
HopliteBuf FPGA Network-on-Chip:
Architecture and Analysis

by

Tushar Garg

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

© Tushar Garg 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/196559808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We can prove occupancy bounds of stall-free FIFOs used in deflection-free, low-cost,
and high-speed FPGA overlay Network-on-chips (NoCs). In our work, we build on top of
the HopliteRT livelock-free overlay NoC with an FPGA-friendly 2D unidirectional torus
topology to propose the novel HopliteBuf NoC. In our new NoC, we strategically introduce
stall-free FIFOs in the network and support these FIFOs with static analysis based on
network calculus to compute FIFO occupancy, latency, and bandwidth bounds. The mi-
croarchitecture of HopliteBuf combines the performance benefits of conventional buffered
NoCs (high throughput, low latency) with the cost advantages of deflection-routed NoCs
(low FPGA area, high clock frequencies).

Specifically, we look at two design variants of the HopliteBuf NoC: (1) Single corner-turn
FIFO (W→S), and (2) Dual corner-turn FIFO (W→S+N). The single corner-turn (W→S)
design is simpler and only introduces a buffering requirement for packets changing dimen-
sion from X ring to the downhill Y ring (or West to South). The dual corner-turn variant
requires two FIFOs for turning packets going downhill (W→S) as well as uphill (W→N).
The dual corner-turn design overcomes the mathematical analysis challenges associated
with single corner-turn designs for communication workloads with cyclic dependencies be-
tween flow traversal paths at the expense of small increase in resource cost. Essentially,
we resolve an analysis challenge with extra hardware resources.

Across a range of 100 synthetically-generated workloads on a 5×5 NoC, HopliteBuf
outperforms HopliteRT by 1.2 − 2× in terms of latency, 10% in terms of injection rate,
and 30-60% in terms of flowset feasibiliy. These advantages come at the cost of 3 − 4×
higher FPGA resource requirement for buffers and muxes. Our analysis also deliver latency
bounds that are not only better than HopliteRT in absolute terms but also tighter by 2−3×
allowing us to provision less hardware to meet our specifications.

iii

Acknowledgements

I would like to thank my supervisor, Nachiket Kapre, for all the support and help
throughout my Masters. I also like to thank Professor Rodolfo Pellizzoni for his help with
this work.

iv

Dedication

This is dedicated to my sister, Stuti.

v

Table of Contents

List of Tables ix

List of Figures xi

Abbreviations xv

Nomenclature xvii

1 Introduction 1

1.1 Main Contributions . 4

1.2 Thesis Organization . 5

2 Background and Literature Review 6

2.1 Idea of Deflection Routing . 6

2.1.1 Hoplite . 6

2.1.2 HopliteRT . 9

2.2 Survey of FPGA-overlay NoCs . 12

2.2.1 CMU CONNECT NoC . 13

2.2.2 Penn Split-Merge NoC . 14

2.2.3 PaterNoster NoC . 15

2.2.4 Kim NoC router . 16

2.3 Survey of Real-time NoCs . 17

vi

2.4 Emergence of Hard NoCs . 18

2.4.1 Xilinx Versal . 18

2.4.2 Embedded NoC . 19

2.5 LUT organization in Intel and Xilinx devices 20

2.5.1 Xilinx LUT organization . 20

2.5.2 Intel LUT organization . 21

2.6 Basics of Network Regulation . 24

2.6.1 Need for Traffic Regulation . 24

2.6.2 Token-bucket Regulator . 25

2.6.3 Traffic Modelling with Token bucket regulator 26

3 HopliteBuf Microarchitecture 28

3.1 Stall-free Buffers . 28

3.2 W → S buffer design . 31

3.3 W → S +N buffer design . 32

3.4 FPGA Implementation . 32

3.5 Routing Policy . 33

3.6 W → S Buffer Design with Backpressure 39

3.7 N → S Buffer Design with Deflections . 40

4 Network Calculus and Analysis 41

4.1 Client Traffic Regulation . 41

4.2 Traffic Model . 42

4.3 Injection Latency . 45

4.4 Vertical Ring Analysis W → S Design . 46

4.5 Cyclic Dependencies in HopliteBuf W → S design 51

4.6 Linearized Analysis: W → S +N Design 54

vii

5 Evaluation 58

5.1 RTL Simulation Results . 59

5.1.1 Flowset Feasibility . 59

5.1.2 Worst-Case Latency Trends . 61

5.1.3 Worst-Case Latency Breakdown . 62

5.1.4 Latency Distribution . 64

5.1.5 FIFO Sizing . 65

5.2 FPGA Implementation Results . 68

5.3 Analysis Results . 70

5.3.1 Feasible Flowsets . 70

5.3.2 Worst-Case Latency: Analysis vs. Simulation 70

5.3.3 FIFO Sizing: Analysis vs. Simulation 72

6 Conclusion and Future Research 73

6.1 Future Research . 74

References 75

viii

List of Tables

2.1 Routing Function Table to support single 6-LUT implementation of Hoplite.
N has highest priority, followed by W port and PE has the least priority.
PE and W cannot inject simultaneously if W has a packet even if the flows
are non-overlapping. 9

