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ABSTRACT  16 

Human adenoviruses (HAdVs) are being explored as vectors for gene transfer and 17 

vaccination. Human adenovirus type 26 (HAdV26), which belongs to the largest 18 

subgroup of adenoviruses, species D, has a short fiber and a so far unknown natural 19 

tropism. Due to its low seroprevalence, HAdV26 has been considered a promising 20 

vector for the development of vaccines. Despite the fact that the in vivo safety and 21 

immunogenicity of HAdV26 has been extensively studied, the basic biology of this virus, 22 

mailto:JCuster1@its.jnj.com
mailto:dmajhen@irb.hr


with regard to receptor use, cell attachment, internalization and intracellular trafficking is 23 

poorly understood. In this work we investigated the role of the coxsackie- and 24 

adenovirus receptor (CAR), CD46 and αv integrins in HAdV26 infection of human 25 

epithelial cell lines. By performing different gain- and loss-of-function studies we found 26 

that αvβ3 integrin is required for efficient infection of epithelial cells by HAdV26, while 27 

CAR and CD46 did not increase transduction efficiency of HAdV26. By studying 28 

intracellular trafficking of fluorescently labeled HAdV26 in A549 cells and A549-derived 29 

cell clones with stably increased expression of αvβ3 integrin, we observed that HAdV26 30 

co-localizes with αvβ3 integrin and that increased αvβ3 integrin enhances internalization 31 

of HAdV26. Thus we conclude that HAdV26 uses αvβ3 integrin as a receptor for 32 

infecting epithelial cells. These results give us new insight into the HAdV26 infection 33 

pathway and will be helpful in further defining HAdV-based vector manufacturing and 34 

vaccination strategies. 35 

IMPORTANCE  36 

Adenovirus-based vectors are used today for gene transfer and vaccination. HAdV26 37 

has emerged as a promising candidate vector for development of vaccines due to its 38 

relatively low seroprevalence and its ability to induce potent immune responses against 39 

encoded transgenes. However, data regarding the basic biology of this virus, like 40 

receptor usage or intracellular trafficking, are limited. In this work we found that efficient 41 

infection of human epithelial cell lines by HAdV26 requires the expression of the αvβ3 42 

integrin. By studying intracellular trafficking of fluorescently labeled HAdV26 in a cell 43 

clone with stably increased expression of αvβ3 integrin, we observed that HAdV26 co-44 

localizes with αvβ3 integrin and confirmed that αvβ3 integrin expression facilitates 45 



efficient HAdV26 internalization. These results will allow us further improvement of 46 

HAdV26 based vectors for gene transfer and vaccination. 47 

INTRODUCTION 48 

Adenoviruses are non-enveloped double-stranded DNA viruses with an icosahedral 49 

capsid of approximately 90 nm in diameter and a mass of 150 megadaltons (1). The 50 

major building blocks of the adenoviral capsid are the hexon and penton proteins. On 51 

each vertex there is an extended fiber protein non-covalently attached to the penton 52 

base protein (2). A broad knowledge of adenovirus molecular biology, and the relative 53 

ease with which the genome can be manipulated, have made them attractive as vectors 54 

for gene transfer and vaccination (3). Adenovirus-based vectors rapidly infect a broad 55 

range of human cells and induce strong innate responses (4) that positively influence 56 

adaptive T- and B- cell responses (5). Adenovirus-based vectors currently represent a 57 

leading choice for vectors used in gene therapy clinical trials aimed at treating inherited 58 

diseases, infections and cancer (http://www.abedia.com/wiley/vectors.php).  59 

Human adenoviruses belong to Mastadenovirus genus of the Adenoviridae family and 60 

comprise more than 60 distinct serotypes divided into 7 species or subgroups (A-G) (6-61 

8). The most common and best described HAdV so far is the species C human 62 

adenovirus type 5 (HAdV5). HAdV5 infection starts with binding to coxsackie adenovirus 63 

receptor (CAR) followed by interaction between the RGD sequence motif present on the 64 

penton base with the αv integrins on the cell surface, allowing internalization of the viral 65 

particle (9). HAdV5 is very efficient with respect to in vitro transduction efficiency and 66 

level of gene expression; however its disadvantage is the high level and frequency of 67 

preexisting immunity in human populations. The seroprevalence of HAdV5 ranges from 68 



50–90% depending on the geographical region (10, 11). Preexisting immunity may limit 69 

the efficiency of adenovirus-based vaccine vectors, and thus development of new 70 

strategies to evade undesired anti-vector host immune responses, such as vectors 71 

based on adenoviruses that occur at low prevalence in human populations, is needed. 72 

Some of the rare human adenovirus types that are under evaluation include HAdV35 73 

(species B) and HAdV26 (species D) as well as adenoviruses from non-human primates 74 

(12, 13). Vaccine vectors based on HAdV26 and HAdV35 have been extensively studied 75 

and are listed as interventions in more than 40 clinical trials, either alone or in prime-76 

boost regime (https://clinicaltrials.gov). 77 

As mentioned above, HAdV26 belongs to species D, the largest group of HAdVs (14), 78 

that are mainly known to be responsible for eye infections and for gastro-intestinal 79 

infections in immuno-compromised individuals. Similarly to the majority of HAdVs, 80 

HAdV26 has RGD motifs in the penton base that can mediate integrin binding. In 81 

contrast to HAdV5 which has a long fiber containing 22 beta-repeat motifs, HAdV26 has 82 

a relatively short fiber with only 8 beta repeats (15). Also, unlike HAdV5, HAdV26 does 83 

not bind coagulation factor X (16).  84 

Although the safety and immunogenicity of HAdV26-based vaccine vectors in vivo is well 85 

established (17-20), the basic biology of this virus, such as receptor usage, is less well 86 

understood. Several molecules have been identified as cellular receptors for HAdVs 87 

(21). As discussed above, HAdV5 from species C uses CAR as primary receptor for 88 

facilitating entry into cells (22) while HAdV35 from species B utilizes CD46 as the 89 

primary receptor (23). HAdV5 uses also αv integrins as co-receptors mediated by an 90 

interaction with the RGD sequence in the penton base (24). Integrins are heterodimers 91 



of non-covalently associated α and β subunits assembled into 24 different receptors. 92 

They are major receptors for cell adhesion to extracellular matrix proteins and activate 93 

many intracellular signaling pathways after binding to cognate ligands. With respect to 94 

HAdV26, several studies have reported that HAdV26 utilizes CAR, CD46 and/or 95 

integrins as receptors for infecting target cells in vitro. Abbink et al. reported that 96 

HAdV26 transduces B16F10-CD46 cells, mouse B16F10 melanoma cells that stably 97 

express the BC1 isoform of human CD46 on the membrane, more efficiently than 98 

B16F10 cells indicating that HAdV26 is able to utilize CD46 as a receptor. However, 99 

transduction appeared less efficient than for HAdVs from species B, suggesting that 100 

HAdV26 may utilize other receptors in addition to CD46 (20). Recently, it has been 101 

shown that HAdV26 uses CD46 as a primary receptor in human peripheral blood 102 

mononuclear cells, and that HAdV26 transduction was efficiently blocked by an anti-103 

CD46 monoclonal antibody (25). 104 

Chen et al. compared the transduction efficiencies of HAdV5 and HAdV26 in CHO cells 105 

(cell line originally derived from the Chinese hamster ovary) stably expressing CAR 106 

(CHO-CAR) and control cells which do not express CAR (CHO-HVEM). They observed 107 

that at the higher dose tested, transduction efficiencies of the two viruses were similar in 108 

CHO-CAR cells indicating that HAdV26 could utilize CAR for cell binding. At the same 109 

time transduction in CHO-HVEM cell line by HAdV26 was higher than by HAdV5, 110 

suggesting that HAdV26 can enter cells upon binding to alternative receptors that 111 

HAdV5 is unable to use. In the same study, the authors investigated the agglutination of 112 

