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Abstract 

The protective effect of a resorcinol – formaldehyde based carbon aerogel (CA) support was 

compared in two different forms of the hybrid made of copper benzene-1,3,5-tricarboxilate 

(HKUST-1) and CA. HKUST-1:CA with identical mass ratio (1:1). HKUST-1+CA is a 

physical mixture while in HKUST-1@CA the metal organic framework (MOF) crystals were 

grown on CA under solvothermal conditions. The effect of water vapour and the external 

pressure (25 - 200 bar) was investigated.  

TG/DTG data show that the prehistory of the samples has a strong influence on their thermal 

behaviour and nitrogen data suggest that part of the MOF grows in the wider pores of the 

HKUST-1@CA sample. Although there are no dramatic differences in the water adsorption 

isotherms, the physical mixture is slightly more proficient. In dry samples under compression 

the crystalline structure of the free HKUST-1 is well conserved. The nanoscale structure of the 

hybrids is sensitive to applied pressure and formation of mesopores of wide size distribution 

occurs. No significant difference was found between the corresponding CH4 adsorption 

isotherms of the composite samples, either in the as-prepared samples or after compression at 

100 bar. After being exposed to high external pressure the CH4 uptake seems to be governed 

by the MOF.  
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1. Introduction 

 

Natural gas has a huge potential as alternative fuel owing to its moderately low carbon dioxide 

emission, but its effective and safe storage is still a challenge. Adsorptive gas storage could be 

the solution to this problem, but a suitable adsorbent is required [1]. Metal organic frameworks 

(MOFs) are a relatively a new class of materials with outstandingly large adsorption capacity. 

MOFs are composed of multivalent metal ions or clusters linked together by organic ligands, 

thereby creating an open framework with an ordered and permanent pore structure. Owing to 

these properties MOFs are at present the most promising materials in gas storage applications. 

Their mechanical stability, however, is poorer than that of traditional adsorbents [2]. 

Copper benzene-1,3,5-tricarboxilate (Cu3BTC2) is one of the most widely investigated MOFs. 

It is also commercially available as Basolite® C 300. Its three-dimensional network can adsorb 

an outstandingly large amount of methane, the main component of natural gas. Notably, they 

met the US DoE target (180 times their own volume at 35 bar) established for natural gas storage 

[3, 4]. This MOF was first reported in 1999 by Chui et al. as HKUST-1 (Hong Kong University 

of Science and Technology), who used solvothermal synthesis to prepare the light blue 

octahedral crystals [5]. Its network structure is built from copper(II) cations and benzene-1,3,5-

tricarboxylate anions (BTC) to form a neutral net of interconnected micropores. In its paddle-

wheel secondary building unit, four carboxylate groups of four BTC ligands link together two 

copper ions. In this structure, each copper ion has an unsaturated binding site. In the 

solvothermal synthesis these binding sites are occupied and the pores fill with solvent 

molecules, thereby reducing the free volume and the adsorption capacity for the gas to be stored. 

Removal of these guest molecules is necessary before implementing adsorption [1].  

Generally, for easier handling, industrial adsorbents are employed preferentially as pellets or 

monoliths. The compression step is intended to reduce the space between individual crystals 

without destroying their structure and if possible to increase the adsorption capacity. In many 

cases, it has been reported that application of high external pressure to MOFs can result in 

anomalous mechanical behaviour [6, 7].  

In order to investigate how high pressure treatment influences the sorption behaviour of the 

MOF material HKUST-1 was exposed to high hydrostatic pressure in a diamond anvil cell 

(DAC) device surrounded by a hydrostatic liquid [8-10]. The pressure was varied in the range 

0-80000 bar. It was found that the HKUST-1 framework exhibited a clear transition between 

two distinct regions of nearly linear compressibility depending on the hydrostatic liquid. In the 

first region, the applied pressure forced the hydrostatic medium into the pores, causing the 

sample to expand initially. The framework is then much more resistant to compression. A 

transition pressure, which depends on the size of the molecules of the hydrostatic liquid entering 

the pores, occurred between 8000 and 22000 bar. In the second region, the pore filling 

behaviour transforms into pore discharging, where the high pressure squeezes the solvent out 

of the pores, thus dramatically decreasing the volume. In the absence of hydrostatic liquid, or 

when a non-penetrating hydrostatic medium is applied, direct compression of the framework 

occurs. 

