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Abstract 

PM2.5 refers to fine particles with diameters smaller than 2.5 µm. The rising level of PM2.5 reveals 

adverse effects on climate change, economic losses, international conflicts, and public health. Exposure 

to the high level of PM2.5 would increase the risk of premature death, especially for people with weak 

immune systems, such as children and elder people. The main sources of PM2.5 include combustion 

of biomass, vehicle and industrial emissions, and wildfire smoke. British Columbia (BC), Canada, with 

a land area of 944,735 km2 and 27 regional districts, experienced its record-breaking wildfire season 

in 2017. However, due to the uneven distribution of PM2.5 ground monitoring stations in BC, PM2.5 

concentrations in the rural area are difficult to retrieve. Remote sensing techniques and geographical 

information systems (GIS) could be used as supplementary tools to estimate PM2.5 concentrations. 

Aerosol Optical Depth (AOD) has been proven to have a strong correlation with PM2.5. Moderate 

Resolution Imaging Spectroradiometer (MODIS) provides AOD products in both 3 km and 10 km 

resolutions. The 3 km MODIS AOD products were released in 2013, and have been widely used to 

estimate PM2.5 concentrations in several studies.  

This study adopted the 3 km Aqua MODIS AOD products to estimate PM2.5 concentrations 

in BC in the year of 2017 by combining ground station measurements, meteorological and 

supplementary data. MODIS AOD products were validated with ground-level AErosol RObotic 

NETwork (AERONET) AOD data. The Multiple Linear Regression (MLR) model, Geographically 

Weighted Regression (GWR) model, and a novel theoretical model were then conducted to estimate 

PM2.5 concentrations by integrating MODIS AOD products, ground-level PM2.5 concentrations, 

meteorological and supplementary data. After comparing the performance of the three models, the 

GWR model was used to generate annual, seasonal, and monthly spatial distribution maps of PM2.5. 

The application feasibility of MODIS AOD products in predicting PM2.5 was also examined.  

The validation results showed that there was a strong correlation between the MODIS AOD 

and the AERONET AOD. The GWR model had the best prediction performance, while the MLR 

generated the worst prediction results. After analyzing the spatial distribution maps of PM2.5 with 

ground-level PM2.5 distribution maps, it could be concluded that the PM2.5 concentrations estimated 

by the GWR model almost follow the same trend as ground station measured PM2.5. In addition, 

PM2.5 concentrations were the highest in summer and August based on the estimation results of 

seasonal and monthly GWR models. It indicated that the application feasibility of MODIS AOD 

products in predicting PM2.5 concentrations during BC’s wildfire season was high. 
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Air Pollution and Major Pollutants 

Air pollution has been recognized as one of the most controversial topics in the world, especially in many 

developing countries, such as China and India (Kanada et al., 2013). It is estimated that around 4.2 million 

people died as a result of exposure to outdoor air pollution and 3.8 million people died as a result of exposure 

to indoor air pollution, which contributed to 7.6% and 7.7%, respectively of all deaths in 2016 (WHO, 

2017). The common sources that could generate outdoor air pollution include emissions from motor 

vehicles, fuel combustion, and biomass burning (NSW Government, 2013).  By contrast, indoor air 

pollution is often neglected by most people. In many developing countries, people are still using solid fuels, 

open fires, and insufficient stoves to cook (EPA, 2017). Air pollution is also major reason for biodiversity 

loss and respiratory diseases globally (Li et al., 2017).   

According to the National Ambient Air Quality Standards (NAAQS) firstly set by the United States 

Environmental Protection Agency (US EPA), six pollutants include ground-level ozone (O3), particulate 

matter (PM), carbon dioxide (CO2), lead (Pb), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are listed 

as common air pollutants (also known as “criteria air pollutants”) (EPA, 2018). It is reported that exposure 

to those pollutants could lead to health, environmental, and monetary losses (Wang et al., 2014).  

1.1.2  Introduction to PM2.5  

PM stands for particulate matter, which refers to the combination of all toxic liquid and solid particles with 

complex compositions and different diameters in the atmosphere (Karagulian et al., 2005; Fuzzi et al., 2015; 

Raaschou-Nielsen et al., 2017). PM could be divided into three categories depending on the size of particles 

(i.e., diameters); including coarse particles, fine particles, and ultrafine particles (Grivas et al., 2018). 

Coarse particles are particles with diameters ranging from 2.5 to 10 µm (such as PM10). Fine particles are 

particles with diameters 2.5 µm or less (such as PM2.5). Ultrafine particles are fine particles with diameters 

smaller than 0.1 µm (such as PM0.1) (Zhang et al., 2015). Besides particle size, coarse, fine, and ultrafine 

particles also differ from the formation process, life expectancy, source, and spatial distribution (Kumar et 

al., 2008).   

PM2.5 comes from both primary and secondary sources. Primary sources include incomplete 

combustion, vehicle and industrial emissions, dust, wildfire smoke, heating, and cooking. Among these 
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sources, vehicle emissions could be considered as the most significant primary PM2.5 source (Martin & 

Graca, 2018). Secondary sources involve some complex chemical reactions of gases (Department for 

Environment Food & Rural Affairs, 2016). Primary sources are related to both human-made and natural 

activities, while secondary sources are more related to primary sources (Jayarathne et al., 2018). The 

components of PM2.5 vary between anthropogenic and natural sources. Dominici et al. (2015) analyzed 

chemical compositions of PM2.5 in 95 US counties and concluded that sulfate, nitrate, ammonium, 

elemental carbon, organic carbon, silicon, and sodium ion were chosen to be seven chemical components 

of PM2.5, since each of the component contributed greater than 1% of PM2.5 mass on a seasonal or yearly 

basis.   

The rising level of PM2.5 reveals adverse effects on climate change, public health, economic losses, 

and international conflicts. Figure 1.1 summarizes the effects of PM2.5 on different components of the 

atmosphere. PM2.5 concentrations depend on meteorological conditions, which means there is a significant 

correlation between climate change and PM2.5 (Tai et al., 2010). With increasing temperature, chemical 

reactions will also speed up. It takes a shorter time to emit PM2.5, and as a result, climate change will be 

worse (Hogrefe, 2012). Khanna et al. (2018) conducted an experiment to prove that the visibility is 

negatively correlated to chemical constituents of PM2.5. Furthermore, PM2.5 might cause acid rain and 

reduce agricultural productivity because of sulfate aerosols. Normally, high wind velocity and precipitation 

reduce PM2.5 concentrations. However, urban areas normally have low wind velocity, which makes the 

PM2.5 level higher than those in rural areas (Martins & Graca, 2018). It is estimated that urban area with 

high traffic density generated up to 140% higher PM2.5 concentrations than that in suburban or rural areas 

(Mukherjee & Agrawal, 2018).  

The most serious problem of PM2.5 is public health. As a result of climate change and air pollution, 

the reduction of the healing capacity of natural systems leads to severe health effects (Mukherjee & 

Agrawal, 2018). Due to its small size, PM2.5 can easily penetrate into the lung deeply and hurt lung function 

consequently (Xing et al., 2016). It also increases the risk of premature death, especially for people with 

weak immune system, such as children and elder people (Lu et al., 2019). It is estimated that exposure to 

PM2.5 leads to death of 9500 people every year, which accounts for the highest mortality rate among three 

major air pollutants in Canada (the other two are NO2 and O3). It occupies 4.3% of baseline mortality 

(Health Canada, 2017). PM2.5 reveals both short-term and long-term effects on human health. In the short-

term, infections of asthma, lung cancer, heart disease, and respiratory inflammation are possible (Lu et al., 

2019). In the long-term, the risk of age-specific mortality will increase, as well as premature risk (Feng et 
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al., 2016). Moreover, Requia et al. (2017) stated that PM2.5 contributes to diabetes and high blood pressure 

incidence in Canada.  

PM2.5 also brings economic losses. For those countries that give their first priority to economic 

development, the PM2.5-related economic losses are massive. In 2016, China lost USD 101.39 billion to 

PM2.5-related exposure, which accounts for 0.91% of the national GDP (Maji et al., 2018). India spent 

over USD 0.5 trillion to offset economic losses that resulted from PM2.5-related public health issues in 

2010 (Etchie et al., 2017). The Government of Canada pays billions of dollars each year to cover increased 

requirement for medical care and the potential risk of premature death (Environment and Climate Change 

Canada, 2017).  

In addition, PM2.5 will also lead to international issues. For example, it is estimated that half of 

Ontario’s PM2.5 comes from the United States (Ontario Ministry of Environment, Conservation and Parks, 

2010). Japan, Taiwan, and Hong Kong are significantly affected by high concentrations of PM2.5 during 

active storm seasons due to the dust that comes from the mainland China (Li, 2016). Those losses are hard 

to count on real numbers, which makes it difficult to negotiate between different countries/regions. 

 

Figure 1.1 Effects of PM2.5 on different components of the atmosphere (Source: Mukherjee & Agrawal, 

2018) 
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1.1.3 Global PM2.5 Standards and Regulations 

Since substantial evidence has demonstrated that PM2.5 is extremely harmful to health and is responsible 

for haze pollution, it is essential to propose guidelines towards PM2.5. From a global perspective, different 

countries/regions have diverse standards and regulations based on national conditions and variations in 

PM2.5 levels (Wu et al., 2017). World Health Organization (WHO) has established guidelines for PM2.5 

as reference standards (WHO, 2018). Government organizations are the primary sources to provide reliable 

and accurate PM2.5 recordings, such as Chinese National Environmental Monitoring (CNEM) in China, 

EPA in United States, European Environment Agency (EEA) in Europe, Central Pollution Control Board 

(CPCB) in India, and Air Quality Management System (AQMS) in Canada (Mukherjee & Agrawal, 2018). 

Table 1.1 summarizes the current guidelines of PM2.5 levels for main countries and organizations. These 

values are proposed based on the degree of toxicity, economic status, length of monitoring time, geographic 

information, and emission sources (Mukherjee & Agrawal, 2018). PM2.5 concentrations exceed the 

guideline values are suggested to be toxic and harmful for health.  

Canadian Ambient Air Quality Standards (CAAQS) was firstly established by the Canadian 

Council of Ministers of the Environment (CCME) in 1999. The old 2015 standards were reviewed in 2012, 

and for PM2.5 were 28 µg/m3 daily and 10 µg/m3 yearly. The new 2020 standards were reviewed in 2015, 

and the latest standards for daily and annual PM2.5 are 27 µg/m3 and 8.8 µg/m3, respectively. Some regions 

even have stricter regulations towards PM2.5. For example, the daily and annual standards for PM2.5 in 

BC are 25 µg/m3 and 6 µg/m3, respectively (Ministry of Environment, 2018). 
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Table 1.1 PM2.5 Guidelines in selected countries/organizations (Source: AirNow, 2018) 

Country/Organization 
Daily (24-hour) 

(µg/m3) 

Annual 

(µg/m3) 
Issued Year Guidelines 

WHO 25 10 2005 
Air Quality Guidelines 

Global 

United States 35 12 2015 

National Ambient Air 

Quality Standards 

(NAAQS) 

China 35 15 2012 
Ambient Air Quality 

Standards 

India 60 40 2009 
National Ambient Air 

Quality Standards 

European Union N/A 25 2013 
European Commission 

Air Quality Standards 

Australia 25 8 2002 

National Environment 

Protection Measure for 

Ambient Air Quality 

(Air NEPM) 

Canada 28 (2015) 10 (2015) 2012 Canadian Ambient Air 

Quality Standards 

(CAAQS) 
 

27 (2020) 
8.8 

(2020) 
2015 

 

From a global perspective, Asia consists of countries with high population density and high level 

of polluted areas (Figure 1.2). It is reported that PM2.5 levels in India are five times higher than WHO 

standards. Mongolia and China contribute the highest averaged annual PM2.5 levels, which are 64 µg/m3 

and 41 µg/m3, respectively. Japan is the only country in Asia that has lower PM2.5 concentrations than the 

WHO mean annual standard. Europe generates less PM2.5 than other continents because of the usage of 

green resources, idle reduction, and less populated. Similarly, North America also suffers less from PM2.5, 
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except Mexico. Mexico has 2.5 times higher PM2.5 levels than the WHO mean annual standard. South 

America performs better than that in Asia. Most countries except Peru have PM2.5 levels around 30 µg/m3. 

However, it needs to be alerted that PM2.5 levels are increasing year by year. Africa is hard to analyze due 

to lack of data. Based on the available information, PM2.5 levels in Africa exceed the WHO mean annual 

standard because of biomass combustion and poor road conditions.  

 

Figure 1.2 Distribution of PM2.5 levels (µg/m3) in different continents: (a) North America, (b) South 

America, (c) Europe, (d) Asia, and (e) Africa (Source: Mukherjee & Agrawal, 2018). 

1.1.4 Aerosol Optical Depth and PM2.5 

Aerosols are the suspension of liquid or solid particles in air (Kulkarni et al., 2011). Smoke from wildfires, 

gas emissions from factories, and volcanic ash are all examples of aerosols (NASA earth observatory, n.d.). 

Aerosol optical depth (AOD) refers to the degree of aerosols that changes the path of light scattering, 

reflection, and absorption in the atmosphere (Mohamad, 2015; Gupta et al., 2018). The range of AOD varies 

between 0 and 1. AOD less than 0.1 indicates an excellent atmospheric condition with maximum visibility; 
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while a value of 1 indicates a hazy air condition with low visibility (NASA earth observatory, n.d.). AOD 

normally represents the difference between the total optical depth and the molecular scattering (Kazadzis 

et al., 2018). Figure 1.3 shows an example of the comparison between AOD distribution and fireplaces in 

August 2017, which could be concluded that fires play a vital role in aerosols. 

 

Figure 1.3 Comparison between AOD distribution and fireplaces in August 2017 (Source: NASA earth 

observatory, n.d.) 
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AOD is recognized as a good indicator of PM2.5 levels, and is used to predict PM2.5 concentrations 

(Shao et al., 2017). Numerous studies have proven that there is a strong positive correlation between AOD 

and ground-measured PM2.5 concentrations (Chu, 2006; Gupta et al., 2006; Kumar et al., 2007; Yang et 

al., 2018). Therefore, satellite-retrieved AOD is commonly used to estimate PM2.5 levels. Multiple satellite 

sensors are available for AOD retrieval, the most widely used is Moderate Resolution Imaging 

Spectroradiometer (MODIS). The Dark Target (DT) and the Deep Blue (DB) algorithms are adopted by 

MODIS to retrieve AOD. Numerous PM2.5 estimation models are available to predict PM2.5 

concentrations using the satellite AOD, such as the Multiple Linear Regression (MLR), the Mixed-Effect 

Model (MEM), the Chemical Transport Model (CTM), the Geographically Weighted Regression (GWR), 

and novel theoretical models. 

1.1.5 Comparison between Ground-based and Satellite-based PM2.5 Measurements 

Most PM2.5 concentration information was collected from ground stations, since it is direct and accurate. 

However, it also reveals a few limitations. Firstly, the distribution of ground stations is uneven (Lee et al., 

2016). Most stations are located within a certain distance, which limits the monitoring in a relatively small 

area (Lee et al., 2016). The United States has the most extensive monitoring program, but less than 30% of 

its counties have one or more ground stations (Hu et al., 2013). Therefore, the results of PM2.5-related 

exposure studies will be affected and bias will exist due to the lack of geographical and demographical 

information (Liu et al., 2005). Secondly, PM2.5 displays complicated temporal and spatial variation in 

different regions, which makes it difficult to provide continuous monitoring (Zhang & Cao, 2015). For 

example, PM2.5 was absent in China’s national monitoring system before 2013 (Chu et al., 2016). In 

addition, the maintenance of ground stations is time-consuming and costly (Li, 2016).  

Remote sensing techniques offer a cost-effective way to monitor PM2.5 by providing complete 

temporal and spatial information (Hu et al., 2014). It could be implemented as a supplementary tool for 

ground-level monitoring network (Ma et al., 2014). Also, it has higher feasibility. For example, in some 

developing countries with severe air pollution but lack of the sufficient number of ground stations, using 

satellite remote sensing techniques would be an optimal choice (Li, 2016). Moreover, satellite data is easier 

to access compared to ground station data. China’s PM2.5 data was confidential before 2014 (Li, 2014). As 

mentioned in Section 1.1.4, most studies utilized satellite-retrieved AOD to estimate PM2.5 concentrations. 

However, it also brings some shortcomings. The results of estimation vary in different regions due to 

weather conditions, such as clouds, precipitation, wind, and snow, which might generate inaccurate PM2.5 

concentrations (Chu et al., 2016). In addition, the correlation between PM2.5 and AOD is unstable, since 
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PM2.5 concentrations are measured near the surface, whereas AOD represents the aerosol distribution in 

the entire atmosphere (Xie et al., 2015). Therefore, it is prudent to combine ground station-based monitoring 

data and satellite remote sensing techniques in order to generate the most accurate outcomes.  

