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Abstract: The bioactive compounds in myrtle berries, such as phenolic compounds and anthocyanins,
have shown a potentially positive effect on human health. Efficient extraction methods are to be used
to obtain maximum amounts of such beneficial compounds from myrtle. For that reason, this study
evaluates the effectiveness of a rapid ultrasound-assisted method (UAE) to extract anthocyanins
and phenolic compounds from myrtle berries. The influence of solvent composition, as well as pH,
temperature, ultrasound amplitude, cycle and solvent-sample ratio on the total phenolic compounds
and anthocyanins content in the extracts obtained were evaluated. The response variables were
optimized by means of a Box-Behnken design. It was found that the double interaction of the
methanol composition and the cycle, the interaction between methanol composition and temperature,
and the interaction between the cycle and solvent-sample ratio were the most influential variables on
the extraction of total phenolic compounds (92.8% methanol in water, 0.2 s of cycle, 60 ◦C and 10:0.5
mL:g). The methanol composition and the interaction between methanol composition and pH were
the most influential variables on the extraction of anthocyanins (74.1% methanol in water at pH 7).
The methods that have been developed presented high repeatability and intermediate precision (RSD
< 5%) and the bioactive compounds show a high recovery with short extraction times. Both methods
were used to analyze the composition of the bioactive compounds in myrtle berries collected from
different locations in the province of Cadiz (Spain). The results obtained by UAE were compared
to those achieved in a previous study where microwave-assisted extraction (MAE) methods were
employed. Similar extraction yields were obtained for phenolic compounds and anthocyanins by
MAE and UAE under optimal conditions. However, UAE presents the advantage of using milder
conditions for the extraction of anthocyanins from myrtle, which makes of this a more suitable
method for the extraction of these degradable compounds.

Keywords: anthocyanins; bioactive compounds; Box–Behnken design; ultrasound-assisted extraction;
myrtle; Myrtus communis L.; phenolic compounds
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1. Introduction

People’s diet is currently improving with a growing demand for healthy food, such as
vegetables and fruit. Some berries have been particularly demanded mainly due to their phenolic
composition [1,2]. Phenolic compounds are quite prone to oxidation due to their high content in double
bonds and hydroxyl groups [3]. This characteristic provides them with a substantial capacity to prevent
the oxidation of free radicals, i.e., chemically unstable species that may damage lipid cells, proteins
and DNA [4]. Therefore, numerous studies support a positive association between the consumption
of berries, which are rich in phenolic compounds, and the prevention against some diseases, such as
cardiovascular or neurodegenerative diseases [5]. For that reason, the phenolic compounds extracted
from berries are being used by the food, cosmetic and pharmaceutical industries to replace synthetic
antioxidants [6,7].

Myrtle (Myrtus communis L.), is a widely spread plant throughout the Mediterranean area and
the Middle East [8]. This evergreen shrub produces dark blue edible berries of different shapes
in most of the characterized ecotypes [9]. These berries are rich in antioxidant compounds, in a
considerably greater degree than most other fruit types [10]. Specifically, myrtle berries have
a high content of phenolic compounds and anthocyanins [11]. The major phenolic compounds
which can be identified in myrtle berries are quercetin 3-O-galactoside, quercetin 3-O-rhamnoside,
myricetin 3-O-rhamnoside, quercetin 3-O-glucoside, ellagic acid and myricetin [12,13]. The major
anthocyanins which can be identified in myrtle berries are delphinidin 3,5-O-diglucoside, delphinidin
3-O-glucoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-arabinoside, petunidin
3-O-glucoside, delphinidin 3-O-arabinoside, peonidin 3-O-glucoside, malvidin 3-O-glucoside,
petunidin 3-O-arabinoside and malvidin 3-O-arabinoside [14,15]. These compounds, as above
mentioned, have exhibited some potentially positive properties for human health, such as antidiabetic,
anti-inflammatory, anti-cancer and antioxidant properties [16]. These medicinal properties have meant
new fields where myrtle can be used. Consequently, it is currently used in the perfume, cosmetics,
healthcare and food industries [17]. In spite of myrtle’s broad potential and the fact that it grows in
many extensive areas, its intensive exploitation takes place mainly in Sardinia. In this area, “Mirto”
liquor is produced by macerating myrtle leaves and berries [18].

In order to determine the quality control of these beneficial compounds, the development of fast
and efficient methods of extraction and analysis is required. Several studies have been carried out on
the antioxidant activity and phenolic compounds in the extracts obtained from myrtle berries [19].
Most of these studies use maceration as the extraction technique, while few studies have been found
that employ new extraction methods to obtain the extract from myrtle berries [20]. Compared to the
commonly used extraction methods, some novel extraction techniques, such as ultrasound-assisted
extraction (UAE), microwave-assisted extraction (MAE) or pressurized-liquid extraction (PLE) greatly
reduce time, costs and volume of solvent, and also improve the quality of the extracts [21]. In a
previous study recently published by the authors, MAE was used for the determination of total
phenolic compounds and total anthocyanins in myrtle berries [22]. Based on the results obtained,
it was concluded that MAE is an eco-friendlier and easier to use a technique for the extraction of both,
phenolic compounds and anthocyanins, from myrtle berries. In this study, UAE is presented as an
alternative extraction method, since UAE offers extraction yields comparable to those obtained by
means of MAE, but exceeds MAE in terms of the number of solvent used, easiness, and economic
cost. The use of ultrasounds is supported by the phenomenon of cavitation. This phenomenon
makes of UAE a widely used method, since it breaks cell walls and releases the target compounds
out of their natural matrices [23]. For the reason, UAE has been used for the extraction of the
antioxidant compounds found in fruits matrices, such as papayas [24], mulberries [25], oranges [26]
or sugarcane [27]. With regard to myrtle, some articles have been found in literature where UAE is
used to extract biological compounds from myrtle berries [28,29], but it has not yet been carried out
a thorough optimization and development of this technique for the specific extraction of phenolic
compounds and anthocyanins. This would be very convenience, since the correct applicability would
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improve the analysis of the raw material, which would enhance the quality, for example, of liquor,
as the main product obtained from myrtle. Moreover, the correct applicability of the method would
allow to track down the evolution of the fruit’s chemical composition during its maturity process.
Reliable maturity indices would be useful to establish optimum harvesting periods, etc.

The aim of the present study is, therefore, to determine optimum conditions for the efficient
extraction methods to obtain the greatest possibly yields of substances with antioxidant activities,
anthocyanins and phenolic compounds from myrtle berries. Furthermore, the UAE results were
compared to those obtained by MAE.

2. Results and Discussion

2.1. Development of the UAE Method

The Box-Behnken design was applied to the optimization of the variables that mainly influence
UAE with regards to total phenolic and total anthocyanins yields. The main variables that affect
UAE efficiency are solvent composition, temperature, amplitude of the ultrasound, cycle, pH,
and solvent-sample ratio [30]. Table 1 shows such influential variables and their corresponding
values studied in this work.

