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Evaluation of Matrix Factorisation Approaches for
Muscle Synergy Extraction

Ahmed Ebieda,∗, Eli Kinney-Langa, Loukianos Spyroua, Javier Escuderoa

aSchool of Engineering, Institute for Digital Communications, The University of Edinburgh,
Edinburgh EH9 3FB, United Kingdom

Abstract

The muscle synergy concept provides a widely-accepted paradigm to break down

the complexity of motor control. In order to identify the synergies, different

matrix factorisation techniques have been used in a repertoire of fields such as

prosthesis control and biomechanical and clinical studies. However, the rele-

vance of these matrix factorisation techniques is still open for discussion since

there is no ground truth for the underlying synergies. Here, we evaluate fac-

torisation techniques and investigate the factors that affect the quality of esti-

mated synergies. We compared commonly used matrix factorisation methods:

Principal component analysis (PCA), Independent component analysis (ICA),

Non-negative matrix factorization (NMF) and second-order blind identification

(SOBI). Publicly available real data were used to assess the synergies extracted

by each factorisation method in the classification of wrist movements. Synthetic

datasets were utilised to explore the effect of muscle synergy sparsity, level of

noise and number of channels on the extracted synergies. Results suggest that

the sparse synergy model and a higher number of channels would result in bet-

ter estimated synergies. Without dimensionality reduction, SOBI showed better

results than other factorisation methods. This suggests that SOBI would be an

alternative when a limited number of electrodes is available but its performance

was still poor in that case. Otherwise, NMF had the best performance when
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the number of channels was higher than the number of synergies. Therefore,

NMF would be the best method for muscle synergy extraction.

Keywords: Muscle synergy, Matrix factorisation, Surface electromyogram,

Non-negative matrix factorisation, second-order blind identification, Principal

component analysis, Independent component analysis.

1. Introduction1

1.1. Muscle synergy2

“How does the central nervous system (CNS) control body movements and3

posture?” This question has been discussed for over a century with no conclu-4

sive answer. The coordination of muscles and joints that accompanies movement5

requires multiple degree of freedoms (DoFs). This results a high level of com-6

plexity and dimensionality [1]. A possible explanation to this problem considers7

the notion that the CNS constructs a movement as a combination of small groups8

of muscles (synergies) that act in harmony with each other, thus reducing the9

dimensionality of the problem. This idea could be traced to the first decades10

of the twentieth century [2] and has been formulated and developed through11

the years [3, 4, 5] to reach the Muscle Synergy hypothesis [6, 7, 8]. The mus-12

cle synergy concept posits that the CNS achieves any motor control task using13

a few synergies combined together, rather than controlling individual muscles.14

Although the muscle synergy hypothesis is criticized for being very hard to be15

falsified [9], a repertoire of studies have provided evidence and support for it.16

Those pieces of research could be categorized into two main categories: direct17

stimulation and behavioural studies.18

The stimulation approaches were conducted by exciting the CNS at different19

locations to study the resulting activation pattern. Earlier studies focused on20

the organization of motor responses evoked by micro-stimulation of the spinal21

cord of different vertebral species, such as frogs [3, 4, 5, 10, 11], rats [12] and22

cats [13]. They revealed that the responses induced by simultaneous stimulation23

of different loci in the spinal cord are linear combinations of those induced by24
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separate stimulation of the individual locus. Those findings were supported25

by another direct stimulation studies where a relatively long period of electric26

stimulation applied to different sites in the motor cortex resulted in complex27

movements in rats [14], prosimians [15] and macaques [16, 17]. The chemical28

micro-stimulation has been used through N-methyl-D-aspartate iontophoresis29

injected into the spinal cord of frogs which evoked an electromyographic (EMG)30

patterns that could be constructed as a linear combination of a smaller group31

of muscle synergies [7].32

Similarly, the behavioural studies rely on recording the electrical activity of33

the muscles (electromyogram, EMG) during a specific task (or tasks) or natural34

behaviour. Then, a number of synergies is extracted from the signals using com-35

putational techniques. The identified synergies should be able to describe the36

recorded signal for the related task or behaviour. Studies have been carried out37

on cats where four muscle synergies were sufficient to reproduce 95% of postural38

hind-limb muscles response data [18] and five synergies accounted for 80% of39

total variability in the data [19]. Similar research on monkeys during grasping40

activity showed that three muscle synergies accounted for 81% of variability [16].41