1.1.6 Wildfires in British Columbia  

Wildfires lead to forest disturbance, loss of biodiversity and damage of ecosystem service for humans 

(Pew & Larsen, 2001). Wildfire smoke is increasingly recognized as a significant source of air 

pollution and will result in public health issues (Black et al., 2017). In the past few decades, although 

air pollution in Canada has been well controlled due to proper regulation, fine particulate emissions 

from wildfires show upward trends since climate change aggravates the frequency and likelihood of 

wildfires (Black et al., 2017). It is estimated that approximately 40% of total particulate emissions 

were the result of wildfires, and over two million hectares of forest were burnt annually in Canada 

(Gralewicz et al., 2012; Black et al., 2017).   

The composition of wildfire-generated PM2.5 is different from other sources of air pollution. 

According to Urbanski (2013), chemical components found in the particulate wildfire event are 

determined by the type of tree species burned, weather conditions, burning conditions, forest age, and 

landscape patterns. Wildfire smoke contributes the most to particulate air pollution. It is found that 

PM2.5 and ultrafine particles are the dominant wildfire-generated particles of wildfire smoke, while 

coarse particles are less produced (Gralewicz et al., 2012). Compared to coarse particles, PM2.5 and 

ultrafine particles have a slower velocity of stabilization and further distance of dispersal from the 

source (Wang et al., 2014). For instance, in 2015, PM2.5 concentrations exceeded NAAQS in 

Maryland due to a severe wildfire in Canada (Dreessen et al., 2016). As described before, the 

constituents of wildfire smoke depend on the type of vegetation (softwood or hardwood) and burning 

conditions (wet or dry) (Black et al., 2017). Exposure to wildfire smoke will lead to several health-

related consequences. In wildfire smoke-affected areas, both hospital admissions and emergency 

rooms visit increase within a short time (Beverly & Bothwell, 2011). In addition, several studies have 

proven that the long-term impact of PM2.5 in wildfire smoke is related to respiratory health risks and 

cardiovascular diseases (Kunzli et al., 2006; Bell & Adams, 2008; Liu et al., 2017). Therefore, PM2.5 

has been continuous monitored due to its unique characteristics.  

The record-breaking wildfire season began on July 6, 2017 in British Columbia (BC), Canada. 

The main reasons are lightning and anthropogenic reasons. It is estimated that around 65,000 people 

were evacuated during the wildfire season, and the total cost was CAD 563 million (Ghnoussoub, 
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2017). It has been recorded as the worst wildfire season in BC’s history. The Government of British 

Columbia did not relieve the provincial state of emergency until September 15, 2017. In total, 

approximately 120,000 hectares of forests were burnt, which accounts for 1.3% of the total BC area.   

1.2 Objectives of the Thesis 

Overall, the main purpose of this thesis is to predict PM2.5 concentrations using 3 km MODIS AOD 

products and PM2.5 estimation models in British Columbia (BC), Canada in 2017. The specific objectives 

of this thesis include: 

1) to validate MODIS AOD measurements with ground-based AOD measurements, 

2) to compare the performance of MLR, GWR, and a novel theoretical model in predicting PM2.5, 

3) to analyze PM2.5 distributions on annual, seasonal, and monthly scales, and 

    4) to examine the application feasibility of MODIS AOD products during the wildfire season in BC. 

1.3 Structure of the Thesis 

The thesis is structured as following: 

Chapter 1 provides a general introduction of the topic of this study, such as some background 

information, objectives, and structure of the thesis. 

Chapter 2 reviews some relevant work related to PM2.5 monitoring, AOD retrieval methods, and 

models used to estimate PM2.5. 

Chapter 3 introduces the study area, and the datasets used in this study. 

Chapter 4 describes the methodology of this study, including MODIS AOD validation, data 

preprocessing, model construction, and output analysis. 

Chapter 5 presents the main results and discussions of the study. 

Chapter 6 concludes the thesis, analyzes some limitations of the study, and provides some 

recommendations for future studies. 
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Chapter 2 Background and Related Studies 

Chapter 2 presents some literature review regarding relevant topics. Section 2.1 reviews ground-based 

PM2.5 measurements. Section 2.2 reviews AOD retrieval methods. Section 2.3 discusses the PM2.5-AOD 

estimation models. Section 2.4 reviews wildfire and PM2.5 studies in Canada. And at last, a summary of 

the chapter is provided in Section 2.5. 

2.1 Ground-based PM2.5 Measurements 

2.1.1 Air Quality Monitoring Programs  

In order to monitoring and improve air quality, a large number of air quality monitoring programs have 

been established by countries and regions all over the world. Table 2.1 lists some of the main air quality 

monitoring programs in major countries/regions. China as one of the most polluted countries in the world, 

has implemented various programs to prevent and control its severe air quality (Hernandez, 2015). In the 

early 2000s, the Air Pollution Index (API) was utilized by the Chinese government to analyze the 

concentrations of different pollutants, including SO2, NO2, and PM10 in 42 cities (Li et al., 2012). In 2012, 

a new indicator named Air Quality Index (AQI) was introduced by China’s Ministry of Ecology and 

Environment, which PM2.5 was recorded for the first time (Jiang et al., 2015).  

Canada has both national, provincial, and regional monitoring programs. Table 2.2 presents all 

current active air quality monitoring programs in Canada. The National Air Pollution Surveillance (NAPS) 

program was established in 1969 and aims to provide accurate and long-term air quality data in populated 

areas of Canada (Dabek-Zlotorzynska et al., 2011). Particulate matters (PM2.5 and PM10) were monitored 

since 1984. Currently, there are 286 monitoring sites across Canada under this program. SO2, NO2, O3, 

PM2.5, PM10, and carbon monoxide (CO) are continuously monitored (Environment and Natural 

Resources, 2013). These measurements are adopted by provinces and Environment Canada to report the 

AQI and the Air Quality Health Index (AQHI), respectively. Ontario (ON), BC, Alberta (AB), Québec 

(QC), and Newfoundland and Labrador (NL) have their own programs on the provincial scale (Air Quality 

Ontario; British Columbia Air Quality; Air Quality Health Index – Alberta Environment and Sustainable 

Resource Development; Province of Québec – Air Quality Index; Department of Environment and 

Conservation, Newfoundland and Labrador) (AirNow, 2018).  In addition, Montreal and Metro Vancouver 

also have their own monitoring programs (Ville de Montreal-Air; Metro Vancouver Air Quality). 
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Table 2.1 Air quality programs in major countries/regions (Source: AirNow System, 2018) 

 

Country/Region Air Quality Program Name 

China 
Current Air Pollution Index (API) 

Shanghai Environment Monitoring Center (SEMC) 

Taiwan Current PSI 

Indonesia US Embassy Air Quality Index 

Thailand Regional Air Quality Data 

Australia Air Quality Index for Western Australia 

New Zealand New Zealand Ministry for the Environment – Air Quality 

France Airparif 

Germany 
Umweltbundesamt (UBA) – Current Concentrations of air pollutants 

in Germany 

Spain Castilla-La Mancha 

Poland Polish Provincial Air Quality Directory 

United Kingdom 

UK-AIR daily Quality Index 

The London Air Quality Network 

AirText – London forecast 

United States Environmental Protection Agency (EPA)’s AirNow System 

Mexico Gobierno del Estada de Jalisco – Calidad del Aire 

Brazil Qualidade do Ar – Sao Paulo 

Columbia Medelin – Colombia Air Quality Information System (SIATA) 
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Table 2.2 Active air quality programs in Canada (Source: AirNow System, 2018) 

2.1.2 Devices/Methods Used for Ground-level PM 2.5 Monitoring  

Ground-level monitoring of PM2.5 is based on stations’ recordings. Most stations adopt two common 

devices to measure concentrations of PM2.5. The first one is the Tapered Element Oscillating 

Microbalance (TEOM). It was designed by EPA to detect aerosol particles through their mass 

concentrations (Karagulian et al., 2012). The sample air goes through the filter membranes and PM2.5 

accumulates during this process. Then, the frequency of oscillation changes as the mass is added. As 

a result, the instrument is able to calculate and output PM2.5 on a continuous basis (EPA, 2005). Figure 

2.1 displays the operation of TEOM.  

Air Quality Program Name Scale 

Canada Air Quality –AQI Maps National 

Canadian Air and Precipitation Monitoring Network (CAPMoN) National 

Environment Canada Air Quality Index National 

Air Quality Health Index – Alberta Environment and Sustainable Resource 

Development 
Provincial 

Air Quality Ontario Provincial 

British Columbia Air Quality Provincial 

Province of Québec – Air Quality Index Provincial 

Ministere du Developpement durable, de l’Environnement et des Parcs du 

Québec 
Provincial 

Department of Environment and Conservation, Newfoundland and Labrador Provincial 

Metro Vancouver Air Quality Regional 

Ville de Montreal – Air Regional 
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Figure 2.1 Operation of the TEOM (Source: Queensland Government, 2017) 

TEOM was widely used for PM2.5 and PM10 monitoring after its first application in 1981, and is 

seen an ideal instrument for continuous monitoring of PM2.5 since it is easy to operate (Grover et al., 2005). 

Due to its high sensitivity to aerosol particles, TEOM is useful in urban areas (Jerez et al., 2006). In addition, 

it does not require the change of filters, which allows it to provide the peak value of PM2.5 during the day 

(Queensland Government, 2017). However, TEOM is not suitable for nanoparticles since it can only filter 

particles with a size between 1 and 10 µm (Sofowote et al., 2014). The operation of the TEOM is the same 

for all ground stations in the world. TEOM was used to monitor PM2.5 in Ontario, Canada between 2002 

and 2012 and then replaced by SHARP 5030 to improve the accuracy of measurements in cold months (Su 
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et al., 2018). SHARP 5030 monitors PM2.5 combining light scattering photometry and beta (Su et al., 

2018). 

 The second device is called Beta Attenuation Monitoring (BAM). The principle of BAM is to 

absorb beta radiation from the extraction of solid particles through air flow (Hauck et al., 2004). There are 

some reasons that might lead to overestimation of PM2.5 using BAM. Firstly, the glass fiber filters will 

absorb acid gas, so the final result will be inaccurate. Also, aerosol particles contain water content, which 

will create bias as well (Schweizer et al., 2016). Therefore, it needs attention to avoid such problems when 

using BAM. According to Watson et al. (2012), BAM is most suitable for short-term monitoring in haze 

areas. Most ground stations in BC use BAM 1020 as their measurement devices since it needs less 

maintenance than the TEOM (Environment and Climate Change Canada, 2016). 

 The gravimetric method is a quantitative method that determines the concentrations based on the 

mass before and after air goes through the filter (Ayers et al., 1999). The common problem while measuring 

the concentrations of PM2.5 and PM10 is the losses of semi-volatile matter (Zhu et al., 2011), Wang et al. 

(2016) compared the performance between the gravimetric method and the standard method when 

evaluating real-time fine particle matter concentrations in Beijing, and found that the gravimetric method 

displayed better results for particles with a larger size, such as PM10.  

2.2 AOD Retrieval Methods 

AOD retrieval methods could be divided into two categories, which are ground-level AOD measurements 

and satellite remote sensing-based measurements. By using ground instruments, the result of AOD 

retrievals will be more accurate and the temporal resolution is higher than that of satellite-based 

measurements (Lee et al., 2010). However, the uneven geographical distribution is a limitation of ground-

based AOD measurements (Kumar et al., 2011). Satellite methods have wider spatial coverage, which could 

retrieve AOD in many places that are lack of monitoring networks (Lee et al., 2010). 

2.2.1 Ground-level AOD Measurements 

The principle of AOD retrieval on the ground is based on the spectral transmission of direct solar radiation 

(Kazadzis et al., 2018). AErosol RObotic NETwork (AERONET) is a global ground-based monitoring 

network that consists of hundreds of instruments to provide information about aerosol properties (NASA 

Goddard Space Flight Center, n.d.). It has been providing free-access, long-term, and continuous 

monitoring of AOD for over 25 years. Currently, there are 801 AERONET stations on every continent, 

which makes it the biggest aerosol monitoring network in the world (Figure 2.2). AERONET AOD products 
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include three levels, which are Level 1.0 (unscreened), Level 1.5 (cloud-cleared), and Level 2.0 (cloud-

cleared and quality-assured) (Smirnov et al., 2011). AERONET AOD has been widely measured from the 

ground using CIMEL Electronique CE-318 sun-sky radiometer (Chen et al., 2019). This instrument 

measures direct sun radiation with a 1.2° full field-of-view every 15 minutes at 440, 675, 870, 940, and 

1020 nominal wavelengths (nm) (Holben et al., 1998) (Figure 2.3). The purpose of CE-318 sun-sky 

radiometer is to observe both direct and scattered sunlight, and collect aerosol information (such as size 

distribution and optical thickness) (Sano et al., 2003). AOD retrieved from AERONET is extensively 

applied for satellite-derived AOD validation due to its low uncertainty (~0.01-0.02) (Kahn et al., 2010).  

 

Figure 2.2 Distribution of AERONET sites (Source: NASA Goddard Space Flight Center, n.d.) 

 

Figure 2.3 CIMEL Electronique CE-318 sun-sky radiometer used by AERONET (Source: NASA 

Goddard Space Flight Center, n.d.) 
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 AEROCAN is the Canadian sub-network of AERONET, which was built 20 years ago and 

currently has 20 sites around Canada (Sioris et al., 2017). AEROCAN is valuable for long-term ground 

level AOD monitoring due to its design of photometers and regular maintenance (Sioris et al., 2017). In 

addition, AEROCAN is able to detect AOD especially in the case of wildfires or desert dust, which makes 

it a perfect supplementary sub-network for both AERONET and NAPS on the national scale (Freemantle 

et al., 2005). 

 SKYNET stands for the SKYradiometer NETwork, which is a global surface-based network of 

AOD measurements with the headquarter in Osaka, Japan (Campanelli et al., 2016). There are 60 sites in 

the SKYNET worldwide at present, and most of them are located in the Asia-Pacific region (Campanelli et 

al., 2016). The PREDE/POM sun-sky radiometer is the standard instrument for SKYNET with a 1° full 

field-of-view (Sano et al., 2003) (Figure 2.4). SKYNET has a higher frequency of AOD measurements than 

AERONET, and the time resolution is 1 minute (Pre-TECT, 2016). The biggest difference between the two 

main equipment in AERONET and SKYNET is that CIMEL uses two sensors to conduct direct and diffuse 

measurements, while PREDE uses the same sensor (Che et al., 2008). In 2010, the European Skynet 

Radiometers network (ESR) was established as a sub-network of SKYNET. ESR consists of 18 sites that 

are located in Europe, the United States, and Antarctica. Figure 2.5 displays the distribution of SKYNET 

and its sub-network ESR sites in the world. The yellow dots represent the sites of SKYNET, and the red 

dots represent the sites of ESR.  

 

Figure 2.4 PREDE-POM sky-radiometer adopted by SKYNET (Source: Pre-TECT, 2016) 
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Figure 2.5 Distribution of SKYNET sites worldwide (Source: Pre-TECT, 2016) 

 Other than AERONET and SKYNET, there are a few other AOD monitoring networks on either 

small or large scales. Global Atmospheric Watch Precision Filter Radiometer network (GAW-PFR) has 12 

sites and uses Precision Filter Radiometers (PFR) for AOD measurements (Nyeki et al., 2015). PFR has a 

2.5° full field-of-view with 4 independent channels (Campanelli et al., 2016). Bureau of Meteorology AOD 

Australian network (BoM) is operated to solve the problem due to the lack of aerosol understanding in the 

Australian continent (Mitchell & Forgan, 2003). Surface Radiation Budget Observing network 

(SURFRAD) was established in 1995 for the United States as a supplementary tool for atmospheric research 

(Augustine et al., 2000). The Multifilter Rotating Shadowband Radiometer (MFRSR) is used to record 

aerosol characterization by SURFRAD (Lee et al., 2010). It measures total solar irradiances at six 

wavelengths (415, 500, 615, 673, 870, and 940 nm) (Lee et al., 2010). Distributed Regional Aerosol 

Gridded Observation Network (DRAGON) and China Aerosol Remote Sensing Network (CARSNET) are 

regional networks, which focus on Korea and China, respectively (Holben et al., 2011). In addition, light 

detection and ranging (LiDAR) technology has been used for AOD measurements in recent years (Chan, 

2009). 
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2.2.2 Satellite-based AOD Measurements 

Remote sensing techniques have been increasingly utilized to obtain AOD since the 1970s due to its wide 

spatial coverage (Yang et al., 2018). The satellite sensors used to retrieve AOD rely on the light reflectance 

and scattering of light, while ground-based sun-sky photometers could point at the sun directly and derive 

AOD through the attenuation of solar incidents (Remer et al., 2005). Several issues need to be considered 

regarding satellite-based AOD measurements, such as the sensor calibration accuracy; inadequate temporal 

or spatial coverage due to insufficient sampling; differences between algorithms; adequate data recording 

time intervals; and drawbacks of record time drift (Hsu et al., 2012). Some commonly used satellite 

sensors/instruments are briefly introduced in the following section (Table 2.3). 

