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Abstract 

 

 Terrestrial oil spills account for the majority of oil spills world wide and present a challenging 

remediation problem owing to the inaccessibility of subsurface petroleum hydrocarbons (PHC). 

Contaminants such as crude oil demonstrate acute and chronic toxicity, necessitating remediation activity 

which is applied in the form of ex situ and in situ treatments. Among in situ remediation techniques, 

nanomaterial-based treatment strategies have been developed over the past decade to take advantage of 

improved subsurface mobility and reaction kinetics due to particle size. Increased use of nanoremediation 

has led to development of coating strategies to improve efficiency of use, and such techniques have raised 

concerns over the release of mobile nanoparticles into the wider environment. 

 This thesis focuses on the development of a nanoparticle coating to facilitate nanoparticle (NP) 

aqueous stability, mobility in porous media, and preferential adsorption to target contaminants in porous 

media. The concept of targeted delivery is borrowed from nano-medicine, where chemotherapeutic drugs 

are encapsulated by nanomaterials which target accumulation in diseased material through active or 

passive means. In this thesis, an amphiphilic polymer coating allows NP binding to a hydrophobic 

interface to localize the NP at the site of contamination and reduce NP migration past contaminated 

zones. The targeted binding, realized through hydrophobic interactions between the nanoparticle coating 

and the crude oil model contaminant, is an example of an active targeting technique. 

 The NP surface was modified by oleic acid and Pluronic deposited in layers to produce an 

externally amphiphilic coating capable of stabilizing the NP in water and interacting with crude oil. By 

modifying the Pluronic coating concentration and Pluronic molecule hydrophobicity, we were able to tune 

the recovery of NP transport through clean porous media and NP binding to oil-impacted porous media. It 

was also found that Pluronic coating concentration influenced the morphology of the NP, producing 

larger aggregates of nanoparticles or individually stabilized nanoparticles. 

 The effect of environmental factors such as oil concentration in porous media, oil type, 

temperature, and pH on nanoparticle transport and binding in flow-through sand packed columns was 

investigated. It was found that higher oil concentrations, longer crude oil molecules, and higher 

temperatures resulted in higher NP binding. pH was found to have no effect on nanoparticle attachment to 

clean or oil-impacted sands within the pH range of 5 – 9. High temperature was used to demonstrate 

complete NP retention in oil-impacted natural aquifer sand packed columns flow-through experiments, 

and solute transport simulation software was used to model NP transport and binding using an advection-

dispersion equation with single-site attachment limited by Langmuirian blocking (1D-USAT). These 

parameters were used to predict the NP attachment profile within sand packed columns and how it might 

change under different conditions such as higher flow rate or oil concentration. 
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 NP attachment to clean sand was found to be in the range of 2 – 13 mg/kg and attachment was 

found to increase in the presence of oily sand in the range of 8 – 32 mg/kg, depending on the nanoparticle 

formulation and environmental factors selected. The attachment rate (kattach) for nanoparticles in oil-

impacted sand exceeded the kattach for nanoparticles in clean sand by approximately one order of 

magnitude (10x). The attachment rates varied on the order of 10-5 - 10-4 s-1 in clean sand, while attachment 

rates varied on the order of 10-4 - 10-3 s-1 in oily sand. Detachment rates (kdetach) in clean sand flow-

through were determined to be approximately equal based on 1D-USAT modelling of experimental data – 

approximately 10-6 s-1. 

 The NP coating strategy was applied to multiple NP core materials, including iron oxide, silver, 

and cobalt ferrite, all produced using different synthetic methods. The coated nanoparticles all 

demonstrated preferential binding to crude oil-impacted sands in binding batch tests, as well as 

breakthrough in clean sand transport experiments and retention in oil-impacted sand transport 

experiments. This showed that the NP coating could be applied to various types of NPs and conferred 

targeted delivery behaviour on each. 

 Finally, potential application of targeted NP delivery to oil-impacted porous media was explored 

through the investigation of X-Ray computed tomography (X-Ray CT) as a sensing technique for 

detecting NP bound to oil-impacted sand. The oil-impacted sand exposed to Pluronic-coated NPs 

generated a CT signal sufficient to differentiate it from oil-impacted sand which was not exposed to NP. 

Conversely, clean sand exposed to Pluronic-coated NPs did not generate a substantial CT signal. This 

indicates that targeted NP binding to oil-impacted porous media may have use as a contrast enhancer for 

detecting contaminated zones at sites of concern. 

 This thesis summarizes the development process of a nanoparticle coating facilitating transport 

through porous media and targeted binding to crude oil emplaced therein. The Pluronic-coated 

nanoparticles demonstrated preferential attachment to oil-impacted sediments, transport through clean 

sand packed columns, and retention in oil-impacted sand packed columns. This nanoparticle coating-

strategy shows promise as a versatile technique for enhancing nanoparticle accumulation in contaminated 

subsurface areas which may enable contaminant detection and enhanced remediation, as well as reduce 

uncertain nanoparticle environmental fate in future applications. 
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Chapter 1 

Introduction 

1.1 Overview 

 Terrestrial contamination of soils by petroleum hydrocarbons (PHC) is a global environmental 

issue which is severe and widespread, resulting from petroleum industry activities such as exploration, 

extraction, refining, and transportation. PHC contamination, including crude oil, is an issue of 

environmental concern due to the acute and chronic toxic effects of such compounds, as well as their 

environmental persistence, necessitating human intervention for the cleanup of such sites. Remediation of 

PHC-impacted soils is a challenging problem, however, because of the nature of PHC contaminants, how 

they interact with porous media, and their relative inaccessibility in subsurface environments. 

 Traditional remediation of PHC-impacted soil makes use of primarily ex-situ treatments, 

requiring the contaminated material to be excavated which imposes large costs and is ultimately 

environmentally disruptive and unsustainable. In response, more cost-efficient, less disruptive 

technologies have been introduced which do not require excavation and are known as in-situ treatments. 

Such treatments include bioremediation, chemical oxidation, thermal desorption, and injection of reactive 

nanoparticles.  

Nanoremediation, mostly consisting of nano zero valent iron (nZVI) for the treatment of 

chlorinated hydrocarbons, makes use of nanoscale material properties such as small particle diameter to 

avoid filtration in porous media and high surface area to allow fast reaction kinetics toward contaminants. 

One of the greatest challenges facing field application of nanoscale treatment agents is subsurface 

mobility of the particles which is limited by aggregation and gravimetric settling, as well as adsorption to 

porous media material. Consequently, nanoparticle stabilization through surface functionalization with 

polymeric materials has been the focus of significant research over the past two decades. This has led to 

significant improvements in nanoparticle mobility, but also introduced concerns regarding the unknown 

fate and environmental toxicity of released nanoparticles. Furthermore, PHC-impacted porous media 

typically exhibits heterogenous contaminant distribution and relying on a homogenously distributed 

nanomaterial from point-source injection may result in inefficient use of the treatment agent.  

This thesis explores the use of polymeric nanoparticle coatings which facilitate nanoparticle 

stability in aqueous suspension, mobility through porous media, and preferential adsorption to PHC 

molecules distributed in a porous medium. This targeted binding approach seeks to mitigate concerns 

regarding unknown nanoparticle fate and inefficient use of treatment agent by accumulating injected 

nanoparticles at the subsurface site of contamination. By promoting adsorptive interactions between the 
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nanoparticle and the contaminant-water interface, particles can be concentrated at the contaminant 

interface, enabling more efficient treatment, and fewer particles may mobilize beyond the encountered 

zones of PHC-impacted porous media, reducing the amount of nanoparticles distributed to the wider 

environment. 

Targeted nanoparticle binding to crude oil, the selected PHC contaminant of concern, was 

achieved through a two-step functionalization process whereby the nanoparticle is first coated with oleic 

acid, which attaches directly to the surface, then the hydrophobic nanoparticle is coated with a blend of 

amphiphilic Pluronic block co-polymers to provide aqueous stability and favourable interactions with the 

crude oil interface. The mobility and binding performance of the coated particles was assessed through 

binding batch studies as well as packed column flowthrough studies where the particles were exposed to 

crude oil-impacted or unmodified natural sediment acting as a model porous medium. Various factors 

influencing nanoparticle mobility and binding were investigated, such as Pluronic molecular structure, 

Pluronic coating concentration, crude oil type, crude oil concentration, temperature, and pH. A solute 

transport simulation, 1D-USAT, was implemented to extract kinetic parameters defining nanoparticle 

transport in clean vs. oil-impacted porous media from experimental data. Use of Pluronic-coated 

nanoparticles with targeted binding toward crude oil-impacted porous media as contrast agent for 

subsurface detection and sensing via X-Ray computed tomography (CT) was explored as a potential 

application for this technology. Finally, the nanoparticle coatings were applied to a variety of nanoparticle 

core materials, all produced through different synthetic methods to evaluate the versatility of this coating 

strategy and its applicability to various nanomaterials which may be employed in a subsurface 

environment. Some pathways of interesting future work to explore include investigating the role that flow 

rate and temperature play in a continuous-flow transport and binding environment, investigating 

nanoparticle transport and binding in heterogeneously impacted higher dimension experimental 

environments, applying this nanoparticle coating technology to commonly used nanoremediation agents 

such as nZVI, and further investigating the role that targeted binding nanoparticles can play in enhancing 

subsurface sensing and detection technologies such as spectral induced polarization (SIP) and X-Ray CT. 

1.2 Research Objectives 

 The overall objective of this research project was to develop a nanoparticle coating which would 

enable targeted binding behaviour of a nanoparticle to crude oil in subsurface porous media 

environments. The colloid transport and targeted binding behaviour of coated nanoparticles was first 

established. The influence of nanoparticle coating formulation as well as environmental factors on 

nanoparticle transport and binding were then investigated and used to demonstrate nanoparticle transport 

and binding in model soil systems. A colloid transport model was used to describe the transport behaviour 

of the coated nanoparticles in oil-impacted and clean systems. Finally, the coating was applied to various 
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nanoparticles produced using different synthetic methods, demonstrating the versatile application of the 

developed coating. 

 The specific objectives of this study are as follows: 

1. Demonstrate the ability of Pluronic-coated nanoparticles to bind to crude-oil impacted porous 

media 

• Investigate nanoparticle preferential attachment to crude oil-impacted sediments in binding 

batch tests by assessing metals concentration in aqueous suspension 

• Determine the effect of coating formulation on binding 

• Confirm ICP aqueous-phase binding with solid-phase analysis  

 

2. Demonstrate the ability of Pluronic-coated nanoparticles to transport through real aquifer porous 

media material 

• Investigate nanoparticle transport in natural sand packed columns 

• Determine the effect of nanoparticle coating formulation on morphology and transport 

behaviour 

• Demonstrate nanoparticle transport and preferential binding in an oil-impacted packed 

column 

 

3. Determine the effect of key coating and environmental parameters on nanoparticle binding  

• Determine the effect of coating concentration on binding behaviour 

• Determine how oil type, oil concentration, temperature, and pH influence binding in batch 

conditions 

• Demonstrate nanoparticle binding and transport under favourable conditions in packed 

columns containing natural aquifer porous media 

• Describe nanoparticle transport behaviour using a modified advection dispersion equation; 

use generated parameters to predict transport behaviour under various conditions 

 

4. Demonstrate applicability and performance of coating when applied to different types of 

nanoparticles 

• Develop coating strategy suitable for various nanoparticles produced using different 

syntheses 

• Demonstrate nanoparticle transport and binding for all coated materials in sand packed 

columns 

 

1.3 Thesis Outline 

 This thesis is comprised of seven chapters; an introduction, a literature review, four experimental 

research-based chapters, and a final chapter discussing conclusions and recommendations for future work. 

This chapter, the first, introduces the problems addressed herein, the hypothesis for this work, and the 

specific research objectives pursued to test this hypothesis. 
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 Chapter 2 reviews the current state-of-the-art in the field of nanoremediation, including 

nanoparticle treatment agents, colloid filtration theory (CFT), nanoparticle coating materials, and previous 

research on targeted delivery of nanoremediation agents to subsurface environments. A brief summary of 

findings and directions for future research are presented. 

 Chapter 3 describes the synthesis of iron oxide nanoparticles and subsequent functionalization 

with a Pluronic coating to endow the particles with aqueous stability and adsorptive interaction with crude 

oil-impacted porous media. The nanoparticles display preferential binding to oil-impacted sand in binding 

batch tests and are used as a contrast agent for an X-Ray CT scan, where oil-impacted sands exposed to 

nanoparticles could be distinguished from clean sands exposed to nanoparticles by virtue of a higher 

concentration of nanoparticles retained in the oil-impacted sand. 

 Chapter 4 describes nanoparticle application in transport experiments and investigates how the 

polymer coating formulation influences mobility and retention in packed sand columns. Different 

Pluronic molecules and coating concentrations were found to alter transport behaviour, and transport & 

binding in a column packed with crude oil-impacted natural sediment was demonstrated using two 

nanoparticle coating formulations. This work indicates that coating formulation may be tuned to target 

specific degrees of mobility or binding in porous media. 

 Chapter 5 investigates the effect of coating properties and porous medium environmental factors 

on nanoparticle binding to crude oil-impacted porous media. The factors investigated include nanoparticle 

coating concentration, crude oil type, crude oil concentration, ambient temperature, and pH. These 

parameters, particularly temperature, were used to demonstrate significant nanoparticle attachment to oil-

impacted natural sediment in packed columns. These flowthrough experiments were used in conjunction 

with a solute transport simulation, 1D-USAT, to extract kinetic parameters describing nanoparticle 

transport and attachment. 

 Chapter 6 demonstrates the application of the nanoparticle coating strategy to different types of 

nanoparticles produced using various synthetic methods. Binding behaviour was assessed using binding 

batch experiments at multiple temperatures as well as flow-through transport and binding experiments in 

columns packed with natural sediments. A solute transport simulation, 1D-USAT, was used to extract 

kinetic parameters describing nanoparticle transport and attachment which match closely with batch 

experiment results. Binding and transport behaviour was attributed to the functional coating and targeted 

binding was achieved using the same coating on different nanoparticles. 

 Chapter 7 summarizes the findings of the research discussed in chapters 3 to 6 and draws 

conclusions based on this work. Overall, it was found that a nanoparticle functional coating designed to 

facilitate mobility through clean porous media and targeted attachment to oil-impacted porous media 

under flow-through conditions was successfully developed. Furthermore, the coating could be applied to 
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multiple types of nanoparticles and tuned to improve mobility or binding by altering the polymer coating 

formulation. Important next research steps are highlighted, such as examining the effect of flow rate, 

temperature, and oil concentration in nanoparticle transport and binding experiments with continuous 

flow, applying this nanoparticle coating to common nanoremediation agents such as nZVI, and exploring 

application of targeted nanoparticle binding in subsurface sensing technologies such as X-Ray CT and 

SIP. 

  



6 

 

Chapter 2 

Literature Review 

 

2.1 Heavy Hydrocarbon Impacted Soils & Remediation Technologies 

 The petroleum industry is the largest and one of the most important industries in the modern 

world. Global dependence on petroleum has fueled vast economic development and technological 

advancement, supporting society as we currently know it. While the benefits of petroleum technology are 

extensive, this powerful energy source is not without its downsides. Contamination of water and land by 

Petroleum Hydrocarbons (PHCs) is a major source of environmental concern. While major ocean-based 

oil spills experience the most press coverage, terrestrial oil spills actually make up the majority of global 

oil spills1. PHC contamination during exploration, extraction, refining, and transportation have resulted in 

over 3,000 officially registered contaminated soil sites in Canada alone2. 

 Heavy hydrocarbon contamination, such as spills of crude oil, are of particular concern since 

heavy crude often contains a complex mixture of organic compounds including long chain alkanes, 

aromatics, and polycyclic aromatic hydrocarbons (PAHs) which may have chronic or acute toxic effects 

on a variety of organisms3–5. Furthermore, the penetration of crude oil into sediments affects its water and 

air transport properties, impacting biological processes of microbes and plants3,5. Due to the chemical 

nature of heavy hydrocarbons and their interaction with porous media, the challenge of PHC-impacted 

soil remediation is a complex and difficult problem. Penetration of PHCs into sediments and adsorption to 

soil matter make accessing the pollutant non-trivial, and further complicates remediation techniques.  

 PHC contaminated soil remediation strategies can be broadly divided into two categories, in situ 

and ex situ. In situ technology performs remediation work by applying the treatment to the contaminated 

soil site without disrupting the surrounding environment while ex situ treatment excavates contaminated 

soil to enable improved access to contaminants and easier treatment application. These categories can 

each be further divided into thermal, chemical, physical and biological treatments as shown in Table 1. 

Table 1. Soil remediation in situ and ex situ technologies 

Category In situ Ex situ 

Thermal Thermal desorption 

Microwave assisted steam 

Thermal desorption 

Incineration 

Chemical Oxidation Oxidation 

Physical Capping 

Soil washing 

Excavation and disposal 

Soil washing 

Biological Biostimulation 

Bioaugmentation 

Land farming 
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 The most commonly employed remediation strategies are ex situ excavation and disposal or 

excavation and incineration due to the simplicity and minimization of uncertainty that these techniques 

provide6,7. While easily controllable and effective, excavation techniques are costly, disruptive to the 

environment, and unsustainable due to disposal of treated sediments in landfills8. Similar ex situ 

techniques such as chemical oxidation and soil washing pose additional disadvantages due to higher 

treatment costs and increased risk of residual contamination. Even ex situ land farming, which saves 

operational costs due to its low energy and additive inputs, still has to address the initial cost of 

excavation and risk associated with transport of contaminated sediments. In contrast, in situ remediation 

techniques offer the possibility of a less expensive, more sustainable solution8. 

 While in situ techniques are promising in terms of cost, environmental impact, and long-term 

sustainability, they are not without disadvantages. The most widely employed in situ remediation 

technique is bioremediation, which is the use of naturally occurring microbes to metabolize the 

contaminants. This technique has minimal environmental impact but limited applicability to heavy oils 

due to the presence of biorefractory compounds. Furthermore, bioremediation is a slow process and 

somewhat temperature dependent making it best suited to warmer climates9. In situ chemical oxidation 

(ISCO) is quick and effective with less selectivity compared to bioremediation, but is very sensitive to the 

geochemistry of the application area and can require multiple injections of consumable chemicals, 

increasing its cost and limiting its sustainability9. Finally, in situ thermal desorption strategies employ 

steam generation to desorb and vaporize oils from sediments, enabling them to be pumped out using 

vapour extraction techniques. Traditional thermal desorption techniques can be prohibitively expensive 

due to poor heat transfer from outside the sediment to the site of the contaminant and the large area to 

which heat must be applied9. More recent research into microwave (MW) assisted steam generation and 

radio frequency (RF) soil heating have revealed a much more energy efficient heating process due to 

uniform heating of the mass rather than radiative heating layer-by-layer10. These techniques are limited by 

poor penetration depth of radiation at higher frequencies and the moisture content requirement of soil in 

order for heating to occur. 

 Each of the techniques discussed has the potential to be improved through the application of 

various amendments, for example, stimulation of microbes by adding nutrients in the case of 

bioremediation. ISCO techniques such as persulfate oxidation can be ‘activated’ by the presence of a 

Fenton catalyst such as Fe2+ or a metal oxide9,11. In the case of microwave/RF assisted thermal desorption, 

the addition of an amendment that improves EM radiation absorption, localized heating, and generation of 

oxidative species has the potential to improve the energy efficiency of treatment as well as total treatment 
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time12. In each of these cases, delivery of nanoparticles to contaminated sites has the potential to enhance 

in situ remediation. As well as acting as amendments for existing remediation techniques, nanoparticle 

delivery has been investigated as its own remediation strategy with promising results in recent years. 

2.2 Nanoparticles in Soil Remediation 

 The most commonly applied nanomaterial for soil remediation is Zero Valent Iron (ZVI). It is a 

redox active material capable of degrading a wide range of organic compounds as well as immobilizing 

toxic heavy metals13. ZVI got its start applied as a bulk material in permeable reactive barrier technology 

to control and contain contaminants which would otherwise be dispersed by groundwater14–16. Nano Zero 

Valent Iron is an extension of this technology tailored more towards targeted remediation of source zones 

rather than controlling and containing contamination. The more reactive, mobile nZVI particles may be 

injected at the site of contamination for express reaction with the contaminant of concern13.  

2.2.1 Contaminants Addressed by nZVI 

The principal contaminants addressed by nZVI are chlorinated hydrocarbons and toxic heavy 

metals. nZVI reacts with chlorinated hydrocarbons via a reductive pathway (1) - (3). 

 Fe0 → Fe2+ + 2e- 
(1) 

 H2O → H+ + OH- 
(2) 

 R-Cl + H+ + 2e- → R-H + Cl- 
(3) 

 Where R represents a generic hydrocarbon. Fast reductive dichlorination with standard redox 

potential Eh = -0.44 V represents a niche use-case in which nZVI has found significant application, 

however, by-products from the dechlorination reaction such as acetylene, ethene, and ethane are not 

efficient oxidants for nZVI and are not fully degraded17. For example, in the case of trichloroethylene 

(TCE), a common example chlorinated hydrocarbon (4). 

 C2HCl3 + 3Fe0 + 3H+ → C2H4 + 3Fe2+ + 3Cl- 
(4) 

To achieve complete mineralization of contaminants such as TCE, nZVI may be employed as a 

source of Fe2+ ions and act as an activator of persulfate or peroxide18–20. In particular, persulfate has 

enjoyed significant popularity as an oxidant due to its high oxidation potential compared to other oxidants 

(Eh = 2.01 V) which can be further enhanced through activation to produce sulfate free radical species (Eh 

= 2.6 V). nZVI activation of persulfate for the degradation of TCE follows reaction scheme (5) & (6)19,21. 

 Fe2+ + S2O8
2- → Fe3+ + SO4

2- + SO4
-· 

(5) 
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 6SO4
-· + C2HCl3 + 4H2O → 2CO2 + 9H+ + 3Cl- + 6SO4

2- (6) 

Consequently, nZVI may be used in conjunction with persulfate to achieve complete 

mineralization of a wide range of hydrocarbon contaminants22–24. A major drawback of the nZVI-

activated persulfate system is surface passivation due to buildup of iron sulfate on the surface of the 

particles. Recent research has found that passivation may be slowed by adding chelating agents such as 

EDTA to the reaction system24. 

In the case of inorganic contaminants such as heavy metals, removal is dependent on both 

reduction by nZVI and adsorption to the iron oxide or iron oxyhydroxide shell that forms around the 

surface of the nZVI particle25. Various reactions between produced iron ions, the zero valent iron, 

oxygen, and water lead to the generation of these oxide and oxyhydroxide shells (7) - (11)19,25. 

 Fe3+ + 3OH- → Fe(OH)3 
(7) 

 Fe(OH)3 → FeOOH + H2O 
(8) 

 2Fe0 + O2 →2FeO 
(9) 

 6FeO + O2 → 2Fe3O4 
(10) 

 4Fe3O4 + O2 → 6Fe2O3 
(11) 

These oxidation reactions occur immediately in oxygen rich environments, often during nZVI 

synthesis, meaning typical nZVI particles always exhibit an oxide shell25,26. Furthermore, this process 

limits the overall particle size of nZVI. The typical oxide layer thickness is ~3 nm on all nZVI particles 

and particles smaller than 8 nm in diameter cannot support an iron oxide shell – in this case the particle is 

fully oxidized and no zero valent iron is present25. nZVI-mediated metals removal proceeds through a 

reduction and adsorption mechanism if the redox potential of the metal cation in question is more positive 

than the standard redox potential of nZVI (Eh = -0.44 V). If the redox potential of the metal cation is more 

negative than this value, removal proceeds through an adsorption only mechanism. The standard 

reduction potential of common metal cation contaminants is provided in Table 2. 

Table 2. Metals removal by nZVI reduction 

Metal 

Contaminant 

Reduction Eh
0 (V) Removal Mechanism 

Chromium Cr(VI)
2O7

2- / Cr3+ 1.33 Reduction, Adsorption,  Coprecipitation 

Mercury Hg2+ / Hg0 0.85 Reduction, Adsorption 
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Selenium Se(VI)O4
2- / Se(IV)O3

2- 0.82 Reduction, Adsorption 

Arsenic As(V)O4
3- / As(III)O3

3- 0.57 Reduction, Adsorption, Complexation, 

Oxidation 

Uranium U(VI)O2
2+ / U(IV)O2 0.41 Reduction, Adsorption 

Copper Cu2+ / Cu0 0.34 Reduction, Adsorption 

Lead Pb2+ / Pb0 -0.13 Reduction, Adsorption 

Nickel Ni2+ / Ni0 -0.25 Reduction, Adsorption 

Cobalt Co2+ / Co0 -0.28 Reduction, Adsorption, Coprecipitation 

Cadmium Cd2+ / Cd0 -0.40 Adsorption, Coprecipitation 

Zinc Zn2+ / Zn0 -0.76 Adsorption, Coprecipitation 

Barium Ba2+ / Ba0 -2.91 Adsorption, Coprecipitation 

 

 The corresponding removal mechanisms have some exceptions. While most metals capable of 

being reduced by nZVI end up as zero valent metals adsorbed on the surface of the iron particle, multi 

valent ions such as selenium, chromium, and arsenic experience varied an more complex pathways. 

Selenium is removed through a step-by-step reduction where Se(VI) is reduced to Se(IV) which can adsorb 

onto the nZVI surface. From here, the selenium may stay as selenite or be further reduced to Se0 27. In the 

case of chromium, Cr(VI) is first reduced to Cr(III) which adsorbs to the nZVI surface and eventually 

precipitates with hydroxyl groups to form Cr2O3 or coprecipitates with Fe2+ to form Cr2FeO4 
28. Arsenic 

presents a complicated removal mechanism whereby reduced As(III) diffuses through the iron 

oxide/oxyhydroxide shell of the particle and adsorbs directly to the nZVI surface through an inner-sphere 

complexation route. This As(III) may be simultaneously reduced by the Fe0 core and oxidized by reacting 

with the oxide shell, eventually depositing as As0 between the nZVI core and oxide shell29. Metals unable 

to be reduced by nZVI are typically precipitated or co-precipitated as metal hydroxides on the surface of 

the nZVI, increasing their removal capacity beyond what would be predicted for ion adsorption alone. 

 

2.2.2 Recent Advances: Catalyst Improvement 

 Nano-scale engineering of nZVI particles is primarily focused on improving two attributes of the 

material; 1) improving reaction kinetics and treatment efficiency, and 2) improving dispersibility in 

porous media environments. Improving the treatment efficiency of nZVI is typically done by engineering 

the surface of the material to either incorporate sorbents or chelating agents to draw contaminants close to 

the reaction or sorption site, or by functionalizing the particle with conducting materials which catalyze 

reduction. Treatment efficiency can also be improved through protecting the nZVI surface from 

passivation in the activated persulfate reaction by using chelating agents.  
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 Toward improving the treatment efficiency of nZVI nanoparticles, recent work by Gu et al. 

incorporates several modifications to improve different aspects of the reduction mechanism, using a 

reduced graphene oxide (rGO) sheet as a platform to support polydopamine functionalized nZVI 

particles30,31. The polydopamine blocks oxygen access to the nZVI particles and chelates Fe2+ ions, 

slowing passivation by iron sulfate while the rGO sheet prevents nZVI aggregation, adsorbs polyaromatic 

contaminants through π-π interactions, and facilitates electron transfer from the nZVI to adsorbed 

contaminants30,31. In a similar manner, compositing nZVI with adsorptive materials such as activated 

carbon, graphene, or biochar is a common strategy to achieve faster contaminant removal by making use 

of the support material to adsorb the contaminant quickly, then rely on the nZVI component to reduce and 

detoxify it over the long term32–37. Incorporating catalytic metals has long been understood to enhance 

reductive dechlorination by changing the mechanism to dehalogenation via hydrogen reduction rather 

than direct electron transfer38. These bimetallic particles typically use Pd or Ni as the catalyst to improve 

selectivity and rate of reduction38–40, however the economics of particle production using these more 

expensive materials prohibits large scale implementation of this technology. Recently, a great deal of 

research attention has been devoted to sulfidized nZVI (S-nZVI), which produces enhanced reactivity and 

selectivity for reductive dechlorination and metal ion removal using lower cost sulfur instead of expensive 

metallic elements41–44. The dechlorination mechanism for S-nZVI particles differs from bimetallic 

catalysts in that it has been identified as electron transfer at FeS surface sites rather than hydrogen 

reduction45, however the full mechanism has not yet been elucidated. Other recent work by Bhattacharjee 

and Ghoshal has found that S-nZVI can reach similar degradation efficiencies at Pd-nZVI by controlling 

the structure of FeS deposition on the particles through co-precipitation during synthesis, offering a 

particle with highly efficient reductive dechlorination at costs 70% lower than Pd-nZVI46. S-nZVI 

synthesis and application is a rapidly developing research area with highly promising results for 

improving nZVI remediation technology in all soil remediation areas. 

2.2.3 Recent Advances: nZVI Dispersibility 

Improvement of nZVI dispersibility addresses one of the primary drawbacks of nZVI for soil 

remediation – emplacement of the remediation agent at the treatment site. Uncoated nZVI is extremely 

prone to aggregation and filtration within the porous medium, leading to transport distances of less than 

10 cm under typical conditions47,48. To address this problem, polymeric coating molecules are used to 

reduce aggregation, enhance aqueous stability, and improve the mobility of the particles. Commonly 

applied polymeric coatings include carboxymethyl cellulose (CMC)36,49–52, polyacrylic acid (PAA)50,53, 

polystyrene sulfonate54, and xanthan gum50,55,56 which rely on electrostatic and steric stabilization 

mechanisms to prevent nanoparticle aggregation and prevent attachment to porous media material. 
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Coating of nZVI particles is performed through favourable intermolecular interactions between the iron 

oxide/oxyhydroxide surface of the nZVI particle and carboxylate groups present in the polymeric coating. 

The carboxylate group performs a monodentate complexation of surface iron atoms which anchors the 

polymer in place52 with an interaction energy of 770 – 788 kcal/mol, producing extremely stable 

attachments57. 

Other mobility enhancement strategies involve nZVI particles supported on mobile support 

materials, such as mesoporous silica58–60 or carbonaceous particles36,37,61. These strategies rely on the 

support material to immobilize the nZVI particles, preventing them from aggregating and preventing 

mobility loss due to sedimentation. The reduced aggregation also has the side effect of maintaining nZVI 

reductive activity for longer periods of time as the surface area is maintained due to limited aggregation58. 

In a similar vein, silica coating strategies can prevent nZVI aggregation while allowing smaller mobile 

particle sizes and maintaining contaminant access to the reductive iron surface62.  

A major concern in the world of soil remediation is the fate of engineered nanomaterials released 

to the environment. Many reviews have pointed out the environmental risks associated with uncontrolled 

nanoparticle release, a concern which grows in relevance as the mobility of nanoparticles is enhanced by 

using composites and coatings63–66. Nanoparticles functionalized to exhibit controlled mobility are 

therefore interesting and relevant for addressing this challenge. One approach towards controlled mobility 

is the application of nanoparticle coatings with targeted interactions toward contaminants of interest. This 

concept has been demonstrated in various ways using nanoparticles with aliphatic coatings to provide 

aqueous stability and favourable interaction with contaminants67–70. nZVI particular examples have 

demonstrated this capability by using a triblock copolymer in which each block provides a specific 

functionality – a carboxylate-rich block facilitates attachment to the nZVI particle, a hydrophilic block 

enables aqueous stability, and a hydrophobic block enables interaction with a contaminant of concern68. 

Thus far, contaminants including trichloroethylene68, dodecane54, and crude oil71, as well as model 

aliphatic compounds such as octadecylichlorosilane69 have been successfully targeted using functional 

surfactant coatings. Such functional coatings limit nanoparticle fate by immobilizing nanoparticles at the 

site of contamination and this has potential to enhance cost-effectiveness and efficiency of in situ soil 

remediation, as well as enable subsurface detection of contaminants by acting as a contrast agent. Other 

approaches to controlling nanoparticle fate involve time-mediated mobility of particles where the coating 

preventing nZVI aggregation dissolves or wears off, rendering the particles immobile shortly after 

application. This has been achieved recently by using nZVI coated with Mg(OH)2 which dissolves in 

water as it transports through porous media72. 
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2.3 Other Nanomaterials for Adsorptive Contaminant Removal 

 Aside from nZVI, there are a variety of inorganic nanoparticles which facilitate toxic metals 

removal in subsurface environment through adsorption, inclusion, and precipitation. The major 

contaminants of concern in this context include toxic heavy metal ions, such as Cd2+, Hg2+, and Pb2+, and 

toxic oxyanions or metalloids such as selenate (SeO4
2-) and arsenate (AsO4

3-). The adsorptive properties 

of mineral materials toward these toxic metal species has long been understood, but application in 

subsurface environments has remained a challenge due to their limited mobility through porous media and 

tendency to aggregate. Synthesis and stabilization of mineral nanoparticles overcomes this barrier by 

addressing the mobility and aggregation issues associated with bulk scale materials. Use of nanoscale 

materials also has the significant benefit of providing more surface area and sorption sites, thereby 

increasing metals removal efficiency per mass of sorbent. 

 Nanoparticle stabilization is achieved through the use of polymeric coatings which impart 

electrosteric or steric stabilization. Most of the nanomaterials used in this application are iron based, so 

the attachment mechanism anchoring the coating to the particles is typically monodentate or bidentate 

complexation with surface ions, similar to the coating methods used for nZVI. To this end, most of the 

coating materials are rich in carboxylate functional groups – prominent examples include carboxymethyl 

cellulose (CMC) and polyacrylic acid (PAA). Commonly applied nanoparticle adsorptive agents include 

FeS, iron oxides (Fe2O3, Fe3O4, and FeOOH), Fe3(PO4)2, and metal ferrites (MnFe2O4, Fe2O3/MnO2, 

Fe2AlO4, etc.).  

 Sorbent selection is a contaminant-specific concern. In the case of metal ion contamination, 

inorganic nanoparticles make excellent sorbent materials, but in the case of soil contamination by organic 

compounds such as Petroleum Hydrocarbons (PHCs), different sorbent materials are required. In 

particular, biochar nanocomposites have proven to be versatile platforms for incorporating a variety of 

modifications which increase the material’s surface area or porosity, change its surface charge, or provide 

functional groups which promote specific interactions. 

2.3.1 Iron Sulfide Nanoparticles  

 Iron sulfide is an effective sorbent for most divalent cations which are removed through 

adsorption and coprecipitation, but is especially effective at removing Hg2+ which can interact with the 

sulfide surface and oxidized areas of the nanoparticle through ion exchange, precipitation, and surface 

complexation73,74. Mercury’s efficient adsorption to iron sulfide is in part to do with its complimentary 

Lewis acid-base interaction whereby Hg2+ can form a strong bond with sulfur75. Iron sulfide can exist in 

two forms, pyrite (FeS2) and mackinawite (FeS). The latter has a disordered tetragonal crystal structure 

which affords it a high specific surface area which contributes to its superior Hg2+ affinity. Hg2+ removal 
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via precipitation (12), ion exchange (13), and adsorption (14) is shown briefly in the following reaction 

schemes: 

 FeS + Hg2+ → HgS + Fe2+ 
(12) 

 FeS + xHg2+ → Fe(1-x)HgxS + xFe2+ (x < 1) 
(13) 

 FeS + Hg2+ → Fe-S-Hg2+ 
(14) 

Where precipitation is preceded by partial dissolution of FeS. Effective application of FeS 

nanoparticles relies on its ability to be transported to the contaminated zone and maintain its high sorption 

surface area, both problems which are solved through the application of stabilizer coatings such as 

Carboxymethyl Cellulose (CMC)73,75, starch76, and chitosan77. Adding such coatings during nanoparticle 

synthesis greatly improves the particles’ Hg2+ sorption capacity through two methods – first, the 

electrosteric interactions of the coating prevent aggregation and preserve FeS surface area, and second, 

the presence of CMC or starch during synthesis disrupts crystallization, causing a higher surface area, 

disordered FeS to precipitate73,76. 

2.3.2 Iron Oxide and Metal Ferrite Nanoparticles 

 Iron oxides demonstrate high scavenging affinity for heavy metal ions due to their large specific 

surface area and abundant surface hydroxyl groups78,79. In particular, iron oxides have a niche application 

in arsenic removal from groundwater due to their low cost and selectivity toward arsenic, a common and 

highly toxic contaminant. The adsorption kinetics and capacities of iron-based oxides may be improved 

by the incorporation of rare earth ions into the iron oxide structure, producing metal ferrites80. These 

metal ferrites exhibit improved adsorption due to the embedded rare earth ion breaking up the iron oxide 

crystal structure, forcing greater hydroxylation of iron and rare earth atoms which then serve as sites for 

arsenate complexation (15)80,81.  

 Fe-OH + H3AsO4 → Fe-O-AsO(OH)2 + H2O 
(15) 

Cerium82,83 and manganese80,84 are commonly applied as rare earth elements in such metal 

ferrites, and studies investigating their transport properties in porous media have confirmed increased 

penetration into small-scale porosity zones when modified by stabilizers such as starch85. Further 

enhancement to arsenic adsorption may be achieved through combining metal ferrites with carbonaceous 

adsorbents such as biochar and graphene86,87. Despite frequent investigation of metal ferrite materials in 

arsenic and other metal ions’ removal from water88–91, relatively few studies have focused on the in situ 

immobilization of metal species in complex soil environments92 and investigated viable coating strategies 
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to support this application. Considering high-concentration arsenic contamination is mainly found in 

groundwaters93, this appears to be an underdeveloped research niche. 

2.3 Factors Affecting Nanoparticle Transport in Porous Media 

 Ability for nanoparticles to transport through porous media to access a contaminated site for 

treatment is a critical step for in situ remediation. The most commonly applied strategy for nanoparticle 

delivery is in the form of injection and flow in aqueous suspension by which nanoparticle transport 

pathways should mirror the movement of water through porous media. Groundwater flow in its simplest 

form can be described by Darcy’s Law (equation (16), an empirical model in which flow rate is found to 

be proportional to the pressure differential across the transport region as well as the hydraulic 

conductivity of the porous medium (k) and the viscosity of the fluid (µ). 

𝑞 =  −
𝑘

𝜇
(∇𝑝 −  𝜌𝑔) 

(16) 

This model is favoured for its simplicity and allows estimation of single phase flows in porous media by 

tuning the parameter k. Hydraulic conductivity is a measure of the degree to which a medium facilitates 

fluid transport; a medium with a high hydraulic conductivity, for example gravel (k = 1 – 10-2 m/s), 

allows easy flow of water, while a medium with a low hydraulic conductivity such as clay (k = 10-9 – 10-

12 m/s) restricts water flow or may be impermeable. Hydraulic conductivity of porous media is typically 

related to the pore size; smaller pores result in lower k values. In real soil sites, heterogeneity and a wide 

range of hydraulic conductivities contribute to complex groundwater flow patterns and inhibit transport 

through some regions. This can create difficulties for remediation as forcing injected aqueous suspensions 

to reach contaminants in low-k zones is a challenge. In these cases, suspended colloids or dissolved 

species must rely on diffusion to enter saturated pores of low-k media which is a much slower process. 

For these reasons, significant effort has been devoted to investigating alternative delivery strategies such 

as hydraulic fracturing and foam-based injection94–97. 

 Ideally, the suspended nanoparticles behave like a dissolved species in water and travel directly 

with groundwater flow experiencing some diffusion and dispersion but total mass conservation, allowing 

estimation of their transport using an advection/dispersion differential equation (equation (17) 

𝜕(𝜙𝑐)

𝜕𝑡
+
𝜕(𝑞𝑐)

𝜕𝑥
− 

𝜕

𝜕𝑥
[𝜙𝐷

𝜕𝑐

𝜕𝑥
] =  0 

(17) 

where φ is porosity, c is nanoparticle concentration, q is Darcy flux, and D is a dispersion constant. This 

model accounts for the movement and change of the nanoparticle front and profile over time due to 

Darcyan flow (q) as well as mechanical dispersion and Fickian diffusion (D). Realistically, nanoparticles 

are significantly affected by three primary mechanisms which hinder their transport: physical filtration, 
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stability in suspension, and adsorption to porous media98,99. Secondary effects such as changes in solution 

viscosity and medium hydraulic conductivity due to adsorption of nanoparticles further complicate the 

system and make prediction using simple models unreliable100–102.  

