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Abstract

We investigate a routing problem arising in the domain of drayage operations. to determine
mimimum-cost vehicle routes in several periods. We adapt a set-covering model, which is solved
either with all feasible routes by an off-the-shelf MIP solver, or by and a Price-and-Branch algorithm
in which the pricing problem is a formulated as a collection of shortest path problems in tailor-made
auxiliary acyclic networks. We propose a new arc-flow formulation based on the previous auxiliary
networks and show that solving it by a MIP solver is usually preferable. Finally, we characterize how
possible changes in flexibility levels affect routing costs.

Keywords: Drayage, Modeling, Reformulations

1 Introduction

Although drayage operations represent a small fraction of the total distance of an intermodal shipment,
they account for a substantial share of the overall shipping costs. As a result they have been subject
to a significant amount of research [1]. Yet, of that little has focused on improving their efficiency over
different time periods. This paper contributes to this research area by the proposing and comparing
different formulations for a multiperiod drayage problem, which is motivated by the case of a carrier
dealing with the distribution of container loads based at a port by trucks.

The carrier must meet two types of transportation requests: the delivery of container loads from the
port to importers, and the shipment of container loads from exporters to the same port. Drivers wait
for containers during packing and unpacking operations and trucks carry the same containers before and
after the customer service, whereas in many papers containers and tractors are supposed to be decoupled
during customer service [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In this problem, routes are performed
by two types of trucks, which are based at the port and carry one or two containers at a time, respectively,
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whereas most of the papers on drayage ignore two-container trucks (few exceptions are [16, 17, 18]). Two-
container trucks have slightly larger routing costs per unitary distance as opposed to one-container-trucks,
but can serve twice the demand. Typically customers must be serviced by more than one container load.
According to the current carrier policy, all importers are served before all exports in any route. Although
it may possible for two-container trucks to service an importer after an exporter, these routes are quite
unlikely to be part of the optimal solution and result in negligible savings, if any [1].

In the practical setting motivating our problem, the carrier moves container to be loaded and unloaded
from a vessel calling at the port every three days. As a result, most of the transportation requests are
known in advance. Each request specifies where customers are located, how many container loads must
be delivered or collected, and when they can be services in the three-day planning horizon. Generally
speaking, customers can be visited over multiple days (or periods) according to their flexibility. In
our experiments we will consider three flexibility levels: no-flexibility customers must be serviced in a
predefined day, medium-flexibility customers must be serviced in two days out of three of the planning
horizon, and high-flexibility customers can be serviced in any day. The objective is to minimize routing
costs, such that all customers are serviced as requested according to their flexibility and truck capacity
constraints hold. To our knowledge, this problem setting has not yet been investigated in the literature
on drayage, which typically focuses on single-period problems. Although in our experiments we restrict
to the three-days instances motivating our research, our models immediately extend to periods of time
of different length.

This paper provides different contributions to the problem:

1. Since up to four customers can be visited along each route in each period, a natural way to model
the problem is to enumerate all feasible routes in a network, where nodes represent the port and
customers in each period they can be serviced and arcs indicate the possible connections among
them. The Set Covering (SC) formulation of [1] for the single-period problem is extended to the
case of multiple periods and solved with all feasible routes by an off-the-shelf MIP solver.

2. Since the number of routes may be too large, the Linear Programming relaxation of the SC for-
mulation is solved by Column Generation, where the pricing subproblem is a collection of acyclic
shortest path problems on appropriate auxiliary networks, extending to the multi-period setting
the approach by [19]. From the set of generated columns, an integer solution is sought by a MIP
solver under the Price-and-Branch paradigm.

3. An innovative arc-flow formulation based on a slight modification of the previous auxiliary network
is proposed and solved very effectively by a MIP solver.

These three approaches are extensively tested on several instances, in order to point out to what extent
they can be adopted. The experiments show that the arc-flow formulation is by far the best performing,
not only among the three but also against the closest formulation in the field, which was proposed by
[20] for single-period problems. The effectiveness of the formulation allows us to thoroughly explore
the connection between flexibility and routing costs, i.e., which savings can be obtained if customers
accept extending the number of periods in which the transportation service is provided. This allows, for
instance, the carrier to introduce discount fees in exchange of extended flexibility [21]. To summarize,
the objectives of this paper are to:

• investigate a new setting of a routing problem in the field of drayage operations with two vehicle
types and customer-dependent service times over multiple periods;

• propose different formulations this problem: we adapt to the case of multiple periods a SC formu-
lation and a Price-and-Branch algorithm, and we introduce a new arc-flow model;

• compare the different approaches to the problem onto several instances and show how possible
changes in the flexibility of customers affect routing costs.

This paper is organized as follows. In Section 2, a brief review of the related literature is provided.
In Section 3, the Set Covering model and the Price-and-Branch algorithm are presented. In Section 4
the arc-flow formulation is proposed. In Section 5, the results of our extensive computational experience
are shown. Moreover, we shed light on the connection between customer priorities and routing costs.
Conclusions and future research perspectives are drawn in Section 6. The single-period model of [20] is
reported in A, and the comparison on single-day problems is shown in B.
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2 Related Literature

This problem is in the domain of the Vehicle Routing Problem (VRP), which is widely studied owing to
its practical relevance and its considerable difficulty [22]. Three variants of routing problems deal address
the service to customers over different periods: the Multiperiod Routing Problem (MRP), the Periodic
Vehicle Routing Problem (PVRP) and the Inventory Routing Problem (IRP).

In MRP, each request specifies a demand quantity, a customer location and a set of consecutive periods
during which the transportation service can take place. The carrier must plan its delivery routes over
several days so as to minimize the routing cost, as well as possible additional costs, such as customer
waiting, inventory and penalties for services postponed beyond due dates [23, 24]. Some flexibility in the
dates of delivery is considered in [25]. In the MRP with service choice [26], the service frequency is a
model decision variable, whereas in our problem it is a customer requirement. Our problem is clearly in
the field of MRP, but no paper in this field accounts for all the features of this problem.

In PVRP customers are supposed to be served according a certain frequency and receive a fixed quan-
tity at each visit [27], whereas in our problem frequencies are not given beforehand and the assumption
on the fixed quantity delivered (or collected) at each visit holds only for customers with no flexibility.
The PVRP was introduced by Beltrami and Bodin [28], who proposed two approaches to the problem: (i)
building routes and assigning them to days; (ii) assigning customers to days and solving routing problems
independently for each day. Relevant approaches for the PVRP were proposed by [29, 30, 31, 32, 33, 34].

In IRP [35] the daily consumption of the customers is given and the quantities to be delivered, day
by day, have to be decided. One has to determine the routes such that the capacity of vehicles holds
and each customer in each day has the quantity sufficient for the daily consumption. In our problem,
consumption rates are not known in advance and customer choose the service times, thus the IRP is not
appropriate. Recent papers oncrama2018stochastic IRP were proposed by [36], [37] and [38].

A closer problem setting is the Flexible Periodic Routing Problem (FPRP), which was introduced by
[39]. In the FPRP, Each customer has a total demand that must be served within the horizon and a
limit on the maximum quantity that can be delivered at each visit. The first characteristic holds only for
customers with high flexibility in our problem, in which customers have service-dependent periods. A an
iterative two-phase heuristic for the FPRP was proposed in [40].

To our knowledge, a drayage problem with multiple periods was investigated only in [41]. Nevertheless,
their problem is different, as they considered several decision epochs during a day, only one-container
trucks and uncertain requests.

3 Set-covering model and the Price-and-Branch algorithm

Consider a set H periods in the planning horizon. Let G = (N,A) be the physical directed graph, in
which N = {p}∪ I ∪E, i.e., nodes represent the port (p) and all possible customers V = I ∪E—be them
importers (I) or exporters (E)—which will have to be serviced at any point of the planning horizon. Any
arc (i, j) ∈ A represents the direct truck trip between i and j, and has the two associated costs c1ij and c2ij
for one- and two-containers trucks, respectively. Arc are directed both because costs, in this short-haul
setting, may not be symmetric, e.g., due to one-way roads, and because importers and exporters are
not equivalent in terms of the order in which they can be visited, as discussed in details later on. It is
immediate to construct the (physical) sub-graphs Gt

h = (N t
h, A

t
h) of G for each period h ∈ H and type

of truck t ∈ T = { 1 , 2 }. N t
h = {p} ∪ Vh, with Vh = Ih ∪ Eh and Ih, Eh denoting respectively the set

of importers and exporters who accept to be serviced in period h ∈ H. Thus, the set of nodes does not
depend on the truck type. It ought be immediately mentioned, however, that some customer may be both
an importer and an exporter at some time period h. For the sake of this model, any such customer will be
treated as a pair of distinct nodes, say v ∈ Ih and w ∈ Eh with v 6= w; just, the cost of the arcs (v, w) and
(w, v) (if they are constructed) will be zero. The arc sets At

h are those induced by Nh that are feasible
for the given truck type. In particular, since the demand of customers is in terms of container loads,
two-container trucks (t = 2) can in principle move between any pair of customers, whereas one-container
trucks (t = 1) can only go—besides from the port directly to a customer and back—from an importer to
an exporter, but not vice-versa. Indeed, when the truck visits the exporter its only slot is filled up, and
therefore it can then only go back to the port. Hence, A1

h ⊆ A2
h for all h.
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Figure 1 depicts one example of the physical sub-graphs when H = { 1 , 2 , 3 }, i.e., the planning
horizon has three periods, each representing a day. In the example, G has the port p, two importers,
represented by circular-shape nodes and denoted by 1 and 2, and three exporters, represented by square-
shape nodes and denoted by 3, 4 and 5. Importer 1 and exporter 3 must be served in the first day (i.e.,
in our parlance, they have no flexibility), exporter 5 could be visited in day 1 or 2 (i.e., has medium
flexibility), importer 2 and exporter 4 could be served in any day (i.e., they have high flexibility). The
Figure illustrates the different arcs that could be traversed in the routes of one-container and two-container
trucks. According to these arcs, all importers must be visited before all exporters, even if it is possible
for two-container trucks to serve an importer after an exporter.