CD46-expressing red blood cells from rhesus macaques by HAdV26. A species B 113 

chimpanzee adenovirus serotype C1 – based vector, which had previously been shown 114 



to bind CD46, readily agglutinated red blood cells from rhesus macaques, whereas this 115 

was not seen with HAdV26, suggesting that HAdV26 did not bind CD46 (26). Another 116 

study found that cyclic-RGD peptides partially inhibited human hepatoma Hep3B cell 117 

killing by HAdV26 indicating a role of αv integrins in HAdV26 infection. In the same 118 

study, the combination of an anti-CD46 antibody and cyclic-RGD peptides on patient 119 

myeloma cells mediated complete protection against killing by HAdV26, suggesting that 120 

both receptors, CD46 and αv integrins, are being utilized by the virus to infect these 121 

target cells (27). Finally, very recently the scavenger receptor SR-A6 has been 122 

implicated in facilitating HAdV26 entry into murine alveolar macrophage-like MPI cells 123 

(28). HAdV26 receptor usage has also been investigated for peripheral blood 124 

mononuclear cells (25) or malignant B cells (27), while HAdV26 receptor usage in 125 

epithelial cells is less well defined. 126 

Since HAdV26 has been reported to use different molecules for cell entry, we wished to 127 

investigate the roles of CAR, CD46 and αv integrins in mediating the entry of HAdV26 128 

into human epithelial cells. By performing different gain- and loss-of-function studies we 129 

found that αvβ3 integrin is necessary for the efficient infection of epithelial cells by 130 

HAdV26. At the same time presence of CAR or CD46 did not increase transduction 131 

efficiency of HAdV26. By studying intracellular trafficking of fluorescently labeled 132 

HAdV26 in A549 cells and in A549 cells with increased expression of αvβ3 integrin, we 133 

observed that αvβ3 integrin expression allows better internalization of HAdV26. 134 

Additionally, we have shown that in an A549 cell clone with increased αvβ3 integrin 135 

expression HAdV26 co-localizes with αvβ3 integrin. Thus we conclude that HAdV26 136 

uses αvβ3 integrin as a receptor for infecting epithelial cells. 137 



RESULTS 138 

HAdV26 binds and infects A549 and SK-OV-3 cells less efficiently than HAdV5 and 139 

HAdV35. Studies regarding HAdV26 transduction efficiency and receptor usage in 140 

epithelial cells are limited. Therefor in this work we investigated transduction efficiency of 141 

HAdV26 in A549 and SK-OV-3 epithelial cell lines which are often used in adenovirus 142 

research. Several molecules have been reported to function as HAdV26 receptors so 143 

far: CAR, CD46 and αv integrins. In order to determine the expression level of these 144 

molecules on A549 and SK-OV-3 cells we assessed the expression of CAR, CD46, and 145 

the integrins αv, αvβ3 and αvβ5 on the surface of these cells by flow cytometry. While 146 

SK-OV-3 cells were found to be CAR negative, A549 cells showed high expression of 147 

CAR. A549 and SK-OV-3 cells both showed high expression of CD46 and αv integrins; 148 

however SK-OV-3 cells express more CD46 and αv integrin than A549. Expression of 149 

αvβ3 and αvβ5 integrins, known receptors for the RGD motif which is present in 150 

adenovirus penton base, is disparate between these two cell lines. A549 cells express 151 

very low amounts of αvβ3 integrin and show expression of αvβ5 integrin, while SK-OV-3 152 

cells express αvβ3 integrin but the level of αvβ5 integrin was very low (Fig. 1). 153 

Next, the efficiency of HAdV26 in transducing A549 and SK-OV-3 was investigated (Fig. 154 

2). HAdV5 and HAdV35 were used as representatives of HAdVs known to utilize the 155 

receptors CAR and CD46 respectively. As an additional control, we used HAdV26F35, a 156 

chimeric vector based on HAdV26 that has been pseudotyped with the HAdV35 fiber. 157 

HAdV5, HAdV35 and HAdV26F35 were found to transduce A549 cells much better than 158 

HAdV26. HAdV26 transduced A549 cells 1000-fold less efficiently than HAdV5. The 159 

transduction efficiency of HAdV26 was comparable to HAdV5 in SK-OV-3 cells, i.e., 160 



HAdV26 transduced SK-OV-3 cells only 3-fold less efficiently than HAdV5 (Fig. 2A). 161 

HAdV26 showed 4-fold higher reporter gene expression in SK-OV-3 cells than in A549 162 

cells (Fig.2B). This may indicate that SK-OV-3 cells express higher levels of the 163 

molecule/s that HAdV26 uses as a receptor than A549 cells do. 164 

To investigate whether the relatively low level of transduction efficiency observed for 165 

HAdV26 in A549 and SK-OV-3 cells (compared to the other vectors) is caused by low 166 

binding and/or inefficient internalization of this virus, we measured the binding and 167 

internalization of HAdV5, HAdV26, HAdV35 and HAdV26F35 in A549 and SK-OV-3 168 

cells. While the level of binding and internalization of HAdV5, HAdV35 and HAdV26F35 169 

in A549 cells was comparable, binding and internalization of HAdV26 was found to be 170 

poor on this cell line. Compared to HAdV5, HAdV26 was found to bind 6-fold and 171 

internalize 14-fold less efficiently in A549 cells (Fig. 3A). In SK-OV-3 cells the amount of 172 

both bound and internalized HAdV26 was comparable to HAdV5. However, in 173 

comparison to AdV35, HAdV26 was less efficient in both binding and internalization in 174 

this cell line. In the same cell line HAdV35 and HAdV26F35 were found to bind and 175 

internalize more than 10-fold more efficiently than HAdV5 (Fig. 3B). A comparison of the 176 

binding and internalization of HAdV26 in A549 and SK-OV-3 cells is shown in Fig. 3C. It 177 

was seen that HAdV26 bound 3-fold, and internalized 1.5-fold better to SK-OV-3 cells 178 

than to A549 cells. These data indicate that the low transduction efficiency of HAdV26 in 179 

A549 cells is caused by decreased binding of this virus, suggesting that this is due to 180 

comparatively lower amounts of the HAdV26 receptor on A549 cells.   181 

Downregulation of αv integrin decreases transduction efficiency of HAdV26. To 182 

investigate the importance of CAR, CD46 and αv integrin in contributing to the 183 



transduction efficiency of HAdV26 in A549 and SK-OV-3 cells we decided to 184 

downregulate those molecules, alone or in combination, and measure the transduction 185 

efficiency of HAdV26. To downregulate target receptor/s we transfected cells with CAR-, 186 

CD46- and/or αv integrin-specific siRNA (50 nM) and 48 hours post-transfection 187 

confirmed the efficiency of silencing by flow cytometry. Downregulation of CAR, CD46 188 

and/or αv integrin was specific and did not influence expression of the other observed 189 

molecules (Fig. 4). As expected, downregulating CAR (alone, or in combination with 190 

CD46 or αv integrin) almost abolished HAdV5 transduction of A549 cells (Fig. 5A). 191 

Silencing of CD46 significantly decreased transduction of HAdV35 (Fig. 5C) and 192 

HAdV26F35 (Fig. 5D), but increased transduction of HAdV26 (Fig. 5B). Downregulation 193 

of CAR and, to a greater extent, αv integrin decreased the transduction efficiency of both 194 

HAdV26 (Fig. 5B) and HAdV26F35 (Fig. 5D). The most prominent effect on HAdV26 195 

transduction was observed in case of αv integrin downregulation which decreased 196 

HAdV26 transduction efficiency 3 fold in comparison to cells transfected with the 197 

scrambled siRNA control (Fig. 5B). These data indicate that αv integrin could be 198 

receptor for HAdV26 in A549 cells. The same effect was observed in another CAR 199 

positive cell line, HeLa, where downregulation of αv integrin decreased HAdV26 200 

transduction efficiency 3-fold in comparison to cells transfected with scrambled siRNA 201 

(data not shown). Similar results were obtained in SK-OV-3 cells. Since SK-OV-3 cells 202 

are CAR negative we downregulated only CD46 and/or αv integrins. Downregulating αv 203 

integrin in SK-OV-3 cells decreased transduction efficiency of all 4 studied viruses (Fig. 204 

6); however the decrease was the highest for HAdV26. Downregulating αv integrin in 205 

SK-OV-3 cells decreased HAdV26 transduction efficiency 5-fold compared to controls 206 