The most common response to external pressure is amorphisation. Investigations into the effect 

of the external pressure include the effect on the structure, adsorption performance and density 

of HKUST-1. Compression with 0.03 – 5 ton resulted in a loss of the nitrogen adsorption 

capacity and crystallinity, while bulk density concurrently increased [11]. The appearance of a 

hysteresis loop in the nitrogen adsorption isotherm after compression indicates the formation 

of mesopores. Using IR spectroscopy and XRD measurements De Coste et al. after compression 

with 70 and 700 bar, respectively, demonstrated that the reason of this phenomenon is a physical 

transformation [12].  
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The use of HKUST-1 for natural gas (NG) storage however, raises another question, namely 

the effect of impurities on its integrity (Table 1) [13].  Although water is not listed in this table, 

it is one of the most critical component from the point of view of HKUST-1 [14-16]. 

 

Table 1 Typical components of the natural gas [13] 

Methane CH4 70-90% 

Ethane C2H6 

0-20% Propane C3H8 

Butane C4H10 

Carbon Dioxide CO2 0-8% 

Oxygen O2 0-0.2% 

Nitrogen N2 0-5% 

Hydrogen sulphide H2S 0-5% 

Rare gases A, He, Ne, Xe trace 

 

The chemical and mechanical stability of MOFs as well as their resistance to wet environment 

may be improved in their composites [17]. With mechanically more stable materials such as 

activated carbons it is possible to reduce the mechanical vulnerability of MOFs. It has also been 

reported that various (Maxsorb pellet, Westvaco SA-30 carbon powder, activated carbon fibre 

from Osaka Gas Co. or a lab-made a mesophase pitch-based) activated carbons are much more 

resistant to compression than HKUST-1. Their nitrogen adsorption capacity showed no 

significant change under high pressure (0-4120 bar) [18, 19]. HKUST-1 crystals were 

successfully grown within the pores of the petroleum-pitch activated carbon, thus improving 

their mechanical resistance. The activated carbon was added to the precursor solution of 

HKUST-1 prior to the solvothermal synthesis. The nitrogen adsorption capacity of the resulting 

composite material was not influenced by pelletization under 0.5 - 1.5 tons, and the 

morphological deformation was negligible [20].  

The textural and chemical characteristics of carbon aerogels, which are simultaneously micro-

, meso- and macroporous, predispose them as thermal and phonic insulators, electric double 

layer and super capacitors, chromatography packing, adsorbents, etc. [21]. These materials, like 

other high surface area materials, are also often used as catalyst supports [22 - 24]. The space 

between their typically spherical carbon beads is large enough to host particles, e.g., titania, 

carbon nanoparticles such as graphene derivatives, carbon nanotubes or nanohorns, etc. [25 - 

28] or enzymes and cells [29, 30].  

This study focuses on the protective impact of resorcinol – formaldehyde based carbon aerogel. 

HKUST-1 – carbon aerogel composites of identical mass ratio were prepared as i) a physical 

mixture (HKUST-1+CA), and ii) by synthesizing HKUST-1 in the presence of the aerogel 

(HKUST-1@CA), similarly to [20]. Each component, as well as the composites, was 

characterized and their water vapour adsorption was measured. The effect of external pressure 

was monitored by powder XRD and nitrogen adsorption. The influence of pressure on the gas 

storage performance was tested by atmospheric methane adsorption at 0 °C. 

