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The reactions of copper and amorphous silicon were studied by in-situ transmission electron microscopy
up to 500 °C. Only the CuSiz4-n phase and the Cug,Sijs-d phase formed at this temperature. The crystal
structure of the dominating Cu7gSiz4 changed, by the elapsed time after heating. The Cu—Si ordering
resulted in different supercells, built up by topologically identical subcells with different site occupancies
and arrangement. Two modulated crystal structures were solved based on diffraction data and HRTEM

images.
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1. Introduction

Copper silicides are being intensively studied, because of their
wide range of applications in many fields. CusSi (also denoted by
Cu76Siag, Cus,«Si, CusSiix) is a key ingredient in ultrapure silicon
synthesis (99.99999%) suitable for photovoltaic and electric devices
[1]. It is used as contact material in microelectronics and as catalyst
in production of semiconductor and carbon nanowires. The thrift of
the solar cell production depends on refining metallurgical grade
silicon to solar grade silicon [2] and on the lowering of the crys-
tallization temperature of amorphous-Si (a-Si) to crystalline-Si (c-
Si) in thin layers. The copper rich silicide phases have a great impact
on several technical applications, e.g. in Li-ion batteries [3]. In spite
of the impact of copper-silicides, their phases and structural re-
lations are still not detailed properly.

In the focus of experimental works and thermodynamic calcu-
lations is the phase diagram of the copper-silicon system. The most
cited phase diagram of the system is the 1986 work of Olesinski and
Abbaschian [4]. Cui and Jung [5] gave a comprehensive overview in
the field of the Cu—Si system; one can find the relevant literature
therein. The phases at the copper rich side of the phase diagram is
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the object of our study and it is shown in Fig. 1 (after Cui and Jung
[5]). There are many differences between the widely cited phase
diagram of Olesinski and Abbaschian and the recent results [5],
showing us an uncertainty of the Cu — Si phase diagram. A good
example for this uncertainty is the work of P. Riani et al. [6] who
studied the stability of the Cuy9Siy1-¢ phase.

Many studies have been published on the crystal structures of
the copper silicide phases since 1935. Fagerberg and Westgren [7]
studied alloys with the structure of f-Mn and found Cug,Siig
structure to be this type. The first structure model for the CusSi;_y,
so called n-phase (CuygSiy4 in Fig. 1) was given in 1978 by Solberg
[8], who proposed a structure model for the high temperature n-
phase with trigonal symmetry. Additionally, he obtained super-
structures — denoted as 1’ and n” — stable at room temperature.
This was in use until Mattern et al. [9 and 10] determined the
structure model of n-phase shown in Fig. 2. Later, Wen and Spaepen
[11] interpreted their findings on the copper containing pre-
cipitates in silicon crystals the same way as Mattern et al..

They proposed rhombohedral symmetries for n' and n” poly-
morphs as result of long period antiphase boundaries. Corréa et al.
[12] measured the Cus Si polymorphs by X-ray powder diffraction
using copper radiation and established six modifications in this
narrow compositional range, although they found all modifications
having the similar unit cell. Palatinus et al. [13] using their
SUPERFLIP software [14] implemented in JANA2006 [15] inter-
preted their data on m phases having incommensurate structure.
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Fig. 1. Phase diagram of the Cu — Si system (after [5]).
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Fig. 2. Structure model of Cus,,Si-n in [010] projection and cross sections along
z direction in [001] projection as described by Mattern et al. and Wen and Spaepen
[9,10 and 11].

However, these long period and incommensurate structures were
not confirmed as separate thermodynamic phases [4]. The Cu—Si
phases in the ICSD2017 data base [16] are listed in Table 1.

We performed in-situ transmission electron microscopic (TEM)
experiments on phase formations of Cu — Si upon heating. We
measured the cooled down samples after the heat treatment at
room temperature using TEM. Selected area electron-diffraction
patterns (SAED) served as basis of phase identifications, whereas
high resolution images revealed the Cu/Si ordering. The experi-
mental diffraction patterns and high resolution images, confirmed
the atomic positions of Cu7gSiz4 [11] basic structure of Mattern et al.

