2
≤ 1.

Thus by Theorem 25 we have the following result. Note that resampling a clause involves at
most k variables, and for k-CNF formulas with degree d, the number of clauses is linear in the
number of variables.

Corollary 30. For integers d and k such that d ≥ 3 and dk ≥ 23e, if d ≤ 1
6e · 2

k/2 and
s ≥ min{log2 dk, k/2}, then Algorithm 6 samples satisfying assignments of k-CNF formulas
with degree d and intersection s in O(n) time in expectation and in O(n log n) time with high
probability, where n is the number of variables.

We remark that the lower bound on intersection size s in Corollary 30 does not make the
problem trivial. Note that the lower bound min{log2 dk, k/2} is at most k/2. The “hard”
instance in the proof of [4, Corollary 30] has roughly k/2 shared variables for each pair of
dependent clauses. For completeness, we will show that if k is even, and d ≥ 4 · 2k/2 and
s = k/2, then the sampling problem is NP-hard. The proof is almost identical to that of [4,
Corollary 30]. The case of odd k can be similarly handled but with larger constants.

We will use the inapproximability result of Sly and Sun [36] (or equivalently, of Galanis et al.
[12]) for the hard-core model. We first remind the reader of the relevant definitions. Let λ > 0.
For a graph G = (V,E), the hard-core model with parameter λ > 0 is a probability distribution

24 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

over the set of independent sets of G; each independent set I of G has weight proportional to
λ|I|. The normalizing factor of this distribution is the partition function ZG(λ), formally defined
as ZG(λ) :=

∑
I λ

|I| where the sum ranges over all independent sets I of G. The hardness result
we are going to use is about approximating ZG(λ), but it is standard to translate it into the
sampling setting as the problem is self-reducible.

Theorem 31 ([36, 12]). For d ≥ 3, let λc(d) := (d − 1)d−1/(d − 2)d. For all λ > λc(d), it
is NP-hard to sample an independent set I with probability proportional to λ|I| in a d-regular
graph.

Theorem 32. Let k be an even integer. If d ≥ 4 · 2k/2 and s = k/2, then it is NP-hard to
sample satisfying assignments of k-CNF formulas with degree d and intersection s uniformly at
random.

Proof. Given a d-regular graph G = (V,E), we will construct a monotone k-CNF formula C
with degree d and intersection k/2 such that satisfying assignments of C can be mapped to
independent sets of G. Replace each vertex v ∈ V by s variables, say v1, . . . , vs. If (u, v) ∈ E,
then create a monotone clause v1 ∨ · · · ∨ vs ∨ u1 ∨ · · · ∨ us. It is easy to see that every variable
appears exactly d times since G is d-regular. Moreover, the number of shared variables is always
s and the clause size is 2s = k.

For each satisfying assignment, we map it to a subset of vertices of G. If all of v1, . . . , vs
are false, then make v occupied. Otherwise v is unoccupied. Thus a satisfying assignment is
mapped to an independent set of G. Moreover, there are (2k/2 − 1)n−|I| satisfying assignments
corresponding to an independent set I, where n is the number of vertices in G. Thus the weight
of I is proportional to (2k/2 − 1)−|I|; namely λ = (2k/2 − 1)−1 in the hard-core model.

In order to apply Theorem 31, all we need to do is to verify that λ > λc, or equivalently

2k/2 − 1 <
(d− 2)d

(d− 1)d−1
.

This can be done as follows,
(d− 2)d

(d− 1)d−1
= (d− 2)

(
1− 1

d− 1

)d−1
≥
(
4

5

)5

(d− 2) > 2k/2 − 1. □

Due to Theorem 32, we see that the dependence between k and d in Corollary 30 is tight in
the exponent, even with the further assumption on intersection s.

7.2. Independent Sets. We may also apply Algorithm 6 to sample hard-core configurations
with parameter λ. Every vertex is associated with a random variable which is occupied with
probability λ

1+λ . In this case, each edge defines a bad event which holds if both endpoints are

occupied. Thus p =
(

λ
1+λ

)2
. Algorithm 6 is specialized to Algorithm 7.

Algorithm 7: Sample Hard-core Configurations

(1) Mark each vertex occupied with probability λ
1+λ independently.

(2) While there is at least one edge with both end points occupied, resample all occupied
components of sizes at least 2 and their boundaries.

(3) Output the set of vertices.

To see this, consider a graph G = (V,E) with maximum degree d. Given a configuration σ :
V → {0, 1}, consider the subgraph G[σ] of G induced by the vertex subset {v ∈ V : σ(v) = 1}.
Then we denote by BadVtx(σ) the set of vertices in any component of G[σ] of size at least 2.
Then the output of Algorithm 5 is

ResVtx(σ) := BadVtx(σ) ∪ ∂BadVtx(σ).