 

2. Experimental  

 

2.1. Sample preparation 
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The resorcinol – formaldehyde based carbon aerogel was prepared by carbonizing the polymer 

aerogel formed from the resorcinol-formaldehyde polycondensation reaction [31, 32]. The 

surface of the powdered carbon aerogel was altered from basic to acidic by oxidation with nitric 

acid. After thorough washing with deionized water the sample was dried at 110 °C. This 

oxidized sample was denoted as CA. HKUST-1 (C18H6Cu3O12, Mw 604.87) was synthesized 

under solvothermal conditions after Wang et al. [33] at 80 °C [34]. The turquoise crystals 

obtained were filtered and thoroughly washed with ethanol, then dried in air at ambient 

temperature. The samples were stored in a sealed vial in a desiccator over freshly activated 

silica. The fine crystalline material was used without further crushing or grinding.  

Binary samples of approximately identical gravimetric composition (HKUST-1:CA = 1:1), 

obtained by two different routes, were used in the experiments. For the “chemical” composite 

(HKUST-1@CA) CA soaked in the aqueous solution of Cu(NO3)2 was added to the above 

described precursor solution prior to the solvothermal process. For the “physical” mixture 

(HKUST-1+CA), CA and HKUST-1 materials were thoroughly homogenized.  

 

2.2. Compression 

An OL57 hydraulic press (Manfredi, Italy) was used for sample compression. 100 mg of sample 

was placed in a 13 mm diameter sample holder and kept at the required pressure (25 bar, 50 

bar, 100 bar and 200 bar) for 10 minutes. The compressed samples were designated by sample 

name_applied pressure. HKUST-1_200 thus refers to HKUST-1 compressed at 200 bar. 

 

2.2. Characterization 

The powder X-ray diffraction (XRD) was measured in the range 2Θ = 4–84° with an X’pert 

Pro MPD (PANanalytical Bv., The Netherlands) X-ray diffractometer using an X’celerator type 

detector and Cu Kα radiation with a Ni filter foil (λ = 1.5408 Å) on a ‘zero-background Si-single 

crystal’ sample holder. Phase identification was assisted by the Search&Match algorithm of 

HighScore Plus (PANanalytical Bv.) software, based on either the international Powder 

Diffraction File (PDF4+, Release 2015, International Centre of Diffraction Data, ICDD, 

Pennsylvania, USA), or The Cambridge Structural Database (CSD-Enterprise, version 5.37, 

Cambridge Crystallographic DataCentre, CCDC [35]) using the built-in powder pattern 

generator algorithm of Mercury program [36]. For this measurement, non-activated samples 

were used.  

Thermal analysis was performed using a simultaneous TG/DTA apparatus (STD 2960 

Simultaneous DTA-TGA, TA Instruments Inc., USA). The heating rate was 10 °C min−1, with 

a dry air flow of 130 cm3 min−1. Approximately 10 mg of sample were placed in an open Pt 

crucible.  

Surface composition was determined by X-ray photoelectron spectroscopy (XPS) performed 

by a KRATOS XSAM 800 XPS machine equipped with an atmospheric reaction chamber. Al 

K characteristic X-ray line. 40 eV pass energy (energy steps 0.1 eV) and FAT mode were 

applied for recording the XPS lines of Cu 2p, Cu LMM, O 1s and C 1s. C 1s binding energy at 

284.8 eV was used as reference for charge compensation. The surface concentrations of the 

elements were calculated from the integrated intensities of the XPS lines using sensitivity 

factors given by the manufacturer. 

Nitrogen adsorption/desorption isotherms were measured at -196 °C by a NOVA 2000e 

(Quantachrome, USA) volumetric computer-controlled surface analyzer. The samples were 

outgassed in vacuum at 180 °C (activation). The apparent surface area SBET was calculated using 

the Brunauer–Emmett–Teller (BET) model [37]. The total pore volume Vtot was derived from 

the amount of vapour adsorbed at relative pressure p/p0→ 1, assuming that the pores are filled 

with liquid adsorbate. The micropore volume VmicroN2 was derived from the Dubinin–

Radushkevich (DR) plot [38]. The pore size distribution was calculated using the Barret-Joyner-

http://www.sciencedirect.com/science/article/pii/S0008622313008336#b0045
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Halenda (BJH) model [39]. Transformation of the primary adsorption data and pore size 

analysis were performed with the QuantachromeASi Qwin software (version 3.0). 

