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Recognizing and engineering digital-like logic gates and switches in gene regulatory networks 

 

Highlights 

 Digital-like logic will underpin many future synthetic biology applications 

 Ultrasensitive responses mimic digital switching in analogue systems 

 Control motifs such as sequestration can enhance ultrasensitive behaviour 

 Programmable parts such as dCas9 will facilitate scaling up of genetic circuits 

 Advances in computer aided circuit design will be increasingly important 

 

Abstract 

A central aim of synthetic biology is to build organisms that can perform useful activities in response 

to specified conditions. The digital computing paradigm which has proved so successful in electrical 

engineering is being mapped to synthetic biological systems to allow them to make such decisions. 

However, stochastic molecular processes have graded input-output functions, thus, bio-engineers 

must select those with desirable characteristics and refine their transfer functions to build logic 

gates with digital-like switching behaviour. Recent efforts in genome mining and the development of 

programmable RNA-based switches, especially CRISPRi, have greatly increased the number of parts 

available to synthetic biologists. Improvements to the digital characteristics of these parts are 

required to enable robust predictable design of deeply layered logic circuits. 

 

Introduction 

Electronic computers contain powerful decision-making circuits, built using switches with well-

defined digital characteristics that are connected to produce Boolean logic operators. Synthetic 

biologists are making progress at replicating digital decision making in living organisms, aiming to 

program cells for applications in areas such as environmental sensing and medicine [1–3].  

Digital-like behaviour in natural and synthetic biological systems is used to produce in effect all-or-

nothing responses: the output signal from digital-like modules switches between low and high 

output levels (OFF/ON; binary 0/1) over a short range of input signal. Biology is inherently analogue 

due to the stochastic nature of the molecular interactions that propagate information flow, and so 

biological switches possess digital characteristics to greater or lesser degrees. Strongly digital-like 

characteristics are desirable when implementing biological switches in bio-computing circuits as 

Boolean logic gates [FIG. 1A]. A steep, ultrasensitive transition between OFF and ON states is key, 

minimising signal degradation when logic gates are layered (a condition where the output of one 

logic gates acts as the input for another) [4]. A large difference between output levels in the OFF and 

ON states also reduces noise propagation through the circuit, maintaining signal fidelity. 

The inputs and outputs from connected gates in a circuit must be composable both in terms of signal 

type – so information can be transferred – and amplitude – so that the OFF and ON output levels of 

an upstream gate are below and above the switching threshold for the downstream gate [FIG. 1B]. 



Ideally the switching threshold and output level of a gate should be tunable. Decision-making also 

requires that logic gates receive inputs from multiple upstream gates, whilst remaining orthogonal 

to signals from all other host and synthetic components in the system [5,6]. 

Here we review efforts that have been made to identify parts for digital bio-computation, with an 

emphasis on large part families and those that are amenable to rational redesign, as these will form 

the basis of future large-scale genetic logic circuits. Improvements to the digital characteristics of 

existing biological logic gates are necessary to maintain signal fidelity in deeply layered circuits, and 

we discuss engineering strategies for making these enhancements. 

 

Identifying modules with digital characteristics 

Characterisation of a component’s switching properties allows key properties such as dynamic 

range, activation threshold, and transfer function steepness to be determined [7,8]. The nonlinear, 

ultrasensitive response to an input signal that characterises digital-like biological parts is usually 

quantified by fitting the Hill function to the curve, with ultrasensitive mechanisms having an 

apparent Hill coefficient greater than one [9]. Fundamental knowledge of a biological part’s 

mechanisms of action allows likely candidates for logic gates to be selected: Components with 

known cooperative mechanisms, such as the TetR repressor’s ligand-induced weakening of DNA 

binding affinity [10], can be chosen to provide sensitive switching; High ON:OFF ratios can be found 

in part types with low intrinsic leakiness, for example when a part is absolutely required for output 

such as a phage RNA polymerase [11]; The requirement for integration of multiple signals can be 

fulfilled by choosing components with activating or repressing partners, for example transcription 

factors which need activating chaperones [12]. Our lab has investigated the Pseudomonas syringae 

hypersensitive response pathway regulatory components as a model for engineering orthogonal 

digital-like control of transcription in E. coli [2,5,13,14] [FIG. 2]. A great number of similar regulatory 

modules exist in many different bacterial species, offering a largely untapped resource to construct 

versatile orthogonal genetic logic devices. 

