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Abstract 

Researchers have shown that physically demanding work, characterized by forceful exertions, 

repetition, and prolonged duration can result in fatigue. Physical fatigue has been identified as a risk 

factor for both acute and cumulative injuries. Thus, monitoring worker fatigue levels is highly 

important in health and safety programs as it supports proactive measures to prevent or reduce 

instances of injury to workers. Recent advancements in sensing technologies, including inertial 

measurement units (IMUs), present an opportunity for the real-time assessment of individuals' 

physical exposures. These sensors also exceed the ability of mature motion capture technologies to 

accurately provide fundamental parameters such as acceleration and its derivative, jerk.  

Although jerk has been used for a variety of clinical application to assess motor control, it has 

seldom been studied for applications in physically-demanding occupations that are directly related to 

physical fatigue detection [1]. This research uses IMU-based motion tracking suits to evaluate the use 

of jerk to detect changes in motor control. Since fatigue degrades motor control, and thus motion 

smoothness, it is expected that jerk values will increase with fatigue. Jerk can be felt as the change in 

force on the body leading to biomechanical injuries over time. Although it is known that fatigue 

contributes to a decline in motor control, there are no explicit studies that show the relationship 

between jerk and fatigue. In addition, jerk as it relates to skill level of highly repetitive and 

demanding work has also remained unexplored. To examine these relationships, our first study 

evaluates: 1) the use of jerk to detect changes in motor control arising from physical exertion and 2) 

differences in jerk values between motions performed by workers with varying skill levels. 

Additionally, we conducted a second study to assess the suitability of machine learning techniques for 

automated physical fatigue monitoring. 

Bricklaying experiments were conducted with participants recruited from the Ontario Brick and 

Stone Mason apprenticeship program. Participants were classified into four groups based on their 

level of masonry experience including novices, first-year apprentices, third-year apprentices, and 

journeymen who have greater than five years of experience. In our first study, jerk analysis was 

carried out on eleven body segments, namely the pelvis, and the dominant and non-dominant upper 

and lower limb segments. Our findings show that jerk values were consistently lowest for journeymen 

and highest for third-year apprentices across all eleven body segments. These findings suggest that 

the experience that journeymen gain over the course of their career improves their ability to perform 
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repetitive heavy lifts with smoother motions and greater control. Third-year apprentices performed 

lifts with the greatest jerk values, indicating poor motor performance. Attributed to this finding was 

the pressure that third-year apprentices felt to match their production levels to that of journeymen’s, 

leading third-year apprentices to use jerkier, less controlled motions. Novices and first-year 

apprentices showed more caution towards risks of injury, moving with greater motor control, 

compared to the more experienced third-year apprentices. However, the production levels of novices 

and first-year apprentices falter far behind the production levels of other experience groups. 

Detectable increases between jerk values during the beginning (rested) and end (exerted) of the task 

were found only for the journeymen, which is attributed to their greater interpersonal similarities in 

learned technique and work pace.  

In our second study, we investigated the use of support-vector machines (SVM) to automate the 

monitoring of physical exertion levels using jerk. The jerk values of the pelvis, upper arms, and thighs 

were used to classify inter-and intra-subject rested and exerted states. As expected, classification 

results demonstrated a significantly higher intra-subject rested/exerted classification than the inter-

subject classification. On average, intra-subject classification achieved an accuracy of 94% for the 

wall building experiment and 80% for the first-course-of-masonry-units experiment. 

The thesis findings lead us to conclude that: 1) jerk changes resulting from physical exertion and 

skill level can be assessed using IMUs, and 2) SVMs have the ability to automatically classify rested 

and exerted movements. The investigated jerk analysis holds promise for in-situ and real-time 

monitoring of physical exertion and fatigue which can help in reducing work-related injuries and 

illnesses. 

 



 

 v 

Acknowledgements 

To my co-supervisors, Professor Carl Haas and Professor Eihab Abdel-Rahman, thank you for all of 

your support, advice, and thoughtful guidance throughout the past two years. Prof. Haas, I’ve always 

admired your mentoring style and your cheery demeanor and hope to emulate that in the future. Prof. 

Abdel-Rahman, your exceptional insight into paper writing and expertise were much appreciated as I 

navigated the analysis and interpretation of the results. Mohsen and JuHyeong, from classroom to 

field work and everything in between, the past two years would have been much less fun without your 

company. The five of us made a great team and our personalities balance each other out (in the best of 

possible ways) making all our meetings enjoyable and productive.  

I’d also like to thank my friends who have been there from both my undergraduate and graduate 

degrees at Waterloo. Your friendship and support are innumerable.  

To my twin sister, thank you for all your love and support since birth, during grad school, and into 

the future. I appreciate that you graduated four months before me so you could lend yourself to meal-

prepping and gym-going with me before flying to New York to be a real adult. To my mom, who had 

barely any idea what I was doing for the past 7 years at Waterloo, but it didn’t matter. Thank you for 

teaching me, through demonstration, how to be independent.  

To Basil, thank you for believing in me and inspiring me to do more than I think I can. Thanks for 

always being available to talk through problems with me and listen to my frustrations when I need it 

most.  

Lastly, I would like to acknowledge the Canadian Masonry Design Centre (CMDC), Mississauga, 

Ontario, Canada for their considerable help in the data collection effort. The work presented in this 

thesis was supported by CMDC and the Natural Sciences and Engineering Research Council of 

Canada (NSERC). 



 

 vi 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract .................................................................................................................................................. iii 

Acknowledgements ................................................................................................................................. v 

Table of Contents ................................................................................................................................... vi 

List of Figures ...................................................................................................................................... viii 

List of Tables ......................................................................................................................................... ix 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Overview ....................................................................................................................................... 1 

1.2 Motivations ................................................................................................................................... 2 

1.3 Research Objectives ...................................................................................................................... 3 

1.4 Research Approach ....................................................................................................................... 3 

1.4.1 Study 1 ................................................................................................................................... 3 

1.4.2 Study 2 ................................................................................................................................... 4 

1.5 Thesis Organization ...................................................................................................................... 5 

Chapter 2 Background and Literature Review ....................................................................................... 6 

2.1 Physical Fatigue and Exertion ...................................................................................................... 6 

2.2 Current Approaches to Fatigue Detection .................................................................................... 7 

2.3 Jerk as a Measure of Motor Control ............................................................................................. 9 

2.3.1 Detection of Physical Fatigue and Exertion .......................................................................... 9 

2.3.2 Indicator of Skill Level ........................................................................................................ 10 

2.4 Physical Fatigue in the Construction Industry ............................................................................ 11 

2.4.1 Investigating Masonry Work ............................................................................................... 11 

2.5 Camera-based Systems ............................................................................................................... 13 

2.6 Inertial Sensor and Motivations for Use ..................................................................................... 14 

Chapter 3 Identifying Physical Fatigue using the Jerk Metric.............................................................. 16 

3.1 Pilot Experiment ......................................................................................................................... 16 

3.1.1 Methodology ........................................................................................................................ 16 

3.1.2 Data Processing ................................................................................................................... 19 

3.1.3 Results.................................................................................................................................. 20 

3.2 Bricklaying Experiment .............................................................................................................. 21 

3.2.1 Methodology ........................................................................................................................ 22 



 

 vii 

3.2.2 Data Processing .................................................................................................................... 25 

3.2.3 Productivity Loss ................................................................................................................. 26 

3.2.4 Results .................................................................................................................................. 27 

3.2.5 Discussion ............................................................................................................................ 30 

3.3 Study Limitations ........................................................................................................................ 33 

3.4 Conclusion ................................................................................................................................... 34 

Chapter 4 Automated Monitoring of Physical Fatigue using Machine Learning ................................. 36 

4.1 Machine Learning Applications for Activity Recognition .......................................................... 36 

4.2 Methodology ............................................................................................................................... 37 

4.2.1 Participants ........................................................................................................................... 37 

4.2.2 Instrumentation .................................................................................................................... 38 

4.2.3 Experimental Procedure ....................................................................................................... 38 

4.2.4 Wall Building Experiment ................................................................................................... 39 

4.2.5 First Course Experiment ...................................................................................................... 41 

4.3 Data Processing ........................................................................................................................... 44 

4.4 Results and Discussion ................................................................................................................ 45 

4.5 Limitations .................................................................................................................................. 47 

4.6 Conclusion ................................................................................................................................... 47 

Chapter 5 Conclusion and Recommendations ...................................................................................... 49 

5.1 Jerk and Physical Fatigue ............................................................................................................ 49 

5.2 Jerk and Skill Level ..................................................................................................................... 50 

5.3 In Situ Fatigue Detection using Machine Learning .................................................................... 50 

5.4 Adequacy of Signal-to-Noise Ratio of IMU for Jerk Detection ................................................. 50 

5.5 Future Work and Recommendations ........................................................................................... 52 

Bibliography .......................................................................................................................................... 54 

Appendix A MATLAB Scripts ............................................................................................................. 68 

Read_calc_file.m ............................................................................................................................... 69 

Kinematics_from_calc.m .................................................................................................................. 70 

Matrix_from_file.m ........................................................................................................................... 74 

Prepare_all_data.m ............................................................................................................................ 81 



 

 viii 

List of Figures 

Figure 1 Optotrak Certus active marker optoelectronic system ........................................................... 13 

Figure 2 One-arm dumbbell .................................................................................................................. 17 

Figure 3 Neuron sensor, hub, and sensor straps ................................................................................... 18 

Figure 4 T-pose calibration process (pose 1 of 3) ................................................................................ 18 

Figure 5 Exporting calculation file from raw file ................................................................................. 19 

Figure 6 Resultant acceleration to jerk data - first and last set ............................................................. 20 

Figure 7 Jerk values of pelvis and dominant (D) and non-dominant (ND) upper limbs during a one-

arm dumbbell row exercise ................................................................................................................... 21 

Figure 8 Investigated IMU sensor locations ......................................................................................... 22 

Figure 9 Setup of the bricklaying experiment ...................................................................................... 24 

Figure 10 A participant completing a pre-built lead wall ..................................................................... 25 

Figure 11 A schematic diagram of data processing from raw motion data .......................................... 26 

Figure 12 Normalized completion time per course for four experience groups ................................... 30 

Figure 13 IMU sensor locations ........................................................................................................... 39 

Figure 14 Human figure on Perception Neuron ................................................................................... 40 

Figure 15 Timeline of task duration and intensity level in kilograms per minute ................................ 41 

Figure 16 A schematic diagram of data processing for automatic fatigue detection ............................ 41 

Figure 17 Experimental setup for first course ...................................................................................... 42 

Figure 18 Experimental setup for bricklaying task ............................................................................... 43 

Figure 19 Building sequence for first course experiment ..................................................................... 43 



 

 ix 

List of Tables 

Table 1 Participant demographics ......................................................................................................... 23 

Table 2 Means, standard deviations, and statistical significance for jerk (g/s) of eleven body segments

 ............................................................................................................................................................... 28 

Table 3 Number of participants whose segment jerk values did not increase from rested to exerted 

state ....................................................................................................................................................... 29 

Table 4 Task completion time and productivity of four experience groups ......................................... 29 

Table 5 CMU block properties .............................................................................................................. 40 

Table 6 . Jerk calculations from Cartesian components of acceleration ............................................... 44 

Table 7 Wall completion experiment – SVM classification accuracy [%], mean, and standard 

deviation ................................................................................................................................................ 46 

Table 8 First course experiment – SVM classification accuracy [%], mean, and standard deviation .. 47 





 1 

Chapter 1 Introduction 

1.1 Overview  

In the construction industry, tasks are often labor-intensive resulting in workers frequently suffering 

from muscle fatigue. Construction activities, which include repetitive lifting and handling of heavy 

loads, static work in awkward and prolonged postures, and exposure to vibrations and harsh weather 

conditions, have been known to cause work-related injuries and illnesses [2].  

Among construction workers, musculoskeletal disorders (MSDs) are one of the most prevalent 

occupational health problems. MSDs are injuries and disorders of soft tissues including the muscles, 

tendons, ligaments, joints, cartilage, and the nervous system. Physical fatigue has been shown to 

result in increased risks of injury that lead to a variety of MSDs including lower back disorders, 

tendinitis, and carpal tunnel syndrome [3]. Construction workers and crews are highly prone to 

musculoskeletal injuries, because their daily tasks require them to use forceful exertions when lifting 

and carrying loads, bend and twist the back or limbs, and be exposed to vibrations or repetitive 

movements [4].  

In Ontario, Canada, MSDs are the primary cause of lost-time work injury reported to the 

Workplace Safety and Insurance Board (WSIB). On a national level, the economic cost of MSDs is 

estimated to be $22 billion annually and is deemed to be the most costly medical condition in Canada 

[5].  The repercussions of MSDs cost Ontario workplaces hundreds of millions of dollars due to 

worker absence and lost productivity. Indirectly, employers face costs including overtime wages, 

training costs for replacement workers, and lost quality of work. In 2015, the rate of MSDs in 

construction was 16% higher than the rate of 29.8 per 10,000 full-time employees (FTEs) for all 

industries combined. Furthermore, the rate of injuries from overexertion in lifting was 10.6 per 

10,000 FTEs in construction, higher than the average of all industries [6]. In 2015, overexertion from 

lifting and lowering caused 30% of the MSDs among construction workers. Over time, these injuries 

may develop into chronic conditions, functional impairments, and permanent disabilities.  

Muscular fatigue is commonly believed to be a prominent risk factor for musculoskeletal disorders. 

Thus, this risk factor has introduced the need to monitor the degree of muscle fatigue in the field of 

ergonomics and physiological research. Several studies have developed and used various methods for 

fatigue assessment with the aim of reducing the extent of acute effects and to prevent long-term 

health outcomes.  
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However, since fatigue manifests itself in various ways, a single test to measure a single process 

among several complex interactions (e.g. biological and behavioral manifestations) might not be a 

representative method for fatigue detection. For instance, if a certain physiological function is 

heightened, it may only reflect the body’s adaptive behavior instead of the degree of fatigue [7]. Thus, 

the fatigue quantification typically involves some combination of kinematics and kinetics, often 

supplemented or substituted by physiological (e.g. muscle activity or heart rate) and subjective (e.g. 

discomfort or exertion) measures.  

While there is no single standard for fatigue measurement, there are numerous subjective and 

objective measurements techniques that have been adapted for occupational use [8]. However, several 

of these techniques are cumbersome and not practical on construction sites, highlighting a need for 

methods that can continuously monitor fatigue with minimal intrusion to construction activities. 

Recent advances in wearable technologies present an opportunity for real-time and in situ 

assessment of fatigue development. One such technology is the inertial measurement unit (IMU). The 

capabilities of the IMU system allow for the study of a biomechanically-relevant metric, jerk. 

1.2 Motivations  

Accurate quantification of physical exposures is an important component of physical fatigue 

development. Improved instrumentation for data collection has been critical for occupational health 

and safety development. Assessment methods that rely on kinematic data are conventionally collected 

using camera-based systems which is the gold-standard for non-invasive body motion capture in 

research settings. However, these systems require expertise for use, extensive post-processing, and 

large installation spaces. They can also be restrictive of the natural movement of the wearer and thus 

unlikely to be adopted for on-site use. The advancement and increasing availability of wearable 

sensing technologies have made in situ monitoring and real-time assessment of individuals' physical 

exposures possible. As a result, these devices have become a popular device for monitoring physical 

activity in a work environment for the purpose of injury prevention [9][10].  

While there has been an emphasis on research to develop occupational health and safety sensor 

systems and establish their potential in a lab environment [11], [12], most current workplace 

applications have been limited to 1) posture analysis [4], [13]–[15], 2) task classification [16], 3) 

physiological monitoring [17], [18], and 4) computerized application of traditional observational tools 

[19], and specialized fatigue applications. The specialized physical fatigue applications are limited to 
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the following three domains: 1) athletics, where the focus is primarily on monitoring athletes' 

performances [20], [21], 2) sleep-induced fatigue, in mining [22], [23], and 3) driver drowsiness 

detection systems in transportation [24], [25], and 4) illness-related fatigue [26], [27]. However, in 

most physically-demanding occupations, e.g. construction, manufacturing, and agriculture, there have 

been minimal work-place applications using sensor systems that are directly related to physical 

fatigue detection [1].   

1.3 Research Objectives  

The primary objective of this thesis is to evaluate the suitability of using jerk as a measure of fatigue 

that is practical for in situ use such as a construction site. It is anticipated that its findings will provide 

insight for future research in fatigue detection. More specifically, this thesis will:  

1. Evaluate the use of jerk to detect changes in motor control arising from physical exertion. 

2. Investigate differences in jerk values between motions performed by workers with varying 

skill levels. 

3. Assess the suitability of machine learning techniques for real-time physical fatigue 

monitoring. 

To address these aims, this thesis is divided into two studies. In the masonry trade, the duties of 

bricklayers are physically intensive and highly repetitive. Thus, bricklaying was selected as the 

subject of focus in the two studies.  

