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Abstract 

The objective of this thesis is to develop an optically interrogated pressure sensor that is capable of 

measuring the applied fluid pressure in harsh environments. In its completed state, this sensor is 

intended be used in plastic injection moulding manufacturing in order to identify the current state of 

the plastic melt and optimize the process. An extrinsic fiber-optic Fabry-Perot pressure sensor, based 

on micro-electromechanical system (MEMS) is developed. A series of experiments are designed and 

carried out to validate the sensor’s applicability for high temperature and pressure environments. 

Preliminary results are gathered using an existing silicon membrane in order to verify the concept, 

which was fabricated using anisotropic etching. Silicon on insulator (SOI) multiuser fabrication 

process is used to produce three designs of silicon membranes through Deep reactive-ion etching 

(DRIE). These devices are packaged with a stainless steel housing using epoxy to support the die and 

verify alignment between the fiber and reflective membrane. Once assembled, the Fabry-Perot cavity 

is formed between the membrane and fiber surface. Experimental results are collected using the proof 

of concept device for temperature ranges of 20 – 100 °C and gauge pressures from 0 - 1000 PSI, and 

for the SOI devices at room temperature and gauge pressures from 0 to 3000 PSI. Analysis of this 

data shows operating pressure ranges of 150 to 2300 PSI, maximum nonlinearity of less than 2.6% 

and sensitivities between 0.36 and 1.4 nm/PSI. 

The experimental deflection results are compared against finite element and analytical models to 

verify the expected response. This is adjusted for temperature effects using predictions of material 

property temperature-dependence and thermal expansion.  In order to examine the impact of 

fabrication methodology, a fixed-fixed support analytical model is compared to experimental data of 

the four membrane designs. It is found that the anisotropic etched membrane shows poor agreement 

with this analytical model, showing 570% greater sensitivity than predicted using the model. Finite 

element modeling of the system shows significant deformation in the membrane support structure, 

resulting in this greater sensitivity. A simply supported analytical model is also compared to the data, 

showing 100% greater sensitivity. This model is adjusted using a least squares procedure to fit the 

experimental data through modification of the support-defined leading coefficient. A high 

temperature trial shows reduced sensitivity to pressure, corroborating the predicted finite element 

behavior. Silicon on insulator DRIE membranes show similar error, on the order of 100%, when 

compared to the fixed-fixed analytical model. This model is adjusted in a similar manner to fit the 

experimental data.  
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The findings of this thesis suggest that unaccounted-for deflection is present in the membrane 

supports of DRIE and anisotropic etched MEMS devices, which significantly impacts sensor response 

to pressure. This results in higher sensitivity than analytically predicted occurring in the experimental 

trials of the as-fabricated devices. Future work should be focused on expanding the predictive power 

of MEMS membranes, stabilization of the optical signal and integration of temperature sensing to 

expand the capabilities of the device while correcting for real-time thermal aberration. 
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Chapter 1 

Introduction 

Fiber optic pressure sensors are an emerging technology in MEMS (Micro Electro-Mechanical 

Systems), the implementation of which enables new approaches to device design which can 

fundamentally change the limitations of sensing in industrial, transportation and medical applications 

[1]–[3]. These devices present a sensing modality that is able to interact with harsh environments 

while mitigating complications incurred through direct physical contact with the medium of interest, 

such as high temperature or abrasion of the sensor. Although there are many implementations of fiber 

optics for this purpose, Fabry-Perot interferometry is the primary focus of this work. These devices 

use light to detect fluid pressure through demodulating the deflection of a sensitive membrane.  

Pressure sensing in plastic injection molding is critical to manufacturing process control, where 

inadequate pressure can result in low quality products while an excess may damage equipment and 

put workers at risk of injury during an accident [4]. Current industrial piezoresistive sensors are 

severely limited by the impact of temperature on their behaviour, denying manufacturers valuable in-

process data. These sensors infer the pressure in the machine’s barrel through membrane deflection, 

causing detectable resistivity changes in piezoresistive elements. Transfer fluids, such as mercury and 

silicone oil, are often used to protect the membrane from direct exposure to the plastic melt or to 

facilitate remote sensing. However, destabilization of the sensing elements (i.e. doped polysilicon 

films) and degradation or instability of the transfer fluids (e.g. silicone transfer fluids operate up to 

300°C) make these devices incompatible with high temperature environments. In silicon components, 

mechanical destabilization occurs between 600 and 800°C, but electrical issues can begin as low as 

150°C  [5].  Mercury was historically used as the primary transfer fluid in these sensors, but it is now 

restricted by the Canadian Environmental Protection Act, 1999, Products Containing Mercury 

Regulations SOR/2015-254. In order to expand process characterization capabilities, this project 

presents an optical system able to sense pressure, corrected for the effects of temperature while 

operating in a harsh environment.  

Currently available fiber-optic based devices have limited use in harsh environments, with devices 

in literature designed for operation in either high temperature or high pressure environments, but very 

few are capable of both. Currently commercially available premier piezoresitive pressure sensing 

systems operate in temperatures of 350 °C and pressures from 0 to 10000 PSI, but have high failure 

rates at temperatures above 400ºC [6]. Implementation of a successful device requires a system that is 



 

2 

able to adjust for temperature aberration of readings, resist the harsh chemical and abrasive 

environment of the plastic melt, while providing a platform for high resolution sensing. In previous 

works at the SIMS lab (Sensors and Integrated Micro-Systems Laboratory): a first attempt has been 

carried out, demonstrating the Fabry-Perot principle operating in this application [7]. A proof-of-

concept system is developed using the diaphragm of existing piezoresistive sensors (BCM sensor 

SE103-100bar-A-II-OB-G8-DW [8]), which are packaged with a supplied MorHeat product housing 

and used for representative pressure testing. Since the time of ordering, the SE103 data sheet 

available online has been changed and the geometry does not match the chips tested in this work; the 

original is available in Appendix A. In this previous work, the optical path is conceptualized and a 

ferrule is implemented for maintaining stability of the fiber tip. However, the acquired sensor results 

were since found to not represent Fabry-Perot interferometric behaviour, as laser light was not used to 

acquire the optical signal nor were the chips adequately secured to the housing. Building on the 

previous work, the work presented in this thesis presents an optical and mechanical system which is 

redesigned to address these problems. Both current and previous testing of the device remains well 

within the material limits, using optical interrogation to determine the membrane deflection. 

Experiments from the previous work are repeated with the improved system, resulting in successful 

testing of the proof-of-concept device. These results are used to inform material and geometry 

decisions when designing the prototype presented in this work. 

Through the research and selection of materials used to produce the membrane and optical fiber, a 

prototype device is designed to be capable of operating in harsh environment conditions of 300°C and 

pressures from in excess of 1000 PSI. This creates a platform for development of sensors for higher 

temperatures which are not limited by the restrictions of piezoresistive devices. Considering the 

temperature limitations discussed above, experimental results from the proof-of-concept are used to 

select the appropriate geometry to optimize resolution of the prototype sensor. The behaviour of this 

device is predicted by integrating solid mechanics and material science to approximate the 

temperature response: correcting for thermal expansion and the dependence of material properties on 

temperature.  

1.1 Motivation and Fields of Interest 
Piezoresistive sensors are the primary method used for pressure measurement in a variety of 

applications, such as: manufacturing process control, surgical intravascular monitoring, and engine 

optimization [3], [9]. These sensors are susceptible to errors and operational limitations due to their 
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dependence on electrical signals, such as RF (Radio Frequency) field interference and exposure to 

high temperatures disrupting their functionality. With the limited development of extrinsic FP 

sensors, there has been little integration of material science for correcting thermal expansion or 

material properties as a function of temperature. However, these principles have been extensively 

examined in other fields, presenting an opportunity to generate a novel model for prediction of 

MEMS membrane thermo-mechanical behaviour. 

Utilizing the stability of fiber optic sensors at high temperatures allows for data collection in 

environments which are not viable for piezo-based devices. Implementation of this technology will 

enable expansion of pressure sensors into industries or applications for which it was previously not 

possible to implement quantified process control. Compared to piezoresistive sensors, fiber optic 

sensors offer a number of benefits, such as [10], [11]: 

 Increased sensitivity 

 Electrical passivity 

 Dielectric construction 

 Viability in harsh environments, such as: 

o High voltage 

o Electrically noisy 

o High temperature 

o Corrosive 

 Applicability to measure many other parameters 

o Acoustic, magnetic, temperature, rotation, etc. 

 Compatibility with optical fiber telemetry (wireless) technology 

 Geometric versatility (flexible, able to be easily maneuvered) 

Piezoresistive devices operate based on changes in the resistance provided by their sensing 

elements due to changes in their geometry (metals) or resistivity (semiconductors) [12]. However, the 

operating temperature of metal piezoresistive devices is limited to ~130°C, so are not viable for the 

harsh environment applications examined in this project. Semiconductor devices resistivity is related 

changes in the number and mobility of free electrons caused by lattice deformation. In crystalline 

semiconductors, gauge factors in the longitudinal and transverse directions are affected by the type 

and amount of doping, with response strongly impacted by the alignment of applied stress to the 
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crystallographic directions. As such, these devices are dependent on the stability of the doped 

material for their reliable operation. 

1.2 Thesis Objectives and Organization 

The objective of this thesis is to combine principles of solid mechanics and material science to 

develop a predictive model for high temperature membrane behaviour. Through integration of 

membrane deflection equations and finite element analysis with thermal expansion and temperature 

aberration of material properties, a multivariable approach is used to account for the impact of 

temperature on membrane-based pressure sensors. This model is used to design and fabricate an 

interferometric Fabry-Perot pressure sensor capable of operating at 300 °C and in excess of 1000 PSI. 

The presented system is modular and designed for easy alignment of the optical fiber with the 

membrane. Due to the removal of electronic components from the sensing area, the limitations on 

operating temperature result only from the mechanical limits of the materials selected. 

Chapter 1 introduces the existing technologies used in harsh environment pressure sensing, with a 

focus on the motivations of creating the presented device. A short comparison of the capabilities of 

optical and piezoresistive technologies is presented, demonstrating the contribution to industry 

available in this project. Chapter 2 describes the theoretical background of the device, primarily 

discussing the operation of the Fabry-Perot interferometric principle as it applies to pressure sensing. 

In addition, sections are included detailing the implementation of thermal compensation and 

determining of material properties using microfabricated testing devices. Chapter 3 presents a 

literature review of the capabilities currently available in pressure sensing technologies. This explores 

the fabrication and sensing modalities most commonly used in state-of-the-art sensors. Chapter 4 

describes the design and fabrication of the device membranes. This includes an analytical and FEA 

(Finite Element Analysis) examination of the expected membrane behaviour and a discussion of 

mechanical design principles applied in the system. This chapter describes both the Proof of Concept 

and a total of three different SOIMUMPs (Silicon on Insulator Multi-User MEMS Processes) devices. 

Chapter 5 outlines the design and components of the optical system, alongside a description of their 

expected performance. Chapter 6 describes the integration of the MEMS devices and the optical 

components into a packaging using CNC machined housing components, as well as an analytical and 

FEA model of the impacts of thermal expansion and temperature-dependence of material properties 

on the sensor’s behaviour. Chapter 7 presents the experimental results acquired from the system with 

all four membrane types to verify its operation at high temperature and high pressure. An adjusted 
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mechanical model is developed to fit the experimental data is presented. In addition, a discussion of 

the behaviour characterization is presented. Finally, Chapter 8 describes the conclusions, 

contributions, future work and alternative applications of this device. 
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Chapter 2 

Background 

2.1 Fabry-Perot Interferometry 

Fabry-Perot interferometers operate based on the formation of optical fringes through superposition 

of phase modulated beams of light [13]. These originate from an extended/diffuse source, which is 

focused onto an etalon (pair of partially-silvered mirrors) [14]. Within this cavity, the beam 

undergoes multiple internal reflections and transmissions, each resulting in a parallel outgoing beam. 

Cavities are classified as either extrinsic, where a supporting structure is used to form the second 

surface of the etalon, or intrinsic, where the cavity is created within the fiber structure [13]. When 

operating in transmission, beams may then be focused by a lens onto a single point on the screen; 

where the beams interfere either constructively or destructively, depending on their phase and path 

difference. This process occurs independently for each angle of incidence, generating an array of 

fringes with intensity varying due to the path difference between the interfering beams. Bright spots 

occur at the modes of the etalon, where constructive inference results in resonance of the rays. In 

order for this interference to occur, the examined light must be coherent (identical waves, with 

constant phase difference) and monochromatic (identical wavelength). A ray diagram depicting the 

system is shown below in Figure 1, with an example fringe field in Figure 2. 

 

Figure 1: Fabry-Perot ray diagram, reprinted with permission from [14] 
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Figure 2: Fringe field with R=0.8, reprinted with permission from [14] 

The governing equations of this phenomenon are given below: through the manipulation of 

parameters, this concept can be functionalized for sensing of deflection. The occurrence of fringe 

intensity maxima are found using Equation 1. 

 2ndcos(θ) = mλ (1) 

Where: n is the refractive index of the medium between the plates of the etalon, d is the distance 

between the plates, θ is the angle of incidence, m is the mode number and λ is the wavelength of the 

light. However, as the incident angle is limited to less than 90 degrees within an optical system, the 

periodic ambiguity of the cosine function is negated. 

