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Abstract: Different forecasting methodologies, classified into parametric and nonparametric, were
studied in order to predict the average concentration of PM10 over the course of 24 h. The comparison
of the forecasting models was based on four quality indexes (Pearson’s correlation coefficient,
the index of agreement, the mean absolute error, and the root mean squared error). The proposed
experimental procedure was put into practice in three urban centers belonging to the Bay of Algeciras
(Andalusia, Spain). The prediction results obtained with the proposed models exceed those obtained
with the reference models through the introduction of low-quality measurements as exogenous
information. This proves that it is possible to improve performance by using additional information
from the existing nonlinear relationships between the concentration of the pollutants and the
meteorological variables.

Keywords: time-series forecasting; regression models; artificial neural networks; on-site
measurements; exogenous information

1. Introduction

Atmospheric pollution is currently one of the most important environmental problems on a global
scale, with a direct and principal impact on human health [1,2]. For this reason, the European
Environmental Agency conducted a study which concluded that large proportion of European
populations and ecosystems are still exposed to air pollution that exceeds European standards,
and therefore a considerable impact on human health and on the environment persists [3].

Regulatory levels of ambient air quality referring to this particulate issue (PM10 and PM2.5)
are highlighted in Directive 2008/50/EC of the European Parliament and of the council [4].
The implementation of those measures is contained in the Royal Decree 102/2011 on the improvement
for ambient air quality of the Spanish Government [5]. This issue defines a common strategy to define
and establish objectives for ambient air quality in the community and assess the ambient air quality on
the basis of common methods and criteria.

Air quality in cities is not limited to a single factor. In fact, it depends on multiple causes such as
meteorological variables, topographical characteristics, the degree of industrialization, and traffic and
population densities [6–9]. The problem of atmospheric pollutants and their effects on health and the
environment, as well as the intrinsic complexity of these phenomena, justifies the need for developing
management and control strategies that safeguard the environment. These problems have attracted
the interest of environmental authorities and researchers, which have developed different air quality
models as forecasting strategies.
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Modeling atmospheric pollutants is a powerful analysis tool with multiple applications,
e.g., the evaluation of emission control strategies, support in environmental decision making,
generation of scientific information for a better understanding of the atmosphere dynamics and
pollution in an area, etc. The importance of the models relies on the development and implementation
of environmental policies, predictions of pollutant levels, information systems, forewarning and
prevention of environmental pollution, or standardization of databases. Regarding the industrial
sector, they can also report on the effects of new installations and the optimization of processes.

Mathematical models are generally used to simulate the physical and chemical processes that
affect pollutants, and their dispersion and transformation in the atmosphere. As indicated before,
the diffusion mechanism of the pollutants in the atmosphere is a complex process that depends on
numerous parameters, making the development of traditional mathematical models more difficult.

The purpose of the study was twofold: to draw up a detailed analysis of the environmental,
meteorological, and seasonal variables that may influence the levels of suspended particles in order to
build a solid and reliable database, and to develop and assess regression models applied to forecast
particulate matter PM10 in the Bay of Algeciras with a prediction horizon of 24 h. This area has
the most complex environmental issues in Andalusia because it is located in the Straits of Gibraltar.
Furthermore, the zone brings together large volumes of the population and a significant industrial
and port development. For this reason, the Bay of Algeciras has an extensive network of air quality
stations; this availability of data enabled us to improve, explore, and develop predictive models.

The regression models developed in this work are based on different techniques of artificial
neural networks (ANN), multiple linear regression (MLP), and persistence. These models are based
on statistical and empirical equations, in connection with the data relative to pollution and other
variables that may influence it. Regarding the last two of them, we can highlight: persistence [10–14]
and MLP [9,15–18].

It is common knowledge that ANN’s are applied in tasks of prediction and have been extensively
used in myriad works. The approaches in References [18–24] apply ANN-based models, which are
indexes that support the present research.

The paper is organized as follows. Section 2 presents the region and the raw data from the on-site
equipment. Section 3 summarizes the theoretical framework. The experimental procedure is outlined
in Section 4, and the results are presented in Section 5. Finally, our conclusions are explained in
Section 6.

