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1 Introduction

In 1909, H. Weyl [35] studied the spectra of compact perturbations for a
Hermitian operator and showed that a point belong to spectra of all compact
perturbations of the operator if and only if this point is not an isolated point
of finite multiplicity in the spectrum of the operator. L. Coburn [21] was
one of the first to make a systematic investigation about this result and
introduced in abstract form the Weyl’s theorem for operators acting on
a Banach space. Later, W. Rakočević [29] introduce a stronger property,
called a-Weyl’s theorem. Berkani and Koliha [15] introduced generalized
versions for the Weyl’s theorems by using some spectra of a new theory of
semi B-Fredholm operators given in [13]. After them many authors have
introduced and studied a large number of spectral properties associated to
an operator by using spectra derived from either Fredholm operators theory
or B-Fredholm operators theory (see [2], [4], [6], [10], [14], [16], [17], [25],
[31], [33] and [34]). Today all these results are known as Weyl type theorems
or Weyl type properties and over the last years there has been a considerable
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interest to study these properties in operator theory. Recently, Berkani and
Kachad [18], [19], and Sanabria et al. [32], introduced and studied new
spectral properties related with Weyl type theorems. On the other hand B.
Barnes [8](resp. [9]) studied the relationship between some properties of an
operator and its extensions (resp. restrictions) on certain superspaces (resp.
subspaces) and showed that some Fredholm properties (resp. closed range
and generalized inverses) are transmitted from the operator to its extensions
(resp. restrictions). In this paper, using the framework offered by Barnes [9]
(which extends the context treated by Berkani [11]), we study the behavior
of new strong variations of Weyl type theorems for an operator T on a
proper closed and T -invariant subspace W ⊆ X such that Tn(X) ⊆ W for
some n ≥ 1, where T is a bounded linear operators acting on an infinite-
dimensional complex Banach space X. The main purpose of this paper is to
prove that for these subspaces (which generalize the case Tn(X) closed for
some n ≥ 0, [22], [24]), these strong variations of Weyl type theorems are
preserved from T to its restriction on W and vice-versa. As consequence of
our results, we obtain sufficient conditions for which these strong variations
of Weyl type theorems are equivalent for two given operators. Also, some
applications to multiplication operators acting on the boundary variation
space BV [0, 1] are given.

2 Preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear op-
erators acting on an infinite-dimensional complex Banach space X. The
classes of operators studied in the classical Fredholm theory generate sev-
eral spectra associated with an operator T ∈ L(X). The Fredholm spectrum
is defined by

σf(T ) = {λ ∈ C : λI − T is not Fredholm},

and the upper semi-Fredholm spectrum is defined by

σuf(T ) = {λ ∈ C : λI − T is not upper semi-Fredholm}.

The Browder spectrum and the Weyl spectrum are defined, respectively, by

σb(T ) = {λ ∈ C : λI − T is not Browder},

and
σw(T ) = {λ ∈ C : λI − T is not Weyl}.

Since every Browder operator is Weyl, σw(T ) ⊆ σb(T ). Analogously, the
upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined
by

σub(T ) = {λ ∈ C : λI − T is not upper semi-Browder},
and

σuw(T ) = {λ ∈ C : λI − T is not upper semi-Weyl}.
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For further information on Fredholm operators theory, we refer to [1] and
[26]. Another important class of operators is the quasi-Fredholm operators
defined in the sequel. Previously, we consider the following set.

∆(T ) = {n ∈ N : m ≥ n,m ∈ N⇒ Tn(X) ∩N(T ) ⊆ Tm(X) ∩N(T )}.

The degree of stable iteration is defined as dis(T ) = inf ∆(T ) if ∆(T ) 6= ∅,
while dis(T ) =∞ if ∆(T ) = ∅.
Definition 2.1. T ∈ L(X) is said to be quasi-Fredholm of degree d, if there
exists d ∈ N such that:

(a) dis(T ) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T (X) +N(T d) is a closed subspace of X.

For further information on quasi-Fredholm operators, we refer to [3], [5],
[12] and [13].

An operator T ∈ L(X) is said to have the single valued extension property
at λ0 ∈ C (abbreviated, SVEP at λ0)[23], if for every open disc Dλ0

⊆ C
centered at λ0 the only analytic function f : Dλ0

→ X which satisfies the
equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0
,

is the function f ≡ 0 on Dλ0
. The operator T is said to have SVEP if T has

the SVEP at every point λ ∈ C. Evidently, T ∈ L(X) has SVEP at every
point of the resolvent ρ(T ) = C \ σ(T ). Also, the single valued extension
property is inherited by restrictions on invariant closed subspaces. Moreover,
from the identity theorem for analytic functions it is easily seen that T has
SVEP at every point of the boundary ∂σ(T ) of the spectrum. In particular,
T has SVEP at every isolated point of the spectrum. Note that (see [1,
Theorem 3.8])

p(λI − T ) <∞⇒ T has SVEP at λ, (2.1)

and dually
q(λI − T ) <∞⇒ T ∗ has SVEP at λ, (2.2)

where p(T ) is the smallest non-negative integer p = p(T ) such that N(T p) =
N(T p+1) ( if such an integer does not exist, we put p(T ) =∞), and q(T ) is
the smallest non-negative integer q = q(T ) such that R(T q) = R(T q+1) (if
such an integer does not exist, we put q(T ) =∞).

