
INCORPORATING HAPTIC FEATURES INTO PHYSICS-BASED

SIMULATION

An Undergraduate Honors Research Thesis

by

RUKAI ZHAO

Submitted to the Computer Science Honors program at
Texas A&M University

in partial fulfillment of the requirements for the designation as a

COMPUTER SCIENCE HONORS UNDERGRADUATE

Approved by Research Advisor: Dr. Shinjiro Sueda

May 2019

Major: Computer Science
Minor: Math

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/196565497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 3

CHAPTER

I. INTRODUCTION .. 4

II. METHODS ... 6

1. Single Haptic Application (1st Haptic Program) ... 6
1.1 Physics-Based Simulation ... 7
1.2 HLAPI: Haptic Library API .. 8
1.2.1 Custom Force Effect .. 8
1.2.2 Mapping from Haptic Workspace Coordinates to Graphic World
Coordinates ... 9
1.3 Pseudocode ... 10
2. Socket Haptic Application (2nd Haptic Program ... 11
2.1 Physics-Based Simulation ... 12
2.2 TCP Socket Programming .. 12
2.3 Multithreading ... 13
2.4 Pseudocode ... 14

III. RESULTS ... 16

1. Single Haptic Application (1st Haptic Program) ... 16
2. Socket Haptic Application (2nd Haptic Program ... 17

IV. CONCLUSION ... 21

Future work ... 21

REFERENCES ... 22

1

ABSTRACT

Incorporating Haptic Features Into Physics-Based Simulation

Rukai Zhao
Department of Computer Science & Engineering

Texas A&M University

Research Advisor: Dr. Shinjiro Sueda
Department of Computer Science & Engineering

Texas A&M University

 In our graphic lab, we have developed many physics-based animations focusing on

muscles and we hope to create an interactive interface with tactile feedback so that the users can

not only see those physical features but also experience the forces in the muscle line. They will

be able to touch on the surface of muscles and feel the muscle texture and they will also be able

to drag the muscle line and feel the tension and forces. This is especially important for co-

contraction of two opposing muscles, since co-contractions do not produce any motion but

changes the stiffness of the joint. Therefore, we used the Geomagic Touch TM haptic device for

generating the haptic feedbacks and to incorporate OpenHaptics for haptic programming. The

first attempt was to embed the haptic code into the simulation base code. However, there were

many stability issues due to the different versions of drivers and library files supported by

different aspects of the hardware. Therefore, we implemented a network version which used TCP

sockets to build the connection between the simulation code and the haptic code. Using this

framework, the simulation code and the haptics code can run on two separate computers or on

the same computer using two different processes. In order to make sure the data transfer process

was fast and stable, we also added the multithreading feature into our codes. This will also help

us to integrate haptic feature into Unity simulation code in the future. In the first attempt, the

2

haptic feedback was identical to the correct graphic scene. In the second attempt, we were able to

feel the spring force from haptic client thread. We believe those programs can be used as

entertainment and education purposes which can help the users better learn about muscles. Our

future work will be focusing on combining our haptic client with a Unity simulation server.

3

ACKNOWLEDGEMENTS

I would like to thank my Research Advisor, Dr. Shinjiro Sueda, for his patient guidance and

support throughout the research program. I also want to thank my lab mates who have helped me

a lot for this research program.

4

CHAPTER I

INTRODUCTION

 Nowadays, haptics technologies are commonly used in various researches especially in

the field of computer graphics. The word “Haptic” is originally coming from the Greek word

“haptesthai” which means “relating to the sense of touch” [5], so haptic technologies primarily

deal with the touch sensory. Computer haptic is designed to integrate the senses of touch into a

virtual environment using a physical 3D touch device. It helps to increase the technical system’s

realism and performance by allowing the users to interact with the machine [2]. Haptic sensing

technology can gather the force information to help the operator navigate through deformable

cloth and visualize the simulation [4]. It can also be used in education purpose like teaching

students about bovine abdominal anatomy [6]. Our research will be focusing on incorporating

haptic features into physics-based simulation.

Figure 1. Geomagic TouchTM Haptic Device

5

 Previous work which motivated us is Anatomy builder VR, which is a virtual reality

system that helps people learn canine anatomy [3]. We think if we can add haptic features into

this VR application, the user can better experience the spatial visualization through the tactile

feedback. They will be able to touch the muscle surface and feel the friction and resilience. They

can also drag the muscle line to feel the force that is sometimes not well captured by the eyes.

Having those features, the learners can have a deep impression on those anatomy knowledges.