The modes of the etalon can be calculated using this equation to determine the incident angles that 

generate maxima. Through modulation of either the wavelength, or the distance between the etalon 

plates, the location of resonate modes can be modified and thus detected. This is the operating 

principle of pressure sensors using Fabry-Perot interferometry, which determine the deflection of the 

sensing membrane via the modification of this distance between etalon plates. In systems with a large 

distance between the etalon plates, relative to the wavelength, there exist a multitude of solutions to 

Equation 1and thus many viable modes of resonance. In optical fiber applications, the incident angles 

are limited by the acceptance angle of the fiber which can be calculated using the numerical aperture: 

which is defined as the sine of the acceptance angle, this calculation will be described in detail in later 

chapters. The admissible solutions to this equation will create a set of maxima for each etalon 

distance – however, this does not predict the intensity of the modes, or the intensity of their sum. 

Assuming that any angle below 90 degrees is acceptable, the number of viable modes increases by 

one for each half-wavelength increase in cavity distance - demonstrated in Figure 3. 
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Figure 3: Number of reflected modes vs. cavity distance in a Fabry-Perot device 

The reflected intensity of the device is predicted by averaging the interference behaviour of the 

electric field, as given by Equations 2 and 3 [1] [15] [16]. This Airy interference function is the 

principle model for the prediction of optical behaviour in Fabry-Perot pressure sensors and is used 

extensively in both the design and experimental validation of the device presented in this work. 

Derivation of this model is described in Hill’s work, the final equation of which can be simplified into 

the form utilized here [16]. 

 
ூೃ

ூ೚
=  

ோభାோమିଶ∙ඥோభோమ௖௢௦థ

ଵାோమோభିଶ∙ඥோభோమ ୡ୭ୱ థ
 (2) 

 ϕ =
ସగ௡௅

ఒ
 (3) 

 𝑅 = ቀ
௡೔ି௡೟

௡೔ା௡೟
ቁ

ଶ
  (4) 

Where: 𝐼ோ is the reflected intensity, 𝐼௢ is the initial intensity, 𝑅ଵ and 𝑅ଶ give the normal reflectivity 

of the etalon surfaces, ϕ is the round-trip phase shift of the primary mode, 𝑛 is the refractive index of 

the medium between the etalon plates, 𝐿 is the distance between the etalon plates, 𝜆 is the wavelength 

of the light, 𝑛௜ is the index of refraction of the incident medium, and 𝑛௧ is the index of refraction of 

the transmitted medium. 
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2.2 Reflection Cavity and Membrane Synthesis 

Utilizing the theory discussed above to determine information about a system requires that the device 

is able to directly control or detect at least one variable in the governing equations as an input 

parameter. In pressure sensors, modification of the reflection cavity length is the primary 

methodology utilized and is applied in this project. A controllable optical cavity of the device can be 

created through various methods of fabrication, micromachining and in-fiber implementation being 

the most common. This is carried out by either creating an additional structure which interfaces with 

the optical system (extrinsic structure), or modification of the optical fiber itself to achieve 

functionalization (intrinsic structure), depending on the material requirements for the application. 

In extrinsic systems, the etalon reflection cavity planes are composed of a thin film membrane and 

the surface of an optical fiber, as shown below in Figure 4 [17]. This arrangement allows for the light 

to behave in a similar manner to the theoretical system; where the parameter, L, from Equation 3 is 

defined by the gap between the two surfaces and varies with the pressure on the thin film. For the 

purposes of analysis, it is assumed that the deflections of the membrane are small and it remains 

parallel to the end of the fiber at all times. Coatings can be used to increase reflectivity of the 

membrane and fiber, which in turn increases the potential resolving power of the sensor. 

 

Figure 4: Fabry-Perot pressure sensor optical cavity  
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2.2.1 Signal Demodulation 

Pressure of the system is determined by relating the intensity expression described in Section 2.1 to 

the mechanical response of the membrane. Through rearrangement and substitution of Equations 2 

and 3, an expression for pressure in terms of material properties and optical intensity can be found, as 

follows. First, an Equation 2 is rearranged to find an expression for phase as a function of intensity as 

shown in Equation 5. 

 ϕ = cosିଵ ൬
ூାூோమோభିோభିோమ

ଶூ ඥோభோమିଶඥோభோమ  
൰  (5) 

Recall that L is defined by the cavity distance of the etalon, which modulates the deflection of the 

membrane. Substituting Equation 3 into Equation 5 and rearranging for L yields an expression of the 

cavity distance as a function of the intensity as shown in Equation 6: 

 𝐿 =
ఒ

ସగ
cosିଵ ൬

ூାூோమோభିோభିோమ

ଶூ ඥோభோమିଶඥோభோమ  
൰  (6) 

For the purposes of this work, a square membrane is used – the deflection of which is defined by 

the thin film approximation as shown in Equation 7, which is valid for deflections smaller than 25% 

of the membrane thickness [15]: 

 δ =
௉ఈర(ଵି௩మ)

ସ.ଶா௧య
 (7) 

Where: 𝛿 is the orthogonal deflection of the membrane, P is the applied pressure, 𝛼 is half of the 

membrane side-length, v is the Poisson’s ratio, E is the elastic modulus and t is the thickness of the 

membrane. 

By combining Equations 6 and 7 and rearranging, an expression for pressure is obtained in terms of 

the optical intensity. The final demodulation equation is given by Equation 8: 

 𝑃 =
ସ.ଶா௧యఒ

ସగఈర(ଵି௩మ)
cosିଵ ൬

ூ ାூோమோభିோభିோమ

ଶூ ඥோభோమିଶඥோభோమ  
൰  (8) 

The behaviour of a membrane is approximated by a rectangular plate with all edges fixed as it is 

exposed to uniform loading: defined by Roark analytically as follows in Equations 9, 10 and 11 [18]. 

 𝜎௠௔௫ = −
଴.ଷ଴଻଼௉௕మ

௧మ
  (9) 

 𝜎௖௘௡௧௘௥ = −
଴.ଵଷ଼଺௉௕మ

௧మ
  (10) 
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 𝛿௠௔௫ = −
଴.଴ଵଷ଼௉௕ర

ா௧య
  (11) 

Where: 𝜎 is the membrane stress, 𝛿 is membrane deflection, 𝑃 is distributed load given in 
Force

Area
, 𝑏 is 

the membrane side length 𝑡 is membrane thickness and 𝐸 is elastic modulus of the membrane 

material. 

Should a circular membrane be used, the derivation presented above is modified by substitution of 

Equation 12, where R is the radius of the membrane [19]. 

 δ =
ଷ௉ோర(ଵି௩)

ଵ଺ா௧య
 (12) 

 In addition to mechanical demodulation, the thermal behaviour of the sensor is considered through 

correcting for changes in material properties, thermal expansion and residual stresses as a function of 

temperature. As temperature increases, it is expected that the mechanical softening of the membrane 

and reduction of the cavity distance as the materials expand will result in erroneous pressure response 

data, giving higher pressure readings than the true value. In the case that the coefficient of thermal 

expansion of the membrane is greater than that of the substrate, this effect is expected to be further 

amplified by residual stresses - decreasing the membrane’s stiffness through application of 

compressive axial loading to the system. These impacts will be further examined through analytical 

and finite element analysis in Chapter 4. 
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Chapter 3 

Literature Review 

Fabry-Perot pressure sensors are established in the literature for low temperatures and pressures, but 

are still emerging into the harsh environment space. In this section, previous works are presented and 

contrasted to the developed sensor – alongside an overview of manufacturing and signal collection 

techniques which have previously found success in the field. Existing work has been carried out on 

both single-material and SOI sensor compositions, the latter of which introduces CTE-mismatch 

errors at high temperatures which has available limited temperature ranges and must be considered 

when developing a predictive model. However, the majority of SOI sensors discussed in literature 

operate based on piezoresistive elements, which have temperature ranges limited to 500°C [20]. 

3.1 Fabrication of Membranes and Sensors 

Fabrication of Fabry Perot pressure sensors is characterized into two general morphologies, referred 

to as extrinsic or intrinsic sensors. These categories indicate whether the sensor is fabricated through 

integration of the optical fiber with an external system, in the case of extrinsic sensors; or if the fiber 

is directly modified to introduce sensing capabilities, as is the case of intrinsic sensors. 

3.1.1 Extrinsic Morphology 

The primary fabrication method utilized in harsh environment applications is semiconductor 

micromachining, due to the favourable mechanical properties of these materials. This fabrication 

methodology is commonly used throughout pressure sensing applications and permits formation of 

materials such as silicon, silicon carbide, gallium arsenide, etc.; to compose the membrane and cavity 

through series of deposition and etching to generate the desired geometry [17], [21], [22]. The 

resulting device is bonded to an optical fiber, either directly or through integration of a larger housing 

system. Alignment of the fiber and membrane is critical in this step, as the operation of the system 

requires that the reflective surfaces of the etalon formed at this interface are parallel. This 

methodology permits the use of highly reflective mirrors, which can obtain high finesse interference 

signals. Additionally, this methodology is relatively simple, not requiring high cost equipment. 

However, extrinsic sensors often have low coupling efficiency, necessitate careful alignment (as 

mentioned above) and require supporting packaging (which can present additional issues) [13]. 
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Pulliam et al. (2002) created an extrinsic Fabry-Perot using sapphire fiber adhesive fixed to a 

micromachined silicon substrate with silicon carbide bonded membrane; this is representative of 

extrinsic Fabry-Perot pressure sensors and is shown in Figure 5 [17]. This device is capable of 

operating up to 600°C, 750 kPa. Static pressure fluctuation testing is carried out in a turbine engine 

system and compared to piezoresistive sensor data. Despite significant apparent noise, uncalibrated 

fiber optic sensors demonstrate a clear correlation to the piezo-data and performed as expected with a 

high degree of repeatability. In this work, the impact of thermal drift on sensor behaviour is 

identified, but not quantified or predicted analytically; however, temperature compensation is 

mentioned without discussion of an implementation methodology. 

 

Figure 5: Example of extrinsic Fabry-Perot device morphology – credited to W. J. Pulliam, P. 

M. Russler, and R. S. Fielder, “High-temperature high-bandwidth fiber optic MEMS pressure-

sensor technology for turbine engine component testing,” in Environmental and Industrial 

Sensing, 2002, vol. 4578, pp. 229–238. [17] 

Fang et al. (2016) developed a broadband Fabry-Perot pressure sensor, which is fabricated by 

anodically bonding a silicon micromachined membrane to a Pyrex glass substrate [23]. Light is 
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introduced by an optical fiber to reflect from the sputtered gold reflective surface on the back surface 

of the silicon membrane, thus generating a Fabry-Perot cavity. The sensing principle is based on 

detecting the shift in the selected reflected wavelength of interest (1550 nm in this paper) as the cavity 

length changes with pressure and temperature. Testing is carried out at constant temperature in a 

heated gas cylinder with four trials over the range of 20 – 300°C, at pressures from 0 – 600 kPa (87 

PSI) in 100 kPa increments. A linear decrease in the primary reflected wavelength is observed over 

the tested pressure ranges, which is correlated to sensitivity on the order of pm/kPa. Decreases in 

sensitivity as temperature increases are observed when comparing the four temperature trials, with the 

sensor being most responsive at 20°C. A temperature response trial is also carried out at constant zero 

pressure, demonstrating a thermal drift as the reflected wavelength increases with temperature. 

Similar to the work presented by Pulliam, thermal drift is identified and demonstrated but not 

predicted using analytical model. 

In a 2018 work, Jia et al. present a high temperature batch-fabricated CO2 laser fused device, 

which provides a low cost and highly repeatable fabrication process. Micromachined Pyrex glass 

wafers are anodically bonded to gold-plated silicon wafers using batch-fabrication to form the sensor 

head, and then fused to a single-mode fiber using CO2 laser to create the Fabry-Perot cavity. This 

sensor is integrated with a fiber Bragg grating, permitting data collection and compensation while 

operating in high temperature environments. Taking advantage of temperature decoupling, 

experimental results demonstrate maximum pressure reading errors of  <1.05% while operating in 

pressures of 0–0.5 MPa (72 PSI) and temperatures of 20°C–350°C, with maximum nonlinearity of 

0.4% [24]. This paper considers the change of material properties with temperature but does not 

consider the impact of thermal expansion on error and sensor response. 

Similar work produced by Liu et al. (2018) utilized a thin circular ceramic membrane to determine 

pressure, with a pressure range up to 160 kPa, but a compensated temperature range of 20-300°C with 

sensitivity of 0.205 nm/kPa [25]. In another, Wang (2008) achieved pressure ranges of 0-30 MPa, 

between 18 and 300°C, with an accuracy of 0.03MPa using a multiplexed pressure and temperature 

sensor [26]. However, this structure is immersed in the liquid and cannot be used for the turbulent 

flow experienced in the presented work 

In all these presented works, there is evidence of extrinsic pressure sensors most commonly 

operating with compensation in temperatures of 300°C but limited to pressures of 100 PSI. In this 
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thesis, this pressure range will be expanded to 1000 PSI and a comparison of the mechanical 

behaviours of anisotropic and DRIE etched membranes is carried out on SOI constructions. 