Recall that T ∈ L(X) is said to be bounded below if T is injective and has
closed range. Denote by σap(T ) the classical approximate point spectrum
defined by

σap(T ) = {λ ∈ C : λI − T is not bounded below}.

Note that if σsu(T ) denotes the surjectivity spectrum

σsu(T ) = {λ ∈ C : λI − T is not onto},
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then σap(T ) = σsu(T ∗), σsu(T ) = σap(T ∗) and σ(T ) = σap(T ) ∪ σsu(T ).

It is easily seen from definition of localized SVEP, that

λ /∈ accσap(T )⇒ T has SVEP at λ, (2.3)

and
λ /∈ accσsu(T )⇒ T ∗ has SVEP at λ, (2.4)

where accK means the set of all accumulation points of a subset K ⊆ C.

Remark 2.2. The implications (2.1), (2.2), (2.3) and (2.4) are actually
equivalences, if T ∈ L(X) is semi-Fredholm (see [1, Chapter 3]). More gen-
erally, if T ∈ L(X) is quasi-Fredholm (see [3]). On the other hand σb(T ) =
σw(T )∪accσ(T ), σub(T ) = σuw(T )∪accσap(T ) and σ(T ) = σap(T )∪Ξ(T ),
where Ξ(T ) denote the set {λ ∈ C : T does not have SVEP at λ} (see [1,
Chapter 3]).

We denote by isoK, the set of all isolated points of K ⊆ C, by α(T ) =
dimN(T ) and by β(T ) = codim R(T ). Let T ∈ L(X), we define

E(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T )},
Ea(T ) = {λ ∈ isoσap(T ) : 0 < α(λI − T )},
Π(T ) = {λ ∈ C : 0 < p(λI − T ) = q(λI − T ) <∞},
Πa(T ) = {λ ∈ σap(T ) : p(λI − T ) <∞ and R((λI − T )p(λI−T )+1) is closed}.
E(T ) is the set of isolated eigenvalues in σ(T ), Ea(T ) is the set of isolated
eigenvalues in σap(T ), while Π(T ) is the set of poles of T and Πa(T ) is the
set of left poles of T (see [19]).

The following definition describes new strong variations of Weyl type the-
orems introduced recently in [18], [19] and [32].

Definition 2.3. An operator T ∈ L(X) is said to satisfy property:

(i) (WE), if σ(T ) = σw(T ) ∪ E(T ) ([18]);
(ii) (

⋃
WEa

), if σap(T ) = σuw(T ) ∪ Ea(T ) ([18]);
(iii) (WΠ), if σ(T ) = σw(T ) ∪Π(T ) ([19]);
(iv) (

⋃
WΠa

), if σap(T ) = σuw(T ) ∪Πa(T ) ([19]);
(v) (

⋃
WΠ) if σap(T ) = σuw(T ) ∪Π(T ) ([19]);

(vi) (
⋃
WE), if σap(T ) = σuw(T ) ∪ E(T ) ([19]);

(vii) (VE), if σ(T ) \ σuw(T ) = E(T ) ([32]);
(viii) (VEa

), if σ(T ) \ σuw(T ) = Ea(T ) ([32]);

As in Barnes [9], in the sequel of this paper we always assume that W is
a proper closed subspace of a Banach space X. Also, we denote

P(X,W )={T ∈ L(X) :T (W )⊆W and for some integer n≥1, Tn(X)⊆W}.
For each T ∈ P(X,W ), TW denote the restriction of T on the subspace
T -invariant W of X. Observe that 0 ∈ σsu(T ) for all T ∈ P(X,W ). Later
we shall see that σsu(T ) and σsu(TW ) may differ only in 0.
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An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) page 5
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Remark 2.4. Observe that an operator F ∈ L(W ) with n-dimensional range
has the form F (w) =

∑n
k=1 fk(w)F (wk), where F (wk) ∈ W and fk ∈ W ∗

(W ∗ denotes the dual space of W ) for k = 1, ..., n. By the Hahn-Banach The-

orem, each fk ∈W ∗ has an extension f̂k ∈ X∗ (X∗ denotes the dual space of

X), then F has an extension F̂ ∈ L(X), given by F̂ (x) =
∑n

k=1 f̂k(x)F (wk)

for all x ∈ X. Also, F̂ ∈ P(X,W ) and F̂W = F .

We end this section by stating the following lemmas which were proved
in [9] and [5], respectively.