(Fig. 6B). That αv integrin is necessary for HAdV26 transduction efficiency was also 207 



confirmed in melanoma M21 cell line variants M21L and M21L4. The transduction 208 

efficiency of HAdV26 was much higher in M21L4 cells which are αv integrin positive, 209 

than in M21L cells which are αv integrin negative (Fig. 7).  210 

Downregulating CD46 alone or in combination with αv integrin in SK-OV-3 cells 211 

decreased the transduction efficiency of HAdV35 (Fig. 6C) and HAdV26F35 (Fig. 6D), 212 

but also HAdV26 (Fig. 6B) indicating that in this cell line CD46 can be involved in 213 

HAdV26 transduction efficiency. The role of CAR and CD46 in HAdV26 transduction 214 

efficiency was additionally studied in CHO cells overexpressing CAR (CHO-CAR) or 215 

CD46 (CHO-BC1). As expected, increased expression of CAR significantly increased 216 

transduction efficiency of HAdV5. However there was no impact on the transduction of 217 

HAdV26, HAdV35 or HAdV26F35 vectors. Increased expression of CD46 significantly 218 

increased the transduction efficiency of HAdV35 and HAdV26F35, but did not change 219 

the transduction efficiency of HAdV5 or of HAdV26 (Fig. 8). Based on these data we 220 

hypothesize that HAdV26 uses αv integrin as a receptor for infecting epithelial cells, 221 

while CAR and CD46 are not crucial molecules in this process. 222 

Downregulation of αv integrin decreases binding and internalization of HAdV26 in 223 

A549 cells. To further investigate the roles of CAR, CD46 and αv integrins in HAdV26 224 

infection of A549 cells, we downregulated these molecules and subsequently 225 

determined the effect on the binding and internalization of HAdV26 compared to 226 

HAdV35 and HAdV26F35. Downregulation of CAR decreased both binding and 227 

internalization of HAdV5 4- and 11- fold respectively in comparison to cells transfected 228 

with scrambled siRNA (control). Downregulation of CD46 decreased the binding of 229 

HAdV35 3-fold and HAdV26F35 5-fold compared to controls. As expected, 230 



downregulation of CD46 also diminished internalization of HAdV35, but surprisingly had 231 

no effect on HAdV26F35 internalization. Downregulation of αv integrin significantly 232 

decreased binding and internalization of HAdV26. While downregulating αv integrin 233 

decreased HAdV26 binding 3-fold, it almost completely abrogated internalization of this 234 

virus in A549 cells. Downregulating CAR or CD46 had no influence on HAdV26 binding 235 

or internalization (Fig. 9). These data confirm that αv integrin plays an important role in 236 

binding and internalization of HAdV26 in A549 cells. 237 

Blocking αv integrins decreases transduction efficiency of HAdV26 in A549 cells. 238 

While downregulating target receptors by the use of the specific siRNA removes the 239 

target mRNA, and hence the protein from the cell, pharmacological inhibition by using a 240 

specific inhibitor or antibody blocks the function of a protein without affecting protein 241 

expression. Thus we decided to investigate the role of cell surface CAR, CD46 and/or αv 242 

integrins in HAdV26 transduction efficiency by reducing the accessibility of these 243 

molecules by blocking antibodies. Blocking CD46 alone or in combination with blocking 244 

CAR and αv integrins efficiently decreased transduction of HAdV35 and HAdV26F35 245 

(Fig. 10C, Fig. 10D). This effect was very pronounced for HAdV26F35 where blocking 246 

CD46 almost abrogated HAdV26F35 transduction efficiency in A549 cells. Blocking 247 

CD46 had no influence on HAdV26 transduction efficiency. The transduction efficiency 248 

of HAdV5 was influenced only by blocking CAR, alone or in combination with blocking 249 

αv integrins (Fig. 10A). Blocking the surface availability of αv integrins, alone or in 250 

combination with both CAR and CD46, significantly decreased the transduction 251 

efficiency of HAdV26. While blocking αv integrins alone or in combination with CAR 252 

decreased HAdV26 transduction efficiency 2-fold (compared to cells incubated with an 253 



irrelevant IgG), blocking αv integrins and CD46 at the same time decreased HAdV26 254 

transduction efficiency 5-fold (Fig. 10B). Together these results confirm that presence of 255 

αv integrin on the surface of A549 is important for transduction efficiency of HAdV26. 256 

Overexpression of αvβ3 integrin in A549 cells allows better transduction 257 

efficiency and internalization of HAdV26. To further confirm the role of αv integrins in 258 

transduction efficiency of HAdV26 we decided to stably transfect A549 cells with an αv 259 

integrin expression plasmid. We isolated three A549 cell clones with increased 260 

expression of αv integrin on the cell surface: A549-D4, A549-F1 and A549-E6. Among 261 

them, A549-E6 has the highest expression of αv integrins (Fig. 11A). In order to 262 

determine if this increased expression of αv integrins has an influence on HAdV26 263 

binding we incubated A549, A549-D4, A549-F1 and A549-E6 cells with HAdV26 and 264 

measured the binding of this virus by qPCR. In comparison to A549, HAdV26 binds 265 

slightly better to all three clones, namely 1.7-fold better to A549-D4 and A549-E6, and 266 

1.3-fold better to the A549-F1 clone (Fig. 12A). However increased internalization was 267 

observed only in clone A549-E6 in which HAdV26 internalized 1.6 times better than in 268 

A549 (Fig. 12B). 269 

Next, we examined influence of increased αv integrin expression on the transduction 270 

efficiency of HAdV26. The efficiency of HAdV26 transduction was found to be higher in 271 

all cell clones with increased αv integrin expression than in the parental A549. The most 272 

increased transduction efficiency was observed for the A549-E6 cell clone which 273 

expresses 6 times more integrins than A549 cells. HAdV26 transduced A549-D4 and 274 

A549-F1 with similar efficiency, 2.7- and 2.4- fold better than A549, respectively (Fig 275 



12C). These data confirm that αv integrin is important for both binding and transduction 276 

of HAdV26. 277 

Since it is known that αv integrin most frequently forms heterodimerizes with β1, β3, β5 278 

or β6 subunits, we determined expression of αvβ3, αvβ5, αvβ6 and β1 on the surface of 279 

A549-D4, A549-F1 and A549-E6 cells. All three clones have same level of expression of 280 

the αvβ5 heterodimer (Fig. 11C) and the β1 integrin subunit (Fig. 11D) as the parental 281 

A549 cells. Neither A549 nor A549-D4, A549-F1 and A549-E6 showed expression of 282 

αvβ6 integrin (data not shown). However clone A549-E6 was found to have strikingly 283 

higher expression of αvβ3 integrin than A549, A549-D4 or A549-F1 (Fig. 11B). Since 284 

clones A549-D4, A549-F1 and A549-E6 have comparable expression of αvβ5 (Fig. 11C) 285 

and β1 (Fig. 11D) as A549, but show increased transduction efficiency with HAdV26 we 286 

conclude that the expression of αvβ5 and β1 is not critical for HAdV26 binding or 287 

transduction. Based on the data with respect to the greatly increased expression of αvβ3 288 

integrin in the A549-E6 clone, we assume that αvβ3 integrin is the molecule responsible 289 

for increased transduction efficiency of HAdV26 in this cell clone. To further confirm this 290 

hypothesis, we stably transfected A549 cells with β3 integrin subunit expression plasmid 291 

and isolated 3 clones with increased expression of αvβ3 integrin: A549-B1, A549-B3 and 292 

A549-B4 (Fig. 13B). Even though all 3 clones with increased β3 integrin subunit 293 

expression, A549-B1, A549-B3 and A549-B4, have increased expression of αvβ3 294 

integrin they do not show increased binding (Fig. 14A) or internalization (Fig. 14B) with 295 

HAdV26, which is different than what was observed with A549-E6. Nevertheless, the 296 

transduction efficiency of HAdV26 is increased in all three clones A549-B1, A549-B3 297 

and A549-B4, 1.6-, 3.7- and 5.4- fold respectively (Fig. 14C). This increased 298 



transduction matched the increased expression of αvβ3 integrin. Stable transfection of 299 

the β3 integrin subunit in A549 cells did not change expression of αvβ5 (Fig. 13C) or β1 300 

(Fig. 13B), further confirming that their presence is not crucial for HAdV26 transduction 301 

efficiency. We obtained similar results in HEp2 cell clones with de novo expression of 302 