2. Target Area and Experimental Data

The Bay of Algeciras is located in the south of Andalusia, Spain. It is around 10 km long by 8 km
wide, covering an area of some 75 km2. The global and regional variations in the climate, along with the
topographical conditions of the area studied, affect the transport and dispersion of pollutants [25–27].

The data utilized in the simulation models came from the European Environment Agency database
where the information is collected by air quality stations of the Environmental Quality Surveillance
Network in Andalusia, as well as by using other methods [28,29]. These data are the combination of
meteorological and air pollutants parameter measurements that were used as exogenous variables in
the configuration of the proposed models. Time-series from the measurement stations belonging to the
Bay of Algeciras for the period from 2005 to 2010 were used.

The stations are strategically located with the goal of improving the spatial distribution data of
pollution in the Bay of Algeciras (Andalusia) (Figure 1), providing a high density grid of measurement
points over the region. These stations are designed to monitor the levels of air pollution in urban areas,
traffic, maximum values or background contamination. Tables 1 and 2 contain detailed descriptions of
all of the parameters that can be monitored or displayed through these stations.
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Figure 1. Location of the air quality stations of the Environmental Quality Surveillance Network in the
Bay of Algeciras (Andalusia).

Table 1. Stations and parameters analyzed in the Bay of Algeciras.

Station Township SO2 CO NO NO2 NOX O3 PM10 PM2.5 PM1 CH4 NMH SH2

St1 Algeciras X X X X X
St2 Algeciras X X X X X X
St3 La Línea X X X X X
St4 La Línea X X X X X X X
St5 Los Barrios X X X X X
St6 Los Barrios X X X X X X
St7 Los Barrios X X X X X
St8 Los Barrios
St9 Los Barrios X X X X X X

St10 Los Barrios
St11 Los Barrios X X X X X X X X X
St12 San Roque X X X X X X
St13 San Roque X X X X X
St14 San Roque X X X X X X X X
St15 San Roque X X X X X X X X
St16 San Roque X X X X X
St17 San Roque X X X X X X X X
St18 San Roque
St19 San Roque X X X X X
St20 San Roque
St21 San Roque
St22 San Roque

Stations:
St1: E4-Rinconcillo St9: Los Barrios St16: Economato
St2: Algeciras EPS St10: T.M. Palmones St17: Guadarranque
St3: E7: El Zabal St11: Cortijillos St18: Puente Mayorga
St4: La Línea St12: E3: Colegio Carteya St19: Madrevieja
St5: E1: Los Barrios St13: E6 Estación San Roque St20: T.M. Cepsa (10 m)
St6: E2: Alcornocales St14: Campamento St21: T.M. Cepsa (60 m)
St7: E5: Palmones St15: Hostelería St22: Tarifa
St8: T.M. CTLB (15 m)
Parameters:
SO2: Sulphur dioxide NOX: Nitrogen oxide PM1: Particulate matter less than 1 µm
CO: Carbon monoxide O3: Ozone CH4: Methane
NO: Nitrogen monoxide PM10: Particulate matter less than 10 µm NMH: Non-methane hydrocarbon
NO2: Nitrogen dioxide PM2.5: Particulate matter less than 2.5 µm SH2: Hydrogen sulphide
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Table 2. Continuation of previous table.

Station Township TRS TOL BCN PXY EBCN VV DD TMP HR PRB RS LL

St1 Algeciras
St2 Algeciras X X X
St3 La LÃnea
St4 La LÃnea X X X X X X
St5 Los Barrios
St6 Los Barrios
St7 Los Barrios
St8 Los Barrios X X X X X X X
St9 Los Barrios X X X X X X X

St10 Los Barrios
St11 Los Barrios X X X X
St12 San Roque
St13 San Roque
St14 San Roque X X X X
St15 San Roque
St16 San Roque
St17 San Roque X X X X
St18 San Roque
St19 San Roque
St20 San Roque X X X X X X
St21 San Roque X X X
St22 San Roque X X X X X X X

Parameters:

TRS: Reduced Sulphur compounds EBCN: Ethylbenzene HR: Relative humidity
TOL: Toluene VV: Wind speed PRB: Barometric pressure
BCN: Benzene DD: Wind direction RS: Solar radiation
PXY: p-xylene TMP: Temperature LL: Rainfall

The pollutants and meteorological variables were selected taking into account the following
criteria:

• Limited data availability according to: (1) location of measurement stations, (2) measured
parameters in each one, and (3) period of update of the European Environment Agency database.