In humans, muscle synergies were identified from a range of motor behaviours42

[20, 21] with the ability to describe most of the variability in EMG signals. In43

addition, other studies show that complex motor outputs such as upper limb44

reaching movements [22], cycling [23, 24] and human postural control [25] are a45

result of the combination of few muscle synergies.46

In the recent years, many studies applied the muscle synergy concept to anal-47

yse and study body movements and muscle coordination in diverse applications.48

For instance, it has been used to establish the neuromuscular system model [26].49

Moreover, the hypothesis has been used in many clinical applications [27] in ad-50

dition to several biomechanical studies such as walking and cycling [28, 29].51

The extracted synergies are utilised in prosthesis control through classification52

[30, 31] and regression [32].53
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1.2. Mathematical models for muscle synergy54

In all studies, the muscle synergies are estimated from the recorded electri-55

cal activity of the muscle. Signals are either collected using surface EMG or56

invasively using needle EMG. Then, the EMG recordings needs to be modelled57

in order to compute the muscle synergies.58

Two main muscle synergy models have been proposed: the time invariant59

or synchronous model [6, 7] and the time-varying or asynchronous model [33,60

8]. The electrical activity for single muscle or channel m(t) is a vector that61

could be expressed according to the time-invariant model as a combination of62

synchronous synergies s (scalar values activated at the same time) multiplied by63

a set of time-varying coefficients or weighting functions w as shown in equation64

165

m(t) =

i=r∑
i=1

siwi(t) (1)

where r is the number of synchronous synergies. Since synergies contribute66

to each muscle activity pattern with the same weighting function wi(t), the67

synergy model is synchronous without any time variation.68

On the other hand, the time-varying synergies are asynchronous as they69

are compromised by a collection of scaled and shifted waveforms, each one of70

them specific for a muscle or channel. Thus, the muscle activity m(t) can be71

described according to the asynchronous model with a group of time-varying72

synergy vectors scaled and shifted in time by c and τ , respectively, as shown in73

equation 2.74

m(t) =

i=r∑
i=1

cisi(t− τi) (2)

In this case, the model is capable of capturing fixed relationships among the75

muscle activation waveforms across muscles and time. By means of comparison,76

time-invariant synergies can acquire the spatial structure in the patterns but any77

fixed temporal relationship can be recovered only indirectly from the weighting78

functions associated with its synchronous synergy.79

Although the time-varying model provides a more parsimonious representa-80

tion of the muscle activity compared to the time-invariant model, some studies81
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have shown evidence that the muscle synergies are synchronised in time [34, 10].82

Therefore, most recent muscle synergies studies apply the time-invariant model83

for synergy extraction. This is done by using matrix factorization techniques on84

multichannel EMG activity to estimate the muscle synergies and their weighting85

functions.86

1.3. Comparison of Matrix factorization techniques87

According to the time-invariant model, the estimation of muscle synergies88

(spatial profile) and their weighting functions (temporal profile) from a multi-89

channel EMG signal is a blind source separation (BSS) problem. This problem90

is approached by matrix factorisation techniques to estimate the set of basis91

vectors (synergies). Various matrix factorisation algorithms have been applied92

based on different constraints. The most commonly used factorisation tech-93

niques to extract synergies for myoelectric control and clinical purposes are94

principal component analysis (PCA) [35] which was applied in [36], indepen-95

dent component analysis (ICA) [37] that was used in [30] and [38], in addition96

to non-negative matrix factorization (NMF) [39] which have been used in [40, 32]97

and [41].98

In this paper, these three techniques are compared among themselves and to99

second-order blind identification (SOBI) [42], a technique which has not been100

used for muscle synergy estimation previously. A first evaluation of the matrix101

factorisation algorithms for muscle synergy extraction was reported in 2006 [43]102

where the algorithms were tested with simulated data under different levels and103

kinds of noise and they were applied on real data to show the similarities be-104