Figure 1: Physical sub-graph for the case of 3 periods

It is easy to construct an arc-flow mathematical model of the problem, at least for one single period,
where variables are associated to arcs in the Gt

H physical graphs [42]. However, the continuous relaxation
of such a formulation is usually rather weak, making it—despite the compact size—an inefficient choice
to develop solution methods. Rather, following [1], path-based formulations are attractive, because, due
to the restriction on the set of possible loading/unloading patterns, a truck cannot visit “many” nodes.
Also, the continuous relaxation of the corresponding Set Covering-type formulations is known to usually
provide much stronger lower bounds. This only requires defining the set R(h)t of all feasible routes for
trucks of type t in period h. These are, on the outset, simple directed cycles in Gt

h starting and ending
in p and visiting not more than t importers and exporters in the right order. Yet, it has to be remarked
that, while visiting a given importer/exporter, a two-containers truck possibly has a choice, in that it
can leave/collect either one container load or two. Of course, if it leaves/collects two, then this must
be the only importer/exporter that is visited in the route. This information may be imagined encoded
in the graph, and therefore in the routes, by allowing self-loops (i, i) among the arcs; each entry in a
node (even from a self-loop) corresponds to the delivery/collection of a container load. However may the
information be represented, we consider it embedded in the description of each route r, so that routes
corresponding to the same cycle in G but having different patterns of loading/unloading operations will
be distinct. Similarly, the same route (even with the same pattern of delivery/collection operations) for
different periods will be considered two distinct routes. Hence, for each route r we will denote by t(r)
and h(r) respectively the type of truck and the time period corresponding to it. We will then denote by
R(h) = R(h)1 ∪ R(h)2 the set of all feasible routes in period h ∈ H, and by R = ∪h∈HR(h) the set of
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all feasible routes over all periods. In addition, we will denote by kth the number of trucks of type t ∈ T
which are available in period h ∈ H.

Constructing a SC formulation is now immediate. For each route r ∈ R(h), let αv,r be the coefficient
which takes value 2 if customer v ∈ N \ {p} is serviced by two container loads carried by a single (two-
container) truck doing route r ∈ R (then, clearly r ∈ R(h)2 for some h), 1 if v is serviced by one container,
and 0 if v is not visited in route r. Moreover, we let cr be the cost of route r ∈ R, i.e., the sum of the costs

c
t(r)
ij of the corresponding directed cycle in G. Note that, in our data, servicing a customer twice with

the same truck is considered to have 0 cost, i.e., there is no cost directly associated to loading/unloading
operations; however, it would be easy to add this component to the cost of the route (e.g., by having it
as the cost of self-loops). Finally, we denote by dv the demand of customer v ∈ V , i.e., the number of
containers which must be used to service customer v in the overall planning horizon. Letting xr be the
an integer decision variable representing the number of times in which route r is traversed, the following
model readily ensues:

(SC) min
∑

r∈R crxr (1)

s.t.
∑

r∈R αv,rxr ≥ dv v ∈ V (2)∑
r∈Rt(h) xr ≤ kth t ∈ T , h ∈ H (3)

xr ∈ N r ∈ R (4)

The formulation is straightforward. Routing costs are minimized in the objective function (1). Constraints
(2) ensure that all customers are served in the planning horizon. Constraints (3) enforce that the number
of routes performed in each period is lower than the number of available trucks for each truck type. Finally,
(4) define the domain of the decision variables. We will denote by (SC) the continuous relaxation of (SC),
simply obtained by replacing (4) with xr ≥ 0.

For a relatively small number of customers, which is reasonable in several practical applications, it is
possible to just statically enumerate all possible routes. For instance, for |I| = |E| = 20, there are about
160000 routes per time period, which is still within the grasp of general-purpose MILP solvers, especially
since the root node gap is usually a small fraction of 1%, if not downright 0, as expected for this type
of formulation [1]. However, when the number of customers grow, the number of feasible routes quickly
becomes rather large. In this case, (SC) can be solved by a standard application of the well-known
column generation technique. This starts by forming the Restricted Master Problem (RMP ), which is
(SC) where the full set of routes R is replaced by a (much) smaller subset R ⊂ R. One minor issue
concerns the fact that the initial R should be chosen in a way that ensures that (RMP ) does have a
feasible (hence, an optimal) solution. This is in principle nontrivial, but in our applications the constraint
on the truck number is not particularly tight and it is reasonably easy to find a feasible solution by a
constructive heuristic which can be used to compute the initial R; techniques (“phase 0”) are, anyway,
available to solve this issue in general. Once formed, the (RMP ) is solved by any algorithm for Linear
Programming, which necessarily at the same time solves its dual:

(DRMP ) max
∑

v∈V ( ξvdv −
∑

h∈H
∑

t∈T π
t
hk

t
h ) (5)

s.t.
∑

v∈V ξvαv,r − πt(r)
h(r) ≤ cr r ∈ R (6)

ξv ∈ R+ v ∈ V (7)

πt
h ∈ R+ t ∈ T , h ∈ H (8)

The key of the approach is that the dual of (SC) has constraints (6) corresponding to each r ∈ R, as
opposed to only those for r ∈ R that are present in (DRMP ). Hence, one only have to prove that all the
constraints corresponding to each r ∈ R are satisfied by the current dual solution ξ∗, π∗ of (DRMP ),
which proves the optimality for the whole (SC) of the corresponding optimal solution x∗ of (RMP ), or
find any route r̄ whose constraint is violated, which can then be added to R for the process to be iterated.

The crucial step is therefore to find a route r̄ that violates the constraint. This can be restated as

the fact that the reduced cost of r̄, i.e., c∗r̄ = cr̄ −
∑

v∈V ξ
∗
vαv,r̄ − (π

t(r̄)
h(r̄))

∗ is negative. The fundamental

observation is that, discarding the last term which is constant, the reduced cost of r̄ can be computed
as the sum of the reduced costs of the arcs of the cycle (comprised the self-loops), where the reduced
cost of arc (i, j) is c∗ij = cij − ξ∗i . Thus, determining a route of negative reduced cost can be reduced to

a collection of Shortest Path Problems (SPP) on tailor-made acyclic networks Ḡt
h = (N̄ t

h, Ā
t
h), one for

each t ∈ T and h ∈ H. The topology of these graphs, which we can call the step-expanded networks,
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is readily obtained by that of the corresponding Gt
h = (N t

h, A
t
h) by cleverly “‘unrolling the self-loops”,

when permitted, for at most one time each.

More precisely, for t = 1, the port is split into two nodes p′ and p′′ while each customer (importer
or exporter) v ∈ Vh is modeled by one node exactly like in N1

h . The arcs in Ā1
h represent possible trips

performed by one-container trucks, i.e., they are basically those of A1
h save that arcs leaving p now leave p′

and arcs entering p now enter p′′. Note, that, as in A1
h; arcs between v ∈ Ih and w ∈ Eh are only oriented

(v, w), and not (w, v). The rationale, again, is that in order to serve an importer, a one-container truck
has to leave the port with its only slot loaded: it cannot, therefore, visit an exporter before reaching one
importer to deliver a container load. Thus, for t = 1 the trips are naturally ordered by types of customer:
importers always come first than exporters.

For t = 2, however, the construction is considerably more involved. Not only the port is again split
into two nodes p′ and p′′; also each customer (importer or exporter) v ∈ Vh is modeled by two distinct
nodes v′ and v′′, each associated with a container used to service this customer. This means that,
basically, the original node set Vh = Ih ∪ Eh is replicated twice as two distinct sets V ′h = I ′h ∪ E′h and
V ′′h = I ′′h ∪ E′′h . The construction of the arcs then has to follow from the actual operating rules of the
carrier. As already remarked, it is common to require that all importers are serviced at the beginning of
the trip, i.e., before visiting any of the exporters. If this is the case, the arcs represent possible the legs
performed by two-container trucks are:

• Arcs (p′, v′) for all node v′ ∈ I ′h, representing trips where the truck starts loaded with at least one
container, and for all v′ ∈ E′h representing trips where the truck starts with at least one slot free.

• Arcs (v′, w′′) for all v′ ∈ I ′h and all w′′ ∈ I ′′h , as well as for all v′ ∈ E′h and all w′′ ∈ E′′h . These
represent the fact that, after having serviced for the first time an importer/exporter, the truck can
surely still serve another of the same type. Note that here are comprised the arcs (v′, v′′) meaning
the the truck is actually servicing the same customer v with two containers (either delivering two
container loads, which means it started from p fully loaded, or picking them which means starting
from p empty).

• Arcs (v′, w′) and (v′′, w′) where v′, v′′ ∈ Ih while $w′ ∈ E′h. This means that it is always possible
to visit an exporter after having visited one or two importers (possibly, the same importer twice),
but it is never possible to get back.

• Finally, arcs (v′, p′′) and (v′′, p′′) for all v′ ∈ V ′h and v′′ ∈ V ′′h , representing the possibility of always
terminating a trip just after having serviced any customer of either type.

An important property of Ḡh is that is clearly acyclic. This allows both to use efficient acyclic SPP
algorithms to solve the pricing problem, and especially to be guaranteed that no negative cost cycle can
ever form. In fact, the reduced costs c∗ij of the arcs—where the original cost cij ≥ 0 for each (i, j) ∈ Āt

h

is easily deduced from the construction—can well become negative; were there cycles in the graph, the
shortest path may not exist as the problem may be unbounded below.