 In this research, we were dealing with physics-based simulation like particle system and

spring forces. Our application will be able to feel the spring force and to experience the stiffness

and friction on the entities’ surface. We have implemented two haptic programs, one run on one

process while the other one was able to run on separate processes. The haptic device we are

using is the Geomagic TouchTM which provides us the environment to interact with the graphic

window and to touch and drag the objects in the window (Figure 1). The language we are using

for haptic programming is OpenHaptics. It is an API that implemented in C++ programming

languages.

6

CHAPTER II

METHODS

 We have developed two haptic programs. For the first program, we have written a single

application that has a haptics thread and a display thread. The physics calculation has been done

in the haptics thread. Because of the stability issues due to the different versions of driver and

library files supported by different aspects of the hardware, we implemented the second program

which we put physics simulation code on the server side and haptic code on the client side and

used TCP Winsocket to connect these two processes.

1. Single Haptic Application (1st Haptic Program)

Figure 1. Embedded Haptic Program Prototype

 In the first program, we had set up a scene that used implicit integration to compute the

particle position from two points, a moving cube and haptic cursors (Figure 1). We used Visual

Studio 2010 for supporting the haptic language and Geomagic TouchTM haptic device for feeling

the force feedback. With this program, we were supposed to feel spring force between the haptic

cursor and the particle. There were two major parts that we encountered in this program: physics-

based simulation and HLAPI: Haptic Library API. The difficulty of this task was to integrate the

x1 x

Moving Cube Particle

X2 Haptic Cursor

f1

f2

k1

k2

7

graphics frame and haptic frame so that we can see the correct graphic scene with the correct

haptic feedback.

1.1 Physics-based Simulation

We first used explicit integration for computing the particle position x and the force value

between the particle and cursor which will be used for generating haptic feedbacks. We used this

function for getting the overall force for Particle x:

𝒇 = 𝒌𝟏 𝒙𝟏 − 𝒙 + 𝒌𝟐 𝒙𝟐 − 𝒙

𝒇 is the net force for particle x, 𝒌𝟏 is the spring constant between the moving cube and the

particle, 𝒌𝟐	is the spring constant between haptic cursor and particle, 𝒙𝟏	is the position of the

moving cube, 𝒙𝟐 is the position of the haptic cursor and 𝒙 is the position of the particle.

We used these two functions for updating the particle position and velocity:

𝒗𝟏 = 𝒗𝟎 +
∆𝒕
𝒎
∙ 𝒇

𝒙𝟏 = 𝒙𝟎 + 𝒉 ∙ 𝒗𝟏

𝒗𝟏 is the current velocity of the particle, 𝒗𝟎 is the previous velocity of the particle, ∆𝒕 is the

elapsed time, 𝒎 is the mass of the particle, 𝒙𝟏 is the current position, 𝒙𝟎 is the previous position

and 𝒉 is the time step.

However, the explicit integration was not stable, so we replaced that with implicit

integration. The velocity function turned to:

𝒗𝟏 = 𝑴− 𝒉𝟐𝒌 2𝟏(𝑴𝒗𝟎 + 𝒉𝒇𝟎)

𝒌 = − 𝒌𝟏 + 𝒌𝟐 𝑰

𝑴 is for the particle mass matrix and 𝑰 is for the identity matrix.

8

1.2 HLAPI: Haptic Library API

The haptic programming language used on the Geomagic Touch TM is OpenHaptics.

There are three APIs: QuickHaptics micro API, Haptic Device API (HDAPI), Haptic Library

API. QuickHaptics is a micro API that has built-in geometry functions with default settings, so

the users can set up the haptic easily with fewer lines of code. HDAPI is a low-level C API

which enables the programmers to directly manipulate the force rendering and the threading of

the program. HLAPI is the middle ground that is designed to be used with OpenGL code and it

simplifies the synchronization of haptic and graphic threads [1]. Since HLAPI is a high-level C

API for haptic rendering and it can be embedded into the OpenGL code, we used this API for

most of the haptic codes.

1.2.1 Custom Force Effect

Using HLAPI, there is a servo loop thread in the program that calculates the forces each

time and sends back to the haptic device. This loop runs 30 times faster than the graphic

rendering loop and it processes at approximately 1 KHz. Therefore, in our first program, we put

all the simulation calculation inside the compute force callback function to make custom effects.

The graphic loop will read the particle position each time from the haptic loop which was stored

in a global variable. The graphic loop was then able to render the correct position of the particle

on the screen and feeling the force from the haptic device. This process is shown in Figure 2. The

three major custom force effect callback functions we used were: HL_EFFECT_START,

HL_EFFECT_STOP and HL_EFFECT_COMPUTE_FORCE.

9

Figure 2. Graphic Frame and Haptic Frame Design

1.2.2 Mapping from Haptic Workspace coordinates to Graphic World Coordinates

One thing that needs to be taken care of when reading the position from the haptic loop is

that the position is in haptic workspace coordinates, not in graphic world coordinates. So when

transferring the position from haptic workspace coordinates to graphic world coordinates, we

applied the inverse matrix of the model to workspace transform which was generated using the

in-built function. Figure 3 points out the change.

