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Abstract 

European flat oyster (Ostrea edulis) production has suffered a severe decline due to 

bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute 

inflammatory response frequently leading to death. We used an immune-enriched oligo-

microarray to understand the haemocyte response to Bonamia ostreae by comparing 

expression profiles between naïve (NS) and long-term affected (AS) populations along a 

time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, 

which might be indicative of selection for resistance. No regulated genes were detected 

at 30d in both populations while a notable reactivation was observed at 90 d, suggesting 

parasite latency during infection. Genes related to extracellular matrix and protease 

inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, 

might play an important role along the infection. Twenty-four candidate genes related to 

resistance should be further validated for selection programs aimed to control 

bonamiosis. 
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Introduction 

The European flat oyster Ostrea edulis has traditionally been a highly appreciated 

marine resource for human nutrition. Overexploitation has led to the exhaustion of most 

flat oyster beds through Europe in the last century, and its production has been mostly 

sustained through aquaculture (Korringa 1976). However, flat oyster farming has been 

affected at specific areas by disease outbreaks, such as the “shell disease” caused by the 

fungus Ostracoblabe implexa (Alderman and Jones 1971), or at larger areas involving 



different countries, such as infections with the protist Marteilia refringens (Grizel et al. 

1974; Berthe et al. 2004) and Bonamia ostreae (Pichot et al. 1980). The latter is a 

parasite widely distributed throughout the European coast, constraining European flat 

oyster production (da Silva et al. 2005; Culloty and Mulcahy 2007; Engelsma et al. 

2010, 2014; Laing et al. 2014). Thus, controlling bonamiosis is required for a successful 

recovery of the European flat oyster production, but its eradication from affected areas 

seems not to be a simple task (Grizel et al. 1986; van Banning 1991; Lynch et al. 2007), 

and the use of resistant oyster stocks appears to be the most promising strategy (Elston 

et al. 1987; Naciri-Graven et al. 1999; da Silva et al. 2005, Lynch et al. 2014). 

Successful breeding programs to produce disease resistant oysters, such as those against 

summer mortality or infections with Haplosporidium nelsoni, Perkinsus olseni, 

Roseobacter crassostreae, Marteilia sydneyi or B. ostreae, have been based on selecting 

broodstock among survivors after long exposure in heavily affected areas (Ford and 

Haskin, 1987; Beattie et al. 1988; Ragone Calvo et al. 2003; Dove et al. 2013; Frank-

Lawale et al. 2014; Lynch et al. 2014; Dégremont et al. 2015). This procedure relies on 

the cumulative benefit of successive generations of selection to achieve profitable 

increased resistance levels. Considering that the maximal oyster mortality due to B. 

ostreae occurs when the oysters have almost reached market-size (Culloty and Mulcahy 

1996; Baud et al. 1997; da Silva et al. 2005), the evaluation of each generation in the 

field to select breeders and obtaining the next generation should take at least 4-5 years. 

Such procedure would need a long-term program to reach acceptable oyster survival in 

affected areas (Lynch et al. 2014). Availability of molecular markers associated with 

resistance would avoid long field evaluation of breeders, thus shortening the process 

and making it more efficient. Such resistance markers have been successfully found for 

some diseases in mollusks (Nikapitiya et al. 2014; Normand et al. 2014; Raftos et al. 



2014; Nie et al. 2015; Vaibhav et al. 2016), and even a specific mutation conferring 

resistance to perkinsosis has been identified in the eastern oyster (He et al. 2012).  

Mollusc immunity relies on innate cellular and humoral mechanisms, where 

haemocytes, the circulating cells present in haemolymph and infiltrating through other 

tissues, play a key role as responsible cells for phagocytosis of foreign particles, among 

other functions. B. ostreae is an intracellular parasite able to proliferate and survive 

inside the oyster haemocytes, inducing a strong inflammatory response and disturbing 

the immune capacity of the host (Bucke 1988). Oyster response involves cytotoxic 

mechanisms as well as non-oxidative and oxidative pathways, including lysosomal 

enzymes and reactive oxygen/nitrogen intermediates. The haemolymph serum contains 

humoral defense factors, such as soluble lectins, hydrolytic enzymes and antimicrobial 

peptides (Allam and Raftos 2015; Bachère et al. 2015). The evaluation of immune-gene 

expression profiles of oyster and their interactions along the process of infection is 

crucial to understand the response to bonamiosis and requires the development of large-

scale genomic resources and appropriate tools to identify genes and signalling networks 

related to disease resistance. Recently, a comprehensive transcriptomic haemocyte 

database has been used to design and validate an oligo-microarray to assess gene 

expression profiles of flat oyster in response to B. ostreae (Pardo et al. 2016). 

In this study, we used this oligo-microarray to identify genes and pathways 

differentially expressed along a time series after challenge with B. ostreae in two flat 

oyster stocks with differential susceptibility to bonamiosis: i) a naïve stock from a free-

bonamiosis area; and ii) a stock from a long-term affected area, which had shown some 

resistance to B. ostreae. The comparison of the pattern of response along the infection 

process and the differentially expressed genes and pathways between both stocks 



provided candidate genes and pathways to be validated for their application on breeding 

programmes for a more efficient selection. 