Lemma 2.5. [9, Proposition 3] Let T ∈ P(X,W ). Then (λI − T )−1(W ) =
W , for all λ 6= 0. �

Lemma 2.6. [9, Theorem 6(1)] Let T ∈ P(X,W ). Then for all λ 6= 0, we
have

R(λI − T ) is closed in X if and only if R(λI − TW ) is closed in W.

�

Lemma 2.7. [5, Lemma 2.3] If T ∈ L(X) and p = p(T ) < ∞, then the
following statements are equivalent:

(i) There exists n ≥ p+ 1 such that Tn(X) is closed;
(ii) Tn(X) is closed for all n ≥ p.

�

3 Relations between the spectra of T and TW

In this section, we establish several lemmas and theorems that we need in
the sequel.

Lemma 3.1. Let T ∈ L(X). Then

(Tn)−1(R(Tn+m)) = R(Tm) +N(Tn),

for any non-negative integers n, m.

Proof. It is clear. �

Lemma 3.2. Let T ∈ L(X). Then N((λI − T )m) = Tn(N((λI − T )m)) for
all λ 6= 0 and any n,m ∈ N.

Proof. It follows by mathematical induction. �

The following is a generalization of Lemma 2.6.

Gall
ey

 P
roo

f
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Theorem 3.3. Let T ∈ P(X,W ). Then for all λ 6= 0, we have

R((λI − T )m) is closed in X if and only if R((λI − TW )m) is closed in W

for any integer m ≥ 1.

Proof. Observe that if T ∈ P(X,W ), for any integer m ≥ 1, we have

(λI − T )m =
m∑
k=0

(
m

k

)
(−1)kλm−kT k

= λmI −
m∑
k=1

(
m

k

)
(−1)k+1λm−kT k.

= µI − S,

where S =
∑m

k=1

(
m
k

)
(−1)k+1λm−kT k ∈ P(X,W ) and µ = λm 6= 0.

Similarly,

(λI − TW )m =
m∑
k=0

(
m

k

)
(−1)kλm−k(TW )k

= λmI −
m∑
k=1

(
m

k

)
(−1)k+1λm−k(TW )k.

= µI − SW .

From the above equalities and by Lemma 2.6, we obtain

R(µI − S) is closed in X if and only if R(µI − SW ) is closed in W,

or equivalently,

R((λI − T )m) is closed in X if and only if R((λI − TW )m) is closed in W.

�

The next lemma is a generalization of [20, Lemma 2.1], but in the frame-
work dealt by Barnes in [9].

Lemma 3.4. If T ∈ P(X,W ), then for all λ 6= 0:

(i) N((λI − TW )m) = N((λI − T )m), for any m;
(ii) R((λI − TW )m) = R((λI − T )m) ∩W , for any m;

(iii) α(λI − TW ) = α(λI − T );
(iv) p(λI − TW ) = p(λI − T );
(v) β(λI − TW ) = β(λI − T ).
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Proof. The proof is similar to that of [20, Lemma 2.1], making use of Lemma
3.2 in part (i) and Lemma 2.5 in part (ii). �

In the same style as in Lemma 2.6, the following result treats the rela-
tionship between the SVEP of an operator T ∈ P(X,W ) and its restriction
TW .

Lemma 3.5. If T ∈ P(X,W ), then T has SVEP at λ if and only if TW has
SVEP at λ.

Proof. It is easy to see that T (resp. TW ) has the SVEP at λ if and only if
λI−T (resp. λI−TW ) has the SVEP at 0. Thus, we may assume without loss
of generality λ = 0. Since the SVEP is inherited by restrictions on invariant
closed subspaces, if T has the SVEP at 0 then TW has the SVEP at 0.
Reciprocally, suppose that TW has the SVEP at 0 and let us consider an open
disc D0 ⊆ C centered at 0 and an analytic function f : D0 → X such that
(µI−T )f(µ) = 0, for all µ ∈ D0. From this it follows that µkf(µ) = T kf(µ),
for all k ∈ N. Consequently, since T ∈ P(X,W ), there exists n ≥ 1 such that
Tn(X) ⊆W and so f(µ) = µ−nTnf(µ) ∈ Tn(X) ⊆W , for all µ ∈ D0 \ {0}.
On the other hand, if µ = 0 there exists a sequence (λk)

∞
k=1 ⊆ D0, such that

λk 6= 0 and λk → 0. Hence, (f(λk))
∞
k=1 ⊆W and f(λk)→ f(0). Being W a

closed subspace, we conclude that f(0) ∈ W . Therefore f : D0 → W is an
analytic function such that (µI −TW )f(µ) = 0 for every µ ∈ D0. From this,
by the assumption that TW has the SVEP at 0, we deduce that f ≡ 0 on
D0 and therefore T has the SVEP at 0.

�

As in the above lemma, the following result treats spectral relationships
between the operator T ∈ P(X,W ) and its restriction TW for several spectra
derived from the classical Fredholm theory.