Table 1. Influential variables with their corresponding values studied in this work.

Variables
Studied Ranges

Phenolic Compounds Anthocyanins

Temperature (◦C) 10, 35, 60 10, 35, 60
Amplitude (%) 30, 50, 70 30, 50, 70

Cycle (s) 0.2, 0.45, 0.7 0.2, 0.45, 0.7
pH 2, 4.5, 7 2, 4.5, 7

Solvent-sample ratio (mL/0.5 g) 10, 15, 20 10, 15, 20
Solvent composition (% methanol in water) 50, 75, 100 25, 50, 75

Analysis of variance (ANOVA) was applied to the set of results in order to evaluate the effect of
the different factors on their response and the possible interactions between them. Tables 2 and 3 show
the results obtained from this analysis.

Table 2. ANOVA for the quadratic model adjusted to the extraction of total phenolic compounds.

Source Coefficient Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value p-Value

Model 2940.04 27 108.89 2.31 0.0179

Methanol X1 −1.15 31.97 1 31.97 0.6787 0.4175

Temperature X2 −1.01 24.50 1 24.50 0.5202 0.4772

Amplitude X3 0.0166 0.0066 1 0.0066 0.0001 0.9906

Cycle X4 −4.17 418.01 1 418.01 8.88 0.0062

pH X5 −0.8371 16.82 1 16.82 0.3571 0.5553

Ratio X6 0.5498 7.26 1 7.26 0.1541 0.6979

Methanol × Temperature X1X2 6.75 364.53 1 364.53 7.74 0.0099

Methanol × Amplitude X1X3 1.01 8.14 1 8.14 0.1729 0.6809

Methanol × Cycle X1X4 −2.00 63.93 1 63.93 1.36 0.2545

Methanol × pH X1X5 4.38 153.56 1 153.56 3.26 0.0826

Methanol × Ratio X1X6 −0.7961 5.07 1 5.07 0.1077 0.7454

Temperature × Amplitude X2X3 −0.7882 4.97 1 4.97 0.1055 0.7479

Temperature × Cycle X2X4 0.6373 3.25 1 3.25 0.0690 0.7949

Temperature × pH X2X5 2.87 132.23 1 132.23 2.81 0.1058
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Table 2. Cont.

Source Coefficient Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value p-Value

Temperature × Ratio X2X6 −2.36 44.72 1 44.72 0.9495 0.3388

Amplitude × Cycle X3X4 −4.26 144.96 1 144.96 3.08 0.0911

Amplitude × pH X3X5 −1.14 10.47 1 10.47 0.2222 0.6413

Amplitude × Ratio X3X6 1.87 56.01 1 56.01 1.19 0.2855

Cycle × pH X4X5 −2.64 55.80 1 55.80 1.18 0.2863

Cycle × Ratio X4X6 6.71 359.66 1 359.66 7.64 0.0104

pH × Ratio X5X6 1.68 22.66 1 22.66 0.4812 0.4940

Methanol × Methanol X1
2 −8.06 668.48 1 668.48 14.19 0.0009

Temperature × Temperature X2
2 −0.2020 0.4197 1 0.4197 0.0089 0.9255

Amplitude × Amplitude X3
2 1.79 32.81 1 32.81 0.6967 0.4115

Cycle × Cycle X4
2 1.87 36.12 1 36.12 0.7669 0.3892

pH × pH X5
2 2.96 90.01 1 90.01 1.91 0.1786

Ratio × Ratio X6
2 −2.20 49.57 1 49.57 1.05 0.3144

Residual 45.85 1224.48 26 47.10

Lack of Fit 1075.70 21 51.22 1.72 0.2858

Pure Error 148.78 5 29.76

Total 4164.52 53

Table 3. ANOVA for the quadratic model adjusted to the extraction of total anthocyanins.

Source Coefficient Sum of
Squares

Degrees of
Squares

Mean
Square F-Value p-Value

Model 2514.45 27 93.13 1.47 0.1631

Methanol X1 4.80 553.02 1 553.02 8.75 0.0065

Temperature X2 −2.05 100.49 1 100.49 1.59 0.2185

Amplitude X3 −1.88 85.15 1 85.15 1.35 0.2563

Cycle X4 −2.47 146.43 1 146.43 2.32 0.1400

pH X5 1.13 30.92 1 30.92 0.4892 0.4905

Ratio X6 −0.1120 0.3008 1 0.3008 0.0048 0.9455

Methanol × Temperature X1X2 −5.59 250.28 1 250.28 3.96 0.0572

Methanol × Amplitude X1X3 −4.68 174.94 1 174.94 2.77 0.1082

Methanol × Cycle X1X4 −2.18 76.24 1 76.24 1.21 0.2821

Methanol × pH X1X5 6.51 338.73 1 338.73 5.36 0.0288

Methanol × Ratio X1X6 0.0864 0.0598 1 0.0598 0.0009 0.9757

Temperature × Amplitude X2X3 −0.1454 0.1691 1 0.1691 0.0027 0.9591

Temperature × Cycle X2X4 −1.16 10.77 1 10.77 0.1704 0.6831

Temperature × pH X2X5 −3.14 157.76 1 157.76 2.50 0.1262

Temperature × Ratio X2X6 0.8116 5.27 1 5.27 0.0834 0.7751

Amplitude × Cycle X3X4 3.73 111.16 1 111.16 1.76 0.1963

Amplitude × pH X3X5 −1.63 21.28 1 21.28 0.3368 0.5667

Amplitude × Ratio X3X6 −1.04 17.31 1 17.31 0.2739 0.6052

Cycle × pH X4X5 −0.7232 4.18 1 4.18 0.0662 0.7990

Cycle × Ratio X4X6 0.2305 0.4249 1 0.4249 0.0067 0.9353

pH × Ratio X5X6 −0.9561 7.31 1 7.31 0.1157 0.7365

Methanol × Methanol X1
2 −1.95 39.12 1 39.12 0.6191 0.4385

Temperature × Temperature X2
2 2.23 50.98 1 50.98 0.8068 0.3773

Amplitude × Amplitude X3
2 2.89 86.14 1 86.14 1.36 0.2536
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Table 3. Cont.