 

2. Water vapour adsorption 

Water vapour adsorption/desorption isotherms were measured at 20 °C by a NOVA 2000e 

(Quantachrome, USA) volumetric computer-controlled surface analyzer. The samples were 

outgassed in vacuum at 180 °C (activation).  

 

2.4. Methane adsorption 

Methane adsorption/desorption isotherms were measured at 0 °C by AUTOSORB-1 

(Quantachrome, USA) volumetric computer-controlled surface analyzer. Prior to the 

measurements the samples were outgassed at 180 °C (activation). The total pore volume Vtot 

was derived from the amount of vapour adsorbed at relative pressure p/p0→ 1, assuming that 

the pores are filled with liquid adsorbate. Transformation of the primary adsorption data was 

performed with the QuantachromeASi Qwin software (version 3.0). 

 

3. Results and discussion 

 

3.1. Characterisation of the uncompressed materials 

Figure 1 shows SEM micrographs of the pristine MOF and the porous carbon aerogel. The as-

prepared freely grown HKUST-1 forms light blue octahedral crystals (Fig. 1a) [40]. To obtain 

octahedral HKUST-1 crystals grown on the surface of the CA the originally basic surface of 

the carbon aerogel had to be converted to acidic. It was reported earlier that acidic surface 

groups are advantageous for HKUST-1 formation [17].  

 

 
Fig. 1 Scanning electron micrographs of the HKUST-1 (a), the carbon aerogel (b) and 

HKUST-1@CA (c)  

 

The diffraction profile of the composites confirms the presence of the HKUST-1 crystals (Fig. 

2). In the composite samples the peak positions do not change, with only a slight peak 

broadening being observed, probably due to the presence of the amorphous CA. The peak 

positions of our samples agree well with the reference patterns of Cu3(BTC)2 from both the 

international CSD single crystal and PDF-4+ powder diffraction databases (FIQCEN [41], 

DOTSOV42 [42] and PDF 00-062-1183 [43], PDF 00-64-0936 [44], and PDF 00-065-1028 

[45]).  
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Fig. 2 Powder XRD profile of the non-activated samples: HKUST-1, HKUST-1@CA, 

HKUST-1+CA and CA. (Each spectrum is normalized with respect to its highest 

count (100%). 

 

The chemical nature of the copper in the HKUST-1@CA composite samples was examined by 

XPS (Fig. 3). The Cu2p peak shows shake up satellites, which are a clear sign of Cu2+. These 

anchored ions are not crystalline, i.e., they cannot be detected by XRD. Due to the 

heterogeneous charge up of the sample, correct deconvolution of the peaks is not possible. No 

chemical relation between the Cu atoms and the CA surface was identified, i.e., in this respect 

the HKUST-1@CA sample appears to resemble a physical mixture of HKUST-1 and CA rather 

than a chemically integrated material. 

 

 
Fig. 3 Cu 2p XPS spectra of HKUST-1(a) and the HKUST-1@CA (b) samples  

 

The porous structure of the two composites are very similar (Fig. 4). HKUST-1 has a Type I 

isotherm [46], typical of microporous materials. The pore filling mechanism is indicated by the 

nitrogen adsorption, which is fully reversible. The isotherm of CA, of Type IV, reveals the 

presence of micro- and relatively wide mesopores. CA is clearly recognizable in the isotherms 

of the composite samples. The pore size distribution of the uncompressed HKUST-1@CA and 