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 25

This is because first, all of ∂BadVtx(σ) will be resampled, since any of them has at least one
occupied neighbour in BadVtx(σ). Secondly, v ∈ ∂BadVtx(σ) is unoccupied (otherwise v ∈
BadVtx(σ)), and Algorithm 5 stops after adding all of ∂BadVtx(σ). This explains Algorithm 7.

Moreover, let Bad(σ) be the set of edges whose both endpoints are occupied under σ. Let
Res(σ) be the set of edges whose both endpoints are in ResVtx(σ). Let σt be the random
configuration of Algorithm 7 at round t if it has not halted, and Badt = Bad(σt), Rest = Res(σt).

Lemma 33. If ep(2d− 1) < 1, then E |Badt+1| ≤ (4ed2 − 1)pE |Badt|.

Proof. First note that the dependency graph is the line graph of G and ∆ = 2d − 2 is the
maximum degree of the line graph of G. Thus ep(2d − 1) < 1 guarantees the prerequisite of
Corollary 27 is met. It also implies that for any σ, |Res(σ)| ≤ (2d− 1)Bad(σ), and ∂ |Res(σ)| ≤
(2d − 2) |Res(σ)|. Similarly to the analysis in Lemma 28, conditioned on a fixed Badt, by
Corollary 27 (or (15) in particular), we have that

E |Badt+1| ≤ p |Res(σ)|+ ep |∂Res(σ)|
≤ (p(2d− 1) + ep(2d− 2)(2d− 1)) |Badt|
< (4ed2 − 1)p |Badt| .

Since the inequality above holds for any Badt, the lemma follows. □

Lemma 33 implies that, if 4epd2 ≤ 1, then the number of bad edges shrinks with a constant
factor, and Algorithm 7 resamples O(m) edges in expectation and O(m logm) edges with high
probability, where m = |E|. A bounded degree graph is sparse and thus m = O(n), where n is
the number of vertices. Since p =

(
λ

1+λ

)2
, the condition 4epd2 ≤ 1 is equivalent to

λ ≤ 1

2
√
ed− 1

.

Thus we have the following theorem, where the constants are slightly better than directly
applying Theorem 25.

Theorem 34. If λ ≤ 1
2
√
ed−1

, then Algorithm 7 draws a uniform hard-core configuration with
parameter λ from a graph with maximum degree d in O(n) time in expectation and in O(n log n)
time with high probability, where n is the number of vertices.

The optimal bound of sampling hard-core configurations is λ < λc ≈ e
d where λc is defined

in Theorem 31. The algorithm is due to Weitz [38] and the hardness is shown in [36, 12]. The
condition of our Theorem 34 is more restricted than correlation decay based algorithms [38] or
traditional Markov chain based algorithms. Nevertheless, our algorithm matches the correct
order of magnitude λ = O(d−1). Moreover, our algorithm has the advantage of being simple,
exact, and running in linear time in expectation.

8. Distributed algorithms for sampling

An interesting feature of Algorithm 6 is that it is distributed.4 For concreteness, consider the
algorithm applied to sampling hard-core configurations on a graph G (i.e. Algorithm 7), assumed
to be of bounded maximum degree. Imagine that each vertex is assigned a processor that has
access to a source of random bits. Communication is possible between adjacent processors and
is assumed to take constant time. This is essentially Linial’s LOCAL model [27]. Then, in each
parallel round of the algorithm, the processor at vertex v can update the value σ(v) in constant
time, as this requires access only to the values of σ(u) for vertices u ∈ V (G) within a bounded
distance r of v. In the case of the hard-core model, we have r = 2, since the value σ(v) at
vertex v should be updated precisely if there are vertices u and u′ such that v ∼ u and u ∼ u′

and σ(u) = σ(u′) = 1. Note that we allow u′ = v here.

4See [11] for a very recent work by Feng, Sun, and Yin on distributed sampling algorithms. In particular, they
show a similar lower bound in [11, Section 5].

26 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

In certain applications, including the hard-core model, Algorithm 6 runs in a number of
rounds that is bounded by a logarithmic function of the input size with high probability. (Recall
Theorem 25.) We show that this is optimal. (Although the argument is presented in the context
of the hard-core model, it ought to generalise to many other applications.)

