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Abstract 

BACKGROUND Cannabis use is potentially hazardous for developing brains. Disentangling 

the putative impact of cannabis on brain morphology from other comorbid substance use is 

critical. After controlling for the effects of nicotine, alcohol and multi-substance use, we 

hypothesized that frequent cannabis use is associated with significantly smaller subcortical grey 

matter volumes.  

DESIGN Exploratory analyses using mixed linear models, one per region of interest (ROI), were 

performed whereby individual differences in volume (outcome) at seven subcortical ROIs were 

regressed onto cannabis and comorbid substance use (predictors).  

SETTING Two large population-based twin samples from the United States and Australia.  

PARTICIPANTS 622 young Australian adults (66% female; µage = 25.9, SD=3.6), and 474 

middle-age U.S. males (µage = 56.1SD=2.6) of predominately Anglo-Saxon ancestry with complete 

substance use and imaging data. Subjects with a history of stroke or traumatic brain injury were 

excluded.  

MEASURES Magnetic resonance imaging (MRI) and volumetric segmentation methods were 

used to estimate volume in seven subcortical ROIs: thalamus; caudate nucleus; putamen; 

pallidum; hippocampus; amygdala; and nucleus accumbens. Substance use included maximum 

nicotine and alcohol use, total lifetime multi-substance use, maximum cannabis use in the young 

adults, and regular cannabis use in the middle-age males.  

FINDINGS After correcting for multiple testing (p=0.007), cannabis use was unrelated to any 

subcortical ROI. However, maximum nicotine use was associated with significantly smaller 

thalamus volumes in middle-age males.  
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CONCLUSIONS This is the largest study integrating brain imaging, self-report cannabis and 

comorbid substance use data. In these exploratory analyses based on young adult and middle age 

samples, normal variation in cannabis use is statistically unrelated to individual differences in 

brain morphology as measured by subcortical volume. 
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Introduction 

Cannabis is commonly used by adolescents and young adults(1), and if used frequently can be 

potentially hazardous to mental health. During development, there are dynamic changes in brain 

neurochemistry, fibre architecture, and tissue composition (2), which could be impacted by 

chronic cannabis use (CU), or comorbid substance use (SU) such as nicotine and alcohol (3). In 

view of changing cultural norms, and expanding cannabis medicalization and decriminalization, 

disentangling the potential impact of cannabis on brain morphology from other substances is 

critical. 

 

In contrast to the psychiatric and social consequences of cannabis use (4), our knowledge of the 

morphological changes associated with cannabis use is not well characterized. Whereas 

infrequent or regular adult cannabis use does not appear to affect neurological functioning (5), 

chronic cannabis use appears to affect cognition in adults (5). Among adolescents and young 

adults, cannabis use is associated with enduring cognitive decline(6). This suggests that cannabis 

use likely affects or is associated with changes in brain morphology.  

 

Grey matter volume (GMV) is a widely-used indicator of brain morphology. We reviewed 24 

studies (7-30), one review (31), and one meta-analysis (32) examining GMV and SU. Varying by 

region, six studies reported greater GMV related to SU (10, 13, 15, 28, 29), one found no 

difference (14), while the remainder identified smaller GMVs in relation to more frequent SU. 

Among the regions of interest (ROI), the putamen, hippocampus, and thalamus subcortical 

structures have emerged as putative markers for SU. However, findings have been equivocal, and 

vary by substance. We reviewed eight reports identifying smaller putamen volumes among 
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heavy alcohol (8, 9, 22), nicotine  (12), cannabis (24), cocaine (17, 23), and ecstasy (33) users, 

compared to three reports identifying larger putamen volumes among methamphetamine (10) 

and nicotine users (28, 29). Ten reports have identified reductions in hippocampus volume 

associated with alcohol (9, 25), nicotine (12, 34), methamphetamines (26), and cannabis (7, 27, 

30, 34, 35), compared to one report that found no association with alcohol use (14). Several 

reports have also linked smaller thalamus volume to increased alcohol (8, 22), nicotine (28), 

methamphetamines (26), and opioid (18) use compared to one that identified larger thalamus 

volumes among cannabis users (13). 