1.4 Research Approach 

1.4.1 Study 1  

The objective of our first study was to assess the feasibility of using jerk as an indicator of physical 

exertion as fatigue develops over the course of a demanding task. As a proof-of-concept, a pilot 

experiment was designed and conducted to test whether physical fatigue results in increased jerk 

values and whether the signal-to-noise ratio of jerk derived from IMU-based motion capture suits was 

high enough to detect it. Three participants were asked to perform a one-arm dumbbell row exercise 

in a bent-over position until the participants either reached exhaustion or until they could no longer 

keep a metronome pace. Jerk values during the first and last exercise sets were compared for each 

participant to detect differences between rested and exerted states.  
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On the premise of the initial validation of the hypothesis, we proceeded to conduct a study on 

indoor masonry work. The experiment was conducted at the Canadian Masonry Design Center 

(CMDC) indoor training facility in Mississauga, Ontario. Thirty-two male bricklayers with varying 

levels of masonry experience were recruited. Participants were grouped into four experience groups 

including 1) novices, 2) first-year apprentices, 3) third-year apprentices, and 4) journeymen. 

Participants were instructed to complete a pre-built lead wall (Figure 4(a)) using forty-five concrete 

masonry units (CMUs) each weighing 16.6 kg. Jerk analysis was carried out on eleven body 

segments, namely the pelvis, the dominant and non-dominant upper and lower limb segments. Two 

hypotheses were evaluated:  

Hypothesis 1: The novel fatigue measure, jerk can be used to detect changes in motor control 

arising from physical exertion.  

Hypothesis 2: Jerk can be used to differentiate between motions performed by workers with 

varying skill levels.  

This study comes primarily from the following publications:  

1. L. Zhang, M. M. Diraneyya, J. Ryu, C. T. Haas, and E. Abdel-Rahman, “Assessment of 

Jerk as an Indicator of Physical Exertion and Fatigue,” tentatively accepted by Automation 

in Construction, 2019. 

2. L. Zhang, M. M. Diraneyya, J. Ryu, C. T. Haas, and E. Abdel-Rahman, “Assessment of 

Jerk as a Method of Physical Fatigue Detection,” in Proceedings of the ASME 2018 

International Design Engineering Technical Conferences and Computers and Information 

in Engineering Conference - IDETC/CIE 2018, 2018, pp. 1–6. 

1.4.2 Study 2 

In our first study, raw motion data required manual segmentation to ensure that jerk values were 

compared between the same action types. For example, the motion data collected during each lifting 

action (pick up – transport – lay down) were segmented out from other motions such as spreading 

mortar. However, manual segmentation of the data prevents applications for real-time assessments. 

This issue was addressed in our second study.   

We conducted two sets of analysis: 1) we tested the feasibility of analyzing jerk values using 

continuous motion data collected from our previous study to monitor changes in motor control, and 2) 
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we conducted a second experiment that evaluates changes in jerk values between two identical 

bricklaying tasks following a series of exhausting exercises. Continuously monitoring jerk is 

investigated in the present study using IMU sensors and SVMs, which have been used extensively to 

classify human motion patterns and activities. We also examine both the inter- and intra-subject 

differences of experienced workers. Six male bricklayers with an average of 22 years of masonry 

experience were recruited for the experiment. One hypothesis was evaluated: 

Hypothesis 1: As rested and exerted states can create unique jerk signal patterns, machine learning 

algorithms using motion data can be used to monitor the development of physical exertion for real-

time applications. 

This study comes primarily from the following publication:  

1. L. Zhang, M. M. Diraneyya, J. Ryu, C. T. Haas, and E. Abdel-Rahman, “Automated 

Monitoring of Physical Fatigue Using Jerk,” in Proceedings of the ISARC 2019 Automation 

and Robotics in Construction, 2019. 

1.5 Thesis Organization 

First, a review of relevant literature on the definition of fatigue, current fatigue assessment methods, 

the relationship between jerk, to fatigue and skill level, and a background on motion capture systems 

will be presented (Chapter 2). Second, an exploratory study focused on evaluating jerk as a method 

for fatigue detection and evaluating skill level will be reported (Chapter 3). Third, machine learning 

techniques to enable real-time physical fatigue monitoring will be evaluated (Chapter 4). Finally, the 

knowledge acquired from the preceding studies will be summarized and future research directions 

will be presented (Chapter 5). 
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Chapter 2 Background and Literature Review 

2.1 Physical Fatigue and Exertion  

Fatigue is often an overlooked hazard on construction sites. Construction work involves significant 

physical and mental demands, however, physical fatigue is a critical short-term risk factor, since it 

can result in diminished motor control, reduced strength capacity, and reduced cognitive resources 

[28]–[30]. In the construction industry, workers are frequently exposed to heavy workloads, 

prolonged work schedules, and repetitive tasks, making physical fatigue inevitable. The effects of 

fatigue include increased injury risk, lowered productivity, and deficits in work quality [31], [32]. 

Physical fatigue can also result in the deterioration of health in the long term, including work-related 

musculoskeletal disorders (WMSD) [3], [9], chronic fatigue syndrome [32], and compromised 

immune function [33]. Physical fatigue has been shown to be a good indicator of injury risks [34]. 

Thus, fatigue detection and monitoring tools that allow for intervention prior to detrimental effects to 

workers’ safety, health, and productivity are worth studying. 

Fatigue is a universal symptom not only associated with most acute and chronic illnesses, but also 

with normal, healthy functioning and everyday life. The ubiquitous nature of fatigue, given the 

complex interaction of the biological processes, psychosocial phenomena, and behavioral 

manifestations involved, has made its understanding challenging for researchers and clinicians. 

Currently, there is no universally accepted standard for fatigue assessment due to several factors [1]. 

Some of these factors are as follows,  

1. Fatigue development differs significantly between workplaces and occupation type. 

2. A single mechanism is unlikely to explain fatigue under all conditions given the complexity 

of the human body. 

3. The complex interactions between biological processes and psychosocial phenomena cannot 

be encompassed by a single definition. 

4. Observed performance deterioration is unlikely explained by a single theory.  

Historically, physical or muscle fatigue is defined as a decline in a muscle’s ability to exert force as 

a result of performing a motor task [35]. For tasks that do not call for sustained exertion of maximal 

force, fatigue gradually develops over a period of time and results in a progressive decline in maximal 

force [36]. Construction tasks fall in this category, involving intermittent exertions of submaximal 
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forces, which makes explicit evaluation of muscle fatigue cumbersome. In fact, muscles can continue 

to exert submaximal forces as they fatigue by marshaling more muscle fibers and more cognitive 

resources [30]. However, this is achieved at the cost of less regulated force levels as low frequency 

tremor sets in [37]. In addition, most construction tasks involve complex motion patterns and force 

exertions by multiple muscle groups. This occurrence not only increases the number of muscles 

concerned but also allows the body to compensate for muscle fatigue by recruiting different muscle 

groups and using different motion patterns, further complicating the process of fatigue assessment. 

The standard measure of muscle fatigue is a drop in motor unit firing rates recorded via 

electromyography [38]. In addition to being cumbersome, Li et al. [39] report that direct assessment 

of fatigue via surface electromyography (sEMG) is possible for superficial muscles in low fat areas 

but not for deep muscles, such as the lower back. Moreover, EMGs suffer from a low signal-to-noise 

ratio which further reduces its applicability [39]–[41]. Thus, it is more practical and relevant to 

worker ergonomics to quantify secondary metrics of “physical exertion”, defined as a measure of 

overall fatigue in the muscle ensemble relevant to a task. This measure can then be used as an 

indicator that fatigue has reached levels that impact worker's safety, health, productivity or work 

quality.  

2.2 Current Approaches to Fatigue Detection 

The human body exhibits physical fatigue in several ways, thus researchers have developed a number 

of methods to measure fatigue [32]. These methods, however, are often limited in their applications, 

since they were by and large developed for specific contexts and objectives [42].  

Numerous studies have been aimed at quantifying the degree of physical fatigue induced by various 

occupational tasks [31], [43], [44]. While there is no single standard measurement of fatigue, there are 

several subjective measurement scales and objective measurement techniques that have been adapted 

for occupational use. Early attempts at quantifying fatigue in an occupational setting involved 

subjective measurement scales, such as questionnaires and self-perceived exertion scales, that relied 

on subjective answers to a fixed set of questions relating to physical and mental fatigue [45]. Several 

construction related studies have continued to use subjective feedback scales and questionnaires for 

assessing fatigue or workload [28], [46]–[49]. However, due to the nature of fatigue perception, 

specific fatigue symptoms may differ among workers of different socio-cultural background or work 

conditions [8], [35]. Thus, subjective measurements of fatigue are usually tailored to the work 

environment and the target workforce [42]. Physiological measurements including heart rate, oxygen 
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consumption, energy expenditure, and skin temperature are used to overcome the limitations of 

subjective measurements [31], [43], [50]. The downside to physiological measurements is that many 

factors can reduce their reliability including alcohol consumption, fitness level, and caffeine intake 

[110]. Analysis of surface electromyography (sEMG) signals is another widely used technique and 

considered the gold standard to assess and characterize muscle fatigue [41], [49], [51], [52]. SEMG 

signals are electrical signals generated from contracting skeletal muscles and are acquired using 

surface electrodes. During fatigue, signal characteristics vary either due to the inability of nerves to 

fire high-frequency motor unit action potentials to maintain the required force or chemical imbalances 

of metabolites in the muscle fiber. In Venugopal et al. [53], surface electromyography (sEMG) 

signals was used to differentiate between fatigue and non-fatigue conditions at the biceps brachii 

muscle. However, as mentioned earlier, studies have shown that sEMG is not suitable for deep 

muscles, such as the lower back and suffer from a low signal-to-noise ratio which reduces its 

applicability. Other methods used in practice include isometric strength tests, exercise endurance 

tests, muscle biopsy, and muscle imaging [54].  

Since the aforementioned methods can be cumbersome or invasive, some researchers have 

attempted to detect physical fatigue non-invasively via secondary measures, such as increased 

physiological tremor, impairment of postural control, increased sway, and loss of multi-joint 

coordination [55]. These assessment methods rely on kinematic data collected optoelectronically, 

which is the gold-standard for non-invasive body motion capture in research settings [56], [57]. In 

practice, this method has limited use since it requires expertise, extensive post-processing, and large 

installation spaces [1]. Optoelectronic systems are also costly, cumbersome, and difficult to operate 

on most worksites [56].  

Recent advances in wearable technologies present an opportunity for real-time and field-based 

assessment of fatigue. One such technology involves wearable inertial-measurement-unit (IMU) -

based motion capture, which enables the automatic and continuous collection of whole-body motion 

data. IMUs integrate accelerometers, magnetometers and gyroscopes to measure acceleration, 

velocity, and orientation of body segments. Wearable IMUs are wireless, non-intrusive, versatile, and 

less costly compared to other methods of motion tracking and provide a plausible solution for body 

motion capture [10], [58]. Thus, they have high potential to be used as a field-based fatigue 

assessment method. Furthermore, their high-frequency sampling rates allow for the evaluation of a 

novel biomechanics metric: jerk. 
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A number of studies have attempted to assess the feasibility of using these methods to detect and 

monitor fatigue. Dieen et al. [59] used an optoelectronic system to investigate the effect of repetitive 

lifting on joint loading, joint coordination, and jerk. They found that joint loading and coordination 

did not change significantly over repetitive lifts, however jerk increased in all investigated lower back 

and lower extremity joints. This suggests that jerk may be sensitive enough to detect changes in 

motion patterns induced by fatigue as the body adapts to maintain torque, acceleration, and position 

profiles. Zhang et al. [60] used IMUs and support vector machines (SVM) to classify normal walking 

and post-fatigue walking. They found that features associated with acceleration and jerk of the lower 

extremities were significantly increased following a squat exercise. Maman et al. [61] assessed the 

feasibility of using penalized regression models for the detection and estimation of physical fatigue in 

simulated manufacturing tasks. Low-noise analogue accelerometers were attached to the ankle, wrist, 

hip, and torso to obtain features associated with acceleration and jerk. They found that the 

accelerometers located at the wrist and hip were better predictors of physical fatigue and that 

accelerometer features were stronger predictors of fatigue than heart rate features. To date, few 

studies have investigated the use of IMUs to obtain jerk and its use as an indicator of physical 

exertion and fatigue.  

2.3 Jerk as a Measure of Motor Control 

2.3.1 Detection of Physical Fatigue and Exertion  

Jerk, the derivative of acceleration, is not widely studied in current non-clinical literature. In clinical 

literature, jerk is seen as a measure of motor control. Jerk is commonly used to (1) differentiate 

between pathological and non-pathological motions [62]–[64]; (2) quantify motion smoothness to 

assess motor learning and recovery [65]; (3) detect injury inducing motions [66]; and (4) measure 

performance fluency [67], [68]. Motor function abnormalities exhibited due to pathologies can be 

detected using jerk as a metric to quantitatively measure pathological tremor. On the same note, it is 

apparent that exercise-induced fatigue has a major impact on motor control and is responsible for a 

number of changes in neuromuscular function including increased physiologic tremor [51]. 

Physiologic tremor of a limb or other body parts occurs in non-pathological individuals, however, it 

becomes more pronounced when they experience fatigue or anxiety [69].  

Experimental studies have found that expertise or task familiarity also impact motor control. Bril et 

al. [70] posits that skilled action combines smoothness, regularity, speed, precision, optimization, and 
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adaptability. More practice produces smoother motion trajectories and thus minimizes jerk [63], [71]–

[73]. As a result, jerk values observed for experts are expected to be lower than those observed for 

novices. Since fatigue degrades motor control, and thus motion smoothness, it is expected that jerk 

values will increase with fatigue. These increases however will be larger in magnitude than those due 

to physiologic tremors. In terms of risks of injury, being exposed to changes in motion can have 

significant biomechanical effects on the human body. During lifting tasks, jerk can be felt as the 

change in force on the body. Although the damping of the human body leads to some attenuation of 

rapid changes, the human body can experience biomechanical damages over time. It is important to 

note that motion smoothness is highly task dependent and must be considered when comparing jerk 

values between task types [64].  

Two studies are notable and relevant to the current research. Maman et al. used IMU-collected 

motion data during simulated manufacturing tasks to determine acceleration- and jerk-based features 

that are predictive of fatigue occurrence [61]. Similarly, Zhang et al. used support vector machines 

(SVMs) to classify the occurrence of lower extremity muscle fatigue of gait [60]. These methods, 

however, have not assessed the feasibility of using machine learning techniques to recognize changes 

in jerk values during construction work. 

2.3.2 Indicator of Skill Level  

When the human body is introduced to a new movement, it learns the placement of different body 

parts, sequential muscle control, and coordination between muscles to achieve necessary positions. 

With time and repetition, the skill can be honed. According to Bril et al., a skilled action consists of 

smoothness, flexibility, precision, speed, adaptability, regularity, and optimization, and functionally 

coordinating these conditions is crucial [70]. Smoothness is achieved by purposefully repeating a 

movement and making necessary corrections to improve the motion [74]. The success of a human 

movement is judged by the smoothness of the motion, which can be quantified as jerk [75]. Thus, the 

smoother the motion, the lower the jerk.  

There have been many attempts to describe the smoothness in a variety of movements. Previous 

studies have demonstrated differences in the smoothness of body movements with different levels of 

training, i.e., amateurs compared with professionals. These differences have been studied extensively 

in golf to better understand the mechanisms behind skilled golf performance. Choi et al. [76] 

evaluated the kinematic motion of amateur and professional golfers and found that professional 

golfers have smoother swings than amateur golfers. In this study, Choi et al. used jerk to 
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quantitatively represent the smoothness of a motion to differentiate between skilled and unskilled 

golfers. A golf swing involves complex and continuous rotational movements of each joint in the 

body, and the muscle contraction sequence and timing of the impact between the club and ball are 

important components of a successful swing. Thus, a successful golf swing is achieved by rotating the 

harmoniously coordinating joint movements. Hreljac compared the jerk in the heel of skilled middle- 

to long-distance runners to that of other athletes (from soccer or tennis) during running and fast 

walking [74]. Hreljac concluded that the runners tended to exhibit significantly lower jerk, and thus 

smoother movements than non-runners during both running and fast walking. In addition, by 

analyzing jerk, Yan et al. found that the arm movement involved in overarm throwing becomes 

smoother as one becomes an adult  [75]. More recently, Sakata et al. studied the effect of age-related 

changes in the smoothness of lower body joints during lifting, and demonstrated high jerk values in 

the ankle and hip joints of older subjects, pointing to less smooth movements in this group [77]. 

Nevertheless, studies investigating the smoothness of lifting movements are rare, and none have 

analyzed the smoothness during bricklaying. Like golf, bricklaying requires mastery that can be 

achieved through apprenticeships and on-site experience. However, unlike previously studied 

movements, bricklaying requires repetitive, high-intensity work.   

2.4 Physical Fatigue in the Construction Industry  

Despite technological advances, construction work continues to be a labor-intensive industry. Thus, 

the physical condition and health status of workers are vital to the successful completion of a project. 

However, MSDs are amongst the most frequently reported injuries and cause of lost time in the 

construction industry.  