2.2 Routing Function Table to support two 6-LUT implementation of Hoplite.
This supports all routing possibilities. Allows PE and W to inject simula-
taneously when there is no overlap. 9

2.3 FPGA costs for 64b router (4×4 NoC) with Vivado 2016.4 (Default settings)
+ Virtex-7 485T FPGA (adapted from [57]) 11

2.4 Routing Function Table (adapted from [57]) for HopliteRT. PE injection has
lowest priority and will stall on conflict. PE→E + W→S is not supported
to avoid an extra select signal driving the multiplexers and doubling LUT
cost by preventing fracturing a 6-LUT into 2×5-LUTs. 11

3.1 Resource utilization on a Xilinx Virtex-7 FPGA for different Data Width
and FIFO sizes. 34

3.2 Resource utilization on a Intel Arria-10 FPGA for different Data Width and
FIFO sizes. 34

3.3 DOR Routing Policy for FIFO-W router. PEi always has the least priority.
S exit is shared with port PEo exit. W′ →S uses WFIFO read port. Extra
combination of W→E and W′ →S also supported. 35

3.4 DOR Routing Policy for FIFO-W→S+N router. PEi again has the least
priority. So exit shared with port PEo exit. W′ →S uses WFIFO read port,
W′′ →N uses NFIFO read port. 37

ix

4.1 Flow parameters for the example NoC. ΓC are the conflicting flows used in
Section 4.3; fW→S and fN→S are the W → S and N → S interfering flows
used in Section 4.4. ‘-’ denotes not applicable. 44

4.2 Conflicting and interfering flows for the W → S +N design. ‘-’ denotes not
applicable, as the flow is not buffered in that direction. 55

x

List of Figures

1.1 2×2 HopliteBuf NoC Topology with Stall-Free Corner-Turn buffers ().
Stall-Free buffers are sized to never go full avoiding the need for backward
flow control. The dual buffer (W → S + N) topology disconnects vertical
rings (o) and introduces an extra uphill multiplexer in each router. 3

2.1 An example 3 × 3 torus with horizontal and vertical wire rings. The pro-
cessing element (PE) can be an FPGA datapath that injects packet in the
network, while the Switches (SW) arbitrate the packets based on network
status and arbitration scheme. 7

2.2 Implementation choices for the Hoplite FPGA NoC Router. A LUT-economical
version (left) is able to exploit fracturable Xilinx 6-LUTs to fit both 2:1
muxes into a single 6-LUT. The larger, higher-bandwidth version (right)
needs two 6-LUTs instead as the number of common inputs is lower than
required to allow fracturing. 8

2.3 Endless deflection scenario (adapted from [57]) where red packets from PE
(0,0) → PE (3,3) are perpetually deflected by blue packets from PE (3,3)
→ PE (3,1). The red spaghetti is the flight path of one packet that gets
trapped in the top-most ring of the NoC and never gets a chance to exit due
to the green packets. 10

2.4 High-level design sketch of HopliteRT [57] FPGA NoC Routers. HopliteRT
adds a N→E turn to Hoplite to eliminate livelock. This design also fit one
bit of crossbar in one Xilinx 6-LUT. 11

2.5 Worst-Case path on Hoplite-RT for packet traversing from top-left PE (0,0)
to bottom-right PE (3,3). The red packets will deflect N→E in each ring due
to a conflicting flow (not shown). The blue packets previously had priority
are now deflected in the top-most ring before delivery. (Adapted from [57]) 13

xi

2.6 Xilinx LUT-6 sturcture. A fracturable Xilinx 6-LUT can fit two 5-LUTs
with common inputs . 21

2.7 (a) A LUT-6 based 32-bit Shift Register on Xilinx FPGA (b)Two LUT-6
cascaded to implement a 64-bit Shift register. The cascading is done with
the help of F7AMUX which is available in SLICEM of a Combinational
Logic Block in Xilinx FPGAs . 22

2.8 Various Intel ALUT configurations . 23

2.9 The example shows an inundated client at (1,0) that has flooded the NoC
with packets at full link bandwidth (one packet per cycle) 25

2.10 A cartoon diagram representing the Token Bucket regulation. A regulator
is used at the injection port of each NoC client. Number of tokens represent
the number of packets allowed to inject in the network by a client. 26

2.11 Example traffic curve for λb=3,ρ=1/4. 27

3.1 Two design alternatives for adding buffers to the Hoplite NoC router. W →
S adds a buffer on the corner turn, while W → S +N adds an extra uphill
buffer. 29

