

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine

Citation for published version:

Schwartz, JC, Hemmink, J, Graham, SP, Tchilian, E, Charleston, B, Hammer, SE, Ho, C-S & Hammond, JA 2018, 'The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine' Tissue antigens, vol. 92, no. 1, pp. 40-43. DOI: 10.1111/tan.13281

Digital Object Identifier (DOI):

10.1111/tan.13281

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Tissue antigens

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

The MHC homozygous inbred Babraham pig as a resource for veterinary and translational medicine

Journal:	HLA
Manuscript ID	HLA-Mar-2018-0656-BC.R1
Manuscript Type:	Brief Communications
Date Submitted by the Author:	n/a
Complete List of Authors:	Schwartz, John; Pirbright Institute Hemmink, Johanneke; Pirbright Institute; University of Edinburgh, The Roslin Institute; International Livestock Research Institute Graham, Simon; Pirbright Institute Tchilian, Elma; Pirbright Institute Charleston, Bryan; Pirbright Institute Hammer, Sabina; Veterinarmedizinische Universitat Wien, Department für Pathobiologie Ho, Chak-Sum; Gift of Life Michigan Hammond, John; Pirbright Institute
Keywords:	genotyping, SSP typing, Sus scrofa, swine leukocyte antigen, SLA

1

HLA

2		
3 4	1	The MHC homozygous inbred Babraham pig as a resource for
5	2	veterinary and translational medicine
6 7	3	
8 9	4	John C. Schwartz ¹ Johanneke D. Hemmink ^{1*} Simon P. Graham ¹ Elma
9 10	5	Tabilian ¹ Pryon Charleston ¹ Sabina E. Hammar ² Charle Sum Ha ³ and John A
11 12	5	Tennan, <u>Bryan Charleston</u> , Saome E. Hammer, Chak-Sum Ho, and John A.
13	6	Hammond
14 15	7	
16 17	8	¹ The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
18	9	² Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna,
19 20	10	Veterinaerplatz I, A-1210 Vienna, Austria
21	11	Gift of Life Michigan, Ann Arbor, MI, 48108, USA
22 23	12	*Current anniations: The Rosin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Rush, Roslin, Midlethian EH25 OPC, UK & The International Livestock Research
24	13	Euliburgii, Easter Busii, Rosini, Midiotinan En23 9RG, UK & The International Livestock Research
25 26	14	[†] Corresponding author
27	15	Phone: (+44)1483231397
28 29	17	E-mail: john hammond@pirbright.ac.uk
30 31	18	
32	19	Keywords: genotyping, SSP typing, Sus scrofa, swine leukocyte antigen, SLA
33 34	20	
35	21	Acknowledgements
36 37	22	JCS, SPG, ET, BC, and JAH were supported by the United Kingdom Biotechnology and
38	23	Biological Sciences Research Council (BBSRC) through projects BBS/E/I/00001710,
39 40	24	BBS/E/I/00007030, BBS/E/I/00007031, BBS/E/I/00007038, BB/L001330/1 and
41 42	25	BBS/E/I/00007039. The authors declare no conflicts of interest.
43	26	
44 45		
46		
47 48		
49 50		
50 51		
52 53		
54		
55 56		
57		
58		

59

27 Abstract

28 The Babraham pig is a highly inbred breed first developed in the United Kingdom

29 approximately 50 years ago. Previous reports indicate a very high degree of homozygosity

30 across the genome, including the MHC region, but confirmation of homozygosity at the

31 specific MHC loci was lacking. Using both direct sequencing and PCR-based sequence-

32 specific typing, we confirm that Babraham pigs are essentially homozygous at their MHC

33 loci and formalize their MHC haplotype as Hp-55.6. This enhances the utility of the

34 Babraham pig as a useful biomedical model for studies in which controlling for genetic

35 variation is important.

to peries only

Page 3 of 11

1 2 HLA

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31 22	
32 33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	

36 Brief Communication

37 Pigs are a fundamental food producing animal and important biomedical model. The 38 consumption of pig meatpork continues to rise in both the developed and developing world, 39 particularly in Asia, (USDA 2017), and preventing and controlling infectious disease remains 40 a priority- (Beckham et al. 2018; Gay 2013). Reduced disease burden enables increases in 41 farming density and outputs, improves animal welfare and can reduce the chance of zoonotic 42 disease transmission. Healthier animals can also significantly improve the health and 43 livelihood of small scale and subsistence producers. In addition, the similarities in physiology 44 and organ size mean that pigs are an excellent disease model with the potential to provide 45 organs for human transplantation- (Ekser et al. 2017; Lunney 2007). To enable future disease, vaccine, and translational research, a more detailed understanding of the genetic variation that 46 47 underpins differential immune responses in pigs is essential.