PtRh thermocouple powered by a Philips PW 6363/00 regulating
unit was used in a Philips CM20 microscope. The precision of the
temperature measurement of the sample holder in this setup is
+15°C at the location of the thermocouple. The temperature was
increased from room temperature to 350 °C in 6 min and subse-
quently by 50 °C increment with waiting time in between the steps,
to 500 °C. At this temperature, solid state reaction began between
the contacted a-Si thin film and Cu grid. The temperature was held
at this temperature for 48 min, while the reactions carried on
leaving copper-silicide phases behind. The heating was turned off,
when the area covered with a-Si in the inspected grid window
seemed almost fully reacted leaving a small area of unreacted a-Si
in the middle and samples were let to cool down to room tem-
perature in vacuum.

2.2. Applied methods

During the heating we followed the progress of copper silicide
phase formation based on their appearance in bright field imaging
using a Philips CM20 microscope.

The ex-situ observations were carried out in Philips CM20 and
JEOL JEM 3010 type transmission electron microscopes (TEMs)
equipped with double-tilt sample holders. Images and SAED pat-
terns were recorded on imaging plates (CM20) and with 2x2k 2
bytes CCD camera (JEOL 3010). The symmetry and lattice parame-
ters identify reaction products were measured on their SAED pat-
terns. Sample thickness was deduced from SAED patterns also,
using the measurable resolution maxima values after Cowley [17].
The high resolution (HRTEM) images were acquired using the JEOL
TEM.

We used selected area electron diffraction (SAED) patterns for
phase identification. The high-resolution images helped to deter-
mine structural relations between coexisting phases. The strong
electron-matter interaction requires to handle multiple scattering
in the function of sample thickness for evaluation of experimental
SAED and HRTEM data [18]. Knowing optical parameters of the
applied microscope (accelerating voltage, spherical aberration and
stability) and its experimental settings (defocus value, aperture
size, beam divergence) provide a reliable basis for comparison of
experimental and simulated data. The beam divergence can be

Table 1
The known crystal structures in the Cu — Si system.
Composition Sign in Fig. 1 Reference ICSD#. Prefix
Cuq5Sigq Cu79Sipq Mukherjee et al. (1969) [26] 629165 e
Cus17Si Cuy6Sing Wen and Spaepen (2007) [11] 160694 1 and n”
Mattern et al. (2001, 2007) [9,10]
Cuo.g3Sig.17 Cusg,Sitg Fagerberg and Westgren (1935) [7] 52285 d
Cuo.875Si0.125 hcp Foley and Raynor (1961) [27] 108407 K
Cu bcc Xie et al. (2011) [28] 183263 B
Jona and Marcus (2001) [29] 248435 i
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determined from the size of reflections acquired at the same con-
ditions as the corresponding HRTEM image or by examining the
dampening function of the HRTEM images. The parameter was
previously determined for the used microscopes. The defocus value
could be obtained on the Fourier transform of an HRTEM image
from the contrast transfer function's first crossover position [18].
Both the SAED patterns and HRTEM images were compared to their
corresponding simulated counterparts calculated by Cerius® 4.0
software (Molecular Simulation Institute, Inc.). CRISP (Calidris,
Version 2.1a) and Digital Micrograph 2.30.542.0 software packages
served for image processing, simulations and quantification of
diffraction data. In CRISP Fourier filtering was done by inverse
Fourier transform using phases and amplitudes at the local maxima
of the Fourier transform preformed on an HRTEM image (lattice
averaging [18]).

3. Results and discussion

The initial stage of reaction between the copper grid and a-Si is
represented by Fig. 3. All of our experimental data are combination
of signals from the reaction products between the copper grid and
the 10 nm thick a-Si layer and the unreacted amorphous silicon
layer (a-Si) underneath. We know after Re et al. [19] that over-
lapping an amorphous layer reduces aesthetic quality of both

a-Si

Fig. 3. Image of the reaction products between copper grid bars and amorphous sili-
con (a-Si) in a Philips CM20 microscope film after the 8th minute at 500 °C.