Set L = ⌈c log n⌉ for some constant c > 0 to be chosen later. The instance that establishes
the lower bound is a graph G consisting of a collection of n/L disjoint paths Π1, . . . ,Πn/L with
L vertices each. (Assume that n is an exact multiple of L; this is not a significant restriction.)
The high-level idea behind the lower bound is simple, and consists of two observations. We
assume first that the distributed algorithm we are considering always produces an output, say
σ̂ : V (G) → {0, 1}, within t rounds. It will be easy at the end to extend the argument to
the situation where the running time is a possibly unbounded random variable with bounded
expectation.

Focus attention on a particular path Π with endpoints u and v. The first observation is
that if rt < L/2 then σ(u) (respectively, σ(v)) depends only on the computations performed
by processors in the half of Π containing u (respectively v). Therefore, in the algorithm’s
output, σ̂(u) and σ̂(v) are probabilistically independent. The second observation is that if the
constant c is sufficiently small then, in the hard-core distribution, σ(u) and σ(v) are significantly
correlated. Since the algorithm operates independently on each of the n/L paths, these small
but significant correlations combine to force to a large variation distance between the hard-core
distribution and the output distribution of the algorithm.

We now quantify the second observation. Let σ : V (G)→ {0, 1} be a sample from the hard-
core distribution on a path Π on k vertices with endpoints u and v, and let Ik = ZΠ(λ) denote
the corresponding hard-core partition function (weighted sum over independent sets). Define
the matrix Wk =

(
w00 w01
w10 w11

)
, where wij = Pr(σ(u) = i ∧ σ(v) = j). Then

Wk =
1

Ik

(
Ik−2 λIk−3

λIk−3 λ2Ik−4

)
,

since Ik is the total weight of independent sets in Π, Ik−2 is the total weight of independent sets
with σ(u) = σ(v) = 0, Ik−3 is the total weight of independent sets with σ(u) = 0 and σ(v) = 1,
and so on. Also note that Ik satisfies the recurrence

(23) I0 = 1, I1 = λ+ 1, and Ik = Ik−1 + λIk−2, for k ≥ 2.

We will use detWk to measure the deviation of the distribution of (σ(u), σ(v)) from a product
distribution. Write

W ′
k =

(
Ik−2 Ik−3

Ik−3 Ik−4

)
,

and note that detWk = λ2I−2
k detW ′

k. Applying recurrence (23) once to each of the four entries
of W ′

k, we have

detW ′
k = Ik−2Ik−4 − I2k−3

= (Ik−3 + λIk−4)(Ik−5 + λIk−6)− (Ik−4 + λIk−5)
2

= Ik−3(Ik−5 + λIk−6)− Ik−4(Ik−4 + λIk−5) + λ2(Ik−4Ik−6 − I2k−5)

= Ik−3Ik−4 − Ik−4Ik−3 + λ2 detW ′
k−2

= λ2 detW ′
k−2,

for all k ≥ 6. By direct calculation, detW ′
4 = −λ2 and detW ′

5 = λ3. Hence, by induction,
detW ′

k = (−1)k−1λk−2, and

(24) detWk =
(−1)k−1λk

I2k
,

for all k ≥ 4.

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 27

Solving the recurrence (23) gives the following formula for Ik:

Ik = Aλ

(
1 +
√
4λ+ 1

2

)k

+Bλ

(
1−
√
4λ+ 1

2

)k

,

where

Aλ =

(
1

2
+

2λ+ 1

2
√
4λ+ 1

)
and Bλ =

(
1

2
− 2λ+ 1

2
√
4λ+ 1

)
Asymptotically,

Ik = (1 + o(1))Aλ

(
1 +
√
4λ+ 1

2

)k

.

Substituting this estimate into (24) yields |detWk| = (1 + o(1))A−2
λ αk where

α =
2λ

2λ+
√
4λ+ 1 + 1

.

Note that 0 < α < 1 and α depends only on λ.
Now let the matrix Ŵk =

(
ŵ00 ŵ01
ŵ10 ŵ11

)
be defined as for Wk, but with respect to the output

distribution of the distributed sampling algorithm rather than the true hard-core distribution.
Recall that we choose L = ⌈c log n⌉ > 2rt, which implies that σ̂(u) and σ̂(v) are independent
and det ŴL = 0. It is easy to check that if ∥Ŵk − Wk∥∞ ≤ ε, where the matrix norm is
entrywise, then | detWk| ≤ ε. Thus, for c sufficiently small (and L = ⌈c log n⌉), we can ensure
that ∥ŴL −WL∥∞ ≥ n−1/3. Thus, |ŵij − wij | ≥ n−1/3, for some i, j; for definiteness, suppose
that i = j = 0 and that ŵ00 > w00.