Figure 2 depicts the acyclic graphs associated with the original graph in Figure 1. In the case of
two-container trucks, dashed lines show the “no-travel” arcs connecting the pair of nodes v′ ∈ V ′ and
v′′ ∈ V ′′ associated with the same customer v.

The above construction relies on the assumption that importers always have to be visited before
exporters. While this is common practice, and more flexible rules usually yield only minimal advantages
[1], it may be appropriate to remove this limitation and allow all routes that are physically possible. In
particular, let i′, j′′ and e′, f ′′ be the (at most) two importer and exporter nodes, respectively, visited
by the truck, with i = j and e = f possible. The graph Ḡ2

h as constructed above contains all paths of
the form i′ → j′′ → e′ → f ′′ and all their sub-paths, including those visiting only one type of customer
(once or twice). However, other physically possible sequences of operations are i′ → e′ → j′′ (→ f ′′)
and e′ → j′′ (→ f ′′), representing visiting an exporter (either as first or second leg) before visiting an
importer (and then possibly another exporter). Note that in the second type of path no node i′ is visited,
but this is immaterial; the two nodes j′ and j′′ are not meant to distinguish the first and the second visit
to importer j, as the notation may seem to suggest, but only to represent that there can be up to two,
and no more than that, visits for the same truck.

Allowing the two extra types of paths above clearly requires adding arcs (e′, j′′) to Ā2
h for e′ ∈ Eh

and j′′ ∈ Ih. This, however, immediately creates a cycle with the existing arcs (j′′, e′). In order to allow
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Figure 2: Acyclic networks for the example in Figure 1

these routes while keeping the graphs acyclic, it is therefore necessary to resort to having a dedicated sub-
graph, say G̃2

h = (N̄2
h , Ã

2
h) upon which independently solving an acyclic SPP. The graph is constructed

analogously to Ḡ2
h, except that:

• Arcs (v′′, w′′) for v′′ ∈ Ih and w′′ ∈ Eh are included to Ã2
h. These could actually have been

introduced in Ḡt
h already, but they are useless there because, after having reached w′′ ∈ Eh, it is

always possible to go directly to p′′. Since clearly the cost of (v′′, w′) and (v′′, w′′) is the same,
routes visiting two importers and one exporter can always be taken to pass through a w′ node, thus
allowing to avoid inserting several arcs. This is no longer possible in G̃2

h, as the route may already
have passed via an exporter before having reached the second importer.

• Arcs (w′, v′′) for v′ ∈ Ih and w′′ ∈ Eh are included to Ã2
h.

• Arcs (v′′, w′) where v′′ ∈ Ih and w′ ∈ Eh are not included to Ã2
h, unlike in Āt

h.

Clearly some of the routes feasible for Ḡ2
h are no longer so in G̃2

h, but this is compensated by the fact
that the two kind of physically possible routes illustrated above are now represented, Thus, at the (likely,
negligible) cost of solving one extra anyclic SPP per time period, column generation can be implemented
that can construct all physically possible routes.

With the ability of efficiently solving the pricing problem(s) for (SC), it is almost immediate to im-
plement the column generation approach and solve it expeditiously, even as the number of customers
grows significantly. While this ultimately provides the same bound as solving it in one blow, and this
bound is usually quite good, it does not in general provide any integer feasible solution (although for
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several instances the continuous solution is in fact integer). However, the set of routes generated during
the approach can be reasonably expected to contain “good” ones that can therefore be used to construct
“good” integer solutions. This immediately suggests a Price-and-Branch (P&B) approach, whose imple-
mentation at least is straightforward when the column generation is available: simply, pass the final set
of routes R of (RMP ) to a general-purpose MILP solver and just solve the corresponding (small-ish)
program to integer optimality. Customarily, the Linear Programming component of the “final” MILP
solver is actually used to implement the column generation algorithm, so that the columns are already
loaded in the MILP solver and implementing the P&B basically boils down to invoking a single function
of the MILP solver API once the column generation is finished. Also, solution times of the MILP are
usually quite low due to the afore-mentioned small gaps. Although more sophisticated approaches can
be implemented, up to a full-blown Branch-and-Price (B&P) where the column generation is repeated
at all nodes of the enumeration tree, the P&B can be expected to be quite effective and efficient when
the root node gap of the formulation is low. This actually happens in [19].

4 Compact arc-flow formulation

A different possibility exists for exploiting the results of the previous paragraph in order to produce a
“compact” formulation that shares the same strong bound as the (SC) one. The idea is, on the outset,
simple: the pricing problem of the column generation approach, being a SPP, has a compact (flow-based)
formulation. Basically, all that is needed is to use this to construct a formulation to the entire problem.

To do that, it is only necessary to minimally expand the step-expanded networks Ḡt
h of the previous

paragraph by adding the single “return arc” (p′′, p′). To alleviate the notation, we will assume that the arc
was already present in Āt

h (as it well could have, as it would have no influence on the solution of the p′-p′′

shortest path save for creating a cycle that can clearly be ignored). Owing to the presence of multiple
networks Ḡt

h, one for each t ∈ T and h ∈ H, the formulation is, basically, an integer Multicommodity
Flow problem. For each arc (i, j) ∈ Āt

h, we define the integer arc-flow variable xthij denoting the number
of trucks of type t doing that particular leg (comprised the “no-travel arcs” (v′, v′′) for some customer
v ∈ Vh) at time period h. With these variables, the (SEAF ) (Arc-Flow in the Step-Expanded networks)
formulation of the problem is:

min
∑

h∈H
∑

t∈T
∑

(i,j)∈Āt
h
ctijx

th
ij (9)

s.t.
∑

(j,i)∈BSt
h(i) x

th
ji −

∑
(i,j)∈FSt

h(i) x
th
ij = 0 i ∈ N̄ t

h , t ∈ T , h ∈ H (10)∑
h∈H

( ∑
(j,v)∈BS1

h(v)

x1h
jv +

∑
(j,v′)∈BS2

h(v′)

x2h
jv′ +

∑
(j,v′′)∈BS2

h(v′′)

x2h
jv′′

)
≥ dv v ∈ V (11)

xthp′′p′ ≤ kth t ∈ T , h ∈ H (12)

xthij ∈ N (i, j) ∈ Āt
h , t ∈ T , h ∈ H (13)

In the formulation, FSt
h and BSt

h denote the standard forward star and backward star of a node, i.e.,
respectively the set of arcs leaving/entering the node in the network Ḡt

h. Thus, (10) are the standard
flow conservation constraints for the “commodity” (t, h). The corresponding flow is a circulation, i.e., no
node produces flow. Together with the fact that the all cycles in the networks necessarily use the return
arc (p′′, p′), all flow leaving the port (node p′) eventually has to return it by reaching node p′′ and then
traversing the return arc (p′′, p′). Thus, constraints (12) enforce the availability of trucks of either type
at each time instant; all other arcs of Āt

k have no capacity, although of course it could be set to kth as
well. Constraints (11) ensure that the demand of each customer v ∈ V is served, counting services by
all truck types and over all possible time instants, Note that there are three terms in the summation.
The first corresponds to arcs in Ā1

h entering the single node v representing the customer in the networks
for one-container trucks. The two other terms correspond, respectively, to arcs in Ā2

h entering the two
separate nodes, v′ and v′′, representing the customer in the networks for two-container trucks. If v /∈ Vh
then v /∈ N̄1

h and v′, v′′ /∈ N̄2
h ; in this case it is obviously intended that the backward stars of these

nodes are empty (the corresponding flow variables are not defined), and therefore the three terms of
the summation corresponding to that instant h are empty as well. Finally, the objective (9) minimize
the overall routing costs; the costs ctij of the arcs in Āt

h are defined in the obvious way, as described in
the previous paragraph, out of the costs of the corresponding arcs in the physical graph G. As already
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mentioned, the costs of “no-travel legs” (v′, v′′) are taken to be 0 in our data, although costs related to
loading/unloading operations could easily be accounted for if present.

Strictly speaking, the notation of the above formulation only covers the “importers (if any) first,
exporters (if any) second” kind of routes. However, it is immediate to expand the formulation by having
the flow variables and conservation constraints for both the networks Ḡ2

h and G̃2
h. This clearly means

that (12) have to account for the sum of the flow passing through both “return arcs” for the graphs Ḡ2
t

and G̃2
t , rather than being simple bound constraints, but this does not really change the model. Thus,

at the cost of a (significant) increase in the size of the formulation, all kind of physically feasible routes
can be represented. Experience seem to show that the “nonstandard” routes carry such a little benefit
[1] as to not warrant the extra computational burden, and besides they may not be available due to
organizational constraints of the carrier. However, the opportunity of including them if appropriate is
definitely there. Yet, to simplify the discussion we will keep on referring to (SEAF ) as using Ḡ2

h alone.

It is immediate to see that formulation (SEAF ) is correct; it is also possible to show that its continuous
relaxation, which we denote by (SEAF ), provides the same lower bound as (SC). To see that, it is
sufficient to consider its Lagrangian relaxation w.r.t. constraints (11) and (12), which decomposes into
as many flow subproblems as there are networks Ḡt

h. By calling ξv and πt
h respectively the Lagrangian

multipliers of (11) and (12), it is immediate to see that the structure of the Lagrangian costs is precisely
the same as that of the reduced costs of the previous section. Therefore, the solution of the Lagrangian
subproblem actually reduces to precisely the same acyclic SPP between p′ and p′′ as the pricing problem
for (SC). Indeed, if the (reduced = Lagrangian) cost of the shortest path on Ḡt

h (minus πt
h) is non-

negative, then the optimal solution is clearly the all-0 flow vector. Otherwise, the shortest path together
with the return arc (p′′, p′) clearly forms a negative-cost reduced cycle, which proves that the Lagrangian
problem is unbounded below (since all its arcs have infinite capacity). Therefore, the characteristic vector
of the path (route) plus the return arc is a unbounded ray for the polytope of the Lagrangian subproblem.
In other words, solving the Lagrangian Dual with Kelley’s Cutting-Plane algorithm, which is equivalent
to applying Dantzig-Wolfe decomposition to (SEAF ) with (11)–(12) as “complicating” constraints [43],
exactly reproduces the row-generation approach to the dual of (SC), i.e., the column generation approach
of the previous paragraph. This proves that the Lagrangian Dual of (SEAF ) w.r.t. (11)–(12) is equivalent
to (SC). On the other hand, because the Lagrangian subproblems obviously all have the integrality
property, the Lagrangian Dual is equivalent to (SEAF ) [43], which proves that (SEAF ) is exactly “as
tight” a formulation as (SC).