Materials and Methods 

Biological material and challenge 

Flat oysters were collected from Limfjord (Denmark) and Ortigueira (NW Spain) in 

2010. Surveillance since 1996 has shown Limfjord to be a Bonamia-free area until 

2014, when B. ostreae was detected for the first time in November (Madsen and 

Thomassen 2015). Thus the Limfjord oyster population was still naïve regarding 

bonamiosis in 2010 (NS: naïve stock onwards). Conversely, bonamiosis affects oysters 

in Ortigueira since early 1980's (AS: long-term affected stock onwards) and oysters 

from this bed are more resistant to B. ostreae than oysters from other geographic 

origins, as shown in an experiment where families from Ortigueira showed significantly 

less prevalence and lower infection intensity (da Silva et al. 2005).  

Oysters of both origins were experimentally challenged with B. ostreae and compared 

with their corresponding non-challenged controls. The challenge was performed by 

individually immersing oysters in beakers containing an aerated suspension of 300,000 

B. ostreae cells in filtered seawater for 24 h at the Centro de Investigacións Mariñas. 

The B. ostreae cells for the challenge were isolated from heavily infected oysters 

collected in Lough Foyle (Ireland), following the procedure described by Mialhe et al. 

(1988). After challenge, oysters were kept in tanks with running, filtered (1 µm) 

seawater plus continuous (pumped) supply of mixed cultured algae until the end of the 

experiment. Haemolymph samples were taken at three different times after the 

challenge (1, 30 and 90 days post-challenge, dpc) considering previous information on 

the progression of the infection (Culloty and Mulcahy, 2007); as much haemolymph as 



possible (from 0.2 ml to 1.5 ml) was withdrawn from the adductor muscle of each 

oyster with a 21 gauge needle screwed to a 2 ml cold syringe. The haemolymph was 

immediately poured into a cold vial and kept in crushed ice to avoid haemocyte 

clumping. Haemolymph samples were centrifuged (800g, 10 min, 4ºC) and the cell 

fractions (pellets) resuspended in RNA later; then suspensions, after one night at 4ºC, 

were stored at -20ºC until further processing. Five biological replicates for each 

condition (control and challenged), stock (NS and AS) and sample times (1, 30 and 90 

dpc) were used.  

RNA isolation, cDNA synthesis and library construction 

RNA was individually extracted using RNeasy Mini Kit (Qiagen, Germany) following 

manufacturer's instructions with slight modifications, including two additional RPE 

washes and DNase digestion. Quantity was determined using a Nanodrop 

spectrophotometer (Nanodrop Technologies, USA) and quality (RNA integrity number, 

RIN) using a Bioanalyzer (Agilent Technologies, USA). All samples showed high RNA 

quality (RIN > 8.0) and consequently, they were further processed for microarray 

analysis. For each experimental condition, the control group was pooled by combining 

equimolar RNA quantities of the five biological replicates, while the RNA of each 

challenged oyster was processed individually (five replicates). Next, 50 ng of total RNA 

were labeled using the Low Input Quick Amp Labeling Kit, One-Color (Cy3; Agilent 

Technologies). 

Microarray hybridisation and scanning 

All samples (control pools and challenged oysters) were hybridized individually in a 

custom 8 x 15 K Agilent oligo-microarray at the Universidade de Santiago de 

Compostela (USC) Genomics Platform following the protocols for Agilent one-color 



Gene Expression Analysis. This custom microarray was mainly based on OedulisDB, an 

Ostrea edulis database obtained from oyster haemocytes challenged with B. ostreae 

(Pardo et al. 2016). A total of 36 microarrays were used for hybridizations of 6 control 

(RNA pools from 2 stocks x 3 sample times) and 30 challenged oysters (5 biological 

replicates x 2 stocks x 3 sample times). Copy RNA (cRNA) was hybridized overnight 

during 17 h at 65ºC and washed with the corresponding buffers on the following day. 

Hybridized slides were scanned using an Agilent G2565B microarray scanner (Agilent 

Technologies). The scanner images were segmented with the protocol GE1-v5_95 from 

the Agilent Feature Extraction Software (v9.5) and to avoid saturation in the highest 

intensity range extended dynamic range was implemented. Agilent Feature Extraction 

produced the raw data for further preprocessing. The processed signal (gProcessed-

Signal) value was the chosen parameter for statistical analysis as recommended (Millán 

et al. 2011). Feature quality filtering was performed following Millán et al. (2010).  

qPCR validation  

Quantitative real-time PCR (qPCR) was performed to validate microarray data. A set of 

16 genes was selected following the random stratified procedure proposed by Miron et 

al. (2006) with some modifications as described by Millán et al. (2011). A total of 39 

cases were selected covering the fold change (FC) range of the experiment and 

including at least one gene per microarray and two cases per gene. The glyceraldehyde-

3-phosphate dehydrogenase (gapdh) was chosen as reference gene following literature 

recommendations (Morga et al. 2010).  