tween their estimated synergies. A more recent study [44] used joint motion105

data to evaluate kinematics and muscle synergies estimated by PCA, ICA and106

NMF using the quality of reconstructing the data by synergies as a metric for107

evaluation. Here, we are concerned with nature and number of muscle synergies108

and the factors that affect their quality which have not been discussed by those109

studies. The sparsity of synergies is investigated where synthetic sparse and110

non-sparse synergies are compared to study their effect on the matrix factorisa-111
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tions. Moreover, the ratio between number of channels and synergies (dimension112

reduction ratio) is studied. Those comparisons are carried out under different113

noise levels to show the robustness of factorisation methods to noise. In addi-114

tion, synergies extracted from a real dataset by the four matrix factorisation115

techniques were used to classify between wrist movements. The classification116

accuracy was used as a metric in the factorisation methods comparison. We117

aim to compare current matrix factorisation techniques in addition to SOBI118

and investigate the factors that affect the quality of their extracted synergies119

such as sparsity and channel/synergy ratio.120

2. Methods121

2.1. Real dataset122

We used the Ninapro first dataset [45, 46] which consists of recordings for123

53 wrist, hand and finger movements. Each movement/task has 10 repetitions124

from 27 healthy subjects. The dataset contains 10-channel signals rectified by125

root mean square and sampled at 100 Hz as shown in Figure 1. The real dataset126

is used in the comparison between matrix factorisation techniques. Moreover,127

it is used as a part of the synthetic data creation as discussed in 2.2.128

For the real data comparison, the three main degree of freedoms (DoF) in-129

vestigated for the wrist motion are wrist flexion and extension (DoF1), wrist130

radial and ulnar deviation (DoF2), and wrist supination and pronation (DoF3).131

Wrist movement through these three degrees of freedom are essential for pros-132

thetic control [47]. Thus, they may highlight the application of muscle synergies133

in myoelectric control.134

2.2. Synthetic data135

The performance of each matrix factorisation algorithm was tested using136

synthetic datasets as ground truth. Since the studies [34, 10] showed an evi-137

dence that the muscle synergies are synchronised in time, the data was generated138

according to the time-invariant model [6] in which EMG activity for jth-channel139
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Figure 1: Example of 10-channel EMG envelopes recorded during wrist extension movement

for 5 s of Subject 4/repetition 1 (the amplitude is normalised only in figure to highlight the

differences between channels).

is the summation of its coefficients in each synergy (sij), weighted by the re-140

spective weighting function (wi(t)), as the following:141

mj(t) =

i=r∑
i=1

sijwi(t) + g(ε) (3)

where mj(t) is the simulated EMG data over channel j, while ε is a Gaussian142

noise vector and g(x) is the Heaviside function used to enforce non-negativity.143

For m-channel data, this model could be expanded into its matrix form. In this144

case, the synthetic EMG data M is a matrix with dimensions (m channels×n145

samples) as146

M(m×n) = S(m×r) ×W(r×n) + g(E) (4)

where r is the number of synergies (r<m) and E is the matrix form of the147

Gaussian noise vector ε for all channels. S (m × r) and W (r × n) are the148

synergy matrix and weighting function matrix form, respectively.149

In order to generate a synthetic EMG signal that mimics the real EMG150

data and carries the synergistic information, the three elements in equation 4151
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should be designed so that they reflect real activities under diverse assumptions.152

The synergy matrix S(m×r) was assigned a non-negative random values between153

[0,1] to retain the additive nature of synergies, while each weighting (activation)154

function W(r×n) is a real EMG envelope randomly assigned from the Ninapro155

dataset from different subjects and movements. This approach based on real156

data was chosen to ensure that the generated signal retains the statistical prop-157

erties of the EMG signal rather than assigning randomly generated signals for158

the weighting function as done in the past [43]. Finally, the non-negative part159

of the Gaussian noise is applied to the mixture by the Heaviside function g(E).160

An example of the generated synthetic EMG signal is shown in Figure 2.161

The synthetic signals were generated with different settings to compare the162

factorisation methods under various conditions. In all settings, the number of163

synergies (r) was fixed to four synergies. This choice was based on the fact164

that the number of synergies used in previous studies varied from one or two165

synergies [32] to six synergies [48], for example.166

Three criteria were investigated: the sparsity of synergy matrix, the num-167

ber of channels, and the added noise level. The sparsity of the synergy matrix168