48

49 Domesticated pigs have maintained a significant level of genetic diversity, both within and 50 between breeds, despite strong selection for production traits and inbreeding (Yang et al. 51 2017). Inevitably, this diversity correlates with significant variation at the polymorphic 52 immune loci. For the pig major histocompatibility complex (MHC, also referred to as swine 53 leukocyte antigen (SLA)), there are currently 238 MHC class I alleles and 223 MHC class II 54 alleles described for Sus scrofa in the Immuno-Polymorphism Database (IPD)-MHC database 55 (http://www.ebi.ac.uk/ipd/mhc/group/SLA) (Maccari et al. 2017). The antibody lambda locus 56 also appears to be highly polymorphic, even among commercial pigs with a similar genetic 57 background (Guo et al. 2016), and the T cell loci appear variable in gene content, at least 58 between breeds (Schwartz, J.C., T. Connelley, and J.A. Hammond, unpublished). This 59 diversity is problematic for infectious disease research and quantitative trait mapping studies 60 in which complex and uncontrolled genetic variation may confound results and reduce 61 statistical power. Immunogenetic variation also presents significant problems for preclinical 62 studies with the pig as a model and future efforts to enable xenotransplantation. Inbred pig 63 models are therefore For example, porcine endogenous retroviruses (PERVs), encoded in the 64 pig genome, have impeded organ xenotransplantation as they pose a risk if passed to humans. 65 These elements have recently been removed using genome editing in an outbred pig (Niu et 66 al. 2017). The same work on a large inbred pig (that can produce suitably sized organs) 67 would decrease the possibility of additional uncharacterized PERVs that are likely in outbred 68 populations. Furthermore, having a defined MHC allows one to predict tolerance and 69 associated clinical interventions. For instance, the power of the inbred Babraham pig model

Page 4 of 11

HLA

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
21	
24	
35	
36	
37	
38	
39	
40	
⊿1	
41	
42	
43	
44	
45	
46	
47	
<u>4</u> 2	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

1 2

70	has recently been demonstrated in a genome-wide analysis which identified minor
71	histocompatibility antigens involved in corneal transplant rejection (Nicholls et al. 2016).
72	This work was only possible using individuals with a controlled genetic background and a
73	defined MHC region in order to facilitate controlled matching and mismatching of
74	histocompatibility loci. Large inbred pig models are therefore fundamentally important
75	scientific resources.
76	
77	In the UK, and likely the whole world, the Babraham pigs are nowpig is the only extant
78	example of <u>a</u> large inbred pigs.pig breed. While there are several MHC inbred miniature pig
79	breeds that have been developed, including the NIH and Yucatan miniature pigs (Choi et al.
80	2016; Sachs et al. 1976), these are less representative of commercial breeds. As a
81	consequence they have, the Babraham pig has great potential to play an important role in
82	studying infectious diseases in pigs, and as a preclinical model for human disease. Babraham
83	pigs were derived from a Large White commercial background by Dr Richard Binns at the
84	Babraham Institute (United Kingdom) during the 1970s (Signer et al. 1999). Multiple skin
85	grafts were performed across potential parents and selective breeding was carried out
86	between those individuals in which least cross-rejection was observed. This was continued
87	for five generations, rejecting defective individuals and those with residual skin graft
88	rejection, and which produced individuals that tolerated skin grafts. This tolerance indicated
89	functional homozygosity at least for the MHC antigens and probably also for a high
90	proportion of minor histocompatibility loci. After 20 generations, a restriction fragment
91	length polymorphism study demonstrated a level of inbreeding homozygosity comparable to
92	inbred strains of mice (Signer et al. 1999). Recently, During the period from this 1999 study
93	until 2016, there were approximately 15 generations and recovery from a bottleneck of 13
94	sows and 2 boars (animal records from The Pirbright Institute). At this point, SNP analysis of
95	single nucleotide polymorphisms (SNP) using a 60k SNPthe Illumina PorcineSNP60 chip
96	suggested approximately 85% homozygosity across the Babraham genome, based on 59,852
97	genotyped SNPs (Nicholls et al. 2016). Other animals with the same level of inbreeding and
98	homozygosity are not available for large veterinary species.
99	