2.4.1 Investigating Masonry Work  

An example of highly repetitive, highly physical, and non-structured environments is masonry work, 

which the subject of the following chapters. Energy use and oxygen consumption exceed 

recommended levels [78], [79], and trunk extensor fatigue has been observed in bricklayers 

performing highly repetitive work [80]. Block layers handle approximately 240–294 blocks per 

working day, resulting in a total weight of 3,200–3,600 kg per day [81]. Bricklayers are exposed to 

handling frequencies ranging from 87 to 262 bricks per hour [82].  

The masonry workforce is composed of two classes: apprentices and journeymen. In Ontario, 

Canada the masonry apprenticeship program lasts for three years before a mason is examined to 



 

 12 

become a journeyman. A study shows that workers with less than five years of experience have 

higher rates of musculoskeletal injuries compared to journeymen with more than five years of 

experience [83].  
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2.5 Camera-based Systems  

Mature technologies that capture body kinematics including the optoelectronic motion capture system 

as shown in Figure 1. The optoelectronic system is generally viewed as the ‘gold’ standard for 

kinematic measurement in a laboratory. Currently, the most common optoelectronic motion capture 

system is based on a combination of strobing lights and cameras that work in simultaneously to 

capture frames of position data taken from optical markers illuminated by the pulses of light. For each 

marker, several different camera angles are used to reconstruct and build a three-dimensional path 

representing segments and joints of the human body. On the other hand, optoelectronic systems are 

very expensive and offer best results in indoor capture conditions. This is because daylight interferes 

with the tracking of the marker. The size of their capture volume is relatively small, and it is 

relatively difficult and time-consuming to set up. Moreover, in practice, this method has limited use 

since it requires expertise, extensive post-processing, and large installation spaces [1]. Such 

limitations likely explain why relatively few studies have obtained detailed kinematics or kinetics in 

situ.  

The first derivative of segment or marker position provides velocity and a second order derivative 

provides acceleration. This positional, velocity, and acceleration data is used to drive biomechanical 

models and study motion. However, while these systems are excellent at creating 3D images, they are 

lacking in the ability to accurately provide data of higher derivatives including accelerations. 

 

Figure 1 Optotrak Certus active marker optoelectronic system 
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Markerless systems are based on two-dimensional data of one or more video cameras. They use 

computer vision algorithms and methods to track motion and depth of objects and humans. A once 

popular example are the Microsoft Kinect camera sensors. The main advantage of markerless motion 

capture systems is that the motion can be captured in a natural capture environment without the need 

to wear special equipment or marker for tracking. However, the main problem of markerless motion 

capture is that tracking requires close proximity with the object to be tracked to maintain a sufficient 

level of accuracy and information content. Objects in large distance to the camera cannot be captured 

in detail. 

Since work environments can often influence specific work habits or strategies adopted and in turn 

affect the estimated level of physical exposure, the measurement of physical exposures should ideally 

be in situ. However, occupational physical exposures have been quantified in numerous studies in 

laboratory settings.  

2.6 Inertial Sensor and Motivations for Use 

Wearable sensors do not impose any restrictions on the motion with respect to lighting conditions and 

mobility. The sensors are light-weight and do not need any external cameras, emitters, or markers. 

The most common wearable sensors are inertial measurement units (IMUs) built from accelerometers, 

magnetic field sensors, and gyroscopes. Restrictions on the capture volume exists only with respect to 

the maximum allowable distance between the sender and receiver of the motion capture device and 

program. Its magnetometers, however, can be sensitive to magnetic and electrical disturbances in the 

environment. Among inertial sensors, accelerometers have been used extensively for activity 

recognition and studied with different body locations, number of sensors, classifiers, and feature sets 

[84]. Valero et al. developed an IMU system to detect unsafe postures of construction workers from 

motion data [4]. Ryu et al. used a single wrist-worn accelerometer-embedded activity tracker for 

automated action recognition [85], [86]. However, the use of accelerometers to monitor physical 

exertion or fatigue during physically demanding tasks has not been studied extensively. 

Schall et al. assessed the IMU system in field-based occupational settings over an eight-hour work 

shift and suggested that the IMU system can achieve reasonably good accuracy and repeatability 

compared to the gold standard, optical motion capture systems [87]. Moreover, the light-weight and 

portability of wearable IMUs compared to external sensors, make them easy to attach to workers such 

as on construction vests, gloves, or helmet. IMUs, which combine accelerometers, gyroscopic and 
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magnetic sensors, have been used by researchers to monitor ergonomically safe and unsafe postures 

during construction activities [14], [88]–[90]. 

The main commercial IMU motion capture system is Xsens [4]; other lesser known companies 

include Perception Neuron [91] which is significantly more affordable however, it is less robust in 

terms of hardware. Perception Neuron suits cost approximately $1,500 while the Xsens suits cost 

between $12,500 and $30,000. Perception Neuron IMUs, however, are extremely magnetically 

sensitive, so they must be used and stored away from tools, hardware, and electronics to prevent 

magnetic interference. 

This research uses Perception Neuron wearable wireless inertial sensors and seeks to evaluate the 

use of acceleration and its derivative, jerk, to detect changes in motor control. In this application, 

there are several advantages to using inertial sensors.  

The first major advantage is that a wearable system is extremely portable and can be applied 

wherever activity is occurring such as a construction site, in contrast to optical systems which require 

the activity to be performed in a laboratory environment. Before the advent of wearable motion 

sensors, optoelectronic systems were commonly used to track human motion [57]. However, the body 

segment positions they measure must be differentiated three times in order to obtain jerk. Since each 

numerical differentiation degrade the signal-to-noise ratio, repeating the process three times would 

magnify noise and thereby render the jerk values mostly meaningless [66]. In the case of IMUs, 

segment acceleration is collected directly and hence, jerk values can be obtained by differentiating 

only once. Thus, information that is lost in the optical system, can be detected by IMUs. The 

differentiation of acceleration to jerk also removes gravitational acceleration components. The greater 

precision of inertial sensors to measure higher derivatives such as acceleration, allows for the 

introduction of a new biomechanically-relevant metric, jerk. 
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Chapter 3 Identifying Physical Fatigue using the Jerk Metric 

In this study, we tested the hypothesis that jerk can be used to detect changes in motor control arising 

from physical exertion. In addition, we investigated the differences in jerk values between motions 

performed by workers with varying skill levels. To our knowledge, no other studies have examined 

jerk as an indicator of fatigue for workers with varying levels of work experience.  

Although it is known that fatigue contributes to an increase in physiological tremor and decline in 

motor control, there are no explicit studies that show the effect of fatigue on jerk. To test the 

hypothesis, we conducted a pilot experiment that involves a repetitive and targeted physically 

demanding exercise: the one-arm, bent-over dumbbell row. On the premise of the initial validation of 

the hypothesis, we proceeded to conduct a study on indoor masonry work involving participants with 

different levels of experience.  

In the masonry trade, the everyday duties of bricklayers are physically intensive and highly 

repetitive. Working postures in bricklaying include frequent deep bending of the trunk while handling 

building materials, resulting in low back disc compression forces that exceed the NIOSH threshold 

value of 3.4kN [92]. Thus, bricklayers may suffer from physical fatigue, resulting in reduced motor 

control and strength capacity. This in turn leads to greater susceptibility to injuries and accidents. 

According to the Workplace Safety & Insurance Board of Ontario [93], the cost per claim for the 

masonry rate group ($50,882) was 144% greater than that of the average cost of a claim for all other 

rate groups belonging to the construction class ($20,818).  

3.1 Pilot Experiment 

A pilot experiment was designed to test whether physical fatigue results in increased jerk values and 

whether the signal-to-noise ratio of jerk derived from IMU-based motion capture suits was high 

enough to detect it. Three individuals, two males and one female, were recruited for the experiment. 

All were university students who reported moderate levels of daily physical activity and no previous 

injuries. The participants’ mean (SD) age, stature, and body mass were 26.7 (3.1) years, 176.7 (5.8) 

cm, 78.3 (14.4) kg, respectively.  

3.1.1 Methodology 

All participants were fully rested before the experiment. Participants were asked to perform a one-arm 

dumbbell row exercise in a bent-over position with a 15 lbs dumbbell using their dominant arm. The 
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dumbbell row requires the dominant upper limbs, specifically the biceps, shoulders, and side of back, 

to exert force and the non-dominant upper limbs to support and stabilize the body.  

Each repetition consisted of an elbow flexion and extension, starting with the arm fully extended. 

The participants positioned themselves by kneeling over the bench and placing the supporting knee 

and hand on the bench as shown in Figure 2. The participants were asked to complete sets of twenty 

repetitions, with 30-second breaks between sets until they reached exhaustion or until they could no 

longer keep pace with a metronome set to 40 bpm. Jerk values during the first and last exercise sets 

were compared for each participant to detect differences between rested and fatigued states. The full-

body kinematics of the participants were collected using a wearable IMU-based motion capture suit, 

Noitom Perception Neuron [91]. The sampling rate of the IMUs is 125 frames per second. The full-

body suit is composed of seventeen IMUs located at the pelvis, sternum, head, and both shoulders, 

upper arms, lower arms, hands, upper legs, lower legs, and feet. Although not all IMUs were used, all 

seventeen IMUs were active during the experiment to enable system calibration. Each IMU sensor is 

composed of a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. The 

hub collects the motion data from the Neuron sensors. Motion data was sent from the suit to a laptop 

via wireless connectivity. The sensors are secured to the body with Velcro straps as shown in Figure 

3.  

 

Figure 2 One-arm dumbbell 
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Figure 3 Neuron sensor, hub, and sensor straps 

The exercise targets the upper limbs and torso area, seven body segments, namely the pelvis, and 

both the dominant and non-dominant upper arms, forearms, and hands, thus, these body segments 

were selected for jerk analysis. The sensor modules for the upper limb segments were strapped at the 

upper arms and forearms and placed at the backside of the hands using fingerless gloves. The gloves 

did not impair gripping ability of the participants. The sensor module for the pelvis segment was held 

in place at the lower back by a belt and waist buckle. Prior to the experiment, a calibration session, as 

demonstrated in Figure 4, was carried out to allow the Axis Neuron software to detect the placement 

and orientation of the sensors on the participant. The sensor-to-segment calibration was performed 

using three standard postures: A-pose, T-pose, and S-pose.  

 

Figure 4 T-pose calibration process (pose 1 of 3) 
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3.1.2 Data Processing 

The Axis Neuron software [91] visualizes and exports the calculation file data (.calc). This data type 

includes segment posture quaternion in segment coordinate; displacement, speed in ground 

coordinates; original acceleration and gyro data in module coordinates. The Cartesian components of 

the segment acceleration are collected from the IMU’s accelerometer.  

 

Figure 5 Exporting calculation file from raw file 

For each of the seven IMU sensors, the resultant acceleration data were calculated from its 

Cartesian components. A low-pass Butterworth filter with a 10 Hz cut-off frequency was then used to 

remove high frequency noise. Jerk was calculated as the time-derivative of the acceleration 

magnitude (da/dt). Average jerk values were calculated for the first set of the exercise to represent 

each participant’s rested characteristic jerk, Jr, and for the last set to represent their fatigued 

characteristic jerk, Jf. A visualization of the data is shown in Figure 6.  
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Figure 6 Resultant acceleration to jerk data - first and last set 

3.1.3 Results 

On average, the three participants completed seven sets of twenty repetitions. The results show that 

the characteristic jerk for all participants and all seven segments increased significantly from the 

rested to the fatigued states as shown in Figure 7. As expected, the jerk magnitudes of the 

participants’ dominant upper limbs were much greater than the pelvis and non-dominant upper limbs. 

The greatest percent increase between the rested and fatigued characteristic jerk values was observed 

at the pelvis. For both the dominant and non-dominant upper limbs, the upper arm had a greater 

percent increase compared to the hands and forearms. Additionally, a greater percent increase was 

observed between the characteristic jerk values of the non-dominant upper limbs compared to those 

of the dominant upper limbs. This may indicate that although the non-dominant upper limb does not 

take part in the main lifting motion, its role as the stabilizer can also become compromised as the 

participant becomes fatigued. It is interesting to note the wide interpersonal variability in both jerk 

magnitude and change in jerk values between their rested and fatigued states.   

The pilot experiment confirmed the hypothesis that the sensors used were sensitive enough to 

detect a change in jerk values over the duration of a repetitive and targeted physically demanding 

exercise. The following experiment on a bricklaying task, tests the same hypothesis, however, in a 

realistic environment that respects between-subject variabilities including technique and pace.  
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Figure 7 Jerk values of pelvis and dominant (D) and non-dominant (ND) upper limbs during a 

one-arm dumbbell row exercise 

3.2 Bricklaying Experiment  

In the bricklaying experiment, jerk analysis was carried out on eleven body segments, namely the 

pelvis, the dominant and non-dominant upper limb segments (upper arms, forearms, and hands) and 

the dominant and non-dominant lower limb segments (thigh and shank), since lifts involve whole-

body work [94]. Those body segments were hypothesized to be the most suitable for fatigue detection 

since bricklaying requires large ranges of motion, forceful contractions, and high precision from the 

upper and lower limbs. The torso was selected due to frequent bending which may result in lower 

back muscle fatigue. Locations of the investigated sensor modules are shown in Figure 8. Previous 

activity monitoring studies for similar tasks were used as a guide for sensor location selection [61], 

[83]. The objectives of this experiment were: (i) to assess the suitability of jerk as a metric of physical 

exertion during a bricklaying task, and (ii) to examine the relationship between jerk and level of 

expertise.  



 

 22 

 

Figure 8 Investigated IMU sensor locations 

3.2.1 Methodology  

3.2.1.1 Office of Research Ethics  

Approval from the University of Waterloo’s Office of Research Ethics was obtained to conduct 

experiments with human participants at the Canadian Masonry Design Center (CMDC). This process 

required a Consent to Participate form and a Consent to Use Video and/or Photographs form to be 

signed by each participant and a formal means of appreciation to the participants for their time and 

effort. 

3.2.1.2 Participants 

The experiment was conducted at the CMDC, indoor training facility in Mississauga, Ontario. Thirty-

two male bricklayers with varying levels of masonry experience were recruited. In Ontario, Canada 

the masonry apprenticeship program is three years long, after which, an apprentice is examined to 
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become a journeyman. Participants were grouped into four experience groups including (1) novices, 

(2) first-year apprentices, (3) third-year apprentices, and (4) journeymen with an average of 22 years 

of masonry experience. Novices and apprentices are classified as inexperts. Participant demographics 

are shown in Table 1. The study was approved by the Office of Research Ethics at the University of 

Waterloo.   

Table 1 Participant demographics 

Experience Group Experience (years) No. Participants Height (SD) Weight (SD) 

Novices 0 12 185.06 (5.82) 87.92 (15.64) 

First-year Apprentices 1 5 182.36 (3.64) 98.96 (18.69) 

Third-year Apprentices 3 6 184.20 (4.02) 93.80 (24.89) 

Journeymen 22 9 178.89 (4.99) 89.11 (12.59) 

Total -- 32 182.52 (5.48) 90.21 (16.99) 

3.2.1.3 Instrumentation  

Whole-body kinematics of the participants were collected with the same wireless IMU-based motion 

capture suits used in the pilot experiment. Before the start of the experiment, the same suit calibration 

procedure mentioned in the pilot experiment was completed. The participants followed standard 

worksite procedure and mortar and block supply were provided by a helper as needed. The 

experiment was captured on video using two video cameras. Continuous motion and video data were 

collected until the lead wall was completed. During the data processing phase, the visualization of the 

participants’ motions provided by the Axis Neuron Software were used for task synchronization to 

identify the start and end time of each lift and to segment the lifts from other subtasks, such as 

spreading mortar. Video recordings were used as a visual aid for task segmentation by manually 

synchronizing the recording to the skeletal figure of the participants generated on Axis Neuron. 

3.2.1.4 Experimental Procedure 

Each participant was instructed to complete a pre-built lead wall, Figure 9(a), using forty-five 

concrete masonry units (CMUs) from the second to the sixth course where a course is defined as a 

layer of CMUs. Thus, the bricklaying task consisted of forty-five individual ‘lifts’, consisting of 

picking up, moving, and laying down of a block. The CMUs were Type “A” concrete units, each 

weighing 16.6 kg with dimensions of 390 x 190 x 100 mm. The blocks were placed in three piles 

approximately one-meter away from the pre-built lead wall. Two panels of mortar were placed 
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between the three block piles, shown in Figure 9(b). The use of mortar and the requirement of 

participants to meet alignment tolerances, established a level of realism by approximating true field 

work. Figure 10 shows a participant completing the bricklaying task.  

 

Figure 9 Setup of the bricklaying experiment 
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Figure 10 A participant completing a pre-built lead wall 

3.2.2 Data Processing 

Following the experiment, the motion data collected with the IMU suit was exported as spreadsheet 

files containing the linear acceleration of all seventeen body segments over the duration of the 

bricklaying task. Figure 11 shows the schematic diagram for the data processing from raw motion 

data. Only eleven of the seventeen body segments available in the motion data were used including 

the pelvis, dominant and non-dominant upper arm, forearm, hand, thigh, and shank. Although not all 

IMUs were used, all seventeen IMUs were active during the experiment due to the suit configuration. 