αvβ3 integrin (29) where high expression of αvβ3 integrin caused increased transduction 303 

efficiency of HAdV26 (data not shown). Importance of αvβ3 integrin in transduction of 304 

A549 cells was also confirmed by preincubating cells with vitronectin and RGD peptide, 305 

known ligand for αvβ3 integrin, prior infection with HAdV26. Incubation with both 306 

vitronectin and RGD peptide decreased transduction efficiency of HAdV26 in A549 cells 307 

(Fig. 15). Based on our results obtained in A549-E6, A549-B3 and A549-B4 clones we 308 

conclude that αvβ3 integrin is required for efficient transduction of epithelial cells with 309 

HAdV26. 310 

Since internalization of HAdV26 in A549 clones with increased expression of αvβ3 311 

integrin measured by qPCR did not completely correspond to increased transduction in 312 

those cell clones, we decided to study intracellular trafficking of HAdV26 in A549, A549-313 

B4 and A549-E6 by confocal microscopy. We fluorescently labeled HAdV26 and 314 

observed its localization in the cells 2h post infection (Fig. 16A). In both A549-B4 and 315 

A549-E6 cell clones the average amount of HAdV26 per cell was higher than in parental 316 

A549 cells, i.e., 22 viruses per cell in A549 versus 40 and 82 viruses per cell in A549-B4 317 

and A549-E6 respectively (Fig. 16B). Based on these data we conclude that 318 

overexpression of αvβ3 integrin in A549 cells allows both better internalization and 319 

transduction efficiency of HAdV26.  320 



HAdV26 shows co-localization with αvβ3 integrin. To get further insight into the 321 

interaction between HAdV26 and αvβ3 integrin we asked if HAdV26 co-localizes with 322 

αvβ3 integrin in A549-E6, the cell clone with the highest expression of αvβ3 integrin. 323 

Fluorescently labeled HAdV26 was incubated with A549-E6 on ice for 30 minutes and 324 

then transferred to 37°C for one minute to trigger internalization. Immediately 325 

afterwards, cells were transferred to ice to stop internalization. We assumed that at this 326 

time point we should be able to capture co-localization between HAdV26 and αvβ3 327 

integrin if there is any. About 80% of the HAdV26 virions detected in this condition, were 328 

found to co-localize either partially or completely with αvβ3 integrin indicating that 329 

HAdV26 can use αvβ3 integrin as a receptor for infecting epithelial cells (Fig. 17). 330 

 331 

DISCUSSION 332 

In this study we found that HAdV26 uses αvβ3 integrin as a receptor for infecting 333 

epithelial cells. Until now, molecules that can serve as receptors for HAdV26 infection 334 

have been mostly studied in cells circulating in blood. It has been shown that HAdV26 335 

uses CD46 as a receptor for cell entry in human peripheral blood mononuclear cells (25) 336 

and B cells (27). There are studies that show that other known adenovirus receptors like 337 

CAR and αv integrins could be involved in HAdV26 infection (26). So far the only study 338 

regarding HAdV26 receptor in epithelial cells was done on HEp3 cells where it was 339 

shown that the RGD-4C peptide partially inhibited oncolysis by species D viruses 340 

HAdV17, HAdV24, HAdV26, and HAdV48 indicating involvement of αv integrins in 341 

species D adenoviruses infection (27). Therefore, in this study we investigated the role 342 

of the above mentioned molecules for HAdV26 infection of human epithelial cells. 343 



We compared the transduction efficiency of HAdV26 on A549 and SK-OV-3 cell lines 344 

and observed very low transduction efficiency of HAdV26 on A549 and higher 345 

transduction efficiency of HAdV26 on SK-OV-3, suggesting that these two cell lines differ 346 

in the expression of the HAdV26 receptor. We also observed low binding and 347 

internalization of HAdV26 in A549 cells, presumably reflecting inadequate amounts of 348 

HAdV26 receptor for efficient infection. We found that A549 cells express CAR, CD46 349 

and αv integrins, while SK-OV-3 cells show expression only of CD46 and αv integrins, 350 

and have little or no CAR on their surface. Expression of CD46 and αv integrins, namely 351 

αvβ3 and αvβ5 known to be involved in binding RGD sequence from adenovirus penton, 352 

are different in these two cell lines. To investigate the role of above mentioned 353 

adenovirus receptors and determine their importance for HAdV26 infection, we 354 

downregulated CAR, CD46 and/or αv integrins and studied how this downregulation 355 

influenced HAdV26 transduction efficiency. As reference viruses we used HAdV5 which 356 

uses CAR for initial binding and αv integrins as co-receptors, and HAdV35 as a 357 

representative of CD46 binding virus. Additionally, we used HAdV26F35, a chimeric 358 

HAdV26 vector pseudotyped with the HAdV35 fiber, which we assumed uses CD46 for 359 

cell binding. Confirmation of this assumption came from our own observation that 360 

incubation of A549 with HAdV35 and HAdV26F35 for 4 hours on 37°C resulted in a 361 

significant decrease of CD46 on the cell surface indicating that CD46 is internalized 362 

together with these viruses upon binding (data not shown), indirectly confirming that 363 

HAdV26F35 does indeed binds CD46. However, the transduction efficiency of this 364 

chimeric virus might be altered because of the HAdV35 fiber and consequent differences 365 

in the engagement between the RGD motif present in HAdV26 penton and integrins. 366 



As expected, downregulation of CAR or αv integrin significantly decreased HAdV5 367 

transduction, while downregulation of CD46 significantly decreased HAdV35 368 

transduction efficiency in both A549 and SK-OV-3, validating our cell model. 369 

Downregulation of CAR slightly decreased HAdV26 transduction in A549 cells; however 370 

since SK-OV-3 cells have no CAR on their surface, but are transduced better with this 371 

virus than A549, we assumed that CAR is not crucial for HAdV26 infection. This 372 

assumption is further supported by results obtained in CHO-CAR cells where increased 373 

expression of CAR had no influence on HAdV26 transduction efficiency. Downregulation 374 

of CAR in A549 cells had very significant negative effect on HAdV35 transduction 375 

efficiency which came as a surprise since it is well known that HAdV35 uses CD46 for 376 

infecting cells (23). Since blocking CD46 availability with specific antibody had no 377 

influence on HAdV35 transduction efficiency and downregulating CAR did not change 378 

surface cell expression of CD46, nor changed binding or internalization of this virus, we 379 

could assume that some other alteration happened. Since CAR directly interacts with 380 

actin (30) and actin dynamics is needed for HAdV35 cytosol localization (31), one could 381 

imagine that downregulating CAR might influence HAdV35 infection by modifying actin 382 

dynamics and macropinocytosis, process used by HAdV35 for cell entry. To the best of 383 

our knowledge there are no published data discussing influence of siCAR on HAdV35 384 

transduction efficiency, however further clarification of this observation is beyond the 385 

scope of our work. Unexpectedly, downregulation of CD46 increased transduction 386 

efficiency of HAdV26 on A549 and HeLa cells implying that presence of this molecule on 387 

A549 cell surface has a negative influence on HAdV26 transduction. We observed the 388 

opposite effect in SK-OV-3 cell line where downregulation of CD46 decreased 389 

transduction efficiency indicating that in SK-OV-3 cells CD46 contributes to the 390 



transduction efficiency HAdV26. Downregulating CD46 by use of specific siRNA did not 391 

change cell surface expression of none of the other investigated receptors, namely CAR, 392 

αv integrin, αvβ3 nor αvβ5 integrin, showing that decreased HAdV26 transduction was 393 

not due to diminished abundance of cell surface receptor. This observation is consistent, 394 

but at this point we cannot explain this phenomenon which seems to be cell specific. Our 395 

result is in line with data obtained in peripheral blood mononuclear cells for which was 396 

reported that HAdV26 transduction is CD46 dependent (25). Just like SK-OV-3, 397 

peripheral blood mononuclear cells are CAR negative (32), suggesting that role of CD46 398 

in HAdV26 transduction efficiency might depend on other molecules present in these 399 

cells. Nevertheless, this needs further investigation. Downregulation of αv integrin 400 

significantly decreased the transduction efficiency of HAdV26 in A549, SK-OV-3 and 401 