100 The SNP chip analysis by Nicholls et al. (2016) indicated complete homozygosity across the 101 MHC region of chromosome 7. However, measuring MHC variation using commercial SNP 102 assays is not always accurate as much of the variation over polymorphic loci falls below the 103 minimum minor allele frequency to be included in the assay. In addition, structurally variable

HLA

104	haplotypes often confound the mapping of second generation sequencing technologies that
105	produce relatively short reads used to design the SNP chip. Indeed, using SNPchimp
106	(Nicolazzi et al. 2015) to search the Illumina 60k SNP array revealed only two SNPs present
107	in the vicinity of the classical MHC class I loci (i.e. within the interval of Sscrofa10.2, chr 7:
108	24,600,000 – 24,765,000). Confirming that the Babraham MHC is homozygous would add
109	significant value to this animal line as a-both a veterinary and biomedical model. We
110	therefore soughtused two different typing methods to confirm MHC homozygosity and
111	formalise the Babraham MHC haplotype.

The genes targeted for cDNA sequencing were the classical MHC class I genes SLA-1, SLA-2, and SLA-3, the non-classical class I genes SLA-6, SLA-7, and SLA-8, and the class II genes SLA-DOA, SLA-DOB1, and SLA-DRB1. All known SLA alleles within the IPD-MHC database were downloaded and used for oligonucleotide primer design (Table 1). PCR amplicons were generated from cDNA Total RNA was extracted from peripheral blood mononuclear cells derived from six animals (as distantly related as possible) using TRIzol (Thermo Fisher Scientific) following manufacturer's instructions. Complementary DNA (cDNA) was generated using the Superscript III reverse transcriptase kit (Thermo Fisher Scientific) following manufacturer's instructions. PCR amplicons were generated from this cDNA, ligated into pGEM-T Easy vector (Promega), and transformed into NEB 5-alpha chemically-competent Escherichia coli (New England Biolabs). Approximately 584 individual clones were selected by positive colony PCR result and submitted to Source BioScience (United Kingdom) for sequencing. Sanger chain-termination sequencing was performed using either of the vector-specific T7 (forward) or SP6 (reverse) primers. The chromatograms from the individual sequencing reads were then compared to the known alleles within the IPD-MHC database.

To further confirm SLA homozygosity in the Babraham pigs, SLA-genotyping of SLA-1, SLA-2, SLA-3, DRB1, DQB1, and DQA was performed on the genomic DNA from 22 animals (including the six animals used for cDNA analysis) using PCR-based assays with sequence-specific typing primers (PCR-SSP) as previously described (Ho et al. 2009b; Ho et al. 2010). The typing primer panel has since been modified to accommodate for the increasing number of SLA alleles and allele groups (details not shown).

HLA

3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
22	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
-r/ ∕\Q	
-10 10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1 2

137	Both SSP typing and sequencing methods confirmed homozygosity at the SLA-1, SLA-2,
138	SLA-DQA, SLA-DRB1, and SLA-DQB1 loci (Table 2). The sequenced region of SLA-DQB1,
139	containing the majority of both beta domains, could not differentiate between alleles SLA-
140	DQB1*08:01 and SLA-DQB1*08:02, which differ from each other at two nucleotide
141	positions outside of the sequenced region (i.e. at positions +52 and +606-). This gene was
142	nevertheless identical over the sequenced region in all animals based on reads from eight
143	clones per animal. Only three sequencing reads from two animals were recovered for SLA-3.
144	One of these reads corresponded with SLA-3*04:02 and the remaining two reads
145	corresponded with SLA-3*04:03, indicating that at least one of the six animals is a
146	heterozygote at this locus. These two alleles differ only in the alpha-3 domain, by both a 12-
147	bp insertion in SLA-3*04:03 and a single non-synonymous mutation nine bp upstream of the
148	insertion. However, it is uncertain what, if any, influence these differences have on peptide-
149	binding and receptor interactions, especially as this region is distal from the peptide-binding
150	regions of the alpha-1 and alpha-2 domains. The paucity of SLA-3 reads is likely due to the
151	co-amplification of SLA-3 cDNA with SLA-1 and SLA-2, both of which are considered more
152	highly expressed (Lunney et al. 2009; Tennant et al. 2007). The haplotype that corresponds to
153	the genotype <i>SLA-1*14:02-SLA-3*04:03-SLA-2*11:04-DRB1*05:01-DQB1*08:01</i> has been
154	previously designated by the ISAG/IUIS-VIC SLA Nomenclature Committee Hp-55.6. The
155	class I haplotype Hp-55.0 was originally described in the ESK-4 cell line (Ho et al. 2009a),
156	while the class II haplotype Hp-0.6 has been detected in several pig breeds including Yucatan
157	(Smith et al. 2005), Austrian Pietrain (Essler et al. 2013), Chinese Bama miniature pigs (Gao
158	et al. 2014), as well as the SK-RST cell line (Ho et al. 2009a).
150	