Following the data processing procedure described in the pilot experiment, the motion data were 

segmented into individual lifts and converted to MATLAB readable .mat files. All further data 

analysis was conducted in MATLAB.  
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Figure 11 A schematic diagram of data processing from raw motion data 

As performed in the pilot experiment, the resultant acceleration of the eleven body segments in 

question were calculated from their Cartesian components and filtered using a low-pass Butterworth 

filter with a 10 Hz cut-off frequency to attenuate high frequency noise. The average jerk values were 

found for the first five lifts of the bricklaying task to represent each participant’s rested characteristic 

jerk, Jr, and for the last five lifts to represent their exerted characteristic jerk, Je. The first and last five 

blocks defining each state are illustrated in Figure 4(b). The average of both characteristic jerk values, 

(Jr)avg and (Je)avg, were found for the four experience groups. An unpaired (two-sided) t-test was 

carried out to determine the significance of differences between the characteristic jerk values of the 

rested and exerted states for each group.  

3.2.3 Productivity Loss 

Productivity loss is frequently perceived or used as a metric to identify fatigue [95]–[98]. Thus, 

productivity loss was used as another indicator of physical exertion. Each participant’s overall 

productivity was measured as the number of laid blocks per minute. At the end of the task, the 

completed wall was visually assessed to ensure acceptable build quality. To determine if the 

participants' working pace was decreasing over the duration of the task, the average time taken to lay 
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one block for each course, ti, was found for each experience group from the second course to the sixth 

course. The averages were then normalized with respect to the second course average, t2. 

3.2.4 Results 

For each experience group, the mean and standard deviation of the jerk values in rested and exerted 

states are listed in Table 2. We found that jerk was lowest for journeymen and highest for third-year 

apprentices across all eleven body segments under study. The first-year apprentices had the second 

highest jerk values followed by the novice group for all three segments of the dominant upper limb; 

the opposite was true for the non-dominant upper limb. On the other hand, the novice group had the 

second highest pelvis and lower-limb jerk values followed by first-year apprentices. Participants 

whose jerk values did not increase from the rested to exerted states are summarized in Table 3. These 

participants, however, were all included in the jerk analysis. The jerk value for one or more segments 

did not increase for 8 out of the 32 participants. None of those participants were journeymen. The 

pelvis jerk was the most sensitive parameter with only 3 inexpert participants failing to show an 

increase in the characteristic jerk value from rested to exerted states.  

The pelvis jerk values and standard deviations were smallest compared to the upper limb segments. 

These values increased along the upper arm kinematic chain reaching maxima at the hands. On 

average, jerk values and standard deviations of the dominant upper limbs were greater than those of 

the non-dominant upper limbs for all four experience groups. The same is true for the lower-limbs, 

however the differences between the jerk values of the dominant and non-dominant lower limbs were 

much smaller.  

Table 2 lists the statistical significance of the difference between rested and exerted jerk values 

obtained from the t-test for each group and each segment. Where the p-values were found to be larger 

than p>0.05, we determined that no significant differences (NS) exist between the rested and exerted 

jerk values. The results show significant increases between the characteristic jerk values for all eleven 

body segments of journeymen. For all other experience groups, no significant differences were seen 

between the characteristic jerk values for the body segments except for the pelvis, thigh, and shank 

jerk of novices and pelvis and thigh of first-year apprentices.  
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Table 2 Means, standard deviations, and statistical significance for jerk (g/s) of eleven body 

segments 

 Dominant Limbs  Non-dominant Limbs 

 Rested Exerted 
p 

 Rested Exerted 
p 

 x̅ SD x̅ SD  x̅ SD x̅ SD 

Novices            

Pelvis 2.40 0.76 2.82 0.87 0.004*  - - - - - 

Upper arm 4.08 1.71 4.29 1.37 NS  3.72 1.27 4.04 0.95 NS 

Forearm 5.34 2.93 5.82 2.45 NS  4.18 2.32 4.83 1.62 NS 

Hand 5.99 3.76 6.50 3.12 NS  4.60 2.55 5.07 1.70 NS 

Thigh 4.42 0.01 5.35 0.03 0.008*  4.58 0.01 5.29 0.43 0.032* 

Shank 4.91 1.88 5.64 2.00 0.034*  4.83 1.65 5.58 2.15 0.030* 

First-year            

Pelvis 2.08 0.50 2.34 0.40 0.045*  - - - - - 

Upper arm 4.24 1.62 4.16 0.95 NS  3.31 0.72 3.63 0.75 NS 

Forearm 6.26 3.03 5.94 2.20 NS  3.79 0.95 3.99 1.33 NS 

Hand 7.03 3.29 6.71 2.78 NS  4.14 1.06 4.28 1.95 NS 

Thigh 3.64 0.01 4.56 0.05 0.003*  3.98 0.04 4.44 0.81 0.046* 

Shank 3.87 1.29 4.61 1.52 NS  4.22 0.97 4.32 1.31 NS 

Third-year            

Pelvis 2.67 0.58 2.69 0.62 NS  - - - - - 

Upper arm 5.04 1.85 4.69 0.99 NS  4.62 1.10 4.49 1.09 NS 

Forearm 6.71 2.92 6.17 1.75 NS  5.22 1.55 5.22 1.78 NS 

Hand 7.90 3.94 7.08 2.72 NS  5.46 1.69 5.55 1.90 NS 

Thigh 5.10 0.55 4.85 0.83 NS  5.05 0.92 4.97 0.32 NS 

Shank 5.60 1.85 5.14 1.45 NS  5.18 1.25 5.19 1.67 NS 

Journeymen            

Pelvis 1.57 0.47 2.20 0.52 <0.001*  - - - - - 

Upper arm 2.96 0.83 4.21 1.37 <0.001*  2.86 0.69 3.92 1.03 <0.001* 

Forearm 3.79 1.53 5.30 1.78 <0.001*  3.04 0.93 4.80 1.76 <0.001* 

Hand 4.40 2.27 6.04 2.36 <0.001*  3.41 1.30 5.40 2.39 <0.001* 

Thigh 3.27 0.01 4.15 0.01 <0.001*  2.72 0.01 4.07 0.01 <0.001* 

Shank 3.16 1.42 4.08 1.27 <0.001*  2.76 1.07 3.86 1.24 <0.001* 
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Table 3 Number of participants whose segment jerk values did not increase from rested to 

exerted state 

Group Pelvis Upper Arm  Forearm Hand Thigh Shank Total 

Novices 1 2 2 3 2 3 3 

First-year – 2 2 2 – – 2 

Third-year  2 2 2 3 3 3 3 

Journeymen – – – – – – – 

 

As expected, journeymen were found to be the most productive with the highest blocks/min count, 

followed by third-year apprentices, first-year apprentices, and novices. The total time to complete the 

task for each experience group is summarized in Table 4. The association between experience and 

productivity is apparent. The average time taken to lay one block for each course ti, normalized with 

respect to the average time taken to lay a block at the second course t2, is shown in Figure 6 for each 

experience group. The normalized time taken to lay a block for each course indicate changes in pace 

over the duration of the task. The figure shows that time per block increased and pace dropped 

significantly for novices and moderately for first-year and third-year apprentices but remained almost 

constant for journeymen.  

Table 4 Task completion time and productivity of four experience groups 

Group 
Total Task Completion Time (min) Mean Rate 

x̅ SD (Blocks/min) 

Novices 59 23 0.76 

First-year 43 10 1.05 

Third-year 41 3 1.10 

Journeymen 28 5 1.61 
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Figure 12 Normalized completion time per course for four experience groups 

3.2.5 Discussion 

In this study, we investigated the use of jerk as a metric to measure motor control changes arising 

from physical exertion. We also investigated the differences among jerk values for motions of 

workers with varying levels of expertise and among jerk values for different body segments of the 

same worker. The results of the pilot study suggest that the signal-to-noise ratio of jerk derived from 

IMU-based motion capture suits was high enough to detect differences between rested and exerted 

states. These results were confirmed by the findings in a bricklaying experiment which showed that 

jerk values for all journeymen’s eleven body segments under study had sufficient signal-to-noise ratio 

to distinguish between rested and exerted states with a confidence level better than 99%. This finding, 

however, was not true for inexpert participants. 

The standard deviations of the rested and exerted characteristic jerk values increased along the 

kinematic chains going from the pelvis to the hand and from the pelvis to the shank. We hypothesize 

that spurious acceleration signals caused by contact and impact events between the hands and the 

CMUs and the feet and ground raised the noise floor of the acceleration signal, which were further 

amplified by the numerical differentiation to obtain jerk. Spurious acceleration signals diminish as 

they travel down along the kinematic chain extending from the hands to the pelvis [99]. As a result, 

the standard deviation of jerk decreased, and the signal-to-noise ratio improved for segments closer to 

the body center of mass. This may explain our finding that the rested and exerted characteristic jerk 
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values can be distinguished for pelvis segments of novices and first-year apprentices with a greater 

than 95% confidence level but not for any of their upper limb segments.  

Each experience group in the bricklaying experiment demonstrated a characteristic behavior. 

Journeymen performed lifts with the lowest jerk values of all experience groups, demonstrating 

smooth motions and a high degree of motor control. They were also able to maintain a high 

productivity rate of 1.61 blocks/min throughout the task. Our findings are consistent with other 

studies involving the relationship between jerk and expertise. Gaudez et al. [100] found that the more 

experience a person has in performing a task, the better and more efficient they are at selecting 

relevant information from the surroundings and formulating preparatory movements. Additionally, 

Balasubramanian et al. [64] found that the less experience a person has in performing a task, the more 

intermittent their movements are. Thus, it appears that with experience, learned motions are 

successfully transformed to expert techniques that reflect safe and efficient lifting motions. In 

contrast, third-year apprentices performed lifts with the greatest jerk values, indicating inferior motor 

control. This finding is consistent with Alwasel et al. [83] who found that third-year apprentices 

undergo the highest joint forces and moments while journeymen undergo the least forces and 

moments. It is also in line with the U.S. Bureau of Labor Statistics [101] report that show injury rates 

were greatest for workers with less than five years of experience with the same employer. The 

productivity of third-year apprentices (1.10 blocks/min) was also less than that of journeymen.  

Using an EMG-assisted biomechanical model, Marras et al. examined how spine loading changes 

as a function of experience, lift frequency, and lift duration while repetitively lifting over the course 

of an 8-h workday. It appears that the greatest spine loads occurred at those lift frequencies and 

weights to which the workers were unaccustomed. These observations might help explain the high 

injury and turnover rate often observed in new workers [102]. 

During the experiment, the competitive nature of the trade was evident and expressed through 

verbal communication between third-year apprentices and journeymen. Anecdotal evidence gleaned 

over casual interviews during the experiment revealed that the competitive nature of bricklayers also 

exists on the job. The pressures to match production levels may have led third-year apprentices to use 

jerkier motions and greater effort than they may be physically prepared for. Thus, individual physical 

characteristics or ability to endure physical exertion could be the cause of different patterns of 

correlation between exertion and productivity in the four experience groups. In contrast to third-year 
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apprentices, journeymen may not only have greater expertise but may also be physically better 

adapted to achieve higher production levels. 

The standard deviations of the task completion time for each experience group were much smaller 

for third-year apprentices and journeymen compared to novices and first-year apprentices. This 

decrease in the variation between completion times of more experienced individuals may have 

resulted from their adoption of a consistent work regimen along with the pressures to complete the 

task at a similar work pace to their peers. Novices and first-year apprentices appear to have greater 

motor control than third-year apprentices, however they have the lowest productivity at 0.76 

blocks/min and 1.05 blocks/min, respectively. It appears that their inexperience and greater caution 

toward injury make them more careful when performing their task. This conclusion is supported by a 

previous clinical study. Slaboda et al. [63] found that subjects with chronic lower back pain (CLBP) 

performed lifts with significantly lower jerk values than healthy subjects. Following rehabilitation, 

subjects with CLBP were shown to have similar jerk values to that of control subjects. This suggests 

that subjects with CLBP regulated their motions to achieve smoother motion patterns and avoid 

infliction of pain, whereas control and rehabilitated subjects may have had an alternate motive to lift 

with greater efficiency. Since participants were not instructed to complete the task within a fixed time 

frame, novices and first-year apprentices may have been more inclined to adjust their work pace 

according to their comfort level. Adjustment in work pace may have been an underlying reason for 

the participants whose jerk values did not increase over time. It is interesting to observe that across a 

variety of motor tasks an individual's preferred rate of work has been shown to be the most 

economical, such that at a rate slower or faster than preferred or “freely-chosen'' metabolic energy 

expenditure relative to work output is higher than at the preferred rate [103]. Corlett and Mahadeva 

demonstrated the relationship between work rate and economy using simulated work tasks, showing 

that freely chosen work rate was lowest in physiological cost and, therefore, more economical relative 

to work rates faster or slower than preferred [104].  

For the journeymen, a detectable difference was found between their rested and exerted 

characteristic jerk values, indicating physical exertion. Their work pace however, remained relatively 

constant throughout the task. This is consistent with a previous study by Lee and Migliaccio [98] 

which demonstrated that for high-productivity workers, productivity increased as physical strain, 

indicated by heart rate, increased. They also found that the effect of strain on productivity was much 

less significant for high-productivity workers compared to low-productivity workers. Our results 
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show that jerk may be a better, more sensitive, method for fatigue assessment in experienced workers 

where fatigue and productivity are not necessarily correlated. Furthermore, similarities can be drawn 

between the high levels of physical conditioning and productivity developed through experience to 

those developed through work hardening, an individualized treatment program that assists injured 

workers to regain productivity levels to match industry expectations [105].  

Although results show significant increases between the characteristic jerk values for all eleven 

body segments of journeymen, no significant differences were found between the characteristic jerk 

values of all other experience groups except for the pelvis and lower-limbs of novice and first-year 

apprentices. Our findings also reveal that participants who did not show an increase in jerk values 

between rested and exerted states belonged to the novice and apprentice groups. This may be due to 

those participants changing their pace and, thereby, reducing their exertion level.  

While the effects of demographic variables, such as age and sex, were not considered, the 

recruitment process was not selective, and the participants reflect the demographics of construction 

industry in Ontario. Therefore, the conclusions drawn from each experience group should be an 

accurate reflection of the construction population. In the literature, lifting injuries have been shown to 

increase significantly after the age of 50 [106]. However, highly trained workers may be able to 

outperform those that are much younger since moderate to high intensity work has been shown to 

improve or maintain physical health and functional capacity [107]. Anecdotal evidence in this study 

seems to support this finding; journeymen, although consistently and significantly older than 

apprentices, were better physically conditioned for the work task.  

3.3 Study Limitations  

A few limitations pertaining to the present work are noteworthy. First, the design of the bricklaying 

experiment allowed some inexpert workers to self-pace, thereby, reducing their exertion levels. This 

allowed us to examine the relationships among experience level, fatigue, and productivity but it may 

also have resulted in lower levels of physical exertion and insignificant changes in jerk values for 

inexpert masons. Follow-up studies should be designed to control against self-pacing and to extend 

over longer periods.  Currently, biomechanical and fatigue-related investigations have been restricted 

to analyses of brief periods of lifting and are assumed to represent those completed throughout an 

entire workday. However, several studies exploring motor recruitment patterns resulting from fatigue 

suggest that repetitive lifting over the course of an extended period may indeed influence the motor 
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recruitment pattern and result in changes in the loading pattern on the body. Exploring the effect of 

fatigue during long duration lifting bouts is expected to be more indicative of fatigue development 

and associated risks of injuries over a workday [108], [109] .  

Second, this study examines the relationship between physical exertion and jerk at the group level. 

Based on Table 2, statistically significant differences between the rested and exerted jerk values were 

confirmed only for the journeymen and attributed to their adoption of similar work techniques and 

work pace. As seen in the pilot experiment, the interpersonal variabilities of jerk magnitudes at rested 

and exerted states were high. Thus, future studies may examine the relationship of physical fatigue to 

jerk on an individual level by using learning algorithms to determine intrapersonal variabilities in 

jerk. The results may uncover intrapersonal increases between rested to exerted jerk values for all 

other experience groups where significant increases were not seen on a group level.  

Third, in its current form, the data processing method requires manual segmentation to distinguish 

‘lifts’ from other subtasks, such as spreading mortar, since jerk is highly task dependent. Future work 

should investigate algorithmic methods to either allow for the continuous collection of acceleration 

data without the need for manual task segmentation or the automation of task segmentation.  

Lastly, further research is required to establish jerk thresholds corresponding to fatigue and 

physical exertion levels that may impact workers' health, safety, productivity or work quality so that it 

can be used to develop warning systems against high levels of physical fatigue or as an indicator of 

recovery following fatigue. Such understanding would foster the design of enhanced work schedules 

and other methods to protect worker health and safety and maintain productivity and quality.  

