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Abstract 27 

The Babraham pig is a highly inbred breed first developed in the United Kingdom 28 

approximately 50 years ago. Previous reports indicate a very high degree of homozygosity 29 

across the genome, including the MHC region, but confirmation of homozygosity at the 30 

specific MHC loci was lacking. Using both direct sequencing and PCR-based sequence-31 

specific typing, we confirm that Babraham pigs are essentially homozygous at their MHC 32 

loci and formalize their MHC haplotype as Hp-55.6. This enhances the utility of the 33 

Babraham pig as a useful biomedical model for studies in which controlling for genetic 34 

variation is important.  35 
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Brief Communication 36 

Pigs are a fundamental food producing animal and important biomedical model. The 37 

consumption of pig meatpork continues to rise in both the developed and developing world, 38 

particularly in Asia, (USDA 2017), and preventing and controlling infectious disease remains 39 

a priority. (Beckham et al. 2018; Gay 2013). Reduced disease burden enables increases in 40 

farming density and outputs, improves animal welfare and can reduce the chance of zoonotic 41 

disease transmission. Healthier animals can also significantly improve the health and 42 

livelihood of small scale and subsistence producers. In addition, the similarities in physiology 43 

and organ size mean that pigs are an excellent disease model with the potential to provide 44 

organs for human transplantation. (Ekser et al. 2017; Lunney 2007). To enable future disease, 45 

vaccine, and translational research, a more detailed understanding of the genetic variation that 46 

underpins differential immune responses in pigs is essential. 47 

 48 

Domesticated pigs have maintained a significant level of genetic diversity, both within and 49 

between breeds, despite strong selection for production traits and inbreeding (Yang et al. 50 

2017). Inevitably, this diversity correlates with significant variation at the polymorphic 51 

immune loci. For the pig major histocompatibility complex (MHC, also referred to as swine 52 

leukocyte antigen (SLA)), there are currently 238 MHC class I alleles and 223 MHC class II 53 

alleles described for Sus scrofa in the Immuno-Polymorphism Database (IPD)-MHC database 54 

(http://www.ebi.ac.uk/ipd/mhc/group/SLA) (Maccari et al. 2017). The antibody lambda locus 55 

also appears to be highly polymorphic, even among commercial pigs with a similar genetic 56 

background (Guo et al. 2016), and the T cell loci appear variable in gene content, at least 57 

between breeds (Schwartz, J.C., T. Connelley, and J.A. Hammond, unpublished). This 58 

diversity is problematic for infectious disease research and quantitative trait mapping studies 59 

in which complex and uncontrolled genetic variation may confound results and reduce 60 

statistical power. Immunogenetic variation also presents significant problems for preclinical 61 

studies with the pig as a model and future efforts to enable xenotransplantation. Inbred pig 62 

models are thereforeFor example, porcine endogenous retroviruses (PERVs), encoded in the 63 

pig genome, have impeded organ xenotransplantation as they pose a risk if passed to humans. 64 

These elements have recently been removed using genome editing in an outbred pig (Niu et 65 

al. 2017). The same work on a large inbred pig (that can produce suitably sized organs) 66 

would decrease the possibility of additional uncharacterized PERVs that are likely in outbred 67 

populations. Furthermore , having a defined MHC allows one to predict tolerance and 68 

associated clinical interventions. For instance, the power of the inbred Babraham pig model 69 
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has recently been demonstrated in a genome-wide analysis which identified minor 70 

histocompatibility antigens involved in corneal transplant rejection (Nicholls et al. 2016). 71 

This work was only possible using individuals with a controlled genetic background and a 72 

defined MHC region in order to facilitate controlled matching and mismatching of 73 

histocompatibility loci. Large inbred pig models are therefore fundamentally important 74 

scientific resources. 75 

 76 

In the UK, and likely the whole world, the Babraham pigs are nowpig is the only extant 77 

example of a large inbred pigs.pig breed. While there are several MHC inbred miniature pig 78 

breeds that have been developed, including the NIH and Yucatan miniature pigs (Choi et al. 79 

2016; Sachs et al. 1976), these are less representative of commercial breeds. As a 80 

consequence they have, the Babraham pig has great potential to play an important role in 81 

studying infectious diseases in pigs, and as a preclinical model for human disease. Babraham 82 

pigs were derived from a Large White commercial background by Dr Richard Binns at the 83 

Babraham Institute (United Kingdom) during the 1970s (Signer et al. 1999). Multiple skin 84 

grafts were performed across potential parents and selective breeding was carried out 85 

between those individuals in which least cross-rejection was observed. This was continued 86 

for five generations, rejecting defective individuals and those with residual skin graft 87 

rejection, and which produced individuals that tolerated skin grafts. This tolerance indicated 88 

functional homozygosity at least for the MHC antigens and probably also for a high 89 

proportion of minor histocompatibility loci. After 20 generations, a restriction fragment 90 

length polymorphism study demonstrated a level of inbreeding homozygosity comparable to 91 

inbred strains of mice (Signer et al. 1999). Recently,During the period from this 1999 study 92 

until 2016, there were approximately 15 generations and recovery from a bottleneck of 13 93 

sows and 2 boars (animal records from The Pirbright Institute). At this point, SNP analysis of 94 

single nucleotide polymorphisms (SNP) using a 60k SNPthe Illumina PorcineSNP60 chip 95 

suggested approximately 85% homozygosity across the Babraham genome, based on 59,852 96 

genotyped SNPs (Nicholls et al. 2016). Other animals with the same level of inbreeding and 97 

homozygosity are not available for large veterinary species. 98 

 99 

The SNP chip analysis by Nicholls et al. (2016) indicated complete homozygosity across the 100 