HKUST-1+CA, as will be shown later in Figures 10b and 11b, respectively, shows mesopores 

with a typical diameter of 30 nm in both composites. Table 2 lists the numerical characteristics 

deduced from the isotherms. A set of theoretical data (Xtheor) was also created for the composite 

samples assuming that the adsorption capacity of the components is additive. Strictly speaking, 

for the exclusively microporous HKUST-1, the BET model can be employed only as an 

approximation. We use this apparent area as a benchmark to characterize our systems.  
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Fig. 4 Low temperature (-196 °C) nitrogen adsorption isotherms of HKUST-1 (a), CA 

(b), HKUST-1@CA (c) and HKUST-1+CA (d) samples 

Full symbols: adsorption, open symbols: desorption branch 

 

Table 2 Data deduced from low temperature (-196 °C) nitrogen adsorption measurements and 

calculated theoretical data  

Sample 

Measured 

Xmeas 

Theoretical* 

Xtheor 

SBET VmicroN2 Vtot SBET VmicroN2 Vtot  

 m2 g-1 cm3 g-1 cm3 g-1 m2 g-1 cm3 g-1 cm3 g-1 

HKUST-1 1557 0.58 0.66 - - - 

CA 873 0.35 2.2 - - - 

HKUST-1@CA 923 0.35 2.3 1242 0.47 1.4 

HKUST-1+CA 1236 0.47 2.8 1207 0.46 1.4 
*Corresponding theoretical values Xtheor calculated from the corresponding measured data Xmeas as 

𝑋𝑡ℎ𝑒𝑜𝑟 =
𝑚𝐻𝐾𝑈𝑆𝑇−1𝑋𝐻𝐾𝑈𝑆𝑇−1𝑚𝑒𝑎𝑠+𝑚𝐶𝐴𝑋𝐶𝐴𝑚𝑒𝑎𝑠

𝑚𝐻𝐾𝑈𝑆𝑇−1+𝑚𝐶𝐴
. mHKUST-1 and mCA  are the mass of the solvent free HKUST-1 and 

dry CA, respectively  

 

While the calculated data of HKUST-1+CA are very close to the measured values, HKUST-

1@CA shows a more complex feature. The isotherm of HKUST-1@CA is similar to CA (Fig. 

4) in the low p/p0 range, but the slope in the mesoporous range is less steep than that of the host 

aerogel alone. The contribution of HKUST-1 to the BET area is much lower than the theoretical 
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value. These observations imply that HKUST-1 crystals also may grow in the mesopores of the 

CA, thus reducing the free mesopore volume.  

The difference between the two composite samples is more obvious in their thermal behaviour 

(Fig. 5 and Table S1). Already, simple inspection of the corresponding curves (Fig. 5c and d) 

shows that the MOF confined within the pores has a substantial impact on the thermal behaviour 

of the CA.  

 

 
Fig. 5 TG (solid line) and DTG (dotted line) signals of HKUST-1 (a), CA (b),  

HKUST-1@CA (c) and HKUST-1+CA (d) samples in air (heating rate: 10 min sec-1) 

 

CA exhibits three characteristic regions corresponding to i) the loss of adsorbed water, ii) 

decomposition of surface groups and iii) combustion. The behaviour of the binary samples up 

to 270 - 280 °C is similar. Above that temperature the difference becomes substantial. In 

HKUST-1@CA oxidative decomposition of the two components intervenes and the process 

ends by 410 °C, much below the temperature of the combustion step of pristine CA. As at least 

part of the HKUST-1 develops within the pores of CA, the evolving gases cannot easily leave 

the pores and their residence is time long enough to react with the CA. On the other hand, two 

distinct steps are observable in the HKUST-1+CA, which correspond respectively to the 

practically independent thermal degradation of the organic ligands of HKUST-1 (- 23.7 % loss) 

around 320 °C, and to the oxidative decomposition of CA (-39.1 %) above 410 °C. The slight 

mass increase following the sharp thermal decomposition originates from the transformation of 

Cu2O to CuO. It can be used to confirm the stoichiometric composition of HKUST-1 and to 

estimate the HKUST-1 content of the binary samples [34]. Thus, the HKUST-1 content 

estimated from the mass of the corresponding residues at 800 °C was found to be very close to 

the value expected from the preparation conditions (39 %).  