S(m×r) is investigated since all muscles (channels) may be not activated during169

a specific movement at the same time. The sparse synergies were created by170

constraining each channel by 40% sparsity level (i.e., a maximum of for chan-171

nels being active in each synergy) to ensure that each channel has at least one172

non-zero value in the four synergies. This approach would typically avoid hav-173

ing channels that are inactive in all 4 synergies as shown in Figure 2a as an174

example of sparse synthetic synergies. In comparison, the non-sparse synergies175

are non-negative random values between [0,1]. Secondly, the effect of dimension176

reduction between the generated signal and synergies (basis vectors) is exam-177

ined. The number of synergies is fixed to 4 in all settings while the number of178

channels are 4 (no dimension reduction), 8 or 12 channels. Finally, the effect of179

additive signal to noise ratio (SNR) is compared at three levels: 10, 15 and 20180

dB. In total, 10 synthetic datasets are generated, each containing 1000 separate181

trials for each setting.182
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(c) The resulting synthetic EMG dataset (after adding the noise).

Figure 2: An example of 8-channel synthetic EMG signal (Panel 2c) creation using four sparse

synergies (Panel2a) and their respecting weighting functions (Panel 2b) which is a randomly

selected real EMG segments with 15 dB SNR.

2.3. Matrix factorisation algorithms183

The muscle synergy time-invariant model is approached as a blind source184

separation problem, where a multichannel EMG signal matrix M(t) is modelled185

as a linear mixture of synergies and “source signals”. Therefore, according to186

equation 1, M(t) will follow the linear matrix factorisation model as follows187

M(t) = SW(t) (5)

In this context, S is the mixing (synergy) matrix while W(t) contains the source188

vectors (weighting functions) with dimensions number of synergies × time. The189

noise is disregarded in equation 5. In order to estimate unique solutions, addi-190

tional constraints are needed.191

PCA constrains the components of the model in equation 5 to be orthogonal,192
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where the first component holds the largest variance and the variance progres-193

sively decreases for each component [49]. Here, PCA has been performed using194

the“pca” Matlab function (version 2016a).195

For ICA, the fixed-point algorithm introduced in [50] has been used. Unlike196

PCA, ICA attempts to extract independent components by whitening the data197

to remove any correlation. Then, it rotates the pre-whitened data to extract198

the non-Gaussian components.199

NMF imposes a non-negative constraint on the extracted factors. The algo-200

rithm relies on a cost function to quantify the quality of approximation between201

the data matrix M and its factorised non-negative matrices S and W where202

M ≈ SW. Values of S and W are updated and optimised to find the local203

minima numerically. The Matlab function ”nnmf” (version 2016a) was used to204

perform the NMF based on [51].205

SOBI [42] has not been applied to extract muscle synergies before. However,206

it is included in this comparison because SOBI utilises the joined diagonalisa-207

tion of time delayed covariance matrices to estimate the unknown components.208

Therefore, it could reveal more information about the temporal profile of the209

EMG activity. Thus, SOBI leads to components that are uncorrelated at those210

time delays and, therefore, it is sometimes considered an alternative to ICA,211

which is based on higher order statistics. Here, SOBI was performed using212

the default 4 diagonalised covariance matrices with the function ”sobi” in the213

ICALAB package [52].214

As an illustration, the real 10-channel EMG epoch shown in Figure 1 is215

factorised with the four matrix factorisation methods (PCA, ICA, SOBI and216

NMF) into two synergy model as shown in Figure 3.217

2.4. Factorisation performance comparison using synthetic data218

The synthetic data was used to compare the ability of the four matrix fac-219

torisation techniques to estimate the muscle synergies in three different settings220

(SNR, number of channels and synergies sparsity). The comparison relies on the221

similarity between estimated and true synergies using the correlation coefficient222
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(d) NMF synergies

Figure 3: Two-component muscle synergy extracted via the four matrix factorisation meth-

ods for the 10-channel EMG signal recorded during wrist extension movement for 5 seconds