Theorem 3.6. If T ∈ P(X,W ) and q(T ) = ∞, or p(T ) = ∞, then the
following equalities are true:

(i) σsu(T ) = σsu(TW );
(ii) σap(T ) = σap(TW );

(iii) σ(T ) = σ(TW );
(iv) σw(T ) = σw(TW );
(v) σuw(T ) = σuw(TW );

(vi) σb(T ) = σb(TW );
(vii) σub(T ) = σub(TW ).

Proof. (i) Observe first that λI − T (resp. λI − TW ) is onto if and only if
β(λI − T ) = 0 (resp. β(λI − TW ) = 0). Now, by Lemma 3.4, β(λI − T ) =
β(λI − TW ) for all λ 6= 0, then σsu(T ) \ {0} = σsu(TW ) \ {0}. To show
the equality σsu(T ) = σsu(TW ) we need only to prove that 0 ∈ σsu(T )
and 0 ∈ σsu(TW ). Since T ∈ P(X,W ), 0 ∈ σsu(T ). We claim that 0 ∈
σsu(TW ). To see this, suppose that 0 /∈ σsu(TW ). Then TW is onto, thus
W = (TW )k(W ) = T k(W ) for k = 0, 1, 2, .... Being T ∈ P(X,W ), there exist
n ≥ 1 such that Tn(X) ⊆ W , then W = Tm(W ) ⊆ Tm(X) ⊆ Tn(X) ⊆ W
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for all m ≥ n. Therefore Tm(X) = Tn(X) = Tm(W ) = W for all m ≥ n,
which implies that q(T ) <∞, contradicting our assumption that q(T ) =∞.
On the other hand, TW onto implies that q(TW ) = 0, and so (TW )∗ has the
SVEP at 0. Hence, 0 /∈ Ξ((TW )∗). From this,

0 /∈ σsu(TW ) ∪Ξ((TW )∗) = σ((TW )∗) = σ(TW ) = σap(TW ) ∪Ξ(TW ).

Consequently 0 /∈ Ξ(TW ), that is, TW has the SVEP at 0. Since T ∈
P(X,W ), by Lemma 3.5, T has the SVEP at 0. But, as it was observed
above, T ∈ P(X,W ) implies that there exists n ≥ 1 such that Tm(X) =

Tn(W ) = W for all m ≥ n. Then, by the isomorphism T k(X)
T k+1(X)

∼= X
N(T k)+T (X)

(∀k ∈ N), given by T kx+T k+1(X)→ x+(N(T k)+T (X)), we conclude that
X = N(Tm) + T (X) for all m ≥ n. Also dis(T ) = inf ∆(T ) ≤ n, because
Tm(X)∩N(T ) = Tn(X)∩N(T ) for all m ≥ n. Thus, T is a quasi-Fredholm
operator and T has the SVEP at 0. By [3, Theorem. 2.7], p(T ) < ∞, con-
tradicting our assumption that p(T ) =∞.

(ii) Note first that for each λ ∈ σap(T )\{0}, λI−T is not bounded below
and λ 6= 0. Therefore, we have the following possibilities: p(λI − T ) > 0
or R(λI − T ) is not closed in X. But, by Lemmas 3.4 and 2.6, these pos-
sibilities are equivalent to p(λI − TW ) > 0 or R(λI − TW ) is not closed in
W . Hence σap(T ) \ {0} = σap(TW ) \ {0}. As in the part (i), for the equality
σap(T ) = σap(TW ), it suffices to show that 0 ∈ σap(T ) and 0 ∈ σap(TW ).
Suppose that 0 /∈ σap(T ) then T is injective. Consequently T has SVEP at
0, then 0 /∈ Ξ(T ). But, since σap(T ) ∪ Ξ(T ) = σ(T ) = σap(T ) ∪ σsu(T ),
we have that 0 /∈ σsu(T ), a contradiction. Therefore 0 ∈ σap(T ). Similarly,
0 /∈ σap(TW ) implies TW injective. Thus, TW has SVEP at 0 and 0 /∈ Ξ(TW ).
Again, since σap(TW )∪Ξ(TW ) = σ(TW ) = σap(TW )∪σsu(TW ), we have that
0 /∈ σsu(TW ). By part (i), 0 /∈ σsu(T ), and as it has been observed above this
is impossible. Then 0 ∈ σap(TW ), so the equality σap(T ) = σap(TW ) holds.

(iii) To show the equality σ(T ) = σ(TW ), observe that σ(T ) = σap(T ) ∪
σsu(T ) (resp. σ(TW ) = σap(TW )∪ σsu(TW )). Hence, combining these equal-
ities with (i) and (ii), we obtain that σ(T ) = σ(TW ).