Source Coefficient Sum of
Squares

Degrees of
Squares

Mean
Square F-Value p-Value

Cycle × Cycle X4
2 −1.17 14.04 1 14.04 0.2221 0.6414

pH × pH X5
2 2.03 42.24 1 42.24 0.6683 0.4211

Ratio × Ratio X6
2 −1.64 27.72 1 27.72 0.4386 0.5136

Residual 23.34 1643.02 26 63.19

Lack of Fit 1469.28 21 69.97 2.01 0.2248

Pure Error 173.75 5 34.75

Total 4157.47 53

This information was supplemented with Pareto Charts (Figure 1). Pareto charts show each effect
and combination of effects by a bar in decreasing order of significance. From a graphical point of view,
this allows to visualize the influencing variables and their degree of influence.
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In the case of total phenolic compounds (Figure 1a), cycle (X4) was the only linear term which
had a significant effect, with a p-value lower than 0.01. Its effect on the response variable was
negative (b4 = −4.17). Numerous studies show that the cycle is an influential variable since the use
of ultrasound cycles (pulse) improves the extraction of certain compounds of interest, such as the
phenolic compounds in natural matrices [31–33]. The negative effect means that a decrease in the
cycle increases the extraction of phenolic compounds. This may be due to the negative chemical and
physical effects of cavitation [34]. The negative effect is often due to the reactions of free radicals
formed during the sonication with molecules in the medium [35], which accelerates the degradation
process of phenolic compounds. In addition, the solvent composition had a significant quadratic
influence (X1

2) on the response variable (p-value < 0.01). The solvent composition is an important
variable since it is necessary to extract the phenolic compounds with solvents of similar polarity [36].
Specifically, X1

2 showed a negative effect (b11 = −8.06). With regards to interactions between factors,
minor interactions between methanol and temperature (X1X2) (p-value < 0.01) and between cycle
and solvent-sample ratio (X4X6) (p-value < 0.05) were observed. Both interactions showed positive
coefficients (b12 = 6.75 and b46 = 6.70).

In the case of anthocyanins (Figure 1b), solvent composition (X1) was the only linear term that
had a significant effect, with a p-value lower than 0.01. Its effect on the response variable was
positive (b1 = 4.80), which indicates that an increase in the methanol percentage in the solvent favored
the anthocyanins content in the extract. Many pieces of research have been found in the literature
which shows that hydroalcoholic mixtures are more efficient than pure solvents for the extraction of
moderately polar molecules, such as phenolic compounds [36]. Phenolic compounds have a moderate
polarity, so they are not extracted adequately when pure water mixtures are used (high polarity).
The use of methanol increases the solubility of phenolic compounds and the use of water in a lower
percentage helps the desorption of the solute from the sample [37]. With regard to the interactions
between factors, a minor interaction between methanol and pH (X1X5) (p-value < 0.05) was observed
with a positive coefficient (b15 = 6.51). These results agree with the bibliographic data [38] where
the concentration of organic solvent used and the pH are influential variables on the extraction and
stability of anthocyanins from vegetable matrices. Which regard to quadratic effects, non-significant
interactions were obtained (p-value > 0.05).

The polynomial Equations (1) and (2) for anthocyanins and total phenolic compounds
were obtained from the coefficients of the effects and interactions (Tables 2 and 3). Therefore,
two second-order mathematical models were obtained to predict the YTA and YTP response values as a
function of the independent variables. Lack of fit test showed p-values greater than 0.05 for phenolic
compounds and for anthocyanins which means that both models fit well.

YTA (mg·g−1) = 23.3422 + 4.80026·X1 − 2.04623· X2 − 1.88357·X3 − 2.47009·X4 + 1.13497·X5 −
0.111961· X6 − 1.95032·X1

2 − 5.59331·X1X2 − 4.67624·X1X3 − 2.18294·X1X4 + 6.50698·X1X5 +
0.0864269·X1X6 + 2.22638·X2

2 − 0.145373·X2X3 − 1.16027·X2X4 − 3.14005·X2X5 + 0.811562·X2X6

+ 2.89386·X3
2 + 3.72761·X3X4 − 1.63114·X3X5 − 1.04011·X3X6 − 1.16818·X4

2 − 0.72317·X4X5 +
0.230451·X4X6 + 2.02637·X5

2 − 0.956103·X5X6 − 1.64156·X6
2

(1)

YTP (mg·g−1) = 45.8533 − 1.15407·X1 − 1.0103·X2 + 0.0166375·X3 − 4.17338·X4 − 0.837125·X5 +
0.549829·X6 − 8.06168·X1

2 + 6.75029·X1X2 + 1.00895·X1X3 − 1.99896·X1X4 + 4.38119·X1X5

−0.796125·X1X6 − 0.201989·X2
2 − 0.78815·X2X3 + 0.637275·X2X4 + 2.87481·X2X5 − 2.3643·X2X6

+ 1.78604·X3
2 − 4.25675·X3X4 − 1.14384·X3X5 + 1.87097·X3X6 + 1.87383·X4

2 − 2.6411·X4X5 +
6.70505·X4X6 + 2.95825·X5

2 + 1.68306·X5X6 − 2.19536·X6
2

(2)

Both mathematical models can be reduced by omitting the insignificant terms (p-value > 0.05).
The Equations (3) and (4) of the two reduced models were expressed as follows:

YTA (mg·g−1) = 23.3422 + 4.80026·X1 − 6.60698·X1X5, (3)
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YTP (mg·g−1) = 45.8533 − 4.17338·X4 − 8.06168·X12 + 6.75029·X1X2 + 6.70505·X4X6 (4)

The trends outlined above were recorded in three-dimensional (3D) surface plots using the fitted
model in order to improve our understanding of both, the main and the interaction effects, of the most
influential parameters. The combined effects of cycle-methanol, methanol–temperature and cycle-ratio
on the total phenolic compounds recovery are represented in Figure 2a–c. The combined effect of
solvent composition and pH on the total anthocyanins recovery is represented in Figure 2b.
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2.2. Optimal Conditions

According to the experimental design, the ideal UAE conditions to extract the phenolic compounds
were as follows: 92.8% methanol in water as a solvent, 60 ◦C extraction temperature, 65.48% ultrasound
amplitude, 0.2 s cycles, pH 6.8, and 10:0.5 mL:g solvent-sample ratio. With regard to the temperature,
no higher temperatures were verified, since they might imply a greater degradation of the compounds
of interest and a high loss of methanol that would affect the solvent-sample ratio [39]. With respect to
pH, an almost neutral value was determined as optimal, since different research shows that acidified
solvents may enhance the formation of free radicals in aqueous solutions because of their higher
concentration of H+ or thermal treatment [32], which would hinder the recovery of the phenolic
compounds [35].