159

160 Sequencing reads were additionally obtained for the non-classical MHC class I genes (SLA-6, SLA-7, and SLA-8) due to broad primer specificity. A total of six identical reads from three 161 162 animals were identified for SLA-6, all of which contained the intron between the first two 163 alpha domains, and thus originated from either unspliced mRNA or contaminating genomic 164 DNA. Despite this, both exons were in frame and putatively functional. All of these reads 165 also differed by at least 4 bp from the nine known SLA-6 alleles in IPD-MHC, with five 166 alleles being equally close (SLA-6*01:01, SLA-6*03:01, SLA-6*04:01, SLA-6*05:01, and 167 SLA-6*06:01). Reads specific for SLA-7 (n=1) and SLA-8 (n=8, from 4 animals) were also 168 detected, likely due to the degenerate nature of the SLA-6 primers used for cDNA 169 amplification. Only three alleles of SLA-7 are currently described within the IPD-MHC

Page 7 of 11

HLA

database, and the closest of these, *SLA-7*01:01*, differs by 2 bp to the single read sequenced
from the Babraham samples. For *SLA-8*, all <u>of</u> the sequences weresequencing reads were
<u>identical to each other and were also</u> exact matches for known alleles *SLA-8*01:01*, *SLA- 8*04:01*, and *SLA-8*05:01*. As the sequenced reads did not span the entire transcript, it could
not be ascertained which, if any, of these alleles correspond to the Babraham *SLA-8*. Thus,

175 the sequencing results suggested that the Babraham animals were identical to each other for

at least the *SLA-6* and *SLA-8* non-classical MHC class I loci, while only a single read was
obtained for *SLA-7*.

This study shows that the For inclusion into the IPD-MHC database, the Babraham-derived alleles presented here have been deposited into GenBank (accessions: MH107868 - MH107877). This study shows that the inbred Babraham pigs are functionally MHC homozygous. Taken together with the high level of inbreeding as measured by SNPs over the entire genome (Nicholls et al. 2016), this confirms the Babraham pig as a very valuable model for swine and human disease research, as well in wider biomedical applications.
The This value can only increase as our ability to edit mammalian genomes and produce gene-edited animals improves.

Table 1 – Oligonucleotide primers used for amplification of SLA genes

	gene	orientation	sequence (5'-)	cDNA position	domai
	SLA-1,-2, -3, -7, and -8	sense	GACACGCAGTTCGTGHGGTTC	153-163	α1
	SLA-6	sense	AGGACCCGCGTCTGGAGAAG	150	α1
	SLA-1,-2,-3,-6, -7, and -8	anti-sense	CTGGAAGGTCCCATCCCCTG	789-799	α3
	SLA-1,-2,-3, -6, and -7	anti-sense	GCTGCACMTGGCAGGTGTAGC	851-861	α3
	SLA-DQA	sense	GAGCGCCTGTGGAGGTGAAG	54	leade
	SLA-DQA	sense	GACCATGTTGCCTCCTATGGC	85	α1
	SLA-DQA	anti-sense	CAGATGAGGGTGTTGGGCTGAC	398	α2
	SLA-DQA	anti-sense	GACAGAGTGCCCGTTCTTCAAC	462	α2
	SLA-DQB1	sense	GAGACTCTCCACAGGATTTCGTG	98	β1
	SLA-DQB1	anti-sense	ACTGTAGGTTGCACTCGCCG	395	β2
	SLA-DRB1	sense	GGGACAYCSCACMGCATTTC	89	β1
	SLA-DRB1	sense	GAGTGYCRTTTCTTCAVYGGGAC	127	β1
	SLA-DRB1	anti-sense	CAGAGCAGACCAGGAGGTTGTG	421	β 2
	SLA-DRB1	anti-sense	GGTCCAGTCTCCATTAGGGATC	552	β 2
189					
190					