Let Z (respectively Ẑ) be the number of paths whose endpoints are both assigned 0 in the
hard-core distribution (respectively, the algorithm’s output distribution). Then Z (respectively
Ẑ) is a binomial random variable with expectation µ = w00n/L (respectively µ̂ = ŵ00n/L).
Since |EZ−E Ẑ| > Ω(n2/3/ log n), a Chernoff bound gives that Pr(Z ≥ (µ+ µ̂)/2) and Pr(Ẑ ≤
(µ + µ̂)/2) both tend to zero exponentially fast with n. It follows that the variation distance
between the distributions of σ and σ̂ is 1− o(1).

The above argument assumes an absolute bound on running time, whereas the running time
of an exact sampling algorithm will in general be a random variable T . To bridge the gap,
suppose Pr(T ≤ t) ≥ 2

3 . Then

∥σ̂ − σ∥TV = max
A

∣∣Pr(σ̂ ∈ A)− Pr(σ ∈ A)
∣∣

= max
A

∣∣∣(Pr(σ̂ ∈ A | T ≤ t)− Pr(σ ∈ A)
)
Pr(T ≤ t)

+
(
Pr(σ̂ ∈ A | T > t)− Pr(σ ∈ A)

)
Pr(T > t)

∣∣∣
≥ 2

3(1− o(1))− 1
3 × 1,

Where ∥ · ∥TV denotes variation distance, and A ranges over events A ⊆ {0, 1}|V (G)|. Thus
∥σ − σ̂∥TV ≥ 1

3 − o(1), which is a contradiction. It follows that Pr(T ≤ t) < 2
3 and hence

E(T) ≥ 1
3 t. Note that this argument places a lower bound on parallel time not just for exact

samplers, but even for (very) approximate ones.
With only a slight increase in work, one could take the instance G to be a path of length n,

which might be considered more natural. Identify O(n/L) subpaths within G, suitably spaced,
and of length L. The only complication is that the hard-core distribution does not have inde-
pendent marginals on distinct subpaths. However, by ensuring that the subpaths are separated
by distance nα, for some small α > 0, the correlations can be controlled, and the argument
proceeds, with only slight modification, as before.

28 HENG GUO, MARK JERRUM, AND JINGCHENG LIU

Acknowledgements

We would like to thank Yumeng Zhang for pointing out a factor k saving in Corollary 30.
We thank Dimitris Achlioptas, Fotis Iliopoulos, Pinyan Lu, Alistair Sinclair, and Yitong Yin
for their helpful comments. We also thank anonymous reviewers for their detailed comments.

HG and MJ are supported by the EPSRC grant EP/N004221/1. JL is supported by NSF
grant CCF-1420934. This work was done (in part) while the authors were visiting the Simons
Institute for the Theory of Computing. HG was also supported by a Google research fellowship
in the Simons Institute.

References
[1] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the Lovász Local

Lemma. J. ACM, 63(3):22, 2016. 3
[2] Noga Alon. A parallel algorithmic version of the Local Lemma. Random Struct. Algorithms, 2(4):367–378,

1991. 1
[3] József Beck. An algorithmic approach to the Lovász Local Lemma. I. Random Struct. Algorithms, 2(4):343–

366, 1991. 1
[4] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Štefankovič. Approximation

via correlation decay when strong spatial mixing fails. In ICALP, 45:1–13, 2016. 1, 2, 3, 14, 18, 22, 23
[5] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. Stopping times, metrics and approximate count-

ing. In ICALP, pages 108–119, 2006. 3
[6] Russ Bubley and Martin E. Dyer. Graph orientations with no sink and an approximation for a hard case of

#SAT. In SODA, pages 248–257, 1997. 11
[7] Henry Cohn, Robin Pemantle, and James G. Propp. Generating a random sink-free orientation in quadratic

time. Electr. J. Comb., 9(1), 2002. 1, 4, 5, 11
[8] Artur Czumaj and Christian Scheideler. Coloring nonuniform hypergraphs: A new algorithmic approach to

the general Lovász Local Lemma. Random Struct. Algorithms, 17(3-4):213–237, 2000. 1
[9] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions.