HRTEM images and SAED patterns, however structural data can still
be retrieved from these. The thickness measured on SAED patterns
(using the formula of Cowley [17]) usually varied in between 60 A
and 80A. For instance, if the n-phase is 80 A thick, then it only
consumes an 18 A thick layer of a-Si. The amorphous part blurs
significantly the HRTEM images of the tarnishing crystalline phases
[19]. The background intensities in the SAED patterns are clouded
by the a-Si as it is shown below in the upper left corner of Fig. 4a.

3.1. The Cug,Siig - 6 phase

The beta-manganese analog copper rich silicide (3) phase [7] is a
minor component of the reaction products of a-Si and the sup-
porting Cu-grid. Fig. 5 and Fig. 6 demonstrate the defect free crystal
structure of CugySiig by its SAED and HRTEM images. The weak
satellite reflections seen near the reflections of the tetragonal net,
originate from misoriented grains of the same phase close to the
selected area. The P4,32 space group of Cug,Siqg only allows h = 4n
type reflections for h00. The h # 4n type reflections in the observed
SAED patterns and Fourier-transforms of HRTEM images are due to
dynamical scattering.

Fig. 5. SAED pattern of a d-phase crystallite (Cug;Sisg).

Fig. 4. Experimental (a) and simulated (b) SAED pattern (Wen and Spaepen's data) of CusSiz4 - 0. Their different intensity distributions are evident.
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Fig. 6. Raw experimental HRTEM image of Cug,Siyg crystal (a), its Fourier-transform (b) and the Fourier-filtered experimental image (c).

3.2. The CuyzSiyg - 1 phase

The CuygSizq — 1 phase [9,10 and 11] (Fig. 2.) — also denoted by
CusSi, Cusz,«Si, CusSi;x — is the dominant component of the reac-
tion product between Cu grid and a-Si film as revealed by SAED
patterns. The observed dpy values match well with the simulated
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Fig. 7. (a) Bright field TEM image of a lamellar CuSiy4 area close to the [100] pro-
jection, (b) raw experimental HRTEM image of CuzSip4, (¢) its Fourier-transform and
(d) the Fourier-filtered and symmetry imposed (pm plane group)) experimental image.

ones based on the Wen and Spaepen (2007) data as it is shown in
Fig. 4. However, the experimental and simulated intensities deviate
from each other. There is lack of the point symmetry relations in the
experimental pattern of the n phase [9,10 and 11]; the calculated
intensities of the 0kl and Okl are different. As a consequence, a
revised structure model is needed to describe the CusSi phase.

The lamellar texture of an area of CuygSiy4 in orientation close to
[100] is visible in Fig. 7. The HRTEM image on a selected lamella and
its Fourier-transform in Figs.6ab is conform to the SAED pattern
shown in Fig. 4a. The intense 010 maximum is evident in both
figures. The noisy Fourier transform reflects the low contrast in the
experimental HRTEM image.

We compared our experimental data to the corresponding
simulated data, based on the Wen and Spaepen [10] structure
model of the n-phase. The results showed poor match both for the
SAED as well as for HRTEM images. The dynamical SAED simula-
tions were performed in the Cerius’ package (200KkV, sample
thickness: 81 A). Fig. 8 demonstrates a drastic difference in the

Fig. 8. Diffracted intensity distributions integrated by Digital Micrograph along the
stripes for the experimental (in the upper half) and the corresponding calculated one
(in the bottom half) using the Wen and Spaepen's data. Differences between the two
sets are significant.
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Fig. 9. Wen and Spaepen'’s data based simulated [100] HRTEM images in the function
of the sample thickness. There was no observed HRTEM image showing satisfactory
match with any simulated one.

Table 2
Occupancies and atomic coordinates for the modified CusSi structure; space group:
P-3m1, ap: 4.06 A, cp: 733 A.