• Reliability of data, considering the obtained data with a higher percentage of validity.
• The geographical location, selecting the stations in the principal urban areas of El Campo

de Gibraltar.

Invalid data may have been caused by possible faults in the sensors of the measuring stations,
poor calibration of the equipment, configuration errors, power outages, etc.

Table 3 shows the valid percentages of particulate matter PM10 corresponding to the period
between 2005 and 2010. Because a greater number of measuring stations measure PM10, these stations
were used in the study.

Table 3. Annual percentage of valid data.

Year St1 St2 St3 St4 St5 St6 St7 St9 St12 St13

2005 72.1 95.0 95.9 46.9 90.4 0.0 97.3 63.8 83.0 94.3
2006 68.8 85.2 58.5 98.1 32.1 55.3 64.5 93.7 97.8 95.6
2007 98.9 85.8 0.0 94.5 0.0 93.8 88.5 0.0 99.2 98.4
2008 99.5 89.9 97.8 88.8 0.0 0.0 0.0 0.0 90.7 88.0
2009 69.6 89.9 0.0 93.4 0.0 94.5 25.8 57.5 97.5 98.9
2010 0.0 0.0 0.0 95.3 0.0 84.9 0.0 0.0 93.7 88.0

The database is built with variables that are selected by regression analysis, and is complemented
with success/error tests. This database contains information regarding the parameter to be predicted,
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concentrations of other atmospheric pollutants, meteorological variables, day of the week (DW), season
(SS), and autoregressive data. Furthermore, all selected data had to satisfy a minimum of 85% of all
measured annual data during three consecutive years as acceptance criterion. This minimum threshold
of measures was chosen in order to obtain a database where the evolution and seasonality of the
variables were registered.

From the analysis carried out and considering the main urban centers of El Campo de Gibraltar,
three databases were obtained for the development of models in the municipalities of San Roque,
Algeciras, and La Línea de la Concepción.

3. Prediction Models

In this work, five forecasting methodologies were used. They were classified into parametric
and nonparametric. The parametric techniques consist of persistence and multiple linear regression
models, while the nonparametric techniques are based on ANNs. More precisely, three ANN types
were used: adaptive linear neuron, multilayer, and radial basis function.

3.1. Persistence Model

It is the most common reference method for forecasting horizons up to 3–6 h and needs no
complex computation. It states that the predicted value at one time instance t (ŷt) is similar to the last
measurement (yt−1) [14].

3.2. Multiple Linear Regression

The model has at least two predictors. Regression analysis conveys the idea of finding descriptive
or predictive models from the observed relationships in a set of data. It is a widely used method in the
prediction of atmospheric pollutants. Linear multiple regression defines the level and the dependence
relationship of the involved parameters [15].

3.3. Adaptive Linear Neuron

These networks are simpler than feedforward networks as they do not have hidden layers.
The training of this model is based on the Widrow–Holf rule [30], which obtains the weights and biases
minimizing the mean square error (MSE—Equation (1)).

MSE =
1
N

N

∑
t=1

(ŷt − yt)
2 (1)

where N is the number of data, yt is the observed data, and ŷt is the predicted data.

3.4. Multilayer Perceptron

Multilayer structure, which is based on the error backpropagation via the Levenberg–Marquardt
paradigm, is the most extended method. This technique consists of updating the weights of the
connections between neurons in a way that the weights are directly proportional to the estimated error
between the desired output and the outputs that occur at each step of an iterative process [31].