MHC region of chromosome 7. However, measuring MHC variation using commercial SNP 101 

assays is not always accurate as much of the variation over polymorphic loci falls below the 102 

minimum minor allele frequency to be included in the assay. In addition, structurally variable 103 
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haplotypes often confound the mapping of second generation sequencing technologies that 104 

produce relatively short reads used to design the SNP chip. Indeed, using SNPchimp 105 

(Nicolazzi et al. 2015) to search the Illumina 60k SNP array revealed only two SNPs present 106 

in the vicinity of the classical MHC class I loci (i.e. within the interval of Sscrofa10.2, chr 7: 107 

24,600,000 – 24,765,000). Confirming that the Babraham MHC is homozygous would add 108 

significant value to this animal line as a both a veterinary and biomedical model. We 109 

therefore soughtused two different typing methods to confirm MHC homozygosity and 110 

formalise the Babraham MHC haplotype. 111 

 112 

The genes targeted for cDNA sequencing were the classical MHC class I genes SLA-1, SLA-113 

2, and SLA-3, the non-classical class I genes SLA-6, SLA-7, and SLA-8, and the class II genes 114 

SLA-DQA, SLA-DQB1, and SLA-DRB1. All known SLA alleles within the IPD-MHC 115 

database were downloaded and used for oligonucleotide primer design (Table 1). PCR 116 

amplicons were generated from cDNATotal RNA was extracted from peripheral blood 117 

mononuclear cells derived from six animals (as distantly related as possible) using TRIzol 118 

(Thermo Fisher Scientific) following manufacturer’s instructions. Complementary DNA 119 

(cDNA) was generated using the Superscript III reverse transcriptase kit (Thermo Fisher 120 

Scientific) following manufacturer’s instructions. PCR amplicons were generated from this 121 

cDNA, ligated into pGEM-T Easy vector (Promega), and transformed into NEB 5-alpha 122 

chemically-competent Escherichia coli (New England Biolabs). Approximately 584 123 

individual clones were selected by positive colony PCR result and submitted to Source 124 

BioScience (United Kingdom) for sequencing. Sanger chain-termination sequencing was 125 

performed using either of the vector-specific T7 (forward) or SP6 (reverse) primers. The 126 

chromatograms from the individual sequencing reads were then compared to the known 127 

alleles within the IPD-MHC database.  128 

 129 

To further confirm SLA homozygosity in the Babraham pigs, SLA genotyping of SLA-1, SLA-2, 130 

SLA-3, DRB1, DQB1, and DQA was performed on the genomic DNA from 22 animals (including 131 

the six animals used for cDNA analysis) using PCR-based assays with sequence-specific typing 132 

primers (PCR-SSP) as previously described (Ho et al. 2009b; Ho et al. 2010). The typing primer 133 

panel has since been modified to accommodate for the increasing number of SLA alleles and 134 

allele groups (details not shown).  135 

 136 
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Both SSP typing and sequencing methods confirmed homozygosity at the SLA-1, SLA-2, 137 

SLA-DQA, SLA-DRB1, and SLA-DQB1 loci (Table 2). The sequenced region of SLA-DQB1, 138 

containing the majority of both beta domains, could not differentiate between alleles SLA-139 

DQB1*08:01 and SLA-DQB1*08:02, which differ from each other at two nucleotide 140 

positions outside of the sequenced region (i.e. at positions +52 and +606.). This gene was 141 

nevertheless identical over the sequenced region in all animals based on reads from eight 142 

clones per animal. Only three sequencing reads from two animals were recovered for SLA-3. 143 

One of these reads corresponded with SLA-3*04:02 and the remaining two reads 144 

corresponded with SLA-3*04:03, indicating that at least one of the six animals is a 145 

heterozygote at this locus. These two alleles differ only in the alpha-3 domain, by both a 12-146 

bp insertion in SLA-3*04:03 and a single non-synonymous mutation nine bp upstream of the 147 

insertion. However, it is uncertain what, if any, influence these differences have on peptide-148 

binding and receptor interactions, especially as this region is distal from the peptide-binding 149 

regions of the alpha-1 and alpha-2 domains. The paucity of SLA-3 reads is likely due to the 150 

co-amplification of SLA-3 cDNA with SLA-1 and SLA-2, both of which are considered more 151 

highly expressed (Lunney et al. 2009; Tennant et al. 2007). The haplotype that corresponds to 152 

the genotype SLA-1*14:02-SLA-3*04:03-SLA-2*11:04-DRB1*05:01-DQB1*08:01 has been 153 

previously designated by the ISAG/IUIS-VIC SLA Nomenclature Committee Hp-55.6. The 154 

class I haplotype Hp-55.0 was originally described in the ESK-4 cell line (Ho et al. 2009a), 155 

while the class II haplotype Hp-0.6 has been detected in several pig breeds including Yucatan 156 