# Occupancy X y z

1 Cu 1.000 0.0000 0.0000 0.0000
2 Cu 0.500 0.6667 0.3333 0.1667
3 Si 1.000 0.3333 0.6667 0.1667
4 Cu 1.000 0.0000 0.0000 0.3333
5 Cu 1.000 0.6667 0.3333 0.5000
6 Cu 1.000 0.3333 0.6667 0.5000
7 Cu 1.000 0.0000 0.0000 0.6667
8 Si 1.000 0.6667 0.3333 0.8333
9 Cu 0.500 0.3333 0.6667 0.8333

. . . 'Y ) Y . .

Fig. 10. Calculated [100] projected SAED pattern of the modified Wen and Spaepen's
model with matching intensities as in the experimental pattern shown in Fig. 8.

intensity distributions of [100] projected crystal. The differences in
intensity ratios are far above the tolerance that could be explained
by sample thickness or misorientation, which was checked in
Cerius? 4.0 software package.

HRTEM many-beam multi-slice calculations (300kV; c:
0.6mm; defocus spread 40A; extended Schertzer defocus
Af: —400 A) were carried out as a function of sample thickness on
the [100] projected Wen and Spaepen [10] structure model. The
applied defocus value was measured as described in section 2.2
(practically, there was no astigmatism). The result is shown in
Fig. 9. Surprisingly there is no experimental HRTEM image showing
similar contrast to any of the simulated image, especially close to
the real sample thickness. (The sample thickness was measured on
SAED patterns, by applying the t = 2dZ/A formula [17,18].) Due to
the poor match of the experimental and simulated data some
serious doubts have arisen about the validity of the structure model
used hitherto.

To resolve the problem, we built several structure models for
unmodulated and stoichiometric n-CusSi, varying site occupancies
in the original [9,10 and 11] model (Fig. 2). Changes in values of the
site occupation factors of the two Cu3 (at 1/3, 2/3,1/6 and 2/3,1/3,
5/6 coordinates) to 0.5 and the rest to 1, result in a structural model
(Table 2) satisfying appropriate matches to the experimental SAED
pattern and HRTEM images. Electron crystallography software —
CRISP [18] — served as a good tool to recover projected charge
density (PCD) using HRTEM image and diffracted intensities in the
corresponding SAED pattern. Fig. 10 shows a simulated [100] pro-
jected SAED pattern for 81A sample thickness using the new,
modified Wen and Spaepen basic structure for CusSi. Comparing to
the experimental SAED pattern in Fig. 8a the fit is satisfactory. A
PCD map (Fig. 11c) was generated from the raw experimental
HRTEM image in Fig. 11a using electron crystallographic methods
implemented in CRISP. We validated our modified Wen and
Spaepen [10] structural model by comparing the simulated PCD
map to the one recovered from the experimental data is shown in
Fig. 11c; the result is presented in Fig. 12. The PCD map at 1.82 A
resolution (Fig. 12b) and the image — based on the experimental
HRTEM image — in Figs. 11 and 12c fits well. Cu3 and Si positions are
marked by circle and square respectively in the insert in Fig. 12a.

Most of the CuySiz4 grains have modulated structures in di-
rections along and perpendicular to the [001] direction. An HRTEM
image and its FFT in Fig. 13 show a doubled periodicity (14.66 A)
along the c axis. Fig. 14 shows the modulation along the a*, the
periodicity is four times of the basic dpi9 = 3.5 A.

In previous works, it was stated that the modifications (so called
1, n”, ... polymorphs) differ from each other not only by period-
icities along the main crystallographic directions, but also in their

Fig. 11. Raw HRTEM image (a), its Fourier-transform (b) and PCD map (c) generated from (a) using electron crystallographic methods implemented in CRISP package.
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Fig.12. PCD maps calculated for the modified Wen and Spaepen's model at 0.3 A (a) and 1.81 A resolution (b). The image in (c) is the same as in Fig. 11c showing appropriate match
to image in (b). The insert in (a) indicates the unit cell where circles are at Cu positions with half occupation and squares are at Si sites.

Fig. 13. Raw [100] projected experimental HRTEM image of modulated CuzSi>4 with doubled (14.7 A) periodicity along the [001] (a), its Fourier-transform (b) and the projected
charge density map (c) retrieved by the CRISP package (Calidris, Version 2.1a), using the experimental HRTEM image and amplitudes from the corresponding SAED patterns.