 

The above studies vary widely in terms of their image acquisition, selection of regions, volume 

estimation methods, and statistical control for comorbid SU. Because cannabis use is highly 

comorbid with a variety of licit and illicit substance use (36), the need to disentangle the putative 

effects of alcohol, nicotine or multi-substance use (MSU) is critical. For example, alcohol use is 

associated with smaller hippocampus, thalamus, putamen and palladium volumes (8, 9, 22, 25), 

whereas studies investigating the associations between nicotine use and subcortical volumes are 

equivocal (12, 28, 29, 37). Less is known about the effects of poly or multi-substance use (MSU) 

(38), with evidence suggestive smaller subcortical volumes in regions such as the thalamus (39), 

and the putamen (40). However, another major limitation is sample size. In 21 reports 

investigating associations between licit or illicit SU and subcortical volumes in one or more 

regions, the average sample size was 90 (8-10, 12-15, 17, 18, 22-29, 35, 41-43). Consequently, 

larger imaging samples that include measures of cannabis and comorbid SU are required. 
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The aim of this report is to determine the size of associations between cannabis use and the 

volumes of seven subcortical ROIs in two independent population-based samples. We 

hypothesize that increased cannabis use will be associated with smaller subcortical volumes over 

and above the effects of comorbid nicotine, alcohol and lifetime multi-substance use.  

 

Methods 

Design 

Our approach relied on data from two samples with similar phenotypic measures. 

We began by measuring the strength of associations between nicotine, alcohol, multi-substance 

use, cannabis use and subcortical volumes at seven regions of interest (ROIs). We performed 

exploratory analyses to determine the relationship between cannabis use and volume. 

Specifically, we regressed each subcortical ROI onto nicotine, alcohol, multi-substance, and 

cannabis use using mixed linear models. For each sample, we fitted one regression for every 

ROI. All results were adjusted for multiple testing.  

 

Sample 1 

Participants 

Sample 1 comprised 622 young male and female adult twins from the ongoing population-based 

Brisbane Longitudinal Twin Study (BLTS) (44, 45). The participants were of European ancestry, 

predominately Anglo-Saxon, who were ascertained beginning 1992 to study of melanocytic 

naevi, and have since been followed up on multiple occasions.  
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Procedure 

Between 2009-2015 the BLTS subjects participated in an online survey of substance use (66% 

female; µage = 25.9, SD=3.6, range=18-38) (44, 45). Almost three years prior, the participants 

were scanned with magnetic resonance imaging (MRI) (µage = 23.0SD=2.8, range=18-30) as part of 

the Queensland Twin Imaging study (46). There were N=27 and N=29 subjects whose onset ages 

at cannabis initiation and heaviest cannabis use respectively occurred after scanning. These 

subjects were excluded. Only subjects whose age at cannabis initiation or age at heaviest 

cannabis use preceded or occurred during the scanning year were included in the analyses. 

Informed consent was obtained from all participants who received an honorarium of AUD$50 

for completion of the survey, and $100 for MRI participation to defray travel costs. 

 

Measures 

Substance use 

The online survey included maximum cannabis use, which assessed the time or times when 

cannabis was used the most (never used, once or twice, monthly, weekly, and daily or almost 

daily), maximum nicotine use based on the total number of cigarettes smoked lifetime (never 

used, 1-2 times, 3-5 times, 6-10 times, 11-15 times, 16-19 times, 20-25 times, 26-99 times, 100-

199 times, and ≥ 200 times), maximum alcohol use based on the period when drinking the most 

how often subjects consumed 4 (female) or 5 (male) or more drinks at least once a week for a 

month or more, and total lifetime multi-substance use (MSU) based on having ever tried or used 

the following 9 substances: cocaine; amphetamine-type stimulants (speed, ice, diet pills, etc.); 

inhalants (nitrous, glue, petrol, paint thinner, etc.); sedatives or sleeping pills (valium, serepax, 

Rohypnol, etc.); hallucinogens (LSD, acid, mushrooms, PCP, etc.); opioids (heroin, morphine, 
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methadone, codeine, etc.); ecstasy, ketamine, GHB or party drugs (E, X, MDMA, K, Special K, 

Fantasy); over the counter/prescription painkillers and analgesics for non-medical purposes (e.g. 

cough medicine, mersyndol, ibuprofen, panadol, panadeine, codeine, hydrocodone etc); and over 

the counter/prescription stimulants for non-medical purposes (e.g. no doze, pseudoephedrine, 

dexamphetamine, Ritalin etc). In the Supplement, we demonstrate that the construct of lifetime 

multi-substance use is psychometrically homogenous, possesses good internal reliability, and 

concurrent validity. We also show that familial aggregation in multi-substance use is entirely 

attributable genetic risk factors shared between siblings and account for 51% of the total variance 

(Table S1). All other substance use descriptives are shown Table 1. 