The effect of the CA support on sensitivity to water was tested on samples after preheating at a 

temperature where all the liquids filling the pores are removed (Fig. 6). The polar HKUST-1 

adsorbed about twice as much water as CA, and its binding sites of different strengths are clearly 

recognizable in the adsorption isotherm [15]. As expected, the interaction between the water 
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molecules and the HKUST-1 is much stronger than in the case of CA, as reflected in the initial 

slope of the isotherms. The adsorption/desorption process is irreversible, water molecules being 

retained in the pores in both pure samples. In both composite samples, the polar character of 

the MOF defines the shape of the isotherms. The presence of CA reduces the water adsorption 

capacity, and in HKUST-1+CA this effect is more pronounced. The different binding sites are 

still distinguishable and the inflections occur at the same p/p0 values, but the shape of the 

isotherms is slightly different.  

 

 
Fig. 6 Water vapour adsorption isotherms of HKUST-1, CA, HKUST-1@CA and  

HKUST-1+CA samples. The maximum adsorption of HKUST-1 was set to 100 %. 

 

3.2. Influence of the external pressure 

The stability of the MOF against external pressure and the potential protective effect of the 

carbon support were studied up to 200 bar without thermal pre-treatment. Chapman et al., who 

studied the HKUST-1 in a DAC, reported that applying compression in the 8 - 22 kbar range 

the hydrostatic liquid enters the pores, while at higher pressure pore emptying occurred [10]. In 

our case, where no hydraulic medium was applied, at pressures upwards of 100 bar the surface 

of the pure HKUST-1 discs seemed wet when the hydraulic press was opened. After a few 

seconds, the moisture disappeared into the pores. The difference in the observed pressures 

might be explained by the significantly different experimental conditions. With the composite 

samples, we did not observe such wetting behaviour. 

 

3.2.1. Offline XRD study of pellets compressed by different loads 

The diffraction profiles of the compressed samples are compared in Figure 7. Investigating the 

pressure dependence of the diffraction profile of HKUST-1 in situ in DAC observed no 

significant change in the diffraction profile until 4 kbar [10]. Under our different experimental 

conditions, our results were different. Although in the freely grown HKUST-1 part of the 

diffraction profile is still recognizable after compression at 200 bar, structural changes are 

already observable at 25 bar (Fig. 7a). The peak broadening and increasing base line indicate 

partial amorphisation of the structure at the nanometre scale. The position of the peaks shifts 

slightly to larger angles, implying decreased interplanar distance and shortened bond lengths. 

The two broad bumps (2Θ = 22.9; 43.1 °) of amorphous CA could be the sign of limited 

structural regularity. Both composite samples show poorer resistance than their individual 

components. The structure of HKUST-1 disappears in HKUST-1@CA at 50 bar and in 

HKUST-1+CA at 100 bar, which implies that the physical mixture offers slightly better 

resistance to pressure than the composites.  

 



10 
 

 
Fig. 7 Experimental XRD profile of the parent materials and the compressed samples: 

HKUST-1 (a) CA (b), HKUST-1@CA (c), HKUST-1+CA (d). (Each spectrum is normalized 

with respect to its highest count (100%). 