(iv) Proceeding as in the first part of proofs (i) and (ii), by Lemmas 3.4 and
2.6, we see that σf(T )\{0} = σf(TW )\{0} and σw(T )\{0} = σw(TW )\{0}.
Again, as in the parts (i) and (ii), for the equality σw(T ) = σw(TW ), it
suffices to show that 0 ∈ σw(T ) and 0 ∈ σw(TW ). Note first that, if 0 /∈
σw(T ) then T is a Weyl operator. That is, T is a Fredholm operator with
ind(T ) = 0. Being T ∈ P(X,W ), there exists n ≥ 1 such that Tn(X) ⊆W .
From which we obtain the inclusions

Tn+m(X) ⊆ Tm(W ) ⊆W ⊆ X (∀m ∈ N),
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and so the inequalities

dim
W

Tn+m(X)
≥ dim

W

Tm(W )
= β(TmW ).

Since W
Tn+m(X)

⊆ X
Tn+m(X)

, then

β(Tn+m) = dim
X

Tn+m(X)
≥ dim

W

Tn+m(X)
≥ dim

W

Tm(W )
= β(TmW ).

Thus, β(Tn+m) ≥ β(TmW ) for any m ∈ N. On the other hand, the inclusions
N(TmW ) ⊆ N(Tm) ⊆ N(Tn+m), implies α(TmW ) ≤ α(Tn+m). Then TmW ∈
L(W ) is a Fredholm operator, so TW is a Fredholm operator. Since T ∈ L(X)
is a Weyl operator, by [26, Proposición 26.2], there exists a bijective operator
R ∈ L(X) and a finite rank operator K ∈ L(X) such that T = R + K.
Therefore TW = RW +KW , with RW injective and KW of finite rank. From
this it follows that

ind (TW ) = ind (RW +KW ) = ind (RW ) ≤ 0

Thus, we conclude that TW ∈ L(W ) is a upper semi-Weyl operator. Again,
by [26, Proposición 26.2], there exists a injective operator S ∈ L(W ) and
a finite rank operator F ∈ L(W ) such that TW = S + F . From which
S = TW − F . But, since TW (W ) is closed and F (W ) is a finite dimensional
subspace of W , then S(W ) is closed in W . So S ∈ L(W ) is bounded below,
and hence 0 /∈ σap(S) = σap(TW − F ). By Remark 2.4, F ∈ L(W ) has an

extension F̂ ∈ L(X) such that F̂ ∈ P(X,W ), then T−F̂ ∈ P(X,W ). Conse-

quently, (T − F̂ )W = TW −F . Thus, by part (ii), 0 ∈ σap(T − F̂ ) = σap((T −
F̂ )W ) = σap(TW − F ). That is, 0 ∈ σap(TW − F ) and 0 /∈ σap(TW − F ), a
contradiction. Hence 0 ∈ σw(T ). Now, we show that 0 ∈ σw(TW ). To see
this, suppose that 0 /∈ σw(TW ) = σuw(TW ) ∪ σlw(TW ). From this it follows
that 0 /∈ σuw(TW ). That is, TW ∈ L(W ) is an upper semi-Weyl operator.
But, as it has been observed above this is impossible, then 0 ∈ σw(TW ).
Consequently, we obtain the equality σw(T ) = σw(TW ).

(v) Again, as in the first part of proofs (i) y (ii), by Lemmas 3.4 and 2.6,
we have that σuf(T )\{0} = σuf(TW )\{0} and σuw(T )\{0} = σuw(TW )\{0}.
As in the proof of part (iv), to show the equality σuw(T ) = σuw(TW ) we
need only to prove that 0 ∈ σuw(T ) and 0 ∈ σuw(TW ). By similar represen-
tation arguments for semi-Weyl operators as part (iv), we can prove that
0 ∈ σuw(TW ) and 0 ∈ σuw(T ).

Finally to show parts (vi) and (vii). Observe that σb(T ) = σw(T ) ∪
accσ(T ) and σb(TW ) = σw(TW )∪accσ(TW ). Hence, combining these equal-
ities with (iii) and (iv), we obtain that σb(T ) = σb(TW ). Similarly, combin-
ing the equalities σub(T ) = σuw(T )∪ accσap(T ) and σub(TW ) = σuw(TW )∪
accσap(TW ) with (ii) and (v), σub(T ) = σub(TW ).
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�

Remark 3.7. Recall that for T ∈ L(X), 0 < p(λI − T ) = q(λI − T ) < ∞
precisely when λ is a pole of the resolvent of T (see [26, Prop. 50.2]). Also,
is well known that if λ is a pole of the resolvent of T , then λ ∈ isoσ(T ).
Evidently, if λ ∈ isoσ(T ) then λ ∈ ∂σ(T ). Thus, for T ∈ P(X,W ), if
0 /∈ isoσ(T ) (resp. 0 /∈ ∂σ(T ), 0 ∈ Ξ(T ), 0 ∈ Ξ(T ∗)) then q(T ) = ∞ or
p(T ) = ∞. Therefore, the conclusions of Theorem 3.6 remain true if the
hypothesis q(T ) = ∞ or p(T ) = ∞ is replaced by one of the following
hypothesis: 0 /∈ isoσ(T ), 0 /∈ ∂σ(T ), 0 ∈ Ξ(T ) or 0 ∈ Ξ(T ∗).