Sophisticated digital genetic circuits require a large number of composable parts that act with 

minimal crosstalk and cause low toxicity to the host.  Genomic mining strategies can be employed to 

screen for orthogonal homologs of useful parts. Stanton et al produced a set of 16 orthogonal TetR 

repressor homologs and cognate operators which was used to build NOT and NOR gates [15] (NOR 

gates are desirable because they are functionally complete). Whilst the design of a single repressor 

binding site within a strong constitutive promoter was appropriate for library construction and 

screening, the authors note that this configuration produces gates with a high OFF state and low 

cooperativity. Future versions could use multiple operators to improve digital characteristics, as will 

be discussed in the section Motifs for ultrasensitivity. 

 

Modifying logic gate characteristics 

Biological components require some modification from their native configuration to allow them to 

connect properly and retain signal fidelity in the context of a large synthetic gene circuit. Whilst 

largely-irrational modification of individual components has been shown to be an effective strategy 



for isolating variants with enhanced ON:OFF ratios and altered thresholds [16], and improved 

orthogonality [12,17], more rational approaches, often using in silico models, enable efficient and 

systematic optimisation. 

 

Tuning for composition 

The output and activation threshold of a switch may be tuned to facilitate composition with 

neighbouring gates, sensors, or analogue synthetic circuitry. This is usually performed by altering the 

concentration of a gate’s constituent components, for example, higher concentrations of an 

activating transcription factor will decrease the activation threshold of a switch [7]. Tuning can be 

achieved using a number of mechanisms [18,19], though usually via changes to the transcription and 

translation initiation sequences. For bacteria especially, part libraries [20,21] and computational 

tools for ribosome binding site design [22,23] enable efficient screening of sequences to achieve 

desired component levels. Transcription and translation initiation sequences suffer from context 

dependencies which must be minimised to enable predictive design of synthetic gene circuits 

[21,24]. Repressive antisense transcription is another technique that could be widely applied to fine-

tune transcriptional logic gate activation thresholds [25].  

 

Motifs for ultrasensitivity 

Many part types do not display ultrasensitive responses, so this property must be engineered. Steep 

switching transitions can occur due to various molecular mechanisms [26,27], but some of these are 

more amenable to intervention by design: Whilst introducing cooperative binding of ligand 

molecules to a receptor would be a difficult (and likely unique) protein engineering problem, 

building gene circuits with motifs that create an ultrasensitive response – such as sequestration, 

multi-step mechanisms, and positive feedback – is a widely applicable strategy, and one that allows 

for tuning of the transfer function.  

The threshold and profile of a transfer function can be modified to have more digital-like 

characteristics using a ‘sequestration’ or ‘titration’ strategy, where high affinity sequestration of a 

signal-carrying factor by a buffer of decoy binding sites must be overcome before its effect on the 

output is observed [FIG. 3A]. This strategy also has the effect of lowering the OFF state, and shifting 

the activation threshold to a higher level [28]. The degree of sensitivity and shape of the response 

may be modified by using decoys with different binding affinities, or different concentrations of 

decoy [29,30]. Sequestration can be performed by a constitutively expressed binding partner: 

Rhodius et al identified twenty highly orthogonal extracytoplamic function σ factors (ECFs) and their 

corresponding promoters, plus cognate anti-σ factors, using genomic part mining [6]. The simple 

buffer gate that results from inducible ECF expression does not exhibit good digital characteristics, 

but using low-level expression of the anti-σ to sequester its partner improves the sigmoidicity of the 

response. Using RNA-RNA interactions for sequestration is an appealing strategy as binding partners 

can be easily designed [31]. Similarly, it is simple to add decoy binding sites for transcription factors 

into synthetic DNA [32]. 



Ultrasensitivity can also arise from multi-step mechanisms, which use an input to regulate multiple 

levels of a signal cascade, resulting in a steeper multiplicative output response [FIG. 3B]. 

Implementation of a cascade also allows for signal amplification, increasing the ON:OFF ratio. Xie et 

al made use of the programmability of nucleic acid components when applying this motif in their 

HeLa cell classifier, adding miRNA target sites to the mRNAs of cascading transcription factors [1]. 