2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	ი
	~
2	1
2 2	1 2
2 2 2	1 2 3
2 2 2 2	1 2 3 4
2 2 2 2 2	1 2 3 4 5
2 2 2 2 2 2	0 1 2 3 4 5 6
2 2 2 2 2 2 2 2 2	0 1 2 3 4 5 6 7
2 2 2 2 2 2 2 2 2 2	0 1 2 3 4 5 6 7 8
2 2 2 2 2 2 2 2 2 2 2 2	0123456789
2 2 2 2 2 2 2 2 2 2 3	01234567890
2 2 2 2 2 2 2 2 2 2 3 3	012345678901
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	0123456789012
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	01234567890123
2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	012345678901234
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	0123456789012345
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	01234567890123456
2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	012345678901234567
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	0123456789012345678
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	01234567890123456789

_	Convoncing	SLA-1 *14:02 ¹	SLA-2	SLA-3	DRB1	DQA	DQB1
_	Sequencing SSP typing	*14:02 ⁻ *14:02	*11:04 *11:04	*04:03" / *04:02 *04:XX	*05:01 *05:XX	*01:03 *01:XX	*08:XX
	¹ previously k ² previously k ³ previously k	known as SL known as SL known as SL	A-1*es11 A-2*es22 A-3*04es3.	2			

1		
2	107	
3	196	References
4	19/	
5	198	Becknam IR, Brake DA, Fine JB (2018) Strengthening One Health Inrough Investments in
6	199	Agricultural Preparedness. Health Secur (Epub ahead of print) DOI:
/	200	10.1089/hs.2017.0069
8	201	Choi N-R, Seo D-W, Choi K-M, Ko N-Y, Kim J-H, Kim H-I, Jung W-Y, Lee J-H (2016)
9 10	202	Analysis of Swine Leukocyte Antigen Haplotypes in Yucatan Miniature Pigs Used as
10	203	Biomedical Model Animal. Asian-Australasian Journal of Animal Sciences 29:321-
17	204	326
12	205	Ekser B, Li P, Cooper DKC (2017) Xenotransplantation: past, present, and future. Curr Opin
14	206	Organ Transplant (Epub ahead of print) DOI: 10.1097/MOT.000000000000463
15	207	Essler SE, Ertl W, Deutsch J, Ruetgen BC, Groiss S, Stadler M, Wysoudil B, Gerner W, Ho
16	208	CS, Saalmueller A (2013) Molecular characterization of swine leukocyte antigen gene
17	209	diversity in purebred Pietrain pigs. Anim Genet 44:202-205
18	210	Gao C, Jiang Q, Guo D, Liu J, Han L, Qu L (2014) Characterization of swine leukocyte
19	211	antigen (SLA) polymorphism by sequence-based and PCR-SSP methods in Chinese
20	212	Bama miniature pigs. Dev Comp Immunol 45:87-96
21	213	Gav CG (2013) Agricultural Research Service: biodefense research. Dev Biol (Basel)
22	214	135:23-37
23	215	Guo X Schwartz JC Murtaugh MP (2016) Genomic variation in the porcine
24	216	immunoglobulin lambda variable region Immunogenetics 68:285-293
25	210	Ho CS Franzo-Romain MH Lee VI Lee IH Smith DM (2009a) Sequence-based
26	217	characterization of swine leucocyte antigen alleles in commercially available porcine
27	210	cell lines. Int L Immunogenet 36:231-234
28	219	Ho CS Lupney IV Franzo Romain MH Martens GW Lee VI Lee IH Wysocki M
29	220	no CS, Lunney JK, Flanzo-Kolinani Min, Malenis OW, Lee IJ, Lee JH, Wysocki Mi, Dowlard DD, Smith DM (2000h) Malenular characterization of gwing loweoute
30	221	Rowland RR, Siniti DW (20090) Molecular characterization of swine feucocyte
31	222	antigen class I genes in outbied pig populations. Anim Genet 40.408-478
32	223	Ho CS, Lunney JK, Lee JH, Franzo-Romain MH, Martens GW, Rowland RR, Smith DM
55 24	224	(2010) Molecular characterization of swine leucocyte antigen class II genes in outbred
25	225	pig populations. Anim Genet 41:428-432
36	226	Lunney JK (2007) Advances in Swine Biomedical Model Genomics. Int J Biol Sci 3:179-184
37	227	Lunney JK, Ho CS, Wysocki M, Smith DM (2009) Molecular genetics of the swine major
38	228	histocompatibility complex, the SLA complex. Dev Comp Immunol 33:362-374
39	229	Maccari G, Robinson J, Ballingall K, Guethlein LA, Grimholt U, Kaufman J, Ho CS, de
40	230	Groot NG, Flicek P, Bontrop RE, Hammond JA, Marsh SG (2017) IPD-MHC 2.0: an
41	231	improved inter-species database for the study of the major histocompatibility
42	232	complex. Nucleic Acids Res 45:D860-D864
43	233	Nicholls S, Pong-Wong R, Mitchard L, Harley R, Archibald A, Dick A, Bailey M (2016)
44	234	Genome-Wide Analysis in Swine Associates Corneal Graft Rejection with Donor-
45	235	Recipient Mismatches in Three Novel Histocompatibility Regions and One Locus
46	236	Homologous to the Mouse H-3 Locus. PLoS ONE 11:e0152155
47	237	Nicolazzi EL, Caprera A, Nazzicari N, Cozzi P, Strozzi F, Lawley C, Pirani A, Soans C,
48	238	Brew F, Jorjani H, Evans G, Simpson B, Tosser-Klopp G, Brauning R, Williams JL,
49	239	Stella A (2015) SNPchiMp v.3: integrating and standardizing single nucleotide
50	240	polymorphism data for livestock species. BMC Genomics 16:283
51	241	Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E.
52	242	Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H. Zhou X. Wang S. Wei H. Guell
53 E4	243	M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs
54 55	244	using CRISPR-Cas9. Science 357:1303-1307
55		
57		
58		