With regards to anthocyanins, optimum UAE conditions were as follows: 74.1% methanol in
water solvent, 10 ◦C extraction temperature, 30% ultrasound amplitude, 0.3 s cycles, pH 7, and 18:0.5
mL:g as the solvent-sample ratio. With respect to temperature, the lowest end of the range studied
(10 ◦C) was determined as the optimum value. Although anthocyanins are also phenolic compounds,
they are more thermally sensitive than other phenolic compounds. High temperatures can diminish
the recovery of anthocyanins due mainly to oxidation, cleavage of covalent bonds or an increase in
oxidation reactions as a result of the thermal treatment [40]. With respect to the solvent pH, neutral pH
was found to be optimum for the extraction of anthocyanins. Although pH between 1 and 3 usually
generates stable conformation for anthocyanins, there are many articles in the literature where the
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highest extraction yields take place with a higher pH (3–7) [34]. This behavior might be the effect
of different factors on anthocyanins stability (light, temperature, extraction time, etc.), which may
turn them into other compounds [41]. Specifically, some authors affirm that ultrasound can promote
the degradation of the anthocyanins because of the radical hydroxyl (OH•) and hydrogen peroxide
(H2O2) produced inside the cavitation bubbles when subjected to conditions, such as high ultrasonic
power, high amplitude, low temperature and long treatment time [42]. No higher pH was checked for
anthocyanins since this may cause unstable structures as a result of basic hydrolysis [43].

In conclusion, for both, phenolic compounds and anthocyanins, maximum extractions were
obtained when the solvent had a high percentage of methanol and neutral pH. Specifically, for the
extraction of phenolic compounds a higher range of percentages was required.

2.3. Extraction Time

Once the effects of the variables on the extraction methods and the optimal values were known,
the kinetics of the extractions was studied. Several extractions were carried out under optimal
ultrasound conditions while extraction time varied between 2, 5, 10, 15, 20, and 25 min. The average
results obtained (n = 3) for phenolic compounds and for anthocyanins are represented in Figure 3.
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It can be seen that large recoveries are achieved for both types of bioactive compounds and that
long extraction times are not required. The Phenolic compounds present their maximum extraction
at 5 min. However, longer extraction times led to lower recoveries, probably due to degradation
of the phenolic compounds [25]. With respect to the anthocyanins, 2 min was determined as their
optimum extraction time, since it exhibited the same yields as with longer times, while saving both,
time and costs.

2.4. Repeatability and Intermediate Precision of UAE Methods

The precision of the extraction methods was evaluated in terms of repeatability (intra-day)
and intermediate precision (inter-day). Repeatability was evaluated by performing 10 extractions
under the same conditions on the same day. Intermediate precision was evaluated by performing 10
additional extractions on each one of the following two days. Altogether, 30 extractions were carried
out under optimal extraction conditions to evaluate the precision of the extraction method for phenolic
compounds and for anthocyanins. This method is employed in numerous studies [25,44]. The results
were expressed by the coefficient of variation (CV) of the means. The repeatability results obtained
were: 2.95% for phenolic compounds and 2.23% for anthocyanins. The intermediate precision results
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were: 4.66% for phenolic compounds and 4.15% for anthocyanins. As it can be seen, all the results are
within acceptable limits (±10%) according to AOAC [45] and supported the accuracy—with diversions
lower than 5.0%—of the extraction methods for total anthocyanins and total phenolic compounds.

2.5. Application of the Developed Methods to Ecotypes from Two Locations

In order to determine the applicability of the developed methods, once they had been optimized,
they were applied to a new set of samples. Specifically, 14 ecotypes of myrtle were evaluated. 8 ecotypes
from Puerto Real region (My-1, My-2, My-3, My-4, My-5, My-6, My -7, and My-8) and 6 from San José
del Valle region (My-9, My-10, My-11, My-12, My-13, and My-14). The phenolic compounds were
extracted from the 14 ecotypes in duplicate by applying the UAE method according to the optimum
conditions previously determined. This should ensure the greatest possible yields. The quantification
of the total phenolic compounds content in the extracts was carried out by Folin-Ciocalteau reagent.

The anthocyanins compounds were also extracted from the 14 samples according to the optimal
conditions determined for the developed UAE method. The anthocyanins content in the extracts was
quantified by UHPLC-UV-vis. The total anthocyanins content is the result of adding up each separate
anthocyanin content. The average extraction and quantification results are shown in Table 4.

2.6. Analysis by Conglomerate

As a consequence of the chemical results obtained, it can be observed that there are differences
between the average values obtained from the different myrtle ecotypes. To objectively study if these
visual differences are related to the origin of the ecotypes, a comparative chemometric study was
carried out using all the average values. Specifically, the data matrix D13 × 14 (Dvariables × ecotypes)
(Table 4) was evaluated using an exploratory tool, i.e., Hierarchical Cluster Analysis (HCA). Ward’s
method and square Euclidean distance were employed and the variables for the differentiation were:
The total phenolic compounds (mg·g−1) from each experiment; each individual anthocyanin content,
11 anthocyanins (mg·g−1), and total anthocyanins (mg·g−1). Myrtle is a shrub that grows better in
warm and humid areas, and requires rich, humid soils. These characteristics match those of Puerto Real,
which is near the sea with humid and sandy soils. San José del Valle has drier climate conditions and
its clay soil is not so fertile [46,47]. These differences may lead to differences between the maturation
processes of the autochthonous ecotypes in Puerto Real and San José del Valle, and consequently, to
variations in their bioactive composition. The results of the analysis are graphically represented as a
dendrogram in Figure 4. An obvious differentiation of the samples into two groups can be observed:
Cluster A, includes only the ecotypes from Puerto Real, and Cluster B, only includes the ecotypes from
San José del Valle. Therefore, based on their tendency to fall into a particular group in accordance
with their origin, it can be said that phenolic compounds and anthocyanins contents in each ecotype is
related to the berries’ geographical area of origin. Specifically, the ecotypes in Cluster A, Puerto Real,
present a total phenolic compounds and anthocyanins content greater than the ecotypes in Cluster B,
from San José del Valle. The differences can be attributed to the different climatic and soil conditions
above mentioned.
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Table 4. Extract concentrations (mg·g−1) of total anthocyanins and total phenolic compounds (n = 3) obtained from different myrtle ecotypes by means of
ultrasound-assisted method (UAE).

Compounds 1
Myrtle ecotypes from Puerto Real Myrtle ecotypes from San José del Valle