 

Table 1 

Imaging 

Described in detail elsewhere (47) MRI images were acquired on a 4T Bruker Medspec Scanner 

at the Center for Magnetic Resonance, University of Queensland, Australia using an inversion 

recovery rapid gradient echo protocol. Total intracranial volume and the volumes of 14 

subcortical structures were extracted: thalamus; Caudate Nucleus; putamen; pallidum; 

hippocampus: amygdala; and nucleus accumbens. Quality of delineation was assessed following 

the Enhancing Neuro-Imaging Genetics through Meta-Analysis consortium protocol for 

subcortical structures (http://enigma.loni.ucla.edu/protocols/imaging-protocols/quality-checking-

subcortical-structures), which resulted in the exclusion of 1.83% of volumes segmented with 

Freesurfer (Version 5.3). As discussed by Fischl (48), images were skull stripped, transformed to 

Talairach space and a probabilistic atlas is used to assign each voxel a neuroanatomical label. 

Prior to scanning, all participants were screened by self-report for imaging suitability, including 
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significant medical, psychiatric, or neurological conditions (including head injuries), and current 

use of psychoactive medication. As shown in Table 2, in Sample 1 the correlations between the 

mean volumes of the homologous left and right subcortical ROIs were high and ranged from 

0.60 to 0.93. Therefore, we averaged the left and right homologous ROIs and analyzed the 

residuals after adjusting for age, and total intracranial volume. Because of the higher prevalence 

of cannabis use among males (49), residuals were also adjusted for sex. 

 

Sample 2 

Participants  

Sample 2 comprised 474 middle-age male twins from the population-based Harvard Drug Study 

(HDS) (50) who were scanned with MRI as part of the Vietnam Era Twin Study of Aging 

(VETSA) between 2003-2007 (51, 52).  Participants were concordant for US military service at 

some time between 1965-1975. Nearly 80% reported no combat experience. The sample is 

88.3% non-Hispanic white, 5.3% African-American, 3.4% Hispanic, and 3.0% “other” 

participants. Based on data from the US National Center for Health Statistics, the sample is very 

similar to American men in their age range with respect to health and lifestyle characteristics 

(53). Written informed consent was obtained from all participants. The local ethics committee 

approved the study. 

 

Procedure 

Phenotypic data were collected as part of the HDS in 1992 ((µage=44.6, SD=2.5) by telephone 

interview from members of the Vietnam Era Twin Registry, comprising male twin pairs who 

served in the U.S. military between 1965 and 1975 (50). The VETSA is a longitudinal 
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behavioural genetic study with a primary focus on cognitive and brain ageing in men. It 

comprises a subset of over 1,200 twins from the Vietnam Era Twin Registry (51). A companion 

VETSA project included the administration of MRIs to a subset of participants twice. MRI data 

for this report came from the first MRI (VETSA1) in which twins (µage=56.1, SD=2.6, 

range=51.1-60.2) underwent 3D structural MRIs to measure cortical and subcortical volumes, 

cortical thickness and surface area. The minimum difference between age at first cannabis 

initiation and scanning was 20.2 years. Exclusion criteria included stroke, traumatic brain injury 

(TBI) and brain tumours. A total of 14 and 36 subjects who reported stroke and TBI respectively 

at the time of scanning were excluded from our analyses.  

 

Measures 

Substance use 

The HDS in 1992 assessed regular cannabis use based on having ever used regularly once per 

week or more (0=No, 1=Yes). All never users were coded as zero. Other substance use measures 

included maximum nicotine use based on the number of cigarettes smoked per day during 

heaviest period (never used, 1-2 times, 3-5 times, 6-10 times, 11-15 times, 41-99 times), 

maximum alcohol use based on the number of days drinking per month when drinking the 

heaviest, and lifetime multi-substance use based on having ever tried the following 5 substances: 

stimulants; sedatives; cocaine; heroin; and PCP or other psychedelics. Substance use descriptives 

are shown Table 1.  
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Imaging 

Between 2003-2007, the VETSA (51) acquired brain imaging on Siemens 1.5 Tesla scanners at 

University of California, San Diego, and at Massachusetts General Hospital. Sagittal T1-

weighted MPRAGE sequences were employed with the following acquisition parameters: 

TI=1000ms, TE=3.31ms, TR=2730ms, flip angle=7 degrees, 13 slice thickness=1.33mm, voxel 

size 1.3x1.0x1.3mm. Images were automatically corrected for spatial distortion caused by 

gradient nonlinearity and B1 field inhomogeneity. Two T1-weighted images per subject were 

registered and averaged to improve signal-to-noise. Volumetric segmentation (54, 55) methods 

were based on FreeSurfer (FS Version 3.0.1b). The semi-automated, fully 3D whole-brain 

segmentation procedure uses a probabilistic atlas and applies a Bayesian classification rule to 

assign a neuroanatomical label to each voxel (56). A widely-used training atlas has been shown 

to be comparable to that of expert manual labelling (56), but we created a VETSA-specific atlas 

that further increased accuracy compared to expert manual labelling (57).  