 Physical filtration is the simplest mechanism affecting nanoparticle transport in porous media. 

Interception of a suspended colloid by a collector, for example a pore, is directly dependent on the size of 

the colloid and the collector103. When the size of a nanoparticle exceeds the dimension of a pore, it may 

not pass through, resulting in retention of the nanoparticle within the medium. Although nanoparticles are 

very small, this factor can still affect even well-dispersed nanoparticles in low-permeability media98. This 

problem is compounded by aggregation, meaning that care must be taken to ensure good nanoparticle 

stability. Consideration must also be given to nanoparticle size distribution to allow for good nanoparticle 

recovery. 

 Colloidal stability of nanoparticle suspensions is perhaps the most critical factor for nanoparticle 

stability in porous media, dictating transport potential as well as environmental fate and ecotoxological 

impact104. Nanoparticle aggregation results in larger particles that can be physically filtered in porous 

media, or settled out of solution. The forces causing nanoparticle aggregation can be electrostatic, 

magnetic, hydrophobic, or Van der Waals attractions, all of which can be heavily influenced by solution 

properties such as pH or salinity. Stability of nanoparticle suspensions can largely be described by 

Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory in which the sum of attractive (-) and 

repulsive (+) forces should be net positive. In DLVO theory, the repulsive force is supplied by 

electrostatic repulsion due to surface charge of the particles while attractive force is provided by Van der 

Waals interactions. Outside of DLVO theory, repulsive force can also be generated by steric interactions 

of molecules on the surface of the nanoparticle. Briefly, deformation of molecules attached to the surfaces 

of two interacting particles results in an increase of free energy for volume interactions, producing a 

repulsion105.  The most widely employed nanoparticle stabilization tactic is surface modification by 

polymeric coatings which can employ both of these mechanisms104,106. For electrostatic stabilization, 

polyelectrolytes with high molecular weight and high densities of functional groups such as CMC, 

Polyacrylic Acid (PAA), or Polystyrene Sulfonate (PSS) are commonly used due to their strong, 

permanent charges which provide strong repulsive force. This technique could make use of cationic or 

anionic polymers, however only anionic polymers are useful for stabilization of nanoparticles in porous 

media due to the tendency for positive charges to adsorb to the negatively charged surfaces of minerals106. 

Electrostatic stabilization of nanoparticles can still be compromised by certain groundwater 

conditions107,108. For example, environments containing high concentrations of Ca2+ can destabilize 

nanoparticles through the formation of a Ca2+ layer which neutralizes its surface charge and weakens the 
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repulsive force. Similarly, different pH conditions can affect the protonation state of the polyelectrolyte, 

weakening the surface charge and allowing aggregation109. Non-ionic polymer stabilization is also 

commonly used for nanoparticles, relying on steric repulsion to counteract Van der Waals 

aggregation99,104,106. 

 Adsorption of nanoparticles to the surface of minerals present in porous media is also a 

significant challenge affecting nanoparticle transport98. Adsorption is typically due to electrostatic 

attraction or hydrophobic forces, however specific adsorption of nanoparticles or polymers due to 

structural properties is also possible. Particle interaction with the porous medium results deposition and 

release phenomena which can cause the medium to act as a source or sink for particles, affecting transport 

properties. 

 Filtration and deposition/release behaviour of nanoparticles in porous media can be accounted for 

by the inclusion of a source/sink term in equation 5. Recent work by Tosco & Sethi has produced a 

comprehensive model for the transport of iron nanoparticles in porous media in which they describe the 

formulation of these source/sink terms (equations (18(20)101,102. 

{
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(18) 

(19) 

(20) 

Equation 6a describes nanoparticle deposition/release behaviour due to adsorption while equation 6b 

describes nanoparticle physical filtration. Please see Appendix A for a description of each of the variables 

used in this set of equations. In summary, to facilitate optimal nanoparticle mobility in porous media, 

filtration, aggregation, and adsorption should be avoided by tuning the nanoparticle surface properties as 

can be achieved through polymer functionalization. 

2.4 Nanoparticle Synthesis & Coating Strategies 

 Methods for manufacturing iron-based nanoparticles can be divided into two categories: “top-

down” and “bottom-up”. The first category involves re-structuring of bulk materials through processes 

such as laser ablation, thermal reduction of pre-existing oxides, or hydration of metallic complexes. The 

second category refers to the construction of nanomaterials from even more basic building blocks (atoms 

or molecules) and includes techniques such as chemical vapour deposition and aqueous reduction or co-

precipitation of salts99. Previously, large-scale application of nanoparticle-based soil remediation 

strategies have been held back by prohibitive costs of nanoparticle production110. The large masses of 

nanomaterials required for remediation of contaminated sites mandates that nanoparticle synthesis be both 
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cost effective and amenable to large scale manufacturing. While scalable techniques of nZVI production 

have been developed, as of a couple of years ago the cost of nZVI is still 10x – 100x more expensive than 

its bulk granular scale counterpart due to the high energy intensiveness of the synthesis processes99. These 

produced nanoparticles still suffer significant stability issues and additional expense is required for 

surface modification to enable stability and transport under injection conditions. Furthermore, nZVI 

coating materials have a detrimental affect on the ability of the nanoparticles to perform direct oxidation 

or reduction of contaminants by blocking contaminant access to reactive sites. While nZVI has 

demonstrated interesting applicability to a number of soil remediation challenges, expense of production 

and detrimental effects of surface coatings still pose a significant barrier for entry into the mainstream in 

situ remediation market. 

 Iron oxide, on the other hand, does not support the direct oxidation/reduction remediation strategy 

focused on by nZVI, but it does present less expensive, scalable synthesis techniques and is less impacted 

by the passivation effects of polymer coatings. One of the most common synthesis techniques for iron 

oxide nanoparticles produces Fe3O4 using the co-precipitation of Fe2+ and Fe3+ salts in the presence of a 

base. Briefly, intermediate iron hydroxide species are formed by the salt precursors at high pH, followed 

by condensation and aging of oxide species111–113. The reaction process is described in equation (21. 

Fe2+ + 2Fe3+ + 8OH- → Fe3O4 + 4H2O (21) 

Nanoparticle size distribution produced by this method can be carefully controlled by the inclusion of a 

surfactant (such as oleic acid) during preparation113. This wet chemical method is easily scalable, makes 

use of inexpensive, ubiquitous reactants, and does not require intensive energy input making widely used 

for large-scale synthesis114.  

Application of Fe3O4 nanoparticles in the environmental remediation field has not been nearly as 

extensive as nZVI, but thanks to the interest of the medical community for the use of Fe3O4 in therapeutic 

and imaging applications, a large amount of research into stabilizing iron oxide nanoparticles in 

physiological media has been conducted which should be directly applicable to stabilizing nanoparticles 

in porous media environments. The most common polymer stabilizers for Fe3O4 are dextran, polyethylene 

oxide (PEO), and poly(D,L-lactic-co-glycolic acid) (PLGA)111. These polymers are non-ionic, giving 

them stability in saline solutions115, and principally stabilize nanoparticles through steric interactions. 

Fe3O4 stability using poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) 

(PEO-PPO-PEO; Pluronics) copolymers and oleic acid has also been reported, producing a nanoparticle 

highly stable in water with a strongly hydrophobic core116,117. With an abundance of coating materials to 

consider, it is important to remember that when selecting stabilizing agents, non-toxic, inexpensive 

polymers should be the top candidates to minimize environmental impact and cost100. The capability for 
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iron oxide to be produced cost effectively at scale, effectively stabilized by inexpensive polymers, and 

behave as an amendment for a variety of in situ remediation techniques including ISCO and MW heating 

makes it a very attractive candidate as an in situ soil remediation technology. 

2.5 Nanoparticle Targeted Binding & Application to Soil Remediation 

 A principal concern associated with the use of nanoparticles for environmental remediation is 

their environmental fate and ecotoxicity. While much research has been devoted to increasing the 

transport distances of nanoparticles in porous media, it has been noted that indefinite flow of 

nanoparticles could result in uncontrollable dispersion in the environment resulting in unseen 

toxicological consequences100. Efficiency of nanoparticle use is another important consideration with 

respect to improving nanoparticle transport distance. Mobilization of nanoparticles away from the 

contaminated zone would result in no contribution to remediation and wasted material. To best exploit the 

remediation properties of engineered nanoparticles, it is most desirable to enhance attachment to 

entrapped contaminants of interest118,119. 

 Targeted nanoparticle delivery is a concept already widely employed in medical research. For 

example, targeted delivery of chemotherapeutic drugs to cancerous cells serves to greatly improve the 

efficacy of the drug120. Targeted delivery strategies can be divided into two broad categories: passive and 

active. Passive techniques rely on non-selective properties of the target zone, for example, accumulation 

of nanoparticles in a tumor due to enhanced permeability of tumor vasculature121. Active techniques, in 

addition to making use of passive targeting effects, rely on design of the nanoparticle to bind directly to a 

zone of interest. In targeted drug delivery applications, this is typically achieved by coupling a specific 

ligand to the nanoparticles’ surface that will be recognized by a receptor on the target cell121. Targeted 

delivery for soil remediation applications is similar to active targeting in nanoparticle drug delivery, but 

instead of making use of biospecific ligands, contaminant targeting must be achieved through non-

specific thermodynamic interactions119. Such non-specific active targeting has been demonstrated for 

chlorinated hydrocarbon NAPLs in a number of works118,119,122. Recently, Wang & Acosta demonstrated 

that a combination of a high ionic strength environment using Ca2+ with a benzethonium chloride/oleic 

acid nanoparticle coating promoted significant partitioning of iron nanoparticles into a tetrachloroethylene 

(TCE) phase from aqueous suspension. Earlier literature cites the use of a specifically formulated PMAA-

PMMA-PSS block co-polymer to impart similar affinity for NAPL phases. In this example, the PMAA 

segment of the polymer facilitates attachment to the iron nanoparticle, the hydrophobic PMMA block 

supports favourable thermodynamic interaction with the NAPL, and the PSS block promotes aqueous 

stability118,119. Despite these successes, as a whole, research into targeted delivery of nanoparticles to 

contaminated soils is sparse and underdeveloped. Extension of these targeted delivery properties from 
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chlorinated hydrocarbons to heavy PHCs has the potential to make impactful improvements to 

nanoparticle based soil remediation techniques. 

2.6 Conclusion 

 Remediation of PHC contaminated soil is an issue of pressing concern in the environmental 

community due to detrimental health effects on plant and animal communities in impacted zones. 

Currently, the most widely implemented technologies are expensive, energy intensive, and unsustainable 

long term. These negative consequences are primarily the result of excavation associated with current ex 

situ treatment methods, leading to the development of in situ techniques. While in situ methods are 

fundamentally more sustainable than their ex situ counterparts, remediation success is often uncertain and 

there is great room for improvement in terms of remediation time or cost. Nanoparticles offer the 

possibility for acting as a direct remediation platform or as an amendment to existing in situ strategies to 

improve their speed or cost. The majority of nanoparticle focused remediation work has been done on 

nano-Zero Valent Iron which has strong reactive potential with regards to reduction and oxidation of 

contaminants. There are a number of drawbacks to nZVI, however, including production cost and 

scalability, transport in porous media, and passivation over short time periods. Improvements have been 

made to nZVI transport properties over the past decade, but these improvements have come at the 

expense of nanoparticle reactivity. Iron oxide nanoparticles also offer promising application in soil 

remediation, serving as a source of a Fenton catalyst for various oxidation, or acting as an energy 

absorber for thermal strategies. Delivery of nanoparticles to contaminated sites is a challenging problem 

which could be improved through the adoption of targeted binding approaches already used in 

nanomedicine. To date, several demonstrations of nanoparticles with affinity for DNAPLs have been 

shown, but large opportunity for improvements and novel research exists in this field. Overall, 

nanoparticle based remediation is a promising field with wide potential impact that could benefit strongly 

from improved delivery techniques and targeted binding that could be applied to a variety of active 

nanomaterials   
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Chapter 3 

Targeted Nanoparticle Binding & Detection in Petroleum 

Hydrocarbon Impacted Porous Media† 

 

Figure 1. Engineered nanoparticles preferentially attach to NAPL PHC over soil grains. This is observed 

through higher X-ray CT signal when NP are exposed to oil-impacted sand (right) compared to clean sand 

(left). 

3.1 Summary 

Targeted nanoparticle binding has become a core feature of experimental pharmaceutical product 

design which enables more efficient payload delivery and enhances medical imaging by accumulating 

nanoparticles in specific tissues. Environmental remediation and geophysical monitoring encounter 

similar challenges which may be addressed in part by the adoption of targeted nanoparticle binding 

strategies. This study illustrates that engineered nanoparticles can bind to crude oil-impacted silica sand, a 

selective adsorption driven by active targeting based on an amphiphilic polymer coating. This coating 

strategy resulted in 2 mg/kg attachment to clean silica sand compared to 8 mg/kg attachment to oil-

impacted silica sand. It was also shown that modifying the surface coating influenced the binding 

behaviour of the engineered nanoparticles – more hydrophobic polymers resulted in increased binding 

(Figure 1).  Successful targeting of Pluronic-coated iron oxide nanoparticles to a crude oil and silica sand 

mixture was demonstrated through a combined quantitative Orbital Emission Spectroscopy mass analysis 

                                                      
† This chapter is adapted from a previously published article: Linley, S.; Holmes, A.; Leshuk, T.; Nafo, W.; 

Thomson, N. R.; Al-Mayah, A.; McVey, K.; Sra, K.; Gu, F. X. Targeted Nanoparticle Binding & Detection in 

Petroleum Hydrocarbon Impacted Porous Media. Chemosphere 2019, 215, 353–361.  
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supported by Vibrating Scanning Magnetometer magnetometry, and a qualitative X-ray micro-computed 

tomography (CT) visualization approach.  These non-destructive characterization techniques facilitated 

efficient analysis of nanoparticles in porous medium samples with minimal sample preparation, and in the 

case of X-Ray CT, illustrated how targeted nanoparticle binding may be used to produce 3-D images of 

contaminated porous media. This work demonstrated successful implementation of nanoparticle targeted 

binding toward viscous LNAPL such as crude oil in the presence of a porous medium, a step which opens 

the door to successful application of targeted delivery technology in environmental remediation and 

monitoring.  

3.2 Introduction 

Targeted binding is a familiar concept in the field of healthcare which typically refers to specific 

analytes preferentially binding to specific receptors on cells and tissues123. This observation has driven 

innovation in nanomedicine over the past two decades and resulted in functionalized nanoparticles 

specifically modified to target diseased tissues and release therapeutic payloads120,124. Implementation of a 

targeted nanoparticle binding platform provides direct enhancement to therapeutic efficiency and reduces 

side effects by minimizing drug action on healthy tissue. Targeted binding can also drive accumulation of 

nanoparticles in tissue with specific physical or chemical characteristics which can then be detected using 

medical imaging technologies and provide an image of target areas116,125,126. Soil contamination and its 

remediation bears many similar challenges to diseased tissue and its treatment; the impacted site is often 

not easily accessible, in situ treatment wishes to avoid delivering a payload to clean soil, and the 

contaminated region has different chemical and physical characteristics from the surrounding material. By 

taking advantage of the unique physical and chemical properties of the impacted region, nanoparticles can 

be designed to preferentially accumulate there, allowing for targeted treatment or enhanced imaging. 

Soil remediation using materials designed for targeted removal of specific contaminants has been a 

subject well studied in the area of toxic metals removal wherein the mobile contaminant species is 

adsorbed to a high-surface area nanostructure such as titanate nanotubes or modified graphene oxide127–

130. Some graphene oxide-based strategies introduce the possibility of target contaminant immobilization 

by forming graphene oxide-metal ion complexes with enhanced adsorption to mineral material131–133. 

Treatment strategies pursuing elimination of fixed contaminants, such as in the case of viscous non-

aqueous phase liquids (NAPLs), require the treatment agent to be emplaced in the contaminated region 

rather than adsorb the contaminant to its surface, and a knowledge gap exists in this regard. Soil 

contamination by NAPL petroleum hydrocarbons (PHCs) often requires some type of remedial activity to 

address potential impacts on ecosystems or human health. While conventional in situ remediation 

technologies utilizing direct delivery of reagents have been successful in treating some types of PHCs134–
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136, options are limited for viscous hydrocarbons such as heavy crude oils, for which no effective in situ 

treatment strategy exists. Advancements in nanotechnology have led to the emergence of 

nanoremediation which utilizes the higher specific surface area of nanoparticles to achieve faster 

treatment, but applications are still limited by other drawbacks such as particle self-aggregation and 

aggregation with mineral material137,138. Nanoremediation treatment of a contaminant may occur directly 

as a result of nanoparticle contact, as in the case of nZVI139, or indirectly through Fenton-like catalysis of 

a persulfate reaction where the nanoparticle supplies leached iron ions140.  The challenge of delivering 

nanoparticles to a treatment zone has spurred significant investigation of coating materials to improve 

their transport properties141–145; however, these improvements do not guarantee nanoparticle delivery 

directly to the NAPL interface, and have led to serious discussion regarding the toxicity risks of releasing 

mobile nanoparticles into an unrestricted environment100,138,146.  Based on similarities to nanomedicine, in 

situ nanoremediation may be improved by the adoption of targeted binding.  To this end, a successful 

targeted nanoparticle delivery system must be capable of: (1) using nanoparticles that can be tuned to 

stick or bind to target NAPL mass that they contact, (2) transporting functional nanoparticles in various 

geologic media over significant distances (i.e., > 1 m), and (3) allowing the bound nanoparticles to be 

triggered either actively or passively to enable treatment. 

In general, targeted delivery is divided into two broad categories: passive and active which rely 

on physical and chemical surface properties of the target zone, respectively121,147,148. The targeting 

mechanism for NAPL PHCs presented in this paper is similar to active targeting seen in drug delivery and 

achieved by tailoring the nanoparticle surface to interact with the NAPL PHC interface119. Such an ‘active 

targeting’ technique has been previously demonstrated for chlorinated hydrocarbon NAPLs using a block 

co-polymer nanoparticle surface coating capable of stabilizing nanoparticles in aqueous suspension and 

promoting hydrophobic interactions118,119,122. Targeted delivery of nanoparticles has the potential to 

further increase the impact and efficiency of nanoremediation techniques by concentrating the reagent in 

direct contact with the NAPL. 

In this paper, we report on the selective binding of functional nanoparticles to one class of NAPL 

PHCs. Specifically, we focussed on the ability of an inexpensive, non-toxic149, amphiphilic block co-

polymer coating (Pluronic) applied to iron oxide nanoparticles to promote aqueous stability and 

hydrophobic interactions with viscous hydrocarbons. Iron oxide nanoparticles were selected as the core 

material due to their simple synthesis, possible application as an iron catalyst for various chemical 

oxidation processes 150, and capability to act as an energy absorber for thermal treatment strategies 151–154.  

Nanoparticle targeted binding behaviour was assessed using a batch experimental design and quantified 

indirectly using aqueous-phase concentration measurements. This indirect approach was supported by 
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direct quantification of bound nanoparticles using VSM magnetometry, and binding was further 

visualized using a qualitative X-ray Computed Tomography (CT) technique.  

Nanotechnology-enabled sensing techniques are a subject of significant research for detecting 

contaminants. Through interaction of the nanoparticle with an analyte of interest, a detectable signal can 

be generated to confirm or measure the presence of the analyte155,156. Using nanoparticles adsorbed to 

target contaminants in porous media as a contrast agent is a nano-enabled sensing technique analogous to 

X-Ray CT medical imaging. In the context of geosciences, X-Ray CT relies on identifying areas of 

varying radiological density which can vary with mineral type157, for example, Fe3O4 absorbs X-Rays 

more strongly than SiO2. The possibility and threshold of detection for nanoparticles in porous media is a 

key question that must be addressed in the context of X-Ray CT detection of nanoparticles in geologic 

media. Typical characterization of nanoparticles or trace metals embedded in soil relies on tedious, 

destructive techniques such as acid digestion and subsequent ICP-MS or ICP-OES analysis158,159, 

prompting research into new analysis techniques which avoid lengthy sample preparation160–162. 3-D 

mapping of nanoparticle accumulation would require performing this type of lengthy analysis multiple 

times in order to construct a model. With the X-Ray CT technique introduced here, non-destructive 3-D 

analysis of relatively large samples is achieved with a single, quick, high-resolution scan and minimal 

sample preparation. This research effort investigates one of the critical features of a potential targeted 

nanoparticle delivery system, i.e., ability to bind to a target NAPL mass, and demonstrates what a 

possible end-use of nanoparticle targeted binding might look like through the application of X-Ray CT to 

detect contaminated sands containing bound nanoparticles.  Research that addresses the other two features 

of a robust targeted delivery platform (transport in various porous media, and activation options for 

treatment) is ongoing. 

3.3 Materials and Methods 

3.3.1 Materials 

Iron (II) sulfate heptahydrate (FeSO4·7H2O, > 99%), iron (III) chloride hexahydrate (FeCl3·6H2O, 

> 99%), ammonium hydroxide (NH4OH, 28-30% in water), dichloromethane (DCM, > 99%), and oleic 

acid (> 90%) were purchased from Sigma Aldrich (St. Louis, MO, USA). Hydrochloric acid (37%) and 

ethanol (ACS grade, 99%) were purchased from Fisher Scientific (Hampton, NH, USA). Pluronic co-

polymers P104, L62, and L121 (Table 1) were gifted by Brenntag (Essen, Germany) and BASF 

(Ludwigshafen, Germany). Silica sand (99.7% SiO2, d50 = 0.2 mm) was purchased from Opta Minerals, 

Inc. (Hamilton, ON, Canada). Crude oil (heavy, sour crude, API gravity 13.3 (ρ = 0.977 g/cm3), kinematic 

viscosity 4.745 x 10-4 m2/s @ 40 °C) was provided by Chevron Energy Technology Company (Houston, 

TX, USA). All materials were used as received. 
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3.3.2 Nanoparticle Synthesis 

Nanoparticle synthesis was adapted from several methods previously reported163–165. FeSO4·7H2O 

and FeCl3·6H2O were added to deoxygenated water at a molar ratio of 2:3 (FeSO4:FeCl3). Sufficient 

NH4OH and oleic acid were added to achieve final concentrations of 4 and 0.22 mol/L, respectively. This 

solution was stirred at 70 °C for 1 h, then stirred at 90 °C under flowing N2 for 1 h to purge evolved NH3 

gas. After cooling to room temperature, the black, magnetic precipitate was recovered by magnetic 

decantation and washed 3x by deoxygenated Millipore DI water (Millipore Elix 5), and then 3x by 

ethanol before being dried under flowing N2.  

3.3.3 Nanoparticle Phase Transfer 

A mixture of oleic acid in hexane (1% v/v) was prepared to which dried nanoparticles were added 

at a concentration of 90 g/L and sonicated for 10 min (VWR “Symphony” 1.9 L Ultrasonic Cleaner). The 

resulting suspension was added to various aqueous solutions of Pluronic co-polymer(s) at a concentration 

of 10 % v/v and probe sonicated for 30 min to emulsify the water and hexane phases (Fisher Scientific 

FB505 Sonic Dismembrator, 200 W). The emulsified nanoparticle sample was transferred to a separatory 

funnel and separated over 48 h. The resulting aqueous nanoparticle suspension (~3 g/L) was stored until 

used. 

3.3.4 Nanoparticle Binding Studies 

Oil-impacted silica sand (OSS) was prepared by dissolving crude oil in DCM at a concentration 

of 60 g/L, mixing it with dry silica sand, and evaporating the DCM such that the final concentration of 

crude oil in sand was 1.5% (m/m). 15 g of OSS was then added to a 20-mL cylindrical glass vial, 

followed by 10 mL of nanoparticle suspension diluted with Millipore DI water to either 1:100 or 1:10 of 

its concentration after phase-transfer. The glass vials were then loaded onto an orbital shaker (Stovall Life 

Sciences “Belly Dancer”) for 48 h. Following mixing, the nanoparticle solution was recovered by 

filtration (1.5 µm glass fiber, Whatman). The retentate was washed with 100 mL Millipore DI water and 

dried by vacuum desiccation for 96 h before CT, scanning electron microscopy (SEM)/energy dispersive 

X-ray spectroscopy (EDS), or Vibrating Scanning Magnetometer/ Superconducting Quantum Interference 

Device (VSM/SQUID) analysis.  For control, a “clean” silica sand (SS) sample was prepared identically 

as above except the DCM/crude oil mixture was not added.  Three replicates of each sample were 

prepared to capture variability. The composition of the different nanoparticle formulations investigated 

are listed in Table 3. All batch experiments were performed in triplicate. 
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Table 3. Summary of nanoparticle formulations explored in Chapter 3 

Formulation 

IDa 

Pluronic 

L62 (g/L)b 

Pluronic 

L121 (g/L)b 

Pluronic 

P104 (g/L)b 

Dynamic Light Scattering diameter 

(nm) 

A (A-100) 10 - - 89.80 

B-40 4 - 6 64.42 

B-60 6 - 4 57.60 

B-80 8 - 2 61.60 

C-40 2 2 6 75.61 

C-60 3 3 4 82.68 

C-80 4 4 2 81.16 

 

3.3.5 Analyses 

Aqueous nanoparticle samples were acid digested in 6 mol/L HCl and then diluted by a factor of 

10 with 1 mol/L HCl prior to analysis by ICP-OES (Prodigy) to quantify total iron (method detection 

limit (MDL) of 4 µg/L).  Nanoparticle mass bound on the OSS or the SS (µg of NP/dry g of sand) was 

estimated from the difference between the initial and final (after 48 h of exposure) nanoparticle 

concentration. 

High Resolution Transmission Electron Microscopy (HR-TEM) analysis was performed using a JEOL 

2010F with an acceleration voltage of 200 keV. The nanoparticles were dispersed in ethanol, sonicated, 

and a droplet placed on a holey carbon coated Cu grid, which was allowed to air dry before being 

analysed. 

Dynamic Light Scattering (DLS) was used to characterize nanoparticle hydrodynamic size and 

uniformity. A subsample (3 mL) of the nanoparticle suspension in hexane (prior to Pluronic coating) or in 

water (after Pluronic coating) was placed into a polypropylene cuvette and analyzed by DLS (Brookhaven 

90Plus Particle Size Analyzer). 

Sample magnetization was measured using a Vibrating Scanning Magnetometer (VSM; Quantum 

Design MPMS 3). Sand samples (as described above) were packed into polycarbonate VSM sample 

holders. VSM was performed at a temperature of 70 K cooled by liquid N2 to prevent material movement 

within the samples and was performed with a maximum magnetic field strength of 1 T. Magnetic 

properties of nanoparticles required for quantitative analysis were determined using freeze-dried 

Formulation A particles prepared using a Labconco Freezone 2.5 freeze drier.  

X-Ray CT samples (as described above) were packed into 4.5-mL polypropylene cuvettes and 

scanned with an open directional high-power micro-focus X-ray tube (240 kV, GE Phoenix v|tome|x m 

compact micro CT system) equipped with a GE DXR detector array.  X-ray scan parameters (Table S1) 

were chosen to ensure optimal X-ray penetration and contrast. An acceleration voltage of 80 kV with a 
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beam current of 80 μA resulted in strong visual contrast between iron oxide and silica materials. Raw 

images were processed using Volume Graphics software (VGStudio Max) as two separate materials (iron 

oxide and silica) using beam hardening factors between 9.5 and 9.6. Both OSS and SS sample images 

were processed identically. 

3.4 Results and Discussion 

3.4.1 Nanoparticle Design 

Engineered nanoparticles were designed to facilitate stability in aqueous suspension and 

favourable interactions with a hydrophobic phase such that particles would bind to the oil-water interface 

while avoiding adsorption directly to mineral soil material. To achieve this behaviour, an amphiphilic 

polymer coating was applied to a hydrophobic nanoparticle core (Figure 2).   

 

Figure 2. Schematic illustrating nanoparticles with an amphiphilic polymer coating (Pluronic) avoiding 

adsorption to sand grains and specifically adsorbing to NAPL PHC through hydrophobic interactions. 

Polyethylene Oxide (PEO; red) blocks of the coating extend into the aqueous phase and contract in the 

NAPL PHC. Polypropylene Oxide (PPO; blue) blocks of the coating extend into the NAPL PHC and 

contract in the aqueous phase. Oleic acid (black) binds the coating to the nanoparticle surface and 

interacts favourably with the NAPL PHC when at the interface. 

The nanoparticle core was composed of iron oxide produced via a co-precipitation of iron salts, 

and made hydrophobic by oleic acid chemisorbed to the iron oxide surface through monodentate chelation 

of its carboxylate group with iron surface atoms166. The purpose of this oleic acid layer is twofold: first, to 
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provide the nanoparticle with a hydrophobic outer coating which would interact favourably with the target 

crude oil contaminant; and second, to provide an anchor point for the adsorption of Pluronic, the 

amphiphilic block co-polymer.  The final particle structure allowed favourable thermodynamic 

interactions between hydrophobic segments of the amphiphilic polymer coating and a NAPL phase, 

causing nanoparticles to partition to the water/NAPL interface118,119,122. Pluronic, an inexpensive, 

commercially available polymer with highly tunable hydrophobic/hydrophilic properties, was selected as 

the coating material.  Pluronic is a block co-polymer composed of a middle, hydrophobic segment of 

poly-propylene oxide (PPO) and two outer, hydrophilic segments of poly-ethylene oxide (PEO). The 

Pluronic coating was attached to the iron oxide core through hydrophobic interactions between the oleic 

acid nanoparticle capping agent and PPO segments. The PEO segments of the coating extend into the 

aqueous phase surrounding the nanoparticle and prevent nanoparticle aggregation through steric 

stabilization. Details regarding the properties of different Pluronic polymers used are given in Table 4. It 

should be noted that a similar nanoparticle structure using Pluronic F127 has been previously reported in 

the literature for application in promoting cellular uptake167, however findings in this paper indicate that 

F127 may not be the most appropriate polymer to promote targeted binding to viscous hydrocarbons, 

necessitating careful selection of amphiphilic surface coating molecules based on the desired application. 

L62 and L121 were investigated as more hydrophobic polymers having approximate relative 

hydrophobic/hydrophilic mass ratios (Mn(PPO)/Mn(PEO)) of 4 and 9, respectively. P104 was investigated as a 

more hydrophilic polymer having an approximate relative hydrophobic/hydrophilic mass ratio of 1.5.  

Table 4. Properties of Pluronic polymers used for amphiphilic nanoparticle coating in Chapter 3 

Polymer 

ID 

Mn 

(g/mol) 

Structure Mn of PPO 

(g/mol) 

Mn of PEO 

(g/mol) 

Mn(PPO)/

Mn(PEO) 

L62 2,250 PEO5-PPO31-PEO5 1,800 450 4 

L121 4,000 PEO5-PPO62-PEO5 3,600 400 9 

P104 5,000 PEO23-PPO52-PEO23 3,000 2,000 1.5 

 

3.4.2 Nanoparticle Characterization 

HR-TEM data showed that the nanoparticle iron oxide cores were spherical with an average 

diameter of 6.4 ± 1.8 nm (Figure 3 A), consistent with DLS measurement of particle cores in hexane ─ 

8.4 nm diameter with a polydispersity index (PDI) of 0.260 (Figure 4). 
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Figure 3. HR-TEM image of sample A-100: A Iron oxide nanoparticles prior to Pluronic coating, B 

Clusters of iron oxide nanoparticles after Pluronic coating, C Iron oxide nanoparticle prior to Pluronic 

coating, and D Edge of a Pluronic coated nanoparticle aggregate demonstrating crystalline nanoparticles 

within an amorphous polymer coating. 

 

Figure 4. Nanoparticle sizing in suspension by Dynamic Light Scattering (DLS). Uncoated particles in 

hexane were found to be 8.4 nm in diameter with a polydispersity index (PDI) of 0.260. Coated particle 

aggregates in water were found to be 89.8 nm in diameter with a PDI of 0.138. 

After Pluronic coating, the nanoparticle average diameter increased significantly to 120.9 ± 47 

nm (Figure 3 B), again supported by a DLS hydrodynamic diameter of 89.8 nm with a PDI of 0.138. This 

increase in size is attributed to the formation of a miniemulsion of multiple iron oxide cores within a 

surfactant polymer coating164,165,168.  These aggregates form due to the requirement for sufficient surface 
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coverage with surfactant to realize a critically-stable state; smaller particles require higher surfactant 

concentrations168.  Although aggregation increased with polymer coating, the dispersity of the particles 

remained narrow (Figure 4), indicating that aggregation was limited and large aggregates (> 1 µm) were 

not present. HR-TEM images (Figure 3 C, D) demonstrated the crystallinity of the iron oxide particles 

individually and within an aggregate structure as indicated by the ordered rows of atoms. In contrast to 

the order seen within the iron oxide particles, the disordered fringe adjacent to the crystalline region of the 

nanoparticle observed in Figure 3D is interpreted as an amorphous polymer coating. The thickness of this 

coating was measured to be 1.1 ± 0.17 nm which compares similarly to the thickness of Pluronic species 

adsorbed on hydrophobic surfaces through hydrophobic interactions 169.  

3.4.3 Nanoparticle Binding 

The iron concentration in the filtered solution for nanoparticle Formulation A after exposure to 

OSS was significantly lower than the same formulation exposed to SS (Figure 5).  

 

Figure 5. ICP-OES results demonstrating preferential binding of nanoparticle Formulation A to OSS 

when compared to SS. Iron concentration in suspension was measured directly using ICP-OES. NP bound 

to sand was calculated indirectly using the observed decrease of iron in the suspension. Error bars 

represent ± one standard error. 

Compared to the iron concentration of the initial solution (26.2 ± 0.8 mg/L), a reduction of 2.9 ± 

1.7 mg/L (11.2%) was observed in the SS solution, and a reduction of 14.8 ± 0.84 mg/L (56.4%) was 

observed in the OSS solution, indicating preferential nanoparticle adsorption to sand containing NAPL 

PHC. The estimated mass of nanoparticles bound to the sand after exposure was 1.95 ± 1.15 µg/g on SS, 

and 7.89 ± 0.56 µg/g on OSS. Nanoparticle binding using Formulation A nanoparticles also exceeded 

binding observed under identical conditions using oleic acid-stabilized particles in the absence of Pluronic 

(Figure 6) indicating that Pluronic coating was important to the adsorption mechanism.  
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Figure 6. NP binding batch test using nanoparticles phase-transferred in the absence of Pluronic (using 

only oleic acid). Aqueous phase iron concentration indicated some targeting behaviour when comparing 

SS to OSS, but the effect is mild compared to binding observed using Formulation A nanoparticles. 

Estimated NP deposition is 0.39 ± 0.30 µg/g in SS and 2.71 ± 0.28 µg/g in OSS. 

When the particles are stabilized using only oleic acid, a double layer of oleic acid forms around 

the particles, creating a hydrophilic anionic carboxylate shell preventing interaction with the NAPL PHC. 

Wang et al. have previously shown that addition of a cationic surfactant to an oleate nanoparticle coating 

system can significantly improve targeted binding to trichloroethylene by disrupting the charge of the 

bilayer122. A similar likely occurred in this system whereby Pluronic disrupts the oleate bilayer, allowing 

hydrophobic interaction between the oleate surface and the hydrocarbon/water interface. Furthermore, 

literature demonstrates that nanoparticle core properties influence particle adsorption behaviour by 

affecting coating conformation170. By layering Pluronic on top of oleic acid, we may lessen the effect of 

the core material on Pluronic conformation, leading to higher applicability of this coating strategy to 

various nanoparticle core materials. At this point, the mechanism of nanoparticle binding is not fully 

understood, but is hypothesized to be due to hydrophobic forces from the Pluronic coating, oleate coating, 

or a combination of both. Any nanoparticle binding to clean sand was attributed to van der Waals forces 

between the PEO segment of the Pluronic coating and the surface of the SiO2 sand grains.  Previous 

literature suggests hydrogen bonding occurs between the ether oxygen of PEO and the hydroxyl species 

on the surface of an acidic metal oxide such as SiO2
171. This interaction necessitates that the PEO 

segments of the Pluronic coating should be short to maintain a strong binding contrast between clean and 

oil-impacted sands. 

Direct, quantitative magnetic analysis of dried OSS before and after exposure to Formulation A 

nanoparticle solution was assessed using VSM. The saturation magnetization of solid Formulation A 
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nanoparticles (required to calculate nanoparticle mass deposition in the sand sample) was measured using 

freeze-dried nanoparticles (Figure 7) and found to be 59.76 emu/g. The magnetic hysteresis curves for 

the magnetization of OSS samples as an applied magnetic field is cycled between polarities are shown in 

Figure 8. The saturation magnetization represents the maximum, steady-state magnetization reached by a 

sample under a strong magnetic field. The difference between the saturation magnetization in the OSS 

Control sample and the OSS+NP sample was attributed to the presence of magnetic nanoparticles. This 

difference was divided by the saturation magnetization of Formulation A nanoparticles to give a mass 

concentration estimate (g/g) for bound nanoparticles of 8.13 ± 0.27 µg/g. This VSM estimate compares 

closely to the estimate of 7.89 ± 0.56 µg/g determined indirectly by the decrease in iron concentration in 

the aqueous phase. 

 

Figure 7. Magnetic hysteresis curve for freeze-dried Formulation A nanoparticles. The saturation 

magnetization for Formulation A nanoparticles was found to be 59.76 emu/g with negligible error; error 

on the order of 10-5 emu/g. 
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Figure 8. Magnetic hysteresis curves for OSS before (OSS Control) and after exposure to Formulation A 

nanoparticle solution (OSS + NP). The saturation magnetization was 1.037 ± 0.016 x 10-3 emu/g for the 

OSS Control sample, and 1.523 ± 0.016 x 10-3 emu/g for the OSS+NP sample. 

 

Figure 9. Indirectly calculated nanoparticle (NP) binding increases as nanoparticle coating formulation 

becomes more hydrophobic. The nomenclature X-# identifies nanoparticle samples (Table 1). 
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As the Pluronic hydrophobic/hydrophilic ratio of the nanoparticle coating increased (Table 3), 

the nanoparticle concentration in aqueous suspension decreased when exposed to OSS, implying greater 

nanoparticle binding (Figure 9).  When compared to Figure 5, the smaller %NP decrease observed for 

samples in Figure 9 is primarily due to higher initial concentrations used in this binding experiment 

(estimated NP binding, however, is increased). The results in Figure 9 indicate that nanoparticle binding 

towards viscous hydrocarbons, specifically heavy crude oil, could be tuned by changing the surface 

coating formulation. These results are consistent with the behaviour of Pluronic-coated magnetite 

nanoparticles employed in biomedical applications - previous work using such particles as an MRI 

contrast agent for tumor imaging reported that Pluronic coating formulation could be adjusted to avoid 

adsorption to proteins and that a balance between the hydrophobic and hydrophilic characteristics of the 

polymer is critical to maintaining stability and dispersion172. The trend observed in Figure 4 relating 

coating hydrophobicity to nanoparticle binding supports the theory that binding is due to hydrophobic 

interactions as proposed by Saleh et al.118.  While the modification of the particles in this work is 

different, the interactions which lead to NAPL targeting behaviour remain the same. The larger, longer 

hydrophobic portions of the surface coating remain contracted in water and swell in the presence of oil, 

resulting in a more energetically favourable configuration of the particle at the oil/water interface and 

facilitate targeted binding behaviour. 

3.4.4 X-Ray CT Visualization of Nanoparticle Binding 

X-ray micro CT was used as a qualitative tool to visualize the presence of nanoparticles bound to 

dried OSS and SS (as described previously). A set of 2D projection images was acquired during a full 

rotation of the sample, which was then used to reconstruct a 3D image consisting of volumetric pixels 

(voxels) using a filtering back-projection algorithm173. Micro-focus tubes defocus the electron beam 

proportionally to the electric power to prevent the sample from thermal destruction174. The voxel size 

estimated by the GE Phoenix X-ray CT machine was determined to be 27.3 μm3 for all scanned samples. 