MY-1 MY-2 MY-3 MY-4 MY-5 MY-6 MY-7 MY-8 MY-9 MY-10 MY-11 MY-12 MY-13 MY-14

D-3,5-diGl 0.166 ±
0.006

0.415 ±
0.016

0.404 ±
0.015

0.504 ±
0.020

0.377 ±
0.014

0.375 ±
0.016

0.183 ±
0.008

0.103 ±
0.0034

0.127 ±
0.004

0.065 ±
0.002

0.079 ±
0.0023

0.176 ±
0.0067

0.113 ±
0.003

0.134 ±
0.004

Del-3-Glu 10.552 ±
0.161

16.309 ±
0.534

10.305 ±
0.358

11.114 ±
0.384

12.557 ±
0.481

12.258 ±
0.432

8.315 ±
0.326

5.929 ±
0.165

3.667 ±
0.152

1.566 ±
0.008

2.145 ±
0.084

3.823 ±
0.124

2.987 ±
0.121

3.346 ±
0.135

Cy-3-Ga 0.150 ±
0.006

0.382 ±
0.008

0.216 ±
0.009

0.359 ±
0.007

0.319 ±
0.012

0.371 ±
0.0135

0.176 ±
0.007

0.392 ±
0.012

0.050 ±
0.001

0.052 ±
0.002

0.068 ±
0.0018

0.1757 ±
0.005

0.077 ±
0.002

0.036 ±
0.001

Cy-3-Gl 1.794 ±
0.084

3.004 ±
0.15

1.126 ±
0.023

1.241 ±
0.036

1.613 ±
0.03

1.313 ±
0.0578

1.946 ±
0.034

0.791 ±
0.043

0.852 ±
0.024

0.293 ±
0.01

0.301 ±
0.016

0.512 ±
0.025

0.452 ±
0.013

0.786 ±
0.032

Cy-3-Ar 0.092 ±
0.003

0.126 ±
0.002

0.076 ±
0.002

0.130 ±
0.002

0.112 ±
0.004

0.170 ±
0.006

0.061 ±
0.14

0.081 ±
0.0025

0.170 ±
0.003

0.040 ±
0.001

0.410 ±
0.021

0.657 ±
0.027

0.549 ±
0.23

0.188 ±
0.006

Pet-3-Gl 6.217 ±
0.110

11.007 ±
0.38

7.173 ±
0.314

8.691 ±
0.301

8.329 ±
0.297

10.242 ±
0.392

5.538 ±
0.0423

5.082 ±
0.176

6.810 ±
0.235

1.580 ±
0.018

1.676 ±
0.065

2.123 ±
0.085

1.823 ±
0.067

6.643 ±
0.114

Del-3-Ara 0.840 ±
0.005

2.378 ±
0.102

1.635 ±
0.062

1.775 ±
0.067

1.917 ±
0.064

2.009 ±
0.081

1.335 ±
0.021

1.562 ±
0.035

1.833 ±
0.076

0.367 ±
0.006

0.324 ±
0.009

0.679 ±
0.021

0.454 ±
0.014

1.234 ±
0.033

Peo-3-Gl 1.030 ±
0.017

1.179 ±
0.043

0.659 ±
0.019

0.689 ±
0.021

0.610 ±
0.023

0.816 ±
0.029

0.755 ±
0.34

0.481 ±
0.019

0.473 ±
0.015

0.305 ±
0.017

0.357 ±
0.012

0.921 ±
0.032

0.564 ±
0.013

0.446 ±
0.012

Mal-3-Gl 9.834 ±
0.314

16.691 ±
0.641

16.050 ±
0.65

18.301 ±
0.614

12.748 ±
0.768

23.817 ±
1.032

8.244 ±
0.273

9.072 ±
0.348

6.987 ±
0.246

5.195 ±
0.068

5.453 ±
0.185

7.679 ±
0.23

6.456 ±
0.241

5.979 ±
0.263

Pet-3-Ar 0.269 ±
0.009

0.551 ±
0.034

0.448 ±
0.014

0.587 ±
0.013

0.482 ±
0.028

0.751 ±
0.0013

0.332 ±
0.012

0.583 ±
0.015

0.438 ±
0.017

0.197 ±
0.002

0.206 ±
0.008

0.657 ±
0.023

0.454 ±
0.012

0.446 ±
0.012

Mal-3-Ar 0.226 ±
0.004

0.302 ±
0.009

0.402 ±
0.012

0.436 ±
0.121

0.296 ±
0.015

0.598 ±
0.019

0.240 ±
0.009

0.395 ±
0.014

0.185 ±
0.005

0.221 ±
0.001

0.244 ±
0.012

0.846 ±
0.032

0.679 ±
0.031

0.165 ±
0.006

Total anthocyanins 31.170 ±
1.023

52.346 ±
1.124

38.493 ±
3.516

43.827 ±
2.557

43.274 ±
1.904

60.252 ±
0.002

35.207 ±
1.175

32.903 ±
1.162

21.591 ±
0.92

10.381 ±
0.037

11.263 ±
0.431

18.249 ±
2.30

14.608 ±
1.964

19.403 ±
1.97

Total Phenolic
compounds

70.747 ±
1.433

86.439 ±
3.125

64.7586
± 0.914

60.034 ±
0.44

72.155 ±
3.174

76.124 ±
1.170

76.070 ±
3.417

69.815 ±
2.947

49.824 ±
0.362

52.66 ±
0.038

45.789 ±
1.824

51.278 ±
2.051

49.103 ±
0.192

50.897 ±
1.564

1 Del-3,5-diGl, delphinidin 3,5-O-diglucoside; Del-3-Glu, delphinidin 3-O-glucoside; Cy-3-Ga, cyanidin 3-O-galactoside; Cy-3-Gl, cyanidin 3-O-glucoside; Cy-3-Ar, cyanidin 3-O-arabinoside;
Pet-3-Gl, petunidin 3-O-glucoside; Del-3-Ara, delphinidin 3-O-arabinoside; Peo-3-Gl, peonidin 3-O-glucoside; Mal-3-Gl, malvidin 3-O-glucoside; Pet-3-Ar, petunidin 3-O-arabinoside;
Mal-3-Ar, malvidin 3-O-arabinoside.
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2.7. Comparison Study: UAE vs. MAE

As above mentioned, the greatest phenolic compounds and anthocyanins yields using UAE were
obtained under the following optimal conditions: methanol:water solvent ratio 92.8% v/v at 60 ◦C for
phenolic compounds and methanol:water solvent ratio 74.1% v/v at 10 ◦C for anthocyanins.

In comparison with traditionally used methods for the extraction of the phenolic compounds in
myrtle berries, UAE achieves a greater recovery of the compounds of interest, while using less solvent
and in a shorter time, with the consequent cost reduction [11,17]. This increased effectiveness with
greater extraction yields of both, total phenolic compounds and total anthocyanins, could be based on
the phenomenon of cavitation, which breaks cell walls and releases the compounds of interest from
the myrtle berries’ matrices.

With the purpose of rounding up this study, the results obtained using UAE were compared
to those achieved by MAE in previous work. For that purpose, the same number of samples were
run under optimum conditions and later on analyzed [22]. The total phenolic compounds and total
anthocyanins content extracted from myrtle berries at different times using UAE and MAE are shown
in Figure 5.

With respect to the phenolic compounds (Figure 5a), a similar trend is observed in both extraction
methods. The phenolic compounds yield increases until the maximum extraction value is reached at
5 min for UAE and at 15 min for MAE. From then on, the quantity of the extract begins to decrease.
The optimum time for UAE, 5 min, indicates that UAE degrades phenolic compounds faster than MAE
and the recovery is also lower. When compared to UAE, as recently reported by Ghafoor et al. [48,49],
MAE obtains extracts with a substantially greater content of phenolic compounds than the one obtained
by UAE.