3.1.2 Intrinsic Morphology 

Through modification of the fiber itself, functionalization the system can be achieved without the 

need to fabricate a separate membrane. These methods, which form an intrinsic Fabry-Perot cavity, 

can be accomplished in a variety of manners, such as: micromachining of the fiber, fiber Bragg 

gratings (FBGs), chemical etching, and thin film deposition [13]. By forgoing the need for packaging, 

intrinsic sensors feature extremely low form factors, which excel in fields such as medicine and 

immersed fluids; however, the cost of implementation varies considerably based on the methodology 

utilized and the materials may have poor mechanical properties which limit their applicability to 

harsh environments. 

In one example, the fiber is dip etched in HF to form the optical cavity; this is accomplished by 

utilizing the fact that the core of the fiber is made up of germanium doped material, which etches 

faster than its un-doped cladding [11]. Upon creation of the cavity, the fiber is dipped into a polymer 

solution (P-1190A in dimethyl formamide), forming a membrane which spans the opening. The 

properties of this membrane depend on the concentration and drying speed of the solution. A 

schematic of this device is shown below in Figure 6, which is representative of the general 

morphology of intrinsic Fabry-Perot pressure sensors. 

 

Figure 6: Schematic of intrinsic Fabry-Perot pressure sensor © 2002 IEEE [11] 

In 2013, Zhang et al. present a sensing head which is formed using a laser micromachined Fabry-

Perot air cavity and a fused-silica diaphragm. The outer surface of the diaphragm is thinned and 

roughened using a femtosecond laser, with minimum thicknesses of 2.6 μm. Experimental trials yield 
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a sensitivity of 2.8x10−4 nm∕Pa and resolution of 180 Pa in pressures up to 60 kPa. At temperatures up 

to 700°C, a linear response to temperature is observed, with low pressure-temperature cross-

sensitivity of 15.86 Pa∕°C. However, these values do not include temperature compensation and errors 

of ~2% are observed between the calculated and measured pressure values in autogenic water 

pressure testing up to 200°C [27]. 

Wu et al. (2011) report forming a FPI cavity using a commercially available fusion splicer to splice 

a solid-core photonic crystal fiber to a standard single-mode fiber. Using wavelength shift as the 

sensing modality, this sensor generates excellent harsh environment experimental measurements in 

pressures up to 40 MPa (5801 PSI) and temperatures up to 700 °C, with sensitivities of ~5.8 pm/MPa 

and ∼13 pm/°C, respectively. Thermal expansion and changes in refractive index are approximated 

analytically, which show good agreement with the experimental linear fitted slope data [28]. 

These in-fiber sensors present large variation in available temperature and pressure ranges due to 

the variety of material and fabrication techniques. The presented works offer much higher 

temperatures and pressures than the extrinsic morphologies, but their fragility makes them difficult to 

apply to turbulent flow applications.  

3.2 Signal Collection 

Signal from the device can be collected through the measurement of a number of different optical 

parameters, each of which presents the information available from the system through significantly 

different means. Two such possibilities are discussed in detail in the following sections. 

3.2.1 Linear Range Detection 

Linear range detection utilizes the linear region of the sensor response profile to measure the 

amplitude shift due to etalon deflection [29]. Path difference can be accurately captured using this 

method and high sensitivity is achieved, the linear operation region is shown in Figure 7. However, 

by utilizing a narrow band of source wavelengths, ambiguity is present in the signal due to the 

periodic nature of the signal, as observed in the response data.  
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Figure 7: Visualization of linear range 

In addition, there may be an amplitude loss visible in the data, as shown in Figure 8 [17]. The 

overall shape occurs due to two phenomena: the periodic nature of the interference of light, and the 

decrease in intensity due to diffusion over the absolute distance between the collection surface and the 

reflection surface. A photodiode provides an inexpensive solution to measure the total absolute 

intensity but is not able to correct for the ambiguity in the signal. By contrast, Charge Coupled 

Devices (CCD) also gather position information and convert it into voltage by collecting and mapping 

the charge incident on the collector [30]. Although CCDs provides excellent resolution, the 

components are quite expensive and requires a complicated demodulation algorithm which utilizes 

the fringe pattern to account for the periodic ambiguity [31]. 
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Figure 8: Optical response intensity variation visualization – credited to W. J. Pulliam, P. M. 

Russler, and R. S. Fielder, “High-temperature high-bandwidth fiber optic MEMS pressure-

sensor technology for turbine engine component testing,” in Environmental and Industrial 

Sensing, 2002, vol. 4578, pp. 229–238. [17] 

3.2.2 Spectroscopy 

Using a spectrometer, the system measures frequency shift in the reflected light as it passes through 

the etalon [11], [21]. As light phase passes through the etalon, the phase changes it experiences is 

dependent on the period of vibration of its wavelength. Consequently, different wavelengths will 

experience varying degrees of interference when they are recollected by the fiber, resulting in a shift 

of the intensity spectra. The deflection of the membrane is modulated through this intensity function 

as it changes with movement of the etalon cavity. By using a broad spectrum of incident light, this 

method does not depend on the specific fringe pattern generated by the etalon. By avoiding the 

periodicity ambiguity found in CCD collection, devices are permitted sensing wide pressure ranges 

without  recalibration [11]. While this method simplifies the demodulation of the signal, it also results 

in a lower sensitivity when compared to linear range detection. 
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Figure 9: Spectrometer signal response example © 2002 IEEE [11] 

In a 2006 article, Li et al. present an extrinsic diaphragm fabricated using Si micromachining, 

which measures shifts in the respected optical spectrum in order to determine the applied pressure. 

Using this method, the minimum detectable change in pressure was 0.99 kPa, with a sensitivity of 

10.07 nm of spectral shift per MPa over a range of 0.2-1.0 MPa. However, temperature dependency 

was not examined in this work, so it cannot be compared to linear range sensors [21]. 
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Chapter 4 

Membrane Design and Fabrication 

The system design is carried out through a combination of analytical and finite element methods, with 

a focus on the thermo-mechanical behaviour of the membrane. Geometry is calculated in order to 

optimize operating range, and sensitivity of the device to pressure. 

Two membrane morphologies are examined in this study: an existing die purchased from BCM 

sensors (SE103-100bar-A-II-OB-G8-DW [8]), and a custom-fabricated die using SOIMUMPS. The 

dimensions of the custom membrane design are based on examination of the SE103 die, to ensure that 

similar performance metrics are achieved and their results can be compared. Dimensions and 

morphology of the SE103 PoC die, as provided by the manufacturer, are shown in Figure 10; note 

that no information with regards to the thickness or size of the membrane is provided. The cavity is 

sealed with a glass constraint, which requires that a hole is drilled in order to functionalize the SE103 

die through insertion of the fiber optic sensor. 

 

Figure 10: SE103 spec sheet dimensions (given in mm) [8] 

The remaining dimensions of the SE103 die are determined through visual inspection and 

destructive testing. A drilled die is first examined by inspecting the back-side of the chip under a 

microscope to determine the membrane width, as shown in Figure 11. This die is then fractured using 

a diamond blade and examined under a microscope to find the membrane thickness, as well as 

confirm the width and etch angle; this is shown below in Figure 12. Finally, the extracted dimensions 

are summarized in Table I. 
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Figure 11: SE103 membrane width measurement 

 

Figure 12: SE103 PoC membrane dimensions – destructive testing 

Table I: Summary of SE103 dimensions 

Silicon Wafer Thickness (μm) 400 

Glass Constraint Thickness (μm) 800 

Membrane Thickness (μm) 95.18 

Membrane Width (μm) 680.08 

Membrane Etch Angle (°) 128.60 
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4.1 SOIMUMPs Design 

SOIMUMPs fabrication, provided by MEMSCAP, is utilized to produce the custom prototype dies. 

This provides a reliable and consistent device platform, through taking advantage of an established 

and characterized methodology. The chips are manufactured from a SOI (Silicon on Insulator) wafer, 

which is comprised of two layers of single crystal silicon with an insulating layer of silicon dioxide 

between them.  

Fabrication is carried out through first depositing the pad metal using a liftoff process to form the 

fine metal features of the chip. Then the chip’s silicon layer is pattered and DRIE etched to form the 

mechanical structures of the device. A similar process, referred to as the trench cut, is carried out on 

the substrate (also referred to the handle) layer which allows through-hole structures to be formed. 

The exposed oxide layer is then removed, providing access to the back side of the device layer. 

Finally, coarse metal features are formed using a shadow-masked process, which blankets exposed 

areas of the device using E-Beam evaporated metal. A schematic impact of each step on the final 

geometry of each layer is shown below in Figure 13. The SOI membranes used for this project are 

formed using a square trench cut of the substrate layer, the size of which determines the membrane 

side length of the final device. Device layer thickness options of 10 or 25 μm are offered, which 

defines the final thickness of the membrane for the purposes of this analysis. The thicknesses of each 

layer are shown in Table II below. The full fabrication details used to produce the dies described in 

this project are described in SOIMUMPs Design Handbook Revision 8 [32]. 

 

Figure 13: SOIMUMPs fabrication schematic, adapted from [32] 
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Table II: SOIMUMPs layer thickness [32] 

Layer 10 μm Thickness (μm) 25 μm Thickness (μm) 

Device (Si) 10 ± 1 25 ± 1 

Oxide (SiO2) 1 ± 0.05 2 ± 0.1 

Handle (Si) 400 ± 5 400 ± 5 

When submitting for SOIMUMPs fabrication, design rules (as outlined in the handbook) must be 

followed to ensure that the resulting chips are properly produced. These rules place limitations on the 

possible geometry of the prototype chips and must be considered in their design and analysis. The 

most significant limitations are summarized below in Table III. The “Center to Center” tolerance 

indicates the top-to-bottom alignment of any features in the layer; this tolerance may result in 

geometries being offset from their intended position. “Edge to Edge” tolerance accounts for boundary 

variations in the geometry profile, such as the etching profile of the through holes in the Substrate 

layer. These through holes also require that no released devices are included on tested membrane 

chips, as they would compromise the integrity of the fluid barrier. In addition, all geometries present 

in the PADMETAL layer must be enclosed by silicon on all edges by at least 3 microns, to ensure 

stability of the metal. Finally, implementation of “dimple” features reduces the likelihood of stiction 

in closely-spaced, long, narrow beams, by reducing the available surface area during release process. 

Table III: SOIMUMPs feature restrictions [32] 

Layer 
Minimum Feature 

(μm) 

Required Spacing 

(μm) 

Center to 

Center 

Tolerance (μm) 

Edge to Edge 

Tolerance 

(μm) 

SOI (Si) 2, if orthogonal 2 - - 

Trench 200 200 ±5 +50 

Pad Metal 3 3 ±3 ±3 

Blanket Metal 100 100 ±35 ±40 

In a standard SOIMUMPS order, four unique chip designs can be produced in sets of fifteen pieces 

by utilizing the sub-dicing options provided. This presents the opportunity to create chips of three 

different membrane side lengths, in addition to one which includes material characterization devices. 
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These characterization devices (detailed in Appendix B) are used to determine the elastic modulus 

and residual stress present in each set of membranes, which may vary depending on their specific 

fabrication conditions – such as the local temperature and chemical makeup at the specific location on 

the wafer. Selection of the membrane side lengths is presented in Section 4.2, alongside an analysis of 

their expected behaviour. As a consequence of the limitations of the fabrication method, particularly 

in the feature size of the Trench layer, a minimum membrane side length of 200 μm is established. 

The masks submitted to MEMSCAP for fabrication are shown below in Figure 14. The full size of the 

delivered chips is 11.15mm x 11.15mm, but the design area is restricted to 9mm x 9mm due to the 

masking process – this is shown below in Figure 15. 

 

Figure 14: SOIMUMPs chip design masks 
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Figure 15: Design area visualization [32] 

4.2 Design Analysis 

Utilizing the dimensions determined in the sections above, the following sections describe the 

expected mechanical behaviour of the PoC membrane as predicted using finite element and analytical 

methodologies.  

4.2.1 Analytical Method 

The membrane response is predicted analytically using the equations described in Section 2.2.1. . 

Calculated displacement is used to determine the resulting cavity distance by subtraction from the 

initial distance of the cavity at zero applied pressure, shown in Equation 13. Initial cavity distance, 

given by L, is defined as the distance between the end surface of the optical fiber and the surface of 

the membrane. As the device is operating in a plate bending behaviour geometry, the elastic modulus 

is taken as 170 GPa at room temperature, as per Hopcroft’s 2010 study [33]. This is corroborated as 

167.7 GPa at 25°C, as determined using the temperature dependent equation in section 6.3.1 [34]. 

 𝐿௖௔௩௜௧௬ = 𝐿௜௡௜௧௜௔௟ − δ  (13) 

The resulting intensity of the reflected light is approximated by substituting cavity distance into the 

path difference relation as follows in Equation 14. This approximation only considers the theoretical 

optical behaviour of the reflection cavity, assuming the surfaces are perfectly parallel and no other 

losses are occurring; this does not account for rays that are not collected by the fiber or coupling 

inefficiencies. 
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 ϕ =
ସగ௡௅೎ೌೡ೔೟೤

ఒ
  (14) 

Failure pressure of the membrane is determined by calculating the applied pressure at which the 

maximum stress exceeds the yield stress of silicon. Using Roark’s expression for maximum stress and 

rearranging for pressure, the applied failure load is given by Equation 15, where average fracture 

strength at room temperature is 3.33 GPa [35]. 