The Advanced Very High Resolution Radiometer (AVHRR) was the earliest sensor used to 

generate aerosol products aboard the Tiros-N satellite/National Oceanic and Atmospheric Administration 

(NOAA) since 1978 (Gao et al., 2016).  AVHRR was firstly used to provide AOD information over oceans, 

and the algorithms were developed to retrieve AOD information over land (Hsu et al., 2017). AVHRR 

provides a longer length of data recording time than later sensors. Due to the lack of shortwave infrared 

bands (e.g. 2.1 µm), it is challenging for AVHRR to retrieve AOD over land (Mei et al., 2014). In addition, 

the surface reflectance is less sensitive to aerosol changes over land, which makes the retrieval of AOD 

becomes more difficult (Hauser et al., 2004). Mei et al. (2014) retrieved AOD over land surfaces in 

Northeastern China by combing Dark Target (DT) and simplified Look-Up Table (LUT) method adopted 

from the Bremen Aerosol Retrieval (BAER) algorithm. The result showed that 71.8% of the points located 

within the identity line compare to ground-based recordings. This method could be applied to sensors 

without 2.1 µm band (Mei et al., 2014). Similarly, the Total Ozone Monitoring Suite (TOMS) and Ozone 

Monitoring Instrument (OMI) have been monitoring aerosol properties over three decades (Fan et al., 2017).  

The dual view Along-Track Scanning Radiometers (ATSR-2) and the Advanced Along-Track 

Scanning Radiometers (AATSR) was on service to obtain AOD over oceans and land from 1995 to 2012 

(de Leeuw et al., 2018). AATSR has two viewing angles (forward 55° and nadir), which allows it to 

accumulate the effects on top-of-the-atmosphere (TOA) radiation (de Leeuw et al., 2016). However, 

according to de Leeuw et al. (2016), during the operation of ATSR-2 and AATSR, the cloud shadow is a 

major problem, which needs some cloud post-processing procedure to eliminate the effects of clouds. 

The MEdium Resolution Imaging Spectrometer (MERIS) was the main instrument of the European 

Space Agency (ESA)’s Envisat-1 satellite, which was launched in 2002 and ended its mission in 2012. 

MERIS and AATSR belong to the same satellite. MERIS has a 68.5° field-of-view and 15 bands available 
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for selection based on ground demand (LADDS DAAC, 2018a). Kaskaoutis et al. (2010) used MERIS AOD 

products to compare with ground-based AOD measurements over the urban area (cloud-free).  

The Multi-angle Imaging SpectroRadiometer (MISR) is an instrument on NASA’s Terra satellite, 

and has been used to acquire AOD data since early 2000 (Garay et al., 2017). MISR has nine distinct zenith 

angles. The spatial resolution of MISR AOD product is 17.6 km, which represents a 16 × 16 pixel window 

with 1.1 km resolution in four narrow spectral bands (446, 558, 672, and 866 nm) including visible and 

near-infrared wavelengths (Garay et al., 2017). Due to MISR’s independence on radiometric surface 

properties, it has been applied in landforms with high reflectance (such as deserts) (Martonchik et al., 2004). 

It is estimated that the uncertainty of the MISR AOD product is 0.08 compared to ground-based AERONET 

measurements over desert sites (Martonchik et al., 2004). 

The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) was a satellite sensor on NASA’s 

OrbView-2 satellite with eight spectral bands ranging from 412 to 865 nm operated from 1997 to 2010 

(EARTHDATA, n.d.). Due to SeaWiFS’s low uncertainty regarding sensor calibration, it is also suitable 

for AOD measurements in the visible and near-infrared wavelengths (Hsu et al., 2012). Hsu et al. (2012) 

adopted a new AOD retrieval method to examine patterns and trends of AOD on both regional and global 

basis over land and the ocean during SeaWiFS’s mission time. The results exhibited a slightly positive trend 

for averaged AOD over the global ocean (Hsu et al., 2012). 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five main instruments of Suomi 

National Polar-orbiting Partnership (S-NPP), and was launched in 2011. It was designed to meet the 

requirement of high spatial resolution with respect to AOD retrieval (Xiao et al., 2016). VIIRS is a new 

generation satellite sensor with 22 spectral bands ranging from 0.412 to 12.05 µm (Liu et al., 2014). VIIRS 

AOD products are divided into three categories based on quality flags, including high, degraded, and low 

(Xiao et al., 2016). Liu et al. (2014) concluded that VIIRS products overestimated AOD results over the 

vegetated area and underestimated results over the soil-dominated terrain. 

Some novel sensors are adapted for AOD retrieval in recent years. The Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO), was utilized for AOD retrieval in 2012 for the first time (Bartlett et al., 2013). 

CALIPSO combines both active LiDAR equipment and passive infrared and visible imagers (NASA, 2018). 

The Operational Land Imager (OLI) aboard the Landsat 8 has been used to retrieve AOD over urban areas 

supported by MODIS bidirectional reflectance distribution function (BRDF)/Albedo data recently (Tian et 

al., 2018).  



 21 

Table 2.3 Summary of commonly used sensors for AOD retrievals 

Sensor Satellite 

Spectral 

Range 

(µm) 

Number of 

Spectral 

Bands 

Spatial 

Resolution 

(km) 

Temporal 

Resolution 

(day) 

Launch 

Year 
Status Orbit Type Organization 

AVHRR TIROS-N 0.58 - 12.50 4 1.1 0.5 1978 Operational Sun synchronous US: NOAA 

TOMS NIMBUS-7 0.31 - 0.38 4 50 1 - 2 1978 Non-operational Sun synchronous US: NASA 

SeaWIFS Orbview-2 0.40 - 0.89 8 1.1/4.5 1 1997 Non-operational Sun synchronous US: NASA 

MISR Terra 0.45 - 0.87 4 0.275 2 - 9 1999 Operational Sun synchronous US: NASA 

MODIS Aqua/Terra 0.41 - 14.39 36 0.25/0.50/1.00 1 - 2 1999 Operational Sun synchronous US: NASA 

AATSR ENVISAT 0.56 - 12.0 7 1 35 2002 Non-operational Sun synchronous Europe: ESA 

MERIS ENVISAT-1 0.39 - 1.04 15 0.3 3 2002 Non-operational Sun synchronous Europe: ESA 

OMI AURA 0.27 - 0.50 3 13 × 25 1 2004 Operational Sun synchronous US: NASA 

CALIOP CALIPSO N/A N/A 5 5.92 seconds 2006 Operational Sun synchronous US: NASA 

GOCI COMS 0.41 - 0.87 8 0.5 1 hour 2010 Operational Geostationary Korea: KARI 

VIIRS Suomi NPP 0.41 - 12.0 22 0.75 1 2011 Operational Sun synchronous US: NASA 

OLI Landsat 8 0.43 - 1.38 9 0.015/0.03 16 2013 Operational Sun synchronous US: NASA 

AHI Himawari-8 0.47 - 13.3 16 0.5/1/2 10 min 2014 Operational Geostationary Japan: JMA 

ABI GOES-R 0.45 - 13.6 16 0.5/1/2 5 - 15 min 2016 Operational Geostationary US: NOAA 
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The Moderate Resolution Imaging Spectroradiometer (MODIS) is the most widely used satellite 

sensor to retrieve AOD. MODIS was launched aboard NASA’s Terra and Aqua satellites in 1999 and 2002, 

respectively (Remer et al., 2005). The Terra (descending node from north to south) and Aqua (ascending 

node from south to north) cross the equator at 10:30 a.m. and 1:30 p.m. local time, respectively (National 

Snow & Ice Data Center, n.d.). MODIS has 36 spectral bands between 0.41 and 14.39 µm. Aerosol 

observations make use of seven bands ranging from 0.47 to 2.13 µm (between near-UV and mid-VIS 

channel) (Wang et al., 2017). Table 2.4 displays the band combination for MODIS. MODIS has three spatial 

resolutions, 250 m (band 1-2), 500 m (band 3-7), and 1000 m (band 8 -36) (Remer et al., 2005). MODIS 

has a swath of 2330 km, which allows it to provide global coverage in every one to two days (National 

Snow & Ice Data Center, n.d.). MODIS has relatively high spatial resolution and sufficient spectral diversity 

to derive aerosol properties (Remer et al., 2005). Chu et al. (2002) found that the expected error of MODIS 

AOD measurement is ±0.05±0.2τa (AERONET-based AOD) over land at 550 nm wavelength.  

The current MODIS AOD product over land is called Collection 6.1 (061), which is an upgrade 

version of Collection 6 (C6) for all three levels of Atmosphere Team products (MODIS Atmosphere, 2017). 

MODIS derives AOD based on the DT and DB algorithms at 10 km spatial resolution (Nichol & Bilal, 

2016). Tian et al. (2018) compared MODIS C6.1 and C6 aerosol products over Beijing, China and found 

that MODIS C6.1 DT products performed better than the C6 DT products; while MODIS C6.1 DB products 

had the same performance as C6 DB products. In addition, the DB algorithm generated better results in 

urban area then the DT algorithm according to the research of Tian et al. (2018) as well. For Collection 5 

(C5) and other earlier collections, only 10 km aerosol products were available. The 10 km aerosol products 

were designed for climate change initially. In 2013, in order to meet the requirement of air pollution 

monitoring and high resolution in the fine-scale study area, a new aerosol product was released using the 

DT algorithm at 3 km spatial resolution (LAADS DAAC, 2018b). Xie et al. (2015) estimated PM 2.5 

concentrations in Beijing using 3 km MODIS AOD products, and the results showed a good performance 

in predicting models.
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Table 2.4 Band combinations for MODIS (Source: NASA MODIS, n.d.) 

Primary Use Band 
Bandwidth  

(Band 1-19: nm 
Band 20-36: µm) 

Spectral 
Radiance  

(W/m2 -µm-sr) 

Spatial Resolution 
(m) 

Land/Cloud/Aerosols 
Boundaries 

1 
2 

620 - 670 
841 - 876 

21.8 
24.7 250 

Land/Cloud/Aerosols 
Properties 

3 
4 
5 
6 
7 

459 - 479 
545 - 565 

1230 - 1250 
1628 - 1652 
2105 - 2155 

35.3 
29.0 
5.4 
7.3 
1.0 

500 

Ocean Color/ 
Phytoplankton/ 

Biogeochemistry 

8 
9 

10 
11 
12 
13 
14 
15 
16 

405 - 420 
438 - 448 
483 - 493 
526 - 536 
546 - 556 
662 - 672 
673 - 683 
743 - 753 
862 - 877 

44.9 
41.9 
32.1 
27.9 
21.0 
9.5 
8.7 

10.2 
6.2 

1000 

Atmospheric 
Water Vapor 

17 
18 
19 

890 - 920 
931 - 941 
915 - 965 

10.0 
3.6 

15.0 

Surface/Cloud 
Temperature 

20 
21 
22 
23 

3.660 - 3.840 
3.929 - 3.989 
3.929 - 3.989 
4.020 - 4.080 

0.45(300K) 
2.38(335K) 
0.67(300K) 
0.79(300K) 

Atmospheric 
Temperature 

24 
25 

4.433 - 4.498 
4.482 - 4.549 

0.17(250K) 
0.59(275K) 

Cirrus Clouds 
Water Vapor 

26 
27 
28 

1.360 - 1.390 
6.535 - 6.895 
7.175 - 7.475 

6.00 
1.16(240K) 
2.18(250K) 

Cloud Properties 29 8.400 - 8.700 9.58(300K) 
Ozone 30 9.580 - 9.880 3.69(250K) 

Surface/Cloud 
Temperature 

31 
32 

10.780 - 11.280 
11.770 - 12.270 

9.55(300K) 
8.94(300K) 

Cloud Top 
Altitude 

33 
34 
35 
36 

13.185 - 13.485 
13.485 - 13.785 
13.785 - 14.085 
14.085 - 14.385 

4.52(260K) 
3.76(250K) 
3.11(240K) 
2.08(220K) 
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In addition to polar-orbiting satellites, imaging instruments on geostationary satellites are also 

adopted for AOD retrievals (Figure 2.6). The Geostationary Ocean Color Imager (GOCI) is the first 

geostationary image sensor aboard the Communication, Ocean, and Meteorological Satellite (COMS) of 

South Korea, and was on service since 2010 (Xiao et al., 2016). GOCI has eight spectral bands and 

concentrates in East Asia. It collects AOD information eight times per day and the values of AOD range 

from -0.1 to 5.0 (Xiao et al., 2016). Previous studies have proven that GOCI AOD products had well-

calibrated linear regression with AERONET AOD products in East Asia (Park et al., 2014; Choi et al., 

2016). The Advanced Himawari Imager (AHI) abroad the Himawari-8 geostationary weather satellite 

(launched in 2014), which has 16 spectral channels, with spatial resolutions ranging between 0.5 and 2 km, 

and temporal resolution between 10 and 25 minutes (Yang et al., 2018). AHI focuses on the Asia-Pacific 

region and aims to on service for 15 years (Yang et al., 2018). In western countries, the Advanced Baseline 

Imager (ABI) on board the Geostationary Operational Environmental Satellite (GOES) has the same 

spectral and spatial design as AHI, and is planned to be used for AOD retrieval as well in the future (GOES-

R series, n.d.). 

 

Figure 2.6 Differences between polar-orbiting and geostationary satellite (Source: Hong Kong 

Observatory, 2016) 
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2.2.3 AOD Retrieval Algorithms from Satellite Datasets 

2.2.3.1 Overview 

Several algorithms have been implemented for AOD retrieval from satellite sensor datasets, such as the 

AATSR dual-view (ADV) algorithm, the AATSR single-view (ASV) algorithm, the SeaWIFS Ocean 

Aersol Retrieval (SOAR) algorithm, the Simplifed Aerosol Retrieval Algorithm (SARA), the Multiangle 

Implementation of Atmospheric Correction (MAIAC) algorithm, the DT algorithm, and the DB algorithm. 

The AATSR dual-view (ADV) algorithm and the AATSR single-view (ASV) algorithm are used 

by AATSR to retrieve aerosol properties over land and the ocean, respectively. The principle of ADV is to 

split the atmosphere and the surface using measured TOA (Kolmonen et al., 2016). ASV uses an ocean 

reflectance model to reduce the disparity between the observed and modelled TOA reflectance (Kolmonen 

et al., 2016).  ADV and ASV are commonly used to retrieve AOD from AASTR data. Sundstrom et al. 

(2012) retrieved AOD in China using ADV and the results were satisfying.  

The SeaWIFS Ocean Aerosol Retrieval (SOAR) algorithm was initially developed to retrieve AOD 

over ocean for SeaWIFS by Sayer et al. (2012). SOAR could be divided into three steps, including cloud 

pixels identification; AOD retrieval; and coarse resolution aggregation (Sayer et al., 2012). SOAR has been 

validated to use as a supplementary tool for VIIRS and MODIS AOD retrieval over land in recent years 

Sayer et al., 2018).  

The Simplified Aerosol Retrieval Algorithm (SARA) was developed by Bilal et al. (2013) for 

MODIS. SARA assumes the surface is Lambertian, and at the same time, SSA and Asymmetric Function 

do not vary on the day of retrieval (Bilal et al., 2013). The biggest advantage of SARA is that it does not 

require the use of a look up table (LUT). However, SARA requires ground-based AOD information from 

AERONET or any supplementary source related to the study area, which might limit the spatial extent of 

the research area (Bilal et al., 2013). Zhang et al. (2019) implemented an updated version of SARA to 

retrieve AOD in Beijing from AHI datasets, and results showed that the latest SARAHI algorithm is suitable 

for regional AOD retrieval. 

The Multiangle Implementation of Atmospheric Correction (MAIAC) is a novel algorithm that 

combines time series and image processing to generate accurate aerosol properties (Lyapustin & Wang, 

2012). The principle of MAIAC is to use the sliding window technique to conduct the time series analysis, 

which is different from conventional AOD retrieval algorithms (Lyapustin & Wang, 2012). Currently, DT 

and DB are the most used algorithms for MODIS. MAIAC will be implemented in the future step by step. 
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2.2.3.2 Dark Target Algorithm 

The DT and the DB algorithms are the two widely used algorithms for MODIS to retrieve AOD. There are 

two types of DT, which are implemented to retrieve AOD over land and over ocean, respectively (Wang et 

al., 2019). The spatial resolution of the standard DT product for MODIS is 10 km (Bilal et al., 2018). Since 

the low resolution cannot meet the requirements of city-scale study, a new 3 km DT product was released 

in the C6 as a supplementary product (Fan et al., 2017).  