Primers for qPCR were designed using Primer Express Software v2.0 (Applied 

Biosystems) with default settings (Table S1). The same RNA samples used for 

microarray hybridizations were used for qPCR. The concordance between microarray 



and qPCR data was assessed using the Pearson correlation and the null hypothesis of no 

differences between both methods tested by t-test (P ≤ 0.05). 

Data analysis 

Normalization using all microarray data was done by the Quantile method implemented 

in the Limma R package (Ritchie et al. 2015). All further statistical analyses were 

performed on the software Multiple Experiment Viewer (MeV) version 4.9.0, after a 

log2 transformation of the fluorescence intensity values. Fold change (FC) values were 

obtained as the log2 (treatment / control) after averaging technical replicates within each 

microarray. Principal component analysis (PCA) was computed with default 

parameters. Hierarchical Clustering (HCL) trees were constructed using Pearson 

correlation and default parameters (100 iterations). The SOTA program (Self 

Organizing Tree Algorithm; Dopazo and Carazo, 1997; Yin et al. 2006) was applied to 

identify groups of genes with similar expression patterns using Pearson correlation and 

internal cell diversity at P < 0.05. Regulated genes (RGs) at each experimental condition 

were detected by Significance Analysis of Microarrays test (SAM; Tusher et al. 2001) 

with a significance threshold of 5% False Discovery Rate (FDR). A two-way ANOVA 

considering stock and time as factors was performed to detect differentially expressed 

genes (DEGs) between stocks  and across time (P < 0.001).  

Results & Discussion 

Experimental challenge and microarray evaluation 

The gene expression profiles of O. edulis haemocytes challenged with B. ostreae were 

evaluated using an in vivo experimental infection, by immersing the oyster in beakers 

containing a suspension of parasitic cells. These conditions mimic the host-parasite 

interactions occurring in a natural scenario, so constituting an approach aimed to a more 



comprehensive evaluation of haemocytes response than other published approaches 

consisting of injecting the parasite into the oyster adductor muscle (Martín-Gómez et al. 

2012), or challenging haemocytes in vitro (Morga et al. 2011a; Morga et al. 2011b; 

Morga et al. 2012; Gervais et al. 2016). This approach enabled to identify a set of 715 

regulated genes (RG) in infected oysters regarding controls (FC ≠ 0) along the time 

series evaluated (Table S2). Moreover, the availability of AS and NS stocks allowed to 

compare expression profiles of oysters showing some degree of resistance to the 

parasite with those that never had contact with it, and thus, identify 837 differentially 

expressed genes (DEG) between stocks (Table S3).  

Gene profiles were analyzed using an Agilent custom 8 x 15 K oligo-microarray 

previously validated by Pardo et al. (2016). This microarray contains 6,882 different 

oligos and two replicates per oligo, which enabled controlling technical noise. The 

microarray platform Agilent-038418 and the data presented in this publication have 

been deposited in the NCBI’s Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are available under accession number XXX. 

Comparison of expression data between microarray and qPCR for selected genes was 

highly consistent except for two values among the 39 comparisons performed, 

corresponding to the genes predicted HD phosphohydrolase family protein (ID: 4160e) 

and tripartite motif-containing protein 2 (4677e). The Pearson correlation coefficient 

increased from 0.769 to 0.929 after excluding these two cases (P < 0.001 for both 

correlations), and no significant differences were detected between both data sets 

including all cases (Wilcoxon test P = 0.137). Similar results have been reported with 

custom oligo-microarrays in other aquaculture species (Ferrareso et al. 2008; Millán et 

al. 2010; Ribas et al. 2016). 

Gene expression profiles  



Hierarchical clustering (HCL) was applied to check the grouping of biological replicates 

using RGs and considering the two main experimental factors: time after challenging 

(T1, T2 and T3) and stock evaluated (NS and AS). The codes NT1, NT2, NT3, AT1, 

AT2 and AT3 combining time and stock will be used onwards to refer to each 

experimental condition. Most biological replicates clustered in the expected group 

according to the experimental condition (Figure 1), especially for T1 and T3 in both 

stocks, which supports the fact that experimental factors (time and stock) override 

biological variation and that technical noise was kept under control in our hybridization 

protocol. T2 showed a slightly more erratic pattern because, as shown below, no 

response to the parasite was detected at this time. 

A certain proportion (6.6%) of RGs or DEGs showed the same annotation (Table S4), 

reflecting the redundancy of the oyster database (Pardo et al. 2016). Probes with the 

same annotation usually showed correlated profiles along the experimental conditions 

tested (88.2%; Table S4). For example, the three genes annotated as peptidylglycine 

alpha-hydroxylating monooxygenase (r > 0.990) or the two annotated as collectin-12 (r 

= 0.999) showed highly significant correlation between them, suggesting that they are 

part of the same gene resulting from limitations of the transcriptome assembly process 

(Pardo et al. 2016) or they represent true duplicated genes with the same functional role. 