 𝑃௙௔௜௟௨௥௘ =
ఙ೘ೌೣ௧మ

଴.ଷ଴଻଼ మ
  (15) 

The results of the analytically estimated membrane performance are summarized below in Table IV 

for both the PoC device, as well as various combinations of custom membrane thicknesses and 

widths. It is observed that a custom membrane with thickness of 10μm has comparably much lower 

failure pressure than the 25μm option and is not able to meet the goal of detecting pressures 

approaching 10000 PSI. As such, the more durable 25μm thickness option is selected for further 

investigation and development of the custom membrane. The mechanical sensitivity of the sensor to 

an applied pressure is approximated by calculating the per-unit displacement response. Through 

which it is also observed that as the side length increases in the custom membrane, higher sensitivity 

is achieved in exchange for a lower failure pressure. Consequently, devices are designed to present 

two directions of performance: lower pressure range with high sensitivity, or high pressure range with 

reduced sensitivity. 

Table IV: Membrane performance design summary 

 Thickness (μm) 
Side Length 

(μm) 

Failure Pressure 

(PSI) 

Sensitivity 

(nm/PSI) 

PoC Device 94 681 27509 0.139 

Custom 10 - 200 10 200 3534 0.685 

Custom 10 - 300 10 300 1571 3.47 

Custom 10 - 400 10 400 884 10.96 

Custom 25 - 200 25 200 22088 0.0435 

Custom 25 - 300 25 300 9817 0.220 
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Custom 25 - 400 25 400 5522 0.696 

Visualization of the expected membrane behaviour is carried out by graphing the relationships 

described above with respect to pressure using Matlab. The calculated maximum displacement, cavity 

distance, stress response relative to yield and ideal intensity response to pressures up to 1000 PSI are 

compared for the PoC and custom membranes with widths of 200-450μm in steps of 50μm. Intensity 

response graphs for PoC and 300μm width are shown in Figure 16 and Figure 17, respectively; 

further characterization for all sensor designs can be found in Appendix C. It is observed that over the 

1000 PSI range, the PoC membrane intensity remains fairly linear and does not significantly 

demonstrate periodicity of the response – assuming that the initial cavity distance is set such that 

initial intensity is at its minimum. By contrast, the 300μm custom membrane demonstrates greater 

sensitivity to applied pressure and the characteristic sinusoidal trend is observed in the intensity 

response. However, in both cases, the membrane does not approach failure over the examined 

pressure range when compared to a yield strength of 3000 MPa. 

 

Figure 16: Predicted PoC fixed assumption model intensity 
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Figure 17: Predicted custom SOI membrane intensity, with 25μm thickness and 300μm width 
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4.2.2 Finite Element Method 

Coventorware finite element modeling is used to verify the analytical prediction of the membrane’s 

response to pressure. This model includes the sensing membrane, as well as the surrounding silicon 

supporting material. It is assumed to be fixed in all directions at its bottom surface, reflecting the 

housing surface which the chip rests on; fixing the device in z; and the epoxy used to secure its 

movement; fixing the device in x and y. Pressure is applied to the entirety of the top surface, 

including both the membrane and the supporting material, as will be the case in the final application. 

The housing assembly will be described in more detail in Section 6.1. Parabolic mapped bricks are 

selected for meshing, which creates sections of higher mesh density based on the partitioning of the 

model. A mesh convergence study is performed to ensure reliability of the FEA results. Through 

comparison of the maximum predicted membrane displacement, a relationship between the number of 

elements and the convergence of the model result is determined: shown below in Table V and Figure 

18. The final meshed model using element size 30 is shown below in Figure 19. 

Table V: FEA mesh convergence study for PoC membrane simulated at 1000 PSI 

Element size Number of Elements Maximum displacement (μm) 
Time to complete 

(hr:min:sec) 

100 4000 0.4383 0:00:19 

50 27520 0.4405 0:03:00 

40 60200 0.4465 0:09:15 

30 152196 0.4477 0:45:30 

25 256000 Did not converge Did not converge 
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Figure 18: FEA mesh convergence graph for PoC membrane simulated at 1000 PSI 

 

Figure 19: PoC mapped bricks meshed model 
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Predicted maximum displacement is found to be significantly higher than the fixed support 

analytical model; where the FEA and fixed model predict values of 0.4477 and 0.143 μm, 

respectively at 1000 PSI. Through examining the FEA displacement results (Figure 20 and Figure 

21), it is clear that deformation is present in the supporting structure of the membrane which indicates 

non-ideal membrane support. This results in significant softening of the sensor’s response to pressure 

and changes in the loading conditions as the supports deform, which can manifest in load rotation at 

high deflection and irregularities due to varying thickness. 

 

Figure 20: PoC device FEA displacement results at 1000 PSI, top side 
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Figure 21: PoC device FEA displacement results at 1000 PSI, bottom side 

A predicted von Mesis stress profile of the device is visualized in the FEA model presented below 

in Figure 22 and Figure 23, where stress concentrations are shown to occur at the center of the 

membrane edges. This behaviour is in accordance with the expected stress profile of a square 

membrane operating under distributed load. However, the FEA model predicts a maximum stress of 

1600 MPa, compared to an estimated 100 MPa using the fixed support analytical model. This result 

suggests a significantly greater risk of exceeding the 3000 MPa yield strength of silicon than expected 

using analytical methods. 
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Figure 22: PoC membrane von Mises stress visualization at 1000 PSI, top side 

 

Figure 23: PoC membrane von Mises stress visualization at 1000 PSI, bottom side 
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The observed mismatch between the analytical and FEA models suggests that the non-ideal support 

behaviour will result in higher membrane stresses and deformation than analytically predicted. This 

will manifest in higher experimental sensitivity to pressure and earlier failure of the device than 

expected from the fixed support model. It is expected that membranes which are very thin relative to 

their support material would have reduced influence on the deformation on the supports than 

observed in this FEA model. Consequently, thin membranes may not encounter the non-ideal 

deformation to the extent presented in this work. This may explain why the low pressure membranes 

discussed in literature showed better agreement with the fixed support analytical model. 

4.3 As-fabricated Custom SOI Inspection 

Once the fabricated chips are received, they are analyzed under an optical microscope to verify the 

tolerance of the membrane side length and thickness, as well as examine the angle of the etching 

below the membrane. These parameters are critical to the operation of the sensor, as small variations 

in the geometry of the membrane can significantly impact its behaviour. Due to the use of DRIE 

(Deep Reactive Ion Etching), the etching cavity has a lofted geometry with a larger side length on the 

membrane side, compared to the exposed surface; this suggests that it is possible that simply 

measuring the opening in the exposed cavity surface is not truly representative of the membrane side 

length. As shown below in Figure 24 and Figure 25, the as-fabricated membrane and cavity 

dimensions show very little deviation from the designed values; however, due to the destructive 

nature of this test, only one chip was examined in this manner.  

By examining the behaviour of devices designed to measure the material properties of a chip, the 

membrane deflection can be better predicted by using the as-fabricated material values, rather than 

those available from literature. Resonant cantilevers are included in order to determine the elastic 

modulus, as well as Vernier gauges to determine the residual stress, and a set of devices designed by 

Osterberg and Senturia (referred to as M-TEST) which are able to measure both parameters. The 

purpose of these devices and their governing equations are described in Appendix B. 
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Figure 24: As-fabricated SOIMUMPs chip membrane dimensions 

 

Figure 25: As-fabricated SOIMUMPs etch cavity dimensions 
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Chapter 5 

Optical System 

5.1 Optical Path 

In this application, the light is directed through an optical fiber which allows for transportation 

through a flexible medium from the source to the membrane and finally reflected back to the detector. 

This permits sensitive detection components to remain separated from the harsh sensing environment, 

while also precluding the need for the use of transfer fluids or mediums. Light is generated at the 

source, which may have a narrow or broad wavelength range depending on the signal collection 

method used and the required fidelity. In the case of this device, a narrow band is selected to reduce 

signal noise during interference. Once coupled into the fiber, the light is then transmitted to the 

reflection cavity where the beam is first reflected by the end of the optical fiber, followed by the 

membrane. The beams then undergo multiple internal reflections through the etalon formed between 

the surface of the fiber and membrane; the resulting signal is recollected by the fiber, where the path 

difference results in the light reflected from the fiber interfering with the light recollected from the 

membrane cavity. This signal returns to the coupler to be redirected to the detector, resulting in a loss 

of intensity as it is divided between the source and acquisition paths. The light is then projected onto 

the optical signal collector (photodetector), such as a CCD (Charge-Coupled Device) or a photodiode, 

which detects the incident intensity. Finally, this is passed through data acquisition and processing, 

where demodulation of light/charge information is used to calculate deflection (and applied pressure) 

of the membrane. A visualization of this path is shown in Figure 26. 
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Figure 26: Optical path design 

The sensing end of the fiber is stabilized through attachment of a ferrule, ensuring that the 

alignment and position of the tip can be predicted by providing a larger geometry for manipulation. 

For testing at temperatures below 85°C, a Thorlabs CFML21L10 cannula is selected. For higher 

temperatures, a custom connector is formed to have similar geometry to that of the Thorlabs cannula, 

making use of the same stainless steel ferrule component to support the fiber tip. In this way, the use 

and testing of a variety of combinations of adhesives and fibers can be carried out. These 

combinations may not be commercially available, thus expanding the possible operating range of the 

system. The high and low temperature variations are shown below in Figure 27. The epoxy used for 

assembly of the fibers is EPO-TEK 353ND, which has a maximum operating temperature of 350 ºC 

[36]. 
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Figure 27: Fiber probe tip - Top: Low temperature option, Thorlabs CFML21L10 Bottom: 

High temperature option, Thorlabs ferrule and custom machined support 

Comparing the geometry of the ferrule tip and the etched membrane cavity (as determined in 

Chapter 4), the minimum PoC sensor cavity length is estimated according to Figure 28, below. This 

yields an initial distance of 0.131mm, which decreases according to the deflection of the membrane as 

pressure is applied. 

 

Figure 28: PoC sensor cavity size visualization 

5.2 Optical Components 

The optical system components are selected to provide operation both at room temperature and within 

harsh environment applications. An initial prototype is produced using on-hand resources available in 
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the lab, which is then used to inform selection of the high temperature specifications. The following 

parts are included in the full assembly and are detailed below: 

 Optical fiber, coupled 2:1 

 Ferrule for fiber support 

o SFLC127-10  

 Ø1.25 mm, 6.4 mm, Ø127 µm bore size, stainless steel 

 Optical Signal Interrogator (OSI) 

o Contains photodetector and relevant electronics for signal collection 

 Laser Light Emitting Diode (LED) 

o TT Electronics OPV314AT [37] 

 Total coupled power of 600 µW into a 50/125 µm fiber, tested when 
operating at currents of 7 mA 

 SMA and ST connectors (depending on required connection for OSI and LED) 

A low temperature prototype is ordered from Thorlabs using FG105LCA fibers which are formed 

into a 2:1 coupler; this same model is then functionalized for high temperature by splicing a length of 

UM22-100 optical fiber to its end and is re-terminated with a custom stainless ferrule. Specifications 

of the fibers used are detailed in Table VI. 

Table VI: Optical fiber specification comparison [38] [39] 

 FG105LCA UM22-100 

Core Ø (μm) 105 Silica 100 Silica 

Cladding Ø (μm) 125 F-Doped silica 110 Doped silica 

Coating Ø (μm) 250 Acrylate 124 Polyimide 

Max Operating Temp (°C) 85 300 

Numerical Aperture 0.22 0.22 

Wavelengths (nm) 400-2400 180 to 850 

The optical fiber’s numerical aperture is used to calculate the angle of acceptance according to 

Equation 16, resulting in an acceptance angle of ~12.7° for both of the fibers used in this work [40]. 
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This value represents the maximum incident angle of light which will be transmitted through the fiber 

and determines the resulting dot size. As a result, cone of acceptance is produced with a limit angle 

equal to the arcsine of the fiber’s numerical aperture. 

 𝑁𝐴 =
ଵ

௡೚
 ට𝑛௖௢௥௘

ଶ − 𝑛௖௟௔ௗௗ௜௡௚
ଶ = sin(𝜃௔௖௖)  (16) 

 Where: NA is the numerical aperture of the fiber, n୭ is the refractive index of the surrounding 

medium, nୡ୭୰ୣ is the refractive index of the fiber core, nୡ୪ୟୢୢ୧୬୥ is the refractive index of the fiber 

cladding and θୟୡୡ is the resulting acceptance angle of the fiber. 

The dot size of the transmitted light is determined by the angle of acceptance. With a large dot size, 

an averaging effect is expected to occur to the reading where a significant quantity of light is reflected 

from portions of the membrane experiencing relatively low deflection. Consequently, improved 

resolution is achieved through the use of a smaller dot which is able to optimally interrogate only the 

high deflection portion. In addition, reflected rays near the edge of the dot are not able to be collected 

due to geometric constraints. This results in a radius of collected light that is returned to the fiber, 

which is a function of cavity distance and acceptance angle, as shown in Figure 29. However, the 

intensity over the dot profile is not consistent in multimode fibers; this precludes the ability to predict 

the intensity loss due to uncollected rays, unless the intensity profile can be characterized. 