The general principle of the 10 km DT product is to utilize a stable linear regression between two 

visible bands (0.47 and 0.66 µm) and the shortwave infrared band (2.13 µm) to collect surface reflectance 

over dark surfaces (Fan et al., 2017). Figure 2.7 shows the flowchart of DT algorithms. Pixels are selected 

using TOA reflectance between 0.47 and 0.66 µm in the 2.13 µm band. Then, selected pixels are organized 

into nominal 10 km × 10 km retrieval boxes with 20 × 20 pixels per box at 500 m resolution (10 km at 

nadir). Bright pixels (such as cloud, snow and ice) are masked, and water and land pixels are separated 

during this process. For the rest of pixels in the retrieval box, the darkest 20% and the brightest 50% pixels 

will be discarded to eliminate possibly contaminated pixels and to reduce uncertainty. The remaining 30% 

of pixels will be used for AOD retrieval path. The minimum dark target pixels required in each box is 12 

over land or 11 over ocean (and more for high quality). If the number of dark target pixels is insufficient, 

there will be no aerosol retrievals in the box (Remer et al., 2005; Safarpour et al., 2014; Bilal et al., 2018).  

 

Figure 2.7 Flowchart of 10 km (red) and 3 km (blue) DT algorithms of AOD retrievals (Source: Dark 

Target Aerosol Retrieval Algorithm, n.d.) 
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 The 3 km DT product has the same retrieval method as the 10 km product, except for the selection 

of dark target pixels and the number of pixels arranged in each retrieval box. Pixels are selected using the 

TOA reflectance between 0.47 and 0.66 µm in the 2.13 µm band. Selected pixels are organized into nominal 

3 km × 3 km retrieval boxes with 6 × 6 pixels per box at 500 m resolution. In addition, the minimum dark 

target pixels required in each box is 6 over land or 5 over ocean (Lyapustin et al., 2010). Therefore, the 3 

km DT product generates noisier product than the 10 km DT product because fewer pixels contribute during 

the retrieval process (Bilal et al., 2018).  Previous studies have proven that the 3 km DT product 

underestimated the surface reflectance and misused the aerosol models, which result in more inaccurate 

results than the 10 km DT product (Munchak et al., 2013; Livingston et al., 2014). 

2.2.3.3 Deep Blue Algorithm 

Although DT has become the most widely used algorithm for satellite-based MODIS AOD retrievals due 

to its high accuracy on the surfaces with low reflectance (such as water and vegetated area), it still has 

drawbacks over bright surfaces (Fan et al., 2017). Therefore, a new algorithm called Deep Blue (DB) was 

introduced by Hsu et al. (2004) for MODIS to retrieve AOD over bright surfaces. The first generation of 

DB only allows it to derive AOD over bright surfaces. In 2013, an enhanced version of DB was released 

by Hsu et al. (2013), which could be used to retrieve AOD over both bright and dark surfaces. DB is only 

used for land retrieval, and only 10 km product is available (NASA, n.d.). DT uses 500 m pixels, while DB 

uses 1 km pixels during the retrieval process. DB utilizes surface reflectance in the blue bands to record 

surface signal and spectral reflectance ratios (NASA, n.d.).  

 The DB algorithm could be divided into four main steps (Figure 2.8). Firstly, the Rayleigh 

correction is applied to account for surface pressure variation, and cloud screening is performed by 

evaluating spatial autocorrelation and absorbing aerosol index values within a 3 × 3 pixel box (Safarpour 

et al., 2014). Secondly, cloud-free and snow-free pixels are selected using TOA reflectance at 0.41, 0.49, 

and 0.65 µm based on the geolocation at nominal 1 km × 1 km retrieval boxes (Sayer et al., 2013). Thirdly, 

comparing values between surface reflectance at 0.41, 0.49, and 0.65 µm and those stored in the LUT. 

Pixels with the best match will be retrieved using the maximum likelihood method. Lastly, AOD and single 

scatter albedo (SSA) are retrieved. Each 1 km × 1 km retrieval box is then averaged to 10 km × 10 km scale 

(Sayer et al., 2013; Safarpour et al., 2014). The DB algorithm has been validated with previous studies, and 

it is commonly recognized that the 10 km DB product achieves higher accuracy than the 10 km DT product 

especially over surfaces with high reflectance (Sayer et al., 2014; Tao et al., 2015; Bilal et al., 2017). 
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Figure 2.8 The DB AOD retrieval algorithm (Source: Hsu et al., 2004) 

2.3 PM2.5-AOD Estimation Models 

2.3.1 Input Variables 

Before selecting PM2.5-AOD estimation models, it is important to choose relevant variables into the 

models. Previous studies have implemented meteorological and supplementary variables (such as socio-

economic, land use and transportation information) for model construction. It is found that variables 

associated with PM2.5 could change within a short time (Mirzaei et al., 2018). 

 Meteorological factors are found to have significant impacts on the formation and dispersion of 

PM2.5. PM2.5 could disperse by wind advection. When the wind speed is low (below 3 m/s), PM2.5 will 

be blown away within a certain range. However, higher wind speed will accelerate the movement of PM2.5 

within a certain time (Wang & Ogawa, 2015). It is found that a rising relative humidity will enhance the 

absorption of PM2.5 in the atmosphere, and thereby increasing atmospheric PM2.5 levels (Zhang & Jiang, 

2018). In addition, the higher temperature might change surface pressure and affect the chemical reactions 

between gases in the atmosphere, which accelerates the generation of the secondary ions. Precipitation can 
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reduce PM2.5 levels by wet composition, since PM2.5 and small particles can be effectively removed 

during the process of precipitation (Wang & Ogawa, 2015). Furthermore, the amount of PM2.5 transported 

depends on the different wind directions (Wang & Ogawa, 2015). Also, PM2.5 will result in a low visibility 

due to the adsorption and scattering of lights (Li, 2016). Planetary boundary layer height (PBLH) is the 

lowest height of the atmosphere, and is considered as a significant variable for the formation of PM2.5 (Du 

et al., 2013). Qu et al. (2017) found that PBLH has a positive correlation with relative humidity. If the 

relative humidity is high, then the PBLH and PM2.5 concentrations would be high as well. The more stable 

the PBLH is, the higher PM2.5 concentrations will be (Qu et al., 2017).  

 Except for meteorological factors, socio-economic and land use information are important to the 

study of PM2.5 concentrations since human activities have caused serious impacts on PM2.5. Therefore, 

socio-economic factors such as population and gross domestic product (GDP), land use/land cover 

information, road networks, and transportation data are used as indicators to conduct models (Yang et al., 

2017; Jiang et al., 2018). 

2.3.2 Simulation-based Models 

Chu et al. (2016) reviewed 116 journal articles related to PM2.5-AOD prediction models, and summarized 

the four widely used models were: Multiple Linear Regression (MLR), Mixed-Effect Model (MEM), 

Chemical Transport Model (CTM), and Geographically Weighted Regression (GWR). Among those 

models, CTM is the simulation-based model, whereas the other three are all statistical models (Table 2.5).  

 Simulation-based models are based on a global 3D chemical transport model (CTM) for 

atmospheric composition driven by meteorological input from the Goddard Earth Observing System 

(GEOS) of the NASA Global Modeling and Assimilation Office (GEOS-Chem). Later in 2006, CTM was 

firstly proposed by van Donkelaaar et al. (2006) by combining AOD composition and emission patterns. 

The principle of CTM is to simulate the transmission of PM2.5 and predict its potential concentration 

(Zhang et al., 2018). The Community Multiscale Air Quality (CMAQ) model, the Comprehensive Air 

Quality Model with Extensions (CAMx), and the Weather Research and Forecasting Model with Chemistry 

(WRF-Chem) are three commonly used third-generation CTMs to estimate PM2.5 concentrations. 

 CMAQ takes complicated chemical and physical processes into consideration, and describes the 

integration of the atmosphere. As a result, meteorological factors, spatial and temporal distributions, and 

PM2.5 evolution processes could be obtained using CMAQ (Zhang et al., 2018). CAMx integrates various 

variables into a single system utilized by the air-mass model to simulate the distribution of PM2.5 
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(Wagstrom & Pandis, 2011). WRF-Chem is the latest CTM model so far. The biggest difference between 

WRF-Chem and other CTM models is that the meteorological and transmission mode is completely 

matched on both spatial and temporal scales (Molders et al., 2012). All these three CTMs are widely applied 

to estimate PM2.5 in some studies (Grell et al., 2005; Wu et al., 2013; Zhang et al., 2018). 

 CTM could be used for a large spatial coverage especially on a global scale. It is able to integrate 

chemical and physical processes for modeling (Murray et al., 2018). In addition, CTM allows PM2.5 

predictions without ground station-based PM2.5 data, which makes it highly applicable in areas lacking 

ground monitoring stations. (Zheng et al., 2016). However, CTM costs high expense, and it is time-

consuming for collecting required chemical and physical information (van Donkelaar et al., 2010). 

Furthermore, CTM requires emission data, which will result in the situation of insufficient data in some 

less developed countries (van Donkelaar et al., 2014). 

2.3.3 Statistical Models 

The general expression of a simple two-variable linear equation is shown by: 

 !"#.% = ' +"× *+,             (2-1) 

where PM2.5 is the ground-level PM2.5 concentration, AOD is the MODIS AOD at 550 nm, M is the 

coefficient of AOD, and C is the intercept (Gupta & Christopher, 2009). In this model, PM2.5 is treated as 

the dependent variable, and AOD is the independent variable. Wang and Christopher (2003) conducted a 

linear regression model in the United States, and indicated that the correlation between satellite-derived 

AOD and PM2.5 is good. Since PM2.5 is affected by various factors other than AOD, the following 

Multiple Linear Regression (MLR) model was proposed to predict PM2.5 by inputting meteorological 

variables into the model: 

 	PM2.5	=	C1	+	C2	×	AOD	+	C3	×	V3	+	……+	Cn		×	Vn	                 (2-2) 

where PM2.5 is the ground-level PM2.5 concentration, AOD is the MODIS AOD at 550 nm, C1 is the 

intercept of MLR, whereas C2 - Cn represents the coefficients of corresponding predictor variables including 

AOD and V3 - Vn (such as RH, temperature, PBLH, wind speed, precipitation, etc.). Liu et al. (2005) used 

MLR to estimate PM2.5 in the eastern United States and found that R2 varied among different landscapes. 

They also pointed out that the selection of input meteorological factors needs further discussion due to low 

R2 values. In order to improve the model performance, MLR normally adopted other than the simple linear 

regression model. However, the meteorological data used by MLR has relatively low accuracy and 
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resolution; and is not suitable for regional studies (Chu et al., 2016). In addition, some important variables 

are missing from the model, such as seasonal and regional variation (Han et al., 2015).   

 Most statistical models assume global geographic uniformity and ignore the spatial and local 

variability, which lead to inaccurate PM2.5 predictions because of the non-stationary correlation between 

PM2.5 and AOD (Li, 2016). The Geographically Weighted Regression (GWR) model was proposed to take 

local variations into consideration so that the coefficients in the model could be estimated in specific 

locations rather than on a global scale (Brunsdon et al., 1996). GWR can be expressed as: 

 PM2.5i	j	=	C0,i	j	+	C1,	i	jAODi	j	+	C2,i	jV2,i	j	+	C3,i	jV3,i	j	+……+	Cn,i	jVn,i	j	         (2-3) 

where PM2.5i j is the ground-level PM2.5 concentration at location i on day j, C0,i j
 is the intercept at location 

i on day j, AODi j is the MODIS AOD at 550 nm at location on a day j, and C2,i j to Cn,i j are coefficients of 

corresponding independent variables V2,i j to Vn,i j at a location on day j (Brunsdon et al., 1996). Hu et al. 

(2011) put AOD, meteorological variables and land use information into GWR model to predict PM2.5 in 

North America. The result exhibited an R2 value of 0.706, which indicated a successful implementation of 

GWR. The most important step when operating a GWR model is to choose the appropriate bandwidth, 

which could be selected using cross validation (CV) or Akaike information criterion (AIC) (Zhang et al., 

2018). The GWR model could generate higher R2 values than the MLR and the CTM under certain 

conditions (Chu et al., 2016). Since the construction of the GWR relies on the ground-level monitoring 

data, it would be insufficient in the area with limited monitoring stations (Chu et al., 2016). 

 Mixed-Effect Model (MEM) generates PM2.5 using random intercepts and slopes instead of 

calculating PM2.5-AOD slopes for each day (Lee et al., 2011). MEM can be expressed as: 

 PM2.5i	j	=	(α	+	uj)	+	(β	+	vj)	×	AODi	j	+	si	+	εi	j						(uj	vj)	~	N	[(00),	∑	]	             (2-4) 

where PM2.5i j is the ground-level PM2.5 concentration at location i on day j, AODi j is the MODIS AOD at 

550 nm at location i on day j, α and uj are fixed and random intercepts corresponding to fixed β and random 

vj slopes, respectively, si is the random intercept at location I, εi j is the error term at location i on day j, and 

∑ is the variance-covariance matrix for the day-specific random effects (Lee et al., 2011). By adding 

random effects into MEM model, it is possible to explain the daily PM2.5-AOD variation (Kloog et al., 

2011). A limitation of MEM is that due to the lack of ground monitoring stations, the requirement of Kriging 

might not be met, which will lead to inaccurate results (Chu et al., 2016). 
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Table 2.5 Summary of commonly used PM2.5-AOD estimation models

Type Model Strength Weakness Reference 

Simulation-based 
Model 

 

GEOS-CHEM 
Integrate chemical and physical 
processes for modelling; Allow 

PM2.5 predictions without ground 
station-based PM2.5 data 

High expense; Time-consuming; 
Complex operation 

Liu et al. (2004) 

CMAQ Zhang et al. (2018) 

CAMx Wagstrom & Pandis 
(2011) 

WRF-Chem Molders et al. (2012) 

Statistical Model 

Multiple Linear Regression 
(MLR) 

More factors are taken into 
consideration 

 Low accuracy and resolution 
meteorological data used by MLR, 

not suitable for regional studies 
Liu et al. (2005) 

Geographically Weighted 
Regression (GWR) 

take local variations into 
consideration 

insufficient in area with limited 
monitoring stations Brunsdon et al. (1996) 

Mixed Effects Model (MEM) 
By adding random effects into 
MEM model, it is possible to 

explain daily PM2.5-AOD variation 
Some information is hard to collect Lee et al. (2011) 

Land Use Regression (LUR) It is often used to analyze air 
pollution in densely populated area 

Low temporal resolution; Not 
suitable for short-term study Mirzaei et al. (2018) 

Nonlinear Regression (NLR) 
Be able to describe non-linear 
relationship between variables; 

computing intensity does not exist 
Limited spatial or seasonal variations Cobourn (2010) 

Generalized Additive Model 
(GAM) 

Be able to describe non-linear 
relationship between variables Local diversity is not considered Li et al. (2017) 

Two-stage Model (TSM) Combine advantages of two models 
Inaccurate results of first stage model 
will lead to major bias for the second 

stage model 
Hu et al. (2014) 

Machine 
Learning-based 

Model 

BP Artificial Neural Network 
(ANN) It is suitable for a set of observation 

data with no clear descriptive 
theory 

High probability of computing 
intensity 

Wu et al. (2011) 
 

Random Forests (RF) 
Breiman (2001) Support Vector Regression 

(SVR) 
Theoretical 

Model  Aerosol characteristics are taken 
into account 

Relatively low accuracy since models 
are built based on assumptions Li et al. (2015) 
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 In addition to the models mentioned above, various models are developed based on the spatial 

variation. Land use regression (LUR) model integrates land cover, population, and traffic information to 

estimate PM2.5 concentrations (Mao et al., 2011). LUR is often used to analyze air pollution in a densely 

populated area. LUR can be expressed as: 

 PM2.5i	=	b0	+	S	bk	xik	+	ei	                (2-5) 

where PM2.5 is the ground-level PM2.5 concentration at location i, x is the independent variables (Mirzaei 

et al., 2018). Mirzaei et al. (2018) estimated PM2.5 in Alberta during the wildfire season using LUR, and 

the results showed model performance was highly related to PM2.5 concentrations. Nonlinear regression 

model and Generalized Additive Model (GAM) allow nonlinear regression between independent and 

dependent variables (Liu et al., 2007). However, those models are proven to have lower R2 values. 

Therefore, optimization and integration of those models are implemented to improve model performance. 

For instance, two stage model (TSM) is used in several studies to predict PM2.5. Furthermore, artificial 

neural networks (ANN) and machine learning regression models, such as BP ANN-based analysis, random 

forests (RF), and support vector regression (SVR) methods are utilized to estimate PM2.5 in order to reduce 

uncertainties of statistical models by simulating biological neutral networks using computer algorithms 

(Chen et al., 2014).  

 Statistical models normally generate high R2 in predicting PM2.5 concentrations. However, the 

overestimation of low PM2.5 concentrations or the underestimation of high PM2.5 concentrations happen 

sometimes, because statistical models are difficult to predict random events (Gupta et al., 2009). 