(Subject 4/repetition 1)

on the basis of full identification of true synergies and similarity level between223

them. The sequence of this process is shown in Figure 4.224

The first step is to match each of the extracted synergies with the true225

ones by calculating Pearson’s correlation coefficients between them. True and226

estimated synergies with the highest correlation value are matched together.227

This matching is done freely and unconstrained. In other words, without forcing228

a full match (all four estimated synergies matched with all four true synergies)229

because in some cases two or more estimated synergies have the maximum230

correlation with the same true synergy. In those cases, the factorisation is not231

successful since the extracted synergies failed to fully represent all true synergies.232

Hence, the “fully matched” criterion is the ability of the factorisation method233

to estimate fully distinctive synergies that match all true synergies without234

duplication. The success rate for a “fully matched” is computed across the235

10 generated datasets. It is used as a metric to judge the ability of extracted236

synergies to fully represent all the true synergies, since a good factorisation237
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Figure 4: Block diagram for the comparison between matrix factorisation techniques.

would represent all of them.238

In order to account to the chance that synergies may be randomly paired,239

the correlation coefficients between the true synergies and a set of randomly240

generated synergies are computed and the pairing rates are compared against241

for each factorisation method using a two-sample t-test with significance level242

set up at (p < 0.05).243

Secondly, the correlation coefficient values for fully identified synergies are

averaged for each trial. The grand average is computed for 10000 trials (1000

epochs× 10 datasets) of each setting combination. Then, it is normalised by

the random synergy’s correlation coefficients (chance grand average) as baseline

removal as the following:

Normalised grand average =
(grand average− chance grand average)

(1− chance grand average)

. The normalised grand average of the correlation coefficients between estimated244

and true synergies is computed for each matrix factorisation method with all245

different combination of the 3 settings (SNR levels, number of channels and246

sparsity). This criterion is an indicator of general factorisation quality. There-247

fore, we statistically analysed it to compare the factorisation techniques and248

the effect of all 3 settings using the 2-way ANOVA method with the significance249

level at (p < 0.05).250
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2.5. Factorisation performance comparison using Real data251

Since there is no ground truth to compare each technique with for the real252

data, we compared the techniques regarding their application for prosthesis253

control. In several studies [31, 53], muscle synergy is used as a feature to classify254

different hand and wrist movements. Therefore, the factorisation techniques are255

assessed according to their classification accuracy for the 3 main wrists DoF.256

To this end, the Ninapro real dataset is divided into training and testing257

sets with 60% (6 repetitions of each task) of the data assigned to training for258

each subject. For each factorisation technique, synergies are estimated from259

training repetitions for each task. Those synergies are used to train k -nearest260

neighbours (k -NN) classifier (k=3 for simplicity). Four classifiers are trained261

using the training synergies, three of them to classify between 2 tasks of each262

wrist DoF while the 4th classifier is trained to classify between all 6 tasks. The263

number of synergies extracted was one for each repetition (two for each DoF)264

as in [32] to avoid permutation issues. The testing dataset - which contains265

the other four repetitions of each task - is used to test those classifiers. One266

synergy is estimated directly from each task repetition in the test set using the267

four factorisation methods and used to predict the task through the trained268

classifiers. The classification error count for each DoF is used to evaluate the269

factorisation techniques.270

2.6. Number of synergies271

For the classification accuracy comparison using real datasets, the functional272

approach to determine number of synergies were chosen. A one-synergy model273

was applied for EMG activity of each movement. On the other hand, for the274

synthetic dataset comparison, the number of underlying synergies was known275

to be four.276

The generated synthetic dataset can also be used to test the mathemati-277

cal methods to determine the number of synergies. The minimum description278

length (MDL) was chosen as an alternative to the explained variance methods279

as the latter is biased towards PCA since this relies on maximising the explained280
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variance on the first components. The MDL method determine the number of281

synergies that could minimise the MDL. For more details please see Appendix282

Appendix A.283

In this study we use the synthetic dataset to test the ability of MDL method284

to estimate the required number of synergies across various settings (Sparsity,285

noise and channel to synergy ratio). Since four true synergies are used, only286

the 8 and 12 channels datasets were investigated as the MDL boundary cannot287

estimate number of synergies when it is equal to channels. This is not a prob-288

lem in practical applications since the muscle synergy hypothesis implies the289

concept of dimension reduction. In addition, three level of SNR (10, 15 and 20290