We end this section by giving one illustrative example for the behavior of
an operator T and its restriction TW , when T does not satisfy the hypothesis
of Theorem 3.6.

Example 3.8. Let X be a Banach space, and assume that W and Z are
proper closed subspaces of X with X = W ⊕Z. Let T be the projection of X
on W which is zero on Z. Since T is a projection operator, i.e T 2 = T , then
σ(T ) = {0, 1}. Moreover, σsu(T ) = σap(T ) = σw(T ) = σuw(T ) = σb(T ) =
σub(T ) = σ(T ). On the other hand, the operator TW = T |T (X) is the identity
operator on W , so σ(TW ) = {1}. Also, σsu(TW ) = σap(TW ) = σw(TW ) =
σuw(TW ) = σb(TW ) = σub(TW ) = σ(TW ).

4 New Strong Properties for T and TW

In this section we present the main applications of this paper. We show that,
for all T ∈ P(X,W ), the strong variations of Weyl type theorems studied in
section one are preserved from T to its restriction TW and vice-versa. Also,
we give sufficient conditions for which these strong variations of Weyl type
theorems are equivalent for two given operators. Additionally, some appli-
cations of our results to multiplication operators acting on the boundary
variation space BV [0, 1] are given.

We start with the following results which are crucial for our purposes.

Lemma 4.1. Let T ∈ P(X,W ). If 0 /∈ isoσ(T ), then the following equalities
are true:

(i) E(T ) = E(TW );
(ii) Ea(T ) = Ea(TW ).

Proof. (i) Suppose that λ ∈ E(T ), then λ ∈ isoσ(T ) and 0 < α(λI − T ).
From the hypothesis 0 /∈ isoσ(T ), by Remark 3.7, we have the equality
σ(T ) = σ(TW ). Then λ ∈ isoσ(T ) = isoσ(TW ). Additionally, the hypoth-
esis 0 /∈ isoσ(T ) entails that λ 6= 0. Thus, by Lemma 3.4, α(λI − TW ) =
α(λI−T ) > 0. Therefore λ ∈ isoσ(TW ) and α(λI−TW ) > 0, which implies
that λ ∈ E(TW ). Consequently E(T ) ⊆ E(TW ). Reciprocally, if λ ∈ E(TW )
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then λ ∈ isoσ(TW ) and 0 < α(λI − TW ). As above, by the hypothesis
0 /∈ isoσ(T ) and Remark 3.7, it then follows that σ(T ) = σ(TW ) and
λ 6= 0. Then λ ∈ isoσ(TW ) = isoσ(T ). Again, by Lemma 3.4, α(λI − T ) =
α(λI − TW ) > 0. So λ ∈ E(T ), because λ ∈ isoσ(T ) and α(λI − T ) > 0.
Hence, we have the inclusion E(TW ) ⊆ E(T ).

(ii) Suppose that λ ∈ Ea(T ), then λ ∈ isoσap(T ) and 0 < α(λI − T ). In
this case, by the hypothesis 0 /∈ isoσ(T ) and Remark 3.7, σap(T ) = σap(TW )
and hence λ ∈ isoσap(T ) = isoσap(TW ). We claim that λ 6= 0. To see this,
suppose that λ = 0. Then 0 ∈ isoσap(T ), so there exists ε > 0 such that
D(0; ε) ∩ σap(T ) = {0}. Since σ(T ) = σap(T ) ∪ σsu(T ) and 0 /∈ isoσ(T ),
necessarily 0 /∈ isoσsu(T ). Thus 0 ∈ accσsu(T ), because 0 ∈ σsu(T ). Being
0 ∈ accσsu(T ), there exists an infinite sequence (µk)

∞
k=1 ⊆ σsu(T ) such that

µk 6= 0 and µk → 0. This implies that, there exists a non-negative integer m
such that µk ∈ D(0; ε) for all k ≥ m. From this µk /∈ σap(T ), then µkI − T
is bounded below for k ≥ m. Thus µkI −T has SV EP at 0, for any k ≥ m.
Since µkI−T is bounded below we have that µkI−T is semi Fredholm which
by Remark 2.2, implies that 0 ∈ isoσap(µkI−T ). Then µk ∈ isoσap(T ) for all
k ≥ m, a contradiction. Therefore 0 /∈ isoσap(T ), and λ 6= 0. Consequently,
by Lemma 3.4, we have α(λI − TW ) = α(λI − T ) > 0, so λ ∈ Ea(TW ).
This proves the inclusion Ea(T ) ⊆ Ea(TW ). Reciprocally, if λ ∈ Ea(TW )
then λ ∈ isoσap(TW ) and 0 < α(λI −TW ). As above, by the hypothesis 0 /∈
isoσ(T ) and Remark 3.7, it then follows that λ ∈ isoσap(TW ) = isoσap(T )
and λ 6= 0. Once again, by Lemma 3.4, α(λI − T ) = α(λI − TW ) > 0. So
λ ∈ Ea(T ), because λ ∈ isoσap(T ) and α(λI − T ) > 0. Hence, we have the
inclusion Ea(TW ) ⊆ Ea(T ).