2.3.4 Theoretical Models 

Theoretical models are based on the theoretical relationship between PM2.5 and various AOD parameters 

(such as meteorological and physical parameters). Theoretical models take aerosol properties into 

consideration. However, theoretical models are difficult to implement, because it is hard to find a fixed 

physical correlation between PM2.5 and AOD. In addition, since theoretical models are based on 

assumptions, the accuracy of the model is relatively low. Lin et al. (2015) generated an indicator to describe 

the absorptive humidity growth rather than using a traditional humidity effect to estimate PM2.5. Zhang 

and Li (2015) utilized the statistical relationships between meteorological variables to evaluate the physical 

correlations among different optical-masses. Liu (2018) proposed a new theoretical model which put 

particle radius into considerations. Liu’s model improved the AOD coverage, and could be implemented 

on a large scale (national) since it did not require parameters with regional characteristics. 
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2.4 Wildfire and PM2.5 Studies in Canada 

PM2.5-AOD estimation studies have been conducted in Canada since the 21th century (Table 2.6). Wallace 

and Kanaroglou (2007) adopted the MLR model combined with MODIS and MISR AOD data to investigate 

PM2.5 concentrations in southern Ontario. Temperature, wind speed, and relative humidity were also used 

as predictors of PM2.5. It generated an R2 of 0.76 for this study. Tian and Chen (2010) built a semi-empirical 

model to predict hourly PM2.5 concentrations in southern Ontario using MODIS AOD and meteorological 

data. The R2 of the model was 0.65, which means the model was able to explain 65% variability in PM2.5. 

Hystad et al. (2011) used the LUR model to estimate PM2.5 concentrations in seven Canadian cities, and 

the R2 was only 0.46. Hystad et al. (2012) estimated PM2.5 concentrations using the CTM model, and 

generated a higher R2 of 0.67. Crouse et al. (2016) also implemented the CTM model combining MODIS, 

MISR, and SeaWIFS AOD to estimate PM2.5 concentrations in Canada, which generated an R2 of 0.58. 

Stieb et al. (2016) examined the impacts of PM2.5 using the LUR model on a national scale in Canada, and 

computed an R2 of 0.59. Wang et al. (2016) analyzed ground-level PM2.5 in the City of Montreal using the 

one of the CTM models (GEOS-Chem), and achieved an R2 of 0.86. 

Table 2.6 Summary of PM2.5 studies conducted in Canada in recent years 

Reference Study Area and Period  Source of AOD PM2.5-AOD Model R2 

Wallace and 

Kanaroglou, 2017 
Southern Ontario, 2005 MODIS, MISR MLR 0.76 

Tian et al., 2010 Southern Ontario, 2004 MODIS Semi-empirical model 0.65 

Hystad et al., 2011 National scale, 2006 MODIS, MISR LUR 0.46 

Hystad et al., 2012 
National scale, 1975-

1994 
MODIS, MISR CTM 0.67 

Crouse et al., 2016 
National scale, 2001-

2010 

MODIS, MISR, 

SeaWIFS 
CTM 0.58 

Stieb et al., 2016 
National scale, 1999-

2008 
MODIS LUR 0.59 

Wang et al., 2016 Montreal, 2009 MODIS CTM 0.86 
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As discussed in Section 1.1.6, wildfire is a major source of PM2.5 in Canada. Several studies have 

been conducted to examine the relationship between wildfire and PM2.5. Sofowote and Dempsey (2015) 

analyzed three wildfire events in July of 2011, 2012, and 2013 to identify the major source of high PM2.5 

concentrations during the study period. It is found that the regions with active fires tend to display higher 

PM2.5 concentrations by examining the near-real-time ground-level PM2.5 data. In order to explore the 

health impact of wildfire smoke, Mirzaei et al. (2018) integrated the LUR model and MODIS AOD products 

to estimate PM2.5 concentrations in southern Alberta, Canada affected by wildfires in the northwest of the 

United States in the summer of 2015. They distinguished PM2.5 from other sources by dividing the study 

period into three sub-periods, including pre-fire, during-fire, and post-fire. NDVI, AOD products from 

MODIS and OMI, meteorological predictors (relative humidity, temperature, and wind speed), distance to 

the source of fire, and land use of industrial roads were utilized to build the model. The R2 of the LUR 

model was 0.50 for this study. An important contribution of this study was that it could evaluate PM2.5-

related health impacts before and after wildfire by analyzing estimated PM2.5 distribution maps. In 2019, 

Mirzaei et al. (2019) used the OLS and the GWR model to estimate PM2.5 concentrations in Alberta 

affected by wildfires derived from BC in August 2017. Other than AOD and meteorological variables, 

numerous variables were taken into consideration, such as distance from fire in BC, and road length around 

each ground station. The R2 values of the OLS and the GWR model were 0.74 and 0.84, respectively. The 

results indicated that the GWR model generated more accurate results than the OLS model. In addition, this 

study was also valuable for further studies to assess the health impact of wildfire plumes.  

2.5 Chapter Summary 

Air quality monitoring networks have been established in many countries to regulate air pollutants, 

including PM2.5. However, the distribution of PM2.5 ground monitoring stations is uneven. Therefore, 

remote sensing techniques have been implemented to predict PM2.5 concentrations. Previous studies have 

proven the existence of a strong correlation between PM2.5 and AOD. As a result, satellite-derived AOD 

is used to estimate PM2.5 since the 1970s. Various sensors and algorithms have been used to retrieve AOD, 

and the most widely used is MODIS, which adopts DT and DB algorithms to retrieve AOD. Ground-level 

AERONET AOD is used to validate MODIS AOD. Simulation-based and statistical models are utilized to 

estimate PM2.5 using AOD as the independent variable. Meteorological, socio-economic, land use/land 

cover, traffic, and other supplementary variables are taken into considerations when conducting the models. 

Several studies related to wildfire and PM2.5 were conducted in Canada before, which proves the research 

necessity of PM2.5 concentrations during the wildfire. 
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Chapter 3 Study Area and Data 

3.1 Study Area 

British Columbia (BC) is the westernmost province of Canada, which located between the Pacific Ocean 

and the Rocky Mountain. BC is composed of 27 regional districts, with a total estimated population of 

5.016 million in 2018, which is the third populous province in Canada after Ontario and Quebec.  

 

 

Figure 3.1 Study area 

 Figure 3.1 displays the geographical location of BC. The total area of BC is 944,735 km2, which is 

ranked as the fifth largest province in Canada. The latitude and longitude of BC are 53° 43' 36.0084'' North 

and 127° 38' 51.4356'' West, respectively. The west part of BC is bounded to the Pacific Ocean. The 

northern, eastern, and southern regions of BC are bordered by the Yukon and Alaska, Alberta, and the 
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United States., respectively. It is reported that BC has experienced a rapid population growth in the past 

three years due to its pleasant climate and diverse culture. Some places in BC even have the highest 

population density in Canada, such as the City of Vancouver. BC is famous for its rich natural resources, 

mountainous terrain, abundant forests, unique coastline, and numerous water resources (Ministry of Forest, 

n.d). Around 70% of BC’s total area is covered by mountains, and forests account for 60% among the 

mountainous area (Figure 3.2). The agricultural area only occupies 5% of BC’s total area. Therefore, BC’s 

economy mainly relies on the logging industry and tourism (Ministry of Forest, n.d.). Due to both natural 

(such as lightning) and human-caused reasons, wildfires in BC have been increasing year by year. Details 

of BC’s wildfires in 2017 are introduced in Section 1.1.6.  

Figure 3.2 Forest cover in British Columbia (Source: Ministry of Forest, n.d.) 
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3.2 Data 

3.2.1 MODIS AOD Data 

The 3 km MODIS Level-2 aerosol products were obtained from Level-1 and Atmosphere Archive and 

Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov). Both MODIS-Aqua and 

MODIS-Terra provide aerosol products in 3 km and 10 km resolutions, and their products are recognized 

as MYD04 and MOD04, respectively. It has been proven that compared to the Terra MODIS, the Aqua 

MODIS reveals small calibration changes (Wang, 2017). Therefore, only MODIS-Aqua products were used 

in this study. The Aqua passes the study area around 13:30 at local time. In addition, since BC is a relatively 

smaller scale (regional), the new-released 3 km MODIS AOD products in 2013 were suitable for study. 

Normally the 3 km products are able to display more details of AOD variations. The reasons of blank grids 

in images include cloud, snow, ice cover, and mistakes of the retrieval algorithm itself. Those blank grids 

could be identified using the true color image. Furthermore, 60% of BC’s total area is covered by forests, 

the DT algorithm was adopted to retrieve AOD over dark surfaces rather than the DB. As a result, the 3 km 

MODIS-Aqua DT products at 550 nm were used for this study. The retrieval procedure of the DT algorithm 

has been introduced in Section 2.2.3.2.  

 MODIS AOD products are stored as Hierarchical Data Format-Earth Observing Systems (HDF-

EOS). Normally, a MODIS HDF dataset is comprised of several Science Data Sets (SDS) with different 

levels of Quality Assurance (QAC) flags. QAC was designed by NASA to describe the quality of MODIS 

AOD datasets. QAC ranges from 0 to 3 in MODIS C6.1 (Table 3.1). QAC = 3 represents the highest quality 

products over land. Therefore, for this study, only products with QAC = 3 were used (SDS name: 

‘Optical_Depth_Land_And_Ocean’). 

Table 3.1 QAC flags of MODIS AOD products 

QAC Flags QAC Confidence 

0 

1 

2 

3 

Bad or No Confidence 

Marginal 

Good 

Very Good 
 



 

 39 

3.2.2 AERONET AOD Data 

AERONET AOD products were generated to validate MODIS AOD retrievals, since AERONET AOD has 

five times higher accuracy than the satellite-derived AOD (https://aeronet.gsfc.nasa.gov). There are four 

AERONET sites in BC, but only two of them were operational during the study period (Table 3.2). Thus, 

AERONET AOD from Kelowna_UAS and Saturn_Island sites were utilized to validate MODIS AOD data. 

Table 3.2 AERONET Sites in BC 

Site Latitude Longitude Operational Dates  

Kelowna_UAS 49.941N 119.400W 1 January 2004 - 31 December 2018 

Saturn_Island 48.775N 123.128W 1 January 1997 - present 

Lochiel 49.028N 22.602W 1 January 2001 - 31 December 2001 

Kelowna 49.955N 119.373W 1 January 2018 - present 

 

AERONET includes three levels of AOD products: Level 1.0 (unscreened), Level 1.5 (cloud-

screened and quality controlled), and Level 2.0 (cloud-screened and quality-assured). Pre-field and post-

field calibration were applied to Level 2.0 AERONET AOD data. In this study, only Level 2.0 AERONET 

AOD products were adopted as the reference data to evaluate MODIS AOD retrievals. 

3.2.3 Ground-level PM2.5 Data 

BC’s hourly ground-level PM2.5 measurements in 2017 were acquired from 66 ground stations through the 

BC Open Data Catalogue (https://catalogue.data.gov.bc.ca/dataset). BAM1020 is the main instrument to 

measure PM2.5 in these stations. Figure 3.4 displays the distribution of these ground stations, as well as 

their annual averages of PM2.5 concentrations during the study period. It can be seen that most ground 

stations are concentrated in urban areas, and the distribution is extremely uneven between different regions. 

Most forest regions lack ground monitoring stations, which makes it difficult to measure PM2.5 during the 

wildfire season. 
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Figure 3.3 Distribution of PM2.5 ground monitoring stations and their annual PM2.5 concentrations in 

BC during the study period 

According to the CAAQS standard, the annual national standard for PM2.5 is 10 µg/m3. And the 

standard in BC is stricter, the annual standard for PM2.5 is 6 µg/m3. Most area in BC meets the national 

standard, but fail to meet the regional standard. Wildfires are considered to be responsible for a high level 

of PM2.5 in BC.  Details of these ground stations include station name, station ID, longitude, latitude, and 

annual mean PM2.5 concentrations are introduced in Appendix A. Ground-level PM2.5 datasets used in 

this study were verified by BC’s Ministry of Environment, and have been validated through a Quality 

Assurance (QA) or Quality Control (QC) process. In order to match Aqua’s passing time at 13:30, averaged 

PM2.5 concentrations between 13:00 and 14:00 were extracted. 

3.2.4 Meteorological Data 

Meteorological data include planetary boundary layer height (PBLH), relative humidity, surface pressure, 

u wind speed, v wind speed, temperature, and visibility were incorporated in this study. PBLH, relative 

humidity, surface pressure, u wind speed, v wind speed, and temperature datasets were generated from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets (ERA-Interim) 
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(https://apps.ecmwf.int/datasets/data/interim-full-daily). Visibility datasets were acquired from the NCEP 

ADP Global Surface Observational Weather Data (https://rda.ucar.edu/datasets/ds461.0/). Table 3.3 

summarizes the meteorological data used in this study. 

The ERA-Interim contains both analysis and forecast datasets. Analysis datasets are provided in 

four different times at 00:00, 06:00, 12:00, and 18:00. Forecast datasets are available at 00:00 and 12:00 

with different steps to choose from. Step 3 means only forecast datasets could be generated starting from 

either 00:00 or 12:00 with 3 hours forecast, which means datasets at 03:00 or 15:00 will be collected. Step 

0 represents the real-time analysis dataset. For this study, in order to match the MODIS AOD product 

acquired at 13:30, all meteorological datasets were acquired at 12:00. Since Step 0 datasets for PBLH, 

relative humidity, and visibility were not available, Step 3 datasets were generated for these three variables, 

which records their values at 15:00. The spatial resolution for meteorological data is 0.125º. Figure 3.5 

displays the spatial annual mean values of these meteorological factors. 

Table 3.3 Descriptions of meteorological data used in this study 

Meteorological 

Factors 
Unit 

Acquired 

Time 

Spatial 

Resolution 
Step Description 

Planetary 

Boundary 

Layer Height 

m 

12:00 
0.125° 

3 

The depth of atmosphere next to the 

Earth’s surface 

Relative 

Humidity 
% 

Relatively humidity at 1000 hPa 

pressure level 

Surface 

Pressure 
Pa 

0 

Pressure of the atmosphere on the 

land surface 

U Wind Speed m/s 
Horizontal air moving speed at 10 

meters towards the east 

V Wind Speed m/s 
Horizontal air moving speed at 10 

meters towards the north 

Temperature K 
Temperature in the atmosphere at 2 

meters 

Visibility m  3 Visibility on the surface 
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Figure 3.4 Spatial annual mean distributions of seven meteorological factors used in this study: (a) PBLH, 

(b) surface pressure, (c) temperature, (d) relative humidity, (e) u wind speed, (f) v wind speed, and (g) 

visibility 
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As shown in Figure 3.4, the average PBLH ranges from 126 m to 632 m, the highest values are 

distributed on the island and coastal areas. Most area in BC has high relative humidity with 90% in values. 

The lowest u wind and v wind speed are both negative (-1.85 m/s and -0.99 m/s respectively). A negative 

value of the wind speed means the wind is from the opposite direction. The distribution of the surface 

pressure and the temperature is similar to the PBLH, since the highest values are clustered around the island 

and coastal regions (101248 Pa and 284.07 K, respectively). For the visibility, it shows that the lows values 

are concentrated on regions covered by forests. 

3.2.5 Supplementary Data 

Various supplementary datasets were generated in this study for analysis. Monthly NDVI products 

(MYD13C2) were acquired from the U.S. Geological Survey (USGS) (https://earthexplorer.usgs.gov/). 

Since the vegetation cover does not change frequently, instead of using the 16-day NDVI products, monthly 

NDVI products with 0.05° resolution were selected for this study. The 1 km resolution elevation data were 

derived from the DEMs provided by Natural Resources Canada (https://open.canada.ca/data). Figure 3.5 

displays the spatial distribution of these two datasets.  

 

Figure 3.5 Spatial distribution of supplementary factors used in this study: (a) NDVI and (b) elevation 
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In addition, the 2017 active wildfire distribution map during the wildfire season in BC was obtained 

from BC Wildfire Service to validate the application feasibility of MODIS AOD products and PM2.5-AOD 

models regarding wildfires (https://governmentofbc.maps.arcgis.com). 

3.3 Chapter Summary 

Overall, since forest area accounts for 60% of BC’s total area, wildfires have always been a serious problem 

due to both natural and anthropogenic reasons. The smoke from wildfires releases air pollutants and is 

harmful to human health and air quality. The 3 km MODIS AOD products were used to conduct PM2.5-

AOD models by combining ground monitoring PM2.5 data, meteorological data, and supplementary data. 

The active wildfire map in BC was also acquired as supporting documents for this study. 
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Chapter 4 Methodology 

Chapter 4 presents the methodology of this study. Section 4.1 provides an overview of the methodology, as 

well as the workflow chart. Section 4.2 presents the MODIS AOD validation method. Section 4.3 explains 

the process of data preprocessing. Section 4.4 explains how the models will be built. Section 4.5 describes 

the output analysis. Section 4.6 summarizes the chapter. 

