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Abstract 7 

A common approach to the analysis of experimental data across much ofthe biological sciences is 8 

test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively 9 

pooling the variation associated with each removed term with the error term used to test 10 

hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis 11 

of applying that data to a previous more complicated model provides motivation for this model-12 

simplification; hence the pooling is test-qualified.  In pooling, the researcher increases the degrees of 13 

freedom of the error term with the aim of increasing statistical power to test their hypotheses of 14 

interest. Despite this approach being widely adopted and explicitly recommended by some of the 15 

most widely-cited statistical textbooks aimed at biologists, here we argue that (except in highly 16 

specialised circumstances that we can identify) the hoped-for improvement in statistical power will 17 

be small or non-existent, and there is likely to be much reduced reliability of the statistical 18 

procedures through deviation of type I error rates from nominal levels.  We thus call for greatly 19 

reduced use of test-qualified pooling across experimental biology, more careful justification of any 20 

use that continues, and a different philosophy for initial selection of statistical models in the light of 21 

this change in procedure. 22 

Key words:  experimental design, pseudoreplication, model simplification 23 
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Introduction 24 

A common approach to the analysis of experimental data across disparate parts of the biological 25 

sciences is test-qualified pooling. A common manifestation of this approach can be summarised as 26 

follows: the researcher fits their data to a model that they select on the basis of the design of their 27 

study and the hypotheses they are interested in testing. After examining the significance of terms in 28 

the model that are not specifically related to the hypothesis currently under investigation, the 29 

researcher then removes non-significant terms from the model, and re-fits their data to this 30 

simplified model. That is, some terms were included in the original model not because they allow an 31 

interesting hypothesis to be tested but because (on the basis of the specifics of the experimental 32 

design allied to previous knowledge of the system) they were expected to explain substantial 33 

portions of the variation. If the data generated in this particular experiment do not suggest that one 34 

or more of these terms are strongly influential then they are dropped from the model, and further 35 

analysis is performed based on a simplified model. Such a simplification process is often seen as 36 

attractive in making presentation of results more compact, in highlighting more influential variables, 37 

and/or in increasing statistical power for exploring the significance of remaining terms.  By 38 

simplifying the model in this way, the researcher is effectively pooling the variation associated with 39 

each removed term with the error term that will ultimately be used to test their hypotheses. This 40 

pooling is only carried out if statistical testing on the basis of applying that data to a previous more 41 

complicated model provides motivation for this approach, hence the pooling is test-qualified.  In 42 

pooling, the researcher increases the degrees of freedom of the error term with the aim of 43 

increasing statistical power to test their hypotheses of interest. Despite this approach being widely 44 

adopted and explicitly recommended by some works on data analysis (e.g.  [1]), other influential 45 

authors explicitly warned against this practice (e.g. [2]). Here we want to offer some resolution of 46 

this apparent conflict in the literature, in order to help authors, reviewers, editors and readers 47 

evaluate the consequences of pooling in different circumstances. Note that although we couch this 48 

discussion in terms of null-hypothesis statistical testing, the arguments transfer naturally to 49 
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approaches based on estimation of effect size; our discussion is however focussed on the  analysis of 50 

data from planned experiments rather than from purely observational studies. The costs and 51 

benefits of test-qualified pooling are more clear-cut for planned experiments where potential 52 

confounding factors can often be eliminated or controlled for by careful experimental design, 53 

removing the need to deal with these factors statistically. Also, planned experiments generally are of 54 

what is termed a “confirmatory” nature, where the study specifically aims to test one or more 55 

hypotheses known from the outset. Observational studies more often have an  “exploratory” 56 

motivation involving measuring a broad range of variables and then seeking to rank them in terms of 57 

potential importance and influence. We return to these issues in the Discussion.  58 

Being clear what pooling is and why you might want to do it 59 

To clarify the issues we consider a specific example. You are interested in the effect of an 60 

experimental treatment (a new humidification system) on the growth of individually-potted tomato 61 

plants. Your experiment will be conducted in ten small greenhouses at your research station, and the 62 

nature of the treatment means that it has to be applied to whole greenhouses. You install the 63 

humidification system in five (randomly selected) greenhouses, leaving the other five as controls, 64 

and you assay the growth of 40 tomato plants in each greenhouse. In this design the greenhouse is 65 

the experimental unit, and any hypothesis test of the treatment should use an error based on the 66 

variation amongst greenhouses rather than variation amongst the individual plants. In this case the 67 

simplest means of analysis would be to calculate a mean growth rate across the 40 plants in each 68 

greenhouse and carry out a one-way ANOVA using these 10 independent data points.  69 