(Smith et al. 2005), Austrian Pietrain (Essler et al. 2013), Chinese Bama miniature pigs (Gao 157 

et al. 2014), as well as the SK-RST cell line (Ho et al. 2009a). 158 

 159 

Sequencing reads were additionally obtained for the non-classical MHC class I genes (SLA-6, 160 

SLA-7, and SLA-8) due to broad primer specificity. A total of six identical reads from three 161 

animals were identified for SLA-6, all of which contained the intron between the first two 162 

alpha domains, and thus originated from either unspliced mRNA or contaminating genomic 163 

DNA. Despite this, both exons were in frame and putatively functional. All of these reads 164 

also differed by at least 4 bp from the nine known SLA-6 alleles in IPD-MHC, with five 165 

alleles being equally close (SLA-6*01:01, SLA-6*03:01, SLA-6*04:01, SLA-6*05:01, and 166 

SLA-6*06:01). Reads specific for SLA-7 (n=1) and SLA-8 (n=8, from 4 animals) were also 167 

detected, likely due to the degenerate nature of the SLA-6 primers used for cDNA 168 

amplification. Only three alleles of SLA-7 are currently described within the IPD-MHC 169 
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database, and the closest of these, SLA-7*01:01, differs by 2 bp to the single read sequenced 170 

from the Babraham samples. For SLA-8, all of the sequences weresequencing reads were 171 

identical to each other and were also exact matches for known alleles SLA-8*01:01, SLA-172 

8*04:01, and SLA-8*05:01. As the sequenced reads did not span the entire transcript, it could 173 

not be ascertained which, if any, of these alleles correspond to the Babraham SLA-8. Thus, 174 

the sequencing results suggested that the Babraham animals were identical to each other for 175 

at least the SLA-6 and SLA-8 non-classical MHC class I loci, while only a single read was 176 

obtained for SLA-7. 177 

 178 

This study shows that theFor inclusion into the IPD-MHC database, the Babraham-derived 179 

alleles presented here have been deposited into GenBank (accessions: MH107868 - 180 

MH107877). This study shows that the inbred Babraham pigs are functionally MHC 181 

homozygous. Taken together with the high level of inbreeding as measured by SNPs over the 182 

entire genome (Nicholls et al. 2016), this confirms the Babraham pig as a very valuable 183 

model for swine and human disease research, as well in wider biomedical applications. 184 

TheThis value can only increase as our ability to edit mammalian genomes and produce gene-185 

edited animals improves.  186 
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Table 1 – Oligonucleotide primers used for amplification of SLA genes 187 
 188 

gene orientation sequence (5'-) cDNA position domain 

SLA-1,-2, -3, -7, and -8 sense GACACGCAGTTCGTGHGGTTC 153-163 α1 

SLA-6 sense AGGACCCGCGTCTGGAGAAG 150 α1 

SLA-1,-2,-3,-6, -7, and -8 anti-sense CTGGAAGGTCCCATCCCCTG 789-799 α3 

SLA-1,-2,-3, -6, and -7 anti-sense GCTGCACMTGGCAGGTGTAGC 851-861 α3 

SLA-DQA sense GAGCGCCTGTGGAGGTGAAG 54 leader 

SLA-DQA sense GACCATGTTGCCTCCTATGGC 85 α1 

SLA-DQA anti-sense CAGATGAGGGTGTTGGGCTGAC 398 α2 

SLA-DQA anti-sense GACAGAGTGCCCGTTCTTCAAC 462 α2 

SLA-DQB1 sense GAGACTCTCCACAGGATTTCGTG 98 β1 

SLA-DQB1 anti-sense ACTGTAGGTTGCACTCGCCG 395 β2 

SLA-DRB1 sense GGGACAYCSCACMGCATTTC 89 β1 

SLA-DRB1 sense GAGTGYCRTTTCTTCAVYGGGAC 127 β1 

SLA-DRB1 anti-sense CAGAGCAGACCAGGAGGTTGTG 421 β2 

SLA-DRB1 anti-sense GGTCCAGTCTCCATTAGGGATC 552 β2 

 189 
  190 
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Table 2 – Classical MHC class I and class II genotypes of inbred Babraham pigs 191 
 192 

  SLA-1 SLA-2 SLA-3 DRB1 DQA DQB1 

Sequencing *14:02
1
 *11:04

2
 *04:03

3
/*04:02 *05:01 *01:03 *08:01 or *08:02 

SSP typing *14:02 *11:04 *04:XX *05:XX *01:XX *08:XX 
1
 previously known as SLA-1*es11 

2
 previously known as SLA-2*es22 

3
 previously known as SLA-3*04es32 

 

 193 
 194 
  195 
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