The detection of a single iron oxide nanoparticle or nanoparticle aggregate within a voxel 

resolution >1 μm3 is challenging. This detection method relied on the overall X-ray absorbance of many 

iron oxide nanoparticles within one voxel to differentiate a response from the absorbance of silica sand, 

and hence there was a concentration threshold of nanoparticles for which a positive detection can be 

determined within a single voxel.  Based on preliminary studies it was determined that the detection 

capabilities of the micro CT system with the X-ray scan parameters used could be as low as 1 mg/kg 

nanoparticles in silica sand (Figure 10).   
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Figure 10. Images A, B, and C show the top, left, and right projections of CT X-Ray absorbance through 

the centre of a cuvette containing nanoparticle-spiked silica sand at a concentration of 1 mg/kg (NP/SS). 

Image D shows a 3-D projection of the X-ray absorbance throughout the cuvette. The blue regions 

indicate areas of higher X-ray absorbance which correspond to the upper portion of the cuvette which 

contains nanoparticle spiked sand. The green regions indicate areas of lower X-ray absorbance which 

correspond to the lower portion of the cuvette which contains clean, reference sand. This figure 

demonstrates the limited identification of nanoparticles at concentrations ~1 mg/kg in silica sand. 

Formulation A nanoparticle suspension was selected for CT investigation based on the 

observation that binding improved with coating hydrophobicity (see Figure 9). The bottom-half of the 

cuvette shown in Figure 11(A-C) was packed with OSS only, while the remaining top-half of the cuvette 

was packed with OSS that had been exposed to the Formulation A nanoparticle suspension for 48 hours.  

For baseline comparison, the bottom-half of the cuvette shown in Figure 11(D-F) was packed with SS 

only, and the top-half of the cuvette was packed with SS that had been exposed to the Formulation A 

nanoparticle suspension for 48 hours.  The packing of two materials in a single cuvette allowed for direct 

comparison of each sample to its relevant control. 
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Figure 11. X-ray Computed Tomography of Oil-impacted Silica Sand (OSS; A, B, and C) and Silica 

Sand (SS; D, E, and F) samples. In each cuvette, the top portion contains sand contacted with Formulation 

A nanoparticles for 48 h, filtered, washed, and dried while the bottom portion contains the respective 

control (CTRL) sand, as indicated in B and E. A and D show the top view of each cuvette packed with 

OSS and SS, respectively. B and E show the side view of each cuvette packed with OSS and SS, 

respectively. C and F show a 3-D volumetric reconstruction of each cuvette for OSS and SS, respectively. 

Blue colour has been used in Figure 11 to represent regions of high X-ray absorption (higher 

nanoparticle density) while green has been used for regions of lower X-ray absorption (lower nanoparticle 

density) within each cuvette. Due to the concentrations of iron oxide nanoparticles used in the binding 

studies, the threshold difference (between blue and green) was very narrow. As a result, there are sparse 

blue regions in the lower section of each cuvette which may occur due to variations in packing density. 

The images in Figure 11 do not depict absolute values of X-ray absorbance, but rather voxels which fall 

above (blue) and below (green) a uniform selected threshold to illustrate qualitative evidence of 

nanoparticle binding. All the images in Figure 11 were obtained using identical X-ray CT operating and 

image processing parameters so that comparative visual contrasts between Figure 11(A-C) and (D-F) are 

possible. The increased X-ray absorbance in the top-half of the cuvette shown in Figure 11(A-C) suggests 

substantial nanoparticle binding to the OSS.  In contrast, the X-ray absorbance observed in Figure 11(D-

F) is minor for the SS that had been exposed to the nanoparticle suspension compared to Figure 11(A-C), 

thus corroborating the indirect binding data (Figure 2). 

3.5 Conclusions 

Demonstrating nanoparticle targeted binding to NAPL PHCs from an aqueous suspension in a 

porous medium matrix is one of the critical elements of a targeted nanoparticle delivery system with 
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potentially wide-reaching environmental implications. This work demonstrated that nanoparticle targeted 

binding to crude oil could be controlled as a function of surface properties determined by an amphiphilic 

polymer coating. Extension of this concept to the broader environmental monitoring and remediation field 

implies that targeted binding functionality could be applied to various nanoparticle core materials, 

potentially enhancing existing nanoremediation techniques and enabling the use of targeted contrast 

agents for advanced site characterization. Immobilization of engineered nanoparticles at the interface 

between the target contaminant mass and water addresses key drawbacks of current in situ 

nanoremediation strategies, namely improving efficiency and cost,118,119 as well as limiting uncontrolled 

nanoparticle release100.  

The application of X-ray CT to detect nanoparticles in a porous medium has great potential for 

further development. In this study, there are two notable implications to be drawn from X-ray CT 

visualization of nanoparticle binding. First, X-ray CT is introduced as a useful, non-destructive technique 

for quickly analyzing 3-D sand characteristics with minimal sample preparation. Second, it implies a 

useful application for nanoparticle targeted binding in porous media, that is, as a contrast agent for 3-D 

imaging of sands impacted with viscous heavy hydrocarbons such as crude oil. Based on these findings, it 

is conceivable that mobile nanoparticles may be visualized by X-Ray CT in dynamic transport studies. 

Such experiments may generate a wealth of data to further understanding of nanoparticle transport 

behaviour in porous media and characterize targeted nanoparticle binding in realistic hydrogeologic 

conditions. One current drawback of the technique as presented here is its qualitative nature, but with 

careful development of a proper analysis methodology, it may be possible to extract quantitative data 

from this technique. In a similar vein, the use of SQUID/VSM magnetic characterization introduces 

quick, non-destructive, quantitative analysis techniques with minimal sample preparation which may help 

to overcome difficulties with characterizing nanoparticle presence in sand samples.  

The work presented here limits its scope to batch investigation and novel X-ray characterization as a 

proof-of-concept for a targeted binding strategy, but these findings open the door to larger scale 

experiments under more realistic conditions. The nanoparticle coating proposed here has demonstrated 

limited binding to clean silica sand implying that transport through porous media should be possible, 

however literature has demonstrated that interactions with natural macromolecules can change the surface 

of engineered nanoparticles, affecting their behaviour and fate in soils175. To this end, research 

investigating the transport properties of these nanoparticles in various porous media, as well as expanded 

application of this novel X-ray CT nanoparticle characterization technique is ongoing in pursuit of 

improving and demonstrating the application of this targeted delivery platform for nanoremediation and 

geophysical monitoring.  
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Chapter 4 

Nanoparticle Targeted Delivery to Petroleum Hydrocarbon 

Impacted Porous Media† 

 

Figure 12. Engineered nanoparticles with a Pluronic coating are transported through a clean sandy loam 

and preferentially retained in an artificially PHC-impacted sandy loam. 

4.1 Summary 

Targeted delivery of nanoparticles has potential to enhance remediation and geophysical 

monitoring of contaminated sites by ensuring delivery of treatment or contrast agents to the 

contaminant/water interface. For a targeted delivery technique to be successful, nanoparticles must be 

capable of transporting through porous media and binding to contaminants under relevant 

hydrogeological conditions. In this study, successful targeted delivery of nanoparticles to sandy aquifer 

material mixed with crude oil was achieved using an active targeting technique based on an amphiphilic 

polymer coating (Figure 12). The effect of the polymer coating on nanoparticle transport capabilities was 

examined and it was found that the molecular structure and concentration of the nanoparticle coating 

greatly influenced nanoparticle recovery through saturated packed columns. Coatings with longer 

polymer molecules and lower polymer concentrations reduced recovery, and it was found that the 

                                                      
† This chapter is adapted from a drafted manuscript: Linley, S.; Thomson, N.R..; McVey, K.; Sra, K.; Gu, F. X. 

Nanoparticle Targeted Delivery to Petroleum Hydrocarbon Impacted Porous Media. Not yet submitted.  
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nanoparticle coating formulation could be adjusted to improve transport while maintaining targeted 

binding behaviour. Critically, this work demonstrated that nanoparticle retention in oil impacted sand 

exceeded that of clean sand in packed column flow through experiments, indicating that a nanoparticle 

targeted delivery strategy for soil contaminated with viscous LNAPLs such as crude oil is possible under 

field-relevant transport conditions. 

4.2 Introduction 

Soil remediation is a complex environmental challenge which often employs slow, costly, and 

environmentally disruptive ex situ treatment techniques9. In situ treatment methods offer a more 

sustainable and potentially more economic approach to remediation8, and it is for these reasons that 

innovative nanotechnology-based remediation techniques, which make use of higher surface area to 

improve adsorption and reaction kinetics, have been the subject of much research over the past 

decade100,176. Nanomaterials such as nano Zero Valent Iron (nZVI)110,140,177,178, bimetallic nanoparticles179–

181, iron oxide182,183, and carbon nanomaterials184–186 have been investigated as remediation agents or 

adjuncts for remediation of organic contaminants in soil. Typical deployment strategies for nano-based 

remediation technologies involve direct injection of a nanoparticle suspension to the contaminated 

area178,187, and as a result, much research effort has been devoted to finding nanoparticle coating materials 

which facilitate efficient transport in porous media and maintain the nanomaterial’s treatment 

capability187. Recent work by Bossa et al. has demonstrated the potential for Cellulose Nanocrystal (CNC) 

coatings to enhance both the mobility and reactivity of nZVI in packed columns and demonstrate that 

nanoparticle transport and remediation capability is strongly dependent on the selected nanoparticle 

coating material188. These deployment strategies rely on a blanket approach to in situ remediation, 

delivering treatment agents to all areas of a contaminated site irrespective of local heterogeneity in 

contaminant distribution. Since a large volume of soil can be contaminated by relatively small amounts of 

NAPLs, this can lead to inefficient use of remediation agent, increasing the cost and environmental 

impact of remediation189. 

Targeted nanoparticle delivery is a concept widely accepted and successfully deployed in 

nanomedicine which relies on physical and chemical properties of target cells to improve drug delivery 

efficiency and reduce damage to healthy cells123,190,191. This treatment strategy has proved particularly 

interesting in oncological studies wherein drug-encapsulating nanoparticles are functionalized with 

ligands complementary to receptors found on diseased cells, promoting uptake of the nanoparticles by 

cancerous tissue and ensuring the drug reaches its intended target190. The challenge of in situ soil 

remediation is, in many ways, similar to chemotherapy: a treatment agent must be delivered to 
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contaminated areas which have distinct physical and chemical properties. In both cases, the efficiency and 

economics of the treatment may be improved through the application of targeted delivery strategies. 

Targeted delivery of nanomaterials to contaminated porous media has previously been demonstrated with 

some success by adopting what would, in nanomedicine, be referred to as an ‘active targeting’ technique. 

That is, a nanoparticle is functionalized with a surface coating that facilitates favourable chemical 

interactions with the targeted substance. Previous examples of this targeted delivery concept for 

environmental applications has been investigated for targeting of DNAPL contaminants, often chlorinated 

hydrocarbons118,119,189. In this work, a similar targeting strategy is employed for targeting viscous 

LNAPLs, and nanoparticles are coated with Pluronic, an inexpensive amphiphilic block copolymer with 

hydrophilic poly(ethylene oxide) (PEO) segments providing stability in aqueous suspension and a 

hydrophobic poly(propylene oxide) (PPO) segment providing favourable hydrophobic interactions 

between the nanoparticle and the target contaminant, crude oil. 

Successful deployment of a nanoparticle targeted delivery strategy for remediation relies on the 

success of three key features: 1) ability of the nanoparticle to transport through porous media to the site of 

the contaminant, 2) ability of the nanoparticle to preferentially attach to the target contaminant, and 3) 

ability of the nanoparticle to directly or indirectly effect the degradation of the target contaminant. Our 

previous work on feature 2) from this list has demonstrated that Pluronic-coated nanoparticles have 

attachment affinity for crude oil-impacted sands compared to clean sands. This work seeks to demonstrate 

feature 1) through successful transport of Pluronic-coated nanoparticles through real sandy aquifer porous 

media and determine how coating formulation influenced nanoparticle recovery. In addition to this, we 

establish that nanoparticle transport and binding can be achieved in column flow-through conditions, 

indicating the viability of nanoparticle targeted delivery strategies in soil materials under relevant 

hydrogeological conditions. 

4.3 Experimental 

4.3.1 Materials 

Iron (II) sulfate heptahydrate (FeSO4·7H2O, > 99%), iron (III) chloride hexahydrate (FeCl3·6H2O, 

> 99%), ammonium hydroxide (NH4OH, 28-30% in water), dichloromethane (DCM, > 99%), and oleic 

acid (> 90%) were purchased from Sigma Aldrich. Hydrochloric acid (37%) and ethanol (ACS grade, 

99%) were purchased from Fisher Scientific. Pluronic co-polymers F108, P105, P104, P103, P123, and 

L62 were gifted by BASF Canada. Pluronic F127 was purchased through Sigma Aldrich. Crude oil 

(heavy, sour crude, API gravity 13.3, density 0.977 g/cm3, viscosity 474.5 cSt @ 40 °C) was provided by 

Chevron Energy Technology Company. Natural aquifer material (Borden sand) was obtained from 

Canadian Forces Base Borden, ~100 km north of Toronto, Canada (see Appendix B for detailed soil 
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characteristics). Oil-impacted Borden sand (OBS) was prepared by dissolving crude oil in DCM at a 

concentration of ~60 g/L, mixing it with dry, disinfected Borden sand, and evaporating the DCM such 

that the sand was homogenously coated with oil at a concentration of 1.5% (m/m).  

4.3.2 Nanoparticle Synthesis 

Nanoparticle synthesis was adapted from a previously reported method163. FeSO4·7H2O and 

FeCl3·6H2O were added to deoxygenated water at a molar ratio of 2:3 (FeSO4:FeCl3), followed by 

NH4OH and oleic acid at final concentrations of 4 and 0.22 mol/L, respectively. This solution was stirred 

at 70 °C for 1 h, then stirred at 90 °C under flowing N2 for 1 h. After cooling to room temperature, the 

black, magnetic precipitate was recovered by magnetic decantation and washed 3x by deoxygenated 

Millipore DI water (Millipore Elix 5), and then 3x by ethanol before being dried under flowing N2.  

4.3.3 Nanoparticle Phase Transfer 

Dried nanoparticles and oleic acid were added to hexane such that the final concentrations were 

90 g/L and 1% v/v, respectively. The resulting suspension was added to various aqueous solutions of 

Pluronic co-polymer(s) and probe sonicated for 30 min to emulsify the water and hexane phases (Fisher 

Scientific FB505 Sonic Dismembrator, 200 W). The emulsified nanoparticle sample was transferred to a 

separatory funnel and separated over 48 h. The resulting aqueous nanoparticle suspensions were diluted 

by a factor of 10 and stored until used. 

4.3.4 Column Flow-through Experiments 

Borden sand was disinfected at 90 °C prior to use. 15 cm-long Plexiglas columns (I.D. = 3.8 cm) 

were packed with either clean Borden sand (CBS) or OBS by wet-packing and dry-packing, respectively. 

After dry-packing the OBS, the column was flushed with CO2 gas and saturated bottom-to-top with 

Millipore water. Following packing, all columns were flushed with Millipore water bottom-to-top 

overnight to ensure full saturation prior to nanoparticle injection. Columns were inverted and as-prepared 

nanoparticle suspensions were injected for 30 minutes top-to-bottom at an average flow rate of 18 cm3/h, 

after which Millipore water was injected at the same flow rate. Outflow samples were collected every 20 

minutes from the onset of injection until 100 minutes had passed, after which outflow samples were 

collected every 10 minutes. For transport and binding experiments, CBS and OBS columns were prepared 

and nanoparticle injection was conducted identically up to 100 minutes. After 100 minutes had passed, 

injection was paused for 40 h such that the nanoparticle slug maintained contact with the CBS or OBS for 

a length of time suitable to observe nanoparticle attachment. After 40 h, outflow sampling resumed every 

10 minutes for an additional 260 minutes. 
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4.3.4 Analyses 

Transmission Electron Microscopy was performed using a Philips CM-10 electron microscope. 

Samples were prepared by drying 5 µL of aqueous nanoparticle suspension as prepared in the phase 

transfer section on a 400-mesh formvar-coated copper grid (Ted Pella). 

Nanoparticle concentration in aqueous suspension was assessed using Inductively Coupled Plasma 

Atomic Emission Spectroscopy (ICP-AES; Teledyne Leeman Prodigy). 1 mL of collected outflow 

samples were acid digested using 0.2 mL 37% HCl and diluted to a total sample volume of 10 mL before 

quantifying iron concentration. 

4.4 Results and Discussion 

Various Pluronics were investigated to examine the effect of coating molecular structure on 

transport properties of the nanoparticles. Information regarding the selected Pluronics are provided in 

Table 5. Pluronic samples are identified by a three-part alphanumeric code which describes physical 

appearance, MWPPO divided by 300, and % total MWPEO divided by 10. For example, the identifier F127 

indicates the polymer has a solid appearance at room temperature (F = flakes, P = paste, L = liquid), a 

MWPPO
 of 3,600 g/mol (12 x 300 = 3,600), and that its total MW is 70% PEO (7 x 10 = 70). Pluronic 

synthesis can be easily altered to produce polymers with varying PPO and PEO block sizes, resulting in 

similar polymers with widely varying physical properties dependent on molecular weight. 

Table 5. Properties of Pluronic coating polymers discussed in Chapter 4. 

Polymer 

ID 

MW 

(g/mol) 

Structure PPO MW 

(g/mol) 

PEO MW 

(g/mol) 

Hydrophilic/Hydrophobic 

number ratio 

L62 2,250 PEO5-PPO31-PEO5 1,800 450 0.32 

P123 5,140 PEO17-PPO62-PEO17 3,600 1,540 0.55 

P103 4,290 PEO15-PPO52-PEO15 3,000 1,290 0.58 

P104 5,000 PEO23-PPO52-PEO23 3,000 2,000 0.88 

P105 6,000 PEO34-PPO52-PEO34 3,000 3,000 1.31 

F127 12,000 PEO95-PPO62-PEO95 3,600 8,400 3.06 

F108 15,000 PEO136-PPO52-PEO136 3,000 12,000 5.23 

 

4.4.1 Effect of Nanoparticle Coating on Morphology and Transport Efficiency 

TEM images detailing particle morphology when coated by the various Pluronic polymers reveal 

that size and morphology is consistent between coating type when a constant coating concentration of 10 

g/L is used (Figure 13). The average particle size for each panel is provided in Table S1 of the 

supplementary information, showing that there is no appreciable size difference between coating types 

and gives an average particle size of 8.08 nm ± 0.76 nm across all panels. DLS data supports this 

observation (Table 6), showing that the particle hydrodynamic diameters fall within the range of 25 – 50 
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nm with an average diameter of 33.6 nm and an average dispersity of 0.227. Although the sizes vary 

modestly, there is no trend relating nanoparticle hydrodynamic diameter to Pluronic coating type and no 

obvious morphological differences in terms of particle size, shape, or aggregation. On average, the 

particles are smooth, distinct, and spherical single-crystals which is consistent with the appearance of 

similar Pluronic-coated magnetite particles produced in previous work192,193. 

 

Figure 13. TEM composite image of 6 nanoparticle samples coated with different Pluronic polymers. A) 

F127, B) F108, C) P105, D) P104, E) P103, F) P123. 

Table 6. Nanoparticle Sizes from TEM and DLS sizing. TEM diameter is the average of 100 particle 

measurements from the corresponding panel in Figure 13. 

Sample 

TEM Average 

Diameter (nm) 

Standard Deviation 

(nm) 

DLS Number Average 

Diameter (nm) Dispersity 

F127 7.88 1.99 26.4 0.198 

F108 8.31 1.92 39.4 0.188 

P105 8.37 1.90 47.1 0.149 

P104 7.67 2.03 22.6 0.202 

P103 8.45 1.81 30.5 0.302 

P123 7.82 1.53 35.5 0.321 

Average 8.08 0.76 33.6 0.227 

 

The influence of polymer coating on nanoparticle transport and recovery was investigated 

through a series of transport experiments in saturated columns of packed Borden sand (Figure 14). 

Recovery was calculated as the area under the elution curve divided by the injected mass in the 

nanoparticle slug volume. It was found that for the same PPO centre segment (MW: 3600 g/mol in “12” 

Pluronics; MW: 3000 g/L in “10” Pluronics), as the size of the PEO segments increased, nanoparticle 
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recovery decreased. For example, F108 (the 3000 g/L PPO segment coating with the longest PEO chains) 

coated particles exhibit significantly lower recovery of 61.1 ± 1.0% than P103 (the 3000 g/L PPO 

segment coating with the shortest PEO chains) coated particles with recovery of 97.4 ± 7.2%. The most 

likely explanation for this behaviour relates to Pluronic adsorption on the silica surface of the Borden 

sand. The Pluronic polymers are held to the inner, hydrophobic SPION cores of the nanoparticles through 

hydrophobic forces, and as such, the binding is strong but not permanent192,194. Hydrogen bonding 

interactions between the oxygen of the PEO chains and acidic metal oxide surface groups such as silanol 

have been previously demonstrated in the literature171, and this is likely occurring on the surface of the 

Borden sand. This may cause the Pluronic to be stripped away from the nanoparticle, resulting in 

destabilization, aggregation with other stripped nanoparticles, and deposition within the column. As the 

Pluronic coating’s PEO chain length is decreased, fewer PEO segments are available for hydrogen 

bonding and are held closer to the core of the particle, restricting interaction with silanol groups present in 

the column and allowing the nanoparticles to pass through less impeded. Larger PPO segment-coatings 

(“12” Pluronics) appear to have lower recovery when compared to their shorter counterparts with PEO 

chains of similar length (F108 vs F127; P103 vs P123) implying that increased hydrophobicity facilitates 

destabilization of the particles once Pluronics are stripped from their surface. 
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Figure 14. Nanoparticle elution curves resulting from transport through 15 cm saturated packed columns 

for particles coated with various Pluronic polymers. A) F127, B) F108, C) P105, D) P104, E) P103, F) 

P123. 

In addition to the effect of various Pluronic coating types, the effect of different Pluronic coating 

concentrations was also investigated with respect to nanoparticle recovery through saturated soil columns. 

The Pluronic formulation selected for these experiments was a blend of Pluronic L62 and Pluronic P104 

in a 4:1 ratio as this was found to exhibit preferential NP binding toward oil-impacted sand in previous 

studies195 (see Chapter 3) and predicts good transport based on Figure 14 (short PPO segment, short PEO 

segments). TEM images of nanoparticles coated with various concentrations of Pluronic can be seen in 

Figure 15, showing that a decreasing Pluronic concentration results in greater nanoparticle aggregation.  
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Figure 15. TEM Composite showing nanoparticle morphology at different Pluronic coating 

concentrations. A) 1 g/L, B) 2.5 g/L, C) 5 g/L, D) 10 g/L 

The highest concentration tested, 10 g/L, is the same concentration used for producing the NP 

seen in Figure 13, and the size, morphology, and aggregation of the particles seen in Figure 15 D) 

correspond closely to those particles. At coating concentrations as low as 5 g/L, small aggregates of 

nanoparticles are formed (Figure 15 C). Further decrease in concentration to 2.5 g/L and below results in 

the presence of multiple large aggregates with sizes exceeding 100 nm. While the individual nanoparticles 

seen in Figure 15 remain small with low dispersity, DLS sizing confirms the presence of large aggregates 

at lower coating concentrations by showing that the number-average hydrodynamic particle diameter 

increases from 43.8 nm at 10 g/L (comparable to DLS results from particles shown in Figure 13) to 145.0 

nm at 1 g/L. The cause for this change in morphology with decreasing coating concentration is likely due 

to incomplete surface coverage of Pluronic on the particles. Adsorption of Pluronic on oleic acid-coated 

magnetite particles has previously shown to follow a Freundlich adsorption isotherm resulting in a drastic 

increase of adsorbed polymer over a moderate Pluronic concentration range of 0.1 to 3 mmol/L193. The 

concentration range of Pluronic in this work varies exactly within this range producing large aggregates at 

1 g/L (~0.4 mmol/L) and with individually stabilized particles appearing at 5 g/L (~2 mmol/L). This 

incomplete coating at lower concentrations leaves areas of the hydrophobic SPION core particles 

exposed, driving aggregation (Figure 15 A, B), while at higher concentrations Pluronic adsorption 

increases and smaller aggregates or individual particles are stabilized (Figure 15 C, D). 
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The transport performance of nanoparticles coated with various concentrations of Pluronic was assessed 

in 15 cm saturated columns packed with Borden sand, and it was found that recovery followed a general 

trend of increasing with higher Pluronic coating concentrations (Figure 16).  

 

Figure 16. Nanoparticle elution curves resulting from transport through 15 cm saturated packed columns 

for particles coated with L62-P104 Pluronic in a 4:1 ratio at various concentrations: A) 1 g/L, B) 5 g/L, C) 

10 g/L. 

This trend of decreasing recovery with decreasing Pluronic concentration is likely related to both 

particle morphology and Pluronic adsorption to Borden sand. In the first case, when a single large 

nanoparticle aggregate (1 g/L coating) is deposited in the column, this represents a greater mass of iron, 

and a larger fraction of the total injected nanoparticle mass than when a single individual nanoparticle is 

deposited (10 g/L). In the second case, due to lower Pluronic adsorption on the particles, a smaller amount 

of Pluronic must be stripped away before they lose stability and deposit in the columns. Overall, the 

observed trend indicates that lower concentration coatings result in increased size, but decreased 

nanoparticle recovery in a transport scenario, while the opposite is true for higher concentration coatings.  

4.4.2 Nanoparticle Transport and Binding in Clean and Oil-Impacted Porous Media 

To demonstrate the ability of nanoparticles to transport through packed columns and bind to a 

contaminant of interest, the recovery of nanoparticles through clean Borden sand (BS) packed columns 



48 

 

was compared to nanoparticle recovery through oily Borden sand (OBS) packed columns. This was first 

tested using the 1 g/L 4:1 L62:P104 coating formulation (Figure 17). 

 

Figure 17. Nanoparticle elution profiles for SPIONs coated with 1 g/L 4:1 L62:P104 Pluronic. Panels 

show recovery through A) clean Borden sand and B) oily Borden sand (1.5% m/m). 

The average recovery of nanoparticles passing through clean Borden sand was found to be 29.2% 

(Figure 17 A; estimated deposition of 7.6 mg/kg) while average recovery of nanoparticles passing 

through oily Borden sand was found to be 13.6% (Figure 17 B; estimated deposition of 9.8 mg/kg). The 

elution profiles through clean Borden sand closely match the transport data presented in Figure 16. In the 

presence of oily Borden sand, greater nanoparticle attachment due to hydrophobic interactions between 

the nanoparticles and the crude oil results in increased nanoparticle retention. We anticipate that the 

binding behaviour arises from two interactions, the first being hydrophobic forces between the PPO 

segments of the Pluronic coating and the crude oil, and the second being hydrophobic forces between the 

oleic acid inner coating and the crude oil. Previous literature suggests that binding interactions between 

oleic acid-coated magnetite and hydrophobic contaminants is improved through disruption of the anionic 

oleic-acid double layer by small molecules or polymers122. If the second of these two interactions is 

principally responsible for the targeted binding behaviour of these nanoparticles, moderate Pluronic 

adsorption as seen in the 1 g/L or 2.5 g/L coatings may be advantageous for allowing interaction between 

the oleic acid and the crude oil while still providing sufficient bilayer disruption.  
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Based on the results of Figure 16, increasing the coating concentration of the nanoparticles improved 

recovery through Borden sand packed columns. This transport and binding experiment comparing clean 

to oily packed columns was repeated using a coating formulation of 2.5 g/L 4:1 L62:P104 SPIONs 

(Figure 18) to test whether improved nanoparticle transport through clean soil could be increased while 

maintaining a similar degree of binding to that seen in Figure 17. The average recovery of 2.5 g/L 4:1 

L62:P104 SPIONs passing through clean Borden sand was found to be 72.6% (Figure 18 A; estimated 

deposition of 3.4 mg/kg) while the average recovery of the same particles passing through oily Borden 

sand was found to be 59.4% (Figure 18 B; estimated deposition of 6.1 mg/kg).  

 

Figure 18. Nanoparticle elution profiles for SPIONs coated with 2.5 g/L 4:1 L62:P104 Pluronic. Panels 

show recovery through A) clean Borden sand and B) oily Borden sand (1.5% m/m). 

The mass recovered through the clean Borden sand column was higher than expected considering 

the recovery of 5 g/L-coated SPIONs shown in Figure 16, but the profile appears consistent with the 

nanoparticle transport behaviour of other samples. Similar to the 1 g/L-coated particles tested in Figure 

17, 2.5 g/L-coated particles experience greater attachment in the presence of oily Borden sand as opposed 

to clean Borden sand, a behaviour attributed to hydrophobic interactions between the nanoparticle surface 

coating and the crude oil in the column. These results demonstrate that targeted binding of engineered 

nanoparticles to hydrophobic contaminants is possible in a field-relevant model system of packed 

columns. 
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4.5 Conclusions 

In summary, this work presents three key findings which support the application of nanoparticle 

targeted delivery to contaminated soil. Most importantly, comparison of nanoparticle retention in clean 

and oil-impacted saturated sandy aquifer material shows that nanoparticles are preferentially retained by 

the contaminated sediment under flow-through column conditions. This allows the conclusion that the 

implementation of nanoparticle targeted delivery may be extended to field conditions which experience 

similar hydrogeological behaviour. Second, it was found that nanoparticle coating formulation, both in 

terms of coating molecule and coating concentration, affected the recovery of nanoparticles through 

packed columns. As the size and relative hydrophilic content of the polymer coating increased, although 

particle morphology remained unchanged, recovery through packed columns decreased. As the coating 

concentration of the nanoparticles increased, nanoparticle morphology tended towards individually 

stabilized nanoparticles rather than aggregates, and recovery through packed columns increased. Finally, 

the findings regarding the influence of coating concentration on nanoparticle recovery through packed 

columns were able to be implemented to improve overall mobility of nanoparticles in a transport and 

binding scenario without compromising their targeted delivery behaviour. 

 These findings have several implications for the soil remediation and geophysical monitoring 

spaces. With the demonstration of nanoparticle targeted delivery in packed column scenarios, we 

anticipate similar application in real, field scale environments. Preferential attachment behaviour of 

nanoparticles to contaminated soil is provided by the Pluronic surface coating, and we anticipate that this 

coating may be applied to any type of nanoparticle using a similar two-step coating technique. As such, 

preferential accumulation of nanoparticles treatment agents or adjuncts, such as nZVI or magnetite, at the 

contaminant interface may serve to improve remediation effectiveness and efficiency. In a similar vein, 

accumulation of nanoparticles that may act as contrast agents may serve as reporters to indicate and map 

zones of contamination in heterogenous contaminated sites. Some of our recent work has already 

investigated application of the nanoparticles presented in this work as reporters for X-Ray Computed 

Tomography (XCT) and Spectral Induced Polarization (SIP), indicating potential for a targeted delivery 

geophysical monitoring technology. Nanoparticle targeted delivery has the potential to enhance various 

environmental remediation and monitoring techniques, and this work takes a critical step towards this 

goal by demonstrating its effectiveness in real soil material using packed columns. 
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Chapter 5 

Factors Affecting Nanoparticle Targeted Binding to PHC-

Impacted Sediments† 

 

 

Figure 19. Schematic illustrating conditions under which preferential NP binding occurs. NP binding to 

PHC-impacted sediments decreases with increasing NP Pluronic coating concentration, increases with 

increasing PHC concentration and PHC chain length, and is unaffected by pH conditions. 

5.1 Summary 

Nanoparticle agents may enhance the remediation of soils and site characterization efforts, and delivery 

efficiency of these agents to their intended target can be improved with a targeted delivery strategy. 

Nanoparticles coated with Pluronic, an amphiphilic block co-polymer, demonstrate targeted binding 

behaviour toward viscous light non-aqueous phase liquids such as heavy crude oil. Various factors 

including coating concentration, oil concentration, oil type, temperature, and pH were assessed to 

determine their effect on nanoparticle binding to heavy crude oil-impacted sandy aquifer material. 

Nanoparticle binding was increased by decreasing the coating concentration, increasing oil concentration, 

using heavier oil types, and increasing temperature, while pH over the range of 5 to 9 was found to have 

no effect (Figure 19). Nanoparticle transport and binding in columns packed with clean and oily porous 

media demonstrated the ability for efficient nanoparticle targeted binding. For the conditions explored, 

                                                      
† This chapter is adapted from a drafted manuscript: Linley, S.; Thomson, N.R..; McVey, K.; Sra, K.; Gu, F. X. 

Factors Affecting Nanoparticle Targeted Binding to PHC-Impacted Sediments. Not yet submitted.  
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the attachment rate coefficient in clean sand was 2.10±0.66 x 10-4 s-1 for the BS columns; however, for the 

OBS columns a minimum attachment rate coefficient of 8.86±0.43 x 10-4 s-1. The higher attachment rate 

in OBS indicates that NP may preferentially accumulate in oil-impacted sand within a heterogeneously 

impacted site – demonstrated with predictive modelling using 1D-USAT. This work contributes to our 

understanding of some of the application conditions that are required for efficient targeted binding of 

nanoparticles to crude-oil impacted porous media. 

 

5.2 Introduction 

As the behaviour of engineered nanomaterials are better-understood, they are being more 

frequently applied as agents for environmental remediation and monitoring178,196. With increased 

utilization of these nanomaterials, questions regarding environmental fate and transport efficiency have 

been the focus of significant research in recent years. Transport efficiency is an important consideration 

for nanomaterial application in porous media, as it dictates how much of the agent reaches its target 

destination versus unwanted deposition in non-target zones. Initially, research was focused on improving 

nanoparticle (NP) mobility in porous media. For example, carboxymethyl cellulose (CMC) has found 

application as a coating material for zero-valent iron which greatly improves mobility and 

dispersibility197,198. The concern over environmental fate of engineered nanomaterials in compounded by 

improvements in transport efficiency. As NPs become more mobile in porous media environments, their 

movement, ultimate destination, and environmental impact becomes less predictable, prompting recent 

investigation into how coating formulation175,199, soil composition200,201, organic matter202,203, flow 

rate204,205, and saturation influence NP mobility and environmental fate. 

The concept of targeted delivery of NPs to contaminants present in porous media has been 

previously investigated with some success119,122,206. Targeted delivery allows particle mobility to be 

enhanced by using a coating material and allays some of the concern associated with environmental fate 

of nanomaterials. By preferentially accumulating NPs in target areas through the use of non-specific 

hydrophobic interactions, fewer NPs move past the zone of interest and are thus used more efficiently. 

Additionally, once bound to the target site, NPs have restricted mobility and their environmental fate 

becomes more predictable. This concept, borrowed from targeted delivery as applied in nanomedicine 

applications, has the potential to reduce cost and increase treatment efficiency as well as minimize 

unwanted side-effects due to uncontrolled release of NPs124,147,191,207. These design goals for medical 

targeted delivery present parallel solutions to the problems encountered in in situ nanoremediation of 

soils. 
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The NP structure investigated in this paper composes three distinct layers: 1) an iron oxide NP 

core coated in 2) oleic acid to impart hydrophobic characteristics, and further coated by 3) an amphiphilic 

polymer, Pluronic, which provides stability in aqueous media and hydrophobic interactions with target 

contaminants. This structure is one that has already seen successful deployment in biomedical 

nanotechnology as a drug delivery and targeted contrast agent for anti-cancer applications167,172. In such 

applications, targeting typically relies on a passive, size-based retention phenomena in defective tumor 

vasculature known as ‘Enhanced Permeability and Retention’, however active targeting is possible 

through the conjugation of specific antibodies to the surface of the particle172. The outer Pluronic layer 

has also been found to behave as an antibiofouling coating with robust attachment to the NP core, 

allowing good stability of the particles in physiological media208. In medical applications, hydrophilic 

Pluronics are typically selected to enhance stability, but our previous work has shown that active targeting 

can be achieved by selecting suitably hydrophobic Pluronic structures to improve non-specific targeting 

interactions71.  

Pluronic block co-polymers comprise a class of amphiphilic polymers which have been 

extensively investigated for their innate physical and chemical properties, as well as their application as 

nanomaterial coatings167,169,172,209–211. Their structure is given as (EO)x-(PO)y-(EO)x, where EO represents 

ethylene oxide and PO represents propylene oxide. It has been previously demonstrated that the block 

sizes, x and y, have a significant impact on the adsorptive and micellization properties of Pluronic. For 

example, as the block size of propylene oxide increases, the critical micelle concentration and critical 

micellization temperature both decrease209. In addition to the structural properties of the coating itself, it is 

also well known that various other environmental parameters affect interfacial behaviour of molecules 

and NPs, for example, temperature212, pH, and surface chemistry. In this work, we seek to elucidate the 

effect of various application parameters on the targeted binding of engineered NPs to a viscous light non-

aqueous phase liquid (LNAPL). Understanding how these properties impact targeted binding provides the 

ability to predict the conditions under which targeted binding is most effective. To this end, the objectives 

of this study were to i) evaluate the effect of various environmental parameters on NP targeted binding in 

batch studies, and ii) apply these findings in a series of stop-flow NP transport and binding column trials 

to demonstrate the capability of targeted NP binding in a hydrodynamic porous medium system. 

5.3 Materials & Methods 

5.3.1 Materials 

Iron (II) sulfate heptahydrate (FeSO4·7H2O, > 99%), iron (III) chloride hexahydrate (FeCl3·6H2O, 

> 99%), ammonium hydroxide (NH4OH, 28-30% in water), dichloromethane (DCM, > 99%), oleic acid 

(> 90%), Sodium Bromide (NaBr, ≥99%) and acetic acid (≥99.7%) were purchased from Sigma Aldrich. 
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Hydrochloric acid (37%) and ethanol (ACS grade, 99%) were purchased from Fisher Scientific. Pluronic 

co-polymers P104 and L62 (Table 7) were gifted by Brenntag Canada and BASF Canada. Borden Sand 

(d10 = 0.075 mm; Cu = 2.7) was obtained from the University of Waterloo Groundwater Research Facility 

at the Canadian Forces Base (CFB) in Borden, ON, Canada213 (see Appendix B for soil characterization). 

Crude oil (heavy, medium, and light) was provided by Chevron Energy Technology Company. All 

materials were used as received. 

Table 7. Properties of pluronic co-polymers used in Chapter 5. 

Polymer 

ID 

Mn 

(g/mol) 

Structure Mn of 

PPO 

(g/mol) 

Mn of 

PEO 

(g/mol) 

Cloud Point in 

1% aq. sol’n 

(°C) 

L62 2,250 PEO5-PPO31-PEO5 1,800 450 32 

P104 5,000 PEO23-PPO52-PEO23 3,000 2,000 81 

 

5.3.2 Nanoparticle Synthesis 

Iron oxide NPs were prepared as reported in our previous work71. Briefly, FeSO4·7H2O and 

FeCl3·6H2O were added to deoxygenated water at a molar ratio of 2:3 (FeSO4:FeCl3). Sufficient NH4OH 

and oleic acid were added to achieve final concentrations of 4 and 0.22 mol/L, respectively. This solution 

was stirred at 70 °C for 1 h, then stirred at 90 °C under flowing N2 for 1 h to purge evolved NH3 gas. 

After cooling to room temperature, the black, magnetic precipitate was recovered by magnetic 

decantation and washed 3x by deoxygenated Millipore DI water (Millipore Elix 5), and then 3x by 

ethanol before being dried under flowing N2.  

Phase transfer of the hydrophobic nanoparticles to water was completed by using Pluronic 

polymer. A mixture of oleic acid in hexane (1% v/v) was prepared to which dried NPs were added at a 

concentration of 90 g/L and sonicated for 10 min (VWR “Symphony” 1.9 L Ultrasonic Cleaner). The 

resulting suspension was added to various aqueous solutions of Pluronic co-polymers at concentrations 

between 1 and 10 g/L, and probe sonicated for 30 min to emulsify the water and hexane phases (Fisher 

Scientific FB505 Sonic Dismembrator, 200 W). The emulsified NP sample was transferred to a separatory 

funnel and separated over 48 h. The resulting aqueous NP suspensions were stored until further use. Prior 

to application in binding batch tests or transport & binding column tests, the aqueous NP suspensions 

were diluted with Millipore DI water by a factor of 100 and 10, respectively.  