 

Figure 29: Visualization of maximum collected reflection radius 



 

41 

The OSI (Optical Signal Interrogator) consists of a light source, a photodetector, pertinent 

electronics and an Arduino to demodulate the signal. This device is described in [41] and is calibrated 

and customized to provide optimized response at the required interrogation wavelength (~ 850 nm). 

This device is integrated with the TT electronics OPF480 photodetector, featuring a responsivity of 

0.55 A/W at an operating voltage of 5.0V and 80 degree field of view, when collected using a 50/125 

µm fiber and wavelength of 850nm [42]. 

Functionality testing is carried out on the optical system as follows, to verify it is operating as 

expected: 

1. Using a flashlight,  pass light through the end of the connector – it should be visible at the 

other end of the optical fiber 

a. Should be repeated for all three prongs of the assembly, to verify optical integrity 

2. Test probe reflection against mirror with source and photodetector – ensure probe is 

orthogonal to the surface 

a. Expect signal response of approximately 300 to 500 mV 

3. Repeat mirror test with loose silicon membrane (not epoxied into housing), again ensure 

probe is orthogonal to membrane surface 

a. Expect signal response of approximately 80 to 150 mV  
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Chapter 6 

Packaging and Thermal Impact on Sensor Response 

6.1 Packaging 

In order to support the sensor die, a stainless-steel housing is designed which integrates into 

MorHeat’s existing equipment. This housing (shown below in Figure 30) provides a robust packaging 

for securing the location and alignment of the sensor components, ensuring that a reliable signal is 

obtained from the sensor. A tight-fitting seat is used to locate the die and secured with the same EPO-

TEK 353 epoxy used to assemble the optical fibers. This geometry is designed to arrest any 

movement of the die with respect to the tip of the fiber, as the accurate prediction of the location and 

cavity distance is critical to sensor’s operation. The housing also includes MorHeat’s proprietary 45° 

chamfer seal to ensure the fluid under test is adequately contained without leakage. Fabrication 

drawings for this component are available in Appendix E. 

       

Figure 30: Housing component – Left: Isometric view Right: Cross-sectional view 

The fiber tip is secured in the housing using a fiber locator, which mechanically positions the 

ferrule and eliminates additional space in the cavity by forcing the ferrule to be fully inserted in the 

housing. This locating component (shown in Figure 32) is threaded into the back-side of the housing 

and features a slot permitting the fiber to pass through; the full assembly is shown in Figure 31. 

Manufacturing drawings for the fiber locator can be found in Appendix F. 



 

43 

 

Figure 31: Packaging assembly cross-section view 

 

Figure 32: Fiber locator - Isometric view 

A gas vent must be provided on the reverse side of the membrane in order to permit gases to escape 

into the ambient environment as temperature increases in the system; if this is not provided, these 

gases will pressurize in the FP cavity, resisting deflection of the membrane, which would need to be 

compensated for in the demodulation of sensor data to ensure results are not compromised [29]. 

Although it is not viable for harsh environments, Xu et al. (2012) present a nanothick silver 

membrane which yielded a very high sensitivity of 70.5nm/kPa over a pressure range of 0-50 kPa 

using a ceramic ferrule and silver-ammonia plating fabrication [43]. Two sources of temperature error 

are identified: thermal expansion of the sensor and pressure changes due to expansion of the gas 
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trapped inside the cavity. It is estimated that the observed thermal error is primarily due to this 

trapped gas, as thermal expansion accounted for 8% of the calculated cavity changes. However, no 

analytical model is provided to compare and this does not consider the deformation of the membrane 

during its expansion, or the softening of the materials. Reducing the cavity length is expected to 

reduce the sensitivity to changes in temperature.  

6.1.1 Failure Condition - Thread Shearing 

The primary expected failure condition of the housing is high pressures resulting in shearing of the 

insertion threads. Failure stress is predicted using the internal thread strength formula given by 

Equation 17 [44]. 

 𝐹 = 𝑆௨𝐴௧௦  (17) 

Where F is the force applied to the threads, given by the product of pressure and area, 𝑆௨ is shear 

strength of the tapped material which is defined as 0.5𝜎௬௜௘௟ௗ, where 𝜎௬௜௘௟ௗିଷ଴ସௌௌ = 215 MPa [45] 

In this case, the sheared material is the section of threading that overlaps between the insertion 

threads of the housing and the internal threads of the pressure chamber. This is defined as in 

Equation 18 and the terminology is visualized in Figure 33. 

 𝐴௧௦ = 𝜋𝑛𝐿௘𝐷௦௠௜௡ ቂ
ଵ

ଶ௡
+ 0.57735 (𝐷௦௠௜௡ − 𝐸௡௠௔௫) ቃ  (18) 

𝐴௧௦ = 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑊ℎ𝑒𝑟𝑒: 

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑖𝑛𝑐ℎ = 20 
𝐿௘ = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 1" 

𝐷௦௠௜௡ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 0.46" 

𝐸௡௠௔௫ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑖𝑡𝑐ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 =
0.49" + 0.45"

2
=  0.47" 
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Figure 33: Thread diameter terminology visualization 

Through rearranging the internal thread strength formula and substituting values for the system 

geometry, the maximum applied pressure for failure is calculated as shown in Equations 19 and 20. 

 𝑃௙௔௜௟௨௥௘𝐴௘௫௣௢௦௘ௗ = 𝑆௨𝐴௧௦  (19) 

 𝑃௙௔௜௟௨௥௘ =
଴.ହఙ೤೔೐೗೏஺೟ೞ

గ௥೓೚ೠೞ೔೙೒
మ = 14774 𝑃𝑆𝐼 (20) 

6.2 Full System Functionality Testing 

Once the system is fully assembled, the basic functionality is tested before exposure to high pressures. 

This process is to verify that reflection signals are being properly collected and that damage does not 

occur to the device when full scale testing begins, such as contamination of the membrane or fiber 

due to leakage. 

1. Reflection test off assembled membrane, using the same technique as the optical system 

reflection test but instead insert the fiber into the housing with epoxied die to ensure it is 

able to collect a reflected signal 

a. Expect response in the range of 80 to 150 mV 

2. Air pressure testing up to 90 PSI, with Teflon tape. Primary goal is to identify leaking 

through the membrane and a small intensity response to pressure 

a. If air is leaking through the threads, apply more Teflon tape to isolate the 

membrane cavity 
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b. If leaking occurs through the membrane cavity, more adhesive must be applied 

i. This can be identified by removing the optical fiber and covering the 

opening in the back of the housing where the fiber is inserted. If there is an 

audible change due to any escaping air, the adhesive has not created a 

good seal around the membrane. A completely sealed membrane can also 

be verified through visual inspection, as shown below in Figure 34. 

 
Figure 34: Membrane and adhesive integrity verification 

3. Oil pressure testing up to 200 PSI, without Teflon tape. Primary goal is to identify leaking 

through the threads and a small intensity response to pressure. 

a. If oil leaks through the threads, ensure that the housing is securely tightened into 

the testing chamber. In the case that leaking persists, verify the housing geometry 

against the manufacturing drawing and that no burrs are present which may 

prevent the 45° chamfer from sealing. 

6.3 Temperature Dependence of Material Properties 

Through integrating values and relationships acquired from literature into the above relationships, the 

impact of temperature-dependence on material properties is compensated in the sensor behaviour. 

This aberration is apparent in both the mechanical and optical properties of the constituent materials, 
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which can result in significant errors in the acquired pressure data of the sensing elements and must 

be accounted for in order to produce a device capable of high accuracy. 

6.3.1 Silicon Membrane 

As the primary component of the sensor involved in data collection from the medium, accurate 

approximations of the membrane properties are critical to the functionality of the device. Due to the 

asymmetry of the crystal structure, single crystal silicon structures have an anisotropic elastic 

modulus. As such, the elastic response of such a material depends on the direction of applied stress to 

the structure – with each major crystallographic direction responding with a different elastic modulus. 

However, in the case of a membrane loading is not applied in a single crystal direction, so an 

averaged elastic modulus is used to predict the deflection behaviour to an applied stress. This 

averaged elastic modulus as a function of temperature as shown in Equation 21 [34]:  

 𝐸(𝑇) = 167.98𝑥10ଽ − 1.167𝑥10଻𝑇 + 1757.9𝑇ଶ[𝑃𝑎]  (21) 

25°𝐶 ≤ 𝑇 ≤ 600°𝐶 

This equation yields calculated values of 167.7 GPa and 161.6GPa at 25 and 600°C, respectively – 

resulting in an estimated 3.6% decrease in the elastic modulus at elevated temperatures. These values 

are compared to those acquired by Tsuchiya, where the averaged Young’s modulus was determined to 

be 163.2 GPa at room temperature and 151.8 GPa at 600°C, resulting in a decrease of 7.0% compared 

to room temperature [35]. Although this presents a lower overall elastic modulus, the trend and 

magnitude of decrease is similar. Hopcroft describes how silicon crystal experiences uniform thermal 

expansion and changes in elasticity in all directions; using values from previous works, temperature 

coefficient of elasticity is calculated to be -64 ppm/°C at 25°C and -75 ppm/°C 125°C [33]. 

Limited information is available in literature on the impact of temperature on the index of 

refraction of silicon, but some studies have been completed by Vuye at a wavelength of 830nm. Their 

experimental results are summarized below in Table VII, where a percentage change of 1.77% is 

observed between 20 and 300°C. 

Table VII: Refractive index of silicon at 830nm, as a function of temperature [46] 

Temperature (°C) Refractive index 

20 3.678 
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100 3.695 

150 3.709 

200 3.721 

250 3.731 

300 3.743 

By graphing the relationship between wavelength and index of refraction, as shown below in 

Figure 35, it is observed that there is a significant reduction in the apparent slope at high wavelengths. 

As such, the available behaviour data of silicon at 830nm is taken to be a close approximation of that 

at 850nm, which will be used for the correction of acquired sensor response. 

 

Figure 35: Silicon refractive index with respect to wavelength at 300°C [47] 

Finally, the thermal expansion coefficient of single crystal is examined. Again, there is limited data 

available for the dependence of this property on temperature, but an expression is available for the 

response in the <110> and <111> directions, as given in Equation 22 [48]  

 𝛼(𝑇) = −5.35𝑥10ି଺𝑒ି଺.଼ଷ௫ଵ଴షర் + 7.81𝑥10ି଺ (22) 

0°𝐶 ≤ 𝑇 ≤ 600°𝐶 
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6.3.2 Silicon Dioxide 

Silicon dioxide, or silica, acts as both the main material of the optical fiber and insulating layer of the 

custom SOI membrane in this system - non-crystalline, fused silica is used as the primary material for 

optical fibers and MEMS applications; crystalline silicon dioxide is referred to as quartz. As such, any 

variance in the index of refraction of this material will have a significant impact on the behaviour of 

the sensor through changes in the reflection behaviour of the Fabry-Perot cavity. The refractive index 

of fused silica operating at 850 nm is 1.4525 at 20°C, but temperature-dependent data of its behaviour 

is not available in literature [49]. As such, the closest available reference (633nm) is examined as a 

function of temperature per Equation 23, with temperature given in Kelvin [50]. Calculated values 

yield that the refractive index varies from 1.473 at 20°C to 1.477 at 300°C, for a percentage change of 

0.13% - significantly less than that of silicon. 

 𝑛 = 1.47269 + 7.09780𝑥10ି଺𝑇   (23) 

Unlike silicon, the elastic modulus of silica increases with rising temperature. This trend is 

predicted according to Equation 24, from -50 to 1000°C [51]. These findings are corroborated by 

[52], which states that elastic modulus increases with temperature until a maximum occurs at 1175°C. 

Substituting a room temperature value of 73 GPa into Equation 24, yields an increase to 74.47GPa at 

300°C, resulting in a relative change of 2% [52], [53]. 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑟𝑎𝑡𝑖𝑜 =  ቀ
ா

ா೚
ቁ = 1 +  6.7𝑥10ିହΔ𝑇  (24) 

 𝑊ℎ𝑒𝑟𝑒 Δ𝑇 = 𝑇 − 25°𝐶 

The observed thermal expansion coefficient of silica is constant at 0.5μm/°C from 25 to 1000°C 

[54]. The continuous random network observed in vitreous (glass-like) silica results in low thermal 

expansion, as changes of volume must result from changes in silicon-oxygen distance. However, due 

to the high strength of the oxide, any changes that do occur will be small. 



 

50 

6.4 Thermal Expansion of Components 

6.4.1 Analytical Position Error Due to Packaging 

As the components expand due to a rise in temperature, a compounding position error will occur 

based on the geometry of the system. Due to the high sensitivity of optical systems, it is critical to 

account for this aberration, as displacements on the order of nanometers can significantly impact the 

signal response; the components considered are shown below in Figure 36 and Figure 37. 