Fig.14. Raw [100] projected experimental HRTEM image of modulated Cu7Siy4 with four times of the (100) periodicity (= 14.0 A) of the basic structure (a), its Fourier-transform (b)

and the Fourier-filtered experimental image (c).

composition. The value of x is slightly increasing in the Cus,Si
formula in the n, n/, n” order [20]. Samson and coworkers [21]
observed silicon precipitations from the heat treated homogenous
“n” phase with Cug738Sip262 composition. They found the first
transformation and silicon precipitation on heating, just below
500°C, and interpreted as the 1 — 1’ reaction. In addition, repeated

diffraction patterns (after two days) on the same samples showed
different peak positions and intensity values, which means that the
structural state changes in time.

In our experiment after the in-situ heating, the sample texture,
and the real structure of crystals changed with the elapsed time
(within a week). Fig. 15 gives a comparison of the freshly formed

j.intermet.2019.01.010
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captured one week after (a).
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Table 4
Occupancies and atomic coordinates for the 4xa modulated CusSi.

# Occupancy X y z

1 Cu 1.000 0.0000 0.0000 0.0000
2 Cu 1.000 0.5000 0.0000 0.0000
3 Cu 1.000 0.2500 0.0000 0.0000
4 Cu 1.000 0.7500 0.0000 0.0000
5 Cu 0.500 Si 0.375 0.0833 0.6667 0.1667
6 Cu 0.500 Si 0.375 0.4167 0.3333 0.1667
7 Cu 0.500 Si 0.375 0.1667 0.3333 0.1667
8 Cu 0.500 Si 0.375 0.3333 0.6667 0.1667
9 Cu 0.500 0.5833 0.6667 0.1667
10 Cu 0.500 0.6667 0.3333 0.1667
11 Cu 0.500 0.9167 0.3333 0.1667
12 Cu 1.000 0.0000 0.0000 0.3333
13 Cu 1.000 0.2500 0.0000 0.3333
14 Cu 1.000 0.5000 0.0000 0.3333
15 Cu 1.000 0.7500 0.0000 0.3333
16 Cu 0.500 Si 0.500 0.0833 0.6667 0.5000
17 Cu 0.500 Si 0.500 04167 0.3333 0.5000
18 Cu 0.500 Si 0.500 0.1667 0.3333 0.5000
19 Cu 0.500 Si 0.500 03333 0.6667 0.5000
20 Si 0.500 Cu 0.250 0.8333 0.6667 0.5000
21 Si 0.500 Cu 0.250 0.9167 0.3333 0.5000
22 Si 0.500 Cu 0.250 0.5833 0.6667 0.5000
23 Si 0.500 Cu 0.250 0.6667 0.3333 0.5000
24 Cu 1.000 0.0000 0.0000 0.6667
25 Cu 1.000 0.7500 0.0000 0.6667
26 Cu 1.000 0.5000 0.0000 0.6667
27 Cu 0.500 0.1667 0.8333t 0.6667
28 Cu 1.000 0.2500 0.0000 0.6667
29 Cu 0.750 Si 0.250 0.0833 0.6667 0.8333
30 Cu 0.750 Si 0.250 0.1667 0.3333 0.8333
31 Cu 0.750 Si 0.250 0.3333 0.6667 0.8333
32 Cu 0.750 Si 0.250 0.4167 0.3333 0.8333
33 Cu 0.500 Si 0.375 0.5833 0.6667 0.8333
34 Cu 0.500 Si 0.375 0.6667 0.3333 0.8333
35 Cu 0.500 Si 0.375 0.8333 0.6667 0.8333
36 Cu 0.500 Si 0.375 0.9167 0.3333 0.8333

Table 3
Occupancies and atomic coordinates for the 2xc modulated CusSi.