Positive feedback loops have also been successfully employed to increase the steepness of transfer 

functions, and amplify the output signal [FIG. 3C] [33,34]. Palani and Sarkar made use of a dual-

feedback motif which amplified both receptor and transcription factor components of a cascade (i.e. 

also a multi-step mechanism) to improve and tune the threshold, sensitivity, and output of their 

transfer function [34]. Unwanted bistability is a potential downside of using positive feedback 

motifs: because the ‘reset’ transfer function is offset in a bistable system, the range of input 

concentration over which effective bi-directional switching occurs increases, possibly obscuring the 

improvements made by steepening the transfer function [FIG. 3D]. The bistable region can however 

be tuned (minimised) through sequestration [27,30]. 

 

Integrating signals 

Logic gates need to assimilate multiple input signals. For transcriptional logic gates, it is often 

possible to simply combine promoter or operator sequences to control transcription of the output 

[4,15]. Similarly at the RNA level, some cis-acting sequences can be concatenated to allow multiple 

trans-acting elements to control translation, for example small transcription activating RNA cis-

elements [35] or micro RNA target sequences [1].  

Another general strategy for creating AND or NAND logic gates is to split the carrier of an input 

signal into parts that are individually inactive. Split parts might recombine to form the active 

component spontaneously [17], or can be fused to domains that (inducibly [36]) promote 

association. Addition of split-intein domains to divided protein components allows the native 

polypeptide to be reformed, which is useful if there is weak spontaneous association or the activity 

is sensitive to fusions [11,37]. 

 

Scaling-up logic circuits 

Large-scale circuits require large orthogonal sets of switches that are composable, retain signal 

fidelity, and are functionally complete. Part mining is a promising approach for discovering such sets, 

but using parts that have programmable specificities enables their creation in a rational manner. 

Protein tools with customisable DNA-binding specificity, such as transcription activator-like 

repressors, have been used successfully to build logic gates [38], but their repeated structure makes 

them difficult to synthesise. Nucleic acids are facile to produce with current cloning and synthesis 

techniques, but many RNA-based part families suffer from weaker binding interactions compared to 

proteins. In recent years a number of new RNA-based tools have been developed which have 

overcome previous limitations in dynamic range [39,40], but as yet none have all the qualities 

required for large-scale circuits. A promising compromise is a transcriptional switch based on the 



Streptococcus pyogenes clustered regularly-interspaced short palindromic repeat (CRISPR) Cas9 

protein, which combines RNA-based programmability with strong binding. 

 

CRISPR-dCas9 logic gates 

Nuclease-inactive Cas9 (dCas9) retains the ability to tightly bind a target DNA sequence 

complementary to the spacer of a guide RNA (gRNA). Transcriptional repression by dCas9-mediated 

CRISPR-interference (CRISPRi) reduces expression by up to 1000-fold [41,42]. The large ON:OFF ratio 

means CRISPRi can be used for digital-like gene circuits, where layered logic is produced by 

controlling the expression of downstream gRNAs [43,44]. The large ON:OFF ratio is not sufficient for 

deeply layered circuits and so CRISPRi must be engineered into an ultrasensitive switch. Gander et al 

recently fused the Mxi1 chromatin remodeler to dCas9 for improved repression in their yeast gene 

circuits [4]. The increased cooperativity due to Mxi1 activity enabled the construction of three-layer 

logic circuits, plus an impressive seven-layer inverting cascade. dCas9 can also act as a scaffold for 

transcription activation proteins to switch target promoters ON (CRISPRa) [42,45–48], although 

generally lower reported ON:OFF ratios combined with a lack of ultrasensitivity has so far limited the 

use of CRISPRa in digital logic circuits. 

CRISPRi naturally lends itself to NAND logic through differential expression of the gRNA and protein 

components as the inputs [43], and split versions of (d)Cas9 have been developed which will enable 

greater regulatory control and versatility [36,49,50]. Ultimately, dCas9 can effect the decision made 

by the synthetic computation circuit on the host transcriptome [44,45,47]. Improvements in Cas9 

specificity will obviously also be beneficial to CRISPRi circuits [51,52], but orthogonality and 

modularity in synthetic systems can also be improved by optimisation of the target sequences [53]. 

 

Conclusions 

With the resources now available through part mining efforts and use of programmable components 

(TABLE 1), combined with rational approaches to refining logic gate characteristics, we anticipate 

significant increases in the scale and complexity of synthetic biological digital-like logic circuits in the 

near future. Whilst it is prudent to remember that digital logic is not the best choice for all biological 

computations (compared to analogue computing strategies it is often more energy- and resource-

expensive [54,55]), the ability to program organisms to make robust binary decisions will be 

fundamental to many applications. The immediate challenges for the field are to improve the digital 

characteristics of parts to enable deeper layering of circuits, and continue to develop effective 

computational tools for circuit design. 