4.1 Overview of the Methodology 

The methodology of this study could be divided into four parts, including MODIS AOD validation, data 

preprocessing, model construction, and output analysis. Figure 4.1 displays the workflow of the 

methodology. The first part is the MODIS AOD validation. AERONET AOD was used to validate with 

MODIS AOD after temporal and spatial matching. For the second part of the methodology, all datasets 

were preprocessed including projection, clipping, and resampling. The ground-level PM2.5 measurements 

were then used to match with MODIS AOD, meteorological variables, and supplementary data. After the 

removal of invalid matchings, the third step is the construction of models. The output of the second step 

were used to build models. The MLR, the GWR, and a theoretical model were conducted. Validations were 

implemented for each model. Then, the comparison between the three models was generated. The model 

with the best prediction performance was used to build monthly and seasonal models. Lastly, the output of 

the models was analyzed, as well as the application feasibility of MODIS AOD during the wildfire season 

in BC.
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Figure 4.1 Workflow of the methodology 
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4.2 MODIS AOD Validation 

AERONET AOD was used to validate MODIS AOD. MODIS AOD was retrieved at 550 nm wavelength. 

However, AERONET AOD was measured at 1640, 1020, 870, 675, 500, 380 and 340 nm wavelength in 

Kelowna_UAS and Saturn_Island sites. Thus, AERONET AOD was interpolated at 550 nm to match 

MODIS AOD’s retrieval wavelength. The 675 nm wavelength was not used due to the failure of filters at 

BC’s sites. According to Ångström (1964), aerosols satisfy the Junge distribution without the effect of the 

water vapour. The equation between AOD and wavelength could be expressed using the Ångström formula: 

																																																																																						τ	(λ)	=	βλ-α																																																																												(4-1) 

where τ	(λ) is the AOD at wavelength λ; α is the Ångström exponent, which has a negative correlation with 

the radius of aerosols; β is the atmospheric turbidity coefficient, which is affected by the total number of 

aerosols and the spectral distribution. Assuming there are no water vapor effects at wavelength λ1 and λ2, 

Equations (4-2) and (4-3) could be generated according to Eq. (4-1): 

                                                                             τ	(λ1)	=	βλ1-α																																																																							(4-2)   

                                                                             τ	(λ2)	=	βλ2-α                                                               (4-3)  

Based on (4-2) and (4-3), the following equation is computed: 

                                                                  αλ1-λ2	=	-	
,-	(.(/0)/	.(/2))

,-	(/0/	/2)
                                                          (4-4) 

where αλ1-λ2  is the Ångström component between wavelength λ1 and λ2.	If λ1, λ2,	and αλ1-λ2  are known, the 

AOD at any wavelength (λ’	) between λ1 and λ2	 could be calculated using the interpolation: 

																																																																														τ	λ’	=	τλ1	(
6’	

60
)-αλ1-λ2																																																																							(4-5)												                 

In this study, AERONET AOD at 500 nm was provided in both sites. The Ångström exponent 

between wavelength 440 nm and 870 nm (α440-870) was used to interpolate AOD at wavelength 550 nm: 

																																																																									τ	550	=	τ500		(
::;	

:;;
)-α440-870																																																																																																						(4-6)																																																																																																																																					 

Since AERONET AOD and MODIS AOD have different spatial and temporal resolution, it is 

necessary to match them on both spatial and temporal scales before the validation. Based on previous 

studies, the averaged MODIS AOD within a 5 × 5 pixel window (15 km × 15 km) centered on AERONET 

AOD stations was extracted (Ichoku et al., 2002). For temporal matching, AERONET AOD ±30 min of 
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Aqua’s overpassing time was used. Since MODIS AOD could not be collected every day due to cloud 

cover, and AERONET AOD products are not available every day during Aqua’s overpassing time, 

therefore, after spatial and temporal matching, there were 55 collocations in the Kelowna_UAS site. For 

the Saturn-Island site, there was no collocation available during the study period. After checking with 

Google Map, it turned out that the Saturn_Island site was situated on an island in the Pacific Ocean. It is 

possible that MODIS AOD products used in this study might not cover this small island. It might be covered 

in the ocean product instead of the land product. Therefore, only 55 collocations in the Kelowna_UAS site 

were used for the validation.  

A regression line was generated to represent the validation result between the MODIS AOD and 

the AERONET AOD: 

																																																																															τMODIS	=	s	×	τAERONET	+	i																																																											(4-7)	

where τMODIS	 	 	and τAERONET		are the values of MODIS and AERONET AOD, s	 	and i	are the slope and 

intercept of the regression line, respectively. The Expected Error (EE) line was recognized as an important 

indicator to examine the accuracy of MODIS AOD products (Levy et al., 2010). The EE of the 3 km DT 

algorithm MODIS AOD product in C6.1 was defined the following equation by NASA (Wang et al., 2017): 

																																																																												EE	=	±	(0.05	+	0.2τAERONET)																																																					(4-8)	

In addition, the correlation coefficient R, the root mean square error (RMSE), and the mean 

absolute error (MSE) were used to evaluate the validation result: 

                                                   RMSE = M0

-
	∑ (OPQRSTU −	 OWXYQZX[U)	

-
\]0

2                                          (4-9) 

                                                       MAE = 0
-
∑ ∣ OPQRSTU − 	OWXYQZX[U ∣
-
\]0                                          (4-10) 

4.3 Data Preprocessing 

Firstly, all raster datasets were projected, mosaicked, and clipped for the further research. The geographical 

coordinates used in this study were unified as WGS84. As stated in Chapter 4, datasets were acquired based 

on the Aqua’s overpassing time in order to ensure temporal matching. Daily visibility datasets were stored 

as text files; thus, these text files were converted into raster datasets using the inverse distance weighting 

(IDW) interpolation method. Since satellite data, meteorological data, and supplementary data have 

different resolutions, therefore, the next step is to resample meteorological and supplementary datasets to 

3 km using the bilinear interpolation in ArcGIS 10.6.1. After resampling, MODIS AOD, meteorological, 



 

 50 

and supplementary data were used to match the ground-level PM2.5 monitoring data in a 5 × 5 pixel window 

centered on the ground stations. The averaged values of all variables in these pixels were extracted. Pixels 

with no AOD data matched were considered as invalid data and were removed. There were 1914 lines of 

valid recordings after the matching and removal. 

4.4 Model Construction 

4.4.1 Multiple Linear Regression Model 

The MLR model used in this study could be expressed as: 

PM2.5	=	C1	+	CAOD	×	AOD	+	CPBLH	×	PBLH	+	CRH	×	RH	+	CTEM	×	TEM		+	CSP	×	SP	+	CUW	×	UW	+	CVW	

×	VW	+	CVIS		×	VIS	+	CNDVI		×	NDVI	+	CDEM		×	DEM																																																																																																			(4-11) 

where PM2.5	is the ground-level PM2.5 concentrations; C1	is the intercept of the equation; CAOD,	CPBLH,	CRH,	

CTEM,	CSP,	CUW,	CVW,	CVIS,	CNDVI,	CDEM		are the coefficients of their corresponding independent variables; AOD	

is the MODIS AOD values; PBLH is the value of the planetary boundary layer height; RH	is the value of 

the relative humidity; TEM is the value of the temperature; SP is the value of the surface pressure; UW and 

VW are values of the u wind speed and the v wind speed, respectively; VIS is the value of the visibility; 

NDVI is the value of the NDVI; and DEM is the value of the elevation. 

The SPSS software was used to conduct the MLR model. Satellite-retrieved PM2.5 concentrations 

using the MLR model was validated with PM2.5 concentrations from ground stations. A 10-fold cross 

validation was conducted to examine if the model was over-fitted. The datasets were divided into 10 folds, 

and each fold contained 10% of the data. Then one fold was used for validation, and the rest nine folds were 

used as training datasets. This process repeated for each fold. 

The model with the highest accuracy and performance was used to generate PM2.5 distribution 

maps on annual, seasonal, and monthly scales. In this study, March, April, and May were defined as spring; 

June, July, and August were defined as summer; September, October, and November were defined as fall; 

and December, January, and February were defined as winter. 

 R2 is an important indicator to describe the fitness of the statistical model, which could be expressed 

as: 

                                                                      g2 = 1 −	
TThijkillUmn

TTompqr
                                                       (4-12) 

where ssYtuvtww\x-  is the sum squared regression error, and ss[xyz,  is the sum squared total error. 
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4.4.2 Geographically Weighted Regression Model 

Instead of assuming the coefficients are constant globally, the GWR model takes spatial variations among 

parameters into account. The daily conventional GWR model could be expressed as: 

PM2.5i	j	=	C0,i	j	+	CAOD,	i	jAODi	j	+	CPBLH,	i	jPBLHi	j	+	CRH,	i	jRHi	j	+	CTEM,	i	jTEMi	j	+	CSP,	i	jSPi	j	+	CUW,	i	jUWi	j	

+	CVW,	i	jVWi	j	+	CVIS,	i	jVISi	j	+	CNDVI,	i	jNDVIi	j	+	CDEM,	i	jDEMi	j																																																																																										(4-13)	

where PM2.5i	j	is the ground-level PM2.5 concentrations at location i on day j; C0,i	j	is the intercept of the 

equation at location i on day j; CAOD,	i	j,	CPBLHi	j,	CRH	i	j, CTEM,	i	j CSP,	i	j, CUW,	i	j, CVW,	i	j, CVIS,	i	j, CNDVI,	i	j, and CDEM,	i	j	

are the coefficients of their corresponding independent variables at location i on day j; AODi	j is the MODIS 

AOD value at location i on day j; PBLHi	j is the value of the planetary boundary layer height at location i 

on day j; RHi	j is the value of the relative humidity at location i on day j; TEMi	j is the value of the temperature 

at location i on day j; SPi	j is the value of the surface pressure at location i on day j; UWi	j and VWi	j are 

values of the u wind speed and the v wind speed at location i on day j, respectively; VISi	j is the value of the 

visibility at location i on day j; NDVIi	j is the value of the NDVI at location i on day j; and DEMi	j is the 

value of the elevation at location i on day j. 

The GWR4 is a Microsoft Windows-based application software, which was designed by Japanese 

Professor Tomoki Nakayafor for conducting and calibrating GWR models (Li, 2016). The Gaussian model 

type was selected for this study. The other two types Poisson and Logistic are based on count and binary 

rather than numerical responses. The adaptive kernel was adopted due to the uneven distribution of ground 

stations. The golden section search method was chosen to search for the optimal bandwidth size 

automatically, since bandwidth size selection is considered to be the most significant step of the GWR 

model. AIC was used for bandwidth selection. AICc was adopted in this study, which is the small sample 

bias corrected AIC. AIC could provide information for the quality of the model, as well as its performance 

relative to other models. In general, a lower value of AIC represents a better model quality. Therefore, a 

global regression model was also conducted using the same input data to compare its performance with the 

GWR model.  

The spatial autocorrelation analysis was conducted in ArcGIS using the residuals of the GWR 

model. Moran’s I was used to describe the spatial autocorrelation. The values of Moran’s I ranging from -

1 to 1. A positive value represents the existence of a positive spatial autocorrelation, while a negative value 

represents the existence of a negative spatial autocorrelation. A value of 0 means no spatial autocorrelation 

exists. The ideal Moran’s value for a well-fitted GWR model’s residuals should be close to 0 (Li, 2016). 
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After building the GWR model, a 10-fold cross validation was also conducted to examine if the 

GWR model was over-fitted, the process was the same as the MLR model. 

4.4.3 Theoretical Model 

In this study, a theoretical model proposed by Liu (2018) was used to compare with the other two statistical 

models (MLR and GWR). The theoretical model was conducted based on AOD, PBLH, relative humidity 

(RH), and visibility (VIS). According to previous studies, PBLH and RH have strong effects on AOD, 

which need to be removed during the process of PM2.5 retrievals. The equation for the AOD using corrected 

PBLH and RH could be expressed as: 

																																																																													AODf*	=	
WQR�

ÄÅÇÉ×Ñ(YÉ)
																																																															    (4-14) 

where ÖÜáÑ  is the fine-mode AOD, which is calculated by the MODIS AOD and fine mode fraction 

(FMF); Due to the high uncertainty of MODIS FMF observations and the geographic scope of this study, 

it is acceptable to assume FMF as a constant (0.44) according to previous study (Sorek-Hamer et al., 2017). 

PBLH is the value of the planetary boundary layer height and à(gâ) is the hygroscopic growth function.  

The hygroscopic growth function is used to describe the effects of RH on the extinction coefficient, 

and could be considered as the function of RH (Che et al., 2007). Based on the aerosol size distribution and 

optical characteristics, the equation for the theoretical model could be expressed as (Liu, 2018): 

																																																													PMf	=	
WQR×äPä

ÄÅÇÉ×Ñ(YÉ)
×
ãåç(vj)³tèê	(ë/2,-²ìj)

î(î.ë02/ïST)
																																													(4-15)			 

where AOD is the value of the MODIS AOD; FMF is the constant value of the fine mode fraction (0.44); 

PBLH is the value of the planetary boundary layer height; à(gâ) is the hygroscopic growth function based 

on the research of Che et al. (2007) in North America; ñ is a constant of the particle mass density (1.5 

g/cm3); óu is the radius of aerosol particles with a constant value of 0.298; òu is the constant geometric 

standard deviation (2 µm); and VIS is the value of the visibility. The PM2.5 concentrations generated by 

this model were validated with the ground-level PM2.5 concentrations. 

4.5 Output Analysis 

The model with the best performance was used to build monthly and seasonal models. Statistical results 

including R2, RMSE, and MAPE were generated for all models for comparison. Box-plots for seasonal and 

monthly models were conducted to analyze the performance of each model based on the data distribution 
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and outliers. PM2.5 estimation maps on annual, seasonal, and monthly scales were also generated to 

validate and compare with ground-level PM2.5 concentrations. BC’s wildfire distribution map in August 

was used to examine the application feasibility of MODIS AOD products during the wildfire season. 

4.6 Chapter Summary 

This chapter summarizes the methodology of this study. Firstly, MODIS AOD products were validated 

with AERONET AOD. Then, data preprocessing including projection, clipping, and resampling were 

conducted. After that, PM2.5 data was matched with MODIS AOD, meteorological, and supplementary 

data to extract valid lines of data used for the model construction. The MLR, the GWR, and the theoretical 

model were then conducted for the comparison. The model with the highest accuracy was used to generate 

spatial distribution maps of PM2.5. Ground-level PM2.5 maps were also utilized to compare with satellite-

derived PM2.5. In addition, BC’s wildfire active map in 2017 was used to compare with PM2.5 distribution 

maps generated by the optimal model visually.   
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Chapter 5 Results and Discussion 

Chapter 5 presents the results and discussions of this study. Section 5.1 displays the results of MODIS AOD 

validation. Section 5.2 reports the results of the MLR model. Section 5.3 discusses the results of the GWR 

model. Section 5.4 displays the results of the theoretical model. Section 5.5 compares the results of three 

models. Section 5.6 shows the PM2.5 distribution maps on annual, seasonal, and monthly scales. Section 

5.7 provides a summary of the chapter. 

5.1 Results of MODIS AOD Validation 

As stated in Section 4.2, after temporal and spatial matching, there were 55 collocations in the 

Kelowna_UAS site. No collocation was generated in the Saturn-Island site since it is located on a small 

island in the Pacific Ocean, where has a high probability of cloud cover during most time of the year. As a 

result, no collocation could be collected for the Saturn_Island site. Thus, no MODIS AOD was matched 

with AERONET AOD in the Saturn_Island site in this study.  

 

Figure 5.1 Time variations of the MODIS AOD and the AERONET AOD in the Kelowna_UAS site  

Figure 5.1 displays 55 collocations in the Kelowna_UAS site through time variations. The AOD 

values ranging between 0 and 1.4, which is considered to be a reasonable range for both the MODIS AOD 

and the AERONET AOD (McPhetres & Aggarwal, 2018). Most high AOD values are concentrated in 

summer, which is the period of severe wildfires. In addition, more fluctuation could be seen during the 
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summer time. The existence of overestimates is also presented for MODIS AOD products. Furthermore, 

the number of collocations between the MODIS AOD and the AERONET AOD in winter is smaller than 

other seasons. There is no collocation in November and December, which might result in biases when 

assessing the performance of MODIS AOD products. 