3.5. Radial Basis Function (RBF)

RBF networks have similar structures to that of a multilayer one [32]. The main difference arises
in the hidden neurons, and operates on the Euclidean distance between an input with respect to the
synaptic vector (the so-called centroid). The localized neurons respond uniquely with an appreciable
intensity when the presented input vector and the centroid of the neuron fall into a nearby area in the
input space. The training of RBF networks comprises two stages. The first is one unsupervised and
accomplished by obtaining cluster centers of the training set inputs. The second consists of solving
linear equations.
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4. Experimental Procedure

The experimental procedure, depicted in the conceptual map of Figure 2, consists of the
following stages:

• Data preprocessing.
• Model implementation.
• Model evaluation.

da
ta
ba
se

Preprocessing of data

Reference models

ANN models

Implementation of models

Comparison

of models

The best

model

On-site standard 

measurements 

from meteo stations

Figure 2. Graphical abstract of the paper.

4.1. Preprocessing of Data

In this step, the stations that exceed 85% of valid data were selected. In addition, the statistical
analysis was performed in order to eliminate the outliers. Finally, the variables of the database were
ordered according to the correlation coefficient between the exogenous variables and the variable
under study to be predicted (PM10 concentration).

4.2. Implementation of the Models

The implementations of the reference models (persistence and MLR) did not present any problem.
Regarding the ANN models evaluated in this paper, they are made up of: a linear network (LIN),

backpropagation network with one and two hidden layers (BP1 and BP2), and radial basis function
network. The following premises are declared for all of them:

• Data were normalized so that they fall into the interval [−1, 1], to achieve a faster computation.
Equation (1) shows the used algorithm where x is an element of the vector (input or output) to
normalize, xmax is the value of the greatest element of the vector to normalize, xmin is the value
of the smallest element of the vector to normalize, y is the normalized value of x, ymax is the
maximum value (1), and ymin is the maximum value (−1).

y = [(ymax − ymin)(x− xmin)/(xmax − xmin)] + ymin. (2)

• The dataset was randomly divided into three subsets: training, evaluation, and test sets. The first
two sets were used for ANN model building with 70% and 15% of the data, respectively; and
the third set, with the last 15%, was used to test the predictive power of a model using the
out-of-sample set.
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• A total of 100 experiments were repeated for each model to avoid randomness limiting the results.
Training of the tested networks was carried out until the validation error started increasing.
At this point, the training was stopped, and the performance of the network was assessed.

• The simulation started without exogenous variables and then we progressively added variables
(from the highest to lowest correlation).

Hereinafter, the particularities of the models are detailed. Table 4 collects parameters,
corresponding to the network architecture and the activation functions for the neural networks.

Table 4. Parameters for the network models.

LIN BP1 BP2 RBF

Hidden layers - 1 2 1
Neurons in hidden layer 1 - [1–25] [4–20] [1–20]
Neurons in hidden layer 2 - - [2–10] -

Transfer function (TF) - tan-sigmoid tan-sigmoid Gaussian
TF output layer linear linear linear linear

Training algorithm Widrow–Holf Levenberg–Marquardt Levenberg–Marquardt k-means
Spread - - - [0.1–10]

The rule to select the range of the neurons in the hidden layers for BP1 and BP2 models is
described as follows. The number of neurons in the first hidden layer is the mean of the neurons
between the input and output layers, while for the second hidden layer it is one half of the neurons in
the first hidden layer [31], as shown in Table 4.

For the RBF model, it is compulsory to specify the appropriate value of the Gaussian Kernel
spread. If this value is too small or too high the network might not generalize well and a lot of neurons
would be required to fit a fast-changing approximation function.

4.3. Evaluation of the Models

The models performance was assessed via the following four quality indicators: Pearson’s
correlation coefficient (ρ), the index of agreement (IOA), the mean absolute error (MAE), and the root
mean square error (RMSE).

ρ =
σyt ŷt

σyt σŷt

(3)

IOA = 1− ∑N
t=1(ŷt − yt)2

∑N
t=1(|ŷt − yt|+ |ŷt + yt|)2

(4)

MAE =
1
N

N

∑
t=1

(|ŷt − yt|) (5)

RMSE =

√√√√ 1
N

N

∑
t=1

(ŷt − yt)2 (6)

where σyt ŷt is the covariance between yt (observed data) and ŷt (predicted data), and σyt and σŷt are
their respective standard deviations, N is the number of data.