# Occupancy X y z

1 Cu 1.000 0.0000 0.0000 0.0000
2 Cu 0.500 Si 0.500 0.6667 0.3333 0.0833
3 Cu 0.500 Si 0.500 0.3333 0.6667 0.0833
4 Cu 1.000 0.0000 0.0000 0.1667
5 Cu 0.500 Si 0.500 0.3333 0.6667 0.2500
6 Cu 0.500 Si 0.500 0.6667 03333 0.2500
7 Cu 1.000 0.0000 0.0000 0.3333
8 Cu 0.500 Si 0.250 0.3333 0.6667 0.4167
9 Cu 0.500 Si 0.250 0.6667 0.3333 0.4167
10 Cu 1.000 0.0000 0.0000 0.5000
11 Cu 0.500 Si 0.500 0.3333 0.6667 0.5833
12 Cu 0.500 Si 0.500 0.6667 0.3333 0.5833
13 Cu 1.000 0.0000 0.0000 0.6667
14 Cu 0.500 Si 0.250 0.3333 0.6667 0.7500
15 Cu 0.500 Si 0.250 0.6667 0.3333 0.7500
16 Cu 1.000 0.0000 0.0000 0.8333
17 Cu 0.500 0.3333 0.6667 0.9167
18 Cu 0.500 0.6667 0.3333 0.9167

texture and one week older. These rough changes may be caused by
the extreme mobility of copper atoms in silicon. In crystalline sili-
con copper is by an order of magnitude the fastest element [2] with
the diffusivity around 2.8 x 10~7 cm?s~! at room temperature. The
high mobility of copper in silicon [22] led to modulated Cu7gSizg
structures. The two superstructures which are detailed in Tables 3
and 4 are products of these time dependent changes. The volume
ratio of modulated structures increases with the elapsed time at
room temperature. Our results are in accordance with previous
observations [21].

We were able to solve the modulated n-CusSi superstructure

Fig. 16. Simulated HRTEM image (a) using experimental parameters, and structural
data listed in Table 3 gives a good match with the filtered experimental HRTEM image
(b).

varieties by tuning site occupancies at positions inside supercells
built up by multiple unit cells. We measured modulations both
along the c and a axes, respectively. The simulated HRTEM image in
Fig. 16a using the experimental parameters (300kV, 0.6 mm cs,
0.3mrad divergence, 2.08 A resolution, 81 A sample thickness
and —300 A defocus value) and the ordering values listed in Table 2
for doubled ¢ modulation gave an excellent match with the filtered
experimental HRTEM image in Fig. 16b (also in Fig. 13¢). The period
length of modulation along the a axis is typically 4xd(100) (14 A). we
found satisfactory matches in between the Fourier-filtered
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Fig. 17. Raw HRTEM image (a) and Fourier-filtered experimental HRTEM image (b)
gives a good match with the simulated HRTEM image (c) using experimental param-
eters and structural data listed in Table 4.

experimental HRTEM (in Fig.17b) and a simulated (300 kV, 0.6 mm
s, 0.6 mrad divergence, 2.08 A resolution, 81 A sample thickness
and —400 A (extended-Scherzer) defocus value) image, based on
the atomic coordinates and site occupancies listed in Table 4.

4. Conclusion

We heat treated copper grids contacted with 10 nm thick
amorphous Si layer at 500°C and determined the phases and
structures formed using transmission electron microscopy and
electron crystallography. A new structural model was constructed
for CusSi — m phase (CuySiz4) in order to get a fit with the exper-
imental HRTEM images and SAED patterns. The time dependent
appearance of modulated superstructures was attributed to the
extreme mobility of Cu atoms in Si. Two modulated CusSi structures
were solved by tuning the site occupancies in the supercell, to give
satisfactory matches between the models and the experimental
data.

In contrast to the majority of published papers on the phase
relations [4—6,21—25], our experiment on copper-silicides was
produced by heating copper and amorphous silicon, in high vac-
uum. It seems to be evident that no Cuy9Siy; (¢) phase [26] formed
up to 500°C. Combined with the knowledge of the previously
mentioned works like Riani et al.’s [6], this prompts the question
whether a new comprehensive study of the Cu — Si phase diagram
is needed.
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