 

3.2.2. Changes in the porous structure 

The SEM images compare the influence of the external pressure on the 25 and 200 bar samples 

(Fig. 8). While only fragmentation can be observed in CA, the internal surface of the broken 

pellet reveals densification of the MOF. The expected protective function of the CA is obvious 

on comparing the images of the compressed HKUST-1 with the composite samples. The loose 

structure is retained in the binary systems while a layered structure develops at the higher 

pressure.  
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Fig. 8 SEM image of the internal surface of the various samples  

compressed at 25 and 200 bar 

 

The effect of the pressure induces nanoscale changes and thus influences the adsorption 

properties. In the pure HKUST-1 already the smallest compression investigated causes 

significant changes, and further compression systematically diminishes the N2 adsorption 

isotherms (Fig. 9a). The fundamental loss in gas adsorption performance stems from changes 

in the micropore range (Fig. S1). Additionally, a hysteresis loop of type H4 indicates the 

formation of slit-like mesopores. The development of mesopores was already observed when 

commercial HKUST-1 was subjected to pressures between 70 and 700 bar [12]. Interestingly, 

in that case SBET decreased by 47 % at 700 bar, while here, already at 200 bar, the loss is even 

greater, 64 % (Fig. S1). Other studies, however, did not detect such mesopore formation [4, 18, 

20]. The free volume between the individual crystals diminishes and the probes become more 

condensed. The reason for the mesopore evolution could be partial degradation of the 

isoreticular structure, which also reduces the crystallinity, as revealed by XRD.  

 



12 
 

 
Fig. 9 Low temperature (-196 °C) nitrogen adsorption isotherms of the compressed 

HKUST-1 (a) and CA samples (b) 

 

Various porous carbons of different forms and origin [18, 19, 20] are known for their high 

pressure resistance. Our aerogel however shows deviation in the high relative pressure range, 

which corresponds to wider meso- and narrow macropores: mechanical stress affects the wider 

pores (Fig. 9b). Interparticle spaces that exceed the window of nitrogen adsorption shrink and 

shift into the range already detectable by low temperature nitrogen adsorption measurements.  

The isotherms of HKUST-1@CA show a gradually decreasing trend similar to HKUST-1 

through the whole relative pressure range (Fig. 10). The pore size distribution (Fig. 10b) reveals 

how mesopores narrow and their volume decreases with increasing compression. The HKUST-

1+CA isotherms reveal a slightly different pressure sensitivity (Fig 11b). Up to 25 bar HKUST-

1@CA seems to be more resistant, but the XRD results show that at 50 bar this obstacle 

disappears (Fig. 11b).  

 

 

 
Fig. 10 Low temperature (-196 °C) nitrogen adsorption isotherms of parent and compressed 

HKUST-1@CA samples (a) and their pore size distributions from desorption isotherms (b) 
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Fig. 11 Low temperature (-196 °C) nitrogen adsorption isotherms of parent and compressed 

HKUST-1+CA samples (a) and their pore size distributions from desorption isotherms (b) 

 

Figure S1 and Table S2 compares the trend of the numerical parameters deduced from the 

nitrogen adsorption measurements of compressed samples. Not surprisingly, the apparent 

surface and the micropore volume shows the same tendency. It is clear that CA is the most 

resistant in the narrow pore region, but its structure cracks easily and the size of the voluminous 

wider pores shifts into the measurable pore size range, resulting in an increase in total pore 

volume of more than 200 %. The protective effect of the carbon is similar in both binary 

systems.  

 

Methane adsorption 

For applications, it is of primary importance to see the effect of the pelletization on methane 

adsorption capacity. Here we focus on the low pressure range. In Figure 12 we compare the 

methane isotherms of the various samples, as prepared and after being exposed to 100 bar. All 

the isotherms reflect reversible adsorption.  
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Fig. 12 Methane adsorption isotherms (0 °C, 0 - 1 bar) of HKUST-1 (a), CA (b), 

HKUST-1@CA (c), HKUST-1+CA (d); filled symbols: adsorption, open symbols: 

desorption 

 

It is obvious that, due to the ambient test conditions applied, the capacities are significantly 

below the nitrogen adsorption data. The apparent advantage of CA in gravimetric terms (Fig. 