 

Figure 5.2 Scatter plots of the MODIS AOD against the corresponding AERONET AOD retrievals 

 

Table 5.1 Statistical summaries of the MODIS AOD and the AERONET AOD collocations 

Site N R 
RMSE 

(µg/m3) 

MAE 

(µg/m3) 

% below 

EE 

% within 

EE 

% above 

EE 

Kelowna_UAS 55 0.81 0.20 0.12 0 58.2 41.8 

 

Figure 5.2 shows the scatter plots of the MODIS AOD against AERONET AOD in the 

Kelowna_UAS site. The red line represents the linear regression line, the black line denotes the best fit line 

(y = x), and the two black dash lines represent the expected error (EE) lines for the 3 km MODIS DT 

products over land with equation EE = ± (0.05 + 0.2τAERONET). The values of AOD could be divided into 
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three categories. AOD < 0.5: low aerosol loadings; 0.5 < AOD < 1.0: moderate aerosol loadings; AOD > 

1.0: high aerosol loadings (Nichol & Bilal, 2016). From Figure 5.2, it can be seen that most points fall 

within the range of low aerosol loadings with only a few outliers.  

Table 5.1 shows that no collocations lie below the EE line for the Kelowna_UAS site. 58.2% of 

collocations fall between EE lines, while 41.8% fall above EE lines. This indicates MODIS AOD products 

tend to overestimate ground-level AOD values. The Pearson correlation coefficient (R) between MODIS 

and AERONET AOD is 0.81, which suggests a strong correlation between the satellite-derived AOD and 

the ground-measured AOD. RMSE is used to describe how concentrated the points are around the 

regression line. The RMSE is 0.20, which represents a close value between the MODIS AOD and the 

AERONET AOD. MAE represents the mean error between the MODIS AOD and the AERONET AOD. 

The value of MAE is 0.12, which indicates a relatively small mean error between the MODIS AOD and the 

AERONET AOD. In summary, the results prove that MODIS AOD products are well correlated with 

AERONET AOD. Although some biases still exist, the validation results are satisfied overall. 

5.2 Results of Multiple Linear Regression Model 

Table 5.2 exhibits the statistical results of the MLR model, including mean, coefficient, significance level, 

and variation inflation factor (VIF). The annual mean ground-level PM2.5 concentration is 14.31 µg/m3. 

The averaged AOD in the 3 km dataset is 0.35. The annual mean of the relative humidity and the planetary 

boundary layer height are 78.71% and 253.55 m, respectively. The annual mean of the surface pressure is 

91519.92 Pa, and the visibility is 19664.27 m in average. In addition, the annual mean of the u wind speed 

and the v wind speed are 0.24 m/s and -0.27 m/s, respectively. The average temperature is 281.88 K. For 

the supplementary factors, NDVI and elevation, the annual means are 0.33 and 895.68 m, respectively. 

 In terms of coefficients, the constant of the MLR model is 88.815. AOD, u wind speed, temperature, 

NDVI, and elevation have positive coefficients, which means PM2.5 concentrations increase as the values 

of corresponding variables increase. In contrast, relative humidity, planetary boundary layer height, surface 

pressure, visibility, and v wind speed have negative coefficients, which means PM2.5 concentrations 

decrease as the values of corresponding variables increase. This result shows that the explanations between 

PM2.5 and meteorological factors display the same trend as described in Section 2.3.1. 
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Table 5.2 Statistical results of the MLR model 

Note: Mean: the average annual values of each variable, Coefficient: the coefficient of each independent 

variable, Significance level: p value at 95% confidence level, and VIF: variation inflation factor. 

The confidence level for MLR is 95% (α = 0.05) in this study. The p value smaller than 0.05 is 

considered to be statistically significant to the model. From Table 5.2, it can be seen that except the u wind 

speed and the elevation, the rest variables contribute statistically significantly to the model. The p values 

of u wind speed and elevation are 0.218 and 0.315 at 95% confidence level, respectively, which are greater 

than 0.05. Thus, these two variables are not statistically significant to the model in this study. 

Variables Mean Coefficient Significance Level VIF 

PM2.5 (µg/m3) 14.31    

Constant  88.815 0.009 1.433 

AOD 0.35 25.16 0.000 1.462 

Relative Humidity (%) 78.71 -0.204 0.000 1.516 

Planetary Boundary Layer 

height (m) 253.55 -0.0052 0.009 3.524 

Surface Pressure (Pa) 91519.92 -0.0016 0.000 1.335 

Visibility (m) 19664.27 -0.00036 0.000 1.673 

U Wind Speed (m/s) 0.24 0.48 0.218 1.424 

V Wind Speed (m/s) -0.27 -1.65 0.000 1.274 

Temperature (K) 281.88 0.31 0.003 1.468 

NDVI 0.33 7.18 0.014 2.144 

Elevation (m) 895.68 0.0015 0.315 1.433 
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The variation inflation factor (VIF) is used to measure the multicollinearity among numerous 

multiple regression variables, or in another word, to assess if the variables are correlated to each other. In 

general, if VIF is greater than 10, it indicates the existence of a significant multicollinearity between 

variables. Variables with significant multicollinearity need to be removed, otherwise the accuracy of the 

model will be seriously affected. The VIF of all variables in this study is smaller than 10, which proves that 

there is no significant multicollinearity between different variables. 

A 10-fold cross validation was conducted to assess whether the MLR was over-fitted or not. Figure 

5.3 displays the scatter plots of the satellite-estimated PM2.5 using the MLR and its corresponding 10-fold 

CV model against the ground measured PM2.5. The R2 of the MLR model is 0.53, which indicates that the 

MLR model could explain 53% of the variability. The R2 of the 10-fold CV MLR is 0.51, which is only 

0.02 lower than the MLR model. It indicates that the MLR is not over-fitted. The detailed comparison 

between the MLR and other two models is discussed in Section 5.5. 

 

(a)                                                                   (b) 

Figure 5.3 Scatter plots of satellite-estimated PM2.5 using (a) MLR and (b) its corresponding 10-fold CV 

model against ground measured PM2.5 

5.3 Results of Geographically Weighted Regression Model 

The statistical results including N, AICc, R2, RMSE, and Moran’s I of the GWR model are presented in 

Table 5.3. The statistical results of a 10-fold CV for the GWR model using the same datasets are also shown 
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in the same table. In addition, the results of a global regression model, which is used to compare with the 

local GWR model, are also displayed in Table 5.3. 

Table 5.3 Statistical results of the GWR model, 10-fold CV for the GWR model, and the corresponding 

global regression model 

Model N AICc R2 RMSE (µg/m3) MAPE (%) Moran’s I 

GWR 1914 15612.71 0.76 13.45 16.75 -0.014 

10-fold CV for 

GWR 

1914 
 0.74 14.26 18.94 -0.016 

Global 

Regression Model 
1914 16638.17 0.53 29.44 35.45 

 

 

The Moran’s I values for the residuals of the GWR model and the 10-fold CV for GWR model are 

-0.014 and -0.016, respectively, which are all close to 0. It indicates the spatial autocorrelation barely exists 

among the residuals, and the observations are independent with each other. Otherwise, the GWR model 

might not be suitable for the study, and other spatial models such as the spatial lag model need to be used 

to replace the GWR model. The spatial lag model assumes the existence of autocorrelation among 

observations. As a result, the GWR model is suitable for this study for the analysis. 

The training samples for the three models are all 1914. Regarding AICc, the values of AICc for the 

GWR model and the global regression model are 15612.71 and 16638.17, respectively. As described in 

Section 4.4.2, AICc is used to evaluate the relative quality between different models. According to You et 

al. (2016), if the difference of AICc between two models is larger than 3, then the model with smaller AICc 

has better performance and quality. Therefore, since the GWR model’s AICc is much lower than the global 

regression model, the GWR model generates better performance result than the global regression model. 

R2 is called the coefficient of determination, which is an important indicator for the fitness of 

models. It reflects how close the data are to the fitted regression line. If the R2 equals to 1, which means the 

predicted values are equal to the observed values. The R2 of the GWR model is 0.76, which means the 

model is able to explain 76% variation of response data. In contrast, the global regression model only has 

an R2 of 0.53, which is much lower than the GWR model. The 10-fold cross validation was conducted to 

assess whether the model is over-fitted or not. Normally, the overfitting means a model only fits a limited 
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set of data, while it is not suitable for other datasets. Figure 5.4 displays the scatter plots of the GWR and 

its corresponding 10-fold CV model. It can be seen that the 10-fold CV for GWR has R2 of 0.74, which is 

only 0.02 lower than the GWR model. It implies that the model is not over-fitted.  

 

(a)                                                                              (b) 

Figure 5.4 Scatter plots of the satellite-estimated PM2.5 using (a) GWR and (b) its corresponding 10-fold 

CV model against ground measured PM2.5 

In terms of RMSE and mean absolute percentage error (MAPE), they are both used to indicate the 

accuracy of predicted values. The GWR model has the lowest values for both RMSE and MAPE, which 

are 13.45 µg/m3 and 16.75%, respectively. The results all show that the GWR model is not overfitted. 

5.4 Results of the Theoretical Model 

After using the equation in Section 4.4.3, PM2.5 concentrations were generated using the theoretical model. 

Unlike statistical models, there is no ‘overfitting’ issue exists in the theoretical model, since no training 

samples are required for the theoretical model to calculate the coefficients. Therefore, the validation of the 

theoretical model was conducted by comparing with ground-level PM2.5 concentrations. 
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Figure 5.5 Scatter plots of the theoretical model estimated PM2.5 against ground-measured PM2.5 

From Figure 5.6, it can be seen that the R2 of the theoretical model is 0.66, which indicates that the 

model could explain 66% of the response data. The best fit line y = x and the linear regression line are also 

presented in Figure 5.6. The points are scattered along with the linear regression linear, which might result 

in large errors between predicted and observed values. The detailed comparison between the theoretical 

model and the other two models is discussed in the next section. 

5.5 Comparison of Three Models 

After conducting and validating three models, the statistical results of the three models are presented in 

Table 5.4. The training samples for all models are 1914 in order to make a better comparison among the 

three models. In terms of R2, the GWR model denotes the highest value of 0.76, while the MLR model has 

the lowest R2 of 0.53. It indicates that the GWR model could explain the most variability of the response 

data around its mean. The theoretical model has an R2 value of 0.66, which is lower than the GWR model 

but higher than the MLR model. 
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Table 5.4 Statistical results of MLR, 10-fold CV MLR, GWR, 10-fold CV GWR, and theoretical models 

Model N R2 
RMSE 

(µg/m3) 
MAPE (%) 

MLR 1914 0.53 29.44 35.45 

10-fold CV for MLR 1914 0.51 33.53 39.64 

GWR 1914 0.76 13.45 16.75 

10-fold CV for GWR 1914 0.74 14.26 18.94 

Theoretical 1914 0.66 19.74 25.48 

 

The GWR and its corresponding 10-fold CV model show the lowest RMSE values, with 13.45 

µg/m3 and 14.26µg/m3, respectively. It indicates that the average magnitudes of the predicted errors for the 

two models are 13.45 µg/m3 and 14.26 µg/m3, respectively. From Table 5.4, it can be seen that the model 

with the highest coefficient of determination values has the lowest value of RMSE. The ranking of RMSE 

values are related to their R2 and shows the same patterns.   

MAPE is used to describe the percentage of the overestimation or the underestimation part among 

the predicted values. The predicted PM2.5 concentrations using the GWR and its corresponding 10-fold 

model have MAPE values of 16.75% and 18.94%, respectively. The MLR-predicted PM2.5 values generate 

the highest MAPE value of 35.45%, which indicates the percentage of PM2.5 predicted errors account for 

the highest part among the three models.  

In conclusion, the GWR model generates the best predicted results of PM2.5 concentrations 

compared to the MLR and the theoretical model. The theoretical model displays the moderate performance, 

which is better than the MLR model, but worse than the GWR model. Therefore, the GWR was chosen to 

generate PM2.5 distribution maps on annual, seasonal, and monthly scales. 
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5.6 PM2.5 Distribution Maps 

After comparing the three models, annual, seasonal, and monthly PM2.5 distribution maps were generated 

using the GWR model. 

5.6.1 Annual Model 

The observations from ground stations show a strong heterogeneity of PM2.5 concentrations based on 

discrete ground stations, while the spatial distribution map generated by the satellite-derived AOD exhibits 

continuous surfaces regarding PM2.5 concentrations.  

 

Figure 5.6 Estimated PM2.5 distribution map generated by the GWR model in 2017 
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Figure 5.7 Annual mean ground station measured PM2.5 concentrations 

The annual PM2.5 concentrations generated by the GWR model are presented in Figure 5.6. The 

annual ground station measured PM2.5 distribution map is also generated to compare with the annual 

distribution map generated by the GWR model. The highest predicted PM2.5 value of the GWR model is 

38.28 µg/m3, while for the annual ground station distribution map, the highest value is 31.29 µg/m3. By 

looking at Figures 5.6 and 5.7, the GWR model presents the similar spatial distribution of PM2.5 

concentrations as ground stations. The regions with the highest PM2.5 values are concentrated in the Central 

Kootenay. The ground station in the Central Kootenay has the highest annual mean PM2.5 concentrations. 

The GWR model tends to overestimate PM2.5 concentrations in some regions, such as Thompson-Nicola 

and Cariboo regional districts in a reasonable range. Both districts have higher PM2.5 concentrations than 

the surrounding area. For the rest area of BC, the annual PM2.5 concentrations are under both CAAQS and 

BC’s annual standards. In addition, the GWR model is able to provide more variations than ground stations. 

This comparison also indicates that the GWR model shows a high accuracy in predicting PM2.5 

concentrations, which could be used for further analysis. 
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5.6.2 Seasonal Model 

After generating the annual model, seasonal models were also conducted to examine PM2.5 concentrations 

in four seasons. Due to the lack of training samples in winter (i.e., only 19 samples), the GWR model in 

winter was failed to construct. The statistics of the other three seasonal models are presented in Table 5.5. 

Table 5.5 Statistical results of seasonal GWR models 

 N R2 
RMSE 

(µg/m3) 
MAPE (%) Moran’s I 

Spring 240 0.43 37.46 57.54 0.018 

Summer 1185 0.79 8.17 18.23 -0.022 

Fall 469 0.56 25.87 35.54 -0.052 

Winter  Failed to construct due to lack of training samples 

  

The summer model has the most training samples (1185), fall and spring models have 469 and 240 

training samples, respectively. As indicated before, winter model was failed to conduct due to the lack of 

training samples. In terms of R2, it can be seen that the spring model has the lowest R2 value of 0.43, while 

the summer model displays the highest R2 value of 0.79. The reason for this might due to the difference in 

the number of training samples. Normally a model with more training samples as input will generate better 

results. The summer model has a lower RMSE value than the spring and winter model, which means the 

average magnitude error for the predicted values is lower than other two models. The spring model reveals 

the highest values of RMSE and MAPE, which proves it to be the worst model among three seasonal 

models. In terms of Moran’s I, it can be seen that the values for three models are all close to 0, which 

indicates no spatial autocorrelation exists among the residuals. 

Figure 5.8 displays the box plots of local R2 derived from seasonal GWR models. Although the 

spring model has a relatively clustered range, it still generates worse results than other two seasonal models 

due to the low values of local R2 (0.36-0.48). This suggests that the GWR model might not be suitable for 

estimating PM2.5 concentrations in spring. It also indicates that GWR-predicted PM2.5 concentrations 

might exist bias. The local R2 for the summer model ranges from 0.56 to 0.88, which demonstrates the best 

performance of the three models. There are outliers in both spring and summer models, while no outlier 

exists in the fall model. It could be carefully concluded that both spring and summer models have a higher 

probability to overestimate the PM2.5 concentrations than the fall model. 
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Figure 5.8 Box-plots of local R2 derived from seasonal GWR models 

Figures 5.9, 5.10, and 5.11 show the spatial distribution maps in spring, summer, and fall, as well 

as their corresponding averaged PM2.5 concentrations from ground stations. For the spring distribution 

map, it can be seen that the highest PM2.5 concentration is 7.67 µg/m3 centered in the southwest part of 

BC. By comparing to ground monitoring stations, PM2.5 concentrations are underestimated in the 

Thompson-Nicola region, and are overestimated in the Vancouver Island, which indicating significant 

differences between the predicted and observed values using the spring GWR model, since the R2 is only 

0.43. The summer model has the best performance. The highest PM2.5 concentrations in summer generated 

by the GWR and ground stations are 53.95 µg/m3 and 46.94 µg/m3, respectively. Regions with high PM2.5 

concentrations are greater than that in spring and fall, especially centered on the area with wildfires. Since 

summer is the season with highest occurrence possibility of wildfires, which implies that wildfires could 

release much more PM2.5 than spring and fall, and could be considered as the main source of rapid rising 

PM2.5 concentrations in summer. According to the spatial distribution map of PM2.5 in summer, it can be 

concluded that the GWR is able to predict PM2.5 concentrations, because the trends of PM2.5 distributions 

are almost the same in two maps. For the PM2.5 distribution maps in fall, it can be seen that the highest 

PM2.5 concentrations are 23.01 µg/m3 and 31.13 µg/m3, respectively, which means the fall GWR model 

underestimates PM2.5 concentrations in some instances. As defined before, September belongs to fall, 

which is still under BC’s state of emergency period during the wildfire season in 2017. Therefore, PM2.5 

concentrations in fall are higher than that in spring, but lower than that in summer. Some underestimations 

exist in the fall spatial distribution map compared to the ground station monitored PM2.5 concentrations. 
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Figure 5.9 Estimated PM2.5 generated by the seasonal GWR model in spring (top), and averaged PM2.5 

concentrations from ground monitoring stations in spring (bottom) 
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Figure 5.10 Estimated PM2.5 generated by the seasonal GWR model in summer (top), and averaged 

PM2.5 concentrations from ground monitoring stations in summer (bottom) 
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Figure 5.11 Estimated PM2.5 generated by the seasonal GWR model in fall (top), and averaged PM2.5 

concentrations from ground monitoring stations in fall (bottom) 
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5.6.3 Monthly Model 

After seasonal models were conducted, monthly models were built during the BC’s state of emergency 

wildfire season between July and September to estimate PM2.5 concentrations. Table 5.6 summarizes the 

statistical results of monthly GWR models. 