dB) of sparse and non-sparse datasets were explored with 1000 trials for each291

combination. The result for correct estimation of synergies number is analysed292

via analysis of variance (ANOVA) and multiple comparison of population.293

3. Results294

3.1. Number of synergies295

The model selection method based on MDL was examined with the synthetic296

EMG data where the number of synergies are known (four synergies). The MDL297

method was tested on 1000 trials for each combination of sparsity, three levels298

of noise and two number of channels (8 and 12 channels).299

The ANOVA shows that sparsity has no significant effect on the estimation300

of the correct number of synergies p>0.05, while number of channels has a301

significant effect with [F (1, 11) = 19.94, p = 0.003] as 12-channels datasets302

performs better than 8-channel signals (shown in Figure 5). As for the level303

of noise, the 10 dB SNR had a significantly worse performance than 15 and304

20 dB SNR with the effect of noise significant at [F (2, 11) = 24.22, p = 0.007]305

by 1-way ANOVA. This indicates that, the MDL method for estimating the306

correct number of synergies performs better with lower noise and more available307

channels, as expected.308
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Figure 5: Percentage of correct synergy number estimation using the MDL method across the

three settings (noise, number of channels and sparsity).

3.2. Factorisation performance comparison using synthetic data309

The four matrix factorisation methods were compared on the basis of two310

criteria: synergy full identification success rate and the normalised grand aver-311

age of correlation coefficients for the fully identified synergies. The comparison312

was done on 10000 trials (10 datasets of 1000 trails) for each combination of313

the three settings (sparsity, SNR and number of channels). An example of one314

setting of non-sparse, 12-channel with 15 dB SNR is shown in Figure 6. All the315

four factorisation techniques had converged for all trails except for ICA which316

failed to converge in 1.48% of the trails.317

The four factorisation methods were assessed by their ability to fully identify318

all 4 true synergies by matching them according to their Pearson’s correlation319

coefficients values. In order to rule out any statistical chance from it, a two-320

sample t-test was conducted to compare the success rate of each technique321

and the randomly generated synergies. All the techniques succeeded to reject322

the null hypothesis (p < 0.05) for all the settings. Hence, there is a significant323

difference between the matching success rate for each of the matrix factorisation324

methods and the randomly generated synergies. An example of the success rate325

for one of the settings is shown in Figure 6a, while the average success rate to326

fully identify the true synergies for all settings is represented in Figure 7. NMF327
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Figure 6: The results for non-sparse, 12 channels dataset with 15dB SNR. Panel 6a, the

success ratio for the factorisation techniques to fully match the true synergies is shown. Panel

6b, the normalised similarity values for each technique single trial with the same settings.

Error bars indicate standard deviation.

and PCA are has the highest success rates to fully identify synergies.328

The correlation coefficients of the matched synergies were normalised by329

the random synergy correlation coefficients as shown in Figure 6b. Then the330

normalised correlation coefficient of synergies (synergy matrix) were averaged331

across trials. The grand average for each factorisation method was normalised332

by the chance’s grand average. In Figure 8, the normalised grand average (simi-333

larity metric) for the four matrix factorisation methods is plotted for all different334

settings (sparsity, number of channels and noise level). It is worth mentioning335

that although NMF have the highest similarity for all settings except for the336

four channel case (the results for the sparse, four-channel setting for NMF are337

mostly negative). On the other hand, all four algorithms perform worse with338

four channels (no dimension reduction) with SOBI being the best algorithm339

among them in this case.340

In order to explore the significance of those settings the two-way ANOVA341

was performed with post-hoc multiple comparison test. The result shows that342
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Figure 7: Violin graph for the success rate of full synergy identification for each method across

all settings. The mean and median are represented in the Figure as red crosses and green

squares respectively.