�

Lemma 4.2. Let T ∈ P(X,W ). If 0 /∈ isoσ(T ), then the following equalities
are true:

(i) Π(T ) = Π(TW );
(ii) Πa(T ) = Πa(TW ).

Proof. (i) Suppose that λ ∈ Π(T ), then 0 < p(λI−T ) = q(λI−T ) <∞ and
λ ∈ isoσ(T ). Since 0 /∈ isoσ(T ), then λ 6= 0, and so by Lemma 3.4, p(λI −
TW ) = p(λI − T ) and q(λI − TW ) ≤ q(λI − T ). Thus 0 < p(λI − TW ) <∞
and q(λI−TW ) <∞, which implies that 0 < p(λI−TW ) = q(λI−TW ) <∞
by [26, Prop. 50.2]. That is, λ is a pole of TW . In consequence λ ∈ Π(TW ),
and we have the inclusion Π(T ) ⊆ Π(TW ). Reciprocally, λ ∈ Π(TW ) implies
that 0 < p(λI − TW ) = q(λI − TW ) <∞ and λ ∈ isoσ(TW ). By hypothesis
0 /∈ isoσ(T ) and Remark 3.7, we have that σ(T ) = σ(TW ) and hence λ ∈
isoσ(TW ) = isoσ(T ). Thus λ 6= 0. Again, by Lemma 3.4, we obtain the
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equalities:

N(λI − TW ) ∩R((λI − TW )m) = N(λI − TW ) ∩R((λI − T )m) ∩W
= (N(λI − TW ) ∩W ) ∩R((λI − T )m)

= N(λI − TW ) ∩R((λI − T )m)

= N(λI − T ) ∩R((λI − T )m),

for any m. From this, taking r = q(λI − TW ) = p(λI − TW ) then

N(λI − T ) ∩R((λI − T )m) = N(λI − T ) ∩R((λI − T )m+1),

for all m ≥ r. On the other hand, since λ is a left pole of TW then
R((λI −TW )r+1) is closed in W . Moreover, by Lema 2.7, R((λI −TW )m) is
closed in W for all m ≥ r. Thus, by Lemma 3.3, R((λI − T )m) is closed in
X for all m ≥ r. Also, by Lema 3.1, R(λI − T ) +N((λI − T )r+1) is closed
in X. Hence λI − T is a quasi-Fredholm operator. But 0 ∈ isoσ(λI − T ),
because λ ∈ isoσ(T ), then λI − T and (λI − T )∗ have SV EP at 0, from
which both p(λI − T ) and q(λI − T ) are finite ([3, Theorem. 2.7]). Conse-
quently p(λI−T ) = q(λI−T ) <∞, but since 0 < p(λI−T ) = p(λI−TW ),
we obtain that 0 < p(λI −T ) = q(λI −T ) <∞. Thus λ is a pole of T , that
is λ ∈ Π(T ). This proves the inclusion Π(TW ) ⊆ Π(T ).

(ii) Suppose that λ is a left pole of T , then λ ∈ σap(T ), p = p(λI−T ) <∞
and R((λI − T )p+1) is closed in X. We claim that under the hypothesis
0 /∈ isoσ(T ), necessarily λ 6= 0. To see this, suppose that λ = 0. That
is, p = p(T ) < ∞ and R(T p+1) is closed in X. Since p(T ) < ∞, by [26,
Proposition 38.1], Tm(X) ∩ N(T ) = {0} = T p(X) ∩ N(T ) for all m ≥ p.
Thus Tm(X) ∩ N(T ) = T p(X) ∩ N(T ) for all m ≥ p. Also, by Lemma
2.7, R(Tm) is closed for any m ≥ p. On the other hand, by Lemma 3.1,
R(T ) + N(T p+1) is closed in X which implies that T is quasi-Fredholm
and has SV EP at 0, because p(T ) < ∞. Consequently 0 ∈ isoσap(T ) ([3,
Theorem. 2.7]), but as we proved in part (ii) of Lemma 4.1 this is impossible.
Therefore λ 6= 0. Being λ ∈ σap(T ), p = p(λI − T ) < ∞, R((λI − T )p+1)
closed in X and λ 6= 0, by Remark 3.7, Lemma 3.4 and Lemma 3.3, we have
that λ ∈ σap(TW ), p = p(λI − TW ) < ∞ and R((λI − TW )p+1) is closed
in W . That is, λ is a left pole of TW , thus Πa(T ) ⊆ Πa(TW ). Reciprocally,
suppose that λ ∈ σap(TW ), p = p(λI − TW ) < ∞ and R((λI − TW )p+1)
is closed in W . If λ = 0, with analogous arguments as above, we obtain
0 ∈ isoσap(TW ). But since 0 /∈ isoσ(T ), by Remark 3.7, σap(TW ) = σap(T ).
Then 0 ∈ isoσap(TW ) = isoσap(T ) and as it has been proved before this is
impossible. Therefore, λ 6= 0. Again as above, for λ 6= 0, by Remark 3.7,
Lemma 3.4 and Lemma 3.3, it then follows that λ ∈ σap(T ), p = p(λI−T ) <
∞ and R((λI − T )p+1) is closed in X. Thus, Πa(TW ) ⊆ Πa(T ).