Table 5.6 Statistical results of monthly GWR models 

 N R2 RMSE (µg/m3) MAPE (%) Moran’s I 

July 421 0.85 3.26 5.35 -0.032 

August 540 0.81 7.69 11.31 -0.046 

September 271 0.75 8.45 12.68 -0.11 

 

 The training samples for three monthly models are 421, 540, and 271, respectively. All three models 

perform high values of R2, and the July model has the highest R2 with 0.85, which demonstrates that the 

GWR is suitable for conducting monthly models in July, August, and September. The RMSE for three 

models are 3.26 µg/m3, 11.31 µg/m3, and 12.68 µg/m3, respectively. The July model has the lowest RMSE 

value, as well as the MAPE value (5.35%), which indicates that the July model has the best performance 

compared to other two monthly models. The average magnitude error for predicted values in July is 3.26 

µg/m3, which is the lowest among annual, seasonal, and monthly GWR models. The trends of RMSE and 

MAPE regarding R2 are the same for all three models, which is: RMSE and MAPE increase as R2 increases. 

In addition, Moran’s I was also conducted for the residuals of three models to examine the spatial 

autocorrelation. From Table 5.6, it can be seen that Moran’s I values for the residuals of three models are 

all near 0, which indicates there is no significant spatial autocorrelation exists. 

 The same as seasonal models, a box plot of local R2 for monthly models is presented in Figure 5.12. 

It can be seen that the medians of the three models are almost the same. No outlier exists in the three models. 

In addition, the July model has the most clustered distribution, which suggests that it has the best 

performance. Although the September model has the highest local R2, the variability of its distribution 

regarding local R2 is large (0.42-0.97). The “whiskers” for the July model is the shortest, while for the 

September model is the longest. It can be interpreted that the local R2 values vary more widely for the 

September model, while the local R2 values are centered on the mean values for the July model. 
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Figure 5.12 Box-plots of local R2 derived from monthly GWR models 

 Figures 5.13, 5.14, and 5.15 show the spatial distribution maps generated by the monthly GWR 

models, as well as their corresponding distribution maps generated by ground monitoring stations. In July, 

the estimated PM2.5 values range between 1.43 and 35.28 µg/m3. The regions with high PM2.5 

concentrations are centered on the Cariboo district. The ground-level PM2.5 concentrations agree with the 

estimated PM2.5 concentrations. It can be seen that August has the most severe PM2.5 concentrations, 

with the highest value over 100 µg/m3 based on the ground station measurements. For estimated PM2.5 

concentrations generated by the August GWR model, PM2.5 reaches its highest point at 83.37 µg/m3. In 

order to examine the accuracy of prediction values, an active wildfire map of BC in August, 2017 is also 

presented in Figure 5.14. It can be observed that most regions with active wildfire exhibit the highest 

values of PM2.5 concentrations. However, for the area that is lack of ground monitoring stations, the 

PM2.5 concentrations are underestimated due to the insufficient number of control points. Therefore, 

more ground stations are helpful for increasing the accuracy of estimation. It could also be concluded that 

there is a strong correlation between wildfires and PM2.5 concentrations. Regarding PM2.5 

concentrations in September, some underestimations are revealed. The main reason for this is due to the 

lowest value of R2 for the September model. Therefore, by comparing three monthly models, it can be 

viewed that there is an obvious rising trend in PM2.5 concentrations during the wildfire season, especially 

in August.  



 

 72 

 

 

Figure 5.13 Estimated PM2.5 generated by the seasonal GWR model in July (top), and averaged PM2.5 

concentrations from ground monitoring stations in July (bottom)
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Figure 5.14 Estimated PM2.5 generated by the seasonal GWR model in August (top left), averaged PM2.5 concentrations from ground monitoring 

stations in August (top right), and BC’s active wildfire distribution map (bottom) in August 2017
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Figure 5.15 Estimated PM2.5 generated by the seasonal GWR model in September (top), and averaged 

PM2.5 concentrations from ground monitoring stations in September (bottom) 
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5.7 Chapter Summary 

This chapter summarizes major results of the study. Firstly, MODIS AOD was validated with AERONET 

AOD, and the result showed that there was a strong correlation between the MODIS AOD and the 

AERONET AOD with R value of 0.81. The 3 km MODIS AOD products tended to overestimate AOD 

values since 41.8% of total points fell above the EE line. Secondly, the comparison results of the MLR, 

GWR and theoretical model were presented and discussed. The GWR model exhibited the highest R2 value 

of 0.75, while for the MLR and theoretical model, the R2 values were 0.53 and 0.66, respectively. Therefore, 

the GWR was selected to generate PM2.5 spatial distribution maps at annual, seasonal, and monthly maps 

due to its best performance in response to variability explanations. Thirdly, annual, seasonal, and monthly 

PM2.5 spatial distribution maps were generated using the GWR model. The spring model displayed the 

lowest R2, while the July model had the highest R2. The results showed that the accuracy of PM2.5 

concentrations generated by the GWR model was high, although some underestimations and 

overestimations were revealed. The results also demonstrated that there was an obvious rising trend in 

PM2.5 during BC’s wildfire season. 
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Chapter 6 Conclusions and Recommendations 

Chapter 6 presents key findings and limitations of the study, as well as the recommendations for future 

studies. 

6.1 Key Findings of the Study 

The main purpose of this study is to estimate PM2.5 in BC using 3 km MODIS AOD products integrating 

meteorological and supplementary data. Some key findings regarding the specific objectives are 

summarized. 

6.1.1 Objective 1: MODIS AOD Validation with AERONET AOD 

The 3km MODIS AOD products were validated with the AERONET AOD, and a strong correlation was 

observed between the MODIS AOD and the AERONET AOD. Based on the results, it was also found that 

the 3 km MODIS AOD products tended to overestimate ground-level AOD values, but most values fell 

within a reasonable range regarding AERONET AOD.  It indicated that the 3 km MODIS AOD products 

were qualified to use for PM2.5 estimations. For regions that are lack of AEORNET sites, MODIS AOD 

products could be considered as a substitute for further studies. 

6.1.2 Objective 2: Comparison of the MLR, GWR, and Theoretical Models 

The MLR, GWR, and theoretical models were conducted for evaluation. The MLR exhibited the worst 

prediction performance, while the GWR generated the best performance. 10-fold cross validations were 

conducted for two statistical models, and both models were not over-fitted. The GWR model put spatial 

variation into account, which improved its accuracy regarding PM2.5 predictions. The theoretical model 

took aerosol characteristics into consideration, and achieved a moderate performance, which was better 

than the MLR model. Although the application of the theoretical is relatively limited compared to statistical 

models, it can be used as a reference model to validate results with traditional models.  

6.1.3 Objective 3: Spatial Distribution Analysis of PM2.5 

PM2.5 spatial distribution maps were generated using the GWR model. After comparing with ground 

station PM2.5 concentrations, it can be concluded that PM2.5 concentrations predicted by the GWR model 

nearly followed the same trend as PM2.5 concentrations measured by ground stations. The summer model 

generated the best performance among the three seasonal models. The winter model was failed to conduct 

due to the lack of training samples. Three monthly models all performed high values of R2. Except for the 
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spring and fall models, the rest GWR models were able to generate accurate PM2.5 distribution maps that 

followed the same trend as the PM2.5 concentrations measured by ground stations.  

6.1.4 Objective 4: Application Feasibility of MODIS AOD Products and the GWR Model  

After examining PM2.5 concentrations during the wildfire season, it was found that there was a rapid 

increasing trend in PM2.5 concentrations. According to the spatial distribution map generated by the August 

model, PM2.5 concentrations were the highest in August, especially in regions with active wildfires. It can 

be concluded that the integration of MODIS AOD products and the GWR model was capable of estimating 

PM2.5 concentrations accurately during BC’s wildfire season, which indicated a high application feasibility 

for the future studies in other regions. This study is also valuable for the Government of BC to conduct 

research related to air pollution and public health perspectives. 

6.2 Limitations of the Study 

Although this study achieved its main objectives and made some contributions to its relevant field, some 

limitations and uncertainties still exist. Since most similar studies were conducted in developing countries 

with severe air pollution, there are not enough research could be used as references in developed countries 

with high air quality such as Canada.  

Firstly, this study only adopted Aqua MODIS AOD datasets, while Terra MODIS AOD datasets 

are not used. For retrieval days without AOD data, Terra MODIS might be used to reduce the number of 

non-retrieval days of AOD and improve estimation accuracy and spatial coverage. In addition, in order to 

match Aqua’s overpassing time at 13:30, meteorological data were retrieved at the same time. The estimated 

PM2.5 concentrations in this study were based on 13:30, while PM2.5 concentrations at other times are not 

evaluated. 

Secondly, due to the lack of collocations between MODIS AOD and the AOD from the 

Saturn_Island AERONET site, there might exist some bias regarding AOD validation and PM2.5 

estimation. Also, as stated in the previous paragraph, the lack of AOD retrieval data would be another 

reason for inaccurate AOD validation and PM2.5 estimation. The unevenly distribution of PM2.5 ground 

stations would also affect PM2.5 estimation in this study. 

Thirdly, the GWR model was failed to conduct in winter due to the lack of training samples. The 

theoretical model was built based on several assumptions. It assumes the distribution of aerosols is even in 

the atmospheric vertical direction, and the shape of aerosol particles is all spherical.  
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Lastly, the meteorological and supplementary data used in this study were just for model 

constructions. The impact of each parameter on PM2.5 estimation is not discussed. The dispersion and 

accumulation of PM2.5 concentrations are not presented.  In addition, the meteorological and 

supplementary factors adopted in this study were based on previous studies conducted in developing 

countries. Additional factors are not considered. 

6.3 Recommendations for Future Studies 

Based on limitations that mentioned before, several recommendations are made:  

Firstly, AOD products from other sensors such as Terra, MISR, and SeaWIFS could be combined 

to increase the number of available AOD retrieval days for more accurate predictions. 

Secondly, spatial regression models could be conducted to analyze the spatial relationships between 

AOD and PM2.5 concentrations. By combining with AOD products from other sensors, it is able to increase 

AOD matchings for the AOD validation. Furthermore, more ground stations need to be built in rural area 

and to follow a more even distribution pattern, in order to increase the accuracy of PM2.5 estimation using 

remote sensing techniques. 

Thirdly, the vertical structure of aerosols could be taken into considerations using different remote 

sensing techniques, such as LiDAR. Also, the improvement of algorithms could also contribute to a higher 

accuracy of the theoretical model. 

Lastly, more factors could be added into the model to increase the accuracy of the model’s 

performance. The accumulation and dispersion trends of PM2.5 could be identified on a relatively large 

scale, such as a national or global scale. 
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Appendix A 

Table A. Information of ground monitoring stations in BC 

Station Name EMS_ID Longitude Latitude 
Annual Mean PM2.5 

Concentrations (µg/m3) 

Abbotsford A Columbia 

Street E289309 -122.3266 49.0215 6.06 

Abbotsford Central E238212 -122.3097 49.0428 6.66 

Agassiz Municipal Hall E293810 -121.762334 49.23803 7.65 

Burnaby Kensington 

Park 310177 -122.9711 49.2794 6.47 

Burnaby South E207418 - 122.9856 49.2153 6 .58 

Burns Lake Fire Centre E225267 - 125.7643 5 4.2307 3. 89 

Castlegar Zinio Park E286369 -117.661527 4 9.3177 9. 19 

Chilliwack Airport E220891 -121.9406 49 .1561 7. 12 

Colwood City Hall E240337 -123.49278 48 .42389 5. 29 

Courtenay Elementary 

School E285829 -124.996222 49. 6826 5. 36 

Crofton Georgia Hts E296370 -123.637041 48.84964 5.57 

Crofton Substation E220217 -123.653929 48.87453 5.95 

Duncan Cairnsmore E277329 -123.715846 48.78485 6.76 

Duncan Deykin Avenue E234670 -123.646402 48.80255 6.64 

Elk Falls Dogwood E222520 -125.2844 50.01843 7.43 

Fort St John 85th 

Avenue E304550 -120.853895 56.23179 4.51 
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Fort St John Key 

Learning Centre E299830 -120.856111 56.24472 4.72 

Fort St John North 

Camp B_Amb E306480 -120.9026 56.201 6.64 

Fort St John Old Fort E304470 -120.825713 56.20059 5.11 

Golden Helipad E292149 -116.966 51.2975 9.45 

Grand Forks City Hall E263701 -118.439088 49.03117 7.74 

Harmac Cedar Woobank E225377 -123.850165 49.11417 7.4 

Hope Airport E223756 -121.4994 49.3697 6.94 

Horseshoe Bay E275843 -123.2766 49.3686 5.32 

Houston Firehall M107004 -126.645 54.3972 3.89 

Kamloops Aberdeen E303935 -120.37207 50.63694 13.4 

Kamloops Federal 

Building 605008 -120.334016 50.67477 18.33 

Kelowna College 500886 -119.477367 49.86234 9.41 

Kitimat Haul Road E223616 -128.70269 54.02919 3.54 

Kitimat Riverlodge E216670 -128.671436 54.05389 3.89 

Langdale Elementary E222778 -123.479185 49.43885 12.62 

Langley Central E209178 -122.5669 49.0956 5.73 

Lavington Baptist 

Church E304590 -119.10674 50.23081 10.44 

Mission School Works 

Yard E302130 -122.311078 49.14149 8.62 

Nanaimo Labieux Road E229797 -123.99389 49.20083 5.57 

Nelson Kutenai Place E258315 -117.2952 49.4908 31.29 
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New Westminster 

Sapperton Park E308566 -122.894487 49.22705 7.3 

North Delta E207723 -122.9017 49.1583 6.81 

North Vancouver 

Mahon Park E209177 -123.0836 49.3239 6.29 

North Vancouver 

Second Narrows 310179 -123.0203 49.3017 8.28 

Peace Valley Attachie 

Flat Upper Terrace E304453 -121.41944 56.23121 2.91 

Pitt Meadows 

Meadowlands School E232244 -122.7089 49.2453 5.49 

Port Alberni Elementary E273483 -124.806628 49.26101 7.32 

Port Alberni Port 

Authority E310612 -124.81254 49.2278 7.8 

Port Moody Rocky 

Point Park 310162 -122.8492 49.2808 6.68 

Powell River James 

Thomson School E271963 -124.5624 49.8893 2.56 

Powell River Wildwood 220205 -124.558104 49.88689 3.05 

Prince George 18th 

Avenue MAML E309666 -122.79525 53.90682 5.72 

Prince George Plaza 400 450307 -122.74194 53.91472 6.91 

Prince Rupert Fairview E312331 -130.352188 54.29262 2.32 

Prince Rupert Pineridge 

Elementary E312330 -130.337676 54.29855 2.39 
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Quesnel Senior 

Secondary E208096 -122.493227 52.98169 11.86 

Richmond South E207417 -123.1083 49.1414 6.16 

Smithers St Josephs E206589 -127.177324 54.78331 4.1 

Squamish Elementary E304570 -123.15133 49.70516 8.21 

Surrey East E206271 -122.6942 49.1328 5.22 

Taylor Lone Wolf Golf 

Course E304685 -120.67594 56.16013 6.35 

Terrace Skeena Middle 

School E300350 -128.6075 54.52167 4.22 

Tsawwassen E283549 -123.082 49.0099 4.39 

Valemount E234293 -119.269821 52.83246 5.07 

Vancouver International 

Airport #2 E232246 -123.1522 49.1864 5.4 

Vanderhoof Courthouse E269223 -124.0061 54.0163 7.02 

Vernon Science Centre E249492 -119.270723 50.26062 10.49 

Victoria Topaz E231866 -123.363165 48.44194 6.33 

Whistler Meadow Park E227431 -122.960402 50.14429 10.57 

Williams Lake 

Columneetza School 550502 -122.150391 52.14428 14.66 

 