number of channels and sparsity had a significant effect on the grand normalised343

average at [F(2,688)=1364.5, p ≤ 0.05] and [F(1,400)=7.35, p=0.007] respec-344

tively. The multiple comparison test shows that sparse synergies and the higher345

number of channels show better similarity levels. On the other hand, the noise346

level fails to reject the null hypothesis. This means that the level of noise used in347

these experiments did not affect the quality of estimated synergies significantly348

unlike the sparsity or number of channels. In addition, this was supported by349

the interaction results, where factorisation methods and number of channels in-350

teraction showed a significant effect on the grand normalised average, as well351

as factorisation method and sparsity interaction. On the contrary, the noise352

level and factorisation techniques interaction have no significance on the grand353

normalised average.354

The computational efficiency was compared after each technique ran for 100355

times on Matlab 9 with Intel core i7 processor(2.4 GHz, 12 GB RAM) and the356

median value for the running time were computed. PCA and SOBI were the357

fastest with (0.0012 s and 0.0015 s) respectively followed by NMF with 0.0063358

s while ICA was significantly slower by 0.6419 s.359
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Figure 8: The normalised grand average of correlation coefficients for the fully identified

synergies compared across all 3 settings (sparsity, SNR and number of channels) for the 4

matrix factorisation methods. Error bars indicate standard deviation.

3.3. Factorisation performance comparison using Real data360

An example of the four matrix factorisation methods is shown in Figure 3361

by applying them on 10-channel EMG data. In order to show the similarities362

and differences in the estimated synergies and their weightings functions of each363

technique. For example, synergies extracted by PCA and SOBI have similarities364

in this example since both techniques are based on covariance matrices. The365

number of synergies needed in this example was chosen to be two according to366

the MDL method.367

In addition, to compare between the matrix factorisation techniques, a one-368

component synergy was used to train a k -NN classifier (k=3) in order to classify369

between two antagonistic movements (one DoF) for each technique. This was370

calculated for the three wrist DoFs separately as shown in Table 1. In addi-371

tion, the same synergies were used to classify between all six movements (three372

DoFs). The average classification error rate and its standard deviation for the373

27 subjects is also represented in Table 1.374

4. Discussion and Conclusion375

In this paper, we compared the most common matrix factorisation tech-376

niques (PCA, ICA and NMF) for muscle synergy estimation alongside SOBI,377
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Table 1: The classification error count and (error percentage) for each wrist’s DoF (Sample

size=216) and all 3 DoFs (sample size=648) across 27 subjects

PCA ICA SOBI NMF

DoF1

(wrist flexion

and extension)

1

(0.46%)

28

(12.96%)

8

(3.70%)

1

(0.46%)

DoF2

(wrist radial and

ulnar deviation)

12

(5.56%)

29

(13.43%)

19

(8.80%)

1

(0.46%)

DoF3

(wrist supination

and pronation)

7

(3.24%)

31

(14.35%)

18

(8.33%)

5

(2.31%)

All 3 DoFs

(all 6 movements)

43

(6.64%)

122

(18.83%)

65

(10.03%)

41

(6.33%)

a BSS method that had not been applied for synergy extraction yet. Many378

studies rely on muscle synergy concept such as myoelectric control and biome-379

chanical research. However, only two studies [43, 44] compared various factori-380

sation methods (excluding SOBI) for synergy estimation without investigating381

the factors that affect the factorisation quality - except for noise.382

Herein, the comparison was held on real data and synthetic signals generated383

with known synergies and under different settings. Using the synthetic data we384

studied the effect of those settings on the muscle synergy extraction for each385

technique. The sparsity nature of synergies and level of noise was investigated386

in addition to the number of channels needed to extract the four synthetic387

synergies. The ability of the four factorisation methods to extract synergies388

from synthetic data was judged according to two metrics: success rate to fully389

identify synergies (Figure 7) and the correlation coefficients between true and390

estimated synergies (Figure 8). Moreover, the synthetic data was used to assess391

the MDL method to determine number of synergies needed under those three392
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settings.393