HeLa cells indicating that αv integrin is involved in HAdV26 transduction in these cell 402 

lines. The same effect was observed in melanoma cell line M21 variants M21L and 403 

M21L4. The transduction efficiency of HAdV26 was much higher in M21L4 which are αv 404 

integrin positive, than in M21L which are αv integrin negative. Downregulation of αv 405 

integrin also decreased the transduction efficiency of HAdV35, albeit much less than 406 

HAdV26F35. Since HAdV26F35 possess penton base from HAdV26 it is possible that 407 

spatial organization of RGD loop in HAdV26F35 is different from HAdV35, indicating that 408 

these two viruses might use αv integrin in a different manner. That αv integrin is 409 

necessary for HAdV26 transduction was confirmed also by pre-treating A549 cells with 410 

specific blocking antibodies prior to infection. Blocking the surface availability of αv 411 

integrin, alone or in combination with both CAR and CD46, significantly decreased 412 

transduction efficiency of HAdV26. Blocking CAR or CD46 alone had no effect on 413 

HAdV26 infection. At the same time blocking CD46 alone or in combination with CAR or 414 



αv integrin abrogated HAdV26F35 transduction efficiency. Downregulation of αv integrin 415 

also decreased binding and internalization of HAdV26 in A549 cells, while 416 

downregulating CAR or CD46 had no influence on HAdV26 binding or internalization. 417 

This confirms that αv integrin plays an important role in binding and internalization of 418 

HAdV26 in A549 cells. All together these data allow us to propose that αv integrin 419 

serves as a receptor for HAdV26 in human epithelial cells. 420 

In order to further confirm the role of αv integrin in HAdV26 infection we took a different 421 

approach. Instead of downregulating αv integrin we decided to upregulate αv integrin in 422 

A549 cells assuming that this would allow for better HAdV26 transduction efficiency. We 423 

isolated several stably transfected A549 clones with increased αv integrin expression 424 

and measured binding, internalization and transduction efficiency. Increased αv integrin 425 

expression in A549 cells resulted in slightly increased binding and internalization of 426 

HAdV26 which was followed by significantly increased HAdV26 transduction efficiency in 427 

the cell clone with the highest expression of αv integrin. Since it is known that αv integrin 428 

exists in interaction with integrin subunits β1, β3, β5, β6 and β8 creating the 429 

heterodimers αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8, of which αvβ3 and αvβ5 bind the RGD 430 

sequence and serve as co-receptors for adenoviruses, we wanted to determine the 431 

status of those heterodimers on the cell surface of A549 resulting from increased 432 

expression of the αv integrin subunit. In A549 transfected clones with different levels of 433 

expression of the αv integrin subunit, we did not observe changes in the expression of 434 

αvβ5 or of β1 (and thus αvβ1). However, in the A549 clone with the highest expression 435 

of αv, we detected a large increase in the expression of αvβ3 suggesting that in this 436 

clone the higher amount of αv integrin subunit caused augmentation of β3 integrin 437 



subunit expression. We did not detect expression of αvβ6 integrin, and due to the lack of 438 

an adequate antibody we did not measure expression of αvβ8 integrin. However, 439 

previous reports have stated that  A549 cells lack both αvβ6 and αvβ8 integrins (33). 440 

Based on these observations we conclude that the molecule responsible for increased 441 

HAdV26 transduction efficiency is the αvβ3 integrin. We further corroborated this 442 

conclusion by isolating A549 cell clones stably transfected with β3 subunit integrin 443 

cDNA. The integrin β3 subunit creates heterodimers only with αv and αIIb subunits. 444 

Since the αIIb subunit is a marker of hematopoietic cells (34) we assumed that in A549 445 

cells, the β3 subunit would interact only with the αv subunit resulting in the αvβ3 integrin. 446 

We isolated several clones with increased expression of αvβ3 and detected increased 447 

HAdV26 transduction efficiency in all of them, in accordance with αvβ3 integrin 448 

expression. We also determined the expression levels of αv, αvβ5 and β1 in these 449 

clones and verified that increase in αvβ3 integrin did not change expression of any of 450 

them, further underlining that the transduction efficiency of HAdV26 depended on the 451 

expression of the αvβ3 integrin. Since the promiscuous integrin subunits β1 or αv are 452 

synthesized in an excess, the formation of any αβ heterodimer is dependent on the 453 

availability of the other subunit, thus formation of αv-containing heterodimers follows 454 

hierarchical order. Therefore, the cell surface copy number of for example αvβ3 and 455 

αvβ5 integrin is dependent on the amount of β3 and β5 subunits, respectively (29, 35). 456 

This can explain why in our A549 cell clones stably overexpressing αv integrin we see 457 

upregulation of only αvβ3 and not αvβ5 integrins, i.e. β3 and β5 integrin subunits 458 

compete for newly synthesized αv subunit causing difference in expression of αvβ3 and 459 

αvβ5 heterodimers.  460 



The discrepancy observed between transduction efficiency and binding/internalization of 461 

HAdV26 in A549 clones with increased expression of αvβ3 integrin measured by qPCR 462 

could lay in a quite high dissociation constant (Kd) between adenovirus penton and αvβ3 463 

integrin (415 ± 62 nM) (36). Although this Kd refers to HAdV9, we can assume that the 464 

Kd value would be similar for HAdV26 because they belong to the same serotype. Since 465 

binding assay is performed on ice which does not allow for integrin clustering it is 466 

possible that some information could be lost. 467 

Even though the overall structure of the HAdV26 capsid is mostly similar to that of 468 

HAdV5, there are some striking differences in structure between these two viruses. One 469 

difference with possible implications on αv integrins binding is present in the penton 470 

base structure. The sequence alignments between HAdV5 and HAdV26 show that there 471 

is a 12-residue deletion at the N terminus and two deletions in the RGD-containing loop 472 

in the penton base of HAdV26 relative to species C (15). One could suspect that these 473 

changes could render RGD from HAdV26 penton less reachable by αv integrins. 474 

HAdV26 has a relatively short fiber with only 8 beta-repeats in the shaft, compared to 22 475 

repeats in the case of HAdV5. This short fiber is assumed to be fairly rigid allowing only 476 

limited bending (37). Bending of a long fiber allows easier interaction between RGD from 477 

the penton of CAR binding adenoviruses with cell surface integrins which otherwise 478 

would not be possible. The RGD binding site on αvβ3 integrin is situated on the top of 479 

the integrin subunits and can be reached only when the integrin molecule is activated, 480 

i.e. in the extended conformation. According to the current model the length of extended 481 

αvβ3 integrin is approximately 20 nm (38). The length of adenovirus fiber with 8 shaft 482 

beta-repeats is 11 nm (39). Therefore, αvβ3 integrin in its extended form should be able 483 



to span the distance between the cell surface and HAdV26 penton base and reach RGD 484 

peptide, i.e., a rigid fiber should not impair binding of HAdV26 to αvβ3 integrin. In order 485 

to corroborate this, further research is needed.  486 

Adenovirus mediated transduction efficiency reflects the sum of adenovirus binding, 487 

internalization and intracellular trafficking. Intracellular trafficking is best understood for 488 

HAdV5 and includes clathrin-mediated dynamin-dependent endocytosis followed by 489 

endosomal escape and cytosolic transport all the way to the nucleus. This entire path is 490 

thought to be completed in approximately 90 minutes of infection (40). For HAdV26 491 

there are no detailed reports regarding intracellular trafficking. Here we studied 492 

intracellular trafficking of fluorescently labelled HAdV26 in A549 cells and two clones 493 

with increased expression of αvβ3 integrin, A549-E6 and A549-B4 120 min post 494 

infection. The average number of internalized HAdV26 per cell in in cell clones A549-E6 495 

and A549-B4 was 4 and 2 times higher, respectively, indicating that αvβ3 integrin allows 496 

efficient internalization of HAdV26. Additionally, we studied co-localization of HAdV26 497 

and αvβ3 integrin in A549-E6, the cell clone with the highest expression of αvβ3 integrin, 498 

and observed that at a very early time point following binding HAdV26 co-localizes with 499 