5.3.3 Nanoparticle Binding Batch Tests 

Oil-impacted Borden Sand (OBS) was prepared by dissolving the specified type of crude oil 

(light, medium, or heavy) in DCM, mixing it with dry Borden sand, and evaporating the DCM such that 

the final concentration of crude oil in sand reached the desired mass fraction (m/m%) for a specific trial. 
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This approach was used to create a homogeneous crude oil and sand mixture. 15 g of OBS was then 

added to a 20-mL cylindrical glass vial, followed by 10 mL of diluted NP suspension. For temperature 

parameter tests, vials were placed in an oil bath set to the specified temperature. For pH parameter tests, 

acetic acid or ammonium hydroxide was added dropwise until the desired pH was reached. NP samples 

were maintained under these binding conditions for 40 hours before the NP suspension was recovered by 

filtration (1.5 µm glass fiber, Whatman).  For control, “clean” Borden Sand (BS) samples were prepared 

as above except no oil was present in the added DCM.  Three replicates of each sample were prepared to 

capture variability.  

5.3.4 Nanoparticle Transport and Binding Tests 

Plexiglas columns (length: 15 cm, inner diameter: 3.8 cm) were wet packed with BS, or dry 

packed with OBS (1.5% crude oil m/m), placed in a large oven (Binder ED53) set to 50 oC (based on the 

NP binding batch test results), and flushed with Millipore water overnight at a flow rate of 0.1 mL/min to 

ensure saturation. The NP solution ([NP] ≈ 500 mg/L) was then injected at a flow rate of 0.3 mL/min for 

30 minutes (9 mL injection pulse), followed by Millipore water for an additional 70 minutes. At 100 

minutes, the flow was stopped (stop-flow conditions) for 44 hours (2640 minutes) to allow the NPs in this 

system to have the near equivalent interaction time as the binding batch tests (40 hours). At total elapsed 

time of 2740 minutes, the flow was resumed by injected Millipore water at a flow rate of 0.3 mL/min, and 

effluent samples were taken every 10 minutes until 3040 minutes. Immediately following each NP 

transport and binding test, a conservative tracer test was performed on each column. Each tracer test 

consisted of the injection of a 500 mg/L bromide (Br-) solution for 10 minutes followed by Millipore DI 

water for 2 hours at a continuous flow rate of 1 mL/min.  The effluent was periodically sampled. 

5.3.5 Analysis 

Aqueous NP samples were acid digested in 6 mol/L HCl prior to analysis by ICP-OES (Prodigy) 

to quantify total iron (method detection limit (MDL) of 4 µg/L).  NP mass bound on the OBS or the BS 

(mg of NPs/dry kg of sediment) was estimated from the difference between the initial and final (after 40 h 

of exposure) aqueous NP concentration. In figures showing [Fe], ‘initial’ refers to the concentration of 

iron in solution prior to contact with BS or OBS.  Br- concentration in the effluent samples collected 

during the tracer tests was quantified using ion chromatography (Dionex ICS-1100) with a MDL of 0.5 

mg/L. High Resolution Transmission Electron Microscopy (HR-TEM) analysis was performed using a 

JEOL 2010F with an acceleration voltage of 200 keV. The NPs were dispersed in ethanol, sonicated, and 

a droplet placed on a holey carbon coated Cu grid, which was allowed to air dry before being analysed. 
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5.3.6 Nanoparticle Transport Modelling 

To determine kinetic model parameters that capture the observed binding behavior during the 

stop-flow column experiments, we assumed that the following single site attachment-detachment model 

with a nonlinear Langmuirian blocking coefficient214 along with advective-dispersive transport of the NPs 

in the aqueous phase was sufficient: 
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(24) 

 

 

where Cw is the aqueous NP concentration (g m-3), 𝐷 = ϕ𝐷̃ = 𝛼|𝑞| (m2s-1) is the dispersion coefficient, φ 

is porosity (-), α is dispersivity (m), q is darcy flux (m s-1), ρb is bulk density (kg m-3), kattach and kdetach are 

the NP attachment and detachment rate coefficients (s-1), respectively; Mattach is the mass of NPs attached 

[g kg-1], 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  is the maximum mass of NPs that can be attached [g kg-1], and 𝜓𝑐 is the Langmuirian 

blocking coefficient. The unsaturated flow and solute transport model 1D-USAT215 was used in 

conjunction with the dynamically dimensioned search (DDS) global search algorithm216 within the 

OSTRICH toolkit217 for parameter identification. To estimate the porosity and dispersivity for each 

column, equation ((23) was used without the attachment/detachment terms to simulate the Br- tracer tests.  

The Br- breakthrough curve (BTC) data were chosen as the calibration targets with the root mean square 

error (RMSE) as the objective function. Using column specific porosity and dispersivity values, the NP 

attachment and detachment rate coefficients (kattach and kdetach) were then determined with the observed NP 

BTC data as the calibration targets and a RSME objective function. 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  was assigned a value 

equivalent to the average mass of NPs bound to either the BS or OBS sand from the binding batch test 

performed at 50 oC. These 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  values were assumed representative of binding saturation conditions 

due to the nature of the well-mixed batch tests. A total mass flux boundary condition corresponding to the 

NP or Br- concentration and duration of the pulse injection was specified at the inlet of the column, and a 

zero dispersive flux boundary condition was specified the outlet. A continuous flow rate was used in the 

tracer test simulations, while for the NP transport simulations, stop-flow conditions consistent with the 

NP column experiments were employed. 
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5.4 Results and Discussion 

5.4.1 Effect of NP Pluronic Coating Concentration 

The NPs were characterized by TEM prior to application in the binding batch experiments. It was 

observed that the Pluronic concentration used in the phase transfer stage of preparation (herein referred to 

as coating concentration) had a significant effect on the morphology of the resulting suspension (Figure 

20).  

 

Figure 20. TEM composite showing nanoparticles synthesized with different Pluronic coating 

concentrations: A) 1g/L, B) 2.5 g/L, C) 5 g/L, D) 7.5 g/L, E) 10 g/L. At lower Pluronic coating 

concentrations, nanoparticles agglomerate into larger, spherical aggregates (panels A,B). At higher 

coating concentrations, nanoparticles are individually stabilized and there is an absence of aggregates 

(panels D,E). 

Lower coating concentrations resulted in the presence of small, individually stabilized NPs (7 ± 2 

nm) alongside spherical NP aggregates (115 ± 41 nm) as seen in Figure 20 A. The formation of these 

aggregates is thought to be due to insufficient Pluronic present to fully saturate the surface of all 

individual NPs. Pluronic adsorption on iron oxide surfaces follows a Freundlich adsorption isotherm210, 

and previous literature has reported that a sharp increase in Pluronic surface concentration occurs in the 

range of 0.1-3 mmol/L193, which corresponds closely with the concentration range used for the NPs 

shown on Figure 20 A)-E) (approximately 0.4 – 4.4 mmol/L). As the Pluronic concentration increases to 

10 g/L, the amount of Pluronic adsorbed on the particle surface reaches sufficient density to stabilize 
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individual particles, and the presence of large aggregates diminishes (Figure 20 C) and disappears 

(Figure 20 D & E).  

 

Figure 21. Effect of Pluronic NP coating concentration on binding to PHC-impacted sediments: A) 

concentration of iron in NP suspension initially, and after contact with clean sand or crude oil-impacted 

sand; B) normalized concentration of iron in NP suspension after contact with clean sand or crude oil-
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impacted sand; C) estimated mass of NP bound to sand after contact with clean sand or crude oil-

impacted sand. 

 

Pluronic coating concentration of NPs was found to influence their binding behaviour in the 

binding batch tests. As the coating concentration decreased, the mass of NPs bound to oil-impacted sand 

increased, reaching a maximum of 20.0 ± 1.1 mg/kg for a coating concentration of 1 g/L, and a minimum 

of 15.4 ± 0.8 mg/kg for a coating concentration of 7.5 g/L. The average mass of NPs bound to clean sand 

for these trials was 7.8 ± 1.4 mg/kg and was not influenced by coating concentration (Figure 21). This is 

particularly evident when normalizing by the initial NP concentration, or mass bound per mass of sand 

(Figure 21 B & C). Previous work by Wang and Acosta indicates that charge disruption of the oleic acid 

layer surrounding similar particles allowed easier interaction of the hydrophobic phases122. We suspect 

that at the Pluronic concentrations explored, there was enough surface coverage to disrupt the oleic acid 

layer and promote hydrophobic interactions, but not enough to completely cover the oleic acid layer. This 

disrupted layer uses interactions from oleic acid and Pluronic to target the crude oil. NPs prepared with a 

1 g/L coating concentration were selected for use in all subsequent binding batch experiments to 

maximize NP binding contrast between clean and oil-impacted sand. 
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5.4.2 Effect of Oil Concentration and Oil Type 

 

Figure 22. Influence of oil concentration (A, B) and type (C) on nanoparticle binding. A) NP binding to 

oil-impacted sand increases as oil concentration in the sand increases. B) Estimated NP binding 

normalized by mass of sand or mass of oil. As the oil concentration in the sand increases, NP increases 

but reaches a threshold point. This is also demonstrated by the decreasing mass of NP bound per mass of 

oil present in the sand. C) NP binding increases as the gravity and hydrocarbon chain length of the oil 

increases. 
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Oil concentration was found to substantially influence NP binding, resulting in an increase from 

9.1 ± 0.8 mg/kg in 0.1% m/m oil-impacted sand to 23.0 ± 1.0 mg/kg in 5.0% m/m oil-impacted sand 

(Figure 22). As the concentration of oil in an impacted sand increases, so does the number of potential 

binding sites. In Figure 22 B, the mass of NPs bound in the oil-impacted sand normalized by the mass of 

oil present in the sample decreases from 1900 ± 920 mg/kg to 280 ± 21 mg/kg as the oil concentration 

increases. Assuming the oil coated the sand homogeneously, adding more oil would only contribute to 

greater thickness of the oil layer surrounding the sand grains without increasing the surface area. The 

flattening of the slope of the mass of NPs bound per mass of sand at ~1.5% crude oil m/m, suggests that 

this oil concentration may be close to the NP binding threshold. 

The type of crude oil used was also found to have an influence on the binding behaviour of NPs. 

Three different types of crude oil were used in this study; a light crude with average carbon-number of 

22.8, a medium crude oil with average carbon-number of 23.4, and a heavy crude oil with average 

carbon-number of 25.1. As the carbon-number of the oil increased, so did the NP binding response 

(Figure 22 C). Previous studies on Pluronic adsorption to hydrophobic surfaces indicated that adsorption 

is strongly dependent on the hydrophobicity of the underlying surface194,218. Without considering the 

influence of functional groups or non-linear hydrocarbons in the different oil samples, an increasing 

average carbon length may produce a more hydrophobic interface, promoting Pluronic interaction with 

the surface, resulting in increased NP binding.  

To investigate the combined influence of oil type and oil content on NP binding behaviour, a 

surface response experimental study was used, blending oils in specific ratios to achieve a linearly-scaled 

average C-number from heavy to light oils, and varying the oil concentration from 1-3% m/m. Details of 

the experimental design and selection of data can be found in Table 8. 

 

Table 8. Selection of variables for surface response plot showing effect of oil concentration and oil type 

on Nanoparticle binding to Borden Sand. 

Sample 

Coded Variable Actual Variable 

Concentration Type 

Concentration 

(m/m %) Type 

1 -1 -1 1 Blend: 70% ‘light’, 30% ‘medium’ 

2 1 -1 3 Blend: 70% ‘light’, 30% ‘medium’ 

3 -1 1 1 Blend: 70% ‘heavy’, 30% ‘medium’ 

4 1 1 3 Blend: 70% ‘heavy’, 30% ‘medium’ 

5 0 -√2 2 100% ‘light’ 

6 0 √2 2 100% ‘heavy’ 

7 -√2 0 2 - √2 100% ‘medium’ 

8 √2 0 2 + √2 100% ‘medium’ 
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9 0 0 2 100% ‘medium’ 

10 0 0 2 100% ‘medium’ 

11 0 0 2 100% ‘medium’ 

12 0 0 2 100% ‘medium’ 

 

 

Figure 23. Surface response plot showing how NP binding is influenced by crude oil concentration and 

oil type. At high oil concentrations, binding significantly increases as oils increase in gravity and 

hydrocarbon chain length. For high gravity oils, binding significantly increases as oil concentration 

increases. The horizontal plane at the bottom of the figure represents nanoparticle binding to clean Borden 

Sand under identical test conditions. 

The results of this study are presented in Figure 23 and supports the type/concentration 

independent observations shown in Figure 22, where increasing oil concentration results in increased NP 

binding and that heavier oil elicits greater NP binding response. This oil type and concentration dependent 

study also indicates that at low concentrations or when using lighter oils, the influence of the other factor 

is greatly diminished. For example, changing the concentration of a heavy oil significantly influences NP 

binding behaviour as clearly shown in Figure 22A, but changing the concentration of a light oil has a 

much less pronounced effect (see the ‘light’ edge of Figure 23). Likewise, at higher oil concentrations, 
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changing the oil type from light to heavy results in a marked increase in NP binding, but at lower oil 

concentrations, the type of oil present has little to no effect. These results indicate that targeting may be 

more efficient in porous media containing high concentrations of a highly hydrophobic LNAPL. All 

samples containing oil resulted in greater NP binding than NP binding to this trial’s clean sand control 

(6.1 ± 0.1 mg/kg) shown as the horizontal plane at the bottom of Figure 23. 

5.4.3 Effect of Temperature and pH 

Conducting binding batch tests at temperatures ranging from room temperature (22 °C) to 60 °C 

revealed that temperature has a significant effect on NP binding behaviour. As temperature increased, NP 

binding to clean sand increased from 3.5 ± 0.9 mg/kg at room temperature to 8.1 ± 2.6 mg/kg at 50 °C 

while NP binding to oily sand increased from 10.5 ± 0.7 mg/kg to 25.4 ± 0.9 mg/kg under the same 

conditions (Figure 24A).  
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Figure 24. Effect of temperature (A) and pH (B) on NP binding to oil-impacted sand. As temperature 

increases, approaching the LCST of Pluronic, binding of NP to oil-impacted sand increases. Over the pH 

range of 5 to 9, pH was not found to significantly influence NP binding to oil-impacted sand. 

Even at a moderate temperature increase to 30 °C, NP binding to clean sand demonstrated no 

appreciable change from 3.5 ± 0.9 mg/kg to 3.6 ± 1.5 mg/kg while NP binding to oily sand almost 

doubled from 10.5 ± 0.7 mg/kg to 20.5 ± 1.8 mg/kg. At temperatures ≥30oC, the difference in observed 

binding between clean and oily sand was maintained at 15.6 ± 1.8 mg/kg, approximately double the 6.9 

mg/kg difference observed at room temperature. Pluronic exhibits a Lower Critical Solution Temperature 

(LCST) whereby the entropy of mixing becomes more unfavourable at higher temperature, eventually 

leading to phase separation (the cloud point) at ~32 °C for L62 and ~81 °C for P104. As water structures 

formed around hydrophobic moieties are disrupted at higher temperatures, it becomes more energetically 

favourable for hydrophobic phases to coalesce, leading to an effective increase in the hydrophobic forces 
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experienced by the Pluronic coating. The increased hydrophobic characteristic of the NPs results in more 

NP binding. This phenomenon has been harnessed in previous work to engineer functional NPs, such as 

crosslinked Pluronic micelles or Pluronic coating NPs which swell and contract with lower or higher 

temperature219–221. As the temperature increases further, water structures around the hydrophilic PEO 

moieties are disrupted and the PEO may hydrogen bond with silanol groups on the grain surface to reduce 

their energy171, leading to the increase in binding to clean sand observed at 60 °C. 

The effect of pH on NP binding was also investigated over a range of pH 5 to 9, and it was 

observed that pH changes within this range had no appreciable effect on NP binding (Figure 24B). The 

pH ranges investigated here are within typical pH ranges for a subsurface system, indicating that 

application of the NP coating investigated in this work should not be limited by pH under typical field 

conditions. This observation is significant as oleic-acid stabilized NPs demonstrate susceptibility to pH 

changes as protonation disrupts the bilayer, and such particles only become lipophilic at low pH122,222. 

With the addition of a neutral surfactant coating unaffected by pH, the application range of the material 

becomes more versatile. It should be noted that the pH adjustments performed in this work do not 

represent the typical acids and bases which contribute to natural pH variations. Furthermore, this 

observation indicates that NP binding is not dependent on DLVO interactions which are affected by 

solution ionic strength223,224. Specific mineral materials or dissolved species may influence NP stability 

and binding behaviour, although prior studies using pluronic-coated NPs in physiological environments 

note good stability in saline aqueous conditions208. Lowering the pH to <5 may result in increased NP 

binding by protonating the oleate later, allowing easier disruption of the oleate surface or easier 

interaction between the oleic acid and the oil/water interface122. It should also be noted that corrosive, low 

pH conditions may also cause dissolution of the iron oxide core of this NP, prohibiting application in low 

pH environments. 

5.4.4 Nanoparticle Transport and Binding in Stop-Flow Systems 

NP transport and binding using 2.5 g/L-coated particles was demonstrated in triplicate using 

columns packed with either BS or OBS. A 2.5 g/L coating concentration was selected for comparison to 

previous work which investigated NP transport and binding under similar conditions at room temperature 

(22 oC) in BS (Chapter 4.4.2 Nanoparticle Transport and Binding in Clean and Oil-Impacted Porous 

Media; Figure 18). These experiments were conducted at 50 oC to take advantage of the improved NP 

binding observed at higher temperature. It was observed that for the BS packed columns the average NP 

recovery (defined as the fraction of total injected NP mass observed in column effluent) under these 

conditions was 54.0 ± 8.6%, while for the OBS packed columns the average recovery was 0.4 ± 0.1% 

(Figure 25).  
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Figure 25. Observed (symbols) and simulated (black line) nanoparticle BTCs in clean (left panels) and 

oil-impacted (right panels) Borden Sand packed columns.  For comparison, the tracer BTCs (red line) are 

shown for simulations using the column specific porosity, dispersivity and stop-flow conditions.   

These results demonstrate affinity for the NPs to bind to this oil-impacted porous medium relative 

to the clean porous medium. Compared to our previous work, NP recovery through BS was moderately 

decreased from 72.6% at room temperature to 54.0% at 50 oC while NP recovery through OBS was 

drastically decreased from 59.4% at room temperature to 0.4% at 50 oC. The average calibrated effective 

porosity for the BS columns (0.36 ± 0.01) and OBS columns (0.38 ± 0.01) were nearly identical (Table 9 

and Figure 26).  

Table 9. Calibrated effective porosity and dispersivity values for each column trial. 

 

Trial 

Clean Borden Sand (BS) Oily Borden Sand (OBS) 

Porosity (-) Dispersivity (cm) Porosity (-) Dispersivity (cm) 

1 0.360 0.0579 0.390 0.0388 

2 0.362 0.0450 0.379 0.0277 

3 0.345 0.0454 0.372 0.0264 
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Figure 26. Comparison of observed (symbols) and simulated (lines) bromide breakthrough curves for the 

columns packed with clean Borden sand (left panels) and oil-impacted Borden sand (right panels).  Each 

experimental system was performed in triplicate (vertically descending from trial 1 to 3). 

In contrast, the average estimated dispersivity for the BS columns (4.9±0.7 x 10-4 m) was larger 

than that for the OBS columns (3.1±0.7 x 10-4 m) indicating that the presence of the oil reduced the 

variations in pore velocity. The average 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  from batch binding tests performed at 50oC was 8.1 ± 2.6 

x 10-3 g kg-1 for the BS, and 25.4 ± 0.9 x 10-3 g kg-1 for the OBS (Figure 24). For the BS columns, the 

average kattach (2.10 ± 0.66 x 10-4 s-1) was estimated to be two-orders of magnitude larger than the average 

kdetach (4.56 ± 1.26 x 10-6 s-1) (Table 2). The magnitude of kattach compares closely to values reported for 

iron oxide nanoparticles under equivalent experimental conditions. In work by Carstens et al., it was 

found that katt values between 6.0 x10-4 and 1.4 x 10-5 were sufficient to describe iron oxide nanoparticle 

deposition in quartz sand during stop-flow periods in 12 cm packed columns223. Since the NP BTCs for 

the OBS packed columns are essentially flat at the MDL, we assumed kdetach to be zero as there is no 

evidence of NP detachment and estimated the minimum kattach required to achieve a maximum NP 

concentration in the effluent equal to the MDL. The required kattach for this BTC condition to be satisfied 

was 8.86±0.43 x 10-4 s-1 (Table 10); approximately 4 times larger than the average kattach estimated for the 

BS columns. 
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Table 10. Estimated attachment-detachment kinetic model parameters from equation (23). 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  values 

were adopted from the binding batch tests (Figure 24, 50oC). Minimum kattach values were estimated for 

the OBS packed columns.  

Column 

Type 

Replicate 𝑴𝒂𝒕𝒕𝒂𝒄𝒉
𝑚𝑎𝑥  (mg∙kg-1)* kattach (s-1) x 104 kdetach (s-1) x 106 RMSE 

BS 

1 

8.1 ± 2.6 

1.34 5.56 4.03 

2 2.39 4.97 16.43 

3 2.58 3.15 9.02 

OBS 

1 

25.4 ± 0.9 

>9.32 0† - 

2 >8.48 0† - 

3 >8.78 0† - 
†assumed since no NPs observed in column effluent 

Establishing these parameters for nanoparticle transport and binding in BS or OBS at 50 oC 

allows us to make some predictions regarding how environmental factors such as oil concentration or oil 

type influence the attachment profile, as well as injection parameters such as flow rate. Figure 27 

presents 1D-USAT predicted attached mass profiles along the length of OBS columns used in this study 

under difference conditions.  
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Figure 27. 1D-USAT simulations of NP attached mass profiles over a 15 cm column under A) different 

flow rates and B) different 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥 . Different 𝑀𝑎𝑡𝑡𝑎𝑐ℎ

𝑚𝑎𝑥  values are representative of how NP binding 

changes with different oil type and concentration. 

For this predictive modelling, a continuous flow scenario was investigated with kattach = 8.86 x 10-

4 s-1 based on the modelling results from Table 10. Porosity and dispersivity values were selected as 0.38 

and 3.1 x 10-4 m, reflecting the average column parameters for OBS columns (Table 9). Injected NP 

concentration was set to 500 mg/L and total injected particle mass was maintained at a constant 4.0 mg 

for all trials. By varying the injection velocity in Figure 27 A), the NP distribution at 8 h along the 

column length is affected. Higher injection velocities result in a NP distribution that penetrates further in 

the column however the bound concentration is below 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥 . This observation suggests that to achieve 

greater NP distribution at bound concentrations below the 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥 , higher injection velocities or flow 

rates may be used. The influence of oil type and concentration on NP binding appears related to the 

𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥 ; in Figure 22 and Figure 23 it is clear that by using higher oil concentrations or longer 

hydrocarbon chains, a higher 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  is achieved. Figure 27 B) demonstrates how the attached mass 

profile responds to different 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  values, and that variation in the parameter by amounts as small as 5 

mg/kg – within the range of effect observed in Figure 22 and Figure 23 – can drastically affect the final 

profile. By using lower oil concentrations or lighter oil types, we can expect that the attached mass is 
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distributed more fully along the total length of the column while the amount of NP retained in the porous 

media closer to the inlet decreases. Factors such as temperature, oil concentration, and oil type have a 

significant effect on binding and transport behaviour of these NP and must be considered when 

attempting to achieve a desired spatial distribution of NP in porous media. 

To investigate the binding behaviour for a spatial scale representative of a potential field 

application where NPs would be injected into a saturated porous medium, a 1.0 m long one-dimensional 

system was simulated (Figure 28). 

 

Figure 28. 1D-USAT simulations of NP attached mass profiles in a 1 m column containing an impacted 

zone under continuous flow conditions. The column geometry consists, from top to bottom, of a 50 cm 

zone of BS, a 30 cm zone of OBS, and a final 20 cm zone of BS. 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥   and kattach/kdetach values were 

selected for each zone according to the average values from Table 10. Panel A) shows how attached mass 

profile changes with flow rate (constant injection concentration = 400 mg/L) and panel B) shows how 

attached mass profile changes with input concentration (constant flow rate = 4 x 10-6 m/s). 

Between 0.5 and 0.8 m from the NP injection location (z = 0.0 m) a 0.3 m long oil impacted zone 

was specified representing the NP binding target.  In this impacted zone kattach of 8.86 x 10-4 s-1, kdetach of 

zero, 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  of 25.4 x 10-3 g kg-1, porosity of 0.38, and dispersivity of 3.1 x 10-4 m were assigned. The 

remainder of the system (z = 0.0 to 0.5 m, and z = 0.8 to 1.0 m) was assumed to be comprised of clean 

sand and thus assigned kattach of 2.10 x 10-4 s-1, kdetach of 4.56 x 10-6 s-1, 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  of 8.1 x 10-3 g kg-1, 

porosity of 0.36, and dispersivity of 4.9 x 10-4 m consistent with the average values estimated for the BS 
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column experiments. Figure 28 A) shows the attached NP mass distribution at a time of approximately 80 

h for a range of injection velocities using a NP injection concentration of 400 mg/L and total NP injection 

mass of 20 mg. As the injection velocity is increased from 4x10-6 m/s to 3.2x10-5 m/s, a smaller fraction 

of the NPs are retained in the system, with the total deposited mass decreasing from 10.6 mg to 8.5 mg. 

At higher flow rates, the mass of NP bound in the target region accounts for a greater fraction of the 

retained mass – 71.5% of the 10.6 mg retained at the injection velocity of 4x10-6 m/s is bound in the oil-

impacted zone compared to 80.2% of the 8.5 mg retained in the system at 32x10-6 m/s (Table S3). In 

contrast for a constant injection velocity of 4 x 10-6 m/s, Figure 28 B) shows the impact of variations of 

the NP injection concentration (from 10 to 500 mg/L) on the distribution of NP mass attached in the oil 

impacted zone while maintaining the injected NP mass constant. It was found that attachment was not 

greatly affected by NP concentration, with only a slight increase in attached mass with increasing 

concentration. We attribute this behaviour to the high attachment rate constant which overwhelms any 

effect concentration may have on the attachment rate. Overall, we find that increasing the flow rate will 

maximize NP retention in the target zone and reduce NP retention in the clean zone to produce greater 

contrast in NP concentration between clean and target impacted porous media. 

5.5 Conclusions 

NP targeted binding to viscous LNAPL in porous media can be achieved through the use of amphiphilic 

polymer coatings, and the degree of binding is further affected by environmental parameters. It was 

determined that by increasing the application temperature from room temperature to 50 oC, NP binding in 

1.5% m/m heavy crude oil-impacted sand was increased from 7.6 to 18.6 mg/kg, while binding in clean 

sand at the same temperatures experienced only a 3.4 mg/kg increase. NP coating concentration was also 

found to influence binding – lower coating concentrations resulted in more aggregated particles and 

greater NP binding. Oil concentration and oil type also played a role in promoting NP binding. It was 

observed that higher oil concentrations and longer-chain hydrocarbons resulted in greater NP binding. NP 

attachment to 0.1% m/m heavy crude oil-impacted sand was found to be 9.1 mg/kg and increased to 23.0 

mg/kg at a heavy crude oil content of 5.0% m/m. When the mass of NPs bound was normalized by the 

mass of sand or oil present, an apparent binding threshold emerged, likely due to NP saturation of 

interfacial surface area as the overall volume of oil increased. NP transport and binding was demonstrated 

in packed columns under high temperature conditions corresponding to an environmental factor that 

favoured NP binding. NP transport simulation results compared well with the observed NP BTCs for 

columns packed with BS.  The estimated attachment rate coefficient was 2.10±0.66 x 10-4 s-1 for the BS 

columns; however, for the OBS columns a minimum attachment rate coefficient of 8.86±0.43 x 10-4 s-1 

was determined.   
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Using this attachment rate coefficient combined with knowledge of how 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  changes with oil 

type and concentration, simulations may be used to predict how nanoparticle attached mass is distributed 

through porous media, an important consideration when attempting to deliver reactive NP to a 

contaminated zone. 

Iron oxide NP deposition under stop-flow conditions in clean sand has been reported to result 

from colloid-dependent aggregation and straining as well as gravitational settling, by surface-particle 

dependent attractive DLVO interactions, and by non-DLVO interactions223,224. Owing to Pluronic coated 

iron oxide NP reported stability in saline media208 as well as the independent nature of NP binding to pH 

in this chapter, the binding mechanism is likely a non-DLVO interaction, suspected to be hydrophobic 

forces. This is supported by the NP binding response to varying temperatures, oil concentrations, and oil 

types. Overall, NP targeted binding to crude oil was demonstrated to be responsive to environmental 

factors, and this finding was applied in a hydrodynamic one-dimensional porous medium environment. 

Simulation of one-dimensional system under continuous flow conditions predicted preferential 

accumulation of NPs in the impacted zone of a heterogeneously impacted column. Furthermore, the 

results showed that NP retention in the target oil-impacted zone could be increased by choosing 

appropriate injection concentrations and injection velocities. Taken together, these findings indicate the 

application potential for in situ targeted NP binding as a technique that may enhance nanotechnology 

enabled remediation and characterization efforts. 
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Chapter 6 

Pluronic as a Universal Nanoparticle Coating for Targeted 

Delivery of Nanoparticles to PHC-Impacted Porous Media† 

 

 

 

Figure 29. Schematic illustrating Pluronic self-assembly onto various oleic acid-coated nanoparticles and 

subsequent targeted binding behaviour toward PHC-impacted porous media; NP attach to crude oil coated 

sand and transport through clean sand. 

6.1 Summary 

In situ nanoremediation is a promising alternative to traditional remediation techniques which has 

raised serious questions regarding the unintended consequences of nanoparticle application in subsurface 

environments. A targeted nanoparticle binding strategy using amphiphilic polymer surface coatings 

caused more nanoparticles to be retained in oily versus clean sand. The versatility of this technique was 

demonstrated through identical coating application to three distinct types of nanoparticles produced using 

different synthetic methods (Figure 29). Preferential nanoparticle attachment to crude-oil impacted sands 

was confirmed for all three types of nanoparticles. Optimized model nanoparticle breakthrough curves 

were generated using a modified advection-dispersion equation in 1D-USAT and it was found that 

                                                      
† This chapter is adapted from a drafted manuscript: Linley, S.; Phann, D.; Thomson, N.R..; McVey, K.; Sra, K.; Gu, 

F. X. Pluronic as a Universal Nanoparticle Coating for Targeted Delivery of Nanoparticle to PHC-Impacted Porous 

Media. Not yet submitted.  
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nanoparticles exhibited higher solid phase concentrations and attachment rate coefficients in oily sand 

compared to clean sand. Detachment rate coefficients were largely unchanged. This work demonstrates a 

coating which confers targeted binding properties and may be applied to various types of nanoparticles, 

indicating that targeted binding is a strategy that may be adopted for many subsurface nanoparticle 

applications such as remediation or sensing. 

6.2 Introduction 

For the last two decades, remediation practitioners and regulators have advocated for in situ 

remediation strategies for contaminated sites as an alternative to ex situ treatment methods which are 

considered to be more expensive, less efficient, and highly energy intensive225–227. Within the portfolio of 

in situ remediation strategies, the concept of nanoremediation has gained recognition for its potential to 

reduce costs and time for site cleanup228,229, and is expected to be a major player in the remediation 

market by 2025230. The merits of nanoremediation manifest in two key ways: first, and most importantly, 

that higher specific surface area materials provide greater treatment efficiency due to greater availability 

of reactive and adsorptive sites64; and second, that nanoparticles can be made mobile in porous media, 

allowing access to a larger treatment volume from a single injection site63. In recent years, bench-scale 

implementation of nanoremediation processes has demonstrated that suitable treatment approaches exists 

for many of the environmentally relevant contaminants including chlorinated hydrocarbons231,232, toxic 

metals and metalloids92,233,234, and polycyclic aromatic hydrocarbons235,236. By far the nanomaterial of 

greatest interest has been nano-Zero Valent Iron (nZVI)63, which is notable for its innate reactivity 

towards various organic compounds, including highly toxic and prevalent chlorinated and polycyclic 

aromatic hydrocarbons237,238. Other nanoremediation materials of interest include iron oxide and various 

ferrites for their adsorptive properties92, capacity to catalyze Fenton oxidation reactions239,240 and 

influence on microbial remediation241,242, as well as carbonaceous nanomaterials235,243–245.  

Much of the research concerning mobility of nanoparticles in subsurface environments has been 

focused improving mobility of particles and examining the fate and transport dynamics of engineered 

nanoparticles. It has been shown that the mobility of nanomaterials can be greatly improved by 

application of polymeric surface coatings such as carboxymethyl cellulose246,247, polysulfonates248, 

xanthan gum249, and guar gum250,251. Furthermore, certain surface coatings reportedly have little influence 

on the treatment reaction kinetics between nZVI and the target contaminants64,252, and some surface 

coatings have shown improved treatment rates253,254. With this technology growing in popularity23,255,256, 

questions surrounding the use of mobile nanoparticles in the subsurface typically focus on the unintended 

migration of particles to the wider environment and their potential adverse effects. The toxicological 

effects of the nanoparticles themselves have been examined in assays of particle exposure to plants257–259, 
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animals260, and microorganisms261–263, while the mobility of particles are usually examined in laboratory-

scale experiments to allow prediction of their environmental fate in a given porous medium. 

Characterization of nanoparticle transport dynamics is typically undertaken by applying a modified 

advection-dispersion equation with consideration for particle attachment and detachment to experimental 

data264. Attachment/detachment rate coefficients for nanoparticles are strongly dependent on a wide range 

of factors, including nanoparticle shape, size, concentration and surface properties, as well as porous 

medium type, surface properties, and grain size265. Thus, transport parameters for a given nanoparticle are 

only comparable within a given porous medium type.  

Controlling the mobility of nanoparticles in porous media and developing ‘smarter’ engineered 

nanomaterials is a necessary requirement as nanoremediation technologies gain widespread 

implementation266,267. To this end, several methods, including two-stage injection strategies to destabilize 

particles268, functional coatings to promote attachment to impacted zones67–70,269, and nanoparticles that 

become benign when the treatment process is complete have been investigated. In this study, we seek to 

address the problem of unintended nanoparticle environmental release directly through the application of 

an amphiphilic polymeric coating designed to produce a mobile nanoparticle which will preferentially 

attach to light non-aqueous phase liquid (LNAPL) presence in porous media. Previous research in this 

field has demonstrated that nanoparticle binding to non-aqueous phase contaminants can be achieved by 

selecting a surface coating, which facilitates energetically favourable interactions between the 

nanoparticle and the contaminant. Our previous research has demonstrated that Pluronic coatings provide 

mobility and preferential attachment to crude oil in porous media71. These findings have shown that 

nanoparticle attachment is a function of the surface coating, and for this reason we anticipated that the 

transport dynamics and binding to target crude oil should be similar for any type of nanoparticle having a 

similar coating. Herein, we investigate the transport and binding of three different types of nanoparticles 

produced using completely different synthetic methods, but coated with identical polymer surface 

coatings. 

6.3 Materials and Methods 

6.3.1 Materials 

Iron (II) sulfate heptahydrate (FeSO4·7H2O, ACS grade, > 99.0%), iron (III) chloride hexahydrate 

(FeCl3·6H2O, > 99%), ammonium hydroxide (NH4OH, ACS grade, 28-30% NH3 basis in water), silver 

nitrate (AgNO3, ACS grade, > 99.0%), sodium borohydride (NaBH4, 99.99% trace metals basis), sodium 

oleate (> 90% fatty acids (as oleic acid) basis), phosphoric acid (H3PO4, ACS grade, 85 wt.% in water), 

iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O, ACS grade, > 98%), cobalt (II) nitrate  (Co(NO3)2·6H2O, 

ACS grade, > 98%), sodium hydroxide (NaOH, ACS grade, > 98%), 1-pentanol (ReagentPlus® grade, > 
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99%), oleic acid (OA, technical grade, 90%), dichloromethane (DCM, > 99.9%, contains 50-150 ppm 

amylene), hydrochloric acid (HCl, ACS grade, 37%), nitric acid (HNO3, ACS grade, 70%), and potassium 

bromide (KBr, >99%) were purchased from Sigma Aldrich. Ethanol (ACS grade, 99%, anhydrous) and 

hexane (ACS Grade, >98.5%) were purchased from Fisher Scientific. Pluronic co-polymers P104 and 

L62 were gifted by Brenntag Canada and BASF Canada. Borden sand (d50 = 0.19 mm) was gathered from 

CFB Borden, Ontario (see Appendix B for soil characterization). Crude oil (heavy, sour crude, API 

gravity 13.3 (ρ = 0.977 g/cm3), kinematic viscosity 4.745 x 10-4 m2/s @ 40 °C) was provided by Chevron 

Energy Technology Company. All materials were used as received except the Borden Sand which was 

oven-treated at 90oC for 8 h prior to use. 

6.3.2 Nanoparticle Synthesis 

Synthesis of various types of nanoparticles was adapted from several methods previously reported163–

165,270–272.  

6.3.2.1 Iron Oxide Nanoparticles 

FeSO4·7H2O and FeCl3·6H2O were added to deoxygenated Millipore DI water (Millipore Elix 5) 

at a molar ratio of 2:3 (FeSO4:FeCl3). This solution was heated to 70 °C. Once the temperature 

equilibrated, sufficient NH4OH and oleic acid were added to achieve final concentrations of 4 M and 0.2 

M, respectively. This solution was stirred for 1h, then stirred at 90 °C under flowing N2 for 1 h to purge 

evolved NH3 gas. After cooling to room temperature, the black, magnetic precipitate was recovered by 

magnetic decantation and washed 3x by Millipore DI water, and then 3x by ethanol before being dried 

under flowing N2.  

6.3.2.2 Silver Nanoparticles 

AgNO3 was added to ice cold Millipore DI water to produce a 0.01M solution. Another ice-cold 

solution of 0.04 M NaBH4 and 0.003 M sodium oleate was prepared the same way. An equal volume of 

each solution was added to each other and the resulting solution was stirred vigorously for 2 h in an ice-

water bath. Stock H3PO4 was diluted to 10 M, then added to the silver nanoparticle suspension to achieve 

a final concentration of 0.024 M. The volume of the silver nanoparticle suspension was doubled with 

hexane and the resulting emulsion was stirred vigorously for 1 h to transfer the silver nanoparticles to the 

organic phase. The organic phase was decanted, and then the hexane was evaporated using a rotary 

evaporator (IKA RV 10 basic). 

6.3.2.3 Cobalt Ferrite Nanoparticles 

A 0.96 g/mL solution of oleic acid dissolved in ethanol was added to a 6.6 M solution of NaOH 

dissolved in Millipore DI water at a volumetric ratio of 2:1 (oleic acid:NaOH) to produce a sodium oleate 

solution. A solution of Fe(NO3)3·9H2O and Co(NO3)2·6H2O dissolved in Millipore DI water was added to 
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the sodium oleate solution to achieve final concentrations of 0.4 M and 0.2 M, respectively. Hexane was 

added to the cobalt-iron-oleate solution at a volumetric ratio of 1:2 (hexane:cobalt-iron-oleate solution) 

and the mixture was refluxed for 1 h at 85 °C, with occasional stirring. After cooling, the aqueous phase 

was removed by pipette. The organic phase was washed twice by adding 4:1:1 Millipore DI 

water:ethanol:hexane and refluxing for 30 minutes at 85 °C. The aqueous phase was removed after every 

wash. 1-pentanol was added such that final estimated concentrations of 1 M cobalt oleate and 2 M iron 

oleate would be achieved after boiling the solution at 100 °C for 2 h to evaporate hexane, ethanol and 

water.  

A mixture consisting of 3 parts Co-Fe oleate, 11 parts 1-pentanol, and 7 parts Millipore DI water 

was purged with N2 gas for 30 mins, and then heated at 180 °C for 10 h in a Teflon-lined stainless steel 

autoclave. After cooling, the liquid phases were discarded by magnetic decantation. The precipitate was 

suspended with hexane, and then precipitated with ethanol, and then the liquid phase was discarded by 

magnetic decantation. This step was performed twice. The precipitate was dried under flowing N2 gas. 