 

As shown in Table 2, in Sample 2 the correlations between the mean volumes of the homologous 

left and right subcortical ROIs ranged from 0.54 to 0.90. Again, we averaged the left and right 

homologous ROIs, and analyzed the residuals after adjusting for age, total intracranial volume, 

and MRI site. 

 

Statistical analyses 

Measures of association 

Measures of association between substance use and the volume at each ROI were based on 

polyserial correlations estimated using the OpenMx software package (58) in R3.1.1 (59). 
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Polyserial correlations represent the inferred latent correlations between the continuous sub-

cortical volumes and the ordered categorical SU variables.  

 

Mixed linear models 

To determine the contribution of cannabis and comorbid substance use to volume we fitted 

mixed linear models. Specifically, all models were conducted in a multilevel framework, using 

the lme function from the nlme package (60). Our rationale was to model the random effects to 

adjust for the presence of correlated observations in twin data. In each model, family ID and 

zygosity to denote whether twins were part of a genetically identical monozygotic or dizygotic 

twin pair were entered as the random effect. For each sample, we then performed 7 regressions 

using a corrected p-value threshold of 0.007.  

 

Results  

Sample 1 

Across sex, the average age at cannabis initiation was 17.7SD=2.8 in the young adults, while the 

average age at which cannabis was used the most was 18.2SD=4.11. The number of pairwise 

observations, along with polychoric correlations is shown in Table 3. Depending on the region, 

the number of subjects with complete volume and maximum cannabis use data ranged from 618 

to 622. Correlations between subcortical volumes and the cannabis use measures were all small, 

ranging from r = -0.06 to r = +0.05, each with relatively large standard errors. The correlations 

between each of the subcortical regions and nicotine, alcohol and multi-substance use (MSU) 

were also small. Among the larger negative correlations, maximum alcohol and multi-substance 
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use were ach associated with smaller hippocampus volume (r=-0.07). A lifetime history of 

greater multi-substance use was also associated with a smaller pallidum (r=-0.08) volume. 

 

Table 3 

 

Mixed model linear regression results for the middle-age males appear in Table 4. 

Commensurate with the polychoric correlations, maximum cannabis use was unrelated to volume 

at each ROI. There were, however, nominal associations (p<0.01) between smaller hippocampus 

volumes and increased multi-substance use as well as maximum cannabis use.  

 

Table 4 

 

Sample 2 

In the middle-age males, the average age at cannabis initiation was 20.2SD=3.5, while the average 

age at which they first used cannabis more than five times was 20.4SD=3.1. The number of 

pairwise observations and polychoric correlations are shown in Table 5. Depending on the 

region, the number of participants with complete cannabis use data ranged between 463 and 474. 

All correlations between subcortical volumes and the cannabis use measures were small and 

ranged from -0.15 to +0.05, and all had relatively large standard errors. Among the higher 

negative correlations, maximum nicotine use was associated with smaller putamen (r=-0.12) and 

thalamus volumes (r=-0.15). Maximum alcohol use was associated with smaller hippocampus 

volumes (r=-0.15).  
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Table 5 

 

Mixed model linear regression results for the middle-age males appear in Table 4. 

Commensurate with the polychoric correlations, increased levels of maximum nicotine use were 

significantly associated with smaller thalamus volumes (β = -0.15, p = 0.003). Nominal 

associations were observed between increased levels of maximum nicotine use and smaller 

putamen volumes (p<0.05), as well as between increased maximum alcohol use and smaller 

hippocampus volumes (p<0.10).  

 

Table 6 

 

Discussion 

This is the largest exploratory analysis integrating brain imaging with self-report cannabis and 

comorbid substance use (SU) data. After correcting for multiple testing, there was no effect of 

cannabis use (CU) on the volume at any subcortical region of interest (ROI) in young adults or 

middle-aged males. However, increased lifetime maximum nicotine use significantly predicted 

smaller thalamus volumes in middle-age males. In the context of expanding medicalization and 

decriminalization and the concerns surrounding the consequences of increased cannabis 

availability, our findings suggest that normal variation in cannabis use is statistically unrelated to 

brain morphology as measured by subcortical volumes in non-clinical samples. 

 

Our results do not support a recent finding showing that lifetime cannabis use is associated with 

reduced amygdala volumes (61). Using a sample comparable to our young adults in terms of age 



Subcortical brain volume and cannabis use 15 

and size, Pagliaccio et al. (61) regressed the volumes of subcortical ROIs onto lifetime cannabis 

use along with the covariates of sex, ethnicity, zygosity, household income, and intelligence, and 

found that amygdala volumes among cannabis users were 2.3% smaller. However, when 

corrected for comorbid SU the study’s main effect of cannabis use on left amygdala volume 

declined to the threshold of p=0.02, which is not significant when adjusted for multiple testing. 