In the remaining 11.8% cases, no significant correlation or even a significant negative 

correlation was observed for the same annotation, suggesting that they are duplicated 

genes belonging to different paralogs with refined functions (neofunctionalization) or 

they represent alternative splice variants of the same gene. The most remarkable cases 

were those related to calcium and integrin-binding protein (r = -0.647) and complement 

C1q-like protein (r = -0.493), which showed a significant negative correlation value (P 

< 0.001). It has been suggested that stress- and immune-related genes suffered a notable 



genomic expansion in molluscs due to their feeding by filtering in an enriched microbial 

environment, as reported for Crassostrea gigas (Zhang et al. 2012). This might explain 

our observations, especially considering that these genes were modulated after a parasite 

challenge. 

A total of 715 RGs were detected after Bonamia challenge in at least one of the 6 

experimental conditions (2 stocks x 3 times) tested (Table S2). While an important 

amount of RGs were detected at 1 dpc and 90 dpc, none was observed at 30 dpc either 

in NS or in AS stocks, which suggests some kind of latency during the infection 

progress. It is well known that the infection by B. ostreae, an intracellular parasite, 

presents a long pre-patent period, from one to several months, which is a major issue 

still unclear regarding the course of this parasitosis (Tigé and Grizel 1982; Elston et al. 

1987; Montes et al. 1991; Culloty and Mulcahy 2007). In general, the AS stock showed 

a more intense response than the NS (536 vs 206 RGs, respectively) and a sharply 

different temporal pattern was observed between both stocks (Table 1). The response 

was much more intense at 1 dpc in AS (AT1: 507 RGs vs AT3: 31 RGs), while in NS 

more RGs were detected at 90 dpc (NT1: 86 vs NT3: 127). The huge difference 

observed at 1 dpc (six times more RGs in AS than NS) suggests that natural selection in 

the bonamiosis-endemic area might have favored a more intense and quicker response 

to the parasite. Interestingly, very few RGs were shared between times (1 dpc and 90 

dpc) or stocks (NS vs AS), the highest common set being detected between NT1 and 

AT1 (12 RGs), which suggests a specific response to the challenge at each time and 

stock (Figure 2). 

In general, significant FC values were moderate: mean FC > 0 = 1.204; mean FC < 0 = -

1.722; 15.8% RGs showing 2 < FC < -2 (Table S5). FC ranged between 3.943 and -

7.486 for the von Willebrand factor type A domain containing protein (NT3) and 



leucine-rich repeat-containing G-protein coupled receptor 6 (NT1), respectively; down-

regulated genes were more frequent than up-regulated among those showing the more 

extreme FCs (41 vs 18); and the AS stock showed a higher proportion of genes in this 

list than NS, especially among the up-regulated ones (14 out of 18) (Table S5).  

The two-way ANOVA identified a total of 837 significant DEGs between stocks, 250 

DEGs across time and 637 DEGs due to interaction of stock x time (P < 0.001) (Table 

S3). The large number of genes regarding interaction between both factors (stock x 

time) agrees with the particular behavior of each stock across time highlighted in the 

analysis of RGs. Accordingly, no significantly enriched pathways were detected in the 

250 DEGs across time, and thus we focused our attention on the 837 DEGs between 

stocks as the most interesting to extract relevant information for future selection 

programs. Among them, 196 were in common with the RGs list (Table S2). The 

clustering of expression profiles of the 43 annotated genes showing the highest 

differences between both stocks (SD > 0.8) is represented in Figure 3. Among them, 

several genes related to histones and extracellular matrix (ECM) proteins, up-regulated 

in the AS stock and down-regulated in NS, were identified.  

The application of SOTA analysis to identify clusters of genes showing correlated 

profiles rendered four RG groups in each of the two stocks (Figure S1, Table S6) and 

five DEG clusters (Figure S2, Table S7). Significantly enriched GO terms were found in 

two RG SOTA clusters from the AS stock (AS.RG1 and AS.RG2; Figure 4; Table S8) 

and in three DEGs SOTA clusters (GS2, GS3 and GS4; Figure 5; Table S9).  

Functional analysis of RGs and DEGs: searching for resistance to bonamiosis 

Our results support the important role of ECM in the resistance to B. ostreae, possibly 

related to parasite adhesion and host cell invasion. Enriched GO terms related to ECM 



were found both in AS.RG2 and GS3 clusters, representing one of the most remarkable 

observations when comparing the response of NS and AS challenged oysters. This 

would be in accordance with the lower infection intensity observed in more resistant 

oysters (da Silva et al. 2005). The importance of ECM restructuring in response to 

infection has been recently related to resistance in eastern oyster (Crassostrea virginica) 

against the bacteria Roseovarius crassotreae (McDowell et al. 2014). In our study, a set 

of RGs that participate in ECM remodelling, including those encoding for 

metalloproteases tolloid-like protein 1 and matrix metalloproteinase 17 and 19, as well 

as those encoding for structural ECM proteins, such as several collagen isoforms, 

hemicentin-1, tenascin-R and tenascin-N, were identified in AS oysters (Table S2).  