6.3.2.4 Nanoparticle Phase Transfer 

Dried nanoparticles produced in the previous syntheses were suspended in hexane at a 

concentration of 90 g/L and sonicated for 10 min (VWR “Symphony” 1.9 L Ultrasonic Cleaner). In the 

case of silver nanoparticles, 1 % (v/v) oleic acid was added as well. The resulting suspension was added 

to an aqueous solution of 8 g/L L62 and 2 g/L P104 Pluronic co-polymers at a concentration of 10 % 

(v/v) and probe sonicated for 10 min to emulsify the water and hexane phases (Fisher Scientific FB505 

Sonic Dismembrator, 200 W). The emulsified nanoparticle sample was transferred to a separatory funnel 

and separated over 48 h. The resulting aqueous nanoparticle suspension (typically 7-8 g/L) was stored 

refrigerated until used. 

6.3.3 Binding Batch Studies 

1.5 % (m/m) crude oil added to Borden sand (OBS) was prepared by dissolving crude oil in 

excess DCM, pouring the solution over clean Borden sand (BS), then letting the DCM fully evaporate 

while physically mixed until a homogenous coating was achieved. 15 g of OBS was added to 20 mL 

scintillation vials, followed by 10 mL of aqueous nanoparticle suspension diluted by a factor of 100 with 

Millipore DI water. The vials were left to sit at either room temperature or at 50 °C for 48 h. The same 

process was repeated with clean and dried Borden sand (BS). The nanoparticle suspension was then 

collected by filtration (Whatman glass microfiber filter, Grade 934-AH). All samples were performed in 

triplicate. 
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6.3.4 Column Transport and Binding Studies 

15 cm long Plexiglas columns with an inner diameter of 3.8 cm were packed with either ~300 g 

of BS or OBS in a way to prevent air pockets and stratification. For BS, the columns were wet packed 

using Millipore DI water, and for OBS, the columns were dry packed then flushed with CO2 gas for 15 

minutes before being saturated from bottom-to-top with Millipore DI water by peristaltic pump (Cole 

Parmer MasterFlex 7535-04). Once packed, all columns were preheated to 50 °C in an oven (Binder 

ED53).  Aqueous suspension of nanoparticles, diluted by a factor of 10 (20 for silver nanoparticles) with 

Millipore DI water were injected into the columns from top-to-bottom by peristaltic pump for 30 min at a 

rate of 0.34 mL/min, after which Millipore DI water was injected at the same rate for 1 h 5 min. The 

nanoparticles were held in the column for 44 h at 50 °C, after which the injection of Millipore water 

resumed until a total of ~1.5 pore volumes were eluted. Elution was collected every 30 minutes for 5 

minutes prior to the stop-flow period and every 10 minutes upon resuming water injection. The mass of 

nanoparticles injected, flow rate and pore volume were monitored throughout the experiment. All column 

tests were performed in triplicate. Tracer tests of each column were performed immediately following 

nanoparticle transport studies. Briefly, 500 ppm bromide tracer solution was injected into the columns 

from top-to-bottom at a rate of 1 mL/min for 10 minutes, after which Millipore DI water was injected at 

the same rate for 2 h. Elution was continuously sampled, and mass of bromide tracer solution and flow 

rate were monitored throughout the experiment. Tracer concentration was measured using ion 

chromatography after a 5x dilution (Dionex ICS-1100). 

6.3.5 Analyses 

Prior to analysis by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, 

Prodigy) to quantify total metal ion concentration (method detection limit (MDL) of 4 µg/L), samples 

from the batch binding studies were digested with 12.1 M HCl (15.7 M HNO3 for silver nanoparticles) at 

a concentration of 9 % (v/v). For the column transport and binding studies, samples were digested with 

12.1 M HCl (15.7 M HNO3 for silver nanoparticles) at a concentration of 20 % (v/v), then diluted by a 

factor of 10 with 0.1 M HCl (0.047 M HNO3 for silver nanoparticles). Standards and check solutions were 

prepared from Fe, Ag and ICP 20 stock standards purchased from Inorganic Ventures and High Purity 

Standards. 

Solid-phase adsorbed CoFe nanoparticles were analyzed by ICP after acid digestion of the 

collected sediments. The BS or OBS from the batch tests was collected after filtration and washed with 

100 mL Millipore DI water, then oven dried at 70oC. 1 g of each dried sample was weighed out in a 50 

mL plastic digestion tube followed by 5 mL of 70% Nitric Acid. The samples were heated to reflux 

temperature and boiled for 30 minutes after which an additional 5 mL of nitric acid was added. This 

process was repeated until a total of 15 mL nitric acid had been added to the samples. The samples were 



79 

 

then boiled down to a total volume of 5 mL and cooled to ~50oC, after which 3 mL 30% H2O2 was added 

and gentle heat was applied until effervescence appeared and subsided. This step was repeated an 

additional two times, and then samples were boiled down to a total volume of 5 mL. Finally, 5 mL 12.1 

mol/L HCl was added to each sample, and samples were boiled down to a total volume of 5 mL. Samples 

were diluted to a total volume of 10 mL with Millipore DI water prior to filtration using 0.45 µm PTFE 

filters (Digitube). Cobalt concentration in the final digestant solution was assessed using ICP-OES. 

High Resolution Transmission Electron Microscopy (HR-TEM) analysis was performed using a Philips 

CM10 with an acceleration voltage of 80 keV. The nanoparticles were dispersed in water (for Pluronic 

coatings) or hexane (for oleic acid coatings), then placed dropwise on a holey Carbon-coated copper TEM 

grid and allowed to dry prior to analysis. 

6.3.6 Nanoparticle Transport Modelling 

Kinetic model parameters to describe the observed binding behaviour during stop-flow column 

experiments were determined assuming a single-site attachment model with nonlinear Langmuirian 

blocking214 and advective-dispersive NP transport in the aqueous phase (Chapter 5; equations (22) - 

(24)). 1D-USAT215, an unsaturated flow and solute transport model, provided a numerical solution to 

equations (22) - (24) and was used in conjunction with the dynamically dimensioned search (DDS)216 

algorithm within the OSTRICH toolkit217 to identify optimal model parameters. Br- tracer experimental 

data from each column was used to determine the porosity (ϕ) and dispersivity (α) by using equation (22) 

without attachment/detachment. The Br- breakthrough curve (BTC) data were chosen as calibration 

targets using a Root Mean Square Error (RMSE) objective function.  

The optimal ϕ and αl values for each column were then used to fit the nanoparticle experimental BTCs in 

which kattach, kdetach, and smax were iteratively determined to produce a model of best fit with an RMSE 

objective function. For experimental column systems with no observable BTC, smax was assigned a value 

from the corresponding binding batch test, which was assumed representative of binding saturation, and 

kd was assigned a value of zero as no nanoparticle detachment was evident. The DDS algorithm was then 

used to estimate a ka value so that the peak of the simulated BTC was equal to the associated nanoparticle 

concentration detection limit.  This ka value was assumed the minimum attachment rate coefficient 

necessary to achieve the observed experimental result. Stop-flow conditions consistent with NP 

experiments were employed in these simulations.6.4 Results and Discussion 

6.4.1 Silver Nanoparticle Synthesis 

 In the case of iron oxide and cobalt ferrite particles, previously established synthesis protocols 

were sufficient to produce the quantity of nanoparticles necessary for transport and binding application 

experiments. In the case of silver nanoparticles, existing protocols from the literature had to be scaled up. 
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To understand the influence of synthesis parameters on the final concentration and yield of the silver 

nanoparticle synthesis, a 2-factor surface response optimization was performed. The silver synthesis 

procedure occurs in three steps, first the silver nanoparticle are produced via sodium borohydride-

mediated reduction of silver nitrate. Second, sodium oleate is added which adsorbs to the silver surface 

through the electron-rich double bond in the centre of its tail. Finally, phosphoric acid induces a 

conformational change in the adsorption of the oleate when in the presence of hexane, causing its 

protonated carboxylic acid head to adsorb to the silver surface and its hydrophobic tail to extend into 

solution, allowing phase transfer from water to hexane270. By tuning the concentrations of oleate and 

phosphoric acid, the degree of oleate coating and efficiency of phase transfer to hexane can be optimized.  

 A two-trial surface response optimization was performed to maximize oleate coating and final Ag 

nanoparticle concentration in hexane. Initially, phosphoric acid and sodium oleate concentrations 

recommended by the literature for lower silver concentrations were tested: H3PO4 ranging from 4 to 16 

mmol/L and Na oleate ranging from 2.5 to 12.5 mmol/L (Table C-1). The concentration of silver 

nanoparticle in hexane after phase transfer was observed via visible light absorbance at 410 nm (y-

response in Table C-1) – the peak absorbance for the silver nanoparticles. These data were used to 

construct a surface response plot Figure C-1 which shows that increasing phosphoric acid concentration 

significantly increases silver nanoparticle concentration in hexane while sodium oleate concentration 

seems to reach an optimal point around 5 mmol/L. This was used to inform parameter selection for the 

second optimization trial. Higher H3PO4 concentrations ranging from 18 to 30 mmol/L and lower Na 

oleate concentrations ranging from 1 to 5 mmol/L were selected (Table C-2). The resulting surface 

response plot produces a 3-D parabola indicating an optimal concentration for each parameter within the 

range tested (Figure C-2). For the silver nanoparticle synthesis investigated here, an optimal H3PO4 

concentration of 24 mmol/L and an optimal Na oleate concentration of 3 mmol/L were selected. The 

findings here indicate that silver nanoparticles may be synthesized efficiently at higher concentrations, but 

that phase transfer efficiency must be carefully controlled by selecting the proper amounts of H3PO4 and 

Na oleate. 

6.4.2 Nanoparticle Characterization 

Nanoparticle cores composed of iron oxide, silver, or cobalt ferrite were characterized by TEM 

immediately after synthesis, after coating with 1 g/L Pluronic solution, and after coating with 10 g/L 

Pluronic solution (Figure 30). Nanoparticle morphology was found to vary with coating rather than 

material composition.  
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Figure 30. TEM characterization of nanoparticle samples composed of different materials (Top Row: 

iron oxide, Middle Row: silver, Bottom Row: cobalt ferrite) and different coatings (Left Column: oleic 

acid, Middle Column: 1 g/L Pluronic solution, Right Column: 10 g/L Pluronic solution). Nanoparticle 

morphology was strongly dependent on coating rather than material composition. 

When coated by oleic acid, all nanoparticle samples exhibited a uniform spherical morphology 

with particle diameter <10 nm (7.4 ± 1.8 nm, 7.0 ± 1.4 nm, 7.8 ± 1.6 nm for Fe3O4, Ag, and CoFe2O4 

particles, respectively). This morphology was maintained after a coating procedure using a high 

concentration (10 g/L) of Pluronic coating, but a low concentration Pluronic coating resulted in the 

formation of aggregates of nanoparticles with diameters of 89.7 ± 28.2 nm, 38.0 ± 7.8 nm, and 127.8 ± 

32.3 nm for Fe3O4, Ag, and CoFe2O4 particles, respectively. This aggregate structure was maintained in 

the case of iron oxide and cobalt ferrite, but the silver nanoparticles appear to coalesce into solid particles. 

In previous work, we attributed the formation of aggregates to insufficient concentrations of Pluronic to 

fully coat all available surface area of the particles71. Silver nanoparticles coated with Pluronic have been 

found to Ostwald ripen and produce larger particles when surface coating is insufficient273, supporting this 

theory. In the case where Pluronic concentration is high enough to maintain a coating around individual 

particles (10 g/L), their morphology and size is preserved, with diameters of 7.6 ± 1.8 nm, 8.2 ± 1.7 nm, 
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and 5.9 ± 1.2 nm for Fe3O4, Ag, and CoFe2O4 particles, respectively. Thus, the morphology of the various 

nanoparticle types can be controlled through application of the Pluronic surface coating. 

6.4.3 Effect of Temperature on Nanoparticle Binding 

Nanoparticle preferential binding to 1.5 % crude oil-coated Borden Sand was demonstrated 

through binding batch experiments. It was found that the ion concentration of the aqueous phase after acid 

digestion was consistently lower for samples exposed to oily sand (Figure 31).  

 

Figure 31. Batch binding trials demonstrating 1g/L Pluronic-coated nanoparticles preferentially binding 

to 1.5% m/m crude oil-coated Borden sand (OBS) at room temperature and at 50 oC. A) ion concentration 

in the aqueous phase as measured by ICP, B) estimated solid-phase NP concentration from [ion]aq 

measurements. Increased temperature increases nanoparticle attachment to both clean and oily sand. 

This indicates that the concentration of nanoparticles in water decreased more substantially when 

exposed to oily sand, an effect attributed to nanoparticle binding. This was the case for all 3 types of 

nanoparticles tested. At room temperature (~22 oC), nanoparticle solid phase concentration was an 

average of 5.3 ± 1.0 mg/kg higher on oily Borden Sand (OBS) than on clean borden sand (BS). At 50 oC, 

binding was increased to both clean and oily sand, and the solid phase concentration difference between 

clean and oily sand rose to an average of 11.6 ± 3.2 mg/kg. The cause of increased binding at elevated 

temperatures is hypothesized to be due to a mechanism suggested by Saleh et al., whereby hydrophobic 

forces between the NAPL phase and the amphiphilic nanoparticle coating causes attachment67,68. It is well 

known that Pluronic exhibits temperature dependent interactions with solvents – at low temperatures, 

solvent solute interactions are favourable and at higher temperatures, these interactions become 

unfavourable, driving micellization274. The consistent increase in attachment for all particle types at 

higher temperature indicates that attachment is due to interactions between the solid phase and the 

nanoparticle coating as solvent-particle interactions become less favourable. In the absence of crude oil, 

some amount of nanoparticle binding still occurs, and this binding is also increased with temperature. 
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This is thought to be due to van der Waals interactions between polar groups in the ethylene oxide 

segment of the coating and acidic metal oxide groups on the surface of the sand275. Similarly, water 

solvation of ethylene oxide is decreased at higher temperature as less polar conformations dominate274, 

and the ethylene oxide groups seek to lower their potential energy by associating with other materials 

such as the NAPL. 

The capability of estimating nanoparticle solid phase concentration from aqueous phase ion 

concentrations was verified through direct solid-phase analysis of sand from the binding batch tests when 

using CoFe2O4 nanoparticles. The sand from binding batch tests was recovered, washed, and acid digested 

to test the concentration of adsorbed cobalt after exposure to Pluronic-coated nanoparticles. This method 

was not viable for Fe3O4 or Ag nanoparticles due to the high background Fe concentration in Borden Sand 

and the difficulty of digesting and accurately measuring silver, respectively. It was found that all 

estimations from aqueous phase ion concentration measurements corresponded closely with the direct 

measurements from acid digestion of the sand except for the room temperature OBS measurements 

(Figure 32).  

 

Figure 32. NP binding to clean (BS) or 1.5% crude oil-coated Borden Sand (OBS) at room temperature 

(RT; ~22 oC) and 50 oC determined by indirect (aq) and direct (s) methods to estimate NP solid-phase 

concentration. Both methods (e.g., RT BS (aq) and RT BS (s)) are equal within one standard deviation 

except for RT OBS. 

Overall, this was taken as an indication that estimating solid-phase concentration from aqueous-

phase ion concentrations was an accurate technique, corroborating our previous findings where 
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nanoparticle concentration was directly assessed by measuring magnetic moment of samples before and 

after nanoparticle binding71 (Chapter 3). 

Previous work has demonstrated that nanoparticle transport through sand and binding to crude 

oil-coated sand is dependent on the Pluronic coating concentration used in synthesis. These results 

showed that lower coating concentrations produced higher nanoparticle binding at room temperature. 

Before proceeding with transport and binding experiments at high temperature (50 oC), it was desirable 

confirm the dependence of nanoparticle binding on formulation coating concentration under these 

conditions. It was found that at elevated temperatures, there was little influence from coating 

concentration on nanoparticle binding for both Fe3O4 and Ag nanoparticles, with an increase in binding 

concentration only observed for the 10 g/L Pluronic-coated Fe3O4 sample (Figure 33). Based on this 

observation and previous work that demonstrated nanoparticle transport in sands was improved with 

higher Pluronic coating concentrations, 10 g/L Pluronic coatings were selected for all nanoparticles for 

the transport and binding experimental work. 

 

 

Figure 33. Effect of Pluronic coating concentration on Iron Oxide (Fe) and Silver (Ag) nanoparticle 

binding to clean (BS) and 1.5% crude oil-coated (OBS) Borden Sand at 50 oC. It appeared that binding of 

iron oxide particles to both BS and OBS increased with coating concentration while binding of silver 



85 

 

particles was completely unaffected. Overall, it appeared that coating concentration had little influence on 

nanoparticle binding at 50 oC. 

6.4.4 Nanoparticle Transport and Binding in Column Tests 

Iron oxide nanoparticles (Figure 34), silver nanoparticles (Figure 35), and cobalt ferrite 

nanoparticles (Figure 36) were all detected in the effluent of all columns packed with BS. 

 

Figure 34. Iron oxide nanoparticle (10 g/L Pluronic coated) breakthrough curves (BTCs) from the 

transport and binding experiments (open square symbols) in columns (L = 15 cm, Q = 0.3 mL/min, stop 

flow from 95 min to 2740 min) packed with either clean sand (BS) or oily Borden Sand (OBS). 

Nanoparticle elution is clearly observed in all BS packed columns, while nanoparticle retention is 

observed in all OBS packed columns. The simulated nanoparticle BTC (solid black line) (see Table 12 

and Table 13 for parameters) and simulated conservative tracer BTC (red solid line) are also shown. 
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Figure 35. Silver nanoparticle (10 g/L Pluronic coated) breakthrough curves (BTCs) from the transport 

and binding experiments (open square symbols) in columns (L = 15 cm, Q = 0.3 mL/min, stop flow from 

95 min to 2740 min) packed with either clean sand (BS) or oily Borden Sand (OBS). Nanoparticle elution 

is clearly observed in all BS packed columns, while nanoparticle retention is observed in all OBS packed 

columns. The simulated nanoparticle BTC (solid black line) (see Table 12 and Table 13 for parameters) 

and simulated conservative tracer BTC (red solid line) are also shown. 
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Figure 36. Cobalt ferrite nanoparticle (10 g/L Pluronic coated) breakthrough curves (BTCs) from the 

transport and binding experiments (open square symbols) in columns (L = 15 cm, Q = 0.3 mL/min, stop 

flow from 95 min to 2740 min) packed with either clean sand (BS) or oily Borden Sand (OBS). 

Nanoparticle elution is clearly observed in all BS packed columns, while nanoparticle retention is 

observed in all OBS packed columns. Some nanoparticle breakthrough is evident in the OBS columns 

from cobalt ion analysis. The simulated nanoparticle BTC (solid black line) (see Table 12 and Table 13 

for parameters) and simulated conservative tracer BTC (red solid line) are also shown. 
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Figure 37. Comparison of observed (symbols) and simulated (lines) bromide breakthrough curves for the 

columns packed with clean Borden sand (left panels) and oil-impacted Borden sand (right panels) used 

for transport and binding experiments using iron oxide nanoparticles.  Each experimental system was 

performed in triplicate (vertically descending from trial 1 to 3). 
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Figure 38. Comparison of observed (symbols) and simulated (lines) bromide breakthrough curves for the 

columns packed with clean Borden sand (left panels) and oil-impacted Borden sand (right panels) used 

for transport and binding experiments using silver nanoparticles.  Each experimental system was 

performed in triplicate (vertically descending from trial 1 to 3). 
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Figure 39. Comparison of observed (symbols) and simulated (lines) bromide breakthrough curves for the 

columns packed with clean Borden sand (left panels) and oil-impacted Borden sand (right panels) used 

for transport and binding experiments using cobalt ferrite nanoparticles.  The clean sand experimental 

system was performed in duplicate owing to a leak in one of the columns (vertically descending from trial 

1 to 2). The oily sand experimental system was performed in triplicate (vertically descending from trial 1 

to 3). 

Table 11. Column physical parameters for all transport & binding experiments 

Nanoparticle Replicate 
Clean Borden Sand Oily Borden Sand 

Porosity Dispersivity (m-1) Porosity Dispersivity (m-1) 

Iron Oxide 

1 0.3778 7.21E-04 0.3681 4.63E-04 

2 0.3718 5.11E-04 0.3745 3.58E-04 

3 0.3721 5.47E-04 0.3736 3.66E-04 

Cobalt Ferrite 

1 0.3403 8.30E-04 0.3847 3.16E-04 

2 0.3557 4.75E-04 0.3963 3.71E-04 

3 - - 0.3903 4.20E-04 

Silver 

1 0.3954 7.02E-04 0.3598 9.94E-04 

2 0.3839 4.45E-04 0.3883 4.73E-04 

3 0.3963 3.05E-04 0.3881 3.03E-04 
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Table 12. Attachment parameters estimated from 1D-USAT/DDS fitting of experimental data for various 

nanoparticle samples to clean Borden Sand (BS). 

Nanoparticle Replicate 𝑴𝒂𝒕𝒕𝒂𝒄𝒉
𝒎𝒂𝒙  (mg/kg) katt (s-1) kdet (s-1) RMSE 

Iron Oxide 

1 35.8 3.95E-05 2.55E-06 7.86 

2 126.2* 3.74E-05 1.28E-06 9.99 

3 13.1 6.71E-04 1.81E-05 7.27 

Average 58.3 2.49E-04 7.32E-06 8.38 

Cobalt Ferrite 

1 5.18 3.82E-04 7.64E-07 3.75 

2 17.9 1.73E-05 1.98E-06 15.2 

Average 11.5 1.20E-04 1.37E-06 9.46 

Silver 

1 8.55 3.16E-05 3.35E-06 3.08 

2 10.5 3.61E-05 3.18E-06 3.29 

3 15.9 8.07E-05 6.62E-06 2.68 

Average 11.6 4.945E-05 4.385E-06 3.02 

*significant outlier 

 

Table 13. Attachment parameters estimated from 1D-USAT/DDS fitting of experimental data for various 

nanoparticle samples to oily Borden Sand (OBS). 

Nanoparticle Replicate 𝑴𝒂𝒕𝒕𝒂𝒄𝒉
𝒎𝒂𝒙  (mg/kg) katt (s-1) kdet (s-1) RMSE 

Iron Oxide 

1 33.7* >5.13E-04 0† 2.12E-02 

2 33.7* >4.63E-04 0† 8.06E-03 

3 33.7* >5.26E-04 0† 4.33E-03 

Average 33.7* >5.01E-04 0† 1.12E-02 

Cobalt Ferrite 

1 18.9 8.85E-04 1.88E-06 0.056 

2 34.5 2.95E-04 1.38E-06 0.081 

3 45.0 1.61E-04 1.74E-06 1.85 

Average 32.8 4.47E-04 1.67E-06 0.66 

Silver 

1 12.7* >9.04E-05 0† 5.43E-02 

2 12.7* >1.68E-04 0† 1.75E-03 

3 12.7* >2.36E-05 0† 9.06E-02 

Average 12.7* >9.40E-05 0† 4.89E-02 

*𝑴𝒂𝒕𝒕𝒂𝒄𝒉
𝒎𝒂𝒙  value taken from binding batch test 

†kdet assumed to be 0 due to no observable attachment 

 

For the columns packed with OBS, the concentration of iron oxide nanoparticles and silver 

nanoparticles was <MDL, while the concentration of cobalt ferrite nanoparticles reached a peak of 14.6 

mg/L (3.2% of injection concentration) in one of the replicates. These results clearly demonstrate that 

Pluronic-coated nanoparticles are capable of transporting through clean sands and are preferentially 

retained in oily sands. Tracer breakthrough data (Figure 37 to Figure 39; Table 11) were used to 

determine the porosity and dispersivity of the respective columns. It was found that BS had an average 
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porosity of 0.374±0.019 and an average dispersivity of (5.67±1.72) x 10-4 m-1, while OBS had an average 

porosity of 0.380±0.012 and an average dispersivity of (4.52±2.12) x 10-4 m-1. These findings are 

consistent with our previous studies in Borden sand (Chapter 5) which found nearly identical porosity 

and lower dispersivity in OBS, indicating that the presence of oil reduces variations in pore velocity. The 

optimal model parameters determined are listed in Table 12 & Table 13 for the BS and OBS column 

systems, and were used to produce the simulated BTCs (black lines) on Figure 34 to Figure 36. The 

majority of the estimated 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  values for the BS systems (from 5.2 to 17.9 mg/kg) match closely with 

values expected based on the batch test results presented in Figures 2 and 4 (from 4 to 20 mg/kg). Some 

outliers were observed in the iron oxide estimates, most notably for the second column replicate. For all 

BS column systems, the detachment rate coefficient was estimated to be on the order of 10-6 s-1 which 

agrees closely with our previous findings. The minimum attachment rate coefficient, kattach, was 

consistently found to be between 2 and 4 times greater for the OBS systems than for the BS systems, a 

finding consistent with previous work which indicates preferential NP attachment in oil-impacted sands. 

Furthermore, the 𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥  values for cobalt ferrite nanoparticles in the OBS system (from 18.9 to 45.0 

mg/kg), which were estimated from observed BTC data, agree closely with the values from the batch 

binding experiments (17.3 to 33.7 mg/kg). For the cobalt ferrite nanoparticles in the OBS system, the 

detachment rate coefficient was estimated to be on the same order as detachment in the BS systems.  

Considering only cobalt ferrite nanoparticles, the maximum solid-phase concentration (𝑀𝑎𝑡𝑡𝑎𝑐ℎ
𝑚𝑎𝑥 ) triples 

from 11.5 to 32.8 mg/kg, the attachment rate coefficient (kattach) nearly quadruples from 1.20 x 10-4 s-1 to 

4.47 x 10-4 s-1, and detachment rate coefficient (kdetach) remains approximately the same (increasing 

slightly from 1.37 x 10-6 s-1 to 1.67 x 10-6 s-1) between the OBS and BS systems. 

6.5 Conclusions 

For the past 20 years, research in the field of pharmaceuticals and therapeutics, particularly in 

oncology, has recognized nanotechnology-enabled targeted delivery as a significant part of cancer 

detection, diagnosis, and therapy276. The improved delivery methods rely on drugs encapsulated in 

micellar nanoparticles which enable specific targeting of diseased tissue. Concentrating the drug in areas 

of the body where it can perform its intended function increases efficiency of use, thereby decreasing the 

cost and frequency of application277,278. In addition to this, unwanted side effects, such as the drug acting 

on healthy tissue, is avoided276. Chemotherapeutic treatment of cancer bears many similarities to 

nanoremediation of impacted soil. In both cases, there is a zone requiring treatment that has distinct 

physical and chemical properties differentiating it from the surrounding material. The factors that make 

targeted therapeutics a successful improvement to traditional chemotherapy have direct applicability in 
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the field of nanoremediation and consideration should be made for the deployment of remediation agents 

early in their development. 

In this work we have demonstrated that targeted delivery of various nanoparticles, produced using 

varied synthetic methods, can be achieved by using the same amphiphilic coating on each. It was 

demonstrated that under heated deployment conditions, nanoparticle attachment to impacted zones could 

be doubled compared to their performance in clean sand. While the temperature employed in this study 

was rather high (50 oC), previous work has demonstrated that a moderate temperature increase from ~22 

oC to 30 oC results in a significant improvement to binding behaviour (Chapter 5), indicating that final 

application conditions may not need to be to be as great as demonstrated in this effort. 

The implementation of successful targeted remediation of impacted soils requires three goals to 

be met: 1) the remediation agent must be able to transport through porous media, 2) the remediation agent 

must preferentially accumulate in an area with target physical and/or chemical properties (i.e. an impacted 

zone), and 3) the remediation agent must impart a treatment effect on the contaminant in the target zone. 

In this work, we have demonstrated successful implementation of the first two goals which address the 

‘targeted’ aspect of targeted remediation. Iron oxide, silver, and cobalt ferrite could be targeted to 

preferentially accumulate on sands coated with viscous LNAPL. Iron oxide is already known as a 

remediation agent – in particular magnetite is known to be an activator for oxidants such as persulfate, 

giving one potential remediation pathway using the materials demonstrated here. It is also understood that 

the surface of nZVI is coated in a thin iron-oxide passivated layer which could likely support the coating 

strategy discussed in this work. The targeted delivery behaviour shown here is a result of the nanoparticle 

coating rather than the core material, and that such a coating may be applied to various materials, giving 

versatility to choose the best remediation agent for a specific site. Targeted delivery has great potential to 

improve current remediation technology and this work demonstrates how it can be applied in the case of 

viscous LNAPLs. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary 

 This thesis presents the development of a nanoparticle coating strategy which endows particles 

with aqueous stability, mobility in natural porous media, and targeted adsorption to crude oil-impacted 

porous media. A two-step coating technique comprising coating the nanoparticles with hydrophobic oleic 

acid followed by amphiphilic Pluronic block co-polymers produced a surface which facilitated the 

previously stated design requirements. Nanoparticle transport and binding was evaluated through binding 

batch tests as well as flow-through experiments in packed columns containing clean or oil-impacted 

natural aquifer sediments which confirmed preferential nanoparticle adsorption to oil-impacted sands 

when compared to clean sands. Various factors influencing nanoparticle mobility and binding to porous 

media were evaluated, and it was found that design parameters such as coating type and coating 

concentration influenced the nanoparticles’ transport and binding behaviour. In addition to this, 

environmental parameters including oil concentration, oil type, and temperature were found to increase 

nanoparticle binding to oil-impacted sands. Simulation of experimental data using a solute transport 

modelling software enabled estimation of kinetic parameters defining nanoparticle transport and binding 

behaviour and allowed some prediction of how flow rate and different oil types or concentration would 

impact nanoparticle distribution within a porous medium. Finally, the coating strategy was applied to 

different types of nanoparticle core materials, including iron oxide, silver, and cobalt ferrite, all produced 

using different synthetic methods, to evaluate the versatility of coating application. It was found that all 

nanoparticles coated with the Pluronic formulation exhibited preferential binding to oil-impacted sands as 

well as mobility through natural aquifer sediment.  

7.2 Conclusions 

A nanoparticle coating enabling aqueous nanoparticle stability, mobility in natural porous media, 

and preferential adsorption to oil-impacted porous media was developed. The coating relied on a two-step 

method whereby nanoparticle cores were first made hydrophobic by the addition of oleic acid, then made 

amphiphilic by the addition of a blend of Pluronic block co-polymers. The morphology of the coated 

nanoparticles was dependent on the concentration of the coating, ranging from ~100 nm aggregated 

clusters of nanoparticles at Pluronic coating concentrations of 1 g/L to ~7 nm individually stabilized 

nanoparticles at Pluronic coating concentration of 10 g/L. It was also found that coating concentration and 

coating hydrophobicity played a significant role in the preferential attachment of nanoparticles to crude 

oil at room temperature, with lower coating concentrations and more hydrophobic polymer molecules 
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resulting in higher observed binding. It was also found that nanoparticle coating formulation influenced 

the mobility of nanoparticles in porous media, with higher coating concentrations and more hydrophobic 

molecules resulting in increased nanoparticle recovery through columns packed with unmodified natural 

aquifer sediment. To this end, the nanoparticle coating formulation may be tuned to produce nanoparticles 

with higher mobility or increased attachment as necessary.  

The nanoparticles demonstrated maximum attachment to clean sand in the range of 2 – 13 mg/kg 

and maximum attachment to oily sand in the range of 8 – 32 mg/kg, dependent on the nanoparticle 

formulation and environmental factors selected. Experimental data were used to estimate kinetic 

attachment and detachment parameters in clean and oil-impacted sands under nanoparticle flow-through 

conditions, and it was found that typically the attachment rate (kattach) for nanoparticles in oil-impacted 

sand exceeds the kattach for nanoparticles in clean sand by approximately one order of magnitude (10x). 

The attachment rates varied on the order of 10-5 - 10-4 s-1 in clean sand, while attachment rates varied on 

the order of 10-4 - 10-3 s-1 in oily sand. Detachment rates (kdetach) in clean sand flowthrough were found to 

be on the order of 10-6 s-1. Detachment rates were estimated to be ~0 for most experiments in oil-impacted 

sand packed columns due to the absence of detectable nanoparticles in the effluent, but results using CoFe 

nanoparticles revealed that the kdetach may be on the same order of magnitude as calculated in clean sand 

experiments – approximately 10-6 s-1. These results indicate that nanoparticle transport and binding can be 

described using current colloid filtration theory and allow us to predict nanoparticle behaviour under 

various conditions such as increased flow rate or higher contaminant concentration. 

Most of this work was carried out using iron oxide nanoparticles as a core material due to its 

inexpensiveness and ease of synthesis, but the targeted delivery coating strategy should ideally be able to 

be applied to any nanomaterial relevant for environmental remediation purposes. To this end, we 

investigated two additional nanoparticle core materials: silver and cobalt ferrite. Each of the nanoparticles 

selected for evaluation in this thesis were produced using different synthetic methods: coprecipitation 

(iron oxide), chemical reduction (silver), and thermal decomposition (cobalt ferrite). In each case, oleic 

acid-coated hydrophobic nanoparticles were produced which were amenable to the Pluronic coated 

process. The resulting Pluronic-coated nanoparticles all exhibited mobility through clean sand-packed 

columns and preferential retention in oil-impacted sand-packed columns, and we conclude that this 

behaviour is a result of the surface coating properties.  

An important consideration for this work is anticipating how the developed coating strategy may 

be applied to enhance subsurface deployment of nanoparticle agents. To this end, X-Ray computed 

tomography was investigated as a detection mechanism for identifying sands with a higher nanoparticle 

content. It was found that the preferential nanoparticle binding toward oil-impacted sand was sufficient to 

produce a significant contrast between samples exposed to nanoparticles and un-exposed control sand. 



96 

 

The same was not true for clean sands under the same conditions. Therefore, we envision a possible use-

case for targeted nanoparticle attachment to oil-impacted porous media, and subsequent detection of 

heterogenous contaminated zones delineated by bound nanoparticle contrast agents. Furthermore, recent 

work using the nanoparticles discussed in this thesis as contrast agents in spectral induced polarization 

processes indicates that these nanoparticles may be detected in porous media by monitoring electrical 

signals from emplaced probes and that the signal is concentration dependent279. Combined with the 

particles’ targeted binding capabilities, we anticipate the possibility of nanoparticle binding and 

subsequent delineation of impacted vs. unimpacted porous media. 

 

7.3 Recommendations for Future Work 

 Based on the conclusions presented in this thesis, several tasks to further advance this work are 

proposed herein:  

1. Application of the nanoparticle coating nZVI to investigate nanoparticle targeted binding and 

subsequent remediation of the target contaminant. The Pluronic coating applied to iron oxide in 

this thesis is anchored to the nanoparticle through carboxylate-Fe chelation interactions. nZVI 

forms a natural iron oxide shell on exposure to atmospheric oxygen and it is expected that the 

oleic acid and subsequent Pluronic coating may be applied to produce an nZVI particle with 

targeted delivery and remedial properties. This future work would investigate targeted binding of 

Pluronic-coated nZVI to crude oil, how the treatment rate of such particles may be influenced by 

the coating strategy, and what amendments may be required to facilitate remediation. It is well 

understood that nZVI-activated persulfate can enhance the oxidation rate of organic 

contaminants19, but recent research has indicated that electromagnetic induction can improve 

nZVI reaction rates and increase local temperatures280. Critically, the threshold concentration of 

nanoparticles in soil required to initiate remediation under various activation conditions should be 

determined. Furthermore, local nanoparticle heating via electromagnetic induction may introduce 

an efficient mechanism for increasing nanoparticle temperature, thereby enhancing targeted 

binding interactions as seen in this work. 

 

2. Integration of nanoparticle targeted delivery with electrooxidation-based treatment methods. The 

iron oxide particles investigated in this work may act as a source of iron ions for Fenton oxidation 

processes accelerated by the application of electrical bias. It may be possible to deliver 

nanoparticles to a target treatment zone, then apply voltage across this zone to initiate an 

oxidative process to degrade the target contaminant. This work must begin with proof of concept 

studies using nanoparticles spiked into artificially impacted soil to determine the experimental 
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parameters required for remediation, including contaminant type, contaminant concentration, 

nanoparticle concentration, electrolyte concentration, electrode type, electrode geometry, and 

applied voltage. Following proof of concept, batch-scale targeted binding experiments should 

seek to inform what experimental conditions are required to achieve the necessary nanoparticle 

loading. Subsequent application of electrooxidation to nanoparticles bound in batch experiments 

should seek to demonstrate the possibility of such a two-step treatment. Pending positive results 

from the aforementioned experiments, the final stage of this work should involve a column 

apparatus allowing nanoparticle transport and binding to be combined with subsequent electrode 

application for oxidation. 

 

3. Investigate the attachment and detachment kinetics of Pluronic-coated nanoparticles in 

continuous-flow packed columns at varying flow rates, temperatures, and oil concentrations. This 

work is important to validate the predictions made by 1D-USAT simulations in this thesis, 

generate data more relevant to field application of these nanoparticles, as well as provide a way to 

better evaluate the effect of temperature on the binding interaction. Calculating kattach and kdetach at 

multiple temperatures may relate changes in attachment and detachment to temperature through 

an Arrhenius relationship, allowing calculation of the energies associated with the binding 

process. This is important for confirming the nature of the binding interactions through 

comparison of the binding energies with literature values for hydrophobic interactions. 

 

4. Investigate bound nanoparticle detection by sensing techniques such as X-Ray CT and Spectral 

Induced Polarization (SIP) in flow-through packed column studies. Work presented in Chapter 3 

of this thesis, as well as a recently published manuscript using the nanoparticles developed for 

this project279 has confirmed the capability for Pluronic-coated iron oxide particles to be detected 

in sands by both techniques. The next stages of this work should focus on analysis of porous 

media which has undergone transport and binding experiments to determine the contrast between 

nanoparticles bound to impacted regions and clean sand. This next step will elucidate the 

potential application of targeted nanoparticle subsurface delivery as a detection method for 

monitoring heterogeneously impacted sites.  

 

5. Investigate the binding mechanism in more detail using quartz crystal microbalance (QCM) 

experiments to examine nanoparticle binding to pristine hydrophobic surfaces. Real time 

measurement of binding processes would provide insight regarding the rate of attachment and 

detachment as well as how these processes are affected by coating formulation and environmental 

factors such as temperature. This represents another method by which the nature of the binding 
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mechanism may be confirmed through measuring the binding energy of the nanoparticles to 

hydrophobic surfaces. Combined with the suggestions from next steps item 3, this should provide 

conclusive evidence for nature of binding interactions. Some preliminary QCM binding trials 

have already been attempted and a brief summary of this work is discussed in Appendix D: 

Quartz Crystal Microbalance (QCM) Preliminary Investigation 

 

6. Investigate the stability of nanoparticle formulations during storage over time, in relation to 

aggregation and settling as well as transport and binding performance. Determine the nature of 

stability degradation, if any, is it due to oxidation or biological processes? Determine whether the 

addition of natural antioxidants such as ascorbic acid or vitamin E, or packaging conditions such 

as an anoxic environment, may prolong nanoparticle stability in suspension. 

 

7.5 Preparations for Field Deployment 

 The work discussed in this thesis outlines the development and validation strategy for 

nanoparticle coatings which allow targeted delivery to crude oil in a subsurface environment. While this 

represents a good first step towards improving nanoremediation and site characterization technologies, 

several knowledge gaps must be addressed before this new technology can be usefully applied at scale. 

The critical issues to address include the following: 1. understanding how variations in nanoparticle 

coating formulation responds to a variety of different contaminants within the same class (i.e. crude oil 

vs. gasoline, vs. jet fuel, etc.); 2. Understanding how nanoparticle attachment behaviour is affected by site 

heterogeneity; 3. Understanding how nanoparticle transport and binding is affected by site-specific 

variations porous media make-up. Answering these questions will allow for a reasonable starting point or 

educated guess when determining the application conditions for this technology each time a new site is 

faced. 