For the real datasets, since there is no ground truth to compare synergies394

estimated, we compared the factorisation methods according to the ability of395

their extracted synergies to classify wrist movements (Table 1) as a proof of396

concept for prosthesis control [30, 40]. PCA and NMF had the best classification397

accuracy followed by SOBI, while ICA had the lowest accuracy.398

On the other hand, the synthetic datasets results showed that NMF and399

PCA had better success rate to fully identify the four true synergies than SOBI400

and ICA. However, NMF and SOBI had the best normalised grand average of401

correlation coefficients (similarity level) between estimated and true synergies402

followed by PCA then ICA. Notably, NMF performed poorly with four-channel403

datasets when there was not any dimension reduction. In general, all algorithms404

perform better with higher number of channels compared to synergies, where405

SOBI was the best algorithm when there is no dimension reduction. There-406

fore, SOBI would be a relevant algorithm in situations with limited number of407

electrodes as it is preferable to minimise the number of electrodes for practical408

prosthesis control [54, 55].409

The two-way ANOVA showed that the tested range of SNR has no signifi-410

cance effect on the factorisation performance, although it is noticed that ICA411

was the most unaffected method to noise according to the multiple compari-412

son test. On the other hand, sparsity had a significant effect (p< 0.05) on the413

correlation between true and estimated synergies. According to the multiple414

comparison test, the sparse synergies are easier to estimate by all factorisation415

methods. Moreover, number of channels shows a significant effect (p< 0.05) on416

the correlation between estimated synergies and true ones. In addition, higher417

number of channels to number of synergies ratio provides better synergy extrac-418

tion.419

Regarding the estimation of the number of synergies, the multichannel EMG420

signal is reduced into a lower subspace for the purpose of synergy extraction.421

The estimation of this subspace’s dimension or, in other words, the number of422

synergies is crucial for the factorisation process. In the literature, there are423
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two main approaches to determine the appropriate number of synergies: the424

functional and the mathematical ones. The functional approach determines the425

number of synergies according to the myoelectric control requirements such as426

assigning two [56, 57] synergies for each DoF. On the other hand, the math-427

ematical approach relies on explained variance (using tests such as scree plot428

and Bart test) or the likelihood criteria (such as Akaike information criteria and429

MDL) [58]. Here, we explored the MDL as an alternative for variance explained430

methods. The results show that MDL performs better with higher channel to431

synergy ratio. This supports the current challenges for effective synergy iden-432

tification with limited number of electrodes. However, further investigation is433

needed to compare between different number of synergies estimation methods434

using synthetic datasets with various settings.435

Other limitations are worth noting. The results may be biased towards NMF436

due to the non-negative nature of the simulated synergies. However, this choice437

is supported by previous studies [40] which suggested the usefulness of NMF438

due to the additive nature of the synergies. In addition, further examination is439

needed if the setting of EMG acquisition changes dramatically (really bad SNR,440

much higher number of channels, etc.) to evaluate the validity of our conclusions441

in those settings. Finally, since various studies employ the muscle synergy in442

prosthesis control, a simple approach (k -NN classifier) was used in this paper as443

an example to guide synergy application and to support the synthetic results.444

We treated this part of the study as a proof of concept. Additional work is445

needed with more advanced techniques and variety of tasks and movements.446

In conclusion, this paper compared matrix factorisation algorithms for mus-447

cle synergy extraction and the factors that affect the quality of estimated syn-448

ergies. Our findings suggest that the presence of sparse synergies and higher449

number of channels would improve the quality of extracted synergies. When450

the number of channels equal to synergies (no dimension reduction), SOBI per-451

formed better than other methods although the performance was still poor in452

this case. Otherwise, NMF is the best solution for robust synergy extraction453

when number of channels/muscles is higher than the required muscle synergies.454
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Appendix A. Minimum description length (MDL)672

The MDL method for determining the number of synergies is performed by673

calculating the maximum likelihood estimates of factor loading matrix A and674

the unique variances diagonal matrix Ψ according to the factor analysis model675

C = AAT + Ψ (A.1)

where C is the covariance matrix of Mm×n the multi-channel EMG signal matrix676

with m channels and n samples.677

This is done for different number of synergies (r) between 1 ≤ r ≤ 1
2 (2m+1−678

√
8m+ 1) in order to minimise the MDL. The boundary for r is set by comparing679

the number of equations with unknowns in order to have an algebraic solution680

for equation A.2.681

L(A,Ψ) = −1

2

{
tr(C(Ψ + AAT )−1) + log(det(Ψ + AAT )) +m log 2π

}
(A.2)

MDL = −L(A,Ψ) +
log n

n

(
m(r + 1)− r(r − 1)

2

)
(A.3)

The number of synergies r are selected to minimise the MDL value in equation682

A.3.683
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