Tenascins, additionally, are members of the fibrinogen-related protein family (FREP), 

also including ficolin 1, up-regulated in AT1 (Table S2), and fibrinogen C domain-

containing protein 1, one of the genes with the highest differential response between NS 

and AS stocks (Table S3, Figure 3). Many FREPs are known to act as pathogens 

recognition receptors (Dong and Dimopoulos 2009; Thomsen et al. 2011; Piccinini and 

Midwood 2012), and these molecules are increasingly being considered as essential 

factors in invertebrates’ immune response (Hanington and Zhang et al. 2010; Gordy et 

al. 2015; Huang et al. 2015). Interestingly, FREPs and complement C1q domain 

containing proteins (C1qDCs) have been postulated as sound candidate markers for 

resistance to Quahog Parasite Unknown (QPX) in clams (Mercenaria mercenaria) 

(Wang et al. 2016a), showing up-regulation in resistant clams from an endemic infected 

area. In the present work, we found three RGs in AT1 related to C1qDCs, two up-

regulated (C1QL4 and C1QTNF3) and one down-regulated (C1QBP) (Table S2). 

Furthermore, another gene related to host defence through pathogen recognition, 

collectin 12 (Ma et al. 2015), was also up-regulated in AT1. 



Several evidences were found on the early activation of AS haemocytes in response to 

the challenge. In the cluster AS.RG1, significantly enriched GO terms were related to 

membrane, receptor activity, G-protein coupled signaling pathway and cell response to 

stimulus, reflecting the expression of several G-protein coupled receptors (GPCRs) and 

toll-like receptor (TLR) 1 in response to the parasite. GPCRs are essential in several 

signaling pathways regulating a wide range of cell responses, including the 

development of the immune response through activation, migration and adhesion of the 

cells of the immune system (Sun and Ye 2012; Hanlon and Andrew 2015). On the other 

hand, TLRs are well known as key components of the innate immune system that 

recognizes pathogen-associated molecular patterns (PAMPs), and a prominent role of 

TLR signaling was demonstrated in infection-induced haemocyte activation in C. gigas 

(Zhang et al. 2013). We found several GPCRs up-regulated in AT1 (Table S2), mostly 

classified as rhodopsin-like receptors, including orexin receptor type 2, cholecystokinin 

A receptor, cephalotocin receptor 1, neuropeptide FF receptor 2, growth hormone 

secretagogue receptor type 1 and prostaglandin E2 receptor 4. The involvement of G-

protein signaling genes in the pathogenesis of bonamiosis in flat oyster was previously 

hypothesized (Martín-Gómez et al. 2012, 2014). Furthermore, in other invertebrates like 

the mosquito Anopheles gambiae, rhodopsin-like GPCRs have demonstrated an 

important role in response to the infection with the African malaria parasite 

Plasmodium falciparum (Mendes et al. 2011), and specifically, prostaglandin E2 

receptor 4 has been involved in the innate immune response of Crassostrea 

hongkongensis to different pathogens (Qu et al. 2015). Two genes encoding alpha-

adrenergic receptors were, by contrast, down-regulated in AT1 (Table S2). Interestingly, 

those GPCRs have been associated with immunomodulatory functions in the scallop 

Chlamys farreri, and their activation was shown to repress haemocyte phagocytic and 



antibacterial capacities (Zhou et al. 2013). In two recent transcriptomic studies on 

mollusks, GPCRs and TLRs have been associated with defence response of C. gigas to 

the ostreid herpes virus 1 microvariant and with that of Mercenaria mercenaria against 

Quahog Parasite Unknown (QPX) (He et al. 2015; Wang et al. 2016b). In our study, NS 

oysters barely presented some RGs related to GPCRs, and one was leucine-rich repeat-

containing G-protein coupled receptor 6, which was the most down-regulated gene 

detected in any condition (FC = -7,486 at T1; Table S5).  

We found other up-regulated genes related to cell membrane in AS oysters (cluster 

AS.RG2; Figure S1, Table S6), such as integrin alpha-PS3, calcium- and integrin-

binding protein (CIB1) and innexin, which might be involved in the early immune 

response. Integrins are transmembrane proteins that show a wide functional range, 

including spreading, adhesion and migration, and, particularly, integrin-α PS3 was 

reported to be activated in haemocytes of Manila clam (Ruditapes philippinarum) 

exposed to zoospores of Perkinsus olseni (Fernández-Boo et al. 2016), and involved in 

phagocytosis of apoptotic cells and bacteria in Drosophila haemocytes (Nonaka et al. 

2013). Moreover, up-regulation of CIB1, encoding for an integrin binding partner that 

regulates integrin function (Freeman et al. 2013), was observed in C. gigas oysters 

infected by ostreid herpes virus and related to the mechanisms of virus entry (Jouaux et 

al. 2013). Innexins are transmembrane proteins, better characterized in insects than in 

bivalves, which are known to be structural components of the gap junctions in 

invertebrates. In arthropods, the formation of gap junction between haemocytes has 

been described during defense response, particularly for pathogen encapsulation, which 

is also a main defense mechanism of bivalves, for example against the previously cited 

parasites Perkinsus spp. and QPX (Soudant et al. 2008; Allam and Raftos 2015).  