Since the bound is the same, the two formulations have basically to be compared on the efficiency
of the solution methods for the continuous relaxation. The main advantage of (SEAF ) is that it is a
“more compact” formulation, in that its size grows about quadratically in the number of users rather
than quartically. This means that the formulation can be passed whole to a general-purpose solver even
for large instances. On the other hand, (SC) can be solved by column generation, which means that the
final number of routes in R can potentially be (much) smaller than the size of the whole (SEAF ); yet,
these have to be incrementally generated by repeatedly solving the master problem and the subproblems.
Although techniques exist to improve the efficiency of column generation approaches (e.g. [44]), the
overall cost of this process may be larger than applying just once Linear Programming techniques to
(SEAF ). All in all, which of the two approaches ends up to be faster in practice can only be determined
computationally, which is the aim of the next paragraph. A definite advantage of (SEAF ), however, is
that very few general-purpose solvers support the full-fledged B&P approach. Thus, using (SC) implies
either to significantly restrict the choice of the solution tools, or to resort to heuristics like the P&B,
on top of requiring the implementation of the pricing problem, whereas using (SEAF ) is significantly
simpler with a much larger variety of available tools.

We finish this section by briefly mentioning that (SEAF ) could also be solved incrementally and
iteratively with extensions of the Dantzig-Wolfe decomposition algorithm [45]; this, however, requires an
even more significant programming effort and it is therefore left for further studies.

5 Computational Evaluation

This section is organized in two parts. The objective of the fist part is to analyze the effectiveness in
solving the proposed models in reasonable time. In the second part, we aim to quantify which savings can
be obtained when increasing flexibility levels are introduced. All tests have been implemented in Python
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and solved by Cplex 12.5 on a Linux server with 3.00 GHz processor and 16 GB of RAM. Unless otherwise
specified, each MIP model has been solved with default parameters, except a maximum running time of
3 hours (10800 seconds) and a required relative gap of 1e-4 (0.01%).

5.1 Computational experiments

We consider a panning horizon of three days. The customers are about equally splitted between no
flexibility, medium flexibility, and high flexibility ones. 90% of trucks are supposed to be two-containers
ones, and the number of available trucks is the same in every period. The experiments are carried out
on small, medium and large instances in the literature.

The small instances are taken from [42]. They are divided into five classes: 6 instances with 10
customers serviced by 28 containers; 10 instances with 20 customers serviced by 61 containers; 14 instances
with 30 customers serviced by 88 containers; 18 instances with 40 customers serviced by 125 containers;
22 instances with 50 customers serviced by 141 containers.

The medium-sized instances have adapted from those in [46] for the Vehicle Routing with Backhauls,
and are denoted from A to N. In order to represent realistic quantities of containers, customer demands
have been divided by 100 and rounded to the nearest integer.

The largest instances are adapted from those in [47] for the Capacitated Vehicle Routing problem.
Nodes have been randomly subdivided between importers and exporters, and customer demands have
been divided by 100 and rounded to the nearest integer in order to represent realistic container demands.

The outcomes are reported in Table(1, 2, and 3) for small, medium and large instances, respectively.
Each table reports problem data (i.e. |I|, |E|, k1, k2) and three main groups of columns denoted by SC,
Price-and-Branch and SEAF. In the first, we report the results in the case of complete enumeration of all
feasible routes; in the second, we show the results obtained by the Price-and-Branch algorithm described
in Section 3; in the third, we report the results provided by the arc-flow model in Section 4.

For SC the following data is reported:

• |R|: the total number of feasible routes;

• τn: preprocessing time (in seconds) to generate all feasible routes;

• tn: time (in seconds) to solve the instances by Cplex.

For the Price-and-Branch (P&B) the following data is reported:

• it is the number of iterations of the column generation algorithm;

• |B∗| is the final number of columns of the RMP at the end of the Price-and-Branch algorithm;

• tPB , tM , tP and tlm are the total running time (in seconds) of the Price-and-Branch algorithm, the
time for solving the master problem, the time for solving the pricing problem, and the time to solve
the restricted integer master problem, respectively.

For SEAF, the following data is reported:

• tNA: time (in seconds) for Cplex to solve the model;

• τNA: preprocessing time (in seconds) to load the model in Cplex;

• N : the total number of branch-and-bound nodes;

• cut: the total number of cuts added by Cplex;

• gapB : the gap (in percentage) between the lower bound at the root node and the optimal solution
before Cplex cuts; note that this is the same as the gap between the linear relaxation of the RMP
and the optimal solution at the end of the column generation;

• gapA: the gap (in percentage) between the lower bound at the root node and the optimal solution
after Cplex cuts;
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• tr: time (in seconds) for Cplex to determine the lower bound at root node;

• gapr: the gap (in percentage) between best integer and lower bound at the root node;

Finally, column gap reports the relative gap (in percentage) between the upper bound determined by the
integer solution of the RMP in Price-and-Branch algorithm and the optimal solution (found by the other
two formulations).

Table 1 shows that small instances can be solved by all methods proposed in the paper. For the
smallest of small instances the SC model with complete routes enumeration can actually be the best
solution. When size grows, the Price-and-Branch approach can be significantly faster, as it ends up
generating only a small fraction of the total routes. However, this comes at the cost of a non-negligible
deterioration of the quality of the returned solution (cf. column gap3), which is acceptable but not optimal.
The (SEAF ) formulation is clearly the best one, in that it always produces the optimal solution, almost
invariably with much shorter running times. It is worth noting that all these instances are solved at the
root node by (SEAF ); in fact, column N is not reported in that it only contains 0. Thus, while (SC)
and (SEAF ) provide the same bound, which is reasonably tight to start with (cf. column gapB), Cplex
cuts applied to the (SEAF ) formulation are enough to completely close the gap (cf. column gapA), while
the columns accrued by the Price-and-Branch to produce the same (starting) lower bound do not allow
to generate the optimal solution.

Table 2 shows that only the smallest medium-sized instances can be solved by SC with complete routes
enumeration. Although all feasible routes can be generated in a reasonable time, no feasible solution is
obtained for instances from H to N within the time limits. The Price-and-Branch approach becomes
instrumental here, as it allows to produce solutions for these instances in less than a minute. These
solutions are probably still accurate enough for practical use, but they can be in excess of 5% far from
the optimal one. Conversely, the (SEAF ) formulation obtains optimal solutions in a few seconds; were
it not for a single one, all these instances would again be solved at the root node.

Table 3 only shows the total number of routes for the complete SC formulations: these cannot even
be generated, much less solved, within the time limit. Except for the three largest instances, Price-and-
Branch can provide reasonable-quality solutions in less than one hour. However, even if the tolerance
is reduced to 1e-3, the Price-and-Branch does not terminate within three hours and has to be stopped,
albeit still providing decent integer solutions in little time once it is. The (SEAF ) formulation is capable
of always terminating within three hours providing solutions with the required tolerance (albeit, for the
largest three instances, that is reduced); save for the very largest instance, no more than half an hour is
required.

Thus, according to our experiments the (SEAF ) formulation is largely the preferable one. This is
even more striking when it is compared with the flow-based compact formulation proposed in [20] for the
single-period problem; in order not to move the focus away from our multi-period setting that formulation
is recalled in A, and the comparison on single-period instances is reported in B.

5.2 Flexibility and routing costs

Potential savings in routing costs can be achieved when increasing levels of flexibility are introduced.
Conversely, when flexibility levels are reduced, it is important to control the increase in routing costs.
Therefore, this section aims at investigating how much routing costs are affected by different levels of
flexibility. The experiments are carried out on the medium-sized instances of Table 2, which are solved
very efficiently by the (SEAF ) formulation.