αvβ3 integrin, confirming that HAdV26 uses αvβ3 integrin as a receptor in epithelial 500 

cells. By studying intracellular trafficking of fluorescently labeled HAdV26 in A549 cells 501 

we did not observe an accumulation of HAdV26 in the proximity of microtubule-502 

organizing center, as has been described for HAdV5 (41), indicating that HAdV26 might 503 

have traffic differently from HAdV5. Further studies are needed in order to learn more 504 

about HAdV26 intracellular trafficking.  505 



Data obtained in this study give us new insight into HAdV26 infection pathway 506 

confirming that αvβ3 integrin is required for efficient infection of epithelial cells by 507 

HAdV26. Recently Casiraghi et al. have reported that αvβ3 integrin strongly affects the 508 

innate immune response in epithelial cells. They showed that αvβ3 integrin greatly 509 

increased the immune response elicited by herpes simplex virus which had previously 510 

been shown to bind αvβ3 integrin (42). Aforementioned implies that HAdV26 interaction 511 

with αvβ3 integrin might also influence the innate immune response in infected cells, 512 

therefor it would be interesting to investigate this in more details. Based on our data one 513 

could wonder what is the relationship of αvβ3 to the previously reported receptors for 514 

this virus, namely CD46 for which has been reported to be involved in binding of the 515 

HAdV26 to PBMCs. We would like to point out that PBMCs have almost no expression 516 

of αvβ3 and αvβ5 integrin (43) thus αvβ3 integrin is not available as a receptor for 517 

HAdV26 in these cells. Results obtained in this study bring us new knowledge regarding 518 

HAdV26 receptor usage and should be taken into account when using current or 519 

constructing new HAdV26 based vectors for gene transfer and vaccination purposes.  520 

 521 

MATERIALS AND METHODS 522 

Cells, viruses, and antibodies. HEK293 (human embryonic kidney: ATCC CRL-1573), 523 

A549 (human lung carcinoma: ATCC CCL-185), SK-OV-3 (human ovarian carcinoma: 524 

ATCC HTB-77), and HeLa (human cervix adenocarcinoma: ATCC CCL-2) cells were 525 

obtained from ATCC Cell Biology Collection and were cultured according to 526 

manufacturer’s instructions. Adherent CHO-K1 cells (Chinese hamster ovary; ATCC 527 

CCL-61) (CAR and CD46 negative) and CHO-CAR cells (CHO cells transfected to stably 528 



express human CAR) were kind gift from George Santis, King's College London School 529 

of Medicine, London, UK. CHO-BC1 (CHO cells stably transfected to express CD46) 530 

were previously described (44). Melanoma M21 variants M21L and M21L4 (45) were 531 

kindly supplied by Prof. Urs Greber, University of Zurich, Switzerland. Replication-532 

incompetent recombinant adenoviral vectors based on adenovirus type 5, 26 and 35 533 

were previously constructed (20, 46). Viruses were propagated on HEK293 cells and 534 

purified by CsCl gradients. They carry either the enhanced green fluorescent protein or 535 

luciferase gene driven by the CMV promoter as a reporter gene. Antibodies used for flow 536 

cytometry, immunohistochemistry, co-localization, and infection competition analyses 537 

were the following: anti-CAR (RcmB) from Merck Millipore, anti-CD46 (MEM-258) from 538 

Thermo Fisher Scientific, anti-αvβ3 integrin (LM609) from Merck Millipore, anti-αvβ5 539 

integrin (P1F6) from Merck Millipore,anti-αv (272-17E6) from Merck Millipore, anti-β1 540 

(JB1A) from Merck Millipore, anti-αvβ6 integrin (E7P6) from Merck Millipore and FITC 541 

goat anti-mouse IgG, cat # 554001 from BD Pharmingen. 542 

Adenovirus infection assay. Adherent cells were incubated with viruses at 37°C and 543 

transduction efficiency was measured 48h after infection by assaying for luciferase 544 

activity (Promega, Southhampton, UK) or by flow cytometry in case of the GFP reporter. 545 

For the measurement of transduction efficiency in the presence of function-blocking 546 

antibodies cells were incubated with antibodies at a final concentration of 20 µg/mL for 1 547 

hour on ice prior to incubation with viruses for 1h on ice. Cells were then rinsed and 548 

transferred to 37°C. Transduction efficiency was measured 48 h after infection. For the 549 

measurement of transduction efficiency in the presence of vitronectin or RGD peptide 550 

cells were incubated with vitronectin or RGD peptide for 1 hour on ice prior to incubation 551 



with viruses for 1h on ice. Cells were then rinsed and transferred to 37°C. Transduction 552 

efficiency was measured 48 h after infection.For the measurement of transduction 553 

efficiency after downregulating specific receptors using siRNA, cells were transfected 554 

with the specific siRNA, (50 nM final concentration), and infected with adenoviruses 48 h 555 

later. Transduction efficiency was measured 48 h after infection.  556 

Adenovirus Labeling. After purification by banding in CsCl and dialysis against PBS 557 

buffer, adenovirus particles were incubated with a 20-fold excess of chemically reactive 558 

Alexa488-TFP (Molecular Probes, USA) for 2 hours at room temperature in PBS buffer, 559 

pH 7.2. The labeled viral particles were then purified from excess dye by dialysis using 560 

Zeba Spin Desalting columns (Pierce). The transduction efficiency of the modified vector 561 

was analyzed by transduction assay in HEK-293 cells. Alexa488-TFP labeling did not 562 

alter the transduction efficiency of labeled viruses. 563 

siRNA experiments. To downregulate specific receptors, we used the following 564 

Silencer Select Predesigned siRNAs: CAR siRNA ID s3774, CD46 siRNA ID s8604, αv 565 

integrin siRNA ID s7570, scrambled siRNA #1, catalog No. 4390844, all from Thermo 566 

Fisher Scientific. Cells were transfected at a confluency of 30–50% using Lipofectamine 567 

RNAiMAX reagent (Invitrogen) according to the manufacturer’s protocol. Efficiency of 568 

silencing was verified 48 h after transfection by flow cytometry.  569 

Flow Cytometry. Flow cytometry was used to analyze expression of CAR, CD46, αv 570 

integrin subunit, β1 integrin subunit and integrin heterodimers αvβ3, αvβ5 and αvβ6. 571 

Briefly, adherent cells were grown in tissue culture dishes, detached and washed twice 572 

with PBS. Subsequently cells were incubated on ice with the specific primary antibodies 573 

that recognize: CAR, CD46, αv integrin, β1 integrin, αvβ3 integrin, αvβ5 integrin and 574 



αvβ6 integrin. The binding of unlabeled primary antibodies was revealed by using FITC-575 

conjugated anti-mouse Ig as a secondary reagent.  576 

Binding and internalization. Adherent cells were grown in multi-well 6 culture dishes 577 

until 80% confluency. Adenoviruses, 1000 physical particles per cell, were added to cells 578 

and incubated for 1h on ice. To measure binding, unbound viruses were removed by 579 

washing the cells twice with cold trypsin and twice with cold PBS. Cells were then 580 

harvested with a cell scraper and pelleted by centrifugation. To measure internalization, 581 

unbound viruses were removed, warm growth medium was added and cells were 582 

transferred to 37ºC allowing viruses to enter the cells. After incubation at 37°C for 1h, 583 

cells were washed twice with warm trypsin, dispersed, and pelleted by centrifugation. 584 

Total DNA (cellular plus viral) was extracted using commercially available materials 585 

(DNeasy Kit, Qiagen) and used to quantify viral DNA. To measure the extent of viral 586 

attachment or internalization, viral DNA was quantified by qPCR on 100 ng of total DNA. 587 

Viral DNA was detected by qPCR using primers for the CMV sequence (CMV Rv: 588 

CGATCTGACGGTTCACTAAACG, CMV Fw: TGGGCGGTAGGCGTGTA, CMV probe: 589 

TGGGAGGTCTATATAAGC). The amount of viral DNA was normalized using 590 

expression of GAPDH. 591 

Isolation of A549 cells stably expressing αv or β3 integrin. Integrin αv-expressing 592 

cell clones A549-D4, A549-F1 and A549-E6 were established from A549 cells by stable 593 

transfection with the pcDNA2004Neo(-)αv plasmid containing αv integrin subunit cDNA 594 

that was purchased from LifeTechnologies. Integrin αvβ3-expressing cell clones A549-595 