 

Figure 36: PoC thermal expansion component visualization 
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Figure 37: SOI thermal expansion component visualization 

Thermal strain is used to approximate these dimensional changes, developed in Equations 25-29; 

this assumes that no friction is present and that the fiber is anchored at single point to the packaging. 

In this calculation, a positive displacement indicates reduction in cavity size. The thermal expansion 

coefficients for silica and silicon are estimated according to the expressions from Section 5.2, and that 

of stainless steel is shown below in Table VIII. 

 𝜀௧௛ =
୼௅೟೓

௅೚
= Δ𝑇𝛼  (25) 

 Δ𝐿௧௛ = Δ𝑇𝛼𝐿௢  (26) 

 Δ𝐿௉௢஼ = ห𝛼ௌௌ(𝐿௙௘௥௥௨௟௘ − 𝐿௛௢௨௦௜௡௚−𝐿௦௣௔௖௘௥) − 𝛼ௌ௜ைమ
𝐿௢௫௜ௗ௘หΔ𝑇  (27) 

Δ𝐿ௌைூ = ห𝛼ௌௌ(𝐿௙௘௥௥௨௟௘ − 𝐿௛௢௨௦௜௡௚−𝐿௦௣௔௖௘௥) − 𝛼ௌ௜𝐿௛௔௡ௗ௟௘

− 𝛼ௌ௜ைమ
𝐿௢௫௜ௗ௘หΔ𝑇 

(28)  
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 Δ𝑇 = 𝑇௢௣௘௥௔௧௜௢௡௔௟ − 𝑇௖௨௥௜௡௚ = 300 − 20 °𝐶  (29) 

Table VIII: 304 SS coefficient of thermal expansion as a function of temperature [45] 

Temperature [°C] Coefficient of Thermal Expansion [μm/m°C] 

20 17.3 

250 17.8 

500 18.7 

The overall analytical thermal impact on sensor response is quantified by combining the 

contributions from material property temperature dependence and thermal expansion. The resulting 

thermal impact on the path difference is determined by the superposition of the membrane deflection 

(Equation 7) with the thermal expansion deflection (Equations 27 and 28 – for the PoC and SOI 

membranes, respectively), where the material properties are taken as functions of temperature as 

defined in Section 6.3. The maximum displacement experienced by the membrane at 1000 PSI and 

300 ºC is visualized for the PoC and 400μm SOI designs in Figure 38 and Figure 39, respectively. In 

both the PoC and 400μm SOI cases, the impact of thermal expansion is shown to cause significant 

aberrations. This causes changes in the expected cavity distance by 1 and 0.4 times the wavelength, 

respectively. It is observed that the impact of material property changes with temperature are 

negligible compared to thermal expansion displacement on the cavity distance. However, the change 

of material properties will impact the sensitivity of the sensors through softening of the elastic 

modulus and small changes to the refractive indices. Detailed visualization of the temperature 

influence on the metrics discussed in Section 4.2 can be found in Appendix D. 
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Figure 38: 1000 PSI PoC maximum displacement dependence on Temperature 

 

Figure 39: 1000 PSI 400 μm SOI maximum displacement dependence on Temperature 
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6.4.2 Device Expansion  

Building on the finite element model developed in Section 4.2.2, the impact of thermal expansion on 

the PoC membrane behaviour is examined. First, the device is simulated without applied pressure at 

100°C to investigate the impact of temperature on the resulting shape and how it might affect the 

stimulus response. Figure 40 and Figure 41 show that as temperature increases, the chip will expand 

upwards and outwards from the fixed base of the support. It is shown that the membrane will deform 

significantly away from the probe tip and bulges above the chip surface. This will result in stretching 

of the membrane, thus increasing its effective elastic modulus and decreasing the deflection response 

to pressure. In addition, the deflection induced by this expansion sets a bias on the initial position that 

compounds with the thermal expansion of the housing to modify the position of the tip of the probe 

relative to the membrane. Maximum deflection at the center of the unloaded membrane is calculated 

to be 0.32 μm, causing a collected intensity signal phase change of ~1 radian compared to the room 

temperature condition. 

 

Figure 40: PoC FEA no applied pressure, 100°C – isometric view 
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Figure 41: PoC FEA no applied pressure, 100°C - side view 

The temperature and mechanical models are combined to determine the interaction of temperature 

and pressure on the PoC membrane at 100°C and 1000 PSI. In Figure 42 and Figure 43, the predicted 

maximum displacement is shown to be 0.11 μm at the center of the membrane, which is significantly 

lower than the 0.4477 predicted by the mechanical model. This displacement does not directly 

correlate to the phase change of the reflected light, due to the deformation of the supporting structure. 

The edges of the membrane are elevated away from the base of the chip, which will further offset the 

phase of the reflected intensity. This combination of deformation and membrane stretching results in 

significantly lower deflection that that predicted by the ideal analytical model of the sensor behaviour.  



 

56 

 

Figure 42: PoC FEA 1000 PSI 100°C - isometric view 

 

Figure 43: PoC FEA 1000 PSI 100°C – cross-sectional side view 
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Chapter 7 

Experimental Results, Validation and Discussion 

Experiments are carried out in the SIMS lab using a combination of standard lab equipment and a 

calibrator provided by our industrial partner. The average ambient conditions are measured to be 

21°C, 15% humidity. The full experimental set-up is shown below in Figure 44. Throughout testing, 

it was found that small variations in the radius of the optical fiber would significantly impact the 

signal received by the system. As such, electrical tape is used to steady the optical fiber and electrical 

components in order to minimize vibrations, as shown in Figure 45. Radiuses of curvature in the 

optical line should be eliminated wherever possible and any bends that are required should be as 

gentle geometry permits. Voltage is supplied to the LED by the DC source through an electrical 

breadboard. A pressure and temperature calibration machine is provided by MorHeat, which contains 

a silicon hydraulic oil to apply pressure to the membrane through the threaded housing interface. A 

digital pressure gauge provides feedback of the currently applied pressure. This system is secured 

with anti-rotation clamp to arrest the movement of the calibration machine during application of 

pressure, to minimize vibration which can lead to error in the sensor response. As this device is 

implemented in an industrial system, a high amount of vibration in the system will need to be avoided 

or accommodated for. One option is damping the vibration though epoxying the optical probe into the 

packaging to ensure minimal relative movement. However, deformation may still occur in the 

mechanical structure of the probe or epoxy during vibration. Alternatively, pneumatic or active 

vibration damping could be used, but would need to be implemented in a manner as to not impact the 

pressure data acquisition. Further development will be required to isolate vibration in future stages of 

this project. Temperature is controlled by an external monitoring unit which provides resistance-

heating directly to the housing interface. The experimental procedure is carried out as follows: 

1. The optical line is connected to the LED and OSI, MatLab is set to collect the signal output 

and display the intensity response graph. 

2. The LED is powered on using the DC source, setting the output limits to provide 1.994 V and 

0.01Amps DC and allowed 30 minutes to warm up before experimental data is collected 

3. Verify the integrity of the optical line by aiming the probe at a mirror, it is expected to collect 

a signal on the order of 200 to 300 mV. 
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4. Assemble the stainless steel housing with the calibration machine by threading it into the 

testing port. It is critical that this is tightened securely to ensure there is no leaking. Apply 

200 PSI of pressure to verify that the seal is working correctly, retighten the housing if any 

oil escapes though the testing port. Return the pressure to 0 once the housing is sealed. 

5. The device under test is fitted with the optical probe by insertion into the opening of the 

housing and referencing the MatLab output to see an increase in the reflected intensity, 

indicating that the signal is being collected by the probe. Once the probe is in position, apply 

200 PSI of pressure to verify intensity response in the MatLab output. If no response is 

observed, this may indicate that the probe is not correctly inserted or there is a contaminant 

present on the surface of the membrane or probe tip. Return the pressure to 0 once completed. 

a. A small stainless steel spacer can be inserted with the optical probe to minimize risk 

of puncturing the membrane, so long that it does not negatively impact the signal 

integrity. If it is included, the probe is lightly inserted into the housing before it is 

tightened down and then the probe pushed into position once the housing is correctly 

sealed. 

6. If elevated temperature is to be used in the test, the temperature control unit is turned on and 

set to the desired temperature. Once the readout indicates the correct temperature, refer to the 

MatLab output to verify that the intensity response is stabilized; this may take some time for 

the temperature to equalize. 

7. Verify that the anti-rotation clamp is correctly in place; it should not allow the calibration 

machine to tilt or move when pressure is applied. The system is now ready for experimental 

testing. 
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Figure 44: Experimental Set-up 

 

Figure 45: LED breadboard 
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7.1 Proof of Concept Trials 

The PoC device is used as a starting point to verify the correct operation of the experimental system. 

These chips provided an expendable and high reflection intensity framework to test and troubleshoot 

testing methodologies in preparation for implementation of the SOI chips. A number of iterations of 

the packaging and testing procedure were evaluated using the PoC chips in development of the final 

methodology presented in this work. Two sets of room temperature trials were performed from 0 to 

1000 PSI, the results are shown below in Figure 46 and Figure 47. These are collected using the same 

experimental set-up, but with two different PoC chips of the same design in order to reduce the 

impact of plasticity in the results. Variation in the intensity and phase between the trials indicates 

settling or small variations of the system during operation. This may include errors such as 

compression of the adhesive or movement of the fiber tip, which results in unaccounted-for variation 

in the cavity distance.  

 

 

Figure 46: Normalized voltage response of chip 1 PoC from 0 to 1000 PSI in silicon oil, 

comparing results of five trials at 21°C 
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Figure 47: Normalized voltage response of chip 2 PoC from 0 to 1000 PSI in silicon oil, 

comparing results of three trials at 21°C 

Pressure trials are repeated on the second chip at increasing temperatures from 20 to 100 °C, at 

pressures of 0 to 1000 PSI, the results of which are shown below in Figure 48. It is observed that 

increasing temperature seems to reduce the slope of the response to pressure, verifying the findings of 

the FEA model presented in Section 6.4.2. The “shell” geometry of the expanding membrane may 

also increase the light intensity by increasing the likelihood of orthogonal beam incidence as the light 

reflects off the surface of the membrane. 
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Figure 48: Voltage response of PoC chip 2 operation at various temperatures from 0 to 1000 

PSI: 21, 40, 60, 80 and 100°C 

However, the intensity of the high temperature probe is found to be too low and the fibers too 

fragile to complete testing up to 300°C. With extended time constraints, a new prototype unit would 

need to be fabricated to carry out further testing with temperatures above 100°C. 

7.2 SOI Sensor Experimental Results 

Each of the three fabricated SOI membranes are tested from 0 to 1000 PSI at room temperature over 5 

trials and their signal responses recorded. In these trials, the settling effect discussed in the PoC 

experiments is more apparent in the response curves. Variation in the shape of the response graph 

between the trials is observed in all three sensors, where the sensitivity appears to change slightly 

with each trial. This behaviour occurred at significantly lower pressure than the expected yield 

strength, based on the values calculated in Section 4.2. It is expected that this behavior is caused by 

plasticity of the membrane and yielding in the oxide layer, which may cause changes in the 

membrane shape and support conditions. In some cases, the apparent plasticity resulted in significant 

variation of the response curve in later trials; trials in which this occurred are not compared on the 

calibration curves presented below. 
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The 200 µm membrane is the most rugged of the three fabricated in this work, offering the highest 

operating range but also the lowest sensitivity to applied pressure. As shown below in Figure 49, 

settling of the signal occurred between trials 1 and 2, while trials 3 and 4 showed strong repeatability. 

Due to its extended range, the fifth trial was performed from 0 to 3000 PSI trial to explore the 

limitations of the system performance. The response curve is shown below in Figure 50. 

 

Figure 49: Normalized voltage response of 200 µm SOI from 0 to 1000 PSI in silicon oil, 

comparing results of four trials at 21°C 
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Figure 50: Voltage response of 200 µm SOI from 0 to 3000 PSI in silicon oil at 21°C 

The 300 µm membrane shows a balance of medium sensitivity and ruggedness compared to the 

other two fabricated devices. Similarly to the 200 µm experiment, settling was observed to occur in 

trials 1 and 2, while trials 3 and 4 yield very similar response curves; a comparison of the 

experimental data is shown below in Figure 51. Significant variation in the response shape is 

observed in the fifth trial (shown in Figure 52), suggesting plasticity has occurred.  
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Figure 51: Normalized voltage response of 300 µm SOI from 0 to 1000 PSI in silicon oil, 

comparing results of four trials at 21°C 

 

Figure 52: 300 μm SOI oil test trial 5 raw data 0 to 1000 PSI at room temperature – significant 

variation in the response trend suggests that plasticity occurred 
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The 400 micron SOI membrane is the most sensitive of the three fabricated devices, but is also the 

most fragile. This combination of attributes resulted in the sensor not being able to withstand the 

testing process, where plasticity occurred before the sensor fully settled and demonstrated strong 

repeatability. Trials one and two show this settling occurring, where the characteristic curves of the 

sensor response are shown below in Figure 53. However, plasticity is observed in trials 3 4 and 5, as 

noted by changes in the shape of the response trend shown in Figure 54. 