We consider the most restrictive configuration F0 in which all customers must be served in the first
day of the three-days planning horizon and we determine the related routing costs. Next, we consider
the following configurations:

• F1, in which 25% of customers are supposed to have medium flexibility and 75% of them keep
having no flexibility;

• F2, in which 25% of additional customers supposed to have medium flexibility with respect to
configuration F1 (i.e. 50% of customers have medium flexibility and the other customers have no
flexibility);
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SC P&B SEAF

|I| |E| k1 k2 |R| τn tn it |B∗| tPB tM tP tlm tNA τNA cut gapB gapA gap

2 8 2 9 1368 0.02 0.09 10 56 1.95 1.85 0.05 0.20 0.03 0.08 8 0.42 0.00 1.20
5 5 2 7 1258 0.10 0.17 11 54 0.97 0.87 0.05 0.10 0.08 0.03 11 0.89 0.00 1.01
8 2 5 9 884 0.03 0.07 8 50 0.73 0.65 0.04 0.14 0.02 0.07 10 0.90 0.00 1.31
2 8 0 10 1368 0.02 0.09 10 72 1.13 1.02 0.46 0.10 0.04 0.06 15 0.46 0.00 1.74
5 5 0 8 1258 0.10 0.17 9 65 1.14 1.04 0.05 0.12 0.06 0.12 15 0.72 0.00 0.40
8 2 0 12 884 0.03 0.07 8 62 1.22 1.12 0.05 0.53 0.11 0.03 20 0.39 0.00 0.43

2 18 8 22 1792 0.05 0.27 15 89 1.75 1.47 0.16 0.13 0.09 0.12 34 0.19 0.00 1.62
5 15 7 19 7095 0.16 0.40 19 107 1.99 1.71 0.19 0.13 0.06 0.36 8 0.87 0.00 1.36

10 10 5 14 16932 0.34 0.28 22 119 4.08 3.77 0.22 0.57 0.31 0.19 12 0.73 0.00 1.17
15 5 7 19 6345 0.26 1.75 19 107 2.18 1.87 0.21 0.10 0.16 0.82 21 0.24 0.00 0.80
18 2 5 24 1716 0.05 0.31 17 94 2.03 1.77 0.18 0.09 0.23 0.38 18 0.80 0.00 0.42
2 18 0 27 1792 0.05 0.35 18 131 2.99 2.69 0.20 0.16 0.08 0.31 34 0.34 0.00 1.90
5 15 0 23 7095 0.16 0.46 20 133 2.22 1.88 0.22 0.14 0.09 0.28 17 0.34 0.00 1.41

10 10 0 17 16932 0.35 0.61 18 122 4.57 4.29 0.18 0.10 0.09 0.11 17 0.81 0.00 0.77
15 5 0 23 6345 0.26 0.94 21 139 2.88 2.54 0.23 0.09 0.14 0.14 20 0.94 0.00 1.72
18 2 0 27 1716 0.05 0.37 18 131 2.12 1.86 0.17 0.24 0.27 0.24 25 0.83 0.00 2.30

2 28 13 33 5578 0.29 0.26 27 146 3.23 2.63 0.47 0.86 0.13 0.38 34 0.26 0.00 0.10
5 25 12 30 19555 1.49 1.12 23 143 3.00 2.47 0.40 0.15 0.16 0.77 44 0.68 0.00 0.82

10 20 10 25 44730 1.72 4.39 25 156 3.74 3.10 0.49 0.14 0.14 0.79 40 0.79 0.00 2.50
15 15 8 19 54480 2.11 3.48 33 204 4.97 3.99 0.73 0.20 0.23 0.47 58 0.81 0.00 2.43
20 10 10 26 42730 2.15 4.27 26 160 3.91 3.32 0.43 0.17 0.20 0.61 42 0.73 0.00 0.42
25 5 12 32 17055 1.49 1.29 27 143 3.51 2.84 0.51 0.21 0.16 0.15 21 0.63 0.00 0.65
28 2 14 35 4122 0.83 0.28 27 139 3.13 2.57 0.44 0.18 0.14 0.16 19 1.04 0.00 0.46
2 28 0 41 5578 0.29 0.44 29 219 4.12 3.36 0.54 0.13 0.14 0.38 52 1.18 0.00 0.31
5 25 0 36 19555 1.49 3.08 29 199 4.53 3.79 0.53 0.11 0.30 0.77 51 1.01 0.00 2.90

10 20 0 30 44730 1.72 6.31 26 186 7.79 7.22 0.40 0.50 0.11 0.27 41 1.04 0.00 2.10
15 15 0 23 54480 2.11 6.72 36 237 5.60 4.64 0.62 0.14 0.19 0.47 53 1.37 0.00 2.50
20 10 0 31 42730 2.15 9.62 29 186 3.77 3.06 0.51 0.15 0.34 0.61 42 0.66 0.00 2.53
25 5 0 38 17055 1.38 4.10 29 203 3.76 2.99 0.56 0.13 0.14 0.15 26 0.89 0.00 2.11
28 2 0 42 4122 0.83 0.26 28 204 3.58 2.89 0.47 0.15 0.13 0.16 21 1.18 0.00 1.66

2 38 20 49 10228 0.09 1.68 32 176 4.56 3.52 0.83 0.62 0.17 0.10 68 1.20 0.00 3.40
5 35 18 45 38215 1.72 2.34 33 192 4.34 3.28 0.85 0.25 0.20 0.32 31 0.86 0.00 2.71

10 30 14 38 100340 4.19 5.37 32 195 4.75 3.74 0.79 0.26 0.20 0.15 50 0.62 0.00 3.55
15 25 12 31 151265 6.83 7.11 35 219 5.37 4.15 0.93 0.17 0.31 0.19 49 0.51 0.00 3.01
20 20 12 29 252000 8.35 18.4 40 231 7.74 6.41 1.02 0.31 0.19 0.21 50 1.26 0.00 2.44
25 15 14 36 147515 6.39 7.47 38 209 5.21 4.14 0.83 0.12 0.20 0.51 43 0.86 0.00 3.19
30 10 17 43 94340 4.01 5.27 35 195 9.72 8.34 1.10 0.68 0.36 0.31 32 1.19 0.00 2.02
35 5 19 48 32965 1.51 2.12 35 178 5.62 4.54 0.88 0.48 0.17 0.38 50 0.88 0.00 2.22
38 2 20 51 7492 0.09 0.81 30 171 3.83 2.96 0.70 1.15 0.33 0.09 54 1.02 0.00 2.17
2 38 0 60 10228 0.09 5.38 33 259 4.72 3.57 0.82 0.19 0.17 0.10 64 0.31 0.00 2.60
5 35 0 54 3 8215 1.72 3.41 31 248 4.41 3.30 0.82 0.16 0.23 0.32 47 0.33 0.00 1.16

10 30 0 45 100340 4.19 8.35 32 231 8.20 7.18 0.73 0.27 0.28 0.15 48 0.77 0.00 1.18
15 25 0 38 151265 6.83 7.89 35 253 5.56 4.47 0.80 0.11 0.55 0.19 61 1.05 0.00 1.08
20 20 0 35 252000 8.35 18.6 41 280 6.98 5.57 1.05 0.11 0.17 0.21 55 0.40 0.00 0.89
25 15 0 43 147515 6.39 7.52 39 249 5.69 4.43 0.95 0.38 0.31 0.53 50 1.27 0.00 0.88
30 10 0 51 94340 4.01 4.37 37 263 5.96 4.71 0.92 0.54 0.22 0.31 40 0.60 0.00 1.05
35 5 0 58 32965 1.51 1.68 34 255 5.22 4.06 0.86 0.17 0.34 0.38 46 1.01 0.00 1.12
38 2 0 61 7492 0.09 1.14 33 272 4.68 3.49 0.85 0.28 0.41 0.09 49 1.13 0.00 0.95

2 48 22 56 16278 1.02 0.56 37 214 11.1 9.64 1.22 0.50 0.31 0.08 52 1.17 0.00 0.55
5 45 21 54 62850 4.19 1.67 38 217 5.58 3.92 1.39 0.30 0.27 0.13 52 1.18 0.00 0.56

10 40 18 50 177750 11.02 8.01 41 231 6.74 5.07 1.38 0.15 0.25 0.36 67 1.65 0.00 0.60
15 35 17 42 295500 17.97 14.05 41 259 7.38 5.61 1.42 0.18 0.47 0.81 50 0.80 0.00 0.68
20 30 13 37 379350 23.13 23.23 56 301 10.2 8.10 1.73 0.20 0.33 0.67 46 1.25 0.01 0.75
25 25 11 32 407550 24.79 16.23 51 302 8.28 6.22 1.63 0.11 0.30 0.46 37 1.64 0.00 0.79
30 20 12 32 563670 22.27 16.23 47 304 8.79 6.74 1.60 0.13 0.48 0.45 42 1.17 0.00 0.91
35 15 15 39 285000 17.43 13.02 48 285 10.1 7.95 1.77 0.19 0.80 0.35 51 1.49 0.00 0.79
40 10 17 46 165750 9.96 4.61 46 272 7.89 5.94 1.53 0.17 0.39 0.52 39 0.52 0.00 0.74
45 5 20 50 53850 3.39 2.01 41 236 8.19 5.95 1.84 0.27 0.42 0.88 37 0.98 0.00 0.65
48 2 22 55 11862 0.73 1.14 39 226 5.67 4.08 1.31 0.24 0.39 0.41 72 0.59 0.00 0.52
2 48 0 68 16278 1.02 1.17 37 310 5.95 4.30 1.24 0.24 0.36 0.08 12 1.39 0.00 1.44
5 45 0 65 62850 4.19 2.71 39 308 6.52 4.76 1.35 0.26 0.36 0.13 54 1.19 0.00 1.39

10 40 0 60 177750 11.02 5.11 45 323 8.93 6.67 1.76 0.26 0.36 0.29 67 0.71 0.00 1.34
15 35 0 51 295500 17.97 14.91 42 289 6.41 4.66 1.37 0.20 0.42 0.79 57 1.52 0.00 1.40
20 30 0 44 379350 23.13 13.29 48 319 7.66 5.63 1.58 0.17 0.31 0.56 29 1.21 0.00 1.30
25 25 0 38 407550 24.79 17.49 43 303 7.16 5.36 1.38 0.10 0.36 0.31 24 1.66 0.00 1.33
30 20 0 38 563670 22.27 16.75 46 313 7.37 5.40 1.49 0.18 0.27 0.67 46 1.07 0.00 1.47
35 15 0 47 285000 17.43 7.92 48 329 7.59 5.56 1.56 0.39 0.33 0.99 46 0.88 0.00 1.64
40 10 0 55 165750 9.96 3.81 45 307 6.92 5.11 1.41 0.81 0.38 0.70 47 1.63 0.00 1.49
45 5 0 60 53850 3.39 1.84 42 323 6.99 5.15 1.39 0.25 0.36 0.83 57 0.93 0.00 1.47
48 2 0 66 11862 0.73 1.23 39 317 5.93 4.17 1.34 0.24 0.31 0.41 51 1.47 0.00 1.36