B1, A549-B3 and A549-B4 were established from A549 cells by stable transfection with 596 

the pcDNA β3 plasmid containing integrin subunit β3 cDNA (kindly provided by E.H. 597 



Danen, Amsterdam, The Netherlands). Plasmid was transfected into A549 cells using 598 

Lipofectamine (Invitrogen, La Jolla, CA). The cells were selected in the presence of 599 

G418 (0.6 mg/mL) and screened for αv or αvβ3 integrin expression by flow cytometry.  600 

Confocal microscopy. Cells (20000 per coverslip) were seeded in 24-well plates. Two 601 

days after labeled adenoviruses were added to cells (50000 pp/cell) and incubated on 602 

ice for 30 minutes to allow binding. Subsequently cells were transferred to 37°C for the 603 

indicated time. Cells were fixed with 2% paraformaldehyde in PBS for 12 minutes at 604 

room temperature. Nuclei were labeled with DAPI. Coverslips were slide mounted by 605 

using Fluoromount (Southern Biotech, USA). Confocal laser scanning microscopy 606 

analyses were performed using a Leica TCS SP2 AOBS. Observations were made with 607 

an x63 objective. Images showing intracellular trafficking of AlexaFluor488 labeled 608 

HAdVs are maximum projections of 7 confocal stacks and processed with Leica 609 

Application Suite X (LAS X) software platform, Adobe Photoshop CC software (Adobe 610 

Systems) and ImageJ. The co-localization analysis was performed using digital images 611 

processed with a co-localization plugin in ImageJ.  612 

Statistical analyses. All experiments were performed at least three times (n=3), in 613 

duplicates or triplicates, except flow cytometry experiments, which were performed twice 614 

(n=2), respectively. The results are expressed as means ± standard deviations and were 615 

analyzed either by t test or by two-way analysis of variance. We used GraphPad Prism 616 

software. All P values of <0.05 were considered statistically significant. 617 
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 777 

FIGURE LEGENDS 778 

Figure 1. Flow cytometry analysis of known adenovirus receptors, CAR, CD46, 779 

αvβ3, αvβ5 and αV integrin, on surface of A549 and SK-OV-3 cells. Cells were 780 

detached, incubated with specific antibodies on ice and cell surface expression of CAR, 781 

CD46, αv, αvβ3 and αvβ5 integrins was analyzed by flow cytometry. The following 782 

antibodies were used in order to detect studied receptors: CAR (RcmB), CD46 (MEM-783 

258), αvβ3 (LM609), αvβ5 (P1F6) and αv (272-17E6). Green and violet colors represent 784 

primary antibody staining in the A549 and SK-OV-3 cells, respectively. n=2.  785 

 786 

Figure 2. Transduction efficiency of HAdV5, HAdV26, HAdV35 and HAdV26F35 in 787 

A549 and SK-OV-3 cells. (A) Comparison in transduction efficiency of HAdV5, HAdV26, 788 

HAdV35 and HAdV26F35 in A549 and SK-OV-3 cells. The results are presented as 789 

absolute value in RLU per mg of protein. (B) Transduction efficiency of HAdV26 in A549 790 

and SK-OV-3 cells. The results are presented as fold of A549 transduction efficiency. 791 

Transduction efficiency was measured by luciferase activity assay 48h after infection. 792 



The results are expressed as means ± standard deviations. *, P<0.05; **, P<0.01; ***, 793 

P<0.001. n=3.  794 

 795 

Figure 3. Binding and internalization of HAdV5, HAdV26, HAdV35 and HAdV26F35 796 

in A549 and SK-OV-3 cells. Binding and internalization of HAdV5, HAdV26, HAdV35 797 

and HAdV26F35 in A549 cells (A) and in SK-OV-3 cells (B). The results are expressed 798 

as fold of control, i.e. value obtained for HAdV5, ± standard deviations. (C) Binding and 799 

internalization of HAdV26 in A549 and SK-OV-3 cells. Results are presented as relative 800 

to A549, ± standard deviations. For both binding and internalization cells were first 801 

incubated with HAdV5, HAdV26, HAdV35 and HAdV26F35 on ice for 1h, moi 1000 802 

vp/cell. To measure binding, unbound viruses were removed by rinsing the cells with 803 

cold trypsin and PBS and collected by scraping the cells. For internalization 804 

measurement unbound viruses were removed as stated above, cells were transferred to 805 

37ºC and incubated for 1h allowing viruses to enter the cells. Cells were then rinsed 806 

twice with warm trypsin, dispersed, and pelleted by centrifugation. For both binding and 807 

internalization total DNA (cellular plus viral) was extracted from cells and used for 808 

quantification of viral DNA by qPCR using CMV region as a target sequence. *, P<0.05; 809 

**, P<0.01; ***, P<0.001. n=3.    810 

 811 

Figure 4. Flow cytometry analysis of CAR, CD46 and αv integrin on surface of 812 

A549 and SK-OV-3 cells after downregulation by specific siRNA transfection. Cells 813 

were transfected with specific siRNA in final concentration 50 nM and 48h later surface 814 

expression of CAR, CD46 and αv integrin was determined. The following antibodies 815 

were used to detect studied receptors: CAR (RcmB), CD46 (MEM-258) and αv integrin 816 

(272-17E6). Results are shown as percentage of the value for the control, i.e. cells 817 

transfected with scrambled siRNA. n=2. 818 

 819 

Figure 5. Transduction efficiency of HAdV5 (A), HAdV26 (B), HAdV35 (C) and 820 

HAdV26F35 (D) in A549 cells after downregulation of CAR, CD46 and/or αv 821 

integrin by specific siRNA transfection. Cells were transfected with specific siRNA in 822 

final concentration 50 nM and 48h later infected with HAdV5, HAdV26, HAdV35 and 823 

HAdV26F35, moi 1000 vp/cell. Transduction efficiency was measured by luciferase 824 

activity assay 48h after infection. The results are presented as fold of the control, i.e. 825 

cells transfected with scrambled siRNA ± standard deviations. *, P<0.05; **, P<0.01; ***, 826 

P<0.001. n=3. 827 

 828 

Figure 6. Transduction efficiency of HAdV5, HAdV26, HAdV35 and HAdV26F35 in 829 

SK-OV-3 cells after downregulation of CD46 and/or αv integrin by specific siRNA 830 

transfection. Cells were transfected with specific siRNA in final concentration 50 nM 831 

and 48h later infected with HAdV5, HAdV26, HAdV35 and HAdV26F35, moi 1000 832 

vp/cell. Transduction efficiency was measured by luciferase activity assay 48h after 833 



infection. The results are presented as fold of the control, i.e. cells transfected with 834 

scrambled siRNA ± standard deviations. *, P<0.05; **, P<0.01; ***, P<0.001. n=3. 835 

 836 

Figure 7. Transduction efficiency of HAdV5, HAdV26, HAdV35 and HAdV26F35 in 837 

M21L and M21L4 cells. Cells were infected with HAdV5, HAdV26, HAdV35 and 838 

HAdV26F35 at moi 1000 vp/cell. Transduction efficiency was measured by luciferase 839 

activity assay 48h after infection. M21L cells are αv integrin negative, and M21L4 are αv 840 

integrin positive. The results are presented as absolute value in RLU per mg of protein 841 

and shown as means ± standard deviations. *, P<0.05; **, P<0.01; ***, P<0.001. n=2.  842 

 843 

Figure 8. Transduction efficiency of HAdV5, HAdV26, HAdV35 and HAdV26F35 in 844 

CHO-CAR (A) and CHO-BC1 (B) cells. CHO-CAR cells were incubated with HAdV5 845 

knob (wild type or Y477A) and CHO-BC1 cells with anti-CD46 antibody (MEM258) or 846 

IgG1 control on ice for 1h and afterwards infected with HAdV5, HAdV26, HAdV35 and 847 

HAdV26F35 at moi 5000 vp/cell. Transduction efficiency was measured by luciferase 848 

activity assay 48h after infection. CHO-CAR are CHO cells stably transfected with a 849 

plasmid containing CAR cDNA and CHO-R are CHO stably transfected with empty 850 

plasmid; CHO-K1 are the normal CHO, and CHO-BC1 are CHO cells stably transfected 851 

with a plasmid containing CD46 cDNA. The results are presented as absolute value in 852 