 

Figure 53: Normalized voltage response of 400 µm SOI from 0 to 1000 PSI in silicon oil, 

comparing results of two trials at 21°C 
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Figure 54: 400 μm SOI oil test trial 4 raw data 0 to 1000 PSI at room temperature – significant 

variation in the response trend suggests that plasticity occurred 

7.3 Experimental Verification and Discussion 

Comparing the experimental and analytical results, it appears that the fixed edge analytical model 

does not correctly predict the behaviour of the system for both the PoC and SOI membranes. In the 

FEA model, it is shown that the angle of the PoC anisotropic etched cavity results in deformation at 

the edges of the membrane and exhibits a non-ideal support condition. This manifests in the 

experimental data and FEA yielding results which are triple the predicted fully-fixed analytical 

displacement value. By instead using a simply supported edge condition (where the membrane edges 

are permitted to rotate, but not translate) the analytical model matches experimental data much more 

closely as shown below in Figure 55. This model, which Roark defines in Equations 30 and 31 

(where variables are the same as Equation 11), produces similar results as the finite element model; 

predicting a maximum membrane displacement of 0.469 μm and  0.4477 μm at 1000 PSI, 

respectively [18]. 

 𝛿୫ୟ୶,ୗ୧୫୮୪୷ୗ୳୮୮୭୰୲ୣୢ = −
଴.଴ସସସ௉௕ర

ா௧య
  (30) 

 𝜎୫ୟ୶,ୗ୧୫୮୪୷ୗ୳୮୮୭୰୲ୣୢ = −
଴.ଶ଼଻ସ௉௕మ

௧మ
  (31) 
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Figure 55: PoC experimental results comparison with fixed and simply supported models, at 

room temperature with pressures from 0 to 1000 PSI  

Fitting of the experimental data and the model can be further improved by examining and adjusting 

the parameters of the equation. Comparing the fixed and simply supported models (Equations 11 and 

30) presented by Roark, the difference in support is accounted for by adjusting the leading constant. 

Equation 30 is modified using this parameter to find an improved fit for the PoC experimental results 

according to Equation 32. Fitting is carried out using a least squares procedure error, where the error 

is minimized through variation of the leading constant and an additional phase constant used to align 

the sinusoids. A comparison with the experimental results is shown below in Figure 56. 

 𝛿௠௔௫, ஺ௗ௝௨௦௧௘ௗ௉௢஼ = −
଴.଴ଽଶ଴௉ ర

ா௧య
  (32) 
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Figure 56: PoC experimental results comparison with adjusted model, at room temperature 

with pressures from 0 to 1000 PSI 

Deviation from the experimental data is still observed, as the adjusted model maintains the ideal 

support assumption and predicts a linear response to pressure. This adjustment affects the slope of the 

predicted displacement response to pressure but not the shape or linearity of the trend - which would 

require curve fitting through changes to the thickness and width weighting, or implementation of 

additional terms. Consequently, the presented adjustments to the model only manifest in the period of 

the intensity response. Additionally, experimental factors result in changes to the collected optical 

intensity and are not accounted for in the analytical model; these may include settling of the device 

into the cavity as pressure is applied, epoxy deformation, or variation of the incident light. 

A similar, but less significant variation of the experimental data compared to the fixed support 

analytical model is also observed in the SOI membrane response. It is expected that due to the 

difference in cross-section of DRIE compared to anisotropic etching, the sharp angles of DRIE appear 

to more accurately create a fully fixed support condition. The 200 µm high pressure trial from 0 to 

3000 PSI is compared to the fixed support model in Figure 57, below. 
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Figure 57: 200 µm SOI experimental results comparison with fixed support model, at room 

temperature with pressures from 0 to 3000 PSI 

Using the same methodology as implemented for the PoC results, the coefficient of the fixed 

support model (Equation 11) is modified to better fit the experimental results. The adjusted form is 

given by Equation 33 and compared against the experimental data in Figure 58. 

 𝛿௠௔௫, ஺ௗ௝௨௦௧௘ௗଶ଴଴µ௠ = −
଴.଴ଶହ ర

ா௧య
  (33) 
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Figure 58: 200 µm SOI experimental results comparison with adjusted model, at room 

temperature with pressures from 0 to 3000 PSI 

The same procedure is carried out for the 300 μm and 400 μm membranes, where the fixed support 

model is modified to improve its fit with the experimental data. The results of the 300 μm comparison 

are shown in Figure 59 and Figure 60, with the adjusted equation given by Equation 34. Likewise, the 

200 μm comparison results are given by Figure 61 and Figure 62, with the adjusted equation given by 

Equation 35 . 

 𝛿௠௔௫, ஺ௗ௝௨௦௧௘ௗଷ଴଴µ௠ = −
଴.଴ଵ଺ଵ௉ ర

ா௧య
  (34) 

 𝛿௠௔௫, ஺ௗ௝௨௦௧௘ௗସ଴଴µ௠ = −
଴.଴ଶଵଶ௉ ర

ா௧య
  (35) 
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Figure 59: 300 µm SOI experimental results comparison with fixed support model, at room 

temperature with pressures from 0 to 1000 PSI 

 

Figure 60: 300 µm SOI experimental results comparison with adjusted support model, at room 

temperature with pressures from 0 to 1000 PSI 
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Figure 61: 400 µm SOI experimental results comparison with fixed support model, at room 

temperature with pressures from 0 to 1000 PSI 

  

Figure 62: 400 µm SOI experimental results comparison with adjusted model, at room 

temperature with pressures from 0 to 1000 PSI 
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7.4 Sensor Behaviour Characterization 

The behaviour of the sensors is characterized based on their performance in the linear operation 

region. For each sensor design, trials which yielded similar voltage trends are averaged and plotted 

against pressure to find a linear fit as shown below in Figure 63. This plot is the sample used for 

further analysis to determine the sensitivity, dynamic range and grade of linearity of the various 

sensor designs. The response time of the sensor is determined by the querying rate of the OSI and is 

set in the Arduino programming. 

 

Figure 63: 300 μm SOI sensor characterization plot, average of trials 2-4 

7.4.1 Sensitivity 

The sensitivity for the devices considered in this analysis is defined by the membrane deformation 

response to an applied external pressure; this is analytically predicted by the unit deformation 

response based on Equation 7. Experimental resolution is limited by the smallest detectable intensity 

voltage response of the photodetector, which is rated to be 0.55 A/W. This exceeds the rated coupled 

power of the LED of 600 µW, but a response is still registered from the OSI. As such, use of more 

sophisticated optical equipment would be required to determine the exact output wattage change per 

unit PSI from the fiber during operation. Consequently, the sensitivity is approximated by recognizing 
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that “trough to peak” of the sinusoidal intensity function occurs with cavity distance change of ¼ 

wavelength and dividing by the change in applied pressure over that period, as expressed in Equation 

36 below. The resulting approximate experimental sensitivity values are compared to the predicted 

analytical values (carried forward from Table IV in Section 4.2) below in Table IX. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
ഊ

ర

௉(௏ಽ೚೎ೌ೗ಾೌೣ)ି௉(௏ಽ೚೎ೌ೗ಾ೔೙)
  (36) 

Table IX: Comparison of predicted and experimentally observed sensitivity 

 Predicted (nm/PSI) Experimental (nm/PSI) 

PoC - Fixed 0.139 
0.94 

PoC – Simply Supported 0.454 

SOI – 200 μm 0.0577 0.124 

SOI – 300 μm 0.292 0.36 

SOI – 400 μm 0.922 1.4 

Experimental results consistently demonstrate sensitivities higher than expected through their 

analytical analysis. This suggests that the elastic modulus is overestimated in the analytical model, or 

the as-fabricated membrane dimensions result in a softer response. 

7.4.2 Dynamic Range 

The dynamic range is defined as the linear section of the sensor response, which is selected to ensure 

a consistent change in the signal response to applied pressure. This is primarily determined by the 

sensing wavelength, which determines the amount of deflection that can occur before the sinusoidal 

signal response will begin to repeat. As such, the dynamic range is selected to enable the device to 

read unique values for each applied pressure of interest, thus avoiding the issue of sinusoidal 

ambiguity. Consequently, the initial position of the probe tip relative to the membrane is critical to 

ensure that the sensing region is correctly calibrated considering the sensitivity of the device. Both 

pressure and temperature can have an impact on the behaviour of the range of the system, so the 

initial probe position must be adjusted according to the expected thermal expansion. The 

experimental and predicted dynamic ranges are summarized in Table X, below. 
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Table X: Comparison of predicted and experimentally observed dynamic range 

 Predicted (PSI) Experimental (PSI) 

PoC 175 to 425 250 to 450 

SOI – 200 μm 0 to 3700 600 to 2300 

SOI – 300 μm 75 to 800 250 to 800 

SOI – 400 μm 50 to 275 125 to 275 

Comparing the predicted and experimental results, the experimental values consistently show a 

smaller dynamic range. This is expected due to the increased sensitivity of the as-fabricated device, 

which results in higher membrane deflection values than shown in the analytical values. 

7.4.3 Grade of Linearity 

The linearity of the sensor response is quantified as the percentage error of the data set from a fitted 

linear trend. This represents the consistency of the response to stimulus, where a large linearity error 

suggests significant variance in response data when exposed to the same change in stimulus at 

different points in the calibration curve. The grade of linearity is calculated by taking the percentage 

difference between the voltage offset of two parallel lines which pass through the minimum and 

maximum points of the output curve (visualized below in Figure 64). The slope of these lines is based 

on the fitted linear equation determined at the start of this section.  
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Figure 64: Linearity visualization 

The dynamic range established above is examined using this linearity analysis and the calculated 

percentage error of full scale results are shown in Table XI. Linearity of the analytically predicted 

response is not compared to the experimental data in this work, due to large variance based on the 

examined region selected. Determining the “linear region” is based on the ability to fit a constant 

slope to a set of points, the limits of which are determined arbitrarily through minimization of the 

non-linearity. As such, small changes in the limits of this data set can result in linearity values varying 

from the order of tenths of a percent to errors exceeding 25%. 

Table XI: Experimental grade of linearity 

 Experimental 

PoC 1.9% 

SOI – 200 μm 0.46% 

SOI – 300 μm 2.6% 

SOI – 400 μm 1.4% 
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7.5 Reproducibility and Error 

Through examining the analytical models discussed earlier in this work, a relative order of magnitude 

for the relative possible error sources is established. Recall that the intensity of the optical response is 

dependent primarily on changes in the cavity distance of the sensor; referring to the membrane 

deflection equations, errors in each variable is to be examined individually and their relative impact 

compared. Pressure, the measurand of the system, is displayed on the testing apparatus through a 

digital gauge and is controlled using a hand-rotated lever. As pressure increases, the resistance to 

further changes in pressure also increases and shows a tendency to drift toward zero unless a counter-

force is applied. This behaviour introduces human error during the gathering of test data, as there may 

be small errors in the accuracy of applied pressure (ie. 103 PSI at the time of reading, when it should 

be 100 PSI). Membrane side length and thickness have the most significant impact on prediction of 

the sensor’s behaviour but are not included on the specification sheet; these are dependent on the 

supplier’s fabrication procedure and measurement error at the lab when using the optical inspection 

system. Finally, elastic modulus and Poisson’s ratio material properties are also not provided by the 

supplier and have similar impact on sensor behaviour to the pressure accuracy. These values are 

estimated through literature sources, but deviation is expected from the true as-fabricated values. 

Additional sources of error in the behaviour of the system are as follows: 

 Nonlinear stress response 

 Deformation in optical fiber 
o Affects transmission of light and therefore the resulting signal collected 

 Non-orthogonal optical incidence 
o Shell geometry of membrane deflection 
o Large deflection error in membrane 
o Manufacturing tolerance 

 Non-ideal membrane loading conditions 
o Axial loading 

 Residual stress 
o Mid-plane Stretching 

 Longitudinal deformation, in addition to transverse 
 Large deflection causes load rotation, changing the force vector due to pressure 

 Inconsistency of source light 
o Changes due to temperature, current, etc. 

 Error in pressure application due to manual input  
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Chapter 8 

Conclusions 

In this thesis, a Fabry-Perot interferometric pressure sensor was analyzed and developed that is 

capable of operating in harsh environments. The theory and applications of optical fiber Fabry-Perot 

interferometer pressure sensors has been described. It is shown that the discussed technology offers 

improved range and resolution over piezoresistive sensors, at a lower cost and significantly reduced 

size, among other advantages. Additionally, it is immune to RF interference and forgoes the 

temperature limitations of semiconductor doping, allowing for sensing in procedures where 

piezoresistive sensors could not be used. This technology can be implemented in a variety of systems 

due to the versatility of the concept, providing applications in a wide array of procedures: such as 

harsh manufacturing environments, local invasive blood pressure sensing, and force transduction. 

Analytical and FEA models are used to predict the behaviour of existing sensors produced using 

anisotropic etching, as well as design and produce three custom sensors using SOIMUMPS. Once the 

sensors are obtained, destructive testing is carried out in order to verify the as-fabricated membrane 

dimensions of both the PoC and SOI chips. The mechanical behaviour and material properties of the 

membrane are examined to create a basis for the analytical model. FEA simulations carried out on the 

geometry suggest that deformation of the device structure may produce a non-ideal support condition, 

resulting in four times greater membrane deflection than analytically predicted.  