Among reports identifying reduced hippocampus volumes in cannabis users, sub-clinical 

measures of comorbid SU were either not included (27), or the covariates were limited to alcohol 

and nicotine (35). Similarly, Yip et al’s (24) marginal association between cannabis dependence 

and smaller putamen volumes did not model comorbid nicotine use or sub-clinical forms of 

abuse-dependence. Even if we ignore comorbid substance use, the polychoric correlations 

illustrate that the effect sizes of cannabis use on volume at each ROI remain small and account 

for very little covariance.  

 

Because our analyses were exploratory, we employed a Bonferroni corrected p-value threshold 

of 0.007. There was a nominal association between increased cannabis use and smaller 

hippocampus volumes in the young adult sample. One might predict that the lack of any 

statistically significant main effect of cannabis use or other substances in the young adults is 

indicative of insufficient cumulative exposure to the detrimental effects prior to scanning. Yet, 

there was no effect of cannabis use among the middle-aged males who ought to have had longer 

cumulative exposure. Instead, only maximum nicotine use significantly predicted smaller 

thalamus volumes in the middle-age males. If typical cigarette smoking is in the range of 20-40 

per day, and if cannabis smoking is 10-20% of this quantity, then cannabis use is unlikely to 

result in any detectable volumetric differences. Of course, a longer exposure to cannabis per se 
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may not predict volume if initiation occurred after a developmentally sensitive period. Battistella 

et al. (7) found marginally larger GMV reduction among early cannabis initiators. Striatal 

plasticity peaks during adolescence (62). Therefore, a combination of early cannabis initiation 

and frequent cannabis use could result in reduced GMV due to plasticity loss at excitatory 

synapses (63).  

 

We recommend caution when directly comparing the findings between samples. In addition to 

the different imaging methods techniques employed, there are measurement artefacts, as well as 

sex and cohort differences in SU (64). For example, multi-substance use in the young adults was 

based on substances including methamphetamine - a resurgent drug (65), and non-medical use of 

prescription stimulants and analgesics – a recent phenomenon (66), versus multi-substance use in 

the middle-aged males whose rates of cocaine, sedative and stimulant use were likely higher 

(64). Maximum nicotine use was assessed differently in each sample; total lifetime use in the 

younger adults versus daily number of cigarettes ‘when using the most’ in the middle-age males. 

Data harmonization is required before direct comparisons can be made. Regarding sex 

differences, although the literature now supports sexual dimorphism(67), larger samples are 

again required to test for these effects. We nevertheless re-ran all seven mixed linear models, and 

each case, neither the main effect of sex nor the interaction between sex and maximum cannabis 

was significant at our corrected p-value of 0.007. There was however, a nominal interaction 

between sex and cannabis (β = -0.13, p = 0.07) for the putamen. 

 

Regarding the effect of MSU, it was only nominally predictive of smaller pallidum and 

hippocampus volumes in the young adults. This is inconsistent with Rodrigues et al. (68) who 
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found that the cannabinoid subtype-1 and the µ-opioid receptors are targeted to some of the same 

postsynaptic neurons in the rat putamen-Caudate nucleus. The putamen and Caudate form the 

dorsal striatum, which in addition to coordinating body movements, is involved in reward and 

decision-making, notably in relation to sensitivity to reward and habit formation (69). In a 

covariance analysis of subcortical volumes, we have previously identified four distinct genetic 

factors, including a basal ganglia/thalamic factor comprising the putamen, Caudate, pallidum, 

and thalamus (70). To the extent that striatal morphology may serve as a biomarker for 

neurodegenerative disease via substance use in general, this was not supported by our results. 

 

Although nicotine did not significantly predict putamen volume in middle-age males (p=0.04), 

the nicotine-putamen correlation was nevertheless among the highest (r=0.12). When considered 

with the significant nicotine-thalamus association, these results are consistent with prior findings. 

For example, Froeliger et al.(12) found that smoking abstinence was associated with higher pre-

quit GMV in the putamen as well as the hippocampus. Vafaee et al. (71) observed significant 

global impairment in terms of cerebral blood flow and metabolic rate of oxygen in abstaining 

smokers in the left putamen and thalamus. Other studies have reported associations between 

nicotine phenotypes and the thalamus (28, 72). The putamen, thalamus, and hippocampus all 

contain large numbers of neuronal nicotinic acetylcholine receptors (73), which have been 

associated with risk for nicotine dependence during adulthood (74). 