5. Results

As mentioned in Section 2, three databases were obtained for the development of the models in
the cities of San Roque, Algeciras, and La Línea de la Concepción. These databases were designed
according to the correlation coefficient between the exogenous variables and the variable to be
predicted, obtaining the relations shown in Table 5. Although the inclusion of exogenous variables
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with correlation coefficients lower to 0,6 would appear to be a mistake, these were applied because of
the large volume of data. Thanks to computing power of the models used, we were able to study the
appropriateness of using such data.

Table 5. Descending order of the parameters.

San Roque Algeciras La Línea de la Concepción

St Var ρ St Var ρ St Var ρ

St7 PM10 1.00 St1 PM10 1.00 St9 PM10 1.00
St9 PM10(t− 1) 0.85 St9 PM10(t− 1) 0.84 St7 PM10(t− 1) 0.78

St11 PM10(t− 1) 0.79 St7 PM10(t− 1) 0.80 St1 PM10(t− 1) 0.77
St7 PM10(t− 2) 0.66 St11 PM10(t− 1) 0.74 St9 PM10(t− 2) 0.60

St13 TMP 0.43 St11 PM2.5(t− 1) 0.67 St9 TMP 0.40
SS 0.36 St1 PM10(t− 2) 0.63 St9 NO 0.18

St3 RS 0.24 St1 TMP 0.41 St9 NOX 0.18
St7 O3 0.09 St1 SO2 0.38 St9 O3 0.05

St12 VV 0.09 St13 TMP 0.35 St9 VV −0.08
DW −0.06 St13 VV −0.22 DW −0.04

St12 HR −0.06 St13 HR 0.18 SS 0.02
SS 0.16

DW −0.04
St12 RS 0.04
St12 LL −0.01

After data is preprocessed, the four quality indexes of all implemented models are obtained,
selecting the best configurations as a function of the number of exogenous variables. For example,
the database used in San Roque has ten exogenous variables and it is designed according to the
coefficient of correlation between the exogenous variables (rows 4 to 13) and the variable to be
predicted (row 3), obtaining the relation shown in Table 5.

Once the models which best minimized the errors of the evaluation set were selected, they were
used to test the predictive power of a model using the out-of-sample set. The results are shown in
Table 6.

Table 6. Results of the best models obtained at each site.

San Roque

Model PERS RML LIN BP1 BP2 RBF
Variables 1var 9var 9var 6var 10var 9var

ρ 0.7461 0.7464 0.7012 0.7445 0.7653 0.7616
IOA 0.8617 0.7944 0.7749 0.8118 0.9027 0.8131
MAE 0.0489 0.0497 0.0554 0.0483 0.0488 0.0483

RMSE 0.0639 0.0629 0.0690 0.0646 0.0610 0.0615

Algeciras

Model PERS RML LIN BP1 BP2 RBF
Variables 1var 5var 2var 4var 4var 3var

ρ 0.6227 0.6545 0.6308 0.7164 0.7024 0.7119
IOA 0.7858 0.6622 0.6119 0.7632 0.7791 0.8030
MAE 0.0384 0.0375 0.0381 0.0347 0.0343 0.0341

RMSE 0.0565 0.0514 0.0531 0.0472 0.0474 0.0457

La Línea de la Concepción

Model PERS RML LIN BP1 BP2 RBF
Variables 1var 10var 10var 5var 4var 6var

ρ 0.6747 0.6888 0.6738 0.7526 0.7282 0.7756
IOA 0.8143 0.7750 0.7907 0.8520 0.8371 0.8533
MAE 0.0279 0.0265 0.0266 0.0226 0.0238 0.0233

RMSE 0.0372 0.0340 0.0344 0.0305 0.0320 0.0302
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In order to select the best models, colored maps like the one depicted in Figure 3 were used in
each city area. As can be seen from the graphs, the best model within each evaluated type maximizes
the values of R and IOA and minimizes those of MAE and RMSE. In the cases where it was not possible
to optimize all of the indicators, only those that minimized the indicators of the errors were chosen
(because the performance function that was used to build the assessed models is based on the error
performance). The results obtained in each city, according to these criteria are shown in Table 7.