With respect to the anthocyanins (Figure 5b), their content levels are very similar in MAE and
UAE extracts. In addition, the extraction time required to achieve good yields (2 min) is low for
both methods, which would considerably reduce costs when operating at an industrial scale. At the
optimal time of two minutes, the anthocyanins extraction is slightly higher when MAE is used.
However, at longer times, MAE extracts have lower anthocyanins content [50]. MAE optimal operating
temperature (50 ◦C) makes anthocyanins, thermally labile, begin to degrade before.

Additionally, both techniques were applied to different myrtle ecotypes (Figure 6). As above
noted, MAE stands out as a more efficient method for the extraction of the phenolic compounds in
myrtle berries. With respect to anthocyanins, although some particular ecotypes produced greater
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yields by MAE, most of them produced greater yields when UAE was employed. Anthocyanins are
extremely susceptible to degradation and the combination of high pressure and temperature that is
employed for MAE would enhance such degradation and affect negatively their recovery.
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Therefore, the UAE should be seriously considered as the preferred method for the extraction of
the anthocyanins in myrtle berries.
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3. Materials and Methods

3.1. Plant Materials

The biological materials used for this study were different myrtle berries (14 ecotypes) collected
by the authors from two different areas in Cadiz province during their optimum ripeness stages in
2016. The first collection area was Puerto Real (eight ecotypes). This area is characterized by its humid
climate due to its proximity to the sea. The second collection area was San José del Valle (6 ecotypes),
also within Cadiz province, but located inland at 50 km from the coast. This location has a drier climate
and its soils have a lower water content. The guidelines described by M., Mulas and M.R., Cani [47]
were applied to characterize the morphology of both, leaves and berries, to confirm that the samples
had been collected from different ecotypes. The samples were subjected to a pretreatment to improve
the contact surface with the solvent [51]. First, the seeds were separated from the pulp. Secondly,
the pulp was lyophilized in a Virtis Benchtop K freeze dryer (SP Cientific, New York, United States)
and crushed by means of a regular spice grinder. Finally, the samples were stored in a freezer at −20 ◦C
prior to analysis.

3.2. Chemicals and Solvents

The solvents used for the extraction were a mix of methanol and water at different concentration
levels and with different pH. The methanol (Fischer Scientifics, Loughborough, United Kingdom) was
HPLC grade. Ultra-pure water was obtained from a Milli-Q water purification system (EMD Millipore
Corporation, Bedford, MA, United States). The pH adjustment of the solvents was done by means of
hydrochloric acid and sodium hydroxide, both analytical grade and purchased from Panreac Química
S.A.U. (Castellar del Valles, Barcelona, Spain). For the Folin-Ciocalteau spectrophotometric method,
anhydrous sodium carbonate (Panreac Química S.A.U., Castellar del Valles) and Folin–Ciocalteu
(Merck KGaA, EMD Millipore Corporation, Darmstadt, Germany) were employed. For the HPLC
analyses, methanol (Fischer Scientific, Loughborough, United Kingdom) and formic acid (Scharlau,
Barcelona, Spain) were used. These solvents were degassed and filtered through a 0.22 µm membrane
(Nylon Membrane Filter, FILTER-LAB, Barcelona, Spain) before being used. The standard for the
phenolic compounds was gallic acid and the standard for anthocyanins was cyanidin chloride.
Both standards were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

3.3. Ultrasound-Assisted Extraction Procedure

To extract the total phenolic compounds and the total anthocyanins from the myrtle berries,
UAE was used. A UP200S probe (Hielscher Ultrasound Technology, Berlin, Germany) was employed,
coupled to a processor that allows adjusting the amplitude and the cycle. For the adjustment
of the temperature, a thermostatic bath (Frigiterm-10, Selecta, Barcelona, Spain) was employed.
The temperature, the cycle, and the amplitude were selected for each extraction according to the
experiment. About 0.5 g of the lyophilized and homogenized sample was weighed in a Falcon tube and
the corresponding volume of solvent was added depending on the experiment. The Falcon tube was
placed in a double vessel through which the water from the thermostatic bath circulated. The initial
extraction time set was 10 min, followed by a sample cooling time. After that time, the extracts
were centrifuged (7500 rpm, 5 min) and the supernatants were placed in a 25 mL volumetric flask.
The precipitates from the extraction were redissolved in 5 mL of the same extraction solvent and
centrifuged again under the same conditions. The new supernatants were placed in the volumetric
flask and it was completed with the same solvent. The final extracts were stored at −20 ◦C for their
correct conservation until further analysis. The UAE conditions set for the extractions were: Solvent
composition (50–100% methanol in water for phenolic compounds and 25–75% for anthocyanins),
temperature (10–60 ◦C), amplitude (30–70%), cycle (0.2–0.7 s), pH (2–7) and solvent-sample ratio
(10:0.5–20:0.5 mL:g).
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3.4. Determining the Content of Total Phenolic Compounds by Folin-Ciocalteau Essay

The total phenolic compounds content in myrtle berry was determined by adapted/modified
Folin-Ciocalteau (FC) method [52]. This method has been previously used by many researchers
to determine the total phenolic compounds content [53,54]. It is based on a redox reaction in
a basic medium that gives rise to a complex of blue coloration with a wide absorption up to
765 nm. The extracts were filtered using a 0.45 µm nylon syringe filter (Membrane Solutions, Dallas,
United States). The protocol of the method is the following: 250 µL of the previously filtered extract
was transferred to a 25 mL volumetric flask. After this, 12.5 mL of water, 1.25 mL of Folin-Ciocalteau
reagent and 5 mL of a 20% aqueous sodium carbonate solution were added. Finally, the flask was
made up with water, and after 30 min the absorbance was measured at the maximum. All the
extracts were analyzed in duplicate. The range of absorbance obtained for the studied samples was
0.4-1.4. The equipment used to measure the absorbance was a Helios Gamma (γ) Unicam UV-vis
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, United States). The calibrated curve
for the quantification was constructed based on a reference standard gallic acid pattern under the
same conditions as the extracts [55]. The computer application used to process the data was Microsoft
Office Excel 2013. The following regression equation y = 0.0010x + 0.0059 and the following correlation
coefficient R2 = 0.9999 were obtained. The linear range of work was 100–2600 mg L−1. The results are
expressed in milligrams of gallic acid equivalent per gram of lyophilized weight.