 

Limitations 

Our findings must be interpreted in the context of four potential limitations. First, compared to 

the middle-age males, the young adult sample was scanned much closer to the mean ages of 
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cannabis initiation and period of heaviest use. Because assessment age can bias recollection (75), 

more accurate recall is expected in the younger participants. It is plausible that the absence of 

any significant findings in these young adults can be attributed to their not having accumulated 

sufficient exposure to the putative detrimental effects of substance use on brain morphology.  

Second, this study examined subcortical regions of interest. Hence, our results should not be 

generalized to other brain morphologies, including individual differences in cortical regions.  

Third, multi-substance use was based on the total number of substances ever tried lifetime, not 

including nicotine, alcohol and cannabis. The association between our validated measure of 

multi-substance use (see Supplement) and volume may be driven by the frequency and quantity 

of use of one or more of these substances. In follow-up hierarchical regression analyses, 

measures of frequency of use for each of these covariates were not associated with volume at any 

ROI. Finally, our data were neither experimental nor longitudinal. It is possible that smaller 

subcortical volumes predispose individuals to increased SU. In the case of the middle-age males, 

it is plausible that having a smaller thalamus is a causal risk factor for greater nicotine use. 

Commensurate with this idea, Squeglia et al. (76) found that pre-existing volume differences in 

frontal brain regions predicted future alcohol use, including further volume reductions in alcohol 

using teenagers. Pre-existing morphological differences could also arise in utero because of 

maternal SU (77). Given the observed associations between brain volume and executive 

functioning (78), future modelling that includes tests of causal hypotheses, versus non-causal but 

correlated genetic risks should be a public health priority. Such data would enable individuals to 

make informed cost-benefit judgements regarding the consequences of SU, as well influence 

rational law making. 
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Conclusion 

In the context of expanding medicalization and decriminalization and concerns surrounding the 

consequences of increased availability, cannabis use is unrelated to any subcortical region of 

interest. However, maximum nicotine use was associated with significantly smaller thalamus 

volumes, but only in middle-age males. Other MRI phenotypes such as cortical and white matter 

measures need to be investigated and the putative associations between cortical regions and 

substance use explored. MRI measures combined with genetically informative cross-panel 

longitudinal designs (79) are necessary to resolve critical questions of causality, sources of 

genetic and environmental covariance, and whether or not the putative causal effects of SU on 

brain morphology are reversible. The recently announced NIH program “Adolescent Brain and 

Cognitive Development”, which plans to prospective study 10,000 youth aged 10-20 years has 

the potential to explore the hypotheses generated by our findings. 
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Table 1. Distribution of substance use measures for the young adults (Sample 1) and the 
middle-age males (Sample 2). 
 
 Sample 1  Sample 2 
 Males Females  Males 
Age of cannabis initiation u=17.5yrs  u=17.8yrs   u=20.2yrs  
 SD=2.8 SD=2.8  SD=3.5 
 range=10-32 range=12-32  range=13-38 

Maximum cannabis use     
When using the most how often did you use it?     

  Never used 370 678  - 
  Once or twice 258 324  - 
  Monthly 52 45  - 
  Weekly 64 44  - 
  Daily or almost daily 94 56  - 

Regular Cannabis use     
Have you ever used marijuana regularly once per 
week or more? 

    

  No - -  359 
  Yes - -  115 

Maximum alcohol use     
When drinking the most how often did you consume 
≥4 (female) or  ≥5 (male) drinks at least once a 
week for a month or more? 

    

   Never drank 11 23  - 
   Consumed <4 (female) /  <5 (male) drinks 312 528  - 
   Consumed ≥4 (female) /  ≥5 (male) drinks 676 797   

Number of days drinking per month when drinking - -  u=10.0 days  
the heaviest:    SD=9.3 
    range=0-30 

Maximum nicotine use     
Total number of cigarettes smoked lifetime:     

  Never 374 678  - 
  1-2 times 66 78  - 
  3-5 times 61 79  - 
  6-10 times 39 55  - 
  11-15 times 28 33  - 
  16-19 times 12 19  - 
  20-25 times 35 30  - 
  26-99 times 64 68  - 
  100-199 times 39 47  - 
  ≥200 times 281 263  - 

Cigarettes per day when smoking the most:     
 Never - -  189 
 1-15 - -  56 
 16-20 - -  74 
 21-30 - -  67 
 31-40 - -  57 
 ≥41 - -  32 

Multi-substance use u=1.4  u=1.1  u=0.7  
 SD=2.1 SD=1.8  SD=1.4 
 range=0-10 range=0-10  range=0-5 
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Table 2. Polyserial correlations (and their standard errors) between homologous left and 
right subcortical regions of interest. 
 