10

Figure 3. Graphic Frame and Haptic Frame Design with Coordinates Mapping

1.3 Pseudocode

Function: Haptic Frame
Input Parameters: cache and particle_data
Output: particle_data and result_force [3]
(1) h ← 0.01
(2) cursorPosition ← cursor current position from cache
(3) proxyPos ← matrix workspacetomodel * cursorPosition
(4) cube_force ← kcube * (cube_position – particle_position)
(5) haptic_force ←	khaptic * (proxyPos – particle_position)
(6) net_force ← haptic_force + cube_force
(7) particle_velocity ← (particle_mass – h2k)-1 (particle_mass * particle_velocity + h * net_force)
(8) particle_position ← particle_mass + h*particle_velocity
(9) result_force [3] ← haptic_force for haptic force rendering

11

Function: Graphic Frame
Input Parameters: particle_data
Output Parameters: cube_position
(1) t ← current time
(3) radian ←	t /180 * p/50
(3) If cube is moving = true then cube_position	← 2 * cos (radian), 2 * sin (radian), 0
(4) Else cube_position	← 0, 0, 0
(5) HLBeginFrame
(6) glPushMatrix
(7) Translate to cube_position
(8) Draw cube onto the screen
(9) glPopMatrix
(10) glPushMatrix
(11) Translate to particle_position
(12) Draw current particle onto the screen
(13) glPopMatrix
(14) glBegin
(15) Draw line between cube and particle
(16) Draw line between particle and cursor
(17) glEnd
(18) Draw_cursor ()
(19) HLEndFrame

2. Socket Haptic Program (2nd Haptic program)

The second program was implemented on separate processes, unlike the first program

which runs on the single console. The design of this program was that the physics simulation run

on one process and the haptic rendering run on another process. We established the connection

between these two processes. We also used Visual Studio 2010 for supporting the haptic

language and Geomagic TouchTM haptic device for feeling the force feedback. There were three

parts that we encountered in this application: physics-based simulation, TCP socket

programming and multithreading. The difficulty was that we need to ensure the connection was

12

stable and the data transferred was fast enough so that we could feel consistent force from the

haptic device.

2.1 Physics-based Simulation

In the second program, we used the spring force function to calculate the force based on

the position sent by the haptic server:

𝒇 = −𝒌 ∙ 𝒙

The reason why we used spring function was that it was easy for us to test the haptic

feedback.

2.2 TCP Socket Programming

Since we wanted to let our simulation code and haptic rendering code to run on separate

processes and to transfer data over the connection, we decided to use TCP socket programming.

we used winsock library in the Visual Studio and TCP protocol which guaranteed stable and

ordered packets sending.

13

Figure 4. Simulation Server and Haptic Client Data Transfer

From Figure 4, we packed the three floats which represented in X, Y and Z directions

into the buffer and send it to another process. Server was responsible for receiving the position

from the client and calculating the force and sending it back to the client. Client was responsible

for sending the haptic cursor positions and receiving the result force and rendering force in the

haptic device.

2.3 Multithreading

At first, we didn’t use multithreading for our second program. Instead, data transfer was

done by server wait until received the position from the client and then calculated the force based

on that position. There were delays between each force values received by the haptic client, so

that the haptic feedback was discontinuous. In order to minimize the delays, we used

multithreading in both client and server, so the client will keep sending positions to the server

14

and the server will keep sending calculated forces back to the client. The result haptic feedback

was very consistent and we can feel the cursor was pulling toward the center of the device.

2.4 Pseudocode

Server Program:

Function: Receive position thread
Input Parameters: data
Output Parameters: result_force [3]
(1) While true
(2) Receive from client and store in buffer
(3) Read position float x, y, z from the buffer
(4) result_force [3] ← k * position
(5) End

Function: Send force thread
Input Parameters: data
Output Parameters: buffer
(1) While true
(2) Pack force in a buffer
(3) Print send force value
(4) Send to the client
(5) End

Client Program:

Function: Send position thread
Input Parameters: data
Output Parameters: None
(1) While true
(2) Read position from global_position
(3) Pack position in a buffer
(4) Send to the server
(5) End

15

Function: Haptic Frame
Input Parameters: cache and particle data
Output Parameters: result_force [3]
(1) global position ← current cursor position from cache
(2) Receive calculated force from client
(3) Scan buffer and save force to result_force [3]
(4) Render force to haptic device

16

CHAPTER III

RESULTS

1. Single Haptic Application (1st Haptic Program)

For the first model, the method we used to test our model was to feel whether the force

was identical to the graphic scene. The forces that we supposed to feel in each of the scenario

according to the Figure 5 and 6. We wanted to have smooth forces without sudden pulses.