3.4 Conclusion  

The objectives of this study were to assess the suitability of jerk as an indicator of physical exertion 

and fatigue over the course of a demanding task and to examine the relationship between jerk and 

experience level. As a proof of concept, the method was first tested on participants completing the 

one-arm dumbbell row until physical exhaustion was reached. The results of the pilot study suggested 

that jerk values of body segments can detect fatigue and that accelerations obtained from motion 

capture suits have enough signal-to-noise ratio to detect differences between rested and exerted states. 

Following the pilot experiment, the method was then demonstrated on a study of masonry work.  

In the bricklaying experiment, jerk was lowest for journeymen and highest for third-year 

apprentices across all eleven body segments under study. These results suggest that the experience 
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journeymen gain over the course of their career improves their ability to perform repetitive heavy lifts 

with smoother motions and greater control. Third-year apprentices performed lifts with the greatest 

jerk values, indicating poor motor performance. This finding is consistent with previous literature that 

found that third-year apprentices use forceful, less ergonomic, lifting techniques in order to match 

journeymen’s production levels. Novices and first-year apprentices showed more caution towards 

risks of injury, moving with better motor control, compared to more experienced third-year 

apprentices. Their production levels, however, falter behind the production levels of other experience 

groups. We speculate that inexperience and less social pressure on novices and first-year apprentices 

allowed them to maintain motor control through work pace modification resulting in lower fatigue 

levels and jerk values compared to third-year apprentices. Detectable increases between the 

characteristic jerk values were found only for the journeymen experience group, which is attributed to 

greater interpersonal similarities in learned technique and work pace.  

It is important to note the sensitivity of the IMU-based system to the level of the noise floor in the 

underlying acceleration signal. As such, care should be taken to attach sensors to body segments 

involved in the task while being as far as possible from shocks and impacts. 

The results of this study provide insight into the stage of training at which intervention may be 

required to manage motions performed with poor motor control. These interventions may include 

modifications to the training regimen and work-rest cycles to prevent consistently higher levels of 

physical fatigue. Furthermore, the proposed method can be further simplified, and its costs can be 

further reduced by minimizing the number of IMUs used to only one or a few sensors. This will 

enable practical and effective on-site detection of physical fatigue. 
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Chapter 4 Automated Monitoring of Physical Fatigue using Machine 

Learning  

Construction work is typically physically demanding and can result in a high number of accidents and 

injuries caused by fatigue. Fatigue can also have a detrimental impact on workers’ judgement, 

productivity, and quality of work. Although accident and injury prevention has become a primary 

area for improvement within the construction industry, fatigue prevention and detection continue to 

involve manual observation or self-reported subjective assessments. The inherent subjectivity of these 

methods has prompted the introduction of biomechanical and physiological assessments that quantify 

fatigue levels, thereby increasing reliability while reducing the time and human resources needed for 

their implementation. Despite extensive research that confirms the validity of these assessments, they 

can be cumbersome and or intrusive because they often require that multiple sensors and wires be 

attached to the worker, or need external devices that work in conjunction to worn devices. These 

assessments also often require tasks that involve several sequential activities or motions to be 

manually segmented; this is not only a time-consuming process, but it eliminates the applications of 

these assessments for real-time feedback and consumer use.  

The availability of wearable systems capable of automatically classifying human physical motion is 

extremely attractive for many applications in the field of healthcare monitoring and in developing 

advanced human-machine interfaces [84]. IMUs offer several advantages over the traditional 

assessments, for example, they are cost-effective, non-intrusive, and wireless.  

This research investigates the use of support-vector machines (SVM) to automate the monitoring of 

physical exertion levels using jerk. The detection of high levels of exertion would allow workers to 

take proactive measures in mitigating adverse effects of fatigue.  

4.1 Machine Learning Applications for Activity Recognition  

Multiple studies have examined the influence of fatigue on the kinematics and kinetics of 

movement execution.  Moreover, artifical neural networks (ANNs) have been widely used, 

particularly in sports and clinical biomechanics, to classify human movement. Supervised 

classification techniques include k-Nearest Neighbour (k-NN), Support Vector Machines (SVM), 

Gaussian Mixture Models (GMM), and Random Forest (RF), and unsupervised classification 

techniques include k-means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM). 
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The focus of this work is to classify with SVM.  Many studies with SVM have been reported in the 

field of activity recognition, although they do not focus on the study of fatigue.  

As outlined by Maman et al., for effective technological approaches to physical fatigue 

measurement, it is essential that the system can: 1) predict physical fatigue prior to a detrimental 

productivity/safety impact, 2) monitor physical fatigue in the operational environment to allow for 

intervention when deficits are identified, and 3) account for individual variabilities in the underlying 

physiological functions required to establish individualized baseline conditions as opposed to a 

population condition [61].  

In our previous work [110], we found that jerk may be used as an indicator of loss of motor control 

caused by physical exertion. However, the tasks were manually separated to ensure that jerk values 

were compared between the same action types, for examples, the motion data collected during each 

lifting action (pick up – transport – lay down) were segmented out from other motions such as 

spreading mortar. Manual segmentation of the data prevents this method from being used for real-

time assessments. In this study, we conducted two sets of analyses: 1) we tested the feasibility of 

analyzing jerk values using continuous motion data collected from our previous study to monitor 

changes in motor control, and 2) we conducted a second experiment that evaluates changes in jerk 

values between two identical bricklaying tasks following a series of exhausting exercises. 

Continuously monitoring jerk is investigated in the present study using IMU sensors and SVMs, 

which have been used extensively to classify human motion patterns and activities [89], [111]. Given 

that rested and exerted states can create unique jerk signal patterns, machine learning algorithms 

using motion data may be used to monitor the development of physical exertion in real-time for 

practical applications. . In this work, we also examine the inter- and intra-subject differences of 

experienced workers to account for individual variabilities in the underlying physiological functions 

that affect motor control.  

4.2 Methodology  

4.2.1 Participants 

The experiment was conducted at the Canadian Masonry Design Center (CMDC) indoor training 

facility in Mississauga, Ontario. Six male bricklayers with an average of 22 years of masonry 

experience were recruited for the experiment. The participants’ mean (SD) stature and body mass 
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were 179.0 (5.0) cm, 89.3 (14.1) kg, respectively. The study was approved by the Office of Research 

Ethics at the University of Waterloo. 

In our previous work, experienced masons displayed statistically significant inter-subject 

differences between the rested and exerted jerk values over the duration of a bricklaying task. The 

statistically significant differences between experienced masons was attributed to greater inter-subject 

similarities compared to unexperienced masons in their learned technique and work pace. In this 

work, we examine both the inter- and intra-subject differences of experienced workers.  

4.2.2 Instrumentation  

The segment kinematics of the participants were collected using a wearable IMU-based motion 

capture suit, Noitom Perception Neuron [91]. The sampling rate of the IMUs is 125 frames per 

second. The full-body suit is composed of seventeen IMUs located at the pelvis, sternum, head, and 

both shoulders, upper arms, lower arms, hands, upper legs, lower legs, and feet. Although not all 

IMUs were used, all seventeen IMUs were active during the experiment due to the suit configuration. 

Each IMU sensor is comprised of a three-axis accelerometer, a three-axis gyroscope, and a three-axis 

magnetometer. Motion data was transmitted between the suit and a laptop via Wi-Fi. The sensor 

locations are shown in Figure 13. 

4.2.3 Experimental Procedure  

In the bricklaying experiment, jerk analysis was carried out on five body segments, namely the pelvis, 

the dominant and non-dominant upper arms and thighs since lifts involve whole-body work. We 

hypothesized that the three distinct body segments are suitable for fatigue monitoring since 

bricklaying requires large ranges of motion, forceful contractions, high precision from the upper and 

lower limbs, and frequent bending at the torso. IMU sensors have been used to study human motion 

in several locations. However, some studies have found that the torso is the best location to analyze 

movements since it reflects major motions and is close to the human body center of mass [112]. The 

selected body segments may also be the most suitable areas for sensor placement since they are far 

from external impact and from subject protective equipment.  

Prior to the experiment, a calibration session was carried out to allow the Axis Neuron software to 

detect the placement and orientation of the sensors on the participant. The sensor-to-segment 

calibration was obtained using three standard postures including the A-pose, T-pose, and S-pose. Two 

sets of analyses were conducted. First, we tested the feasibility of analyzing jerk values using 
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continuous motion data to monitor changes in motor control with data collected from a previous study 

which required workers to complete a wall building experiment. Second, we conducted an additional 

experiment to evaluate changes in jerk values between two identical bricklaying tasks following a 

series of exhausting exercises. The participants were given an hour break between the two 

experiments.   

 

Figure 13 IMU sensor locations 

4.2.4 Wall Building Experiment 

To investigate the feasibility of using continuous motion data as an input to train SVM, we first 

analyzed data from our previous study [113]. Each participant was instructed to complete a pre-built 

lead wall shown in Figure 9(a), using forty-five concrete masonry units (CMUs) from the second to 

the sixth course. Each course is defined as a layer of CMUs. The CMUs were Type 1 blocks weighing 

16.6 kg as detailed in Table 5. The blocks were placed in three piles approximately one meter away 

from the pre-built lead wall, and two panels of mortar were placed between the three block piles. The 

use of mortar and the requirement to meet alignment tolerances reflected field-work conditions. After 
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the experiment, the participants were given a one-hour break before commencing the second 

experiment. Figure 15 shows the timeline of the tasks completed by the participants and the 

corresponding level of intensity measured in kg of laid CMU per minute.  

Table 5 CMU block properties 

Block Weight [kg] Dimensions [mm x mm x mm] 

Type 1 16.6 390 x 190 x 100 

Type 2 23.6 290 x 390 x 190 

Type 3 36.1 290 x 390 x 190 

 

 

Figure 14 Human figure on Perception Neuron  
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Figure 15 Timeline of task duration and intensity level in kilograms per minute 

 

Figure 16 A schematic diagram of data processing for automatic fatigue detection  

4.2.5 First Course Experiment 

The purpose of the second experiment was to compare the jerk values of two identical tasks 

performed before and after an exhausting set of exercises. Each participant was instructed to build the 

first course of a wall using seven CMUs. The first course was selected because it imposes the greatest 

loading on the lower back [83]. The CMUs were Type 1 blocks weighing 16.6 kg. The blocks were 
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placed in one pile approximately one meter away from the work space. Figure 17 shows a participant 

completing the bricklaying task. 

After completing the first course, the participants were asked to carry out three bricklaying 

activities: 1) complete a wall individually using Type 2 CMUs, 2) complete a wall collaboratively 

using Type 2 CMUs, and 3) complete a wall collaboratively using Type 3 CMUs. In total, each 

participant carried approximately 1000 kg over an average of 50 minutes to complete all three 

bricklaying tasks. Lastly, the participants were asked to complete the first course again. Figure 18 and 

Figure 19 show the experiment sequence schematically.  

 

Figure 17 Experimental setup for first course 
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Figure 18 Experimental setup for bricklaying task 

 

Figure 19 Building sequence for first course experiment 



 

 44 

4.3 Data Processing 

Body segment accelerations collected from the IMU accelerometers were imported into MATLAB 

for computations. Figure 16 shows the schematic diagram for the methodology used in machine 

learning following data pre-processing to bypass the requirement for manual task segmentation. For 

each of the five IMU sensors, the resultant acceleration data were calculated from the Cartesian 

components collected from the IMU accelerometers. High frequency noise was removed using a low-

pass Butterworth filter with a 10Hz cut-off frequency. Jerk was calculated as the time-derivative of 

the acceleration magnitude as shown in Table 6.  

The classification is performed using predefined MATLAB functions. SVM is a supervised 

learning algorithm for pattern recognition and classification. Given labelled training data, the 

algorithm outputs an optimal hyperplane that define decision boundaries which it can then use to 

categorize new data points. Linear, polynomial, and Gaussian kernels were employed in the SVM 

classifier. During the wall building experiment, the motion data collected during the second course 

was labelled as ‘rested’ and those collected during the sixth course was labelled as ‘exerted’. 

Likewise, during the first course experiment, the motion data collected during the first course 

completed at the beginning of the task was labelled as ‘rested’ and those collected at the end of the 

task was labelled as ‘exerted’.  

Table 6 . Jerk calculations from Cartesian components of acceleration 

 Formula 

Acceleration 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧  

Resultant acceleration 𝑅 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 

Resultant jerk 𝐽 =
𝑑𝑅

𝑑𝑡
 

Jerk cost 𝐽 = ∫ |
𝑑𝑅

𝑑𝑡
|
2𝑇2

𝑇1

𝑑𝑡 

 

The selection of a window size has a significant impact on the classification accuracy. Wang et al. 

[114] conducted tests on different sliding-window sizes for activity recognition and found that 

accuracy decreases as window size increases. The optimal window size, however, is also dictated by 

what the classifier is required to classify such that the segment length is adequate to distinguish 
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between unique signal patterns. Using a sliding window approach, multiple window sizes were tested 

and an overlap size of 50% was used. The window size for optimal recognition was 15 s. Features 

were extracted from the segmented data and characterized in both the time and frequency domains. 

The feature set was based solely on jerk measured in g/s and includes the following: 1) mean, the 

average value of acceleration data over the window; 2) standard deviation of acceleration values over 

the window; 3) maximum; 4) minimum; 5) jerk cost, an important measure to estimate the energy 

economy described by the area under squared jerk curve; and 6) dominant frequency – Fast Fourier 

Transform (FFT) over the window. The classification accuracies are based on all features and for all 

five body segments. 

4.4 Results and Discussion 

In our experiments of classifying rested and exerted states of six subjects, we considered jerk-based 

features extracted from five IMU sensor body locations, namely the pelvis, and dominant and non-

dominant upper arms and thighs. In the classification stage, we applied several classifiers using 

MATLAB.  On comparing the average classification accuracy, the analysis showed that the SVM 

classifiers had the highest average value for both experiments, as reported in Table 7 and Table 8. A 

five-fold cross-validation scheme was used to evaluate the SVM classification algorithms, providing 

an indication of how well the learner will do when the classifier is repeated using new data. Thus, the 

reported accuracy is the average accuracy over five iterations.  

As expected, the SVM classification results demonstrated a significantly higher intra-subject 

rested/exerted classification than the inter-subject classification. For the wall completion experiment, 

the polynomial kernels (94%) performed better than the linear kernel (91%) to identify intra-subject 

rested/exerted states. For the first course experiment, the linear kernel performed similarly (80%) to 

the polynomial kernel (79%). The lower classifier accuracy for the first course experiment may be 

explained by the fact that it was completed following the first experiment. Since a sufficient amount 

of time is required for muscle recovery following exercise, the participants may not have fully 

recovered from the first experiment before moving onto the second experiment. Thus, the participants 

may have begun the second experiment in an exerted state. The participants might have also recruited 

an alternate group of muscles for the two collaborative lifting tasks compared to the individual lifting 

tasks during the first course experiment. Thus, fatigue may have built up for a different group of 

muscles that were not all used in laying the first courses. Another explanation could be that the level 

of intensity as measured in kilograms per minute could have affected the exertion levels developed by 
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the participants. The intensity level was higher during the wall building experiment compared to the 

first course experiment; however, the series of fatiguing tasks conducted in between the two sets of 

first course block laying was higher in intensity.  

Table 7 Wall completion experiment – SVM classification accuracy [%], mean, and standard 

deviation 

SVM Kernel Function 
Intra-subject Inter-subject 

W1 W2 W3 W4 W5 W6 MeanSD All workers 

Linear 98.0 84.1 87.0 91.1 84.6 100.0 90.86.8 78.5 

Quadratic 98.0 87.0 89.1 95.6 94.2 100.0 94.05.1 79.2 

Cubic 98.0 87.0 91.3 97.8 90.4 100.0 94.15.2 76.5 

Fine Gaussian 62.7 69.6 58.7 66.7 63.5 56.7 63.04.8 60.1 

Medium Gaussian 96.1 85.5 80.4 93.3 86.5 100.0 90.37.4 78.8 

Course Gaussian 72.5 69.6 63.0 66.7 63.5 100.0 72.613.9 71.3 
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Table 8 First course experiment – SVM classification accuracy [%], mean, and standard 

deviation 

SVM Kernel Function 
Intra-subject Inter-subject 

W1 W2 W3 W4 W5 W6 MeanSD All workers 

Linear 75.4 74.0 69.1 76.6 84.6 100.0 80.011.0 62.0 

Quadratic 72.3 71.4 68.1 76.6 87.2 97.1 78.811.2 63.0 

Cubic 72.3 67.5 68.1 76.6 84.6 100.0 78.212.4 63.3 

Fine Gaussian 52.3 59.7 61.7 51.9 56.4 60.0 57.04.2 57.6 

Medium Gaussian 80.0 71.4 67.0 68.8 89.7 94.3 78.511.4 65.9 

Course Gaussian 50.8 59.7 61.7 67.5 71.8 71.4 63.88.1 59.4 

4.5 Limitations 

Conclusions provided in this study should be considered in context of the limitations. First, there was 

no secondary measure of fatigue, thus we cannot be certain that experiments induced sufficient 

fatigue. Since we know that the participants had indeed exerted themselves in performing the 

bricklaying tasks, the classification accuracy reflects the extent to which fatigue was developed. 