3.5. Identification of Anthocyanins by UHPLC-QToF-MS

Ultra-high performance liquid chromatography (UHPLC) coupled to quadrupole-time-of-flight
mass spectrometry (QToF-MS) (Xevo G2 QToF, Waters Corp., Milford, MA, United States) was
used to identify the anthocyanins in the UAE extracts. The column employed was a reverse-phase
C18 analytical column with 1.7 µm particle size, 2.1 mm × 100 mm (ACQUITY UPLC CSH C18,
Waters). The mobile phase was 2% formic acid–water solution (phase A) and methanol solution
(phase B). The studied bioactive compounds were determined by employing the UHPLC-QToF-MS
method described in a previously research [22]. The individual anthocyanins were identified
based on their retention time and molecular weight. The following eleven anthocyanins were
identified in the samples: delphinidin 3,5-O-diglucoside (m/z = 627.1561), delphinidin 3-O-glucoside
(m/z = 465.1033), cyanidin 3-O-galactoside (m/z = 449.1084), cyanidin 3-O-glucoside (m/z = 449.1084),
cyanidin 3-O-arabinoside (m/z = 419.0978), petunidin 3-O-glucoside (m/z = 479.1189), delphinidin
3-O-arabinoside (m/z = 435.0927), peonidin 3-O-glucoside (m/z = 463.1240), malvidin 3-O-glucoside
(m/z = 493.1346), petunidin 3-O-arabinoside (m/z = 449.1084) and malvidin 3-O-arabinoside
(m/z = 463.1240). Before their identification, all the UAE extracts were filtered through a 0.20 µm nylon
syringe filter (Membrane Solutions, Dallas, TX, United States). The anthocyanins structures are shown
in Figure 7.

3.6. Determination of Anthocyanins by UHPLC-UV-Vis System

For the separation and quantification of the anthocyanins present in UAE extracts from myrtle
berries, an Elite UHPLC LaChrom Ultra System (Hitachi, Tokyo, Japan) was used. The UHPLC
system consists of an L-2420U UV-Vis detector, an L-2200U autosampler, an L-2300 column oven
set at 50 ◦C and two L-2160 U pumps. The column used was a “Fused Core” C18 with 2.6 µm
particle size, 2.1 mm × 100 mm (Phenomenex Kinetex, Torrance, CA, United States). The mobile
phase consisted of a 5% formic acid–water solution (phase A) and a methanol solution (phase B).
The studied bioactive compounds were determined by employing the UHPLC-UV-Vis method
described in previous research [22]. Before their analysis, all the UAE extracts were filtered
through a 0.20 µm nylon syringe filter (Membrane Solutions, Dallas, TX, United States) and
diluted in Milli-Q water. The individual anthocyanins present in myrtle extracts were quantified
in cyanidin equivalents by means of a regression curve of anthocyanidin standard, cyanidin chloride
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(y = 252640.4136x − 28462.4337; R2 = 0.9999). The standards with a known concentration were prepared
between 0.06 and 35 mg·L−1. The limit of detection (LOD) (0.196 mg·L−1) and the limit of quantification
(LOQ) (0.653 mg·L−1) were calculated as three and ten times respective to the standard deviation
of the blank divided by the slope of the calibration curve. Assuming that the 11 anthocyanins have
similar absorbance, and taking into account the molecular weight of each anthocyanin, a calibration
curve was plotted for each anthocyanin present in myrtle, which allowed to quantify the compounds
of interest. All the analyses were carried out in duplicate. Figure 8 shows the HPLC chromatogram
that represents the eleven anthocyanins detected in the analyses.
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Peak assignment: (1) Delphinidin 3,5-O-diglucoside; (2) delphinidin 3-O-glucoside; (3) cyanidin
3-O-galactoside; (4) cyanidin 3-O-glucoside; (5) cyanidin 3-O-arabinoside; (6) petunidin 3-O-glucoside;
(7) delphinidin 3-O-arabinoside; (8) peonidin 3-O-glucoside; (9) malvidin 3-O-glucoside; (10) petunidin
3-O-arabinoside; (11) malvidin 3-O-arabinoside.
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3.7. Application of Box-Behnken Design (BBD) to the Optimization of the Extraction Methods

In order to optimize the extraction variables, a response surface experiment (RSM) known as
Box-Behnken (BBD) was carried out [56]. Box-Behnken design (BBD) is an independent rotatable
quadratic design with no embedded factorial or fractional factorial points. The variable combinations
are at the midpoint of the edges and at the center of the space [57]. It is useful because it allows one to
avoid carrying out experiments under extreme conditions and, therefore, the possibility of deceiving
results [58]. When this statistical experiment design is employed in conjunction with a response
surface methodology (RSM) the effects of six independent factors on each response can be studied.
The independent factors studied were: Solvent composition (% methanol in water) (X1), solvent pH
(X2), extraction temperature (X3), ultrasound amplitude (X4), cycle (X5), and a solvent-sample ratio
(X6). For each variable, there are three levels, coded as –1 (low), 0 (central point or middle), and +1
(high). Specifically, the studied ranges were as follows: Solvent composition: 50, 75, 100% for phenolic
compounds and 25, 50, 75% for anthocyanins; temperature: 10, 35, 60 ◦C; amplitude: 30, 50, 70%; cycle:
0.2, 0.45, 0.7 s; pH: 2, 4.5, 7 and solvent-sample ratio: 10:0.5, 15:0.5, 20:0.5 mL:g. The ranges for the
study were selected taking into account previous experiences by the research team. The response
variables studied were: The experimental results for total phenolic compounds (YTP, mg·g−1) and
the experimental results for total anthocyanins (YTA, mg·g−1). The design consisted of 54 treatments
with six repetitions at the center point. All the trials were performed in random order. The whole
experimental design matrix used can be seen in Table 5. My-9 from San Jose del Valle was the myrtle
sample used for the optimization procedure.

Table 5. Experimental and predicted values for total phenolic compounds and total anthocyanins
contents based on Box–Behnken design.

Run
Factors Responses

X1 X2 X3 X4 X5 X6
YTP (mg·g−1) YTA (mg·g−1)

Experimental Predicted Experimental Predicted

1 0 0 −1 0 −1 −1 55.4367 51.0831 20.7595 23.8541
2 0 0 1 0 −1 −1 48.6499 49.6621 29.8821 25.4294
3 0 0 −1 0 1 −1 51.4343 48.3304 29.0606 31.2985
4 0 0 1 0 1 −1 41.6667 42.334 27.9193 26.3493
5 0 0 −1 0 −1 1 46.1649 45.0747 27.6777 27.6226
6 0 0 1 0 −1 1 47.6107 51.1375 25.6501 25.0375
7 0 0 −1 0 1 1 50.4893 49.0542 28.4150 31.2426
8 0 0 1 0 1 1 45.7652 50.5417 23.6023 22.1329
9 0 −1 0 −1 −1 0 57.1168 57.3752 28.5256 24.7846