Table 1: Experiments on small instances
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SC P&B SEAF

|I| |E| k1 k2 |R| τn tn it |B∗| tPB tM tP tlm tNA τNA cut gapB gapA gap

A 20 5 4 56 2.1e+4 1.36 0.43 18 116 2.16 1.88 0.19 0.09 0.16 0.83 19 2.45 0.00 3.04
B 20 10 3 51 8.5e+4 2.33 1.86 27 144 2.93 2.40 0.36 0.16 0.34 0.82 26 1.92 0.00 4.18
C 20 20 4 47 3.3e+5 9.62 2.24 35 210 5.01 4.17 0.68 0.13 0.61 0.90 35 2.44 0.00 5.75
D 30 8 7 74 1.2e+5 6.12 9.13 24 158 3.05 2.45 0.45 0.13 0.49 0.59 76 1.78 0.00 4.28
E 30 15 6 69 3.5e+6 7.90 14.1 31 204 4.39 3.54 0.72 0.11 0.72 0.56 69 3.31 0.00 4.67
F 30 30 7 79 1.6e+6 18.01 211 55 328 9.46 7.13 1.87 0.26 0.77 0.52 267 2.44 0.00 5.81
G 45 12 8 112 4.9e+5 10.52 31.5 35 248 5.52 4.05 1.15 0.14 0.62 0.29 49 1.66 0.00 5.52
H 45 23 6 97 1.8e+6 16.83 - 55 308 9.54 6.99 2.12 0.18 1.18 0.84 239 2.22 0.00 6.55
I 45 45 9 129 8.3e+6 37.89 - 81 479 22.9 16.1 5.80 1.00 2.29 0.88 181 1.60 0.00 4.82
J 75 19 12 194 4.1e+6 23.63 - 62 423 13.4 8.80 3.92 0.29 3.82 0.63 188 1.75 0.01 5.81
K 75 38 13 177 1.6e+7 55.3 - 85 513 20.8 12.8 6.89 0.20 4.59 0.81 128 1.46 0.00 5.52
L 75 75 14 202 6.3e+7 190.2 - 140 836 46.8 27.0 17.1 0.42 5.19 0.62 183 1.70 0.00 6.69

M 100 25 17 236 1.2e+7 42.12 - 77 542 19.9 11.4 7.36 0.22 4.08 0.74 140 1.47 0.00 3.22
N 100 50 21 258 4.9e+7 139.9 - 97 660 29.4 15.6 12.1 0.23 5.09 0.88 216 1.46 0.00 4.44

Table 2: Experiments on medium instances

SC P&B SEAF

|I| |E| k1 k2 |R| it |B∗| tPB tM tP tlm tNA τNA cut N gapB gapA tr gapr gap

72 37 55 494 1.5e+7 79 480 18.7 11.5 6.23 0.41 5.3 0.42 126 0 1.17 0.01 4.26 0.62 2.62
88 20 56 503 9.9e+6 80 517 32.9 17.5 13.5 0.72 16.7 0.66 645 783 0.42 0.03 5.52 0.19 4.76

103 44 54 489 3.9e+7 111 696 50.0 23.8 25.0 0.24 11.2 0.83 172 4 0.93 0.00 6.50 0.30 5.01
192 16 143 1283 1.7e+7 104 751 51.1 31.0 17.1 0.19 78 1.20 176 3432 0.40 0.02 10.5 0.09 3.68
75 175 131 1177 3.5e+8 201 1150 126 46.4 79.0 0.48 81 1.49 492 1352 0.47 0.04 11.2 1.43 4.00
28 298 225 2016 1.2e+8 251 1108 142 38.7 100 0.39 137 1.72 585 1782 0.45 0.02 18.7 0.77 3.82

196 196 146 1311 2.7e+9 557 2640 681 220 458 1.63 530 1.93 808 1856 0.49 0.02 32.4 0.62 4.34
144 335 251 2256 4.5e+9 401 2215 572 126 444 0.34 752 2.11 779 1810 0.30 0.03 46.4 2.47 3.44
258 254 147 1316 8.3e+9 645 3223 1021 262 756 0.82 924 2.38 1030 1952 0.55 0.04 129 2.19 6.12
392 168 218 1954 8.5e+9 461 2496 779 152 623 0.71 658 2.53 787 2542 0.55 0.04 192 0.98 4.99
500 85 380 341 3.3e+9 425 2589 828 136 690 0.54 483 2.34 582 1746 0.31 0.02 124 3.33 3.73
438 188 329 2958 1.3e+10 566 3083 1173 219 951 0.63 653 2.48 637 9424 0.23 0.02 142 0.14 3.54
490 210 271 2437 1.9e+10 614 3507 1532 262 1266 0.83 1062 2.81 818 1786 0.24 0.02 335 0.79 5.11

* 251 585 432 3881 4.1e+10 1682 8208 10800 5174 5624 1.89 1497 2.94 704 1765 0.30 0.07 249 48 3.92
* 140 775 579 5205 2.1e+10 1206 6034 10800 4161 6637 1.19 1270 3.24 469 1769 0.23 0.06 252 0.58 4.02
* 500 500 276 2482 1.2e+11 2364 11763 10800 4439 6358 2.18 10467 3.52 661 1775 0.34 0.08 1407 62 6.94

Table 3: Experiments on large instances
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• F3, in which 25% of additional customers supposed to have medium flexibility with respect to
configuration F2 (i.e. 75% of customers have medium flexibility and the other customers have no
flexibility);

• F4, in which 25% of additional customers supposed to have medium flexibility with respect to
configuration F3 (i.e. all customers have medium flexibility).

The outcomes of these experiments are reported in Figure 3. For each instance denoted from A to N , it
reports the routing costs associated with these configurations of flexibility. A more careful analysis of these
outcomes indicates that the average decrease in routing costs is 2.50% from F0 to F1 (standard deviation
2.30%, minimum 0.00%, maximum 7.11%), 5.25% from F1 to F2 (standard deviation 3.53%, minimum
1.20%, maximum 15.29%), 3.92% % from F2 to F3 (standard deviation 3.01%, minimum 0.00%, maximum
9.03%) and 4.75% from F3 to F4 (standard deviation 2.78%, minimum 1.88%, maximum 9.93%).

Figure 3: Routing costs if the medium level of flexibility is introduced

The experiments are repeated from configuration F4, in which all customers must be have medium
flexibility, and different levels of high flexibility are introduced. We consider the following configurations:

• F5, in which 25% of customers are supposed to high medium flexibility and 75% of them keep
having medium flexibility;

• F6, in which 25% of additional customers supposed to have high flexibility with respect to con-
figuration F5 (i.e. 50% of customers have high flexibility and the other customers have medium
flexibility);

• F7, in which 25% of additional customers supposed to have high flexibility with respect to con-
figuration F6 (i.e. 75% of customers have high flexibility and the other customers have medium
flexibility);

• F8, in which 25% of additional customers supposed to have high flexibility with respect to configu-
ration F7 (i.e. all customers have high flexibility).

The outcomes of these experiments are reported in Figure 4, which is organized as Figure 3. These
outcomes also indicate that the average decrease in routing costs is 3.21% from F4 to F5 (standard
deviation 2.76%, minimum 0.57%, maximum 9.05%), 3.60% from F5 to F6, (standard deviation 2.68%,
minimum 0.04%, maximum 9.96%), 3.81% from F6 to F7(standard deviation 2.69%, minimum 0.50%,
maximum 9.95%), and 3.16% from F7 to F8 (standard deviation 2.28%, minimum 0.37%, maximum
7.64%).

The experiments show that, on these instances, convincing 25% of customers to move one step up in
the flexibility ladder is worth about 4% of the routing costs. There is a significant variance in the results,
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Figure 4: Routing costs if the high level of flexibility is introduced

and the move from no flexibility to medium flexibility seems to be somehow more profitable than that
from medium to high flexibility. However, the experiment illustrates that the model can help a carrier to
properly set flexibility incentives for its customer.

6 Conclusion

This paper has investigated a multi-period drayage problem with customer-dependent service times. This
is a significant contribution in that the literature on drayage problems, despite being quite rich, typically
focused on single-day problems and, thus, does not offer proper tools to evaluate the impact of flexibility
on distribution costs.

In order to address this problem, different approaches have been adopted. We extended a Set Covering
model, and a Price-and-Branch algorithm to the case of multiple periods. Furthermore, we proposed a
new compact arc-flow formulation. Extensive experiments have shown the the latter formulation is by far
the most effective, as it can determine very quickly the optimal solutions by a MIP solver (very often at
the root node). As shown in the Appendices, this model also improves the results obtained for single-day
problems. Generally speaking, these outcomes shed light on the importance of proper reformulations, in
order to solve problems effectively.

Using the proposed formulation makes it possible to efficiently solve several times even large instances,
which allows to quantify the savings obtained by extending service times. From a managerial viewpoint,
these outcomes can be useful to negotiate price discounts in exchange for the extended flexibility.

As a future development, we believe that the compact arc-flow formulation can be solved even more
efficiently by structured versions of the Dantzig-Wolfe decomposition algorithm. Moreover, we will extend
our research by the incorporation of uncertainty in the arrival of new customer requests or cancellations
and the possible acceptance of discounts.
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A The node-arc model by [20]

The model by [20] was proposed to address the single-period version of the drayage problem considered
in this paper. That model assumes that all importers must be served before all exporters in any route,
an assumption that can be relaxed (albeit at a cost) in the model discussed in this paper. The points in
which that model is more general than those in this paper are that:

• it allows to specify different routing costs for each truck;

• it allows to consider truck capacity larger than 2.

However, in practice routing costs only significantly differ between one-container and two-container trucks,
being virtually indistinguishable between trucks of the same type. Also, in most (but not all) countries,
at most 2 containers can be moved by the same truck.