However, as a thought experiment, suppose that we somehow knew for a fact that growth 70 

conditions (in the absence of our treatment manipulation) were absolutely identical amongst our 71 

greenhouses. In this imaginary situation we might argue that, since greenhouse-to-greenhouse 72 

variation is not confounded with any treatment effect we can use the growth measures from the 73 

individual plants as independent data points in our analysis. This will result in a substantial increase 74 
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in our degree of freedom, and consequently our statistical power to detect treatment effects. Of 75 

course in reality, we cannot usually know with certainty whether our greenhouses vary, and this has 76 

led to the development of methods for test-qualified pooling. In this case, we would start by fitting 77 

the nested model defined by the design of our study (with individual plants being nested within 78 

greenhouse). This would include the treatment term, a nested term for the variation amongst 79 

greenhouses in the same treatment group, and a second error term corresponding to the variation 80 

amongst plants in the same greenhouse. The key to test-qualified pooling is that the set of data itself 81 

influences the nature of the analyses performed on it. If initial analysis of the full model indicates 82 

substantial variation amongst greenhouses, then the significance of the treatment term is tested 83 

using the variation amongst greenhouses as its error term with 8 df. However, if there is no evidence 84 

of substantial greenhouse-to-greenhouse variation in this initial analysis then the among-85 

greenhouse and the true error variations are pooled, and this combined error term with 398 df is 86 

used then to provide a test of the treatment effect that is expected to benefit from higher statistical 87 

power (see [3-5] for commonly-cited texts that recommend this approach). The justification that 88 

advocates of test-qualified pooling give for this approach is that in the absence of any greenhouse 89 

effect, the among-greenhouse  and the within-greenhouse error terms are both estimating the same 90 

thing, and so by combining them we get a better estimate than we would estimating the two 91 

separately.  92 

However pooling is not limited to nested designs. Continuing with tomatoes and greenhouses, you 93 

now want to compare the effects of four different growing media in individually-potted tomato 94 

plants rather than the effect of humidity. To gain a sufficient sample size for the experiment you 95 

have to use three different greenhouses to keep all the plants, but because your treatments can now 96 

be applied randomly to individual plants, you randomly allocate equal numbers of plants to each 97 

treatment in each greenhouse leading to a randomised block design (with specific greenhouse 98 

identity as the blocking factor, with three levels). The statistical model implied by this design would 99 

include terms for both treatment applied to a plant and the specific greenhouse a plant was kept in, 100 



5 
 

as well as a treatment-by-greenhouse interaction and an amongst-plant error term based on the 101 

variation amongst individual plants within the same treatment-greenhouse combination. Depending 102 

on the exact hypothesis we wish to test, the appropriate error term for our treatment effect will be 103 

either the interaction term, or the amongst-plant error term [6], but in either case, if the interaction 104 

term is not significant, we might chose to pool its variation with the amongst-plant error term prior 105 

to testing the treatment effect.  Similarly, we might then decide that if the greenhouse term is also 106 

non-significant, we would add that source of variation and its associated degrees of freedom to our 107 

error pool. In either case, we would be carrying out test-qualified pooling.  108 

Another form of pooling can involve the initial test that triggers whether pooling is used or not being 109 

entirely separate to the model testing the hypotheses of interest. To illustrate this, we return to the 110 

experiment above comparing the effects of four different growing media on individually-potted 111 

tomato plants. Imagine that, because of a change of supplier at your institute, you ended up using 112 

two different but broadly similar types of pots to grow the tomatoes in. Plants are randomised to 113 

pot type as well as to growth medium and greenhouse. You really do not expect type of pot to 114 

influence growth rates, but just to be careful you first of all perform a t-test comparing growth rates 115 

across the two types of pot. Your plan is that if (as you expect) this t-test reveals no evidence of a 116 

difference, you report this and use this test as justification for pooling data across the two pot types 117 

in your subsequent analyses. However if it does reveal evidence of a difference then you will either 118 

add pot-type as a factor in subsequent analyses or carry out separate analyses for the two types of 119 

pot. Again, there is the potential for pooling driven by the results of a pre-test, so this scenario is 120 

another manifestation of test-qualified pooling.  121 

 Why is test-qualified pooling controversial?  122 

The case against pooling was made most forcefully and explicitly in the biological literature by Stuart 123 