 This work addressed how variations in oil type and oil concentration influence nanoparticle 

binding in Chapter 5, but it remains unclear on how the nanoparticle coating formulation may be adjusted 

to tune binding behaviour to be appropriate to the characteristics of a given site. For example, when 

addressing a different aliphatic hydrocarbon contaminant, would a different Pluronic coating formulation 

provide improved binding characteristics? To provide a good starting point for selecting a best educated 

guess for the appropriate Pluronic formulation, it would be advantageous to conduct a batch binding 

factorial analysis investigating both coating formulation and contaminant characteristics. This factorial 

analysis can be used to identify the importance of interactions between coating formulation and 

contaminant type or concentration. With this information, when approaching a new site with a known 

type of contaminant, the best coating formulation can be applied to achieve the desired binding response.  
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 This work addressed homogenous transport and binding environments, composed of either clean 

sand or oil-impacted sand. Furthermore, transport and binding were investigated in essentially 1-

dimensional environments where the nanoparticle slug was forced to interact uniformly with the porous 

media. In real environments, crude-oil impaction is not uniformly distributed across an entire site and the 

injected solution will not necessarily transport through the impacted area, but may follow preferential 

flow pathways around lower porosity regions. To better understand the movement and binding of injected 

nanoparticles, lab-scale investigations of heterogeneous environments should be performed. These may 

include column experiments containing layers or pockets of crude oil-impacted soil or 2-dimensional 

experiments using “sand boxes” with built-in pockets of crude oil-impacted soil. Such conditions can 

verify the predictions from Chapter 5 of this work which shows that nanoparticles should accumulate in 

the oil-impacted regions as well as use tracers and nanoparticle analysis to determine the movement of 

nanoparticle suspension around heterogenous pockets of impacted porous media. 

 Finally, the way nanoparticles respond to different types of porous media is critical to predicting 

performance of this technology at field scale. The most realistic way to gather this information is to 

perform many lab-scale transport and binding tests in real soils with well-characterized profiles. The soils 

should be selected to address a variety of factors including grain size distribution, mineral constituents, 

and presence of naturally occurring organic matter (NOM). Previous literature has indicated that the 

presence of NOM can facilitate enhanced nanoparticle mobility and that NOM molecules, such as humic 

acids, have a wide range of functional moieties, including aliphatic hydrocarbons, polyaromatic 

hydrocarbons, anionic, cationic, and zwitterionic groups. The effect of such NOM may enhance or 

decrease both particle mobility and binding behaviour according to the structure of the adsorbed NOM. 

Similar concerns exist for different mineral constituents which may exhibit increased or decreased 

adsorption affinity for Pluronic-coated nanoparticles. Porous media surface area, influenced by grain size 

distribution, may influence adsorption behaviour as well.  
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Appendix A: Description of Variables in 

Advection/Dispersion Equation 

 

φ Porosity of medium 

c Concentration of NP in suspension 

D Hydrodynamic dispersion coefficient 

ρb Density of porous medium 

s1, s2 Mass of NP deposited per mass of porous medium. 1 = adsorption, 2= filtration 

ka,1, ka,2 Deposition rate of NP. 1= adsorption, 2=filtration 

kd,1, kd,2 Release rate of NP. 1=adsorption, 2=filtration 

β1, β2 Exponential coefficient describing interaction dynamics. 1=adsorption, 2=filtration 

A1 Multiplier constant describing interaction dynamics for adsorption 

d50 Mean pore diameter of porous medium 
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Appendix B: Borden Sand Soil Characterization 

 

All data reported in this appendix is copied from Ball et al., “Characterization of a sandy aquifer material 

at the grain scale”281. 

 

Table B-1. Grain composition in Borden size fractions281 

U.S. Standard 

mesh size 

Particles counted (%)a 

-4 -12 -20 -40 -60 -80 -120 -200 

+12 +20 +40 +60 +80 +120 +200  

Single mineral grains: 

Quartz 3 12 36 33 45 39 48 30 

Plagioclase 1 11 15 16 13 25 10 8 

K-Feldspar 1 3 6 22 19 20 6 3 

Hornblende - - - 3 - 1 6 15 

Garnet - - - - - 1 5 5 

Calcite - - 2 5 4 2 9 5 

Opaque mineralsb - - - - - - 5 20 

Zircon - - - - - - - 5 

Pyroxenesc - - - - - - - 5 

Chloritized-biotite - - 1 - - - 5 - 

Rock fragments: 

Micrite/Biomicrite 31 26 19 6 6 7 6 8 

Sparite/Biosparite 52 35 10 8 5 2 - - 

Schistd 1 3 4 3 2 2 - - 

Sandstonee 9 6 4 2 4 1 - - 

Plutonicsf 3 4 3 2 1 - - - 

athin sections (0.030 mm) of each size fraction were examined under a petrographic microscope. 100 randomly selected particles 

(falling on a grid line) in each size fraction were identified and counted by type. 
bPrimarily magnetite and ilmenite. 
cBelieved to be primarily augite and hypersthene. 
dBelieved to be primarily quartz-plagioclase, quartz-chlorite, and quartz-sericite. 
eSome fragments in the -1 to +12 fraction were very fine grained (siltstone); most sandstones and siltstones contained significant 

amounts of calcite cement. 
fMedium- to coarse-grained rock fragments of granitoid texture and igneous origin. 
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Table B-2. Mass distribution by size fraction for Borden bulk solids – dry sieving results281 

U.S. Standard 

mesh size 

Size range (mm) Nominal diametera 

(mm) 

Mass 

fraction 

No. of 

assays 

Rel. 

error 

-4 +12 4.75 – 1.7 2.8 0.0058 6 0.168 

-12 +20 1.7 – 0.85  1.2 0.0091 6 0.033 

-20 +40 0.85 – 0.42  0.6 0.0524 6 0.034 

-40 +60 0.42 – 0.25  0.33 0.163 4 0.039 

-60 +80 0.25 – 0.18 0.21 0.257 4 0.018 

-80 +120 0.18 – 0.125  0.15 0.315 4 0.015 

-120 +200 0.125 – 0.075 0.097 0.165 4 0.032 

-200 < 0.075  0.0341 4 0.049 
aGeometric mean of sieve sizes  
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Appendix C: Silver Nanoparticle Synthesis Optimization 

 

Table C-1. Silver nanoparticle synthesis optimization response surface trial 1 variable selection 

Observation 

Actual Variables Coded Variables Response 

[H3PO4] [Na Oleate] x1 x2 y 

1 16 2.5 1 -1 0.8145 

2 16 12.5 1 1 0.2235 

3 4 12.5 -1 1 0.044 

4 4 2.5 -1 -1 0.098 

5 18.5 7.5 1.414214 0 3.597 

6 1.5 7.5 -1.41421 0 0.044 

7 10 14.57 0 1.414214 0.046 

8 10 0.429 0 -1.41421 0.043 

9 10 7.5 0 0 0.103 

10 10 7.5 0 0 0.119 

11 10 7.5 0 0 0.1405 

12 10 7.5 0 0 0.105 
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Figure C-1. Trial 1 of a surface response optimization examining the influence of phosphoric acid 

(H3PO4) and sodium oleate concentration on silver nanoparticle synthesis yield. Higher absorbance 

reflects a higher yield of oleate-coated silver nanoparticles transferred to hexane. Under the conditions 

tested, higher [H3PO4] resulted in significant increases in Ag NP yield while sodium oleate appeared to 

exhibit an optimal concentration around 5 mmol/L. 
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Table C-2. Silver nanoparticle synthesis optimization response surface trial 2 variable selection 

Observation 

Actual Variables Coded Variables Response 

[H3PO4] [Na Oleate] x1 x2 y 

1 30 5 1 1 1.831262 

2 30 1 1 -1 0.551791 

3 18 1 -1 -1 0.848223 

4 18 5 -1 1 2.220635 

5 32.5 3 1.414214 0 2.619727 

6 15.5 3 -1.41421 0 2.17134 

7 24 5.8284 0 1.414214 1.569631 

8 24 0.1716 0 -1.41421 2.310695 

9 24 3 0 0 2.616898 

10 24 3 0 0 2.810008 

11 24 3 0 0 2.568611 

12 24 3 0 0 2.654118 
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Figure C-2. Trial 2 of a surface response optimization examining the influence of phosphoric acid 

(H3PO4) and sodium oleate concentration on silver nanoparticle synthesis yield. Higher absorbance 

reflects a higher yield of oleate-coated silver nanoparticles transferred to hexane. Trial 1 was used to 

inform parameter range selection for trial 2. Under the conditions tested, an optimal [H3PO4] of 25 

mmol/L and an oprimal [Na Oleate] of 3 mmol/L were determined. 
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Appendix D: Quartz Crystal Microbalance (QCM) Preliminary 

Investigation 

 

D.1 Purpose & Introduction 

Quartz Crystal Microbalance (QCM) is an analytical technique for measuring the mass quantity 

adsorbed onto the surface of a vibrating quartz crystal. The crystal is electrically biased, and the vibration 

may be detected through an electrical signal which oscillates at a specific frequency. This frequency is 

dampened as the oscillation frequency of the quartz crystal is dampened by adsorbed mass. This change 

in frequency can be correlated to adsorbed mass through the Saurbrey equation: 

 
𝛥𝑚 =  −

𝐴√𝜌𝑞𝜇𝑞

2𝑓0
2 ∆𝑓 (D-1) 

Where Δm is the change in areal mass (ng/cm2), A is the area of the sensor (cm2), ρq is the density 

of quartz (g/cm3), µq is the shear modulus of quartz (g cm-1 s-1) f0 is the resonant frequency of the quartz 

(Hz), and Δf is the observed change in frequency (Hz).  

  The binding of Pluronic-coated nanoparticles to a pristine hydrophobic surface from aqueous 

medium may be observed by recording the areal mass change on the surface of a QCM sensor in the 

presence of nanoparticles or free Pluronic. The set of experiments presented here sought to confirm 

nanoparticle preferential binding to hydrophobic surfaces, as well as determine how much, if at all, free 

Pluronic may influence nanoparticle binding. 

 

D.2 Materials & Methods 

D.2.1 Materials 

Ethanol (ACS grade, 99%) was purchased from Fisher Scientific and 1-octadecanethiol (1-ODT; 

98%) was purchased from Sigma Aldrich and used as received. Pluronic P104 and Pluronic L62 were 

gifted from BASF Canada via Brenntag Canada and used as received. Pluronic-coated iron oxide 

nanoparticles and oleic acid-coated iron oxide nanoparticles were produced as described in Chapter 3 and 

used at concentrations suspended in water of ~500 mg/L.  

D.2.2 QCM Experiments 

 QCM experiments were performed using a Q-Sense QCM-D instrument and Q-Sense Au-coated 

QSensors. For binding experiments to pristine gold sensors, Milli-Q water was injected into the QCM cell 

at a constant flow rate of 0.3 mL/min. After a steady state frequency had been reached, injection was 
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swapped to Pluronic-coated nanoparticles, oleic acid-coated nanoparticles, or Pluronic solution (1 g/L). 

After 30 minutes, injection was swapped back to Milli-Q water. In the case of binding experiments on 

hydrophobized surfaces, ethanol was injected into the QCM cell until steady state was reached. Injection 

was then swapped to 0.02 mol/L 1-ODT in ethanol to allow the thiol group to react and attach to the gold 

surface. The cell was then injected with ethanol once again to wash out any unbound 1-ODT. Following 

this, Milli-Q water was injected into the QCM cell until steady state frequency was reached, and the 

experiment proceeded identically to the binding experiments using a pristine gold surface. 

 Analysis used the frequency change reported by the Q-Sense instrument coupled with the 

Saurbrey equation to produce an areal mass change for each sample. Frequency changes were calculated 

from the minimum value at steady state to the maximum value after introduction of the sample. 

 

D.3 Results & Discussion 

 Binding of four samples were assessed using the QCM; two replicates of Pluronic coated 

nanoparticles (80L62-P104 1 g/L coating; see formulation B-80 from Table 3), oleic acid-only coated 

nanoparticles, and 1 g/L Pluronic solution (80% L62, 20% P104). The results of the Pluronic-coated 

nanoparticle binding experiments are seen in Figures D-1 and D-2. The first notable observation is the 

confirmation of 1-ODT deposition on the gold sensor, evidenced by the small decrease in areal mass 

observed at △ compared to the large increase observed at ○. After introduction of the Pluronic-coated 

nanoparticles in water, an increase in areal mass is observed on all sensors, however it is much more 

significant on the hydrophobic surfaces, with increases of 259.7 ng/cm2 and 245.9 ng/cm2 in the 

respective replicates compared to 71.6 ng/cm2 and 57.6 ng/cm2 on the pristine gold surfaces (Table D-1). 

 

Table D-1. QCM areal mass changes upon introduction of binding species 

Sample Δm on pristine gold (ng/cm2) Δm on hydrophobic gold (ng/cm2) 

Pluronic-NP 1 71.6 259.7 

Pluronic-NP 2 57.6 245.9 

OA-NP 8.4 78.3 

Pluronic Solution 177.7 382.4 
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Figure D-1. Quartz Crystal Microbalance data for Pluronic-coated nanoparticle binding replicate 1 at 

room temperature to two different sensors: unmodified gold (black) and gold modified with 1-

octadecanethiol (1-ODT; grey), a hydrophobic material. The various symbols indicate different stages of 

the QCM experiment: ○ 0.02 mol/L 1-ODT in ethanol is injected into one of the QCM cells, △ ethanol is 

injected in to wash out any excess 1-ODT, ◇ water is injected to replace ethanol, □ Pluronic-coated 

nanoparticles suspended in water (~500 mg/L) are injected into each cell, ⬡ water is injected into each 

cell. Results clearly demonstrate that nanoparticles preferentially attach to the hydrophobic surface as 

evidenced by the step increase in areal mass in the grey line at 2000 s. Note the irregular downward trend 

for the pristine gold surface observed at 2000 s and the severe increase at ~4000 s. This is attributed to 

instrument error. 
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Figure D-2. Quartz Crystal Microbalance data for Pluronic-coated nanoparticle binding replicate 2 at 

room temperature to two different sensors: unmodified gold (black) and gold modified with 1-

octadecanethiol (1-ODT; grey), a hydrophobic material. The various symbols indicate different stages of 

the QCM experiment: ○ 0.02 mol/L 1-ODT in ethanol is injected into one of the QCM cells, △ ethanol is 

injected in to wash out any excess 1-ODT, ◇ water is injected to replace ethanol, □ Pluronic-coated 

nanoparticles suspended in water (~500 mg/L) are injected into each cell, ⬡ water is injected into each 

cell. Results clearly demonstrate that nanoparticles preferentially attach to the hydrophobic surface as 

evidenced by the step increase in areal mass in the grey line at 2200 s. 

 Upon introduction of water at 4000 s, the frequency of the QCM sensors for both pristine and 

hydrophobized gold was returned to the resonant frequency of the sensor, indicating that nanoparticles 

had been flushed from these surfaces.  

 To investigate the importance of the Pluronic coating on nanoparticle binding, oleic acid-coated 

iron oxide nanoparticle binding was investigated, as shown in Figure D-3. Similar results to Pluronic-

coated nanoparticle binding were observed, however the magnitude of the areal mass changes were 

reduced. Where a moderate increase in areal mass of ~70 ng/cm2 was observed for Pluronic-NP 

nanoparticles on pristine gold, an increase of only 8.4 ng/cm2 was observed when using OA-NP. 

Similarly, binding to the hydrophobized gold surface was calculated to be 78.3 ng/cm2 for OA-NP 

compared to the ~250 ng/cm2 of Pluronic-NP. Note that some equipment error hindered analytical 

capabilities for this sample and the values reported here may be somewhat inaccurate for the hydrophobic 

surface. The pristine surface, however, clearly shows a much lower binding affinity. Following the final 

flush with water, it was impossible to confirm from this data whether the nanoparticles were removed 

from the sensor surface. Based on these observations, it is reasonable to conclude that the presence of 

Pluronic improves the binding capability of the particles.  
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Figure D-3. Quartz Crystal Microbalance data for oleic acid-coated nanoparticle binding (no pluronic 

coating) at room temperature to two different sensors: unmodified gold (black) and gold modified with 1-

octadecanethiol (1-ODT; grey), a hydrophobic material. The various symbols indicate different stages of 

the QCM experiment: ○ 0.02 mol/L 1-ODT in ethanol is injected into one of the QCM cells, △ ethanol is 

injected in to wash out any excess 1-ODT, ◇ water is injected to replace ethanol, □ oleic acid-coated 

nanoparticles suspended in water (~500 mg/L) are injected into each cell, ⬡ water is injected into each 

cell. Results clearly demonstrate that nanoparticles preferentially attach to the hydrophobic surface as 

evidenced by the step increase in areal mass in the grey line at ~2300 s, however the areal mass change 

observed is not as great as for Pluronic-coated nanoparticles. Note the irregular downward drift in the 

areal mass signal which is attributed to instrument error. 

 As a final experiment, binding of free Pluronic block co-polymer in aqueous solution to the QCM 

sensors was investigated. This was done to predict the effect that free Pluronic might have on nanoparticle 

binding as well as observe any differences between Pluronic versus Pluronic-NP binding behaviour. The 

results of Pluronic binding are shown in Figure D-4.  
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Figure D-4. Quartz Crystal Microbalance data for Pluronic binding at room temperature to two different 

sensors: unmodified gold (black) and gold modified with 1-octadecanethiol (1-ODT; grey), a 

hydrophobic material. The various symbols indicate different stages of the QCM experiment: ○ 0.02 

mol/L 1-ODT in ethanol is injected into one of the QCM cells, △ ethanol is injected in to wash out any 

excess 1-ODT, ◇ water is injected to replace ethanol, □ Pluronic-coated nanoparticles suspended in water 

(~500 mg/L) are injected into each cell, ⬡ water is injected into each cell. Results clearly demonstrate 

that Pluronic preferentially attaches to the hydrophobic surface as evidenced by the step increase in areal 

mass in the grey line at 2000 s. Notably, the areal mass increase for Pluronic on unmodified gold exceeds 

the attachment 

 Pluronic was found to bind preferentially to the hydrophobized surface, an expected result given 

prior literature investigating Pluronic attachment to hydrophobic surfaces282. It was found that the 

magnitude of areal mass change for Pluronic exceeded that observed for Pluronic-NP, with 177.7 ng/cm2 

adsorbed to the pristine gold surface and 382.4 ng/cm2 adsorbed to the hydrophobic gold surface. This is 

possibly due to multi-layer adsorption of Pluronic on the gold surface compared with nanoparticle 

adsorption, which is expected to be Langmuirian in nature. Notably for this sample, upon flushing with 

water at ~4000 s, the majority of the Pluronic remains adsorbed to the surface of the sensor, a significant 

difference from the Pluronic-NP samples. Based on this observation, it appears that the amount of free 

Pluronic present in the nanoparticle samples is minimal, otherwise it would be expected that residual areal 

mass would remain on the sensor after flushing with water. Based on this, it should not be expected that 

Pluronic will significantly compete for binding during a nanoparticle transport and binding experiment 

when using nanoparticles as prepared in this work. 
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D.4 Conclusions and Next Steps 

 Based on the QCM experiments shown here, two significant conclusions can be made about the 

binding behaviour of Pluronic-coated nanoparticles. First, the presence of the Pluronic coating is critical 

to the binding behaviour of the particle. In previous chapters 3 and 5, it was speculated based on the 

literature that Pluronic provided disruption to the anionic oleic acid bilayer which forms around the 

particle when coated solely with oleic acid, leading to increased hydrophobic forces, and this theory also 

supports the QCM data shown here. Second, based on the QCM binding profiles for Pluronic-NP and 

Pluronic polymer, it appears that the concentration of free Pluronic present in the NP samples is minimal 

and should not produce any interference with transport and binding experiments. Finally, based on 

experimental observation, it appears that the adsorption of Pluronic-NP to both the hydrophobic and 

pristine gold surfaces was rapid, and thus this process is likely diffusion limited, rather than adsorption-

rate limited. It should be noted that the crude oil used in the remainder of this work does not necessarily 

behave as a single thin layer, and over time the surface may change, leading to more complicated 

adsorption behaviour.  

 Recommended next steps for QCM experimentation are to repeat Pluronic-coated nanoparticle 

binding experiments at increased temperatures in order to confirm the type of influence temperature has 

on nanoparticle binding, whether it is a further increase in areal mass, or an observed binding rate 

increase. Based on this information, it may be possible to determine the nature of nanoparticle binding 

based on calculated binding energy. 

  



114 

 

Bibliography 

(1)  Ivshina, I. B.; Kuyukina, M. S.; Krivoruchko, A. V.; Elkin, A. A.; Makarov, S. O.; Cunningham, 

C. J.; Peshkur, T. A.; Atlas, R. M.; Philp, J. C. Oil Spill Problems and Sustainable Response 

Strategies through New Technologies. Environ. Sci.: Processes Impacts 2015, 17 (7), 1201–

1219. https://doi.org/10.1039/C5EM00070J. 

(2)  Canada-Wide Standard for Petroleum Hydrocarbons in Soil 2014 Progress Report PN 1516 - PN 

1516_PHC CWS 2014 Progress Rpt 1.0_e.pdf 

http://www.ccme.ca/files/Resources/csm/phc_cws/PN%201516_PHC%20CWS%202014%20Pro

gress%20Rpt%201.0_e.pdf (accessed Feb 12, 2016). 

(3)  Franco, I.; Contin, M.; Bragato, G.; De Nobili, M. Microbiological Resilience of Soils 

Contaminated with Crude Oil. Geoderma 2004, 121 (1–2), 17–30. 

https://doi.org/10.1016/j.geoderma.2003.10.002. 

(4)  Erdogan, E. (Eraydin); Karaca, A. Bioremediation of Crude Oil Polluted Soils. Asian Journal of 

Biotechnology 2011, 3 (3), 206–213. https://doi.org/10.3923/ajbkr.2011.206.213. 

(5)  Yavari, S.; Malakahmad, A.; Sapari, N. B. A Review on Phytoremediation of Crude Oil Spills. 

Water Air Soil Pollut 2015, 226 (8), 1–18. https://doi.org/10.1007/s11270-015-2550-z. 

(6)  Gomes, H. I.; Dias-Ferreira, C.; Ribeiro, A. B. Overview of in Situ and Ex Situ Remediation 

Technologies for PCB-Contaminated Soils and Sediments and Obstacles for Full-Scale 

Application. Science of The Total Environment 2013, 445–446, 237–260. 

https://doi.org/10.1016/j.scitotenv.2012.11.098. 

(7)  CHAPTER 6 OF THE CONTAMINATED SEDIMENT REMEDIATION GUIDANCE FOR 

HAZARDOUS WASTE SITES: DREDGING AND EXCAVATION - 174460.pdf 

https://semspub.epa.gov/work/11/174460.pdf (accessed Feb 16, 2016). 

(8)  Agarwal, S.; Al-Abed, S. R.; Dionysiou, D. D. In Situ Technologies for Reclamation of PCB-

Contaminated Sediments: Current Challenges and Research Thrust Areas. Journal of 

Environmental Engineering 2007, 133 (12), 1075–1078. https://doi.org/10.1061/(ASCE)0733-

9372(2007)133:12(1075). 

(9)  Agarwal, A.; Liu, Y. Remediation Technologies for Oil-Contaminated Sediments. Marine 

Pollution Bulletin 2015, 101 (2), 483–490. https://doi.org/10.1016/j.marpolbul.2015.09.010. 

(10)  Chien, Y.-C. Field Study of in Situ Remediation of Petroleum Hydrocarbon Contaminated Soil 

on Site Using Microwave Energy. Journal of Hazardous Materials 2012, 199–200, 457–461. 

https://doi.org/10.1016/j.jhazmat.2011.11.012. 

(11)  Do, S.-H.; Kwon, Y.-J.; Kong, S.-H. Effect of Metal Oxides on the Reactivity of Persulfate/Fe(II) 

in the Remediation of Diesel-Contaminated Soil and Sand. Journal of Hazardous Materials 2010, 

182 (1–3), 933–936. https://doi.org/10.1016/j.jhazmat.2010.06.068. 

(12)  Zhou, H.; Hu, L.; Wan, J.; Yang, R.; Yu, X.; Li, H.; Chen, J.; Wang, L.; Lu, X. Microwave-

Enhanced Catalytic Degradation of p-Nitrophenol in Soil Using MgFe2O4. Chemical 

Engineering Journal 2016, 284, 54–60. https://doi.org/10.1016/j.cej.2015.08.103. 

(13)  Li, X.; Elliott, D. W.; Zhang, W. Zero-Valent Iron Nanoparticles for Abatement of 

Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State 

and Materials Sciences 2006, 31 (4), 111–122. https://doi.org/10.1080/10408430601057611. 

(14)  Cantrell, K. J.; Kaplan, D. I.; Wietsma, T. W. Zero-Valent Iron for the in Situ Remediation of 

Selected Metals in Groundwater. Journal of Hazardous Materials 1995, 42 (2), 201–212. 

https://doi.org/10.1016/0304-3894(95)00016-N. 

(15)  Gillham, R. W.; O’Hannesin, S. F. Enhanced Degradation of Halogenated Aliphatics by Zero-

Valent Iron. Groundwater 1994, 32 (6), 958–967. https://doi.org/10.1111/j.1745-

6584.1994.tb00935.x. 

(16)  Morkin, M.; Devlin, J. F.; Barker, J. F.; Butler, B. J. In Situ Sequential Treatment of a Mixed 

Contaminant Plume. Journal of Contaminant Hydrology 2000, 45 (3), 283–302. 

https://doi.org/10.1016/S0169-7722(00)00111-X. 



115 

 

(17)  Han, Y.; Yan, W. Reductive Dechlorination of Trichloroethene by Zero-Valent Iron 

Nanoparticles: Reactivity Enhancement through Sulfidation Treatment. Environ. Sci. Technol. 

2016, 50 (23), 12992–13001. https://doi.org/10.1021/acs.est.6b03997. 

(18)  Kang, Y.-G.; Yoon, H.; Lee, W.; Kim, E.; Chang, Y.-S. Comparative Study of Peroxide Oxidants 

Activated by NZVI: Removal of 1,4-Dioxane and Arsenic(III) in Contaminated Waters. 

Chemical Engineering Journal 2018, 334, 2511–2519. https://doi.org/10.1016/j.cej.2017.11.076. 

(19)  Al-Shamsi, M. A.; Thomson, N. R. Treatment of Organic Compounds by Activated Persulfate 

Using Nanoscale Zerovalent Iron. Industrial & Engineering Chemistry Research 2013, 52 (38), 

13564–13571. https://doi.org/10.1021/ie400387p. 

(20)  Al-Shamsi, M. A.; Thomson, N. R. Treatment of a Trichloroethylene Source Zone Using 

Persulfate Activated by an Emplaced Nano-Pd–Fe<Superscript>0</Superscript> Zone. Water Air 

Soil Pollut 2013, 224 (11), 1780. https://doi.org/10.1007/s11270-013-1780-1. 

(21)  Liang, C.; Wang, Z.-S.; Bruell, C. J. Influence of PH on Persulfate Oxidation of TCE at Ambient 

Temperatures. Chemosphere 2007, 66 (1), 106–113. 

https://doi.org/10.1016/j.chemosphere.2006.05.026. 

(22)  Wu, S.; He, H.; Li, X.; Yang, C.; Zeng, G.; Wu, B.; He, S.; Lu, L. Insights into Atrazine 

Degradation by Persulfate Activation Using Composite of Nanoscale Zero-Valent Iron and 

Graphene: Performances and Mechanisms. Chemical Engineering Journal 2018, 341, 126–136. 

https://doi.org/10.1016/j.cej.2018.01.136. 

(23)  Song, Y.; Fang, G.; Zhu, C.; Zhu, F.; Wu, S.; Chen, N.; Wu, T.; Wang, Y.; Gao, J.; Zhou, D. 

Zero-Valent Iron Activated Persulfate Remediation of Polycyclic Aromatic Hydrocarbon-

Contaminated Soils: An in Situ Pilot-Scale Study. Chemical Engineering Journal 2019, 355, 65–

75. https://doi.org/10.1016/j.cej.2018.08.126. 

(24)  Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, L.; Xie, Y.; Zeng, Y.; Zhao, F. Degradation of 

Trichloroethene by Nanoscale Zero-Valent Iron (NZVI) and NZVI Activated Persulfate in the 

Absence and Presence of EDTA. Chemical Engineering Journal 2017, 316, 410–418. 

https://doi.org/10.1016/j.cej.2017.01.118. 

(25)  Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Iron Oxide Shell Mediated Environmental Remediation 

Properties of Nano Zero-Valent Iron. Environmental Science: Nano 2017, 4 (1), 27–45. 

https://doi.org/10.1039/C6EN00398B. 

(26)  Crane, R. A.; Scott, T. B. Nanoscale Zero-Valent Iron: Future Prospects for an Emerging Water 

Treatment Technology. Journal of Hazardous Materials 2012, 211–212, 112–125. 

https://doi.org/10.1016/j.jhazmat.2011.11.073. 

(27)  Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Reductive Removal of Selenate by Zero-Valent 

Iron: The Roles of Aqueous Fe2+ and Corrosion Products, and Selenate Removal Mechanisms. 

Water Research 2014, 67, 166–174. https://doi.org/10.1016/j.watres.2014.09.016. 

(28)  Gheju, M. Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems. 

Water Air Soil Pollut 2011, 222 (1), 103–148. https://doi.org/10.1007/s11270-011-0812-y. 

(29)  Tuček, J.; Prucek, R.; Kolařík, J.; Zoppellaro, G.; Petr, M.; Filip, J.; Sharma, V. K.; Zbořil, R. 

Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in 

Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. 

ACS Sustainable Chemistry & Engineering 2017, 5 (4), 3027–3038. 

https://doi.org/10.1021/acssuschemeng.6b02698. 

(30)  Gu, M.; Sui, Q.; Farooq, U.; Zhang, X.; Qiu, Z.; Lyu, S. Degradation of Phenanthrene in Sulfate 

Radical Based Oxidative Environment by NZVI-PDA Functionalized RGO Catalyst. Chemical 

Engineering Journal 2018, 354, 541–552. https://doi.org/10.1016/j.cej.2018.08.039. 

(31)  Gu, M.; Sui, Q.; Farooq, U.; Zhang, X.; Qiu, Z.; Lyu, S. Enhanced Degradation of 

Trichloroethylene in Oxidative Environment by NZVI/PDA Functionalized RGO Catalyst. 

Journal of Hazardous Materials 2018, 359, 157–165. 

https://doi.org/10.1016/j.jhazmat.2018.07.013. 



116 

 

(32)  Zhu, K.; Chen, C.; Xu, M.; Chen, K.; Tan, X.; Wakeel, M.; Alharbi, N. S. In Situ Carbothermal 

Reduction Synthesis of Fe Nanocrystals Embedded into N-Doped Carbon Nanospheres for 

Highly Efficient U(VI) Adsorption and Reduction. Chemical Engineering Journal 2018, 331, 

395–405. https://doi.org/10.1016/j.cej.2017.08.126. 

(33)  Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Johir, M. A. H.; Sornalingam, K.; Belhaj, D.; 

Kallel, M. Nano-Fe 0 Immobilized onto Functionalized Biochar Gaining Excellent Stability 

during Sorption and Reduction of Chloramphenicol via Transforming to Reusable Magnetic 

Composite. Chemical Engineering Journal 2017, 322, 571–581. 

https://doi.org/10.1016/j.cej.2017.04.063. 

(34)  Yi, Y.; Wu, J.; Wei, Y.; Fang, Z.; Tsang, E. P. The Key Role of Biochar in the Rapid Removal of 

Decabromodiphenyl Ether from Aqueous Solution by Biochar-Supported Ni/Fe Bimetallic 

Nanoparticles. Journal of Nanoparticle Research 2017, 19 (7). https://doi.org/10.1007/s11051-

017-3927-2. 

(35)  Jiang, X.; Guo, Y.; Zhang, L.; Jiang, W.; Xie, R. Catalytic Degradation of Tetracycline 

Hydrochloride by Persulfate Activated with Nano Fe0 Immobilized Mesoporous Carbon. 

Chemical Engineering Journal 2018, 341, 392–401. https://doi.org/10.1016/j.cej.2018.02.034. 

(36)  Cohen, M.; Weisbrod, N. Field Scale Mobility and Transport Manipulation of Carbon-Supported 

Nanoscale Zerovalent Iron in Fractured Media. Environ. Sci. Technol. 2018, 52 (14), 7849–7858. 

https://doi.org/10.1021/acs.est.8b01226. 

(37)  Su, H.; Fang, Z.; Tsang, P. E.; Fang, J.; Zhao, D. Stabilisation of Nanoscale Zero-Valent Iron 

with Biochar for Enhanced Transport and in-Situ Remediation of Hexavalent Chromium in Soil. 

Environmental Pollution 2016, 214, 94–100. https://doi.org/10.1016/j.envpol.2016.03.072. 

(38)  Xu, J.; Dozier, A.; Bhattacharyya, D. Synthesis of Nanoscale Bimetallic Particles in 

Polyelectrolyte Membrane Matrix for Reductive Transformation of Halogenated Organic 

Compounds. J Nanopart Res 2005, 7 (4), 449–467. https://doi.org/10.1007/s11051-005-4273-3. 

(39)  Zhu, B.-W.; Lim, T.-T.; Feng, J. Reductive Dechlorination of 1,2,4-Trichlorobenzene with 

Palladized Nanoscale Fe0 Particles Supported on Chitosan and Silica. Chemosphere 2006, 65 (7), 

1137–1145. https://doi.org/10.1016/j.chemosphere.2006.04.012. 

(40)  Kumar, M. A.; Bae, S.; Han, S.; Chang, Y.; Lee, W. Reductive Dechlorination of 

Trichloroethylene by Polyvinylpyrrolidone Stabilized Nanoscale Zerovalent Iron Particles with 

Ni. Journal of Hazardous Materials 2017, 340, 399–406. 

https://doi.org/10.1016/j.jhazmat.2017.07.030. 

(41)  Kim, E.-J.; Kim, J.-H.; Azad, A.-M.; Chang, Y.-S. Facile Synthesis and Characterization of 

Fe/FeS Nanoparticles for Environmental Applications. ACS Appl. Mater. Interfaces 2011, 3 (5), 

1457–1462. https://doi.org/10.1021/am200016v. 

(42)  Su, Y.; Adeleye, A. S.; Keller, A. A.; Huang, Y.; Dai, C.; Zhou, X.; Zhang, Y. Magnetic Sulfide-

Modified Nanoscale Zerovalent Iron (S-NZVI) for Dissolved Metal Ion Removal. Water 

Research 2015, 74, 47–57. https://doi.org/10.1016/j.watres.2015.02.004. 

(43)  Su, Y.; Jassby, D.; Song, S.; Zhou, X.; Zhao, H.; Filip, J.; Petala, E.; Zhang, Y. Enhanced 

Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with 

Sulfide Modified Nanoscale Zerovalent Iron. Environmental Science & Technology 2018, 52 

(11), 6466–6475. https://doi.org/10.1021/acs.est.8b00231. 

(44)  Fan, D.; O’Brien Johnson, G.; Tratnyek, P. G.; Johnson, R. L. Sulfidation of Nano Zerovalent 

Iron (NZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR). 

Environmental Science & Technology 2016, 50 (17), 9558–9565. 

https://doi.org/10.1021/acs.est.6b02170. 

(45)  He, F.; Li, Z.; Shi, S.; Xu, W.; Sheng, H.; Gu, Y.; Jiang, Y.; Xi, B. Dechlorination of Excess 

Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. Environmental 

Science & Technology 2018, 52 (15), 8627–8637. https://doi.org/10.1021/acs.est.8b01735. 



117 

 

(46)  Bhattacharjee, S.; Ghoshal, S. Optimal Design of Sulfidated Nanoscale Zerovalent Iron for 

Enhanced Trichloroethene Degradation. Environmental Science & Technology 2018, 52 (19), 

11078–11086. https://doi.org/10.1021/acs.est.8b02399. 

(47)  Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Aggregation and Sedimentation of 

Aqueous Nanoscale Zerovalent Iron Dispersions. Environ. Sci. Technol. 2007, 41 (1), 284–290. 

https://doi.org/10.1021/es061349a. 

(48)  Schrick, B.; Hydutsky, B. W.; Blough, J. L.; Mallouk, T. E. Delivery Vehicles for Zerovalent 

Metal Nanoparticles in Soil and Groundwater. Chem. Mater. 2004, 16 (11), 2187–2193. 

https://doi.org/10.1021/cm0218108. 

(49)  Mondal, P. K.; Furbacher, P. D.; Cui, Z.; Krol, M. M.; Sleep, B. E. Transport of Polymer 

Stabilized Nano-Scale Zero-Valent Iron in Porous Media. Journal of Contaminant Hydrology 

2018, 212, 65–77. https://doi.org/10.1016/j.jconhyd.2017.11.004. 

(50)  Kumar, N.; Labille, J.; Bossa, N.; Auffan, M.; Doumenq, P.; Rose, J.; Bottero, J.-Y. Enhanced 

Transportability of Zero Valent Iron Nanoparticles in Aquifer Sediments: Surface Modifications, 

Reactivity, and Particle Traveling Distances. Environ Sci Pollut Res 2017, 24 (10), 9269–9277. 

https://doi.org/10.1007/s11356-017-8597-1. 

(51)  Liu, J.; Liu, A.; Zhang, W. The Influence of Polyelectrolyte Modification on Nanoscale Zero-

Valent Iron (NZVI): Aggregation, Sedimentation, and Reactivity with Ni(II) in Water. Chemical 

Engineering Journal 2016, 303, 268–274. https://doi.org/10.1016/j.cej.2016.05.132. 

(52)  He, F.; Zhao, D.; Liu, J.; Roberts, C. B. Stabilization of Fe−Pd Nanoparticles with Sodium 

Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in 

Soil and Groundwater. Ind. Eng. Chem. Res. 2007, 46 (1), 29–34. 

https://doi.org/10.1021/ie0610896. 

(53)  Laumann, S.; Micić, V.; Hofmann, T. Mobility Enhancement of Nanoscale Zero-Valent Iron in 

Carbonate Porous Media through Co-Injection of Polyelectrolytes. Water Research 2014, 50, 70–

79. https://doi.org/10.1016/j.watres.2013.11.040. 

(54)  Kim, H.-J.; Phenrat, T.; Tilton, R. D.; Lowry, G. V. Fe0 Nanoparticles Remain Mobile in Porous 

Media after Aging Due to Slow Desorption of Polymeric Surface Modifiers. Environ. Sci. 

Technol. 2009, 43 (10), 3824–3830. https://doi.org/10.1021/es802978s. 

(55)  Xin, J.; Tang, F.; Zheng, X.; Shao, H.; Kolditz, O. Transport and Retention of Xanthan Gum-

Stabilized Microscale Zero-Valent Iron Particles in Saturated Porous Media. Water Research 

2016, 88, 199–206. https://doi.org/10.1016/j.watres.2015.10.005. 

(56)  Comba, S.; Dalmazzo, D.; Santagata, E.; Sethi, R. Rheological Characterization of Xanthan 

Suspensions of Nanoscale Iron for Injection in Porous Media. Journal of Hazardous Materials 

2011, 185 (2), 598–605. https://doi.org/10.1016/j.jhazmat.2010.09.060. 

(57)  López-Cruz, A.; López, G. E. Formation of an Iron Oxide Bond in Iron Carboxylate Complexes: 

A Density Functional Theory Study. Molecular Physics 2009, 107 (17), 1799–1804. 

https://doi.org/10.1080/00268970903078567. 

(58)  Lu, H.; Wen, C.; Gao, S.; Dong, Y.; Zhang, M.; Li, B.; Hu, W.; Dong, J. Incorporation of 

Nanoscale Zero-Valent Iron Particles in Monodisperse Mesoporous Silica Nanospheres: 

Characterization, Reactivity, Transport in Porous Media. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 2018, 553, 28–34. 

https://doi.org/10.1016/j.colsurfa.2018.05.038. 

(59)  Doong, R.; Saha, S.; Lee, C.; Lin, H. Mesoporous Silica Supported Bimetallic Pd/Fe for 

Enhanced Dechlorination of Tetrachloroethylene. RSC Adv. 2015, 5 (110), 90797–90805. 

https://doi.org/10.1039/C5RA15070A. 

(60)  Yang, Z.; Qiu, X.; Fang, Z.; Pokeung, T. Transport of Nano Zero-Valent Iron Supported by 

Mesoporous Silica Microspheres in Porous Media. Water Science & Technology 2015, 71 (12), 

1800. https://doi.org/10.2166/wst.2015.158. 

(61)  Lv, X.; Zhang, Y.; Fu, W.; Cao, J.; Zhang, J.; Ma, H.; Jiang, G. Zero-Valent Iron Nanoparticles 

Embedded into Reduced Graphene Oxide-Alginate Beads for Efficient Chromium (VI) Removal. 



118 

 

Journal of Colloid and Interface Science 2017, 506, 633–643. 

https://doi.org/10.1016/j.jcis.2017.07.024. 