RLU per mg of protein and shown as means ± standard deviations. *, P<0.05; **, 853 

P<0.01; ***, P<0.001. n=3.  854 

 855 

Figure 9. Binding and internalization of HAdV5, HAdV26, HAdV35 and HAdV26F35 856 

in A549 cells after downregulating CAR, CD46 and αv integrins. Cells were 857 

transfected with specific siRNA in final concentration 50 nM and 48h later incubated with 858 

HAdV5, HAdV26, HAdV35 and HAdV26F35 on ice for 1h, moi 1000 vp/cell. To measure 859 

binding, unbound viruses were removed by rinsing the cells with cold trypsin and PBS 860 

and collected by scraping the cells. For internalization measurement unbound viruses 861 

were removed as stated above, cells were transferred to 37ºC and incubated for 1h 862 

allowing viruses to enter the cells. Cells were then rinsed twice with warm trypsin, 863 

dispersed, and pelleted by centrifugation. For both binding and internalization total DNA 864 

(cellular plus viral) was extracted from cells and used for quantification of viral DNA by 865 

qPCR using CMV region as a target sequence. The results are presented as fold of the 866 

control, i.e. cells transfected with scrambled siRNA ± standard deviations. *, P<0.05; **, 867 

P<0.01; ***, P<0.001. n=3.    868 

 869 

Figure 10. Transduction efficiency of HAdV5 (A), HAdV26 (B), HAdV35 (C) and 870 

HAdV26F35 (D) in A549 cells after incubation with anti-CAR, anti-CD46 and/or anti-871 

αv integrin blocking antibodies. Cells were first incubated with antibodies on ice for 1h 872 



and afterwards viruses were added. The following antibodies, at final concentration of 20 873 

µg/mL, were used: CAR (RcmB), CD46 (MEM-258), αvβ3 (LM609), αvβ5 (P1F6) and αv 874 

(272-17E6). Transduction efficiency was measured by luciferase activity assay 48h after 875 

infection. The results are presented as fold of the control, i.e. cells incubated with IgG ± 876 

standard deviations. *, P<0.05; **, P<0.01; ***, P<0.001. n=2. 877 

 878 

Figure 11. Expression of αv, αvβ3, αvβ5 and β1 integrins in A549 cell clones 879 

obtained by stable transfection of A549 cells with the plasmid containing αv 880 

integrin subunit cDNA. Cells were detached, incubated with specific antibodies on ice 881 

and cell surface expression of αv, αvβ3, αvβ5 and β1 integrins was analyzed by flow 882 

cytometry. The following antibodies were used: αvβ3 (LM609), αvβ5 (P1F6) and αv 883 

(272-17E6). Representative geomean fluorescence intensities obtained in one of three 884 

independent experiments with similar results are shown. 885 

 886 

Figure 12. Binding, internalization and transduction efficiency of HAdV26 in A549 887 

cell clones with increased expression of αv integrin. (A) Binding and (B) 888 

Internalization of HAdV26 in A549 and A549 cell clones with increased expression of αv 889 

integrin: A549-D4, A549-F1 and A549-E6. Cells were incubated with HAdV26 on ice for 890 

1h, moi 1000 vp/cell. To measure binding, unbound viruses were removed by rinsing the 891 

cells with cold trypsin and PBS and collected by scraping the cells. For internalization 892 

measurement unbound viruses were removed as stated above, cells were transferred to 893 

37ºC and incubated for 1h allowing viruses to enter the cells. Cells were then rinsed 894 

twice with warm trypsin, dispersed, and pelleted by centrifugation. For both binding and 895 

internalization total DNA (cellular plus viral) was extracted from cells and used for 896 

quantification of viral DNA by qPCR using CMV region as a target sequence. The results 897 

are expressed as fold of value obtained for A549 ± standard deviations. (C) 898 

Transduction efficiency of HAdV26 in A549 and A549 cell clones with increased 899 

expression of αv integrin: A549-D4, A549-F1 and A549-E6. Transduction efficiency was 900 

measured by flow cytometry 48h after infection. The results are expressed as fold of 901 

value obtained for A549 ± standard deviations. *, P<0.05; ** P<0.01; ***, P<0.001. n=3.    902 

 903 

Figure 13. Expression of αv, αvβ3, αvβ5 and β1 integrins in A549 cell clones 904 

obtained by stable transfection of A549 cells with the plasmid containing β3 905 

integrin subunit cDNA. Cells were detached, incubated with specific antibodies on ice 906 

and cell surface expression of αv (A), αvβ3 (B), αvβ5 (C) and β1 (D) integrins was 907 

analyzed by flow cytometry. The following antibodies were used: αvβ3 (LM609), αvβ5 908 

(P1F6) and αv (272-17E6). Representative geomean fluorescence intensities obtained 909 

in one of three independent experiments with similar results are shown. 910 

 911 

Figure 14. Binding, internalization and transduction efficiency of HAdV26 in A549 912 

cell clones with increased expression of β3 integrin. (A) Binding and (B) 913 

Internalization of HAdV26 in A549 and A549 cell clones with increased expression of β3 914 



integrin: A549-B1, A549-B3 and A549-B4. Cells were incubated with HAdV26 on ice for 915 

1h, moi 1000 vp/cell. To measure binding, unbound viruses were removed by rinsing the 916 

cells with cold trypsin and PBS and collected by scraping the cells. For internalization 917 

measurement unbound viruses were removed as stated above, cells were transferred to 918 

37ºC and incubated for 1h allowing viruses to enter the cells. Cells were then rinsed 919 

twice with warm trypsin, dispersed, and pelleted by centrifugation. For both binding and 920 

internalization total DNA (cellular plus viral) was extracted from cells and used for 921 

quantification of viral DNA by qPCR using CMV region as a target sequence. The results 922 

are expressed as fold of value obtained for A549 ± standard deviations. (C) 923 

Transduction efficiency of HAdV26 in A549 and A549 cell clones with increased 924 

expression of β3 integrin: A549-B1, A549-B3 and A549-B4. Transduction efficiency was 925 

measured by flow cytometry 48h after infection. The results are expressed as fold of 926 

value obtained for A549 ± standard deviations. *, P<0.05; ** P<0.01; ***, P<0.001. n=3.    927 

 928 

Figure 15. Transduction efficiency of HAdV26 in A549 cells after incubation with 929 

vitronectin and RGD peptide. Cells were first incubated with vitronectin (10 µg/mL) or 930 

RGD peptide (15 µg/mL) on ice for 1h and afterwards viruses were added. Transduction 931 

efficiency was measured by luciferase activity assay 48h after infection. The results are 932 

presented as fold of the control. n=2. 933 

 934 

Figure 16. Intracellular trafficking of AlexaFluor488 labeled HAdV26 in A549, A549-935 

B4 and A549-E6 cells. (A) Cells were incubated with AlexaFluor488 labeled HAdV26 936 

(50000 vp/cell), for 2h on 37°C. Non-internalized viruses were rinsed away and cells 937 

were fixed with 2% PFA. AlexaFluor488 labeled HAdV26 are presented in green, nuclei 938 

stained with DAPI are presented in blue, actin cytoskeleton stained with phalloidin is 939 

presented in red. Images shown are maximum projections of confocal stacks. 940 

Representative confocal images are shown. Scale bar = 25 μm. (B) Quantification of 941 

virus internalization efficiency, expressed as virus number per cell. Error bars represent 942 

the means ± standard deviations, and number of cells analyzed is indicated. 943 

 944 

Figure 17. Co-localization of AlexaFluor488 labeled HAdV26 with αvβ3 integrin in 945 

A549-B6 cells. Cells were incubated with AlexaFluor488 labeled HAdV26 (50000 946 

vp/cell), for 1 min on 37°C, fixed with 2% PFA and subsequently stained for αvβ3 947 

integrin expression (LM609). Representative confocal image of HAdV26 co-localizing 948 

with αvβ3 integrin is shown. Grey arrow head indicate co-localization; green arrow head 949 

indicates absence of co-localization. Scale bar = 25 μm. Pie chart on the right hand 950 

represents quantification of the percentage of co-localized HAdV26 with αvβ3 integrin. 951 

Data were collected from 9 cells and 59 viruses that infected the cells.  952 

 953 

 954 








