Hurlbert primarily in relation to its use in nested designs [2]. Hurlbert coined the expression 124 

pseudoreplication for the situation where authors treat data-points that are not independent as if 125 
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they were independent in their data analysis. His original paper on this [7] has been cited over 6000 126 

times and has been hugely influential in the design of data collection and the analysis of data 127 

spanning all of biology. Hurlbert considers the pooling of errors in a nested analysis to be a form of 128 

pseudoreplication, a form that he calls test-qualified sacrificial pseudoreplication. He argues that 129 

pooling biases p-values downwards and biases confidence intervals towards being too narrow. He 130 

further argues that demanding a higher p-value than 0.05 in the initial test before pooling (a process 131 

often called “sometimes pooling”) reduces but does not eliminate these problems. An analogous 132 

argument can be made against pooling interaction terms with error terms when analysing 133 

randomised block designs [6]. However, even in situations where pooling might not be regarded as 134 

analogous to pseudoreplication (e.g. pooling an interaction between two fixed factors prior to 135 

testing the main effects), type 1 error rates can be increased (as we will see below). Despite this, 136 

pooling is still regularly practiced, and is recommended in influential statistics textbooks aimed at 137 

biologists (e.g. [3-5]) and research papers on statistical methodology (e.g. [2,8] ). In the next section 138 

we argue that both philosophically and pragmatically there are strong arguments for siding with 139 

Hurlbert.  140 

The philosophy and pragmatics of pooling  141 

The two main philosophical arguments against pooling are well articulated by Newman et al. [7], and 142 

can be explained in the context of our greenhouses and growth media example. Firstly, if we use 143 

pooling, then the way that we test for an effect of growth medium becomes conditional on the data, 144 

but that conditionality is not acknowledged in the associated p-values. That is, whether we test the 145 

effect of medium in a model with or without a greenhouse term will be determined by the data. 146 

Philosophically, p-values are probabilities based on a very large number of notional replicates of 147 

exactly the experiment under investigation. So imagine that we repeat the full experiment and 148 

analysis of the resulting data again and again. In replicates of this experiment, if we adopt a test-149 

qualified pooling approach then sometimes the analysis will test the main hypothesis one way and 150 



7 
 

sometimes the other. For each form of the analysis, that particular analysis will be implemented only 151 

for a specific subset of replicate experiments determined by the patterns of data in that replicate 152 

experiment. Importantly, this is a biased sample of all the possible replicate experiments in terms of 153 

properties of the sample. Yet the test is predicated on the assumption that it is applied to data from 154 

an experiment drawn without bias from the population of all possible replicates of this experiment. 155 

It is this mismatch that leads to lack of control of type I error and of confidence intervals. Secondly, 156 

by pooling (no matter what critical value we compare the calculated p-value against) we are 157 

accepting that the null hypothesis that there is no effect of greenhouse is true, and the whole 158 

philosophy of null-hypothesis statistical testing is that the null hypothesis is never accepted as true, 159 

rather we might either reject it or find that we do not have sufficient grounds to reject it. Thus, from 160 

a purist philosophical perspective pooling should not be recommended.  161 

We next ask if there is a pragmatic argument that says that pooling may have some less-than-ideal 162 

properties, but pooling leads to relatively mild misbehaviours that are sometimes outweighed by the 163 

(enhanced power) benefits of pooling. There is no underlying theory to give general and definitive 164 

answers to the issue of pragmatics raised above; all we have to go on are a number of numerical 165 

explorations of specific cases. However, the consensus in this literature is that (i) pooling can cause 166 

actual type one error rates to be very different from the nominal value, and (ii) there is no consistent 167 

and substantial increase in power to compensate. Walde-Tsadik & Afifi  [9] explore the effect of 168 

always pooling when one factor is associated with a p-value above 0.05, and also of “sometimes 169 

pooling” when the required critical value was higher than 0.05  in two-way ANOVA random effects 170 

models. They found that both procedures very rarely offered adequate control of type-1 error rate 171 

and even less commonly lead to significant improvement in power to test for an effect of the other 172 

factor. Hines [10] performed extensive simulations and concluded that for multifactorial ANOVA 173 