Due to their programmability it is likely that dCas9 homologs [56] and catalytic mutants of other 

RNA-guided nucleases [57] will play a central role in the next generation of digital gene circuits, 

especially where interaction with the host genome is required. Ultrasensitivity in dCas9 or other 

transcription factors might be improved by the incorporation of sequestration [58], multi-step, or 

feedback strategies, though the addition of dimerization domains to enable cooperative binding to 

DNA is an intriguing untested possibility [44].  



As both part libraries and the scale of desired synthetic circuits grow, the act of choosing the most 

appropriate parts will become increasingly automated [24,59]. Nielsen et al provide an exciting 

insight into the future of digital bio-programming with their recent work, using computer aided 

design to produce functional logic circuits with a 75% success rate in the first design-build-test cycle 

[24]. The study highlights how part insulation is essential for predictive design, and underlines again 

that improvements to the digital character of gates are required to combat the trend of increasing 

failure rate with growing circuit depth. As circuit sizes grow, designers will have to consider the 

functional modularity of parts in order to mitigate the effects of retroactivity [60] and host burden 

[61]. Host chassis genome minimisation will hopefully make undesirable interactions between 

synthetic and host components easier to predict and avoid [62]. Temporal dynamics will also gain 

importance as circuits become more deeply layered, lengthening the time taken to elicit the ultimate 

output, and also increasing the likelihood of faults occurring due to signals propagating at different 

speeds. This will drive the development of new logic gate types with faster switching, perhaps based 

on reversible covalent modification rather than transcription and translation. 

The degree of characterisation that parts are subjected to has so far been fairly ad hoc, based on 

pragmatic project-specific constraints, but the fabrication of large sets of quality components that 

can be applied in diverse situations will change this mind-set. Some standardisation is now required 

for the transition from building at the scale of individual logic gates and simple functions, to the 

construction of effective, robust systems [63]. Standardisation allows for much of the complexity of 

biological systems to be ignored at the systems level, abstracting a functional unit to a small set of 

IN/OUT properties. Canton et al envisioned datasheets to accompany biological parts [64], which 

could include switching thresholds, LOW/HIGH output levels, and signal rise time. This abstraction is 

best suited to highly insulated components, which those involved in decision-making signal 

processing ideally are. The question of how best to define a standard for biological logic gates is 

beyond the scope of this review, but will be influenced by the designs of those who develop 

component libraries, by the properties of the particular part family, and by the requirements and 

established practices of the community of end-users. Standardisation of notation in the form of the 

Synthetic Biology Open Language (SBOL) already facilitates the transferability and uptake of new 

designs [65]; similar ease of use and reuse of components will enable synthetic biology to start 

achieving its potential in real-world applications. 
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Figures 

 

Figure 1 – Digital-like behaviour in biological signal processing.  

(A) Biological switches may be more or less digital-like in character, depending on the ultrasensitivity 

of the switching mechanism. Hill function curves with different Hill coefficients (nH; curves with nH > 

1 display a cooperative, ultrasensitive response) are shown. The switching range between arbitrary 

OFF and ON output thresholds (dashed horizontal lines) decreases (i.e. becomes more digital-like) 

with increasing ultrasensitivity. (B) Two example curves for switches with different properties are 

shown: switch A (black) has a lower activation threshold and larger output dynamic range compared 

to switch B (blue). The lower OFF state and higher ON state of switch A means it can connect 

effectively with downstream gates that possess a wider range of activation thresholds and broader 

switching profiles compared to switch B. TA/TB: Activation threshold for switch A/B, arbitrarily 

defined as input required for 50% output; LOWA/B, HIGHA/B: minimum and maximum output levels for 

switch A/B. 



 

 

Figure 2 – Engineering versatile genetic logic gates in Escherichia coli by repurposing the 

heterologous hrp (hypersensitive response and pathogenicity) gene regulatory components from 

Pseudomonas syringae plant pathogen. 