 Sample 1 Sample 2 
1. putamen volume 0.89(0.01) 0.85(0.02) 
2. caudate volume 0.93(0.00) 0.90(0.01) 
3. pallidum volume 0.64(0.02) 0.66(0.03) 
4. hippocampus volume 0.86(0.01) 0.71(0.03) 
5. amygdala volume 0.65(0.02) 0.60(0.04) 
6. accumbens volume 0.60(0.02) 0.54(0.04) 
7. thalamus volume 0.88(0.01) 0.73(0.03) 
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Table 3. The number of pairwise observations (upper diagonal), polychoric correlations and (standard errors) in the young Australian 
adults (Sample 1). Correlations between substance and volumes are shaded. 
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 
01. Maximum cannabis use 1985 1977 1984 1985 622 618 622 622 621 622 622 
02. Maximum nicotine use 0.61(0.01) 2346 2346 2346 762 758 762 762 760 762 762 
03. Maximum alcohol use 0.29(0.02) 0.32(0.02) 2366 2366 770 766 770 770 768 770 770 
04. Multi-substance use 0.62(0.01) 0.44(0.02) 0.25(0.02) 2862 849 845 849 849 847 849 848 
05. putamen volume 0.03(0.04) 0.00(0.04) 0.00(0.04) -0.07(0.04) 849 845 849 849 847 849 848 
06. caudate volume 0.02(0.05) 0.00(0.04) 0.02(0.04) 0.00(0.04) 0.35(0.03) 845 845 845 843 845 844 
07. pallidum volume -0.04(0.04) -0.04(0.04) -0.04(0.04) -0.08(0.03) 0.11(0.03) 0.35(0.03) 849 849 847 849 848 
08. hippocampus volume -0.01(0.04) -0.04(0.04) -0.07(0.04) -0.07(0.04) 0.17(0.03) 0.11(0.03) 0.26(0.03) 849 847 849 848 
  9. amygdala volume 0.04(0.04) 0.02(0.04) 0.00(0.04) 0.00(0.04) 0.29(0.03) 0.17(0.03) 0.22(0.03) 0.37(0.03) 847 847 846 
10. accumbens volume -0.01(0.04) -0.01(0.04) 0.00(0.04) 0.01(0.04) 0.17(0.03) 0.29(0.03) 0.25(0.03) 0.15(0.03) 0.29(0.03) 849 848 
11. thalamus volume 0.02(0.04) 0.05(0.04) -0.01(0.04) 0.01(0.04) 0.35(0.03) 0.17(0.03) 0.31(0.03) 0.35(0.03) 0.21(0.03) 0.15(0.03) 848 
 
Note: Maximum cannabis use = frequency of cannabis use when using the most (never used, once or twice, monthly, weekly, and 
daily or almost daily); Maximum nicotine use = total lifetime cigarettes ever smoked; Maximum alcohol use = when drinking the most 
have consumed 4 (female) or 5 (male) or more drinks at least once a week for a month or more; Multi-substance use = total lifetime 
use of cocaine, amphetamines, inhalants, sedatives, hallucinogens, opioids, ecstasy (including ketamine, GHB or party drugs), non-
medical use of over the counter/prescription analgesics, and non-medical use of over the counter/prescription stimulants. 
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Table 4. Standardized regression parameters for the mixed model linear regression models at each of the seven regions of interest for 
the young Australian male and female adults (Sample 1).  
 

Predictors 
putamen 
β p-value 

caudate 
β p-value 

pallidum 
β p-value 

hippocampus 
β p-value 

amygdala 
β p-value 

accumbens 
β p-value 

thalamus 
β p-value 

Maximum nicotine use -0.01 p=0.60 0.02 p=0.39 0.02 p=0.16 -0.01 p=0.59 0.01 p=0.72 0.00 p=0.98 0.03 p=0.07 
Maximum alcohol use -0.05 p=0.58 0.02 p=0.80 -0.13 p=0.17 -0.13 p=0.13 -0.11 p=0.21 -0.02 p=0.78 -0.11 p=0.24 
Multi-substance use -0.04 p=0.16 -0.02 p=0.27 -0.06 p=0.04 -0.07 p=0.01 -0.03 p=0.31 -0.02 p=0.42 -0.01 p=0.68 
Maximum cannabis use 0.06 p=0.23 0.03 p=0.54 0.03 p=0.64 0.12 p=0.02  0.10 p=0.07  0.00 p=0.93  0.01 p=0.92 