Thermal impact on sensor response is examined through a combination of analytical and FEA 

methods. Position error due to the system packaging is quantified through calculation of the thermal 

expansion of the components of the system, where the expected initial cavity distance is expected to 

change by 1 and 0.4 times the wavelength in the PoC and SOI systems, respectively at 1000 PSI and 

300ºC. This deformation is negligibly affected by the changes in material properties with temperature; 

however, the sensitivity of the membrane will be slightly increased due to softening of the elastic 

modulus and changes to the refractive indices. Thermal expansion of the PoC device at 100ºC is 

modeled using FEA to determine the impact on the membrane response. It is shown that as 

temperature increases, the chip expands upwards and upwards from the fixed base of support. This 

results in significant deformation and stretching of the membrane away from the probe tip, increasing 

the initial cavity distance by a further calculated 0.32 μm. The device is then modeled at 100°C and 

1000 PSI, showing a maximum displacement of 0.11 μm at the center of the membrane. This is 
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significantly lower than the 0.4477 μm predicted by the mechanical model at room temperature, 

suggesting that the sensitivity of the membrane is expected to decrease at elevated temperatures due 

to thermal deformation.1 

Finally, the PoC and three SOI sensors are experimentally validated and compared against the 

predicted behaviour. The PoC device is tested at temperatures from 21 to 100°C and pressures from 0 

to 1000 PSI. As predicted in the FEA and analytical models, increasing temperature causes an offset 

in the cavity distance and a reduction in the sensitivity of the membrane. The 200, 300 and 400 μm 

SOI devices are testing at room temperature from 0 to 1000 PSI, with an additional trial being carried 

out on the 200 μm chip up to 3000 PSI. These results corroborate the findings of the FEA model, 

suggesting that deformation of the supporting structure is resulting in non-ideal response to pressure. 

Based on comparison of the experimental results and analytical models, a series of adjusted models 

are developed to fit the non-ideal membrane behaviour observed through modification of the 

equation’s leading coefficient. Analysis of the results finds that the PoC device operates with a 

sensitivity of 0.94 nm/PSI over a dynamic range of 250 to 450 PSI with 1.9% full scale linearity error. 

The best operating SOI device is the 200 μm membrane, with sensitivity of 0.124 nm/PSI from 600 to 

2300 PSI and 0.46% full scale linearity error. 

Further development and deployment of these sensors will place Canada at the forefront of harsh 

environment pressure sensing, providing the framework for future research and commercialization. 

Beyond manufacturing, this work has applications in the biomedical, automotive and aerospace 

industries. Further, it will enable companies to develop plastic-molding manufacturing techniques 

taking advantage of increased access to in-process data previously unavailable. With expanded 

operating ranges, these processes will access new materials and increase production safety, quality 

and efficiency. 

8.1 Contributions 

The following are the contributions from this work: 

1. A high temperature optical interference pressure sensor has been produced, which exceeds 

the currently published extrinsic FPI operating maximums of 100 PSI and meets 300 °C. 

Further, a stainless steel supporting structure is developed which improves the alignment 

and reliability through utilizing mechanical means to arrest movement in the sensing 



 

81 

system. SOIMUMPS multi-user manufacturing is utilized for fabrication of silicon 

membranes and material property testing devices. 

2. Analytical prediction of the thermal effect on performance is implemented. This includes 

accounting for the variation of mechanical properties and as a function of temperature, 

which has been observed in literature but not predicted for the purposes of sensor 

operation. Additionally, thermal expansion of the materials to are predicted to account for 

aberrations in the cavity distance. Using analytical prediction of deformation of the 

membrane, in conjunction with prediction of mechanical property and expansion drift with 

temperature, a platform for increased fidelity of high temperature sensors is proposed. 

3. It is shown that the standard membrane assumptions do not adequately predict the 

deformation behavior of both anisotropic and DRIE SOI etched devices. This is 

demonstrated through comparison of analytical and FEA models to experimental results, 

which show significant deviation in the shape of the deflection trend. It is shown that these 

devices do not form ideal supports due to deformation in the structural material. Adjusted 

deflection models are fitted to the experimental data to correct for the apparent 

discrepancy. Additionally, SOI devices show plasticity after repeated trials significantly 

before their expected yield strength. 

8.2 Future Work 

This work presents a functional extrinsic Fabry-Perot interferometric pressure sensor for harsh 

environments, which provides a framework on which improvements to the system can be 

implemented. Implementation of additional features and stability would better prepare this device for 

commercial viability. 

8.2.1 Prediction of Non-ideal Sensor Behaviour 

It has been shown that the produced sensors do not follow the analytical models typically used to 

predict the behaviour of MEMS pressure devices. However, the adjusted models are based on curve 

fitting to experimental data and do not produce a consistent value of the leading coefficient. Further 

work should be completed to identify or produce a model which is capable of better predicting the 

behaviour of membranes fabricated using DRIE and anisotropic etching. 
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8.2.2 Additional Stabilization 

Throughout testing of the system, it was found that the membrane response was very susceptible to 

noise and external disturbances. This could be improved through the use of a reduced length single 

mode fiber, which would significantly lower the impact of these disturbances on the propagation of 

reflected modes. As the system is implemented in an industrial setting, vibration isolation will need to 

be incorporated to minimize noise in the system. Additionally, the use of a reference fiber would 

allow for the system to account for changes in the light source. Finally, implementation of a motor to 

set and maintain pressure in the laboratory environment would eliminate human error in the 

calibration machine. 

8.2.3 Environmental Protection 

Implementation of an additional layer to separate the membrane from the fluid environment may 

reduce the possibility of damage to the sensor. This could be accomplished through the use of a 

mechanical transfer plate, or parylene coating. It is expected that behavior would need to be predicted 

using composite material assumptions, but directly mating of the membrane and protecting layer is 

critical to this implementation. 

8.2.4 Expanded Functionality 

This work is to be expanded through adding functionality, to simultaneously determine temperature 

and flow-rate, and expanding the operating conditions beyond 500 °C and 10000 PSI. This will be 

achieved through integration of supplementary methods, such as Doppler flow and in-fiber Bragg-

grating temperature detection. Using this approach, flow obstruction will be minimized and real-time 

data will be used to correct for temperature aberrations in pressure and flow readings.  

A priority of this project will include research and selection of alternative membrane and optical 

fiber materials. Deflection results from this MASc thesis device will be used to optimize the required 

resolution and linearity of the sensor, informing the mechanical design and manufacturing process for 

the improved membrane. Furthermore, an optical system will be designed that compensates for the 

low maximum operating temperatures of commercially available fiber couplers, while avoiding the 

high cost of sapphire fibers. In addition to considerations for the potential of creep (i.e. temporally 

dependent thermo-mechanical plasticity), the model developed in this MASc thesis can account for 

the system’s mechanical and optical properties as functions of temperature in the design 
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8.2.5 Medical Applications 

These sensors can be used to find the local blood or fluid pressure in the body during medical 

procedures to ensure the safety of the patient. As the devices are fragile and expensive, the 

technology is mostly unusable for surgical applications, prompting the need for an improved 

alternative to be developed [9]. The size of the sensors is on the order of 3mm square, requiring 

pressure to be measured indirectly as the sensor cannot be inserted into small vasculature [55]. As a 

result, pressure is transferred through a fluid-filled catheter with diameters of ~0.6mm to an external 

sensor. The devices suffer from slow time response and mechanical disturbances due to fluid inertia 

in long catheters [11]. A small, robust and inexpensive alternative is needed to these devices, which is 

able to resist RF interference. This would expand the possible applications of intravascular pressure 

sensors and improve their surgical viability. 

As fiber optic devices are immune to EMF (Electro Magnetic Field) interference, their use in 

procedures with high EMF becomes a clear application of the technology [2]. There are three main 

sources of this interference in medicine: MRI (Magnetic Resonance Imaging), which has applications 

in diagnostic imaging; RF ablation, used in cardiology and cancer treatment; and localized dielectric 

heating (shortwave diathermy), which is often used in physiotherapy [56]. 

In order for a device to be useful for the medical field, it must have a sensitivity of ~1mmHg  

(0.133 kPa) over a range of ~250mmHg (33.33 kPa) [57]. This is the standard biological pressure 

range required in medicine.  
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Appendix A – SE103 Data Sheet 
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Appendix B – On-chip Material Testing Devices 

Resonant Cantilever 

Through examining the resonant frequency of a set of cantilevers, the as-fabricated elastic modulus of 

a chip’s structural layer can be determined. In their 1979 work, Torgalkar establishes a relationship 

between the length of a cantilever beam and its resonant frequency as shown in Equation 37 [58]. 

Utilizing this equation, with an assumed thickness of 25 μm, elastic modulus of 169 GPa, and density 

of 2500 kg/m3, the expected resonant lengths for a range of resonant frequencies are tabulated in 

Table XII, below. Through measuring the as-fabricated cantilever length and using a vibrometer to 

test the resonant frequencies, the expected elastic modulus can be calculated. In this case, the 

thickness and density are assumed based on the designed values, due to the difficulty of measuring 

these parameters. 

 𝐿 =  ට
ா௧మ

ଷ଼.ଷସఘ௙మ

ర
  (37) 

Where L is cantilever length, E is elastic modulus, t is cantilever thickness, ρ is density, f is 

frequency of vibration 

Table XII: Cantilever length calculation results 

Frequency (kHz) Cantilever length (μm) 

20 1288 

25 1152 

30 1050 

35 974 

40 911 

The curvature of the beams is measured using a profilometer, giving readings of 0.33 to 0.38 μm 

upwards, indicating compressive stress in the chips. This can be used to calculate the residual stress 

present in the devices, in conjunction with the Vernier gauges. 
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Vernier Stress Gauge 

Zavracky et al. present a Vernier gauge design to determine the residual stress present in a chip in 

their 1995 work [59]. This gauge enables visualization of the structure’s deformation due to residual 

stress as it is released from the substrate by providing reference markers to measure deflection. The 

geometry of the structure determines the mechanical amplification of the stress-induced deflection, 

where larger structures will show larger deformations but at lower resolution. By including structures 

with varying geometries, the as-fabricated residual stress can be measured with increased certainty.  

Equations 38 and 39 are used to calculate the expected residual stress experienced in the Vernier 

gauge; while these equations cannot be solved analytically, they can be readily solved using 

numerical methods. The variables are defined visually below in Figure 65. 

 𝑇௢ = 𝑇஺ −
ா஺

௟
ቂ𝛼(𝑦௢ − 𝑦஺) +

ଵ

ଶ
∫ [𝑦ᇱ(𝑥) − 𝛼]ଶ𝑑𝑥

ଵ

଴
ቃ  (38) 

 𝑇 = 𝜎𝑤𝑡  (39) 
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Figure 65: Vernier dimension visualization © 1995 IEEE 

M-TEST 

By using a combination of cantilever and fixed-fixed beams, the elastic modulus and residual stress 

can be determined using a combination of pull-in relationships as shown in Osterberg and Senturia’s 

1997 work [60]. Using equations from the paper and expected geometries from the SOIMUMPs 

design criteria, lengths are analytically estimated for cantilever and fixed-fixed beam structures. 

Through FEA, it was found that the expected pull-in voltages were much higher than those 

analytically calculated. It is expected that this is caused by the conductive pads being placed on the 

thin side of the beams, rather than on the “width”, due to the orientation when using SOI fabrication. 

The semiconductor nature of silicon would result in unequal charge distribution through the large 

thickness of the beams, which may result in the much higher FEA- calculated pull-in voltages 
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observed. In addition, this methodology is originally designed for standard micromachined chips, 

where the thickness of the devices is significantly less than the length and width. Experimental testing 

corroborated these FEA results, for which it can be concluded that the analytical models do not 

predict the behaviour of these structures when actuated from their thin surface. A Matlab code is used 

to determine the material properties from experimental results, according to Equations 40 and 41, 

where S and B are material parameters determined per relationships expressed in the paper. 

 𝐸෨ =
ா

ଵି௩మ
=

஻ത

௧೚
య௚೚

య  (40) 

 σ෥ = σ୭ =
ୗത

୲౥୥౥
య  (41) 
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Appendix C- Predicted Sensor Response Graphs 

The response graphs presented in this section represent the predicted analytical sensor behaviour 

according to the equations defined in Section 4.2.1. In each figure, the maximum membrane 

displacement is shown and used as a point of comparison for the other operating parameters 

examined. The cavity distance is calculated through subtraction of the membrane deflection from the 

initial cavity distance, 405 μm in the PoC device and 131 μm in the SOI devices. Stress response is 

calculated using Equation 9 and compared against the yield strength of silicon of 3000 MPa. Finally, 

the expected sensor intensity response is calculated according to Equation 2. 
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Appendix D – Temperature Dependence of Sensor Response 

In the following figures, the impact of temperature on the PoC device is examined using the same 

metrics as presented in Appendix C. A similar set of graphs; showing the deflection, cavity distance 

and optical intensity are presented; followed by the maximum displacement of the membrane at 

various temperatures while the system is held at a constant pressure of 1000 PSI. Finally, a 

visualization of the change of material properties in silicon with respect to temperature is shown. 
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Appendix E - Sensor Housing Drawing 
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Appendix F – Fiber Locator Drawing 
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