The model is defined via arc-flow variables on the physical directed graph G = (N,A) of Section 3.
The model is stil of the Integer Multicommodity Flow type, where commodities correspond to all the
different trucks k of the available fleet K. In particular, three arc-flow variables are defined:

• xkij : binary variable equal to 1 if arc (i, j) ∈ A is traversed by truck k ∈ K;

• ykij : integer variable representing the number of loaded containers moved along arc (i, j) ∈ A by
truck k ∈ K;

• zkij : integer variable representing the number of empty containers moved along arc (i, j) ∈ A by
truck k ∈ K.

With these, the problem is formulated as follows:

min
∑

k∈K
∑

(i,j)∈A c
k
ijx

k
ij (14)

s.t.
∑

k∈K
∑

l∈N ykil =
∑

k∈K
∑

j∈p∪I y
k
ji − di i ∈ I (15)∑

k∈K
∑

l∈N zkil =
∑

k∈K
∑

j∈p∪I z
k
ji + di i ∈ I (16)∑

l∈N ykil ≤
∑

j∈p∪I y
k
ji i ∈ I , k ∈ K (17)∑

l∈N zkil ≥
∑

j∈p∪I z
k
ji i ∈ I , k ∈ K (18)∑

k∈K
∑

l∈p∪E y
k
il =

∑
k∈K

∑
j∈N ykji + di i ∈ E (19)∑

k∈K
∑

l∈p∪E z
k
il =

∑
k∈K

∑
j∈N zkji − di i ∈ E (20)∑

l∈p∪E y
k
il ≥

∑
j∈N ykji i ∈ E , k ∈ K (21)∑

l∈p∪E z
k
il ≤

∑
j∈N zkji i ∈ E , k ∈ K (22)∑

(ji)∈A(ykji + zkji) =
∑

(il)∈A(ykil + zkil) i ∈ I ∪ E , k ∈ K (23)

ykij + zkij ≤ ukxkij (i, j) ∈ A , k ∈ K (24)∑
j∈N xkji −

∑
l∈N xkil = 0 i ∈ N , k ∈ K (25)∑

j∈N xkij ≤ 1 i ∈ N , k ∈ K (26)∑
k∈K

∑
i∈I∪E z

k
ip −

∑
k∈K

∑
i∈I∪E z

k
pi =

∑
i∈I di −

∑
i∈E di (27)

xkij ∈ {0, 1} (i, j) ∈ A , k ∈ K (28)

ykij ∈ N (i, j) ∈ A , k ∈ K (29)

zkij ∈ N (i, j) ∈ A , k ∈ K (30)

Routing costs are minimized in the objective function (14); ckij is cost for truck k ∈ K to traverse arc
(i, j) ∈ A, which is allowed to change truck-wise (but, in real data, only does so type-wise). Constraints
from (15) to (18) concern the movement of containers to importers. Constraints (15) and (16) are the flow
conservation constraints of loaded and empty containers, respectively, at each importer node. Constraint
(17) and (18) check the number of loaded and empty containers in each truck entering and leaving from
importers: the number of loaded containers cannot be increased after a service at each importer, whereas
the number of empty containers cannot be reduced.
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Constraints from (19) to (22) concern the allocation of containers to exporters. Constraints (19) and
(20) are the flow conservation constraints of loaded and empty containers, respectively, for each exporter
node. Constraint (21) and (22) control the number of loaded and empty containers in each truck entering
and leaving from exporters: the number of loaded containers cannot be reduced after a service at each
exporter, whereas the number of empty containers cannot be increased.

Constraint (23) guarantees that the number of containers carried by each truck does not change after
visiting a customer. Constraint (24) imposes that the number of containers moved by each truck is not
larger than its transportation capacity uk. In this problem, uk takes value 1 or 2. Constraints (25) are
the flow conservation constraints for trucks at each node. Constraint (26) guarantees that trucks are not
used more than once. Constraint (27) represents the flow conservation of empty containers at port p.
Finally, constraints (28), (29) and (30) define the domain of decision variables.

B Solutions for single-day problems

Single-day instances coming from real-world data are taken from [1]. The results are reported in Table 4
and Table 5, which are organized as Table 1 and 2 apart from column gapF , which reports the optimality
gap for the model (14)–(30) (or “-” when no feasible solution is obtained). The computational setting
is the same as the other experiments, except that the maximum running time set at 1 hour for all the
approaches.

The experiments show that model (14)–(30) can solve to optimality only five small instances, it does
not prove the optimality of 25 feasible solutions, and cannot provide any feasible solution for 54 out of
84 instances. This is due to the combination of its larger size, having truck-specific variables, and a
much weaker lower bound. The (SC) model with enumeration of all feasible routes is viable to get the
optimal solution of small instances, but it quickly becomes impractical as the size grows, as the medium
instances show. The Price-and-Branch is viable for all size and returns very good solutions for small
instances (cf. Column gap3 in Table 4), but the quality of the solution is significantly worse for medium
ones (cf. Column gap3 in Table 5). Remarkably, while the small instances come from real-world data of
an actual drayage application, the medium ones come from adapting data for other versions of the Vehicle
Routing Problem; thus, these results may indicate that real-world instances are in fact easier to solve by
the Price-and-Branch than what Table 5 would seem to indicate. However, the point is largely moot,
since the (SEAF ) formulation clearly outperforms all the others by optimally solving all the single-period
instances very quickly at the root node. The inherent gap of the formulation (cf. Column gapB) is very
small already for small instances, that are in fact solved very well by the Price-and-Branch, but it is
much larger for medium ones: yet, Cplex cuts are capable of completely closing it without any branching,
ensuring exceptionally low computing times in all cases. This proves that the (SEAF ) formulation is
also very effective in the single-period case.
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SC P&B SEAF

|I| |E| k1 k2 R τn tn it |B∗| tPB tM tP tlm tNA τNA cut gapB gapA gap gapF

2 8 2 9 462 0.02 0.09 14 40 0.57 0.55 0.00 0.07 0.06 0.06 8 0.10 0.00 0.003 0.00
5 5 2 7 810 0.10 0.17 14 42 0.48 0.45 0.00 0.06 0.10 0.04 8 0.09 0.00 0.005 0.00
8 2 5 9 366 0.03 0.07 13 40 0.45 0.43 0.00 0.07 0.01 0.05 0 0.11 0.00 0.004 0.00
2 8 0 10 462 0.02 0.09 14 40 0.65 0.63 0.00 0.05 0.07 0.07 4 0.12 0.00 0.014 3.76
5 5 0 8 810 0.10 0.17 14 42 0.60 0.57 0.00 0.04 0.02 0.05 12 0.07 0.00 0.024 0.00
8 2 0 12 366 0.03 0.07 13 40 0.57 0.54 0.00 0.04 0.16 0.03 6 0.10 0.00 0.005 3.83

2 18 8 22 1792 0.05 0.27 24 81 1.12 1.07 0.03 0.06 0.07 0.09 17 0.06 0.00 0.006 2.51
5 15 7 19 7095 0.16 0.40 30 86 1.38 1.28 0.04 0.15 0.12 0.21 9 0.07 0.00 0.023 0.00

10 10 5 14 11220 0.34 0.28 31 84 1.47 1.39 0.05 0.05 0.07 0.11 19 0.06 0.00 0.016 2.26
15 5 7 19 6345 0.26 1.75 28 83 1.54 1.41 0.04 0.21 0.19 0.63 25 0.07 0.00 0.005 2.87
18 2 5 24 1716 0.05 0.31 26 81 1.19 1.13 0.04 0.05 0.19 0.37 13 0.05 0.00 0.009 2.53
2 18 0 27 1792 0.05 0.35 24 81 1.11 1.05 0.03 0.08 0.11 0.28 17 0.05 0.00 0.004 5.74
5 15 0 23 7095 0.16 0.46 30 86 1.49 1.40 0.05 0.06 0.11 0.17 13 0.04 0.00 0.006 2.99

10 10 0 17 11220 0.35 0.61 31 84 2.40 2.33 0.04 1.18 0.08 0.12 13 0.05 0.00 0.000 3.91
15 5 0 23 6345 0.26 0.94 28 83 1.58 1.50 0.05 0.13 0.22 0.10 15 0.06 0.00 0.014 6.01
18 2 0 27 1716 0.05 0.37 26 81 1.44 1.37 0.04 0.18 0.10 0.19 25 0.05 0.00 0.004 4.96

2 28 13 33 5578 0.29 0.26 39 124 1.98 1.81 0.11 0.10 0.14 0.29 12 0.06 0.00 0.002 7.54
5 25 12 30 19555 1.49 1.12 42 124 2.11 1.96 0.11 0.13 0.13 0.50 14 0.07 0.00 0.007 -

10 20 10 25 44730 1.72 4.39 46 127 3.21 3.00 0.15 0.14 0.22 0.44 20 0.04 0.00 0.028 2.98
15 15 8 19 54480 2.11 3.48 54 143 3.54 3.33 0.15 0.31 0.12 0.19 9 0.05 0.00 0.021 2.69
20 10 10 26 42730 2.15 4.27 48 131 2.74 2.56 0.13 0.07 0.32 0.37 25 0.07 0.00 0.002 9.08
25 5 12 32 17055 1.49 1.29 38 122 1.78 1.65 0.10 0.06 0.12 0.11 14 0.06 0.00 0.008 3.21
28 2 14 35 4122 0.83 0.28 33 119 1.60 1.49 0.08 0.08 0.12 0.12 10 0.05 0.00 0.004 -
2 28 0 41 5578 0.29 0.44 39 124 2.19 2.04 0.11 0.18 0.30 0.24 14 0.04 0.00 0.032 7.02
5 25 0 36 19555 1.49 3.08 42 124 2.31 2.15 0.12 0.07 0.14 0.51 12 0.04 0.00 0.003 11.4