 
Notes: β = standardized beta coefficients; Bonferroni corrected p-value significance threshold = 0.007; Maximum nicotine use = total 
lifetime cigarettes ever smoked; Maximum alcohol use = when drinking the most have consumed 4 (female) or 5 (male) or more 
drinks at least once a week for a month or more; Multi-substance use = total lifetime use of cocaine, amphetamines, inhalants, 
sedatives, hallucinogens, opioids, ecstasy (including ketamine, GHB or party drugs), non-medical use of over the counter/prescription 
analgesics, and non-medical use of over the counter/prescription stimulants; Maximum cannabis use = frequency of cannabis use 
when using the most (never used, once or twice, monthly, weekly, and daily or almost daily).
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Table 5. The number of pairwise observations (upper diagonal), polychoric correlations and (standard errors) in the middle-age US 
males (Sample 2). Correlations between substance and volumes are shaded. 
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 
  1. Regular cannabis use 474 474 442 474 468 470 474 463 471 473 472 
  2. Maximum nicotine use 0.23(0.01) 475 443 475 469 471 475 464 472 474 473 
  3. Maximum alcohol use 0.42(0.05) 0.25(0.05) 443 443 437 439 443 433 440 442 441 
  4. Multi-substance use 0.85(0.01) 0.29(0.06) 0.31(0.05) 475 469 471 475 464 472 474 473 
  5. putamen volume 0.00(0.06) -0.12(0.05) -0.06(0.05) -0.02(0.06) 469 465 469 458 466 468 467 
  6. caudate volume 0.06(0.06) 0.04(0.05) -0.02(0.05) 0.05(0.06) 0.31(0.04) 471 471 460 468 470 469 
  7. pallidum volume 0.02(0.06) -0.08(0.05) -0.06(0.05) 0.02(0.06) 0.49(0.03) 0.37(0.04) 475 464 472 474 473 
  8. hippocampus volume -0.06(0.06) -0.07(0.05) -0.15(0.05) -0.06(0.06) 0.29(0.04) 0.14(0.05) 0.23(0.04) 464 464 463 462 
  9. amygdala volume 0.05(0.06) 0.00(0.05) -0.02(0.05) 0.05(0.06) 0.35(0.04) 0.08(0.05) 0.27(0.04) 0.43(0.04) 472 471 470 
10. accumbens volume -0.03(0.06) -0.09(0.05) -0.09(0.05) -0.02(0.06) 0.41(0.04) 0.15(0.05) 0.25(0.04) 0.35(0.04) 0.55(0.03) 474 472 
11. thalamus volume 0.06(0.06) -0.15(0.05) -0.05(0.05) 0.03(0.06) 0.36(0.04) 0.11(0.05) 0.44(0.04) 0.28(0.04) 0.28(0.04) 0.25(0.04) 473 
 
Note: Regular cannabis use = frequency of cannabis use when using the most (never used, once or twice, monthly, weekly, and daily or 
almost daily); Maximum nicotine use = total lifetime cigarettes ever smoked; Maximum alcohol use = number of days drinking per 
month when drinking the heaviest; Multi-substance use = total lifetime use of stimulants, sedatives, cocaine, heroin, and PCP or other 
psychedelics.
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Table 6. Standardized regression parameters for the mixed model linear regression models at each of the seven regions of interest for 
the middle-aged males (Sample 2). 
 

Predictors 
putamen 
β p-value 

caudate 
β p-value 

pallidum 
β p-value 

hippocampus 
β p-value 

amygdala 
β p-value 

accumbens 
β p-value 

thalamus 
β p-value 

Maximum nicotine use -0.10 p=0.04 -0.01 p=0.77 -0.10 p=0.04 -0.01 p=0.84 -0.01 p=0.84 -0.04 p=0.41 -0.15 p<0.01 
Maximum alcohol use -0.03 p=0.88 -0.02 p=0.67  0.04 p=0.42 -0.09 p=0.05 -0.03 p=0.51 -0.06 p=0.19 -0.03 p=0.53 
Multi-substance use -0.02 p=0.96 0.02 p=0.76 -0.02 p=0.79 -0.03 p=0.64 -0.03 p=0.62 -0.01 p=0.85 -0.03 p=0.67 
Regular cannabis use -0.01 p=0.50 -0.02 p=0.66 -0.02 p=0.72 -0.01 p=0.91 -0.02 p=0.70 -0.00 p=0.95 -0.08 p=0.16 

 
Notes: β = standardized beta coefficients; Bonferroni corrected p-value significance threshold = 0.007; Maximum nicotine use = total 
lifetime cigarettes ever smoked; Maximum alcohol = number of days drinking per month when drinking the heaviest; Multi-substance 
use = total lifetime use of stimulants, sedatives, cocaine, heroin, and PCP or other psychedelics; Regular cannabis use = lifetime 
cannabis use (never tried, tried but ≤5 times, tried >5 times).  
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