12b) immediately disappears in the volumetric comparison. Owing to extremely low bulk 

density of CA (0.075 g cm-3 [48]), HKUST-1 (bulk density: 0.33 g cm-3) has more than 4 times 

larger CH4 capacity at atmospheric pressure than CA. The bulk densities of the HKUST-1@CA 

and the HKUST-1+CA composite samples were measured 0.19 g cm-3 and 0.12 g cm-3, 

respectively. The corresponding adsorption capacities exceed that of the plain CA by factors of 

3.5 and 2.5, respectively.  

 

Table 3. Data deduced from methane adsorption measurements (0 °C) of non-compressed and 

compressed (100 bar) samples 

Sample Vtot,CH4 Vtot,CH4 theoretical*
 Slope 

from DR modell 
 cm3 g-1 cm3 g-1  

HKUST-1 0.050 X - 0.57 

HKUST-1_100 0.030 X - 0.43 

CA 0.056 X - 0.41 

CA_100 0.066 X - 0.38 

HKUST-1@CA 0.051 0.053 - 0.50 
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HKUST-1@CA_100 0.022 0.047 - 0.47 

HKUST-1+CA 0.054 0.053 - 0.48 

HKUST-1+CA_100 0.029 0.048 - 0.37 

*the same calculation as for N2 adsorption; liquid CH4 density: 0.42 g cm-3 

 

We use the mass related adsorption data to evaluate the effect of compression on the composite 

samples. After compression at 100 bar the loss of CH4 capacity was 40 % in the case of HKUST-

1, 57 % for HKUST-1@CA and slightly less, 46 % for HKUST-1+CA, i.e., in the “pelletized” 

samples the adsorption of the HKUST-1 component governs the uptake. The trend of the 

additivity (or its absence) of the highest adsorption capacities is the same as in nitrogen 

adsorption.  

The initial section of the methane adsorption isotherms were fitted to the DR model in order to 

estimate the effect of pressure on the adsorption energy. The slope reported in Table 3 is 

inversely proportional to the adsorption energy. After compression, the slopes decreased in each 

case, which means an enhancement of the adsorption energy. Nevertheless, the enhancement is 

close to 25 % in case of the pure HKUST-1 and only 7 % for CA. HKUST-1+CA behaves 

similarly to HKUST-1, while HKUST-1@CA shows an effect comparable to the pure CA.  

 

4. Conclusions 

 

Although HKUST-1 is an outstanding candidate for natural gas storage in terms of its methane 

uptake, it is sensitive to water and, when pelletized, to the compacting pressure. The protective 

effect of a carbon aerogel support was compared on two different hybrid forms of identical, 1:1 

HKUST-1:CA mass ratio. HKUST-1+CA is a physical mixture, while in HKUST-1@CA the 

MOF crystals were grown on CA under solvothermal conditions. The effect of water vapour 

and the external pressure (25 - 200 bar) was investigated.  

Although the XPS results imply that there is no chemical bond between the CA matrix and the 

MOF, the TG/DTG data show that the prehistory of the samples has a strong influence on their 

thermal behaviour. Moderate differences found also in the nitrogen data suggest that part of the 

MOF occupies the wider pores in the HKUST-1@CA sample. Although there are no dramatic 

differences in the water adsorption isotherms, the protective effect of the physical mixture is 

slightly more advantageous.  

Surprisingly, the crystalline structure of HKUST-1 is well conserved when the dry powder is 

compressed. In this case the crystalline water lost under external pressure can be easily 

regained, while in the presence of the CA support this process may be hindered by the loss of 

water already adsorbed in the carbon pores.  

The nanoscale structure of HKUST-1 + CA is more sensitive to external pressure, but at higher 

compressions HKUST-1 loses its crystalline structure also in the composite sample. In both 

cases the formation of mesopores of wide size distribution occurs. No significant difference 

was found between the corresponding CH4 adsorption isotherms of the composites either in the 

as-prepared samples or after compression at 100 bar. After exposure to high external pressure 

the CH4 uptake seems to be governed by the MOF.  
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