Pearson´s correlation coefficient(ρ)

PERS RML LIN BP1 BP2 RBF

1 var

2 var

3 var

4 var

5 var

6 var

7 var

8 var

9 var

10 var

0.7

0.72

0.74

0.76

0.78

Index of agreement
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1 var

2 var

3 var

4 var

5 var

6 var

7 var

8 var

9 var

10 var 0.74
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0.78

0.8

0.82

0.84

0.86

Mean absolute error

PERS RML LIN BP1 BP2 RBF

1 var

2 var

3 var

4 var

5 var

6 var

7 var

8 var

9 var

10 var
0.05
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0.06

0.065

Root mean square error
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8 var

9 var
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0.065

0.07

0.075

0.08

Figure 3. Colormap of quality indicators of the best models obtained in San Roque in accordance with
the number of exogenous variables and the model used.

Table 7. Percentages of improvement over the reference models at each site.

City San Roque Algeciras La Línea de la Concepción

Model BP2 %− PERS %− RML RBF %− PERS %− RML RBF %− PERS %− RML
ρ 0.7653 2.57 2.53 0.7119 14.32 8.77 0.7756 14.95 12.60

IOA 0.8207 4.76 3.31 0.8030 2.19 21.26 0.8533 4.79 10.10
MAE 0.0488 0.20 1.81 0.0341 11.20 9.07 0.0233 16.49 12.08

RMSE 0.0610 4.54 3.02 0.0457 19.12 11.09 0.0302 18.82 11.18

After an in-depth assessment of the colored maps of each municipality and the results obtained in
Table 7, the following outcomes were concluded:

• In San Roque, the BP2 model with 10 exogenous variables is the best with respect to the reference
models. The optimal configuration of the BP2 model is as follows: number of neurons in the
hidden layer 1 = 17, number of neurons in the hidden layer 2 = 7, training condition: epoch = 500
and performance function: MSE = 0.001.

• In Algeciras, the RBF model with 3 exogenous variables is the best with respect to the reference
models. The optimal configuration of the RBF model is as follows: number of neurons in the
hidden layer = 20, spread = 0.4, and performance function: MSE = 0.001.

• In La Línea de la Concepción, the RBF model with 6 exogenous variables is the best with respect
to the reference models. The optimal configuration of the RBF model is as follows: number of
neurons in the hidden layer = 13, spread = 2.7, and performance function: MSE = 0.001.
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Figure 4 shows the best obtained result for each city for daily concentration of particulate matter.
These levels of concentration are standardized based on the limit value of the 150 µ/m3 that is the
current 24 h PM10 set by the National Ambient Air Quality Standards since 1987 [33].
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Figure 4. Prediction results using the best models for each city (top: San Roque; middle: Algeciras;
bottom: La Línea de la Concepción).

6. Conclusions

In this paper, five forecasting methodologies have been classified according to parametric and
nonparametric techniques with the goal of predicting the averaged concentration of PM10 over the
course of 24 h. These models were definitively used in three urban centers: San Roque, Algeciras,
and La Línea de la Concepción.

Different results were obtained according to the locations under study. With respect to the
reference models, the best one and their percentages of improvement as regards MAE and RMSE in each
of them are as follows: San Roque (BP2 model with 10 exogenous variables; [0.20%, 4.54%]—PERS and
[1.81%, 3.02%]—RML), Algeciras (RBF model with 3 exogenous variables; [11.20%, 19.12%]—PERS
and [9.07%, 11.09%]—RML), and La Línea de la Concepción (RBF model with 6 exogenous variables;
[16.49%, 18.82%]—PERS and [12.08%, 11.18%]—RML).

In summary, it can be concluded that the prediction results with the proposed models exceed
those obtained with the reference models. This proves that it is possible to improve performance by
using additional information from the existing nonlinear relationships between the concentration of the
pollutants and the meteorological variables. In this sense, the inclusion of new stations from other nets
of meteorological stations and/or amateur observers available on websites should be used to increase
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the data sources [34], thus improving the performance of the models . By contrast, the main drawback
of the models based on ANN is that a huge amount of data is necessary for their configuration.

Finally, it is worth highlighting that this methodology could be used as a predictive emission
monitoring system (PEMS) and can be implemented in a virtual sensor as an alternative to
conventional automatic measurement systems, issuing possible warning or detecting emergency
situations, as they do today in the EEUU [35].
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