3.2 Routing scenario to show the number of buffers required to support a flow
of packets from PE (2,2) → PE (3,2). For N → S buffering case, the packet
is required to be stored at multiple times in each buffer along column-3. For
single-buffering case, the packet is stored only once at PE (3,2) to reach its
destination. 31

3.3 Flow of traffic in the 2-D torus with HopliteBuf W → S switches. In case
of contention between W and N packets, W goes in the buffer and N gets
access to S. There is no backpressuring among the switches; and therefore,
buffer sizing is done by static analysis of flows. 36

3.4 Flow of traffic in the network with HopliteBuf W → S + N switches. The
torus does not have vertical links going from bottom to top. Each switch
has a dedicated upward path. A packet trying to exit at a node above it
will have to go all the way and then come down to exit as shown in blue
flow from switch (3,3) → (3,1). 38

3.5 Buffered NoC designs with backpressuring and deflections 39

4.1 Example traffic curves for λb=3,ρ=1/4 and λb=2,ρ=1/4 along with an arrival
curve for γb=7/4,ρ=1/4. 42

xii

4.2 Example W → S NoC design with five flows f1...5. 44

4.3 Flows through a W → S router. 48

4.4 Arrival (α) and Service (βR,T) curve that shows the delay (d) and rate (R) for
the aggregate flow on W port when obstructed by the high-priority N → S
flow. x denotes the backlog (amount of buffering) on W → S. 49

4.5 Service curve (βR′,T ′) that extracts flow f from the aggregate flow (f+fW→S)
βR,T shown in Figure 4.4. d is the queueing delay for turning flow, f 50

4.6 Cyclic dependency flow example in W → S HopliteBuf: rightmost column. 52

4.7 W → S +N design example: rightmost column. 55

4.8 Solving cyclic dependency with linearization in W → S+N design example:
rightmost column. 56

5.1 Feasible flowsets for RANDOM traffic with b=1 at 5×5 system size with 128-
deep FIFOs in the NoC routers. 59

5.2 Feasible flowsets for RANDOM traffic with b=1, FIFO depth=128 with different
system sizes and injection rates. 60

5.3 Worst-case latency trends for ALL-TO-ONE, ALL-TO-ROW, and ALL-TO-COLUMN

traffic patterns on NoCs with 5×5 system sizes and b=1. HopliteBuf designs
offers no improvements for these traffic patterns. 61

5.4 Worst-case latency trends for RANDOM traffic pattern on NoCs with 5×5
system sizes and b=1. HopliteBuf performs better than other designs for
this workload. 62

5.5 Breakdown of Source-Queueing and In-Flight NoC latencies for RANDOM

workload with b=1, FIFO depth=128 at 5×5 system size. Both metrics
improved due to buffering. 63

5.6 Source-Queueing and In-Flight NoC latencies for RANDOM workload with b=1,
FIFO depth=32 at 5×5 system size. 64

5.7 Distribution of worst-case packet latencies for RANDOM workload with b=1,
ρ=7.5% at 5×5 system size. HopliteRT has a wider spread due to the
unpredictable nature of the deflections. HopliteBuf has narrower spreads. . 65

5.8 Maximum FIFO usage trends from RTL simulations of NoCs with 5×5 sys-
tem sizes for ALL-TO-ONE pattern . 66

xiii

5.9 Maximum FIFO usage trends from RTL simulations of NoCs with 5×5 sys-
tem sizes for ALL-TO-ROW pattern . 66

5.10 Maximum FIFO usage trends from RTL simulations of NoCs with 5×5 sys-
tem sizes for ALL-TO-COLUMN pattern . 67

5.11 Maximum FIFO usage trends from RTL simulations of NoCs with 5×5 sys-
tem sizes for RANDOM pattern . 67

5.12 LUT utilization for logic and memory across various Hoplite routers on
Xilinx and Intel FPGAs with Payload=64b and FIFO=64 deep. 68

5.13 Maximum Area usage at different injection rates for RANDOM pattern with
5× 5 system size. Each node in the system uses carefully picked FIFO sizes
through static analysis in case of W → S and W → S+N HopliteBuf designs. 69

5.14 Feasible flowsets predicted by static analysis. Analysis is more conservative
than simulation for HopliteRT, but much tighter for HopliteBuf. 71