Second, we did not consider masons with other experience levels other than expert masons. Third, 

due to the fact that physical exertion levels may last for several hours following physical activity, the 

break in between the first and second experiments may not have been sufficient for the participants to 

return to a rested state.  

The placement of the sensors is of high importance because it can potentially affect the recognition 

between rested and fatigued states. Thus, future work should involve a feature selection method to 

identify the most significant motion changes after fatigue and determine the optimal number and 

placements of the sensors to improve the utility of the method.  

4.6 Conclusion  

In the construction industry, fatigue can impair workers ability to safely and effectively perform their 

duties which negatively impacts their well-being, reduces productivity and the quality of their work, 

and elevates workers’ compensation costs. Current workload and fatigue assessment methods, 

including subjective, physiological, and biomechanical assessments, can be unreliable, cumbersome, 

or require extensive post processing, which render them impractical for real-time assessment.  
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This research investigated the use of SVMs to automatically recognize changes in jerk values due 

to physical exertion. Motion data were collected during two bricklaying activities using IMU sensors 

to obtain jerk input to SVM classifiers. Inter- and intra-subject classification of rested and exerted 

states of six expert masons were carried out using the jerk values of the pelvis, upper arms, and 

thighs.  

We found that changes in jerk values due to the development of fatigue can be classified by 

supervised machine learning techniques. On average, intra-subject classification achieved an accuracy 

of 94% for the wall building experiment and 80% for the first course experiment. The difference 

between the classification accuracy for the two experiments may be attributed to differences in task 

sequence and intensity level resulting in lower classification accuracy in the first-course experiment 

compared to the wall experiment.  

The results lead us to conclude that jerk changes resulting from exertion can be assessed by 

wearable sensors and SVMs. The investigated method holds promise for continuous monitoring of 

physical exertion and fatigue which can help in reducing work related musculoskeletal injuries or 

other fatigue-related risks. 
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Chapter 5 Conclusion and Recommendations 

Physical fatigue is one of the factors leading to increased risk of injury, reduced productivity, and 

decline in work quality in the construction industry. Fatigue in musculature is associated with a 

decline in postural stability, motor performance, and altered normal motion patterns, leading to 

heightened risks of work-related musculoskeletal disorders. Physical fatigue has been previously 

demonstrated to be a good indicator of injury risks, thus, monitoring and detecting muscle fatigue 

during strenuous work may be advantageous in mitigating these risks. This research used wearable 

wireless inertial sensors and sought to evaluate the use of acceleration and its derivative, jerk, to 

detect changes in motor control using IMUs.  

The objective of this thesis was to identify and evaluate jerk as a fatigue measure that is practical 

for both laboratory and in situ use. Through two studies, the thesis aimed to 1) evaluate the use of jerk 

to detect changes in motor control arising from physical exertion, 2) investigate differences in jerk 

values between motions performed by workers with varying skill levels, and 3) assess the suitability 

of machine learning techniques for real-time physical fatigue monitoring. Each of these objectives 

have been addressed as summarized in the following sections.  

5.1 Jerk and Physical Fatigue 

In our first study, we conducted bricklaying experiment with 32 male bricklayers with varying levels 

of masonry experience including novices, first-year apprentices, third-year apprentices, and 

journeymen. For each participant, a comparison between jerk values were made between the 

beginning and end of the bricklaying task to determine whether the participant had become more 

exerted over time. Among the experience groups, detectable differences between their rested and 

exerted states were seen only for the journeymen participants, indicating that they were physically 

exerted. Being physically exerted, however, did not affect their work pace as it remained relatively 

constant throughout the task. These results show that jerk may be a better, more sensitive, method for 

fatigue assessment in experienced workers where fatigue and productivity are not necessarily 

correlated. Since the design of the bricklaying experiment allowed self-pacing, inexpert workers 

including novices and apprentices, may have experienced lower levels of physical exertion and thus, 

insignificant changes in jerk values.  
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5.2 Jerk and Skill Level   

Journeymen performed lifts with the lowest jerk values of all experience groups, demonstrating 

smooth motions and a high degree of motor control while maintaining high productivity. Novices and 

first-year apprentices appear to have greater motor control than third-year apprentices, however they 

have the lowest productivity. Moreover, they showed more caution toward risks of injury resulting in 

them moving with more controlled motions compared to the more experienced third-year apprentices. 

This observation supports the notion that individuals naturally adopt a preferred mode that are both 

self-selected and optimal with respect to variables such as work, time, energy, and physiological cost.  

In contrast, third-year apprentices performed lifts with the greatest jerk values, indicating inferior 

motor control. The productivity of third-year apprentices was also less than that of journeymen. The 

pressures to match production levels may have led third-year apprentices to use jerkier motions and 

greater effort than they may be physically prepared for.  

5.3 In Situ Fatigue Detection using Machine Learning 

In our second study, we investigated the use of support-vector machines (SVM) to automatically 

recognize jerk changes due to physical exertion. Previously in our first study, we noted the wide 

interpersonal variabilities in both jerk magnitude and change in jerk values between the participants’ 

rested and fatigued states. Thus, it is essential to account for individual variabilities and allow for the 

establishment of individualized baseline conditions rather than a population condition. As such, we 

classified both inter-and intra-subject rested and exerted states for the pelvis, upper arms, and thigh. 

Classification results demonstrated a significantly higher intra-subject rested/exerted classification 

than the inter-subject classification. On average, intra-subject classification achieved an accuracy of 

94% for the wall building experiment and 80% for the first course experiment. We conclude that jerk 

changes due to physical exertion can be detected using wearable sensors and SVMs.  

5.4 Adequacy of Signal-to-Noise Ratio of IMU for Jerk Detection 

The first study pilot experiment results suggest that the signal-to-noise ratio of jerk derived from 

IMU-based motion capture suits was high enough to detect differences between rested and exerted 

states. These results were confirmed by the findings in a bricklaying experiment which showed that 

jerk values for all journeymen’s eleven body segments under study had sufficient signal-to-noise ratio 

to distinguish between rested and exerted states with a confidence level better than 99%. This finding, 

however, was not true for inexpert participants for the suspected reasons outlined in Section 6.1.  
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We hypothesized that spurious acceleration signals caused by contact and impact events between 

the hands and the CMUs, and the feet and ground, raised the noise floor of the acceleration signal, 

which were further amplified by the numerical differentiation to obtain jerk. Spurious acceleration 

signals diminish as they travel down along the kinematic chain extending from the hands to the 

pelvis. Thus, the signal-to-noise ratio improves for segments closer to the body center of mass.  
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5.5 Future Work and Recommendations  

The recommended future area of work related to this research is the implementation and refinement 

of the experimental methodology. This is required for validating and improving this research. In 

addition, several areas of recommended research are proposed. 

1) Additional research is required to improve sensing technologies particularly for 

environments that require dynamic work. While wearable motion sensor systems have been 

shown to exhibit good accuracy in both laboratory and in situ settings, their accuracy has 

been known to degrade when work activities involve complex and dynamic motions [115] 

or when measurements are taken in the presence of magnetically distorted fields 

[116]. Thus, a more robust hardware should be used to validate the results of the study. 

2) Current estimation of physical demands is limited by the need for multiple sensors. Thus, 

future work involves a feature selection method to identify the most significant motion 

changes after fatigue and determine the optimal number and placements of the sensors to 

improve the utility of the method. Moreover, combining technologies and measurement 

methods capable of simultaneously capturing several processes of work would allow 

workers to move more naturally, thereby improving estimates of workplace exposure while 

reducing costs.  

3) Currently, biomechanical and fatigue-related investigations have been restricted to analyses 

of brief periods of lifting and are assumed to represent those completed throughout an 

entire workday. However, several studies exploring motor recruitment patterns resulting 

from fatigue suggest that repetitive lifting over the course of an extended period may 

influence motor recruitment pattern and result in changes in the loading pattern on the 

body. Exploring the effect of fatigue during longer duration is expected to be more 

indicative of fatigue development and associated risks of injuries over a workday. 

4) Lastly, research is required to establish jerk thresholds corresponding to fatigue and 

physical exertion levels that negatively impact workers' health, safety, productivity or work 

quality. This understanding would enable the development of warning systems against high 

levels of physical fatigue or as an indicator of recovery following fatigue. Moreover, it can 

guide enhancements made to the design of work schedules and systems to protect worker 

health and safety and maintain productivity and quality.  
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Appendix A 

MATLAB Scripts  

I wish to acknowledge the help provided by my project teammate, Mohsen Diraneyya, in the 

generation of the data processing code.  
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Read_calc_file.m 

%------------------------------------------------------------------------% 

% This function reads calculation files (.calc) exported from the Axis    
% Neuron software following data collection using their IMU suit. 
% This function reads the columns of interest including 
% sensors locations, velocities, quaternions, accelerations and 
% angular velocities for all 21 sensors in the calculation file. 
% Note: some of them may be copies of each other, depending on the        

% actual number of sensors used. 

%------------------------------------------------------------------------% 

   
function [Calc_Data] = read_calc_file(calc_filename) 

  
% add a file extension if necessary: 
if ~strncmpi(fliplr(calc_filename),'calc.',5) 
  calc_filename = [calc_filename,'.calc']; 
end 

  
%% counter for number of lines 
fid=fopen(calc_filename,'r'); 
file_data_cell = textscan(fid, '%s',10000000,'delimiter', '\n');  
file_data = file_data_cell{1,1}; 
no_of_raws=size(file_data_cell{1},1); 

  
fclose(fid); 

  
%% read line by line 
Data=zeros(no_of_raws,338); 
for i = 7 : no_of_raws 
    tap_locations=strfind(file_data{i},'    '); 
    Data(i,1)=str2double(file_data{i}(1:tap_locations(1)-1)); 
    for j=2:338 
        Data(i,j)=str2double(file_data{i}(tap_locations(j-

1)+1:tap_locations(j)-1)); 
    end 
end 

  
Calc_Data=Data(7:end,:); 
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Kinematics_from_calc.m 

%------------------------------------------------------------------------% 

% This function finds sensor locations, linear accelerations,   
% angular velocities and angular accelerations from the .calc file   

% Function outputs include sensors information for a 15-segment body model 

 

% The order of the segments are as follows,  
% 1: Pelvis, 2: Torso, 3: Head & Neck, 4: Right upper arm, 5: Right       

% Forearm, 6: Right hand, 7: Left upper arm, 8: Left Forearm, 9: Left      
% hand, 10: Right Thigh, 11: Right Shank, 12: Right Foot, 13: Left Thigh, 

% 14: Left Shank and % 15: Left Foot  

  
% All inputs from the .calc file are in "sensor global" frame except for 

the location, the outputs are in the same frame except for location 

  
% Note: The location inputs are in calculation BVH frame and location     

% outputs are in 3D BVH frame (.bvh file) frame 

  
% Note: CS = Coordinate System = Frame 
%------------------------------------------------------------------------% 

 
function [A,omega,alpha,sensor_location] = Kinematics_from_calc(calc_data) 

  
% Input: calc_data, contains the data as expressed in .calc file exported 

% in sensor global CS, 
% only numeric data starting from the first frame to the last frame, size: 

% nx336, where n is the number of frames, 336 is 16 data elements for each 

% of the 21 segments in .calc file.  
 

% 16 data elements are in arranged in the following order: 
% position x,y&z, velocity x,y&z, quaternion r,i,j&k, acceleration x,y&z 

and angular velocity x,y&z  
 

% The segments are as follows,  
% 1: pelvis, 2: Right thigh, 3: right shank, 4: right foot, 5: left thigh,  

% 6: left shank, 7: Left foot, 8: right shoulder, 9: right upper arm,  
% 10: right forearm, 11: right hand, 12: left shoulder, 13: left upper    

% arm,14: left forearm, 15: left hand, 16: head, 17: neck, 18: Spine3,  

% 19: spine2, 20: spine1, 21: spine 

  
% Note: 16 and 17 are exactly the same (copies) for quaternion, 

acceleration and angular velocity 
% Note: 18, 19 and 20 are exactly the same (copies) for quaternion, 

acceleration and angular velocity 
% Note: 1 and 21 are exactly the same (copies) for quaternion, 

acceleration and angular velocity 

  
% Outputs:  
% A: sensor acceleration of each segment. 3xnx15 matrix, 3d vector for 

each frame for each segment (meter per second squared) 
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% omega: angular velocity of each segment. 3xnx15 matrix, 3d vector for 

each frame for each segment (per second squared) 
% alpha: angular acceleration of each segment. 3xnx15 matrix, 3d vector 

for each frame for each segment (per second) 
%sensor_location: coordinates of each sensor's location in bvh CS, 3xnx15 

matrix, 3d vector for each frame for each segment (meter), 
% The coordinates are expressed away from zeta pelvis as the origin 

(0,0,0) 

  

%% read from calc_data matrix, and permute to fit the desired format 
sensor_location_from_calc=zeros(size(calc_data,1),3,21); 
A_from_calc=zeros(size(calc_data,1),3,21); 
omega_from_calc=zeros(size(calc_data,1),3,21); 
alpha_from_calc=zeros(size(calc_data,1)-1,3,21); 

  
for i=0:20 
    sensor_location_from_calc(:,1:3,i+1)=calc_data(:,16*i+1:16*i+3); 

%segment i+1 sensor location 
    A_from_calc(:,1:3,i+1)=calc_data(:,16*i+11:16*i+13)*9.81;  

%segment i+1 acceleration in m/sec^2 
    omega_from_calc(:,1:3,i+1)=calc_data(:,16*i+14:16*i+16);  

%segment i+1 angular velocity in rad/sec 
    alpha_from_calc(:,1:3,i+1)=diff(omega_from_calc(:,1:3,i+1))*121; 

%segment i+1 angular acceleration in rad/sec^2 (differentiation of angular 

velocity) 
end 

  
sensor_location_from_calc = permute(sensor_location_from_calc,[2,1,3]); 
A_from_calc = permute(A_from_calc,[2,1,3]); 
omega_from_calc = permute(omega_from_calc,[2,1,3]); 
alpha_from_calc = permute(alpha_from_calc,[2,1,3]); 

  
%% take only the segments we are interested in, in the order we are 

interested in 

  
R_sensor_BVH=[1 0 0;0 0 1;0 1 0]; %change reference frame from sensor 

global to BVH  
R_bvhcalc_BVH=[1 0 0; 0 0 -1; 0 1 0]; %change reference frame for sensor 

location from bvh of .calc, to bvh of .3d 

  
%1pelvis 
sensor_location(:,:,1)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,1); 
A(:,:,1)=R_sensor_BVH*A_from_calc(:,:,1); 
omega(:,:,1)=R_sensor_BVH*omega_from_calc(:,:,1); 
alpha(:,:,1)=R_sensor_BVH*alpha_from_calc(:,:,1); 

  
%2Torso 
sensor_location(:,:,2)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,18); 
A(:,:,2)=R_sensor_BVH*A_from_calc(:,:,18); 
omega(:,:,2)=R_sensor_BVH*omega_from_calc(:,:,18); 
alpha(:,:,2)=R_sensor_BVH*alpha_from_calc(:,:,18); 
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%3head&neck 
sensor_location(:,:,3)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,16); 
A(:,:,3)=R_sensor_BVH*A_from_calc(:,:,16); 
omega(:,:,3)=R_sensor_BVH*omega_from_calc(:,:,16); 
alpha(:,:,3)=R_sensor_BVH*alpha_from_calc(:,:,16); 

  
%4Right upperarm 
sensor_location(:,:,4)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,9); 
A(:,:,4)=R_sensor_BVH*A_from_calc(:,:,9); 
omega(:,:,4)=R_sensor_BVH*omega_from_calc(:,:,9); 
alpha(:,:,4)=R_sensor_BVH*alpha_from_calc(:,:,9); 

  
%5Right forearm 
sensor_location(:,:,5)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,10); 
A(:,:,5)=R_sensor_BVH*A_from_calc(:,:,10); 
omega(:,:,5)=R_sensor_BVH*omega_from_calc(:,:,10); 
alpha(:,:,5)=R_sensor_BVH*alpha_from_calc(:,:,10); 

  
%6Right hand 
sensor_location(:,:,6)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,11); 
A(:,:,6)=R_sensor_BVH*A_from_calc(:,:,11); 
omega(:,:,6)=R_sensor_BVH*omega_from_calc(:,:,11); 
alpha(:,:,6)=R_sensor_BVH*alpha_from_calc(:,:,11); 

  
%7Left upperarm 
sensor_location(:,:,7)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,13); 
A(:,:,7)=R_sensor_BVH*A_from_calc(:,:,13); 
omega(:,:,7)=R_sensor_BVH*omega_from_calc(:,:,13); 
alpha(:,:,7)=R_sensor_BVH*alpha_from_calc(:,:,13); 

  

%8Left forearm 
sensor_location(:,:,8)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,14); 
A(:,:,8)=R_sensor_BVH*A_from_calc(:,:,14); 
omega(:,:,8)=R_sensor_BVH*omega_from_calc(:,:,14); 
alpha(:,:,8)=R_sensor_BVH*alpha_from_calc(:,:,14); 

  