(62)  HonetschlÄgerová, L.; Janouškovcová, P.; Kubal, M. Enhanced Transport of Si-Coated 

Nanoscale Zero-Valent Iron Particles in Porous Media. Environmental Technology 2016, 37 (12), 

1530–1538. https://doi.org/10.1080/09593330.2015.1120784. 

(63)  Karn, B.; Kuiken, T.; Otto, M. Nanotechnology and in Situ Remediation: A Review of the 

Benefits and Potential Risks. Environmental Health Perspectives 2009, 117 (12), 1823–1831. 

(64)  Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Cheng, M.; Zhang, C.; Hu, C.; Li, J. Performance and 

Toxicity Assessment of Nanoscale Zero Valent Iron Particles in the Remediation of 

Contaminated Soil: A Review. Chemosphere 2018, 210, 1145–1156. 

https://doi.org/10.1016/j.chemosphere.2018.07.118. 

(65)  Lei, C.; Sun, Y.; Tsang, D. C. W.; Lin, D. Environmental Transformations and Ecological Effects 

of Iron-Based Nanoparticles. Environmental Pollution 2018, 232, 10–30. 

https://doi.org/10.1016/j.envpol.2017.09.052. 

(66)  Louie, S. M.; Tilton, R. D.; Lowry, G. V. Critical Review: Impacts of Macromolecular Coatings 

on Critical Physicochemical Processes Controlling Environmental Fate of Nanomaterials. 

Environ. Sci.: Nano 2016, 3 (2), 283–310. https://doi.org/10.1039/C5EN00104H. 

(67)  Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. 

V. Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous 

Media. Environmental Engineering Science 2006, 24 (1), 45–57. 

https://doi.org/10.1089/ees.2007.24.45. 

(68)  Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyjaszewski, K.; Tilton, R. D.; 

Lowry, G. V. Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the 

Oil/Water Interface. Nano Lett. 2005, 5 (12), 2489–2494. https://doi.org/10.1021/nl0518268. 

(69)  Song, J. E.; Phenrat, T.; Marinakos, S.; Xiao, Y.; Liu, J.; Wiesner, M. R.; Tilton, R. D.; Lowry, 

G. V. Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag 

Nanoparticles to Hydrophobic Surfaces. Environ. Sci. Technol. 2011, 45 (14), 5988–5995. 

https://doi.org/10.1021/es200547c. 

(70)  Phenrat, T.; Fagerlund, F.; Illangasekare, T.; Lowry, G. V.; Tilton, R. D. Polymer-Modified Fe0 

Nanoparticles Target Entrapped NAPL in Two Dimensional Porous Media: Effect of Particle 

Concentration, NAPL Saturation, and Injection Strategy. Environ. Sci. Technol. 2011, 45 (14), 

6102–6109. https://doi.org/10.1021/es200577n. 

(71)  Linley, S.; Holmes, A.; Leshuk, T.; Nafo, W.; Thomson, N. R.; Al-Mayah, A.; McVey, K.; Sra, 

K.; Gu, F. X. Targeted Nanoparticle Binding & Detection in Petroleum Hydrocarbon Impacted 

Porous Media. Chemosphere 2018. https://doi.org/10.1016/j.chemosphere.2018.10.046. 

(72)  Hu, Y.; Zhang, M.; Qiu, R.; Li, X. Encapsulating Nanoscale Zero-Valent Iron with a Soluble 

Mg(OH)2 Shell for Improved Mobility and Controlled Reactivity Release. J. Mater. Chem. A 

2018, 6 (6), 2517–2526. https://doi.org/10.1039/C7TA08605A. 

(73)  Gong, Y.; Liu, Y.; Xiong, Z.; Zhao, D. Immobilization of Mercury by Carboxymethyl Cellulose 

Stabilized Iron Sulfide Nanoparticles: Reaction Mechanisms and Effects of Stabilizer and Water 

Chemistry. Environ. Sci. Technol. 2014, 48 (7), 3986–3994. https://doi.org/10.1021/es404418a. 

(74)  Morse, J. W.; Arakaki, T. Adsorption and Coprecipitation of Divalent Metals with Mackinawite 

(FeS). Geochimica et Cosmochimica Acta 1993, 57 (15), 3635–3640. 

https://doi.org/10.1016/0016-7037(93)90145-M. 

(75)  Gong, Y.; Liu, Y.; Xiong, Z.; Kaback, D.; Zhao, D. Immobilization of Mercury in Field Soil and 

Sediment Using Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Nanotechnology 

2012, 23 (29), 294007. https://doi.org/10.1088/0957-4484/23/29/294007. 

(76)  Sun, Y.; Liu, Y.; Lou, Z.; Yang, K.; Lv, D.; Zhou, J.; Baig, S. A.; Xu, X. Enhanced Performance 

for Hg(II) Removal Using Biomaterial (CMC/Gelatin/Starch) Stabilized FeS Nanoparticles: 

Stabilization Effects and Removal Mechanism. Chemical Engineering Journal 2018, 344, 616–

624. https://doi.org/10.1016/j.cej.2018.03.126. 



119 

 

(77)  Sun, M.; Cheng, G.; Ge, X.; Chen, M.; Wang, C.; Lou, L.; Xu, X. Aqueous Hg(II) 

Immobilization by Chitosan Stabilized Magnetic Iron Sulfide Nanoparticles. Science of The Total 

Environment 2018, 621, 1074–1083. https://doi.org/10.1016/j.scitotenv.2017.10.119. 

(78)  Sheng, G.; Huang, C.; Chen, G.; Sheng, J.; Ren, X.; Hu, B.; Ma, J.; Wang, X.; Huang, Y.; 

Alsaedi, A.; et al. Adsorption and Co-Adsorption of Graphene Oxide and Ni(II) on Iron Oxides: 

A Spectroscopic and Microscopic Investigation. Environmental Pollution 2018, 233, 125–131. 

https://doi.org/10.1016/j.envpol.2017.10.047. 

(79)  Ghasemi, E.; Heydari, A.; Sillanpaa, M. Superparamagnetic Fe3O4@EDTA Nanoparticles as an 

Efficient Adsorbent for Simultaneous Removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) 

from Water and Soil Environmental Samples. Microchem J. 2017, 131, 51–56. 

https://doi.org/10.1016/j.microc.2016.11.011. 

(80)  Hu, Q.; Liu, Y.; Gu, X.; Zhao, Y. Adsorption Behavior and Mechanism of Different Arsenic 

Species on Mesoporous MnFe2O4 Magnetic Nanoparticles. Chemosphere 2017, 181, 328–336. 

https://doi.org/10.1016/j.chemosphere.2017.04.049. 

(81)  Zhang, Y.; Yang, M.; Dou, X.-M.; He, H.; Wang, D.-S. Arsenate Adsorption on an Fe−Ce 

Bimetal Oxide Adsorbent:  Role of Surface Properties. Environ. Sci. Technol. 2005, 39 (18), 

7246–7253. https://doi.org/10.1021/es050775d. 

(82)  Zhang, Y.; Yang, M.; Huang, X. Arsenic(V) Removal with a Ce(IV)-Doped Iron Oxide 

Adsorbent. Chemosphere 2003, 51 (9), 945–952. https://doi.org/10.1016/S0045-6535(02)00850-

0. 

(83)  Zhang, Y.; Dou, X.; Zhao, B.; Yang, M.; Takayama, T.; Kato, S. Removal of Arsenic by a 

Granular Fe–Ce Oxide Adsorbent: Fabrication Conditions and Performance. Chemical 

Engineering Journal 2010, 162 (1), 164–170. https://doi.org/10.1016/j.cej.2010.05.021. 

(84)  Soo Lee, S.; Li, W.; Kim, C.; Cho, M.; J. Lafferty, B.; D. Fortner, J. Surface Functionalized 

Manganese Ferrite Nanocrystals for Enhanced Uranium Sorption and Separation in Water. 

Journal of Materials Chemistry A 2015, 3 (43), 21930–21939. 

https://doi.org/10.1039/C5TA04406E. 

(85)  Lin, L.; Yan, X.; Liao, X.; Wang, Z. Migration and Arsenic Adsorption Study of Starch-Modified 

Fe-Ce Oxide on a Silicon-Based Micromodel Observation Platform. Journal of Hazardous 

Materials 2017, 338, 202–207. https://doi.org/10.1016/j.jhazmat.2017.05.027. 

(86)  Huong, P. T. L.; Tu, N.; Lan, H.; Thang, L. H.; Quy, N. V.; Tuan, P. A.; Dinh, N. X.; Phan, V. 

N.; Le, A.-T. Functional Manganese Ferrite/Graphene Oxide Nanocomposites: Effects of 

Graphene Oxide on the Adsorption Mechanisms of Organic MB Dye and Inorganic As(V) Ions 

from Aqueous Solution. RSC Adv. 2018, 8 (22), 12376–12389. 

https://doi.org/10.1039/c8ra00270c. 

(87)  Kumar, S.; Nair, R. R.; Pillai, P. B.; Gupta, S. N.; Iyengar, M. a. R.; Sood, A. K. Graphene 

Oxide-MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. 

ACS Appl. Mater. Interfaces 2014, 6 (20), 17426–17436. https://doi.org/10.1021/am504826q. 

(88)  Xiang, B.; Ling, D.; Lou, H.; Gu, H. 3D Hierarchical Flower-like Nickel Ferrite/Manganese 

Dioxide toward Lead (II) Removal from Aqueous Water. J. Hazard. Mater. 2017, 325, 178–188. 

https://doi.org/10.1016/j.jhazmat.2016.11.011. 

(89)  Martinez-Vargas, S.; Martínez, A. I.; Hernández-Beteta, E. E.; Mijangos-Ricardez, O. F.; 

Vázquez-Hipólito, V.; Patiño-Carachure, C.; Hernandez-Flores, H.; López-Luna, J. Arsenic 

Adsorption on Cobalt and Manganese Ferrite Nanoparticles. J Mater Sci 2017, 52 (11), 6205–

6215. https://doi.org/10.1007/s10853-017-0852-9. 

(90)  Penke, Y. K.; Anantharaman, G.; Ramkumar, J.; Kar, K. K. Aluminum Substituted Cobalt Ferrite 

(Co-Al-Fe) Nano Adsorbent for Arsenic Adsorption in Aqueous Systems and Detailed Redox 

Behavior Study with XPS. ACS Appl. Mater. Interfaces 2017, 9 (13), 11587–11598. 

https://doi.org/10.1021/acsami.6b16414. 



120 

 

(91)  Penke, Y. K.; Anantharaman, G.; Ramkumar, J.; Kar, K. K. Aluminum Substituted Nickel Ferrite 

(Ni-Al-Fe): A Ternary Metal Oxide Adsorbent for Arsenic Adsorption in Aqueous Medium. RSC 

Adv. 2016, 6 (60), 55608–55617. https://doi.org/10.1039/c6ra06332b. 

(92)  Hughes, D. L.; Afsar, A.; Laventine, D. M.; Shaw, E. J.; Harwood, L. M.; Hodson, M. E. Metal 

Removal from Soil Leachates Using DTPA-Functionalised Maghemite Nanoparticles, a Potential 

Soil Washing Technology. Chemosphere 2018, 209, 480–488. 

https://doi.org/10.1016/j.chemosphere.2018.06.121. 

(93)  Smedley, P. L.; Kinniburgh, D. G. A Review of the Source, Behaviour and Distribution of 

Arsenic in Natural Waters. Applied Geochemistry 2002, 17 (5), 517–568. 

https://doi.org/10.1016/S0883-2927(02)00018-5. 

(94)  Shen, X.; Zhao, L.; Ding, Y.; Liu, B.; Zeng, H.; Zhong, L.; Li, X. Foam, a Promising Vehicle to 

Deliver Nanoparticles for Vadose Zone Remediation. Journal of Hazardous Materials 2011, 186 

(2–3), 1773–1780. https://doi.org/10.1016/j.jhazmat.2010.12.071. 

(95)  Ding, Y.; Liu, B.; Shen, X.; Zhong, L.; Li, X. Foam-Assisted Delivery of Nanoscale Zero Valent 

Iron in Porous Media. J. Environ. Eng. 2013, 139 (9), 1206–1212. 

https://doi.org/10.1061/(ASCE)EE.1943-7870.0000727. 

(96)  Luna, M. Pressure-Controlled Injection of Guar Gum Stabilized Microscale Zerovalent Iron for 

Groundwater Remediation. 181 (Complete), 46–58. 

(97)  Christiansen, C. M.; Damgaard, I.; Broholm, M.; Kessler, T.; Klint, K. E.; Nilsson, B.; Bjerg, P. 

L. Comparison of Delivery Methods for Enhanced In Situ Remediation in Clay Till. Ground 

Water Monitoring & Remediation 2010, 30 (4), 107–122. https://doi.org/10.1111/j.1745-

6592.2010.01314.x. 

(98)  ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-Coated 

Nanoparticles for Enhanced Oil Recovery. J. Appl. Polym. Sci. 2014, 131 (15), n/a-n/a. 

https://doi.org/10.1002/app.40576. 

(99)  Crane, R. A.; Scott, T. B. Nanoscale Zero-Valent Iron: Future Prospects for an Emerging Water 

Treatment Technology. Journal of Hazardous Materials 2012, 211–212, 112–125. 

https://doi.org/10.1016/j.jhazmat.2011.11.073. 

(100)  Tosco, T.; Petrangeli Papini, M.; Cruz Viggi, C.; Sethi, R. Nanoscale Zerovalent Iron Particles 

for Groundwater Remediation: A Review. Journal of Cleaner Production 2014, 77, 10–21. 

https://doi.org/10.1016/j.jclepro.2013.12.026. 

(101)  Tosco, T.; Sethi, R. Transport of Non-Newtonian Suspensions of Highly Concentrated Micro- 

And Nanoscale Iron Particles in Porous Media: A Modeling Approach. Environ. Sci. Technol. 

2010, 44 (23), 9062–9068. https://doi.org/10.1021/es100868n. 

(102)  Tosco, T.; Sethi, R. MNM1D: A Numerical Code for Colloid Transport in Porous Media: 

Implementation and Validation. American Journal of Environmental Sciences 2009, 5 (4), 517–

525. https://doi.org/10.3844/ajessp.2009.517.525. 

(103)  Yao, K.-M.; Habibian, M. T.; O’Melia, C. R. Water and Waste Water Filtration. Concepts and 

Applications. Environ. Sci. Technol. 1971, 5 (11), 1105–1112. 

https://doi.org/10.1021/es60058a005. 

(104)  Petosa, A. R.; Jaisi, D. P.; Quevedo, I. R.; Elimelech, M.; Tufenkji, N. Aggregation and 

Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical 

Interactions. Environ. Sci. Technol. 2010, 44 (17), 6532–6549. 

https://doi.org/10.1021/es100598h. 

(105)  Zhulina, E. B.; Borisov, O. V.; Priamitsyn, V. A. Theory of Steric Stabilization of Colloid 

Dispersions by Grafted Polymers. Journal of Colloid and Interface Science 1990, 137 (2), 495–

511. https://doi.org/10.1016/0021-9797(90)90423-L. 

(106)  Yan, W.; Lien, H.-L.; Koel, B. E.; Zhang, W. Iron Nanoparticles for Environmental Clean-up: 

Recent Developments and Future Outlook. Environ. Sci.: Processes Impacts 2012, 15 (1), 63–77. 

https://doi.org/10.1039/C2EM30691C. 



121 

 

(107)  Saleh, N.; Kim, H.-J.; Phenrat, T.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V. Ionic Strength 

and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated 

Sand Columns. Environ. Sci. Technol. 2008, 42 (9), 3349–3355. 

https://doi.org/10.1021/es071936b. 

(108)  Bagaria, H. G.; Neilson, B. M.; Worthen, A. J.; Xue, Z.; Yoon, K. Y.; Cheng, V.; Lee, J. H.; 

Velagala, S.; Huh, C.; Bryant, S. L.; et al. Adsorption of Iron Oxide Nanoclusters Stabilized with 

Sulfonated Copolymers on Silica in Concentrated NaCl and CaCl2 Brine. Journal of Colloid and 

Interface Science 2013, 398, 217–226. https://doi.org/10.1016/j.jcis.2013.01.056. 

(109)  Kim, H.-J.; Phenrat, T.; Tilton, R. D.; Lowry, G. V. Effect of Kaolinite, Silica Fines and PH on 

Transport of Polymer-Modified Zero Valent Iron Nano-Particles in Heterogeneous Porous 

Media. Journal of Colloid and Interface Science 2012, 370 (1), 1–10. 

https://doi.org/10.1016/j.jcis.2011.12.059. 

(110)  Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Jiménez-Pérez, V. M.; Pérez, B. O.; Flores, B. 

M. Iron-Containing Nanomaterials: Synthesis, Properties, and Environmental Applications. RSC 

Adv. 2012, 2 (25), 9325–9358. https://doi.org/10.1039/C2RA20812A. 

(111)  Sheng-Nan, S.; Chao, W.; Zan-Zan, Z.; Yang-Long, H.; Venkatraman, S. S.; Zhi-Chuan, X. 

Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Coating Techniques for Biomedical 

Applications. Chinese Phys. B 2014, 23 (3), 037503. https://doi.org/10.1088/1674-

1056/23/3/037503. 

(112)  Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy Metal Removal from 

Water/Wastewater by Nanosized Metal Oxides: A Review. Journal of Hazardous Materials 

2012, 211–212, 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016. 

(113)  Maity, D.; Agrawal, D. C. Synthesis of Iron Oxide Nanoparticles under Oxidizing Environment 

and Their Stabilization in Aqueous and Non-Aqueous Media. Journal of Magnetism and 

Magnetic Materials 2007, 308 (1), 46–55. https://doi.org/10.1016/j.jmmm.2006.05.001. 

(114)  Ju-Nam, Y.; Lead, J. R. Manufactured Nanoparticles: An Overview of Their Chemistry, 

Interactions and Potential Environmental Implications. Sci. Total Environ. 2008, 400 (1–3), 396–

414. https://doi.org/10.1016/j.scitotenv.2008.06.042. 

(115)  Xie, J.; Xu, C.; Kohler, N.; Hou, Y.; Sun, S. Controlled PEGylation of Monodisperse Fe3O4 

Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Adv. Mater. 2007, 19 

(20), 3163–3166. https://doi.org/10.1002/adma.200701975. 

(116)  Qin, J.; Laurent, S.; Jo, Y. S.; Roch, A.; Mikhaylova, M.; Bhujwalla, Z. M.; Muller, R. N.; 

Muhammed, M. A High-Performance Magnetic Resonance ImagingT2 Contrast Agent. 

Advanced Materials 2007, 19 (14), 1874–1878. https://doi.org/10.1002/adma.200602326. 

(117)  Dehvari, K.; Lin, K.-S.; Wang, S. S.-S. Structural Characterization and Adsorption Properties of 

Pluronic F127 Onto Iron Oxides Magnetic Nanoparticles. Journal of Nanoscience and 

Nanotechnology 2014, 14 (3), 2361–2367. https://doi.org/10.1166/jnn.2014.8537. 

(118)  Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyjaszewski, K.; Tilton, R. D.; 

Lowry, G. V. Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the 

Oil/Water Interface. Nano Lett. 2005, 5 (12), 2489–2494. https://doi.org/10.1021/nl0518268. 

(119)  Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. 

V. Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous 

Media. Environmental Engineering Science 2006, 24 (1), 45–57. 

https://doi.org/10.1089/ees.2007.24.45. 

(120)  Petros, R. A.; DeSimone, J. M. Strategies in the Design of Nanoparticles for Therapeutic 

Applications. Nat Rev Drug Discov 2010, 9 (8), 615–627. https://doi.org/10.1038/nrd2591. 

(121)  Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive 

Nanocarriers for Drug and Gene Delivery. Journal of Controlled Release 2008, 126 (3), 187–

204. https://doi.org/10.1016/j.jconrel.2007.12.017. 



122 

 

(122)  Wang, Z.; Acosta, E. Formulation Design for Target Delivery of Iron Nanoparticles to TCE 

Zones. Journal of Contaminant Hydrology 2013, 155, 9–19. 

https://doi.org/10.1016/j.jconhyd.2013.08.005. 

(123)  Davis, M. E.; Chen, Z. (Georgia); Shin, D. M. Nanoparticle Therapeutics: An Emerging 

Treatment Modality for Cancer. Nature Reviews Drug Discovery 2008, 7 (9), 771–782. 

https://doi.org/10.1038/nrd2614. 

(124)  Srinivasarao, M.; Galliford, C. V.; Low, P. S. Principles in the Design of Ligand-Targeted Cancer 

Therapeutics and Imaging Agents. Nature Reviews Drug Discovery 2015, 14 (3), 203–219. 

https://doi.org/10.1038/nrd4519. 

(125)  Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for 

Biomedical Applications. Biomaterials 2005, 26 (18), 3995–4021. 

https://doi.org/10.1016/j.biomaterials.2004.10.012. 

(126)  Rosen, J. E.; Chan, L.; Shieh, D.-B.; Gu, F. X. Iron Oxide Nanoparticles for Targeted Cancer 

Imaging and Diagnostics. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (3), 

275–290. https://doi.org/10.1016/j.nano.2011.08.017. 

(127)  Chang, K.; Li, X.; Liao, Q.; Hu, B.; Hu, J.; Sheng, G.; Linghu, W.; Huang, Y.; Asiri, A. M.; 

Alamry, K. A. Molecular Insights into the Role of Fulvic Acid in Cobalt Sorption onto Graphene 

Oxide and Reduced Graphene Oxide. Chemical Engineering Journal 2017, 327, 320–327. 

https://doi.org/10.1016/j.cej.2017.06.100. 

(128)  Hu, B.; Chen, G.; Jin, C.; Hu, J.; Huang, C.; Sheng, J.; Sheng, G.; Ma, J.; Huang, Y. Macroscopic 

and Spectroscopic Studies of the Enhanced Scavenging of Cr(VI) and Se(VI) from Water by 

Titanate Nanotube Anchored Nanoscale Zero-Valent Iron. Journal of Hazardous Materials 2017, 

336, 214–221. https://doi.org/10.1016/j.jhazmat.2017.04.069. 

(129)  Hu, B.; Qiu, M.; Hu, Q.; Sun, Y.; Sheng, G.; Hu, J.; Ma, J. Decontamination of Sr(II) on 

Magnetic Polyaniline/Graphene Oxide Composites: Evidence from Experimental, Spectroscopic, 

and Modeling Investigation. ACS Sustainable Chem. Eng. 2017, 5 (8), 6924–6931. 

https://doi.org/10.1021/acssuschemeng.7b01126. 

(130)  Linghu, W.; Yang, H.; Sun, Y.; Sheng, G.; Huang, Y. One-Pot Synthesis of LDH/GO 

Composites as Highly Effective Adsorbents for Decontamination of U(VI). ACS Sustainable 

Chem. Eng. 2017, 5 (6), 5608–5616. https://doi.org/10.1021/acssuschemeng.7b01303. 

(131)  Chang, K.; Sun, Y.; Ye, F.; Li, X.; Sheng, G.; Zhao, D.; Linghu, W.; Li, H.; Liu, J. Macroscopic 

and Molecular Study of the Sorption and Co-Sorption of Graphene Oxide and Eu(III) onto 

Layered Double Hydroxides. Chemical Engineering Journal 2017, 325, 665–671. 

https://doi.org/10.1016/j.cej.2017.05.122. 

(132)  Hu, B.; Huang, C.; Li, X.; Sheng, G.; Li, H.; Ren, X.; Ma, J.; Wang, J.; Huang, Y. Macroscopic 

and Spectroscopic Insights into the Mutual Interaction of Graphene Oxide, Cu(II), and Mg/Al 

Layered Double Hydroxides. Chemical Engineering Journal 2017, 313, 527–534. 

https://doi.org/10.1016/j.cej.2016.12.102. 

(133)  Sheng, G.; Huang, C.; Chen, G.; Sheng, J.; Ren, X.; Hu, B.; Ma, J.; Wang, X.; Huang, Y.; 

Alsaedi, A.; et al. Adsorption and Co-Adsorption of Graphene Oxide and Ni(II) on Iron Oxides: 

A Spectroscopic and Microscopic Investigation. Environmental Pollution 2018, 233, 125–131. 

https://doi.org/10.1016/j.envpol.2017.10.047. 

(134)  Jawitz, J. W.; Annable, M. D.; Rao, P. S. C.; Rhue, R. D. Field Implementation of a Winsor Type 

I Surfactant/Alcohol Mixture for in Situ Solubilization of a Complex LNAPL as a Single-Phase 

Microemulsion. Environmental Science & Technology 1998, 32 (4), 523–530. 

https://doi.org/10.1021/es970507i. 

(135)  Salanitro, J. P.; Johnson, P. C.; Spinnler, G. E.; Maner, P. M.; Wisniewski, H. L.; Bruce, C. 

Field-Scale Demonstration of Enhanced MTBE Bioremediation through Aquifer 

Bioaugmentation and Oxygenation. Environmental Science & Technology 2000, 34 (19), 4152–

4162. https://doi.org/10.1021/es000925e. 



123 

 

(136)  Sra, K. S.; Thomson, N. R.; Barker, J. F. Persulfate Injection into a Gasoline Source Zone. 

Journal of Contaminant Hydrology 2013, 150, 35–44. 

https://doi.org/10.1016/j.jconhyd.2013.03.007. 

(137)  Kuppusamy, S.; Palanisami, T.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Ex-Situ 

Remediation Technologies for Environmental Pollutants: A Critical Perspective. In Reviews of 

Environmental Contamination and Toxicology Volume 236; de Voogt, P., Ed.; Springer 

International Publishing: Cham, 2016; Vol. 236, pp 117–192. 

(138)  Karn, B.; Kuiken, T.; Otto, M. Nanotechnology and in Situ Remediation: A Review of the 

Benefits and Potential Risks. Environmental Health Perspectives 2009, 117 (12), 1823–1831. 

(139)  Pardo, F.; Rosas, J. M.; Santos, A.; Romero, A. Remediation of a Biodiesel Blend-Contaminated 

Soil with Activated Persulfate by Different Sources of Iron. Water Air Soil Pollut 2015, 226 (2), 

1–12. https://doi.org/10.1007/s11270-014-2267-4. 

(140)  Al-Shamsi, M. A.; Thomson, N. R. Treatment of Organic Compounds by Activated Persulfate 

Using Nanoscale Zerovalent Iron. Industrial & Engineering Chemistry Research 2013, 52 (38), 

13564–13571. https://doi.org/10.1021/ie400387p. 

(141)  Luna, M.; Gastone, F.; Tosco, T.; Sethi, R.; Velimirovic, M.; Gemoets, J.; Muyshondt, R.; 

Sapion, H.; Klaas, N.; Bastiaens, L. Pressure-Controlled Injection of Guar Gum Stabilized 

Microscale Zerovalent Iron for Groundwater Remediation. Journal of Contaminant Hydrology 

2015, 181, 46–58. https://doi.org/10.1016/j.jconhyd.2015.04.007. 

(142)  Braun, A.; Klumpp, E.; Azzam, R.; Neukum, C. Transport and Deposition of Stabilized 

Engineered Silver Nanoparticles in Water Saturated Loamy Sand and Silty Loam. Science of The 

Total Environment 2015, 535, 102–112. https://doi.org/10.1016/j.scitotenv.2014.12.023. 

(143)  Su, Y.; Zhao, Y.-S.; Li, L.-L.; Qin, C.-Y. Enhanced Delivery of Nanoscale Zero-Valent Iron in 

Porous Media by Sodium Dodecyl Sulfate Solution and Foam. Environmental Engineering 

Science 2015, 32 (8), 684–693. https://doi.org/10.1089/ees.2014.0529. 

(144)  Johnson, R. L.; Nurmi, J. T.; O’Brien Johnson, G. S.; Fan, D.; O’Brien Johnson, R. L.; Shi, Z.; 

Salter-Blanc, A. J.; Tratnyek, P. G.; Lowry, G. V. Field-Scale Transport and Transformation of 

Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron. Environ. Sci. Technol. 2013, 47 (3), 

1573–1580. https://doi.org/10.1021/es304564q. 

(145)  Li, J.; Bhattacharjee, S.; Ghoshal, S. The Effects of Viscosity of Carboxymethyl Cellulose on 

Aggregation and Transport of Nanoscale Zerovalent Iron. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 2015, 481, 451–459. 

https://doi.org/10.1016/j.colsurfa.2015.05.023. 

(146)  Höss, S.; Fritzsche, A.; Meyer, C.; Bosch, J.; Meckenstock, R. U.; Totsche, K. U. Size- and 

Composition-Dependent Toxicity of Synthetic and Soil-Derived Fe Oxide Colloids for the 

Nematode Caenorhabditis Elegans. Environmental Science & Technology 2015, 49 (1), 544–552. 

https://doi.org/10.1021/es503559n. 

(147)  Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Cancer Nanotechnology: The Impact 

of Passive and Active Targeting in the Era of Modern Cancer Biology. Advanced Drug Delivery 

Reviews 2014, 66, 2–25. https://doi.org/10.1016/j.addr.2013.11.009. 

(148)  Elkhodiry, M. A.; Momah, C. C.; Suwaidi, S. R.; Gadalla, D.; Martins, A. M.; Vitor, R. F.; 

Husseini, G. A. Synergistic Nanomedicine: Passive, Active, and Ultrasound-Triggered Drug 

Delivery in Cancer Treatment. Journal of Nanoscience and Nanotechnology 2016, 16 (1), 1–18. 

https://doi.org/10.1166/jnn.2016.11124. 

(149)  Singh-Joy, S. D.; McLain, V. C. Safety Assessment of Poloxamers 101, 105, 108, 122, 123, 124, 

181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 

334, 335, 338, 401, 402, 403, and 407, Poloxamer 105 Benzoate, and Poloxamer 182 Dibenzoate 

as Used in Cosmetics. International Journal of Toxicology 2016. 

https://doi.org/10.1080/10915810802244595. 



124 

 

(150)  Usman, M.; Faure, P.; Hanna, K.; Abdelmoula, M.; Ruby, C. Application of Magnetite Catalyzed 

Chemical Oxidation (Fenton-like and Persulfate) for the Remediation of Oil Hydrocarbon 

Contamination. Fuel 2012, 96, 270–276. https://doi.org/10.1016/j.fuel.2012.01.017. 

(151)  Chien, Y.-C. Field Study of in Situ Remediation of Petroleum Hydrocarbon Contaminated Soil 

on Site Using Microwave Energy. Journal of Hazardous Materials 2012, 199–200, 457–461. 

https://doi.org/10.1016/j.jhazmat.2011.11.012. 

(152)  Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Jiménez-Pérez, V. M.; Pérez, B. O.; Flores, B. 

M. Iron-Containing Nanomaterials: Synthesis, Properties, and Environmental Applications. RSC 

Adv. 2012, 2 (25), 9325–9358. https://doi.org/10.1039/C2RA20812A. 

(153)  Maehara, T.; Konishi, K.; Kamimori, T.; Aono, H.; Hirazawa, H.; Naohara, T.; Nomura, S.; 

Kikkawa, H.; Watanabe, Y.; Kawachi, K. Selection of Ferrite Powder for Thermal Coagulation 

Therapy with Alternating Magnetic Field. J Mater Sci 2005, 40 (1), 135–138. 

https://doi.org/10.1007/s10853-005-5698-x. 

(154)  Zhou, H.; Hu, L.; Wan, J.; Yang, R.; Yu, X.; Li, H.; Chen, J.; Wang, L.; Lu, X. Microwave-

Enhanced Catalytic Degradation of p-Nitrophenol in Soil Using MgFe2O4. Chemical 

Engineering Journal 2016, 284, 54–60. https://doi.org/10.1016/j.cej.2015.08.103. 

(155)  Zeng, G.; Zhu, Y.; Zhang, Y.; Zhang, C.; Tang, L.; Guo, P.; Zhang, L.; Yuan, Y.; Cheng, M.; 

Yang, C. Electrochemical DNA Sensing Strategy Based on Strengthening Electronic Conduction 

and a Signal Amplifier Carrier of NanoAu/MCN Composited Nanomaterials for Sensitive Lead 

Detection. Environ. Sci.: Nano 2016, 3 (6), 1504–1509. https://doi.org/10.1039/C6EN00323K. 

(156)  Zhu, Y.; Zeng, G.; Zhang, Y.; Tang, L.; Chen, J.; Cheng, M.; Zhang, L.; He, L.; Guo, Y.; He, X.; 

et al. Highly Sensitive Electrochemical Sensor Using a MWCNTs/GNPs-Modified Electrode for 

Lead (II) Detection Based on Pb2+-Induced G-Rich DNA Conformation. Analyst 2014, 139 (19), 

5014–5020. https://doi.org/10.1039/C4AN00874J. 

(157)  Cnudde, V.; Masschaele, B.; Dierick, M.; Vlassenbroeck, J.; Hoorebeke, L. V.; Jacobs, P. Recent 

Progress in X-Ray CT as a Geosciences Tool. Applied Geochemistry 2006, 21 (5), 826–832. 

https://doi.org/10.1016/j.apgeochem.2006.02.010. 

(158)  Liu, J.; Luo, X.; Wang, J.; Xiao, T.; Yin, M.; Belshaw, N. S.; Lippold, H.; Kong, L.; Xiao, E.; 

Bao, Z.; et al. Provenance of Uranium in a Sediment Core from a Natural Reservoir, South 

China: Application of Pb Stable Isotope Analysis. Chemosphere 2018, 193, 1172–1180. 

https://doi.org/10.1016/j.chemosphere.2017.11.131. 

(159)  Liu, J.; Luo, X.; Wang, J.; Xiao, T.; Chen, D.; Sheng, G.; Yin, M.; Lippold, H.; Wang, C.; Chen, 

Y. Thallium Contamination in Arable Soils and Vegetables around a Steel Plant—A Newly-

Found Significant Source of Tl Pollution in South China. Environmental Pollution 2017, 224, 

445–453. https://doi.org/10.1016/j.envpol.2017.02.025. 

(160)  Senesi, G. S.; Dell’Aglio, M.; Gaudiuso, R.; De Giacomo, A.; Zaccone, C.; De Pascale, O.; 

Miano, T. M.; Capitelli, M. Heavy Metal Concentrations in Soils as Determined by Laser-

Induced Breakdown Spectroscopy (LIBS), with Special Emphasis on Chromium. Environmental 

Research 2009, 109 (4), 413–420. https://doi.org/10.1016/j.envres.2009.02.005. 

(161)  Kaveh, F.; Beauchemin, D. Improvement of the Capabilities of Solid Sampling ETV-ICP-OES 

by Coupling ETV to a Nebulisation/Pre-Evaporation System. Journal of Analytical Atomic 

Spectrometry 2014, 29 (8), 1371–1377. https://doi.org/10.1039/C4JA00041B. 

(162)  Russo, R. E.; Mao, X.; Liu, H.; Gonzalez, J.; Mao, S. S. Laser Ablation in Analytical 

Chemistry—a Review. Talanta 2002, 57 (3), 425–451. https://doi.org/10.1016/S0039-

9140(02)00053-X. 

(163)  Chan, T.; Gu, F. Development of a Colorimetric, Superparamagnetic Biosensor for the Capture 

and Detection of Biomolecules. Biosensors and Bioelectronics 2013, 42, 12–16. 

https://doi.org/10.1016/j.bios.2012.10.008. 

(164)  Cui, L.; Xu, H.; He, P.; Sumitomo, K.; Yamaguchi, Y.; Gu, H. Developing a Hybrid Emulsion 

Polymerization System to Synthesize Fe3O4/Polystyrene Latexes with Narrow Size Distribution 



125 

 

and High Magnetite Content. J. Polym. Sci. A Polym. Chem. 2007, 45 (22), 5285–5295. 

https://doi.org/10.1002/pola.22273. 

(165)  Xu, H.; Cui, L.; Tong, N.; Gu, H. Development of High Magnetization Fe3O4/Polystyrene/Silica 

Nanospheres via Combined Miniemulsion/Emulsion Polymerization. J. Am. Chem. Soc. 2006, 

128 (49), 15582–15583. https://doi.org/10.1021/ja066165a. 

(166)  Wilson, D.; Langell, M. A. XPS Analysis of Oleylamine/Oleic Acid Capped Fe3O4 

Nanoparticles as a Function of Temperature. Applied Surface Science 2014, 303 (Supplement C), 

6–13. https://doi.org/10.1016/j.apsusc.2014.02.006. 

(167)  Lin, J.-J.; Chen, J.-S.; Huang, S.-J.; Ko, J.-H.; Wang, Y.-M.; Chen, T.-L.; Wang, L.-F. Folic 

Acid–Pluronic F127 Magnetic Nanoparticle Clusters for Combined Targeting, Diagnosis, and 

Therapy Applications. Biomaterials 2009, 30 (28), 5114–5124. 

https://doi.org/10.1016/j.biomaterials.2009.06.004. 

(168)  Landfester, K. Recent Developments in Miniemulsions ― Formation and Stability Mechanisms. 

Macromol. Symp. 2000, 150 (1), 171–178. https://doi.org/10.1002/1521-

3900(200002)150:1<171::AID-MASY171>3.0.CO;2-D. 

(169)  Brandani, P.; Stroeve, P. Adsorption and Desorption of PEO−PPO−PEO Triblock Copolymers on 

a Self-Assembled Hydrophobic Surface. Macromolecules 2003, 36 (25), 9492–9501. 

https://doi.org/10.1021/ma0342675. 

(170)  Hotze, E. M.; Louie, S. M.; Lin, S.; Wiesner, M. R.; Lowry, G. V. Nanoparticle Core Properties 

Affect Attachment of Macromolecule-Coated Nanoparticles to Silica Surfaces. Environmental 

Chemistry 2014, 11 (3), 257. https://doi.org/10.1071/EN13191. 

(171)  Addai-Mensah, J. Enhanced Flocculation and Dewatering of Clay Mineral Dispersions. Powder 

Technology 2007, 179 (1–2), 73–78. https://doi.org/10.1016/j.powtec.2006.11.008. 

(172)  Jain, T. K.; Foy, S. P.; Erokwu, B.; Dimitrijevic, S.; Flask, C. A.; Labhasetwar, V. Magnetic 

Resonance Imaging of Multifunctional Pluronic Stabilized Iron-Oxide Nanoparticles in Tumor-

Bearing Mice. Biomaterials 2009, 30 (35), 6748–6756. 

https://doi.org/10.1016/j.biomaterials.2009.08.042. 

(173)  Feldkamp, L. A.; Davis, L. C.; Kress, J. W. Practical Cone-Beam Algorithm. J. Opt. Soc. Am. 

1984, 1 (6), 612–619. https://doi.org/10.1364/JOSAA.1.000612. 

(174)  Gusenbauer, C.; Reiter, M.; Kastner, J.; Kloesch, G. Detection of Non-Metallic Inclusions in 

Quenched and Tempered Steel Bars by XCT and after Fatigue Life Testing. Steel Research Int. 

2016, 87 (3), 386–393. https://doi.org/10.1002/srin.201500083. 

(175)  Louie, S. M.; Tilton, R. D.; Lowry, G. V. Critical Review: Impacts of Macromolecular Coatings 

on Critical Physicochemical Processes Controlling Environmental Fate of Nanomaterials. 

Environ. Sci.: Nano 2016, 3 (2), 283–310. https://doi.org/10.1039/C5EN00104H. 

(176)  Li, Q.; Chen, X.; Zhuang, J.; Chen, X. Decontaminating Soil Organic Pollutants with 

Manufactured Nanoparticles. Environ Sci Pollut Res 2016, 23 (12), 11533–11548. 

https://doi.org/10.1007/s11356-016-6255-7. 

(177)  Mylon, S. E.; Sun, Q.; Waite, T. D. Process Optimization in Use of Zero Valent Iron 

Nanoparticles for Oxidative Transformations. Chemosphere 2010, 81 (1), 127–131. 

https://doi.org/10.1016/j.chemosphere.2010.06.045. 

(178)  Lefevre, E.; Bossa, N.; Wiesner, M. R.; Gunsch, C. K. A Review of the Environmental 

Implications of in Situ Remediation by Nanoscale Zero Valent Iron (NZVI): Behavior, Transport 

and Impacts on Microbial Communities. Science of The Total Environment 2016, 565, 889–901. 

https://doi.org/10.1016/j.scitotenv.2016.02.003. 