All in all, results suggest that up-regulation of cell-surface molecules and pathogens 

recognition receptors occur in AS haemocytes early after challenge, possibly making 

them “battle ready” to efficiently fight against the antigenic stimuli.  

We also found significantly enriched GO terms associated to up-regulated genes 

encoding protease inhibitors (cluster AS.RG2; Figures 4 and S1, Table S8), which were 

especially present in AT1 (inter-alpha-trypsin inhibitor heavy chain H3, inter-alpha-

trypsin inhibitor heavy chain H4, serine protease inhibitor dipetalogastin, pregnancy 

zone protein, protein AMBP, murinoglobulin-2). These molecules, often acting as acute 

phase proteins, represent an important defense mechanism against infectious diseases in 

bivalves (Allam and Raftos 2015; Hasanuzzaman et al. 2017; Xue et al., 2017), and a 

polymorphism in a serine protease inhibitor gene has been associated to disease 

resistance in C. virginica (Yu et al. 2011). 

Genes related to histones are known to participate in mollusk immune response being 

up-regulated in different oyster species in response to Perkinsus spp. (Nikapitiya et al. 

2013; Poirier et al. 2014). These genes were broadly down-regulated in NS as compared 

to AS oysters (Table S2 and S3). Histones H2A, H2B, H3 and H4 were among those 

showing the highest differences between stocks (Figure 3) and were clustered in the 

SOTA group GS2 (Table S7), where significantly enriched GO terms related to these 

nuclear proteins were found (Table S9, Figure 5).  

Conversely, cluster GS4 contained genes mostly up-regulated in the NS stock at 1 dpc 

and 90 dpc, but down-regulated in the AS stock (Figure S2, Table S7), and included six 

ubiquitin- and ten proteasome-annotated genes. Accordingly, several enriched related 

GO terms were related to the ubiquitin-proteasome pathway (Figure 5, Table S9). This 

pathway is a critical regulator of innate immunity; nonetheless, intracellular pathogens 

are capable of manipulating the ubiquitin-proteasome system of the host to their benefit 



for growth, replication or immune evasion (Olivier et al. 2005; Laliberte and Carruthers 

2008; Collins and Brown 2010). Some indications of proteasome activation in wild flat 

oysters infected by B. ostreae were previously reported (Martín-Gómez et al. 2012), 

and, interestingly, transcripts related to this pathway were found up-regulated in 

Atlantic salmon susceptible to infectious pancreatic necrosis virus (IPNV) in a study 

comparing susceptible and resistant specimens (Robledo et al. 2016). 

B. ostreae was shown to interfere with essential processes in the defense response of O. 

edulis haemocytes, such as phagocytosis and lysosomal destruction, and reactive 

oxygen species (ROS) production (Morga et al. 2009, 2012). Nevertheless, NADPH 

oxidase (NOX5) and cytochrome b-245 light chain, both involved in ROS production 

(Segal et al. 1992; Bedard and Krause 2007), were found among RGs in AT1 (Table 

S2). Furthermore, two genes related to antioxidant defense by avoiding the collateral 

effects of ROS, such as catalase and glutathione S-transferase (Hermes-Lima, 2005), 

showed a significant activation in the AS stock as compared to NS (cluster GS3, Table 

S7), which suggests that resistant oysters might be able to circumvent parasite 

interference showing more active ROS production. In the same way, several 

cytoskeleton-related RGs were found in AS and among DEGs, mostly up-regulated in 

AT1. Cytoskeleton plays a key role in cell proliferation, migration and phagocytosis, 

but also during cell death by apoptosis, and the interaction with host cytoskeleton is 

essential for a successful invasion by intracellular pathogens (Epting et al. 2010; 

Desouza et al. 2012; Freeman and Grinstein 2014). Among those genes, we found 

filamin, previously detected in oyster haemocytes infected with B. ostreae, and 

hypothesized to be involved in parasite internalization (Morga et al. 2011a). Also, 

several genes related to the actin cytoskeleton structure, such as alpha-actinin and 

vinculin, and cytoskeleton dynamics, including three members of the Rho family of 



GTPase, known to be involved in phagocytosis, cell spreading and motility (Freeman 

and Grinstein 2014), were identified. Conversely, genes encoding tubulin alpha and 

beta, the major proteins of microtubules, and kinesin, a motor protein participating in 

microtubules dynamics, were down-regulated in AT1 (Table S2). The dynamic 

rearrangement of cytoskeletal components is key for apoptosis, and microtubules appear 

to have a main role in Fas-mediated apoptosis (Doma et al. 2010). This mechanism was 

previously hypothesized as important for defense in Bonamia-resistant oysters, where a 

Fas-ligand was up-regulated in haemocytes (Morga et al. 2012).  