%9Left hand 
sensor_location(:,:,9)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,15); 
A(:,:,9)=R_sensor_BVH*A_from_calc(:,:,15); 
omega(:,:,9)=R_sensor_BVH*omega_from_calc(:,:,15); 
alpha(:,:,9)=R_sensor_BVH*alpha_from_calc(:,:,15); 

  
%10Right Thigh 
sensor_location(:,:,10)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,2); 
A(:,:,10)=R_sensor_BVH*A_from_calc(:,:,2); 
omega(:,:,10)=R_sensor_BVH*omega_from_calc(:,:,2); 
alpha(:,:,10)=R_sensor_BVH*alpha_from_calc(:,:,2); 

  
%11Right Shank 
sensor_location(:,:,11)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,3); 
A(:,:,11)=R_sensor_BVH*A_from_calc(:,:,3); 
omega(:,:,11)=R_sensor_BVH*omega_from_calc(:,:,3); 
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alpha(:,:,11)=R_sensor_BVH*alpha_from_calc(:,:,3); 

  

%12Right foot 
sensor_location(:,:,12)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,4); 
A(:,:,12)=R_sensor_BVH*A_from_calc(:,:,4); 
omega(:,:,12)=R_sensor_BVH*omega_from_calc(:,:,4); 
alpha(:,:,12)=R_sensor_BVH*alpha_from_calc(:,:,4); 

  
%13Left Thigh 
sensor_location(:,:,13)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,5); 
A(:,:,13)=R_sensor_BVH*A_from_calc(:,:,5); 
omega(:,:,13)=R_sensor_BVH*omega_from_calc(:,:,5); 
alpha(:,:,13)=R_sensor_BVH*alpha_from_calc(:,:,5); 

  
%14Left Shank 
sensor_location(:,:,14)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,6); 
A(:,:,14)=R_sensor_BVH*A_from_calc(:,:,6); 
omega(:,:,14)=R_sensor_BVH*omega_from_calc(:,:,6); 
alpha(:,:,14)=R_sensor_BVH*alpha_from_calc(:,:,6); 

  
%15Left foot 
sensor_location(:,:,15)=R_bvhcalc_BVH*sensor_location_from_calc(:,:,7); 
A(:,:,15)=R_sensor_BVH*A_from_calc(:,:,7); 
omega(:,:,15)=R_sensor_BVH*omega_from_calc(:,:,7); 
alpha(:,:,15)=R_sensor_BVH*alpha_from_calc(:,:,7); 

  
% shift global origin to pelvis origin (assume same as sensor) for sensor 

location. That is, now the sensor location is expressed away from the 

pelvis origin, instead of global frame origin, however, the coordinates 

are still in global frame. 

 
for i=1:size(sensor_location,2) 
    sensor_location(:,i,:)=sensor_location(:,i,:)-sensor_location(:,i,1); 
end 
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Matrix_from_file.m 

%------------------------------------------------------------------------% 

% Data processing: data filtering, acceleration from .calc file to jerk  

%------------------------------------------------------------------------% 

  
function 

[Matrix_pelvis,Matrix_DShoulder,Matrix_NShoulder,Matrix_DElbow,Matrix_NElb

ow,Matrix_DHip,Matrix_NHip,Matrix_D,Matrix_N,Matrix_All] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc) 

  
%% Inputs  
Fs = 125; % Sampling frequency                     

  
%% import 
[Calc_Data] = read_calc_file(File_Name); 

  
Wn=Wc/62.5; %desired frequency is Wc, original frequency is 125  
[b,a]=butter(2,Wn,'low'); %Butterworth filter factors 
Calc_Data=filtfilt(b,a,Calc_Data); %Applying filter  

  
[A,~,~,~] = Kinematics_from_calc(Calc_Data); 

  
%% Calculating Jerk 

  
% Acceleration magnitude 
Pelvis_A=sqrt(sum(A(:,:,1).^2,1))'; 
RShoulder_A=sqrt(sum(A(:,:,4).^2,1))'; 
LShoulder_A=sqrt(sum(A(:,:,7).^2,1))'; 
RHip_A=sqrt(sum(A(:,:,10).^2,1))'; 
LHip_A=sqrt(sum(A(:,:,13).^2,1))'; 
RElbow_A=sqrt(sum(A(:,:,5).^2,1))'; 
LElbow_A=sqrt(sum(A(:,:,8).^2,1))'; 

  
%{ 
other segments 
RWrist_A=sqrt(sum(A(:,:,6).^2,1))'; 
LWrist_A=sqrt(sum(A(:,:,9).^2,1))'; 
RKnee_A=sqrt(sum(A(:,:,11).^2,1))'; 
RAnkle_A=sqrt(sum(A(:,:,12).^2,1))'; 
LKnee_A=sqrt(sum(A(:,:,14).^2,1))'; 
LAnkle_A=sqrt(sum(A(:,:,15).^2,1))'; 
%} 

  
% Jerk magnitude 
Pelvis_J=diff(Pelvis_A)*125; 
RShoulder_J=diff(RShoulder_A)*125; 
LShoulder_J=diff(LShoulder_A)*125; 
RHip_J=diff(RHip_A)*125; 
LHip_L=diff(LHip_A)*125; 
RElbow_J=diff(RElbow_A)*125; 
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LElbow_J=diff(LElbow_A)*125; 

  

%{  
other segments 
RWrist_J=diff(RWrist_A)*125; 
LWrist_J=diff(LWrist_A)*125; 
RKnee_J=diff(RKnee_A)*125; 
RAnkle_J=diff(RAnkle_A)*125; 
LKnee_J=diff(LKnee_A)*125; 
LAnkle_J=diff(LAnkle_A)*125; 
%} 

  
%% Calculating Selected Features values for each window 
Window_frames=round(125*Window_size); 
no_of_windows=floor(2*length(A)/Window_frames)-1; 

  
%Features initiation 
%pelvis 
Pelvis_mean_J=zeros(no_of_windows,1);Pelvis_std_J=zeros(no_of_windows,1); 
Pelvis_max_J=zeros(no_of_windows,1);Pelvis_min_J=zeros(no_of_windows,1); 
Pelvis_JC=zeros(no_of_windows,1);Pelvis_peak_JF=zeros(no_of_windows,1); 

  
%RShoulder 
RShoulder_mean_J=zeros(no_of_windows,1);RShoulder_std_J=zeros(no_of_window

s,1); 
RShoulder_max_J=zeros(no_of_windows,1);RShoulder_min_J=zeros(no_of_windows

,1); 
RShoulder_JC=zeros(no_of_windows,1);RShoulder_peak_JF=zeros(no_of_windows,

1); 

  

%LShoulder 
LShoulder_mean_J=zeros(no_of_windows,1);LShoulder_std_J=zeros(no_of_window

s,1); 
LShoulder_max_J=zeros(no_of_windows,1);LShoulder_min_J=zeros(no_of_windows

,1); 
LShoulder_JC=zeros(no_of_windows,1);LShoulder_peak_JF=zeros(no_of_windows,

1); 

  
%RElbow 
RElbow_mean_J=zeros(no_of_windows,1);RElbow_std_J=zeros(no_of_windows,1); 
RElbow_max_J=zeros(no_of_windows,1);RElbow_min_J=zeros(no_of_windows,1); 
RElbow_JC=zeros(no_of_windows,1);RElbow_peak_JF=zeros(no_of_windows,1); 

  

%LElbow 
LElbow_mean_J=zeros(no_of_windows,1);LElbow_std_J=zeros(no_of_windows,1); 
LElbow_max_J=zeros(no_of_windows,1);LElbow_min_J=zeros(no_of_windows,1); 
LElbow_JC=zeros(no_of_windows,1);LElbow_peak_JF=zeros(no_of_windows,1); 

  
%RHip 
RHip_mean_J=zeros(no_of_windows,1);RHip_std_J=zeros(no_of_windows,1); 
RHip_max_J=zeros(no_of_windows,1);RHip_min_J=zeros(no_of_windows,1); 
RHip_JC=zeros(no_of_windows,1);RHip_peak_JF=zeros(no_of_windows,1); 
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%LHip 
LHip_mean_J=zeros(no_of_windows,1);LHip_std_J=zeros(no_of_windows,1); 
LHip_max_J=zeros(no_of_windows,1);LHip_min_J=zeros(no_of_windows,1); 
LHip_JC=zeros(no_of_windows,1);LHip_peak_JF=zeros(no_of_windows,1); 

  
for window = 1 : no_of_windows %jerk values during the window 
  Window_Pelvis_J=Pelvis_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_RShoulder_J=RShoulder_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_LShoulder_J=LShoulder_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_RElbow_J=RElbow_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_LElbow_J=LElbow_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_RHip_J=RHip_J(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames); 
  Window_LHip_J=LHip_L(floor(Window_frames*(window-

1)/2)+1:floor((Window_frames*(window-1)/2))+Window_frames);   

   
  %Pelvis features 
  Pelvis_mean_J(window)=  mean(Window_Pelvis_J); 
  Pelvis_std_J(window)=  std(Window_Pelvis_J); 
  Pelvis_max_J(window)=  max(Window_Pelvis_J); 
  Pelvis_min_J(window)=  min(Window_Pelvis_J); 
  Pelvis_JC(window)= sum(Window_Pelvis_J.^2)*(1/125); 

   
  L = length(Window_Pelvis_J); 
  Y = fft(Window_Pelvis_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  Pelvis_peak_JF(window)=f(max_location+1); 

  
  %RShoulder features 
  RShoulder_mean_J(window)=  mean(Window_RShoulder_J); 
  RShoulder_std_J(window)=  std(Window_RShoulder_J); 
  RShoulder_max_J(window)=  max(Window_RShoulder_J); 
  RShoulder_min_J(window)=  min(Window_RShoulder_J); 
  RShoulder_JC(window)= sum(Window_RShoulder_J.^2)*(1/125); 

   
  Y = fft(Window_RShoulder_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  RShoulder_peak_JF(window)=f(max_location+1); 

   
  %LShoulder features 
  LShoulder_mean_J(window)=  mean(Window_LShoulder_J); 
  LShoulder_std_J(window)=  std(Window_LShoulder_J); 
  LShoulder_max_J(window)=  max(Window_LShoulder_J); 
  LShoulder_min_J(window)=  min(Window_LShoulder_J); 
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  LShoulder_JC(window)= sum(Window_LShoulder_J.^2)*(1/125); 

   

  Y = fft(Window_LShoulder_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  LShoulder_peak_JF(window)=f(max_location+1); 

   
  %REblow features 
  RElbow_mean_J(window)=  mean(Window_RElbow_J); 
  RElbow_std_J(window)=  std(Window_RElbow_J); 
  RElbow_max_J(window)=  max(Window_RElbow_J); 
  RElbow_min_J(window)=  min(Window_RElbow_J); 
  RElbow_JC(window)= sum(Window_RElbow_J.^2)*(1/125); 

   
  Y = fft(Window_RElbow_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  RElbow_peak_JF(window)=f(max_location+1); 

   
  %LElbow features 
  LElbow_mean_J(window)=  mean(Window_LElbow_J); 
  LElbow_std_J(window)=  std(Window_LElbow_J); 
  LElbow_max_J(window)=  max(Window_LElbow_J); 
  LElbow_min_J(window)=  min(Window_LElbow_J); 
  LElbow_JC(window)= sum(Window_LElbow_J.^2)*(1/125); 

   
  Y = fft(Window_LElbow_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  LElbow_peak_JF(window)=f(max_location+1); 

   

   
  %RHip features 
  RHip_mean_J(window)=  mean(Window_RHip_J); 
  RHip_std_J(window)=  std(Window_RHip_J); 
  RHip_max_J(window)=  max(Window_RHip_J); 
  RHip_min_J(window)=  min(Window_RHip_J); 
  RHip_JC(window)= sum(Window_RHip_J.^2)*(1/125); 

   
  Y = fft(Window_RHip_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  RHip_peak_JF(window)=f(max_location+1); 

   
  %LHip features 
  LHip_mean_J(window)=  mean(Window_LHip_J); 
  LHip_std_J(window)=  std(Window_LHip_J); 
  LHip_max_J(window)=  max(Window_LHip_J); 
  LHip_min_J(window)=  min(Window_LHip_J); 
  LHip_JC(window)= sum(Window_LHip_J.^2)*(1/125); 
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  Y = fft(Window_LHip_J);P2 = abs(Y/L); 
  P1 = P2(1:floor(L/2)+1);P1(2:end-1) = 2*P1(2:end-1); 
  f = Fs*(0:(L/2))/L;[~,max_location]=max(P1(2:end)); 
  LHip_peak_JF(window)=f(max_location+1); 
end 

     
%Label (0 non fatigued; 1 fatigued) 
label=zeros(no_of_windows,1); 
label(1:no_of_windows)=fatigued_state; %Non fatigued 

  
if Dominant == 1 
    DShoulder_mean_J=RShoulder_mean_J; 
    DShoulder_std_J=RShoulder_std_J; 
    DShoulder_max_J=RShoulder_max_J; 
    DShoulder_min_J=RShoulder_min_J; 
    DShoulder_JC=RShoulder_JC; 
    DShoulder_peak_JF=RShoulder_peak_JF; 

     
    NShoulder_mean_J=LShoulder_mean_J; 
    NShoulder_std_J=LShoulder_std_J; 
    NShoulder_max_J=LShoulder_max_J; 
    NShoulder_min_J=LShoulder_min_J; 
    NShoulder_JC=LShoulder_JC; 
    NShoulder_peak_JF=LShoulder_peak_JF; 

     
    DHip_mean_J=RHip_mean_J; 
    DHip_std_J=RHip_std_J; 
    DHip_max_J=RHip_max_J; 
    DHip_min_J=RHip_min_J; 
    DHip_JC=RHip_JC; 
    DHip_peak_JF=RHip_peak_JF; 

     
    NHip_mean_J=LHip_mean_J; 
    NHip_std_J=LHip_std_J; 
    NHip_max_J=LHip_max_J; 
    NHip_min_J=LHip_min_J; 
    NHip_JC=LHip_JC; 
    NHip_peak_JF=LHip_peak_JF; 

     
    DElbow_mean_J=RElbow_mean_J; 
    DElbow_std_J=RElbow_std_J; 
    DElbow_max_J=RElbow_max_J; 
    DElbow_min_J=RElbow_min_J; 
    DElbow_JC=RElbow_JC; 
    DElbow_peak_JF=RElbow_peak_JF; 

     
    NElbow_mean_J=LElbow_mean_J; 
    NElbow_std_J=LElbow_std_J; 
    NElbow_max_J=LElbow_max_J; 
    NElbow_min_J=LElbow_min_J; 
    NElbow_JC=LElbow_JC; 
    NElbow_peak_JF=LElbow_peak_JF; 
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else 
    DShoulder_mean_J=LShoulder_mean_J; 
    DShoulder_std_J=LShoulder_std_J; 
    DShoulder_max_J=LShoulder_max_J; 
    DShoulder_min_J=LShoulder_min_J; 
    DShoulder_JC=LShoulder_JC; 
    DShoulder_peak_JF=LShoulder_peak_JF; 

     
    NShoulder_mean_J=RShoulder_mean_J; 
    NShoulder_std_J=RShoulder_std_J; 
    NShoulder_max_J=RShoulder_max_J; 
    NShoulder_min_J=RShoulder_min_J; 
    NShoulder_JC=RShoulder_JC; 
    NShoulder_peak_JF=RShoulder_peak_JF; 

   
    DHip_mean_J=LHip_mean_J; 
    DHip_std_J=LHip_std_J; 
    DHip_max_J=LHip_max_J; 
    DHip_min_J=LHip_min_J; 
    DHip_JC=LHip_JC; 
    DHip_peak_JF=LHip_peak_JF; 

     
    NHip_mean_J=RHip_mean_J; 
    NHip_std_J=RHip_std_J; 
    NHip_max_J=RHip_max_J; 
    NHip_min_J=RHip_min_J; 
    NHip_JC=RHip_JC; 
    NHip_peak_JF=RHip_peak_JF; 

     
    DElbow_mean_J=LElbow_mean_J; 
    DElbow_std_J=LElbow_std_J; 
    DElbow_max_J=LElbow_max_J; 
    DElbow_min_J=LElbow_min_J; 
    DElbow_JC=LElbow_JC; 
    DElbow_peak_JF=LElbow_peak_JF; 

     
    NElbow_mean_J=RElbow_mean_J; 
    NElbow_std_J=RElbow_std_J; 
    NElbow_max_J=RElbow_max_J; 
    NElbow_min_J=RElbow_min_J; 
    NElbow_JC=RElbow_JC; 
    NElbow_peak_JF=RElbow_peak_JF; 
end 

  
%% Final Matrix 
Matrix_pelvis=[Pelvis_mean_J,Pelvis_std_J,Pelvis_max_J,Pelvis_min_J,Pelvis

_JC,Pelvis_peak_JF,label]; 

  
Matrix_DShoulder=[DShoulder_mean_J,DShoulder_std_J,DShoulder_max_J,DShould

er_min_J,DShoulder_JC,DShoulder_peak_JF,label]; 
Matrix_NShoulder=[NShoulder_mean_J,NShoulder_std_J,NShoulder_max_J,NShould

er_min_J,NShoulder_JC,NShoulder_peak_JF,label]; 
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Matrix_DElbow=[DElbow_mean_J,DElbow_std_J,DElbow_max_J,DElbow_min_J,DElbow