�

Now, we are ready to state and prove the main results.
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Theorem 4.3. If T ∈P(X,W ) and 0 /∈ isoσ(T ), then property (i) (resp.,(ii)-
(viii)) in Definition 2.3 holds for T if and only if property (i)(resp.,(ii)-(viii))
in Definition 2.3 holds for TW .

Proof. It follows by Remark 3.7, Lemma 4.1 and Lemma 4.2.
�

Theorem 4.3, may be extended assuming weaker hypotheses as follows.

Theorem 4.4. If T ∈ P(X,W ) verifies one of the following conditions:

(i) 0 /∈ ∂σ(T ),
(ii) 0 ∈ Ξ(T ),

(iii) 0 ∈ Ξ(T ∗),

then property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds for T if and only
if property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds for TW .

Proof. It follows by Theorem 4.3 and Remark 3.7.
�

As a immediate corollary of Theorem 4.4 and Remark 3.7, we obtain
sufficient conditions for which new strong variations of Weyl type Theorems
are equivalent for two given operators.

Corollary 4.5. Suppose that T, S ∈ P(X,W ) and T, S coincide on W . If
ones of the following conditions is valid

(i) 0 /∈ isoσ(T ) ∪ isoσ(S),
(ii) 0 /∈ ∂σ(T ) ∪ ∂σ(S),

(iii) 0 ∈ Ξ(T ) ∩Ξ(S),
(iv) 0 ∈ Ξ(T ∗) ∩Ξ(S∗),

then property (i) (resp.,(ii)-(xiii)) in Definition 2.3 holds for T if and only
if property (i)(resp.,(ii)-(xiii)) in Definition 2.3 holds for S.

�

Recently, Astudillo-Villalba and Ramos-Fernández [7] characterized in-
vertibility, compactness and closedness of the range for multiplication op-
erators acting on the space of functions of bounded variation BV [0, 1]. We
give applications of our results for these class of operators.

Corollary 4.6. Let BV [0, 1] be the space of functions of bounded variation
on [0, 1]. Suppose that u ∈ BV [0, 1] and consider the multiplication operator
induced by u, Mu : BV [0, 1] → BV [0, 1] given by Mu(f) = u · f . If Zu =
{t ∈ [0, 1] : u(t) = 0} is an infinite set and XZu

= {f ∈ BV [0, 1] : f(t) =
0, ∀t ∈ Zu} 6= ∅, then property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds
for Mu if and only if property (i)(resp.,(ii)-(viii)) in Definition 2.3 holds for
its restriction on the subspace XZu

.

Proof. Astudillo-Villalba and Ramos-Fernández proved that [7, Proposition
6], if XZu

= {f ∈ BV [0, 1] : f(t) = 0, ∀t ∈ Zu} 6= ∅, then XZu
is a
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proper closed Mu-invariant subspace of BV [0, 1] such that Mu(BV [0, 1]) ⊂
XZu

. That is, Mu ∈ P(BV [0, 1], XZu
). Therefore, by Theorem 4.3, we can

concluded that property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds for Mu

if and only if property (i)(resp.,(ii)-(viii)) in Definition 2.3 holds for its
restriction on the subspace XZu

.
�

Corollary 4.7. If u, v ∈ BV [0, 1] are symbols such that u 6= v but Zu = Zv,
then property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds for Mu if and only
if property (i)(resp.,(ii)-(viii)) in Definition 2.3 holds for Mv.

Proof. If u, v ∈ BV [0, 1] are symbols such that u 6= v but Zu = Zv, then
XZu

= XZv
. Thus, taking W = XZu

= XZv
. By Corollary 4.5, we have that

property (i) (resp.,(ii)-(viii)) in Definition 2.3 holds for Mu if and only if
property (i)(resp.,(ii)-(viii)) in Definition 2.3 holds for Mv.

�

Remark 4.8. Similar results as Corollaries 4.6 and 4.7, can be established
for composition operators and integral operators by using our results.
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