As highlighted in a recent work (Gervais et al. 2016), the activation of the apoptotic 

machinery appears as a main defence response of O. edulis against B. ostreae infection; 

the controlled death of infected haemocytes would avoid the intracellular development 

and multiplication of the parasite decreasing the number of parasitic cells. Several genes 

involved in apoptosis were detected among RGs in AS oysters, such as the proapoptotic 

genes tumor protein 53-induced nuclear protein 1, caspase 7, caspase 10, growth arrest 

and DNA-damage-inducible protein alpha, endonuclease G and salvador-like protein 1, 

as well as three genes related to the Inhibitor of Apoptosis (IAP) family (Table S2).  

A refined interpretation of the processes underlying the modulation of the cytoskeleton- 

and apoptosis-related genes is beyond the scope of this study, where the expression 

profiles evaluated might include heterogeneous populations of haemocytes, including 

different cell types. However, our results show consistently that the haemocytes of AS 

oysters present a wide modulation of these sets of genes at 1 dpc, reflecting cytoskeletal 

dynamics and remodeling, as well as activation of the apoptosis machinery in response 

to the parasite challenge, which were unnoticed in NS.  

In general, the expression profile of the NS haemocytes at 1 dpc reflected a limited 

defense response, but an increased activation, reflected in the number of RGs, was 



found at 90 dpc. Among these RGs, we detected several immune-related genes, such as 

universal stress protein (USP), macrophage migration inhibitory factor and interferon-

induced protein 44, or galectin 1, shown to be involved in P. marinus recognition in 

Crassostrea virginica (Feng et al. 2013). Also some genes activated in AT1, such as 

beta catenin and kinesin, involved in cytoskeletal organizations, and a caspase family 

member (caspase 2) acting in the execution-phase of apoptosis (Table S2), were 

detected in NT3. This might be indicative of a delayed, and probably less effective, 

response by NS oysters, given the lack of previous contact with the parasite.  

Despite mechanisms such as apoptosis of infected haemocytes appears to be a strategy 

to avoid the spreading of the infection, consistent with the lower infection intensity 

showed by AS oysters (da Silva et al. 2005), the results of our work suggest that the 

resistance of AS has a multifactorial nature, depending also on a more efficient defense 

response by preventing the haemocytes invasion by B. ostreae.  

A list of 24 candidate genes for resistance/susceptibility of O. edulis to B. ostrae is 

presented in Table 2. These genes were chosen among those in common between the 

lists of DEGs and RGs at the most significant time point for AS response (1 dpc), but 

also considering their involvement in the functions here hypothesized as relevant after 

data analysis and interpretation.  G-protein, integrin-mediated and ubiquitin signaling 

pathways are represented, as well as cell-matrix interactions, apoptosis and immune-

related genes, such as histones, protease inhibitors and complement. This set of genes 

represents one of the main outcomes of this work and the basis for further investigation 

and validation of potential markers for resistance to bonamiosis. This could be tackled  

either by testing SNP associated allelic variants in resistant/susceptible individuals or by 

testing the use of target genes (mRNA, proteins) on hemolymph samples from infected 

oysters as intermediate phenotypes. 



Conclusions 

The application of a validated haemocyte flat oyster oligo-microarray has contributed to 

a better understanding of the response against the threatening parasite B. ostreae and to 

the identification of candidate genes related to resistance/susceptibility. The expression 

profiles observed in the present study revealed that the haemocytes of AS presents a 

more intense and quicker response as compared to the NS, with activation of several 

signal transduction pathways, early after challenge with B. ostrae. This aspect might 

represent a key factor for the resistance characteristics observed for this stock. Also, a 

main role was found for cell-ECM interactions and proteases inhibitors in the defense 

response of AS, while the broad down-regulation of histones-related genes in 

challenged haemocytes from NS suggests that these proteins might have an important 

part during the infection process. Further work is needed to deepen into these aspects 

and to investigate the validity and potential of the candidate genes for genetic selection. 
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Legends to Figures 

 

Figure 1.- Hierarchical clustering of samples from two flat oyster (O. edulis) stocks (N: 

naïve, A: long-term affected) challenged with B. ostreae along a time series (T1: 1 day 

post-challenge (dpc), T2: 30 dpc, T3: 90 dpc) based on regulated genes  (fold change  ≠ 

0).  



Figure 2.- Venn diagram showing the number and percentage of regulated genes shared 

between flat oyster (O. edulis) stocks  (N: naïve, A: long-term affected) challenged with 

B. ostreae along a time series (T1: 1 day post-challenge (dpc), T3: 90 dpc). 

Figure 3.- Hierarchical clustering of the differentially expressed genes (ANOVA, P < 

0.001) showing the highest difference (standard deviation > 0.8) between the naïve (N) 

and long-term affected (A) flat oyster (O. edulis) stocks after challenge with B. ostreae 

along a time series (T1: 1 day post-challenge (dpc), T2: 30 dpc, T3: 90 dpc). 