Infinite and finite sets, volume 10 of Colloquia Mathematica Societatis János Bolyai, pages 609–628, 1975.
1, 3

[10] Weiming Feng, Yahui Liu, and Yitong Yin. Local rejection sampling with soft filters. CoRR, abs/1807.06481,
2018. 3

[11] Weiming Feng, Yuxin Sun, and Yitong Yin. What can be sampled locally? In PODC, pages 121–130. ACM,
2017. 25

[12] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition function for the
antiferromagnetic Ising and hard-core models. Comb. Probab. Comput., 25(4):500–559, 2016. 3, 23, 24, 25

[13] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is asymptotically tight for SAT. J. ACM,
63(5):43:1–43:32, 2016. 14

[14] Heng Guo and Kun He. Tight bounds for popping algorithms. CoRR, abs/1807.01680, 2018. 3
[15] Heng Guo and Mark Jerrum. Approximately counting bases of bicircular matroids. CoRR, abs/1808.09548,

2018. 3
[16] Heng Guo and Mark Jerrum. Perfect simulation of the hard disks model by partial rejection sampling. In

ICALP, volume 107 of LIPIcs, pages 69:1–69:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
3

[17] Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal network reliability.
In ICALP, volume 107 of LIPIcs, pages 68:1–68:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. 3

[18] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local lemma. In STOC,
pages 342–355. ACM, 2017. 3

[19] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the Lovász Local
Lemma. J. ACM, 58(6):28:1–28:28, 2011. 2, 18, 19

[20] David G. Harris and Aravind Srinivasan. Constraint satisfaction, packet routing, and the Lovász Local
Lemma. In STOC, pages 685–694, 2013. 1

[21] David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial resampling. In FOCS,
pages 469–478, 2013. 1

[22] David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász Local Lemma on permu-
tations. In SODA, pages 907–925, 2014. 3

[23] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász Local Lemma via resampling
oracles. In FOCS, pages 1327–1346, 2015. Full version available at abs/1504.02044. 3, 10

[24] Jonathan Hermon, Allan Sly, and Yumeng Zhang. Rapid mixing of hypergraph independent set. CoRR,
abs/1610.07999, 2016. 3, 22

http://arxiv.org/abs/1504.02044
http://arxiv.org/abs/1610.07999

UNIFORM SAMPLING THROUGH THE LOVÁSZ LOCAL LEMMA 29

[25] Donald E. Knuth. The art of computer programming, volume 4b (draft, pre-fascicle 6a). 2015. Available at
http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz. 10

[26] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In STOC, pages 235–244,
2011. 2, 4, 6, 9, 11

[27] Nathan Linial. Distributive graph algorithms-global solutions from local data. In FOCS, pages 331–335,
1987. 25

[28] Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In SODA, pages 1531–1548, 2015. 3
[29] Ankur Moitra. Approximate counting, the Lovász Local Lemma and inference in graphical models. CoRR,

abs/1610.04317, 2016. STOC 2017, to appear. 3
[30] Michael Molloy and Bruce A. Reed. Further algorithmic aspects of the Local Lemma. In STOC, pages

524–529, 1998. 1
[31] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local Lemma. J. ACM, 57(2),

2010. 1, 4, 5, 22
[32] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and applications to

statistical mechanics. Random Struct. Algorithms, 9(1-2):223–252, 1996. 2
[33] James G. Propp and David B. Wilson. How to get a perfectly random sample from a generic markov chain

and generate a random spanning tree of a directed graph. J. Algorithms, 27(2):170–217, 1998. 13
[34] Alexander D. Scott and Alan D. Sokal. The repulsive lattice gas, the independent-set polynomial, and the

Lovász Local Lemma. J. Stat. Phy., 118(5):1151–1261, 2005. 1
[35] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985. 2, 3, 4
[36] Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-regular graphs.

Ann. Probab., 42(6):2383–2416, 2014. 3, 23, 24, 25
[37] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma. In SODA, pages 611–620,

2008. 1
[38] Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149, 2006. 3, 25
[39] David B. Wilson. Generating random spanning trees more quickly than the cover time. In STOC, pages

296–303, 1996. 1, 4, 5, 13

School of Informatics, University of Edinburgh, Informatics Forum, Edinburgh EH8 9AB,
United Kingdom.

Email address: hguo@inf.ed.ac.uk

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London
E1 4NS, United Kingdom.

Email address: mj@qmul.ac.uk

Department of EECS, University of California, Berkeley, CA
Email address: liuexp@berkeley.edu

http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz
http://arxiv.org/abs/1610.04317

	1. Introduction
	2. Partial Rejection Sampling
	3. Expected running time of Algorithm 2
	4. Applications of Algorithm 2
	4.1. Sink-free Orientations
	4.2. Rooted Spanning Trees
	4.3. Extremal CNF formulas

	5. General Partial Rejection Sampling
	6. Running Time Analysis of Algorithm 6
	7. Applications of Algorithm 6
	7.1. k-CNF Formulas
	7.2. Independent Sets

	8. Distributed algorithms for sampling
	Acknowledgements
	References