“the conditions for pooling to be even potentially rewarding are more restrictive than might be 174 

expected, and power improvements are generally lower”. Janky [11] performed a similar analysis of 175 

split-plot designs and concluded that “pooling generally inflates Type I error and offers at best 176 
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insubstantial gain in power (and often power loss) relative to the nominal test.” Even when using a 177 

conservative “sometimes pooling” value of   = 0.35 to trigger pooling, Janky found the type I error 178 

rate in subsequent tests on pooled data rose from the nominal 5% to generally somewhere between 179 

7% and 11%. This study was interesting for highlighting that pooling actually led to a reduction of 180 

power more often than it lead to a substantial gain in power; this occurs because the increase in 181 

inherent variation caused by pooling dominates any effect of increased degrees of freedom devoted 182 

to exploring remaining factors. Figure 1 shows examples of deviations in both directions from the 183 

nominal 5% level for type I error rates generated by simulations of our whole-greenhouse-treatment 184 

thought experiment. In exploring our model we found that small changes in parameter values could 185 

lead to substantial change in the magnitude and direction of deviations from the nominal level. It is 186 

difficult to make generalisations about the circumstances under which deviations will be strongest. 187 

In common with the other studies discussed directly above, we found that the direction and 188 

magnitude of deviations are driven by a complex interaction between structure of the experimental 189 

design, aspects of the shape of the underlying “population” from which sample values are obtained, 190 

and sample sizes. Also, as the highest line in Figure 1 illustrates, relationships with parameter values 191 

can be non-monotonic.  192 

Discussion and Conclusion 193 

Use of test-qualified pooling is widely adopted, but its prevalence across biological sciences is 194 

patchy. For example, it is much less commonplace in clinical trials; where often statistical analyses 195 

have to be specified in pre-registration of trials, and thus scope for flexibility in data analysis is 196 

reduced.  Test-qualified pooling is also relatively uncommon in the agricultural sciences, where 197 

particular designs and modes of analysis that avoid issues of pooling are traditional; and the 198 

statistical software package Genstat is commonly used, which is particularly suited to forms of 199 

analyses that avoid test-qualified pooling.  200 
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We do still consider that test-qualified pooling is over-used in biology. Simply, in “confirmatory 201 

studies” based on designed experiments where we aim to test specific hypotheses (or estimate 202 

specific effect sizes) we do not recommend pooling under any circumstances. The often-modest 203 

expected increases in power from pooling do not make it an attractive option when its drawbacks 204 

are taken into account. Apart from statistical power, the other attraction to pooling is simplification 205 

of the presentation of results, but we feel that this will never be sufficient grounds for justifying the 206 

process. We would only recommend pooling in such a study if the decision to consider test-qualified 207 

pooling was made on the basis of a prior simulation study that aimed at evaluating the 208 

consequences of pooling for Type I and Type II error rates. We have yet to see an example of a study 209 

that provided such a justification for pooling.  210 

As we mentioned in the Introduction, it is not as easy to offer clear and simple guidance on pooling 211 

in purely observational studies, and studies where the researchers’ aims are more focussed on 212 

exploration or prediction than on testing specific hypotheses. However, in such situations pooling 213 

can be seen as a facet of model selection – which is an area of considerable activity in applied 214 

statistics. A particularly useful introduction to the concepts involved is that of Chatfield [12]. He 215 

makes the point that if the same data-set is used to both select the most appropriate model from a 216 

suite of alternatives and also to fit that model, then the interpretation of the fitted model should be 217 

quite different from circumstances where the form of the model is decided upon first and only then 218 

is the data applied to fit that model.  Where there is uncertainty as to the most appropriate model, 219 

then there are methodological developments in model averaging that can acknowledge this ([13] 220 

and [14] offer good introductions for the biologist). A failure to properly acknowledge model 221 

uncertainty when the same data is used to select and fit the model can read to very unreliable 222 

inferences ([12],[15],[16]). 223 

Despite the complexity of the literature on model selection and model uncertainty, we feel that we 224 

can offer a general opinion on the utility of test-qualified pooling outside designed experiments. For 225 
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more exploratory studies where the intention is to identify factors that might be of interest, rather 226 

than to test specific hypotheses, then test-qualified pooling might be more attractive; since 227 

researchers may be willing to live with loss of control  of type I error rates if this helps boost their 228 

statistical power to flag up factors of interest. That is, they may be prepared to suffer higher rates of 229 

false positives to boost their likelihood of detecting real effects. We expect that these power gains 230 

may sometimes be considerable for nested-designs. However for other types of design the literature 231 

discussed in the last section should serve as a caution that power gains from pooling may be small or 232 

non-existent. Our view is that even in exploratory studies, test-qualified pooling cannot really be 233 

recommended except perhaps where the design is nested and where the size of the experiment was 234 

reduced from its ideal size by practical constraints or unforeseen adverse circumstances.   235 