Figure 4.- Relevant enriched GO terms of regulated genes groups showing correlated 

expression profiles (SOTA groups) along the time course in the long-term affected (AS) 

flat oyster (O. edulis) stock after challenge with B. ostreae along a time series (T1: 1 

day post-challenge (dpc), T2: 30 dpc, T3: 90 dpc); A: AS.G1; B: AS.G2. In the upper 

right the profile pattern of the group including T1, T2 and T3 and the five replicates per 

time (see Figure S1).  

Figure 5.- Relevant enriched GO terms of differentially expressed genes between naïve 

(NS) and long-term affected (AS) flat oyster (O. edulis) stocks showing correlated 

expression profiles (SOTA groups) after challenge with B. ostreae along a time series 

(T1: 1 day post-challenge (dpc), T2: 30 dpc, T3: 90 dpc). A: GS2;  B: GS3; C: GS4.  

Supplementary Figure 1:SOTA groups of regulated genes (RG) showing significant 

correlation patterns within stock (NS: naïve; AS: long-term affected) after challenging 

flat oyster (O. edulis) with B. ostreae along a time series (NT1, NT2, NT3: naïve stock 

at 1, 30 and 90 days post-challenge (dpc), respectively; AT1, AT2, AT3: long-term 

affected stock at 1, 30 and 90 dpc, respectively). 

Supplementary Figure 2: SOTA groups of differentially expressed genes (DEG) 

between stocks showing significant correlation patterns after challenging flat oyster (O. 



edulis) with B. ostreae along a time series (NT1, NT2, NT3: naïve stock at 1, 30 and 90 

days post-challenge (dpc), respectively; AT1, AT2, AT3: long-term affected stock at 1, 

30 and 90 dpc, respectively). 

 

Legends to Tables 

Table 1: Number of regulated genes (RG) in the naïve (NS) and long-term affected 

(AS) stocks of flat oyster (O. edulis) in response to B. ostreae along the time series (T1: 

1dpc; T2: 30dpc; T3: 90 dpc). 

Table 2. List of relevant immune-genes regulated (RG) at the first time post challenge 

(1 dpc; SAM test, FDR < 0.05) and differentially expressed (DEG) between long-term 

affected (AS) or naïve (NS) flat oyster (O. edulis) (ANOVA; P < 0.001). In parentheses 

the number of different genes with the same annotation detected either among RG or 

DEG. Asterisks indicate genes with the same annotation but showing a opposite 

expression pattern.  

Table S1: Primers and qPCR conditions used to validate the oligo-microarray data of 

flat oyster (O. edulis) challenged with B. ostreae following the procedure of Miron et al. 

(2006). 

Table S2: Regulated genes (FC: fold change ≠ 0) of the naïve (NS) and long-term 

affected affected oysters (O. edulis) challenged with B. ostreae along a temporal series. 

Table S3: Fold change (FC) of differentially expressed genes (DEG) between naïve 

(NS) and long-term affected (AS) flat oyster (O. edulis) stocks after challenging with B. 

ostreae along a time series (T1: 1dpc; T2: 30dpc; T3: 90 dpc). 



Table S4: Fold change (FC) of duplicated regulated genes (RG) across time and stock 

or differentially expressed (DEG) between naïve (NS) and long-term affected (AS) flat 

oyster (O. edulis) stocks after challenging with B. ostreae along a time series (T1: 1dpc; 

T2: 30dpc; T3: 90 dpc). 

Table S5: Regulated genes (RG) of flat oyster (O. edulis) showing the highest fold 

change (FC > 2 or < -2) after challenging naïve (NS) and long-term affected (AS) 

individuals with B. ostreae along a time series (T1: 1dpc; T2: 30dpc; T3: 90 dpc). 

Table S6: Fold change (FC) of regulated genes (RG) showing a significant correlation 

patterns (SOTA groups) across the time course within stock (NS: naïve, AS: long-term 

affected) after challenging flat oyster (O. edulis) with B. ostreae along a time series (T1: 

1dpc; T2: 30dpc; T3: 90 dpc). 

Table S7: Fold change (FC) of differentially expressed genes (DEG) between stocks 

showing a significant correlation pattern (SOTA groups)  after challenging naïve (NS) 

and long-term affected (AS) flat oyster (O. edulis) stocks with B. ostreae along the time 

series (T1: 1dpc; T2: 30dpc; T3: 90 dpc). 

Table S8: Enriched GO terms in SOTA groups of regulated genes (RG) showing a 

significant correlation patterns (SOTA groups) across the time course within stock (NS: 

naïve, AS: long-term affected) after challenging flat oyster (O. edulis) with B. ostreae 

along a time series (T1: 1dpc; T2: 30dpc; T3: 90 dpc). 

Table S9: Enriched GO terms in SOTA groups of differentially expressed genes (DEG) 

between stocks  after challenging naïve (NS) and long-term affected (AS) flat oyster (O. 

edulis) stocks with B. ostreae along the time series (T1: 1dpc; T2: 30dpc; T3: 90 dpc). 

 



 

  

  

 

 