10 20 0 30 44730 1.72 6.31 46 127 2.52 2.29 0.16 0.21 0.15 0.19 25 0.05 0.00 0.002 9.38
15 15 0 23 54480 2.11 6.72 54 143 3.09 2.90 0.13 0.05 0.29 0.38 40 0.05 0.00 0.014 6.61
20 10 0 31 42730 2.15 9.62 48 131 3.20 3.00 0.15 0.05 0.26 0.52 41 0.06 0.00 0.011 7.16
25 5 0 38 17055 1.38 4.10 38 122 2.26 2.11 0.10 0.11 0.14 0.09 14 0.04 0.00 0.025 7.07
28 2 0 42 4122 0.83 0.26 33 119 1.87 1.74 0.09 0.07 0.25 0.14 16 0.03 0.00 0.025 3.79

2 38 20 49 10228 0.09 1.68 44 160 2.23 1.98 0.20 0.13 0.24 0.13 11 0.03 0.00 0.067 -
5 35 18 45 38215 1.72 2.34 49 161 2.57 2.29 0.23 0.10 0.18 0.25 8 0.06 0.00 0.020 -

10 30 14 38 100340 4.19 5.37 57 165 4.08 3.75 0.27 0.10 0.17 0.09 8 0.03 0.00 0.047 -
15 25 12 31 151265 6.83 7.11 60 171 4.48 4.01 0.35 0.14 0.53 0.11 27 0.04 0.00 0.034 -
20 20 12 29 168840 8.35 18.43 69 179 4.44 3.99 0.37 0.09 0.27 0.17 7 0.06 0.00 0.030 -
25 15 14 36 147515 6.39 7.47 59 160 3.85 3.53 0.23 0.06 0.18 0.38 16 0.07 0.00 0.029 -
30 10 17 43 94340 4.01 5.27 54 164 3.14 2.85 0.22 0.11 0.20 0.20 10 0.06 0.00 0.028 -
35 5 19 48 32965 1.51 2.12 45 159 3.28 3.02 0.22 0.13 0.16 0.21 13 0.06 0.00 0.028 -
38 2 20 51 7492 0.09 0.81 45 162 2.46 2.22 0.18 0.20 0.33 0.07 12 0.06 0.00 0.023 -
2 38 0 60 10228 0.09 5.38 44 160 2.96 2.72 0.20 0.18 0.36 0.06 18 0.01 0.00 0.069 -
5 35 0 54 38215 1.72 3.41 49 161 2.98 2.71 0.22 0.29 0.21 0.19 16 0.02 0.00 0.070 -

10 30 0 45 100340 4.19 8.35 57 165 4.58 4.23 0.29 0.16 0.20 0.12 20 0.02 0.00 0.089 -
15 25 0 38 151265 6.83 7.89 60 171 5.71 5.25 0.39 0.49 0.71 0.13 42 0.02 0.00 0.081 -
20 20 0 35 168840 8.35 18.59 69 179 5.25 4.79 0.38 0.12 0.17 0.17 13 0.02 0.00 0.070 -
25 15 0 43 147515 6.39 7.52 59 165 4.45 4.01 0.36 0.60 0.29 0.37 23 0.02 0.00 0.068 18.9
30 10 0 51 94340 4.01 4.37 54 164 3.38 3.11 0.22 0.10 0.20 0.17 17 0.02 0.00 0.076 -
35 5 0 58 32965 1.51 1.68 45 159 2.85 2.59 0.20 0.13 0.40 0.26 19 0.01 0.00 0.070 -
38 2 0 61 7492 0.09 1.14 45 162 2.66 2.40 0.18 0.18 0.31 0.07 26 0.01 0.00 0.066 13.6

2 48 22 56 16278 1.02 0.56 56 203 3.25 2.75 0.43 0.23 0.34 0.05 19 0.07 0.00 0.024 -
5 45 21 54 62850 4.19 1.67 62 202 3.79 3.28 0.44 0.30 0.31 0.08 24 0.06 0.00 0.033 -

10 40 18 50 177750 11.02 8.01 70 202 5.62 4.95 0.58 0.10 0.56 0.18 15 0.03 0.00 0.072 -
15 35 17 42 295500 17.97 14.05 70 201 5.15 4.41 0.58 1.52 0.38 0.53 19 0.03 0.00 0.073 -
20 30 13 37 379350 23.13 23.23 80 210 7.01 6.25 0.67 0.08 0.32 0.45 19 0.03 0.00 0.073 -
25 25 11 32 407550 24.79 16.23 77 218 4.70 4.13 0.49 0.09 0.37 0.37 16 0.03 0.00 0.071 -
30 20 12 32 373350 22.27 16.23 78 219 4.88 4.33 0.47 0.07 0.34 0.31 19 0.03 0.00 0.094 -
35 15 15 39 285000 17.43 13.02 73 206 4.45 3.93 0.45 0.18 0.33 0.18 16 0.03 0.00 0.091 -
40 10 17 46 165750 9.96 4.61 73 211 4.53 4.01 0.46 0.10 0.32 0.27 17 0.03 0.01 0.085 -
45 5 20 50 53850 3.39 2.01 62 205 3.87 3.38 0.40 0.12 0.33 0.63 18 0.03 0.00 0.064 -
48 2 22 55 11862 0.73 1.14 55 201 3.39 2.95 0.38 0.15 0.79 0.30 26 0.03 0.00 0.049 -
2 48 0 68 16278 1.02 1.17 56 203 3.94 3.46 0.42 0.14 0.30 0.11 26 0.01 0.00 0.088 -
5 45 0 65 62850 4.19 2.71 62 202 4.07 3.60 0.39 0.15 0.26 0.06 24 0.01 0.00 0.095 -

10 40 0 60 177750 11.02 5.11 70 202 5.59 4.97 0.54 0.26 0.34 0.23 32 0.01 0.00 0.099 -
15 35 0 51 295500 17.97 14.91 70 201 7.25 6.33 0.70 1.43 0.41 0.56 35 0.02 0.00 0.010 -
20 30 0 44 379350 23.13 13.29 80 210 7.99 7.15 0.73 0.15 0.22 0.42 26 0.02 0.00 0.096 -
25 25 0 38 407550 24.79 17.49 77 218 5.14 4.59 0.48 0.07 0.22 0.26 16 0.02 0.00 0.094 -
30 20 0 38 373350 22.27 16.75 78 219 5.41 4.87 0.47 0.08 0.23 0.19 19 0.01 0.00 0.012 -
35 15 0 47 285000 17.43 7.92 73 206 4.85 4.36 0.42 0.25 0.19 0.47 16 0.01 0.00 0.012 -
40 10 0 55 165750 9.96 3.81 73 211 4.93 4.43 0.43 0.12 0.38 0.54 22 0.01 0.00 0.011 -
45 5 0 60 53850 3.39 1.84 62 205 4.49 4.04 0.38 0.16 0.29 0.66 28 0.02 0.00 0.098 -
48 2 0 66 11862 0.73 1.23 55 201 3.80 3.34 0.39 0.14 0.28 0.32 28 0.01 0.00 0.085 -

Table 4: Experiments with small single-period instances
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SC P&B SEAF

|I| |E| k1 k2 |R| τn tn it |B∗| tPB tM tP tlm tNA τNA cut gapB gapA gap gapF

A 20 5 4 56 1.1e+4 1.01 0.22 9 59 1.14 0.83 0.27 0.03 0.06 0.65 3 2.45 0.00 3.04 -
B 20 10 3 51 4.3e+4 1.94 1.19 14 94 2.06 1.24 0.66 0.15 0.11 0.68 5 1.92 0.00 3.97 -
C 20 20 4 47 1.7e+5 8.98 1.02 19 128 2.97 1.64 1.04 0.22 0.47 0.74 30 2.44 0.00 5.08 -
D 30 8 7 74 6.1e+4 5.03 9.09 14 94 2.06 1.28 1.05 0.27 0.19 0.32 18 1.78 0.00 4.29 -
E 30 15 6 69 2.1e+5 6.83 13.3 21 132 3.49 2.08 1.02 0.30 0.41 0.22 31 3.31 0.00 4.11 -
F 30 30 7 79 8.4e+5 15.7 202 31 206 6.12 3.92 1.61 0.49 0.63 0.29 12 2.44 0.00 5.85 -
G 45 12 8 112 3.0e+5 8.65 16.4 22 136 3.43 1.98 0.99 0.42 0.31 0.13 27 1.66 0.00 4.61 -
H 45 23 6 97 1.1e+6 13.1 2455 29 194 6.48 4.71 1.11 0.37 0.92 0.50 40 2.22 0.00 7.04 -
I 45 45 9 129 4.2e+6 30.5 782 48 300 11.7 9.17 2.16 0.31 1.23 0.79 42 1.60 0.00 5.18 -
J 75 19 12 194 2.1e+6 18.5 5560 35 230 8.13 5.81 1.75 0.48 3.12 1.07 371 1.75 0.00 5.03 -
K 75 38 13 177 8.2e+6 49.3 - 53 340 16.2 11.4 4.17 0.40 2.38 1.09 60 1.46 0.00 4.79 -
L 75 75 14 202 3.2e+7 157 - 89 556 34.5 22.4 11.6 0.36 3.12 2.39 92 1.41 0.00 7.16 -

M 100 25 17 236 6.3e+6 38.1 - 51 313 15.3 10.8 3.99 0.20 2.53 1.11 56 1.32 0.00 4.79 -
N 100 50 21 258 2.5e+7 107 - 68 425 24.7 16.2 8.01 0.34 3.51 2.01 62 1.35 0.01 4.80 -

Table 5: Experiments with single-period medium instances
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