- 59
- 60

1

2		
3	245	Sachs DH. Leight G. Cone J. Schwarz S. Stuart L. Rosenberg S (1976) Transplantation in
4	246	ministure swine I Eivation of the major histocompatibility complex. Transplantation
-	240	22 550 577
5	247	22:559-567
6	248	Signer EN, Jeffreys AJ, Licence S, Miller R, Byrd P, Binns R (1999) DNA profiling reveals
7	249	remarkably low genetic variability in a herd of SLA homozygous pigs. Res Vet Sci
8	250	
9	230	
10	251	Smith DM, Martens GW, Ho CS, Asbury JM (2005) DNA sequence based typing of swine
10	252	leukocyte antigens in Yucatan miniature pigs. Xenotransplantation 12:481-488
11	253	Tennant I M Repard C Chardon P Powell PP (2007) Regulation of porcine classical and
12	255	remain and MIC aloss Laurence in the comparation of potentie classical and
13	234	nonclassical MHC class I expression. Immunogenetics 59:577-589
14	255	USDA (2017) Livestock and Poultry: World Markets and Trade. United States Department of
15	256	Agriculture, Foreign Agricultural Service; accessed 3 April 2018,
16	257	http://usda.mannlib.cornell.edu/usda/fas/livestock-poultry-ma//2010s/2017/livestock-
17	258	noultry ma 10.12.2017 ndf
17	250	
18	259	Yang B, Cui L, Perez-Enciso M, Iraspov A, Crooijmans R, Zinovieva N, Schook LB,
19	260	Archibald A, Gatphayak K, Knorr C, Triantafyllidis A, Alexandri P, Semiadi G,
20	261	Hanotte O Dias D Dovc P Uimari P Jacolina L Scandura M Groenen MAM
21	261	Hunge L. Magang HI (2017) Genome wide SNP data unvails the globalization of
22	202	Huang E, Megens HJ (2017) Genome-wide SNF data unvens the globalization of
22	263	domesticated pigs. Genet Sel Evol 49.71
25	264	
24		
25		
26		
27		
28		
20		
29		
50		
31		
32		
33		
34		
35		
36		
37		
20		
20		
39		
40		
41		
42		
43		
44		
45		
16		
40		
4/		
48		
49		
50		
51		
52		
52		
55		
54 		
55		
56		
57		
58		
59		
60		HLA
00		had 1