Figure 5. Capture from program 1

Figure 6. Capture from program 1

17

According to the scene of Figure 5 and 6, the colorful ball was the particle which we used

implicit integration to calculate the position. The blue point was the haptic cursor position and

the cube was either fixed at the center of the screen or moving in circular motion.

From Figure 5, when the cube was fixed at the center and the cursor swirled, the particle

would also swirl and we felt the particle was swirling from the haptic cursor. When we stopped

swirling the cursor suddenly, the force did not stop and we continued to feel the force until the

particle was not moving in the graphic scene.

 From Figure 6, the cube was moving in circular motion and we tried to fix the cursor at

the center of the screen. We felt the cube was dragging the cursor toward itself and the cube was

moving in circular motion.

Based on result above, the graphic loop was able to generate correct graphic scene and

the forces generated by the haptic device felt identical to the graphic scene. The forces were

consistent and smooth without having sudden pulses.

2. Socket Haptic Program (2nd Haptic program)

For the second program, the method we used to test our model was to feel whether the

directions of the forces were pointing towards the center of the device. The force should be

consistent without having sudden pulses. Figure 7 shows how we manipulated the haptic cursor

in three different directions.

18

Figure 7. Haptic Device Cursor Moving in x, y, z directions

Figure 8. Haptic Client Console

19

Figure 9. Server Console

Figure 10. Server Console

Figure 8 shows the haptic client console. After connected to the server, it began the

haptic rendering process. Both Figure 9 and 10 show the server console. When starting the

20

server, the force sending were zero, but when it received the position from the client, it started to

print the values onto the screen. For the second program, we can feel the direction of the force

was pointing toward the center. The further we moved away the cursor from the center of the

haptic device, the stronger force we can feel. The round of sending and receiving can be done in

16kHz. During the testing, the forces were quite consistent without feeling any pulses.

21

CHAPTER IV

CONCLUSION

For the two programs, we have successfully generated correct force feedback based on

the graphic scene. However, it is hard to measure the accuracy of those force feedbacks because

of the haptic device in-built feature. We did not build a model that can measure how well the

haptic feedbacks mapped to the graphic scene. Also, sometimes the cursor will drop into the

surface of the mesh, though we were using the in-built method for the device. Nevertheless, we

think our programs will be workable for feeling the muscle simulation. The second program will

be very helpful for generating haptic feedback for the muscle simulation code which was

performed on a higher version platform or on a different platform, since we can use TCP socket

method to transfer the data between platforms.

Future work

Our future work will be focusing on combining our haptic client with a Unity server

which is a VR muscle simulation application. We want to be able to feel the muscle and to drag

the muscle line in the spatial environment. We also want to set up an application that can test the

accuracy of our haptic output which means that we want to build a model that can measure how

well the haptic feedbacks mapped to the graphic scene.

22

REFERENCES

[1] OpenHaptics Toolkit version 3.4.0 Programmers Guide. 3D Systems, Inc., 2015. Print.

[2] M. Strese, J. Lee, C. Schuwerk, Q. Han, H. Kim and E. Steinbach, "A haptic texture
database for tool-mediated texture recognition and classification," 2014 IEEE
International Symposium on Haptic, Audio and Visual Environments and Games (HAVE)
Proceedings, Richardson, TX, 2014, pp. 118-123. doi: 10.1109/HAVE.2014.6954342

[3] Jinsil Hwaryoung Seo, Brian Michael Smith, Michael Bruner, Margaret Cook, Jinkyo Suh,

Michelle Pine, Erica Malone, Steven Leal, Shinjiro Sueda, and Zhikun Bai. “Anatomy
builder VR: comparative anatomy lab promoting spatial visualization through
constructionist learning,” SIGGRAPH Asia 2017 VR Showcase (SA '17). ACM, New
York, NY, USA, 2017, Article 1, 2 pages. DOI:
https://doi.org/10.1145/3139468.3139470

[4] A. Clegg, W. Yu, Z. Erickson, J. Tan, C. K. Liu and G. Turk, "Learning to navigate cloth

using haptics," 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, 2017, pp. 2799-2805.
doi: 10.1109/IROS.2017.8206110

[5] A. E. Saddik, "The Potential of Haptics Technologies," in IEEE Instrumentation &

Measurement Magazine, vol. 10, no. 1, pp. 10-17, Feb. 2007. doi:
10.1109/MIM.2007.339540

[6] T. kinnison, N. D. Forrest, S. P. Frean, S. Baillie, "Teaching bovine abdominal anatomy: Use

of a haptic simulator". Anatomical Sciences Education, vol. 2, issue 6, 24 Sept. 2009.
https://doi.org/10.1002/ase.109