In the native system (blue box) Pseudomonas syringae bacteria use the bacterial enhancer binding 

proteins HrpRS to activate transcription of σL from the σ54-dependent PhrpL promoter, which in turn 

activates the hrp regulon for Type II secretion; the ATP requirement for formation of the open 

promoter complex at PhrpL means the transcription rate in the OFF state is extremely low, and 

cooperative binding of the HrpRS heterohexamer to the upstream activation sequence allows for an 

ultrasensitive transition to the ON state [5]. A third component, the negative control factor HrpV, 

can be used to sequester HrpS and add further regulation to the switch. The digital-like switching of 

the hrp system has been adapted for the construction of a number of modular synthetic logic gates 

in E. coli. The requirement for both HrpR and HrpS for efficient transcription initiation makes the 

system a natural AND gate [2], and HrpV can be included for multi-input AND-like and N-IMPLY gates 

[14]. HrpRS can also form a simple buffer gate, with optional gain tuning provided by HrpV [13]. 

Adapted from [14]. 

 



 

Figure 3 – Motifs for generating ultrasensitivity.  

(A) Sequestration of a transcription factor (yellow crescents, above graph) by a binding partner (blue 

ovals) produces an ultrasensitive response (red curve). The input signal drives expression of the 

transcription factor, which in turn activates the output response. Expression of the transcription 

factor must be high enough to overcome the buffer of binding partners, resulting in repressed 

output at low input levels, and shifting the activation threshold to a higher input value. (B) 

Schematic of multi-step repression of a cascade for achieving ultrasensitive control of an output 

gene. The repressive input acts at both the upstream constitutive promoter (Pconst) driving 

transcription factor (TF) expression, and the output promoter (PTF) activated by the TF. (C) Schematic 

of a positive feedback circuit. The input signal drives expression of the output and a transcription 

factor (TF) from the input promoter Pin. The TF is then able to positively auto-regulate itself through 

the PTF promoter. (D) Strong positive feedback can produce bistability in a switch. The hysteretic 

response to the input shifts the switching threshold of the OFF-ON curve, increasing the range over 

which reversible switching occurs (shaded tan, OFF and ON output thresholds indicated with dashed 

horizontal lines). 

 

 



Method Repurposing natural gene 

regulatory modules 

Genomic part mining Protein splitting CRISPRi Recombinase 

Requirements Identify parts that have 

good digital 

characteristics, and are 

likely to be orthogonal to 

the desired host. 

Characterise function in 

the synthetic context; test 

for orthogonality and 

toxicity. 

Choose large part family 

with a diverse range of 

specific interactions.  

Construct a library of 

parts and reporters; 

screen for performance, 

orthogonality, and 

toxicity. 

Divide protein into 

inactive sub-units; testing 

a library of split versions 

may be necessary [66].  

Fuse to split-intein 

domains to enable 

reconstitution of full-

length polypeptide. 

Design gRNA sequences 

and cognate operators 

that are orthogonal to 

the host and other circuit 

components. 

Construct NOT or NOR 

gates by combining 

constitutive promoters 

with operators. 

Identify integrases 

and invertases with 

desired orthogonality 

and recombination 

efficiency. 

Design circuit with 

specific 

recombination sites 

in particular order. 

Advantages Can choose parts for 

specific applications, e.g. 

sensing metabolites, or 

integration of particular 

signal types. 

Can generate large sets of 

orthogonal, composable 

parts for large-scale 

circuits. 

Subsequent tuning can 

improve function of 

library variants when 

applied in a circuit 

context. 

Adds AND or NAND logic 

to established part types. 

Easily to program for 

large-scale orthogonal 

circuits. 

Strong repression can be 

achieved; good ON:OFF 

ratios. 

Permanent logic can 

be achieved for 

recording historical 

transient conditions. 

Rewritable logic 

memory can be 

obtained with 

recombination 

direction factor. 

 

Weaknesses May not have broad 

applicability, or be 

amenable to scale-up for 

larger circuits. 

 

Requires part types that 

are amenable to high-

throughput screening. 

Construction of a 

synthetic library can be 

expensive. 

Protein might not split 

into stable or soluble sub-

units; sub-units may not 

localise correctly. 

Crosstalk may occur 

within part families that 

Not ultrasensitive in 

native form. 

 

Limited orthogonal 

versions available; 

response can be long 

and 

nonhomogeneous. 



are split into structurally 

similar sub-units. 

Examples [5,12,14] [6,15] [11,17,49,50] [4,41–44] [Endy Science 2013 

paper, Lu Nature 

Biotech 2013] 

 

Table 1 – Methods for engineering genetic logic gates 