_JC,DElbow_peak_JF,label]; 
Matrix_NElbow=[NElbow_mean_J,NElbow_std_J,NElbow_max_J,NElbow_min_J,NElbow

_JC,NElbow_peak_JF,label]; 

  
Matrix_DHip=[DHip_mean_J,DHip_std_J,DHip_max_J,DHip_min_J,DHip_JC,DHip_pea

k_JF,label]; 
Matrix_NHip=[NHip_mean_J,NHip_std_J,NHip_max_J,NHip_min_J,NHip_JC,NHip_pea

k_JF,label]; 

  
Matrix_All=[Matrix_pelvis(:,1:end-1),Matrix_DShoulder(:,1:end-

1),Matrix_NShoulder(:,1:end-1),Matrix_DElbow(:,1:end-

1),Matrix_NElbow(:,1:end-1),Matrix_DHip(:,1:end-1),Matrix_NHip]; 
Matrix_D=[Matrix_pelvis(:,1:end-1),Matrix_DShoulder(:,1:end-

1),Matrix_DElbow(:,1:end-1),Matrix_DHip(:,1:end)]; 
Matrix_N=[Matrix_pelvis(:,1:end-1),Matrix_NShoulder(:,1:end-

1),Matrix_NElbow(:,1:end-1),Matrix_NHip(:,1:end)]; 
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Prepare_all_data.m 

%------------------------------------------------------------------------% 

% Preparing body segment matrices for MATLAB classifiers from all workers 

% Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder',  

% 'Matrix_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip', 

% 'Matrix_NHip','Matrix_D','Matrix_N' 

%------------------------------------------------------------------------% 

 
%% 
Window_size=15; 
Wc=10; 

   
%% worker 3 non fatigued 
File_Name='Worker3_nonfatigued_1.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis1,Matrix_DShoulder1,Matrix_NShoulder1,Matrix_DElbow1,Matrix_

NElbow1,Matrix_DHip1,Matrix_NHip1,Matrix_D1,Matrix_N1,Matrix_All1] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 3 non fatigued 
File_Name='Worker3_nonfatigued_2.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis2,Matrix_DShoulder2,Matrix_NShoulder2,Matrix_DElbow2,Matrix_

NElbow2,Matrix_DHip2,Matrix_NHip2,Matrix_D2,Matrix_N2,Matrix_All2] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 4 fatigued 
File_Name='Worker4_fatigued.calc'; 
fatigued_state=1; 
Dominant=1; 

  

[Matrix_pelvis3,Matrix_DShoulder3,Matrix_NShoulder3,Matrix_DElbow3,Matrix_

NElbow3,Matrix_DHip3,Matrix_NHip3,Matrix_D3,Matrix_N3,Matrix_All3] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 4 non fatigued 
File_Name='Worker4_nonfatigued.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis4,Matrix_DShoulder4,Matrix_NShoulder4,Matrix_DElbow4,Matrix_

NElbow4,Matrix_DHip4,Matrix_NHip4,Matrix_D4,Matrix_N4,Matrix_All4] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 4 fatigued 
File_Name='Worker4_fatigued.calc'; 
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fatigued_state=1; 
Dominant=1; 

  
[Matrix_pelvis5,Matrix_DShoulder5,Matrix_NShoulder5,Matrix_DElbow5,Matrix_

NElbow5,Matrix_DHip5,Matrix_NHip5,Matrix_D5,Matrix_N5,Matrix_All5] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 5 non fatigued 
File_Name='Worker5_nonfatigued.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis6,Matrix_DShoulder6,Matrix_NShoulder6,Matrix_DElbow6,Matrix_

NElbow6,Matrix_DHip6,Matrix_NHip6,Matrix_D6,Matrix_N6,Matrix_All6] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 5 fatigued 
File_Name='Worker5_fatigued.calc'; 
fatigued_state=1; 
Dominant=1; 

  
[Matrix_pelvis7,Matrix_DShoulder7,Matrix_NShoulder7,Matrix_DElbow7,Matrix_

NElbow7,Matrix_DHip7,Matrix_NHip7,Matrix_D7,Matrix_N7,Matrix_All7] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 6 non fatigued 
File_Name='Worker6_nonfatigued.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis8,Matrix_DShoulder8,Matrix_NShoulder8,Matrix_DElbow8,Matrix_

NElbow8,Matrix_DHip8,Matrix_NHip8,Matrix_D8,Matrix_N8,Matrix_All8] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 6 fatigued 
File_Name='Worker6_fatigued.calc'; 
fatigued_state=1; 
Dominant=1; 

  
[Matrix_pelvis9,Matrix_DShoulder9,Matrix_NShoulder9,Matrix_DElbow9,Matrix_

NElbow9,Matrix_DHip9,Matrix_NHip9,Matrix_D9,Matrix_N9,Matrix_All9] = 

matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 7 non fatigued 
File_Name='Worker7_nonfatigued.calc'; 
fatigued_state=0; 
Dominant=2; 

  
[Matrix_pelvis10,Matrix_DShoulder10,Matrix_NShoulder10,Matrix_DElbow10,Mat

rix_NElbow10,Matrix_DHip10,Matrix_NHip10,Matrix_D10,Matrix_N10,Matrix_All1

0] = matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 
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%% worker 7 fatigued 
File_Name='Worker7_fatigued_1.calc'; 
fatigued_state=1; 
Dominant=2; 

  
[Matrix_pelvis11,Matrix_DShoulder11,Matrix_NShoulder11,Matrix_DElbow11,Mat

rix_NElbow11,Matrix_DHip11,Matrix_NHip11,Matrix_D11,Matrix_N11,Matrix_All1

1] = matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 8 fatigued 
File_Name='Worker8_fatigued.calc'; 
fatigued_state=1; 
Dominant=2; 

  
[Matrix_pelvis12,Matrix_DShoulder12,Matrix_NShoulder12,Matrix_DElbow12,Mat

rix_NElbow12,Matrix_DHip12,Matrix_NHip12,Matrix_D12,Matrix_N12,Matrix_All1

2] = matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 8 non fatigued 
File_Name='Worker8_nonfatigued.calc'; 
fatigued_state=0; 
Dominant=1; 

  
[Matrix_pelvis13,Matrix_DShoulder13,Matrix_NShoulder13,Matrix_DElbow13,Mat

rix_NElbow13,Matrix_DHip13,Matrix_NHip13,Matrix_D13,Matrix_N13,Matrix_All1

3] = matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  
%% worker 7 fatigued 
File_Name='Worker7_fatigued_2.calc'; 
fatigued_state=1; 
Dominant=1; 

  
[Matrix_pelvis14,Matrix_DShoulder14,Matrix_NShoulder14,Matrix_DElbow14,Mat

rix_NElbow14,Matrix_DHip14,Matrix_NHip14,Matrix_D14,Matrix_N14,Matrix_All1

4] = matrix_from_file(File_Name,fatigued_state,Dominant,Window_size,Wc); 

  

  
%% All Matrix  
Matrix_pelvis=[Matrix_pelvis1;Matrix_pelvis2;Matrix_pelvis3;Matrix_pelvis4

;Matrix_pelvis5;Matrix_pelvis6;Matrix_pelvis7;Matrix_pelvis8;Matrix_pelvis

9;Matrix_pelvis10;Matrix_pelvis11;Matrix_pelvis12;Matrix_pelvis13;Matrix_p

elvis14]; 

  
Matrix_DShoulder=[Matrix_DShoulder1;Matrix_DShoulder2;Matrix_DShoulder3;Ma

trix_DShoulder4;Matrix_DShoulder5;Matrix_DShoulder6;Matrix_DShoulder7;Matr

ix_DShoulder8;Matrix_DShoulder9;Matrix_DShoulder10;Matrix_DShoulder11;Matr

ix_DShoulder12;Matrix_DShoulder13;Matrix_DShoulder14]; 

  
Matrix_NShoulder=[Matrix_NShoulder1;Matrix_NShoulder2;Matrix_NShoulder3;Ma

trix_NShoulder4;Matrix_NShoulder5;Matrix_NShoulder6;Matrix_NShoulder7;Matr
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ix_NShoulder8;Matrix_NShoulder9;Matrix_NShoulder10;Matrix_NShoulder11;Matr

ix_NShoulder12;Matrix_NShoulder13;Matrix_NShoulder14]; 

  
Matrix_DElbow=[Matrix_DElbow1;Matrix_DElbow2;Matrix_DElbow3;Matrix_DElbow4

;Matrix_DElbow5;Matrix_DElbow6;Matrix_DElbow7;Matrix_DElbow8;Matrix_DElbow

9;Matrix_DElbow10;Matrix_DElbow11;Matrix_DElbow12;Matrix_DElbow13;Matrix_D

Elbow14]; 

  
Matrix_NElbow=[Matrix_NElbow1;Matrix_NElbow2;Matrix_NElbow3;Matrix_NElbow4

;Matrix_NElbow5;Matrix_NElbow6;Matrix_NElbow7;Matrix_NElbow8;Matrix_NElbow

9;Matrix_NElbow10;Matrix_NElbow11;Matrix_NElbow12;Matrix_NElbow13;Matrix_N

Elbow14]; 

  
Matrix_DHip=[Matrix_DHip1;Matrix_DHip2;Matrix_DHip3;Matrix_DHip4;Matrix_DH

ip5;Matrix_DHip6;Matrix_DHip7;Matrix_DHip8;Matrix_DHip9;Matrix_DHip10;Matr

ix_DHip11;Matrix_DHip12;Matrix_DHip13;Matrix_DHip14]; 

  
Matrix_NHip=[Matrix_NHip1;Matrix_NHip2;Matrix_NHip3;Matrix_NHip4;Matrix_NH

ip5;Matrix_NHip6;Matrix_NHip7;Matrix_NHip8;Matrix_NHip9;Matrix_NHip10;Matr

ix_NHip11;Matrix_NHip12;Matrix_NHip13;Matrix_NHip14]; 

  
Matrix_D=[Matrix_D1;Matrix_D2;Matrix_D3;Matrix_D4;Matrix_D5;Matrix_D6;Matr

ix_D7;Matrix_D8;Matrix_D9;Matrix_D10;Matrix_D11;Matrix_D12;Matrix_D13;Matr

ix_D14]; 

  
Matrix_N=[Matrix_N1;Matrix_N2;Matrix_N3;Matrix_N4;Matrix_N5;Matrix_N6;Matr

ix_N7;Matrix_N8;Matrix_N9;Matrix_N10;Matrix_N11;Matrix_N12;Matrix_N13;Matr

ix_N14]; 

  
Matrix_All=[Matrix_All1;Matrix_All2;Matrix_All3;Matrix_All4;Matrix_All5;Ma

trix_All6;Matrix_All7;Matrix_All8;Matrix_All9;Matrix_All10;Matrix_All11;Ma

trix_All12;Matrix_All13;Matrix_All14]; 

  
Data_set_name='Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  

  
%% worker 3 
Matrix_pelvis=[Matrix_pelvis1;Matrix_pelvis2;Matrix_pelvis3]; 
Matrix_DShoulder=[Matrix_DShoulder1;Matrix_DShoulder2;Matrix_DShoulder3]; 
Matrix_NShoulder=[Matrix_NShoulder1;Matrix_NShoulder2;Matrix_NShoulder3]; 
Matrix_DElbow=[Matrix_DElbow1;Matrix_DElbow2;Matrix_DElbow3]; 
Matrix_NElbow=[Matrix_NElbow1;Matrix_NElbow2;Matrix_NElbow3]; 
Matrix_DHip=[Matrix_DHip1;Matrix_DHip2;Matrix_DHip3]; 
Matrix_NHip=[Matrix_NHip1;Matrix_NHip2;Matrix_NHip3]; 
Matrix_D=[Matrix_D1;Matrix_D2;Matrix_D3]; 
Matrix_N=[Matrix_N1;Matrix_N2;Matrix_N3]; 
Matrix_All=[Matrix_All1;Matrix_All2;Matrix_All3]; 
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Data_set_name='Worker3_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  
%% worker 4 
Matrix_pelvis=[Matrix_pelvis4;Matrix_pelvis5]; 
Matrix_DShoulder=[Matrix_DShoulder4;Matrix_DShoulder5]; 
Matrix_NShoulder=[Matrix_NShoulder4;Matrix_NShoulder5]; 
Matrix_DElbow=[Matrix_DElbow4;Matrix_DElbow5]; 
Matrix_NElbow=[Matrix_NElbow4;Matrix_NElbow5]; 
Matrix_DHip=[Matrix_DHip4;Matrix_DHip5]; 
Matrix_NHip=[Matrix_NHip4;Matrix_NHip5]; 
Matrix_D=[Matrix_D4;Matrix_D5]; 
Matrix_N=[Matrix_N4;Matrix_N5]; 
Matrix_All=[Matrix_All4;Matrix_All5]; 

  
Data_set_name='Worker4_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  
%% worker 5 
Matrix_pelvis=[Matrix_pelvis6;Matrix_pelvis7]; 
Matrix_DShoulder=[Matrix_DShoulder6;Matrix_DShoulder7]; 
Matrix_NShoulder=[Matrix_NShoulder6;Matrix_NShoulder7]; 
Matrix_DElbow=[Matrix_DElbow6;Matrix_DElbow7]; 
Matrix_NElbow=[Matrix_NElbow6;Matrix_NElbow7]; 
Matrix_DHip=[Matrix_DHip6;Matrix_DHip7]; 
Matrix_NHip=[Matrix_NHip6;Matrix_NHip7]; 
Matrix_D=[Matrix_D6;Matrix_D7]; 
Matrix_N=[Matrix_N6;Matrix_N7]; 
Matrix_All=[Matrix_All6;Matrix_All7]; 

  
Data_set_name='Worker5_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  
%% worker 6 
Matrix_pelvis=[Matrix_pelvis8;Matrix_pelvis9]; 
Matrix_DShoulder=[Matrix_DShoulder8;Matrix_DShoulder9]; 
Matrix_NShoulder=[Matrix_NShoulder8;Matrix_NShoulder9]; 
Matrix_DElbow=[Matrix_DElbow8;Matrix_DElbow9];  
Matrix_NElbow=[Matrix_NElbow8;Matrix_NElbow9]; 
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Matrix_DHip=[Matrix_DHip8;Matrix_DHip9]; 
Matrix_NHip=[Matrix_NHip8;Matrix_NHip9]; 
Matrix_D=[Matrix_D8;Matrix_D9]; 
Matrix_N=[Matrix_N8;Matrix_N9]; 
Matrix_All=[Matrix_All8;Matrix_All9]; 

  
Data_set_name='Worker6_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  
%% worker 7 
Matrix_pelvis=[Matrix_pelvis10;Matrix_pelvis11;Matrix_pelvis12]; 
Matrix_DShoulder=[Matrix_DShoulder10;Matrix_DShoulder11;Matrix_DShoulder12

]; 
Matrix_NShoulder=[Matrix_NShoulder10;Matrix_NShoulder11;Matrix_NShoulder12

]; 
Matrix_DElbow=[Matrix_DElbow10;Matrix_DElbow11;Matrix_DElbow12]; 
Matrix_NElbow=[Matrix_NElbow10;Matrix_NElbow11;Matrix_NElbow12]; 
Matrix_DHip=[Matrix_DHip10;Matrix_DHip11;Matrix_DHip12]; 
Matrix_NHip=[Matrix_NHip10;Matrix_NHip11;Matrix_NHip12]; 
Matrix_D=[Matrix_D10;Matrix_D11;Matrix_D12]; 
Matrix_N=[Matrix_N10;Matrix_N11;Matrix_N12]; 
Matrix_All=[Matrix_All10;Matrix_All11;Matrix_All12]; 

  
Data_set_name='Worker7_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N') 

  
%% worker 8 
Matrix_pelvis=[Matrix_pelvis13;Matrix_pelvis14];Matrix_DShoulder=[Matrix_D

Shoulder13;Matrix_DShoulder14]; 
Matrix_NShoulder=[Matrix_NShoulder13;Matrix_NShoulder14]; 
Matrix_DElbow=[Matrix_DElbow13;Matrix_DElbow14]; 
Matrix_NElbow=[Matrix_NElbow13;Matrix_NElbow14]; 
Matrix_DHip=[Matrix_DHip13;Matrix_DHip14]; 
Matrix_NHip=[Matrix_NHip13;Matrix_NHip14]; 
Matrix_D=[Matrix_D13;Matrix_D14]; 
Matrix_N=[Matrix_N13;Matrix_N14]; 
Matrix_All=[Matrix_All13;Matrix_All14]; 

  
Data_set_name='Worker8_Window15_Wc10'; 

  
save(Data_set_name,'Matrix_All','Matrix_pelvis','Matrix_DShoulder','Matrix

_NShoulder','Matrix_DElbow','Matrix_NElbow','Matrix_DHip','Matrix_NHip','M

atrix_D','Matrix_N' 
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