Where does this leave the experimenter in our tomato plant example who just wanted to be diligent 236 

and reassure themselves and their readers that there was no effect due to two different types of 237 

pots being used? They have to make a decision about how important this check is to them. If they 238 

feel that it is worth investing a few degrees of freedom in, then they should include type-of-pot as a 239 

factor in their analysis and pay a modest cost in reduced power to test the hypothesis (comparing 240 

different growth media) that they are really interested in. Alternatively, they may decide that careful 241 

experimental design and explanation of that experimental design should allay concerns about 242 

differential effects of pot types sufficiently that there is no need for formal statistical testing. More 243 

generally, we all have to accept that there are no free statistical analyses, and think hard about 244 

which factors to include in any model. This is analogous to the decision to block on a given variable 245 

in experimental design. It is only advantageous to block on variables that explain a substantial 246 

fraction of variation between experimental units, otherwise the degrees of freedom lost in including 247 

that blocking term are not compensated for by effective partitioning of variation into error and other 248 

terms.  249 
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Sometimes we can make a strong enough case based on careful experimental design (especially use 250 

of randomisation), biological intuition, and logical reasoning for why we can safely assume that some 251 

potentially influential factors are in fact very unlikely to be important in our study, and so we omit 252 

them from our statistical procedures. In fact, we do this all the time. In our example the researcher 253 

felt no need to test whether which shelf on a greenhouse a pot was placed on had an effect, or what 254 

side of the greenhouse, or how near to the door of the greenhouse it was. Sometimes we will feel 255 

that we cannot make a sufficiently strong case this way, and we should then include that factor in 256 

our model and explore its effects statistically. As so often in the design and analysis of scientific 257 

studies, there are no black-and-white rules for which factors to include in your statistical model; we 258 

need to think hard about it and justify our choices in terms of experimental design, understanding of 259 

underlying biology and logical reasoning. This should be good news: model selection should be much 260 

more about biology than about mathematics and probability theory – and biology is what we are 261 

interested in.  262 
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 302 

Figure legend 303 

Figure 1: To illustrate how the type 1 error rate can be affected by test qualified pooling we 304 

examined simulated data sets for both 4 (broken line) and 10 (solid line) greenhouses. In both cases, 305 

equal numbers of greenhouses were allocated to control or treatment conditions (but condition had 306 

no effect on plant growth), and 40 plants were measured in each greenhouse. We also examined the 307 

effect of two different alpha levels for the pooling decision (recommended in [3]: open circles = 0.25 308 

and closed circles = 0.75), and several different levels of among-greenhouse variation (). Under 309 

many different parameter combinations the actual type 1 error rate differs from the desired value of 310 

0.05, sometimes substantially.  311 

Plant growth rates were calculated as a baseline value (10) plus an individual deviation drawn from 312 

N(0,1) plus a greenhouse-deviation drawn from N(0,) and the same for all plants in a given 313 

greenhouse. We analysed each data set in two ways. First we carried out a nested analysis of 314 

variance in which the treatment mean square was tested over the among-greenhouses within-315 

treatment mean square. The same analysis tested for variance among greenhouses by comparing 316 

the among-greenhouses mean square to the amongst-plants error mean square. Second we carried 317 

out an analysis in which data from all greenhouses was pooled. The decision as to which P value to 318 

use for our actual hypothesis test for the effect of the treatment was based on the significance of 319 

the among-greenhouse test at one of two alpha levels. If this test was significant at the appropriate 320 

alpha level we used the P value from the nested model, otherwise we used the P value from the 321 

second model. This process was repeated 100000. The proportion of these runs that gave a P value 322 
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of less than 0.05 (i.e. a false positive at alpha = 0.05) is an estimate of the type 1 error rate. The 323 

simulations were carried out in R, with the AOV function being used for the analyses. 324 

 325 

 326 

 327 

Figure 1: 328 
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