10 0 1 0 −1 −1 0 44.7735 48.3304 26.8602 29.2928
11 0 −1 0 1 −1 0 41.9739 53.0361 27.755 23.6113
12 0 1 0 1 −1 0 41.3703 46.5404 26.6112 23.4784
13 0 −1 0 −1 1 0 57.8351 55.2335 27.0548 34.781
14 0 1 0 −1 1 0 71.3186 57.688 27.1787 26.729
15 0 −1 0 1 1 0 41.3184 40.33 28.5542 30.715
16 0 1 0 1 1 0 48.1604 45.3335 18.8744 18.0219
17 −1 0 −1 −1 0 0 37.8811 41.5155 14.3354 19.5394
18 1 0 −1 −1 0 0 39.2436 41.1874 19.2532 42.8583
19 −1 0 1 −1 0 0 48.7908 48.0444 18.0553 17.6695
20 1 0 1 −1 0 0 43.5972 51.7521 21.1111 22.2834
21 −1 0 −1 1 0 0 54.6703 45.6802 17.6946 11.5099
22 1 0 −1 1 0 0 35.7746 37.3562 20.6987 26.097
23 −1 0 1 1 0 0 37.9611 35.1821 10.1680 24.5504
24 1 0 1 1 0 0 33.6931 30.8939 20.6241 20.4326
25 0 −1 −1 0 0 −1 39.6751 44.4043 25.5771 30.4887
26 0 1 −1 0 0 −1 42.5789 48.6886 26.0578 25.0639
27 0 −1 1 0 0 −1 43.7849 42.272 27.3046 29.0925
28 0 1 1 0 0 −1 42.0191 43.4037 24.5787 23.0862
29 0 −1 −1 0 0 1 47.4523 46.4907 27.6042 30.7219
30 0 1 −1 0 0 1 39.3819 41.3177 28.7060 28.5433
31 0 −1 1 0 0 1 58.3748 51.8422 25.7965 25.1653
32 0 1 1 0 0 1 48.6688 43.5167 28.9420 22.4052
33 −1 −1 0 0 −1 0 58.0268 57.5556 22.9897 19.5292
34 1 −1 0 0 −1 0 41.2425 32.9846 19.5373 27.3024
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Table 5. Cont.

Run
Factors Responses

X1 X2 X3 X4 X5 X6
YTP (mg·g−1) YTA (mg·g−1)

Experimental Predicted Experimental Predicted

35 −1 1 0 0 −1 0 38.5507 36.2848 24.6490 32.9035
36 1 1 0 0 −1 0 46.8626 38.7149 20.2517 18.3034
37 −1 −1 0 0 1 0 35.7902 41.3694 17.7105 15.0653
38 1 −1 0 0 1 0 34.6257 34.3231 17.7143 48.8664
39 −1 1 0 0 1 0 20.7714 31.5978 19.0511 15.8794
40 1 1 0 0 1 0 48.5130 51.5526 19.2534 27.3073
41 −1 0 0 −1 0 −1 49.3362 46.1577 18.9945 14.4979
42 1 0 0 −1 0 −1 49.0123 49.4397 21.8380 28.2914
43 −1 0 0 1 0 −1 30.0802 28.3987 16.72389 13.4627
44 1 0 0 1 0 −1 24.1848 23.6849 20.7428 18.5244
45 −1 0 0 −1 0 1 35.7748 35.4395 16.4343 13.6402
46 1 0 0 −1 0 1 33.0203 35.537 19.5057 27.7794
47 −1 0 0 1 0 1 44.0929 44.5007 14.9678 13.5268
48 1 0 0 1 0 1 34.2591 36.6024 19.4501 18.9343
49 0 0 0 0 0 0 37.2240 45.8533 27.1667 23.3422
50 0 0 0 0 0 0 52.1910 45.8533 27.2028 23.3422
51 0 0 0 0 0 0 47.5538 45.8533 17.7051 23.3422
52 0 0 0 0 0 0 50.5994 45.8533 14.0658 23.3422
53 0 0 0 0 0 0 43.5576 45.8533 26.5943 23.3422
54 0 0 0 0 0 0 43.9939 45.8533 27.3184 23.3422

The results for total phenolic compounds and total anthocyanins contents were entered into a
polynomial equation. The response of the total phenolic compounds and the anthocyanins obtained in
each of the experiments was entered into a second-order polynomial equation in order to correlate the
relationship between the independent variables and the response (Equation (5)):

Y = β0 +
k

∑
i=1

βiXi + βii X2
i + ∑

i

k

∑
i=1

βijXiXj + r (5)

where Y is the predicted response (YTP and YTA); β0 is the model constant; Xi and Xj are the independent
variables; βi are the linear coefficients; βij are the coefficients corresponding to the interactions; βii are
the quadratic coefficients and r is the pure error sum of squares.

Design Expert software 11 (Trial Version, Stat-Ease Inc., Minneapolis, MN, USA) was the
software employed for experimental design, the data analysis, and the model building. The statistical
significance of the model, lack of fit, and regression terms were evaluated based on the analysis of
variance (ANOVA).

The results of applying the extraction method to different myrtle ecotypes were studied using a
multivariate analysis, hierarchical clustering analysis (HCA). Ward’s method and the Euclidean square
distance, were employed. Statgraphic Centurion XVII (Statgraphics Technologies, Inc., The Plains, VA,
United States) was the software used.

4. Conclusions

This work has successfully developed quick and effective methods to extract bioactive compounds,
such as anthocyanins and total phenolics from myrtle (Myrtus communis L.) pulp. A thorough search
in the relevant literature showed that this is the first study in which UAE has been optimized for
the extraction of phenolic compounds and anthocyanins from myrtle berries. The following optimal
UAE conditions have been determined to extract the phenolic compounds: 92.8% methanol in water,
6.8 pH, 60 ◦C temperature, 65.48% ultrasound amplitude, 0.2 s cycle, and 10:0.5 as the optimum
solvent-sample ratio. With regards to anthocyanins, optimal UAE conditions were: 74.1% methanol
in water, 7 pH, 10 ◦C temperature, 30% ultrasound amplitude, 0.3 s cycle, and 18:0.5 as the optimum
solvent-sample ratio. The optimum extraction times were only 5 and 2 min for phenolic compounds
and anthocyanins, respectively. Both extraction methods presented satisfactory intra-day repeatability
and inter-day repeatability (CV < 5%). The methods were applied to 14 different myrtle ecotypes.
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The hierarchical cluster analysis (HCA), showed a correlation between the bioactive composition
(total phenolic compounds and total and individual anthocyanins contents in the extracts) and the
ecotypes’ geographical area of origin. In conclusion, the results have indicated that UAE is a feasible
alternative to conventional methods for the extraction of valuable components from myrtle berries.
These results would mean a substantial improvement at the industrial level, since they would allow
the manufacturers to quickly determine the quality of the raw materials and save costs. Furthermore,
UAE results were compared to those achieved by MAE. The proposed UAE method proved to be an
effective procedure to extract the bioactive compounds in myrtle berries, and a particularly efficient
alternative for the extraction of anthocyanins.
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