(179)  Al-Shamsi, M. A.; Thomson, N. R. Treatment of a Trichloroethylene Source Zone Using 

Persulfate Activated by an Emplaced Nano-Pd–Fe<Superscript>0</Superscript> Zone. Water Air 

Soil Pollut 2013, 224 (11), 1780. https://doi.org/10.1007/s11270-013-1780-1. 

(180)  Dien, N. T.; De Windt, W.; Buekens, A.; Chang, M. B. Application of Bimetallic Iron (BioCAT 

Slurry) for Pentachlorophenol Removal from Sandy Soil. Journal of Hazardous Materials 2013, 

252–253, 83–90. https://doi.org/10.1016/j.jhazmat.2013.02.029. 



126 

 

(181)  Al-Shamsi, M. A.; Thomson, N. R.; Forsey, S. P. Iron Based Bimetallic Nanoparticles to 

Activate Peroxygens. Chemical Engineering Journal 2013, 232, 555–563. 

https://doi.org/10.1016/j.cej.2013.07.109. 

(182)  Braunschweig, J.; Bosch, J.; Meckenstock, R. U. Iron Oxide Nanoparticles in Geomicrobiology: 

From Biogeochemistry to Bioremediation. New Biotechnology 2013, 30 (6), 793–802. 

https://doi.org/10.1016/j.nbt.2013.03.008. 

(183)  Su, C. Environmental Implications and Applications of Engineered Nanoscale Magnetite and Its 

Hybrid Nanocomposites: A Review of Recent Literature. Journal of Hazardous Materials 2017, 

322, 48–84. https://doi.org/10.1016/j.jhazmat.2016.06.060. 

(184)  Apul, O. G.; Delgado, A. G.; Kidd, J.; Alam, F.; Dahlen, P.; Westerhoff, P. Carbonaceous Nano-

Additives Augment Microwave-Enabled Thermal Remediation of Soils Containing Petroleum 

Hydrocarbons. Environ. Sci.: Nano 2016, 3 (5), 997–1002. 

https://doi.org/10.1039/C6EN00261G. 

(185)  Li, S.; Turaga, U.; Shrestha, B.; Anderson, T. A.; Ramkumar, S. S.; Green, M. J.; Das, S.; Cañas-

Carrell, J. E. Mobility of Polyaromatic Hydrocarbons (PAHs) in Soil in the Presence of Carbon 

Nanotubes. Ecotoxicology and Environmental Safety 2013, 96, 168–174. 

https://doi.org/10.1016/j.ecoenv.2013.07.005. 

(186)  Zhang, L.; Wang, L.; Zhang, P.; Kan, A. T.; Chen, W.; Tomson, M. B. Facilitated Transport of 

2,2′,5,5′-Polychlorinated Biphenyl and Phenanthrene by Fullerene Nanoparticles through Sandy 

Soil Columns. Environ. Sci. Technol. 2011, 45 (4), 1341–1348. 

https://doi.org/10.1021/es102316m. 

(187)  Zhao, X.; Liu, W.; Cai, Z.; Han, B.; Qian, T.; Zhao, D. An Overview of Preparation and 

Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater 

Remediation. Water Research 2016, 100, 245–266. https://doi.org/10.1016/j.watres.2016.05.019. 

(188)  Bossa, N.; Carpenter, A. W.; Kumar, N.; Lannoy, C.-F. de; Wiesner, M. Cellulose Nanocrystal 

Zero-Valent Iron Nanocomposites for Groundwater Remediation. Environ. Sci.: Nano 2017, 4 

(6), 1294–1303. https://doi.org/10.1039/C6EN00572A. 

(189)  Bishop, E. J.; Fowler, D. E.; Skluzacek, J. M.; Seibel, E.; Mallouk, T. E. Anionic Homopolymers 

Efficiently Target Zerovalent Iron Particles to Hydrophobic Contaminants in Sand Columns. 

Environ. Sci. Technol. 2010, 44 (23), 9069–9074. https://doi.org/10.1021/es1017398. 

(190)  Irvine, D. J. Drug Delivery: One Nanoparticle, One Kill. Nature Materials 2011, 10 (5), 342–

343. https://doi.org/10.1038/nmat3014. 

(191)  Liu, S.; Jones, L.; Gu, F. X. Nanomaterials for Ocular Drug Delivery. Macromol. Biosci. 2012, 

12 (5), 608–620. https://doi.org/10.1002/mabi.201100419. 

(192)  Gonzales, M.; Krishnan, K. M. Phase Transfer of Highly Monodisperse Iron Oxide Nanocrystals 

with Pluronic F127 for Biomedical Applications. Journal of Magnetism and Magnetic Materials 

2007, 311 (1), 59–62. https://doi.org/10.1016/j.jmmm.2006.10.1150. 

(193)  Dehvari, K.; Lin, K.-S.; Wang, S. S.-S. Structural Characterization and Adsorption Properties of 

Pluronic F127 Onto Iron Oxides Magnetic Nanoparticles. Journal of Nanoscience and 

Nanotechnology 2014, 14 (3), 2361–2367. https://doi.org/10.1166/jnn.2014.8537. 

(194)  Nejadnik, M. R.; Olsson, A. L. J.; Sharma, P. K.; van der Mei, H. C.; Norde, W.; Busscher, H. J. 

Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz 

Crystal Microbalance with Dissipation. Langmuir 2009, 25 (11), 6245–6249. 

https://doi.org/10.1021/la9001169. 

(195)  Linley, S.; Holmes, A.; Leshuk, T.; Nafo, W.; Thomson, N. R.; Al-Mayah, A.; McVey, K.; Sra, 

K.; Gu, F. X. Targeted Nanoparticle Binding & Detection in Petroleum Hydrocarbon Impacted 

Porous Media. Chemosphere 2019, 215, 353–361. 

https://doi.org/10.1016/j.chemosphere.2018.10.046. 

(196)  Das, S.; Sen, B.; Debnath, N. Recent Trends in Nanomaterials Applications in Environmental 

Monitoring and Remediation. Environ Sci Pollut Res 2015, 22 (23), 18333–18344. 

https://doi.org/10.1007/s11356-015-5491-6. 



127 

 

(197)  He, F.; Zhao, D. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by 

Use of Carboxymethyl Cellulose Stabilizers. Environ. Sci. Technol. 2007, 41 (17), 6216–6221. 

https://doi.org/10.1021/es0705543. 

(198)  Raychoudhury, T.; Naja, G.; Ghoshal, S. Assessment of Transport of Two Polyelectrolyte-

Stabilized Zero-Valent Iron Nanoparticles in Porous Media. Journal of Contaminant Hydrology 

2010, 118 (3), 143–151. https://doi.org/10.1016/j.jconhyd.2010.09.005. 

(199)  Sharma, V. K.; Siskova, K. M.; Zboril, R.; Gardea-Torresdey, J. L. Organic-Coated Silver 

Nanoparticles in Biological and Environmental Conditions: Fate, Stability and Toxicity. 

Advances in Colloid and Interface Science 2014, 204, 15–34. 

https://doi.org/10.1016/j.cis.2013.12.002. 

(200)  Zhang, M.; He, F.; Zhao, D.; Hao, X. Transport of Stabilized Iron Nanoparticles in Porous 

Media: Effects of Surface and Solution Chemistry and Role of Adsorption. Journal of Hazardous 

Materials 2017, 322, 284–291. https://doi.org/10.1016/j.jhazmat.2015.12.071. 

(201)  Reith, F.; Cornelis, G. Effect of Soil Properties on Gold- and Platinum Nanoparticle Mobility. 

Chemical Geology 2017, 466, 446–453. https://doi.org/10.1016/j.chemgeo.2017.06.033. 

(202)  Hou, J.; Zhang, M.; Wang, P.; Wang, C.; Miao, L.; Xu, Y.; You, G.; Lv, B.; Yang, Y.; Liu, Z. 

Transport, Retention, and Long-Term Release Behavior of Polymer-Coated Silver Nanoparticles 

in Saturated Quartz Sand: The Impact of Natural Organic Matters and Electrolyte. Environmental 

Pollution 2017, 229, 49–59. https://doi.org/10.1016/j.envpol.2017.05.059. 

(203)  Wang, D.; Jaisi, D. P.; Yan, J.; Jin, Y.; Zhou, D. Transport and Retention of 

Polyvinylpyrrolidone-Coated Silver Nanoparticles in Natural Soils. Vadose Zone Journal 2015, 

14 (7). https://doi.org/10.2136/vzj2015.01.0007. 

(204)  Makselon, J.; Zhou, D.; Engelhardt, I.; Jacques, D.; Klumpp, E. Experimental and Numerical 

Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil. 

Environ. Sci. Technol. 2017, 51 (4), 2096–2104. https://doi.org/10.1021/acs.est.6b04882. 

(205)  Prédélus, D.; Lassabatere, L.; Louis, C.; Gehan, H.; Brichart, T.; Winiarski, T.; Angulo-

Jaramillo, R. Nanoparticle Transport in Water-Unsaturated Porous Media: Effects of Solution 

Ionic Strength and Flow Rate. J Nanopart Res 2017, 19 (3), 104. https://doi.org/10.1007/s11051-

017-3755-4. 

(206)  Phenrat, T.; Fagerlund, F.; Illangasekare, T.; Lowry, G. V.; Tilton, R. D. Polymer-Modified Fe0 

Nanoparticles Target Entrapped NAPL in Two Dimensional Porous Media: Effect of Particle 

Concentration, NAPL Saturation, and Injection Strategy. Environ. Sci. Technol. 2011, 45 (14), 

6102–6109. https://doi.org/10.1021/es200577n. 

(207)  Wang, A. Z.; Gu, F.; Zhang, L.; Chan, J. M.; Radovic-Moreno, A.; Shaikh, M. R.; Farokhzad, O. 

C. Biofunctionalized Targeted Nanoparticles for Therapeutic Applications. Expert Opinion on 

Biological Therapy 2008, 8 (8), 1063–1070. https://doi.org/10.1517/14712598.8.8.1063. 

(208)  Park, J.; Kyung Yu, M.; Yeon Jeong, Y.; Woong Kim, J.; Lee, K.; Ngoc Phan, V.; Jon, S. 

Antibiofouling Amphiphilic Polymer -Coated Superparamagnetic Iron Oxide Nanoparticles : 

Synthesis, Characterization, and Use in Cancer Imaging in Vivo. Journal of Materials Chemistry 

2009, 19 (35), 6412–6417. https://doi.org/10.1039/B902445J. 

(209)  Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Micellization of Poly(Ethylene Oxide)-

Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous Solutions: 

Thermodynamics of Copolymer Association. Macromolecules 1994, 27 (9), 2414–2425. 

https://doi.org/10.1021/ma00087a009. 

(210)  Lin, Y.; Alexandridis, P. Temperature-Dependent Adsorption of Pluronic F127 Block 

Copolymers onto Carbon Black Particles Dispersed in Aqueous Media. J. Phys. Chem. B 2002, 

106 (42), 10834–10844. https://doi.org/10.1021/jp014221i. 

(211)  Bodratti, A. M.; Wu, J.; Jahan, R.; Sarkar, B.; Tsianou, M.; Alexandridis, P. Mono- and Di-

Valent Salts as Modifiers of PEO-PPO-PEO Block Copolymer Interactions with Silica 

Nanoparticles in Aqueous Dispersions. Journal of Dispersion Science and Technology 2015, 36 

(12), 1806–1815. https://doi.org/10.1080/01932691.2015.1011273. 



128 

 

(212)  Sasidharan, S.; Torkzaban, S.; Bradford, S. A.; Cook, P. G.; Gupta, V. V. S. R. Temperature 

Dependency of Virus and Nanoparticle Transport and Retention in Saturated Porous Media. 

Journal of Contaminant Hydrology 2017, 196, 10–20. 

https://doi.org/10.1016/j.jconhyd.2016.11.004. 

(213)  Xu, X.; Thomson, N. R. Estimation of the Maximum Consumption of Permanganate by Aquifer 

Solids Using a Modified Chemical Oxygen Demand Test. Journal of Environmental Engineering 

2008, 134 (5), 353–361. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:5(353). 

(214)  Adamczyk, Z.; Siwek, B.; Zembala, M.; Belouschek, P. Kinetics of Localized Adsorption of 

Colloid Particles. Advances in Colloid and Interface Science 1994, 48, 151–280. 

https://doi.org/10.1016/0001-8686(94)80008-1. 

(215)  Thomson, N. R. 1DUSAT: A Flexible One-Dimensional Unsaturated Flow and Solute Transport 

Model; University of Waterloo, 2018. 

(216)  Tolson, B. A.; Shoemaker, C. A. Dynamically Dimensioned Search Algorithm for 

Computationally Efficient Watershed Model Calibration. Water Resources Research 2007, 43 

(1). https://doi.org/10.1029/2005WR004723. 

(217)  Matott, L. OSTRICH: An Optimization Software Tool, Documentation and User’s Guide; 

University at Buffalo Center for Computational Research, 2017. 

(218)  Liu, X.; Wu, D.; Turgman-Cohen, S.; Genzer, J.; Theyson, T. W.; Rojas, O. J. Adsorption of a 

Nonionic Symmetric Triblock Copolymer on Surfaces with Different Hydrophobicity. Langmuir 

2010, 26 (12), 9565–9574. https://doi.org/10.1021/la100156a. 

(219)  Bae, K. H.; Choi, S. H.; Park, S. Y.; Lee, Y.; Park, T. G. Thermosensitive Pluronic Micelles 

Stabilized by Shell Cross-Linking with Gold Nanoparticles. Langmuir 2006, 22 (14), 6380–6384. 

https://doi.org/10.1021/la0606704. 

(220)  Rapoport, N. Stabilization and Activation of Pluronic Micelles for Tumor-Targeted Drug 

Delivery. Colloids and Surfaces B: Biointerfaces 1999, 16 (1), 93–111. 

https://doi.org/10.1016/S0927-7765(99)00063-6. 

(221)  Chen, S.; Li, Y.; Guo, C.; Wang, J.; Ma, J.; Liang, X.; Yang, L.-R.; Liu, H.-Z. Temperature-

Responsive Magnetite/PEO−PPO−PEO Block Copolymer Nanoparticles for Controlled Drug 

Targeting Delivery. Langmuir 2007, 23 (25), 12669–12676. https://doi.org/10.1021/la702049d. 

(222)  Kanicky, J. R.; Shah, D. O. Effect of Premicellar Aggregation on the PKa of Fatty Acid Soap 

Solutions. Langmuir 2003, 19 (6), 2034–2038. https://doi.org/10.1021/la020672y. 

(223)  Carstens, J. F.; Bachmann, J.; Neuweiler, I. Effects of Flow Interruption on Transport and 

Retention of Iron Oxide Colloids in Quartz Sand. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects 2017, 520, 532–543. https://doi.org/10.1016/j.colsurfa.2017.02.003. 

(224)  Carstens, J. F.; Bachmann, J.; Neuweiler, I. A New Approach to Determine the Relative 

Importance of DLVO and Non-DLVO Colloid Retention Mechanisms in Porous Media. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects 2019, 560, 330–335. 

https://doi.org/10.1016/j.colsurfa.2018.10.013. 

(225)  Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, 

Y.; et al. Evaluation Methods for Assessing Effectiveness of in Situ Remediation of Soil and 

Sediment Contaminated with Organic Pollutants and Heavy Metals. Environment International 

2017, 105, 43–55. https://doi.org/10.1016/j.envint.2017.05.001. 

(226)  Kuppusamy, S.; Palanisami, T.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. In-Situ 

Remediation Approaches for the Management of Contaminated Sites: A Comprehensive 

Overview. In Reviews of Environmental Contamination and Toxicology Volume 236; de Voogt, 

P., Ed.; Springer International Publishing: Cham, 2016; Vol. 236, pp 1–115. 

(227)  Agarwal, A.; Liu, Y. Remediation Technologies for Oil-Contaminated Sediments. Marine 

Pollution Bulletin 2015, 101 (2), 483–490. https://doi.org/10.1016/j.marpolbul.2015.09.010. 

(228)  Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y. B.; Naidu, R.; Megharaj, M. 

Remediation Approaches for Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soils: 



129 

 

Technological Constraints, Emerging Trends and Future Directions. Chemosphere 2017, 168, 

944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115. 

(229)  Tratnyek, P. G.; Johnson, R. L. Nanotechnologies for Environmental Cleanup. Nano Today 2006, 

1 (2), 44–48. https://doi.org/10.1016/S1748-0132(06)70048-2. 

(230)  Bartke, S.; Hagemann, N.; Harries, N.; Hauck, J.; Bardos, P. Market Potential of 

Nanoremediation in Europe – Market Drivers and Interventions Identified in a Deliberative 

Scenario Approach. Science of The Total Environment 2018, 619–620, 1040–1048. 

https://doi.org/10.1016/j.scitotenv.2017.11.215. 

(231)  Kuang, Y.; Du, J.; Zhou, R.; Chen, Z.; Megharaj, M.; Naidu, R. Calcium Alginate Encapsulated 

Ni/Fe Nanoparticles Beads for Simultaneous Removal of Cu (II) and Monochlorobenzene. 

Journal of Colloid and Interface Science 2015, 447, 85–91. 

https://doi.org/10.1016/j.jcis.2015.01.080. 

(232)  Kim, H.-J.; Leitch, M.; Naknakorn, B.; Tilton, R. D.; Lowry, G. V. Effect of Emplaced NZVI 

Mass and Groundwater Velocity on PCE Dechlorination and Hydrogen Evolution in Water-

Saturated Sand. Journal of Hazardous Materials 2017, 322 (Part A), 136–144. 

https://doi.org/10.1016/j.jhazmat.2016.04.037. 

(233)  Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J. R.; Lobo, M. C. Comparing Different 

Commercial Zero Valent Iron Nanoparticles to Immobilize As and Hg in Brownfield Soil. 

Science of The Total Environment 2017, 584–585, 1324–1332. 

https://doi.org/10.1016/j.scitotenv.2017.02.011. 

(234)  Gil-Díaz, M.; Pinilla, P.; Alonso, J.; Lobo, M. C. Viability of a Nanoremediation  Process in 

Single or Multi-Metal(Loid) Contaminated Soils. Journal of Hazardous Materials 2017, 321, 

812–819. https://doi.org/10.1016/j.jhazmat.2016.09.071. 

(235)  Qiu, C.; He, Y.; Brookes, P.; Xu, J. The Systematic Characterization of Nanoscale Bamboo 

Charcoal and Its Sorption on Phenanthrene:A Comparison with Microscale. Science of the Total 

Environment 2017, 578, 691–693. https://doi.org/10.1016/j.scitotenv.2016.10.196. 

(236)  Pardo, F.; Peluffo, M.; Santos, A.; Romero, A. Optimization of the Application of the Fenton 

Chemistry for the Remediation of a Contaminated Soil with Polycyclic Aromatic Hydrocarbons. 

Journal of Chemical Technology and Biotechnology 2016, 91 (6), 1763–1772. 

https://doi.org/10.1002/jctb.4767. 

(237)  Lefevre, E.; Bossa, N.; Wiesner, M. R.; Gunsch, C. K. A Review of the Environmental 

Implications of in Situ Remediation by Nanoscale Zero Valent Iron (NZVI): Behavior, Transport 

and Impacts on Microbial Communities. Science of The Total Environment 2016, 565, 889–901. 

https://doi.org/10.1016/j.scitotenv.2016.02.003. 

(238)  Tian, H.; Liang, Y.; Zhu, T.; Zeng, X.; Sun, Y. Surfactant-Enhanced PEG-4000-NZVI for 

Remediating Trichloroethylene-Contaminated Soil. Chemosphere 2018, 195, 585–593. 

https://doi.org/10.1016/j.chemosphere.2017.12.070. 

(239)  Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanromán, M. Á. Current Advances and Trends in 

Electro-Fenton Process Using Heterogeneous Catalysts – A Review. Chemosphere 2018, 201, 

399–416. https://doi.org/10.1016/j.chemosphere.2018.03.002. 

(240)  Mirzaee, E.; Gitipour, S.; Mousavi, M.; Amini, S. Optimization of Total Petroleum Hydrocarbons 

Removal from Mahshahr Contaminated Soil Using Magnetite Nanoparticle Catalyzed Fenton-

like Oxidation. Environ Earth Sci 2017, 76 (4), 165. https://doi.org/10.1007/s12665-017-6484-1. 

(241)  Leitão, P.; Aulenta, F.; Rossetti, S.; Nouws, H. P. A.; Danko, A. S. Impact of Magnetite 

Nanoparticles on the Syntrophic Dechlorination of 1,2-Dichloroethane. Science of The Total 

Environment 2018, 624, 17–23. https://doi.org/10.1016/j.scitotenv.2017.12.110. 

(242)  Jorfi, S.; Samaei, M. R.; Darvishi Cheshmeh Soltani, R.; Talaie Khozani, A.; Ahmadi, M.; 

Barzegar, G.; Reshadatian, N.; Mehrabi, N. Enhancement of the Bioremediation of Pyrene-

Contaminated Soils Using a Hematite Nanoparticle-Based Modified Fenton Oxidation in a 

Sequenced Approach. Soil and Sediment Contamination: An International Journal 2017, 26 (2), 

141–156. https://doi.org/10.1080/15320383.2017.1255875. 



130 

 

(243)  Matos, M. P. S. R.; Correia, A. A. S.; Rasteiro, M. G. Application of Carbon Nanotubes to 

Immobilize Heavy Metals in Contaminated Soils. J Nanopart Res 2017, 19 (4), 126. 

https://doi.org/10.1007/s11051-017-3830-x. 

(244)  Zhang, J.; Gong, J.-L.; Zeng, G.-M.; Yang, H.-C.; Zhang, P. Carbon Nanotube Amendment for 

Treating Dichlorodiphenyltrichloroethane and Hexachlorocyclohexane Remaining in Dong-Ting 

Lake Sediment — An Implication for in-Situ Remediation. Science of The Total Environment 

2017, 579, 283–291. https://doi.org/10.1016/j.scitotenv.2016.11.105. 

(245)  Apul, O. G.; Delgado, A. G.; Kidd, J.; Alam, F.; Dahlen, P.; Westerhoff, P. Carbonaceous Nano-

Additives Augment Microwave-Enabled Thermal Remediation of Soils Containing Petroleum 

Hydrocarbons. Environ. Sci.: Nano 2016, 3 (5), 997–1002. 

https://doi.org/10.1039/C6EN00261G. 

(246)  Wang, D.; Park, C. M.; Masud, A.; Aich, N.; Su, C. Carboxymethylcellulose Mediates the 

Transport of Carbon Nanotube—Magnetite Nanohybrid Aggregates in Water-Saturated Porous 

Media. Environmental Science & Technology 2017, 51 (21), 12405–12415. 

https://doi.org/10.1021/acs.est.7b04037. 

(247)  Zhang, M.; He, F.; Zhao, D.; Hao, X. Transport of Stabilized Iron Nanoparticles in Porous 

Media: Effects of Surface and Solution Chemistry and Role of Adsorption. Journal of Hazardous 

Materials 2017, 322, 284–291. https://doi.org/10.1016/j.jhazmat.2015.12.071. 

(248)  Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H.-J.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewsk, 

K.; Lowry, G. V.; Tilton, R. D. Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent 

Iron Particle Attachment to Soil Surface Models. Environmental Science and Technology 2009, 

43 (10), 3803–3808. https://doi.org/10.1021/es803589t. 

(249)  Fan, G.; Cang, L.; Qin, W.; Zhou, C.; Gomes, H. I.; Zhou, D. Surfactants-Enhanced 

Electrokinetic Transport of Xanthan Gum Stabilized NanoPd/Fe for the Remediation of PCBs 

Contaminated Soils. Separation and Purification Technology 2013, 114, 64–72. 

https://doi.org/10.1016/j.seppur.2013.04.030. 

(250)  Velimirovic, M.; Tosco, T.; Uyttebroek, M.; Luna, M.; Gastone, F.; De Boer, C.; Klaas, N.; 

Sapion, H.; Eisenmann, H.; Larsson, P.-O.; et al. Field Assessment of Guar Gum Stabilized 

Microscale Zerovalent Iron Particles for In-Situ Remediation of 1,1,1-Trichloroethane. Journal of 

Contaminant Hydrology 2014, 164, 88–99. https://doi.org/10.1016/j.jconhyd.2014.05.009. 

(251)  Tiraferri, A.; Sethi, R. Enhanced Transport of Zerovalent Iron Nanoparticles in Saturated Porous 

Media by Guar Gum. Journal of Nanoparticle Research 2009, 11 (3), 635–645. 

https://doi.org/10.1007/s11051-008-9405-0. 

(252)  Wang, W.; Zhou, M.; Jin, Z.; Li, T. Reactivity Characteristics of Poly(Methyl Methacrylate) 

Coated Nanoscale Iron Particles for Trichloroethylene Remediation. Journal of Hazardous 

Materials 2010, 173 (1), 724–730. https://doi.org/10.1016/j.jhazmat.2009.08.145. 

(253)  Wang, Z.; Choi, F.; Acosta, E. Effect of Surfactants on Zero-Valent Iron Nanoparticles (NZVI) 

Reactivity. Journal of Surfactants and Detergents 2017, 20 (3), 577–588. 

https://doi.org/10.1007/s11743-017-1941-0. 

(254)  Wacławek, S.; Chronopoulou, L.; Petrangeli Papini, M.; Vinod, V. T. P.; Palocci, C.; Kupčík, J.; 

Černík, M. Enhancement of Stability and Reactivity of Nanosized Zero-Valent Iron with 

Polyhydroxybutyrate. Desalination and Water Treatment 2017, 69, 302–307. 

https://doi.org/10.5004/dwt.2017.0704. 

(255)  Chowdhury, A. I. A.; Krol, M. M.; Kocur, C. M.; Boparai, H. K.; Weber, K. P.; Sleep, B. E.; 

O’Carroll, D. M. NZVI Injection into Variably Saturated Soils: Field and Modeling Study. 

Journal of Contaminant Hydrology 2015, 183, 16–28. 

https://doi.org/10.1016/j.jconhyd.2015.10.003. 

(256)  Kocur, C. M. D.; Lomheim, L.; Molenda, O.; Weber, K. P.; Austrins, L. M.; Sleep, B. E.; 

Boparai, H. K.; Edwards, E. A.; O’Carroll, D. M. Long-Term Field Study of Microbial 

Community and Dechlorinating Activity Following Carboxymethyl Cellulose-Stabilized 



131 

 

Nanoscale Zero-Valent Iron Injection. Environmental Science and Technology 2016, 50 (14), 

7658–7670. https://doi.org/10.1021/acs.est.6b01745. 

(257)  Ghosh, I.; Mukherjee, A.; Mukherjee, A. In Planta Genotoxicity of NZVI: Influence of Colloidal 

Stability on Uptake, DNA Damage, Oxidative Stress and Cell Death. Mutagenesis 2017, 32 (3), 

371–387. https://doi.org/10.1093/mutage/gex006. 

(258)  Rede, D.; Santos, L. H. M. L. M.; Ramos, S.; Oliva-Teles, F.; Antão, C.; Sousa, S. R.; Delerue-

Matos, C. Ecotoxicological Impact of Two Soil Remediation Treatments in Lactuca Sativa Seeds. 

Chemosphere 2016, 159, 193–198. https://doi.org/10.1016/j.chemosphere.2016.06.002. 

(259)  Libralato, G.; Costa Devoti, A.; Zanella, M.; Sabbioni, E.; Mičetić, I.; Manodori, L.; Pigozzo, A.; 

Manenti, S.; Groppi, F.; Volpi Ghirardini, A. Phytotoxicity of Ionic, Micro- and Nano-Sized Iron 

in Three Plant Species. Ecotoxicology and Environmental Safety 2016, 123 (Complete), 81–88. 

https://doi.org/10.1016/j.ecoenv.2015.07.024. 

(260)  Qualhato, G.; Rocha, T. L.; de Oliveira Lima, E. C.; e Silva, D. M.; Cardoso, J. R.; Koppe 

Grisolia, C.; de Sabóia-Morais, S. M. T. Genotoxic and Mutagenic Assessment of Iron Oxide 

(Maghemite-γ-Fe2O3) Nanoparticle in the Guppy Poecilia Reticulata. Chemosphere 2017, 183, 

305–314. https://doi.org/10.1016/j.chemosphere.2017.05.061. 

(261)  Hjorth, R.; Coutris, C.; Nguyen, N. H. A.; Sevcu, A.; Gallego-Urrea, J. A.; Baun, A.; Joner, E. J. 

Ecotoxicity Testing and Environmental Risk Assessment of Iron Nanomaterials for Sub-Surface 

Remediation – Recommendations from the FP7 Project NanoRem. Chemosphere 2017, 182, 

525–531. https://doi.org/10.1016/j.chemosphere.2017.05.060. 

(262)  Schiwy, A.; Maes, H. M.; Koske, D.; Flecken, M.; Schmidt, K. R.; Schell, H.; Tiehm, A.; 

Kamptner, A.; Thümmler, S.; Stanjek, H.; et al. The Ecotoxic Potential of a New Zero-Valent 

Iron Nanomaterial, Designed for the Elimination of Halogenated Pollutants, and Its Effect on 

Reductive Dechlorinating Microbial Communities. Environmental Pollution 2016, 216, 419–427. 

https://doi.org/10.1016/j.envpol.2016.05.051. 

(263)  Nguyen, N. H. A.; Špánek, R.; Kasalický, V.; Ribas, D.; Vlková, D.; Řeháková, H.; Kejzlar, P.; 

Ševců, A. Different Effects of Nano-Scale and Micro-Scale Zero-Valent Iron Particles on 

Planktonic Microorganisms from Natural Reservoir Water. Environ. Sci.: Nano 2018, 5 (5), 

1117–1129. https://doi.org/10.1039/C7EN01120B. 

(264)  Molnar, I. L.; Johnson, W. P.; Gerhard, J. I.; Willson, C. S.; O’Carroll, D. M. Predicting Colloid 

Transport through Saturated Porous Media: A Critical Review. Water Resour. Res. 2015, 51 (9), 

6804–6845. https://doi.org/10.1002/2015WR017318. 

(265)  Wang, M.; Gao, B.; Tang, D. Review of Key Factors Controlling Engineered Nanoparticle 

Transport in Porous Media. Journal of Hazardous Materials 2016, 318, 233–246. 

https://doi.org/10.1016/j.jhazmat.2016.06.065. 

(266)  Patil, S. S.; Shedbalkar, U. U.; Truskewycz, A.; Chopade, B. A.; Ball, A. S. Nanoparticles for 

Environmental Clean-up: A Review of Potential Risks and Emerging Solutions. Environmental 

Technology & Innovation 2016, 5, 10–21. https://doi.org/10.1016/j.eti.2015.11.001. 

(267)  Thatai, S.; Khurana, P.; Boken, J.; Prasad, S.; Kumar, D. Nanoparticles and Core–Shell 

Nanocomposite Based New Generation Water Remediation Materials and Analytical Techniques: 

A Review. Microchemical Journal 2014, 116, 62–76. 

https://doi.org/10.1016/j.microc.2014.04.001. 

(268)  Bianco, C.; Patiño Higuita, J. E.; Tosco, T.; Tiraferri, A.; Sethi, R. Controlled Deposition of 

Particles in Porous Media for Effective Aquifer Nanoremediation. Scientific Reports 2017, 7. 

https://doi.org/10.1038/s41598-017-13423-y. 

(269)  Wang, Z.; Acosta, E. Formulation Design for Target Delivery of Iron Nanoparticles to TCE 

Zones. Journal of Contaminant Hydrology 2013, 155, 9–19. 

https://doi.org/10.1016/j.jconhyd.2013.08.005. 

(270)  Li, D.-G.; Chen, S.-H.; Zhao, S.-Y.; Hou, X.-M.; Ma, H.-Y.; Yang, X.-G. A Study of Phase 

Transfer Processes of Ag Nanoparticles. Applied Surface Science 2002, 200 (1), 62–67. 

https://doi.org/10.1016/S0169-4332(02)00606-2. 



132 

 

(271)  Repko, A.; Nižňanský, D.; Poltierová-Vejpravová, J. A Study of Oleic Acid-Based Hydrothermal 

Preparation of CoFe2O4 Nanoparticles. J Nanopart Res 2011, 13 (10), 5021. 

https://doi.org/10.1007/s11051-011-0483-z. 

(272)  Repko, A.; Vejpravová, J.; Vacková, T.; Zákutná, D.; Nižňanský, D. Oleate-Based Hydrothermal 

Preparation of CoFe2O4 Nanoparticles, and Their Magnetic Properties with Respect to Particle 

Size and Surface Coating. Journal of Magnetism and Magnetic Materials 2015, 390 (Supplement 

C), 142–151. https://doi.org/10.1016/j.jmmm.2015.04.090. 

(273)  Angelescu, D. G.; Vasilescu, M.; Anastasescu, M.; Baratoiu, R.; Donescu, D.; Teodorescu, V. S. 

Synthesis and Association of Ag(0) Nanoparticles in Aqueous Pluronic F127 Triblock 

Copolymer Solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 

394, 57–66. https://doi.org/10.1016/j.colsurfa.2011.11.025. 

(274)  Linse, P.; Malmsten, M. Temperature-Dependent Micellization in Aqueous Block Copolymer 

Solutions. Macromolecules 1992, 25 (20), 5434–5439. https://doi.org/10.1021/ma00046a048. 

(275)  Addai-Mensah, J. Enhanced Flocculation and Dewatering of Clay Mineral Dispersions. Powder 

Technology 2007, 179 (1–2), 73–78. https://doi.org/10.1016/j.powtec.2006.11.008. 

(276)  Hema, S.; Thambiraj, S.; Shankaran, D. R. Nanoformulations for Targeted Drug Delivery to 

Prostate Cancer: An Overview. Journal of Nanoscience and Nanotechnology 2018, 18 (8), 5171–

5191. https://doi.org/10.1166/jnn.2018.15420. 

(277)  Petros, R. A.; DeSimone, J. M. Strategies in the Design of Nanoparticles for Therapeutic 

Applications. Nat Rev Drug Discov 2010, 9 (8), 615–627. https://doi.org/10.1038/nrd2591. 

(278)  Srinivasarao, M.; Galliford, C. V.; Low, P. S. Principles in the Design of Ligand-Targeted Cancer 

Therapeutics and Imaging Agents. Nature Reviews Drug Discovery 2015, 14 (3), 203–219. 

https://doi.org/10.1038/nrd4519. 

(279)  Mellage, A.; Holmes, A. B.; Linley, S.; Vallée, L.; Rezanezhad, F.; Thomson, N.; Gu, F.; 

Cappellen, P. V. Sensing Coated Iron-Oxide Nanoparticles with Spectral Induced Polarization 

(SIP): Experiments in Natural Sand Packed Flow-Through Columns. Environmental Science & 

Technology 2018. https://doi.org/10.1021/acs.est.8b03686. 

(280)  Phenrat, T.; Thongboot, T.; Lowry, G. V. Electromagnetic Induction of Zerovalent Iron (ZVI) 

Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of 

Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept 

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b04485 (accessed Feb 26, 2019). 

https://doi.org/10.1021/acs.est.5b04485. 

(281)  Ball, W. P.; Buehler, C.; Harmon, T. C.; Mackay, D. M.; Roberts, P. V. Characterization of a 

Sandy Aquifer Material at the Grain Scale. Journal of Contaminant Hydrology 1990, 5 (3), 253–

295. https://doi.org/10.1016/0169-7722(90)90040-N. 

(282)  Nejadnik, M. R.; Olsson, A. L. J.; Sharma, P. K.; van der Mei, H. C.; Norde, W.; Busscher, H. J. 

Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz 

Crystal Microbalance with Dissipation. Langmuir 2009, 25 (11), 6245–6249. 

https://doi.org/10.1021/la9001169. 

 

 

 

 

 

 

 



133 

 

 

 


	Examining Committee Membership
	Author’s Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1 Overview
	1.2 Research Objectives
	1.3 Thesis Outline

	Chapter 2
	Literature Review
	2.1 Heavy Hydrocarbon Impacted Soils & Remediation Technologies
	2.2 Nanoparticles in Soil Remediation
	2.2.1 Contaminants Addressed by nZVI
	2.2.2 Recent Advances: Catalyst Improvement
	2.2.3 Recent Advances: nZVI Dispersibility

	2.3 Other Nanomaterials for Adsorptive Contaminant Removal
	2.3.1 Iron Sulfide Nanoparticles
	2.3.2 Iron Oxide and Metal Ferrite Nanoparticles

	2.3 Factors Affecting Nanoparticle Transport in Porous Media
	2.4 Nanoparticle Synthesis & Coating Strategies
	2.5 Nanoparticle Targeted Binding & Application to Soil Remediation
	2.6 Conclusion

	Chapter 3
	Targeted Nanoparticle Binding & Detection in Petroleum Hydrocarbon Impacted Porous Media†
	3.1 Summary
	3.2 Introduction
	3.3 Materials and Methods
	3.3.1 Materials
	3.3.2 Nanoparticle Synthesis
	3.3.3 Nanoparticle Phase Transfer
	3.3.4 Nanoparticle Binding Studies
	3.3.5 Analyses

	3.4 Results and Discussion
	3.4.1 Nanoparticle Design
	3.4.2 Nanoparticle Characterization
	3.4.3 Nanoparticle Binding
	3.4.4 X-Ray CT Visualization of Nanoparticle Binding


	3.5 Conclusions
	Chapter 4
	Nanoparticle Targeted Delivery to Petroleum Hydrocarbon Impacted Porous Media†
	4.1 Summary
	4.2 Introduction
	4.3 Experimental
	4.3.1 Materials
	4.3.2 Nanoparticle Synthesis
	4.3.3 Nanoparticle Phase Transfer
	4.3.4 Column Flow-through Experiments
	4.3.4 Analyses

	4.4 Results and Discussion
	4.4.1 Effect of Nanoparticle Coating on Morphology and Transport Efficiency
	4.4.2 Nanoparticle Transport and Binding in Clean and Oil-Impacted Porous Media

	4.5 Conclusions

	Chapter 5
	Factors Affecting Nanoparticle Targeted Binding to PHC-Impacted Sediments†
	5.1 Summary
	5.2 Introduction
	5.3 Materials & Methods
	5.3.1 Materials
	5.3.2 Nanoparticle Synthesis
	5.3.3 Nanoparticle Binding Batch Tests
	5.3.4 Nanoparticle Transport and Binding Tests
	5.3.5 Analysis
	5.3.6 Nanoparticle Transport Modelling

	5.4 Results and Discussion
	5.4.1 Effect of NP Pluronic Coating Concentration
	5.4.2 Effect of Oil Concentration and Oil Type
	5.4.3 Effect of Temperature and pH
	5.4.4 Nanoparticle Transport and Binding in Stop-Flow Systems

	5.5 Conclusions

	Chapter 6
	Pluronic as a Universal Nanoparticle Coating for Targeted Delivery of Nanoparticles to PHC-Impacted Porous Media†
	6.1 Summary
	6.2 Introduction
	6.3 Materials and Methods
	6.3.1 Materials
	6.3.2 Nanoparticle Synthesis
	6.3.2.1 Iron Oxide Nanoparticles
	6.3.2.2 Silver Nanoparticles
	6.3.2.3 Cobalt Ferrite Nanoparticles
	6.3.2.4 Nanoparticle Phase Transfer

	6.3.3 Binding Batch Studies
	6.3.4 Column Transport and Binding Studies
	6.3.5 Analyses
	6.3.6 Nanoparticle Transport Modelling
	6.4.1 Silver Nanoparticle Synthesis
	6.4.2 Nanoparticle Characterization
	6.4.3 Effect of Temperature on Nanoparticle Binding
	6.4.4 Nanoparticle Transport and Binding in Column Tests

	6.5 Conclusions

	Chapter 7
	Conclusions and Future Work
	7.1 Summary
	7.2 Conclusions
	7.3 Recommendations for Future Work
	7.5 Preparations for Field Deployment

	Appendix A: Description of Variables in Advection/Dispersion Equation
	Appendix B: Borden Sand Soil Characterization
	Appendix C: Silver Nanoparticle Synthesis Optimization
	Appendix D: Quartz Crystal Microbalance (QCM) Preliminary Investigation
	D.1 Purpose & Introduction
	D.2 Materials & Methods
	D.2.1 Materials
	D.2.2 QCM Experiments

	D.3 Results & Discussion
	D.4 Conclusions and Next Steps

	Bibliography