5.15 Worst-Case Latency Prediction-vs-Simulation, RANDOM traffic, b=1, 5×5 sys-
tem size, 128-deep FIFOs. 71

5.16 Worst-Case FIFO size Prediction-vs-Simulation for RANDOM traffic at 5×5
system size with 128-deep FIFOs and burstiness of 8. 72

xiv

Abbreviations

ADAS Advanced drive-assistance systems 2

ALUT Adaptive Look-up Table 21

ASICs Application-Specific Integrated Circuits 1

BE Best-effort 18

BRAM Block Random Access Memory 1

DOR Dimension-ordered routing 7, 8, 13, 29, 34, 36

DSP Digital Signal Processing 1

FFs Flip-Flops 1

FPGAs Field Programmable Gate Arrays 1

HBM High-Bandwith memory 1, 2

ISOC Isochronous 18

LAB Logic Array Block 24

LL Low-latency 18

LUTs Look-up Tables 1

MLAB Memory Logic Array Block 24

xv

NoC Network-on-chip 1

QoS Quality of Service 18

SRL Shift-Register LUT 15

TDM Time division multiplexed 17

UAV Unmanned air vehicle 2

VC Virtual-channel 14, 19

WSF West-side first 15

xvi

Nomenclature

credit-based flow control A backpressure mechanism in which each NoC router keeps
track of the number of available buffer spaces or credits. By tracking credits, a router
only sends packet downstream if it has available credits. 19

Dimension-Ordered Routing A routing algorithm in which packets first move in the
X-direction only until they reach the right column and then they turn in Y-direction
to reach their destination. Once the packet is travelling in Y-direction, it is not
allowed to turn back to X-direction. 34

head-of-line The situation when unrelated packets cannot move forward in the network
because of the backpressure caused by some other flow is called head-of-line blocking.
19

in-flight latency The amount of time a packet takes between exiting the source node and
reaching the destination client. 9, 62

livelock A condition due to which packets wander across the network forever. The situ-
ation can occur when the channel required to deliver a packet to its destination is
occupied by some other packet. 2, 8, 29, 34, 40

source-queueing latency The amount of time a packet has to wait at the source client
node before it is allowed to enter the network. 9, 24, 62

xvii

Chapter 1

Introduction

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be electrically
configured to implement any digital system. They are build around a matrix of pro-
grammable logic blocks, called Look-up Tables (LUTs), connected together with a network
of programmable interconnects to support data movement. Unlike Application-Specific In-
tegrated Circuits (ASICs), FPGAs can be reprogrammed, thus allows configurable comput-
ing. Over the years, FPGAs have evolved to support more than just programmable LUT
blocks. They now include an on-chip CPU, large memories, high-speed I/O links and have
now become first-class citizens in data-center applications for workloads such as Machine
learning, Graph acceleration, Search engine optimization. Modern FPGAs can pack mil-
lions of LUTs and Flip-Flops (FFs), thousands of Digital Signal Processing (DSP) blocks
and Block Random Access Memory (BRAM). Such dense devices need a rich, and capable
interconnect network-on-chip to satisfy the communication requirements of FPGA work-
loads. Latest memory interfaces, such as High-Bandwith memory (HBM), for instance,
requires FPGAs to be able to move data on upto 32 × 256-bit wide high-speed links that
supports upto 460 GB/s bandwidth across the entire chip. Furthermore, wide variety of
IO protocols and interface specifications, like, 8-lanes PCIe Gen4, 100G Ethernet, 58Gb/s
Transceivers, are all pushing the need of an efficient system level interface to move data to
various portions of the chip.

FPGA logic can be configured to implement packet-switched Network-on-chip (NoC)
to allow IP blocks to exchange data with each other. This is easy to do, but comes at the
cost of stealing logic and routing resources away from the developer. Prior work in soft-
NoCs is rich and extensive. CMU Connect [49], Penn Split-Merge [27], Hoplite [31], and
Hoplite-RT [57] are a few state-of-the-art soft NoCs. The programmable and wiring rich

1

architecture of an FPGA makes it a suitable choice to implement NoC designs to match
user requirements.

However, a careful consideration is required when choosing features and topologies to
support on an FPGA. For example, a 32bit CMU Connect [49] router utilizes around 1.5K
LUTs and runs at clock frequency of 9.6 ns while the Penn Split-Merge [27] router takes up
1.7K LUTs and runs at 4.5 ns. For context, a light weight RISC-V CPU takes ≈ 200–500
LUTs on an FPGA. The reason for such a bloated and slow design is that these routers
support exotic features in a NoC, such as flow-control, extensive buffering, arbitration
logic, virtual-channels which are not favourable for FPGA realization.

Deflection-routed NoCs, such as, Hoplite [31], and HopliteRT [57], on the other hand,
take advantage of FPGA-specific features to implement a bufferless, low-cost and high-
speed (90 LUTs and runs at a clock frequency of 2 ns for 32-bit payload) communication
network on an FPGA. However, due to deflection, packets may suffer long delays in the
interconnect (Hoplite, HopliteRT) or they may even deflect endlessly and suffer from live-
lock (Hoplite). With these deflection-routed NoCs, the packet ordering also becomes the
responsibility of the destination node with reassembly buffers which adds to the logic cost.
Large or endless deflections become a problem when employing these NoC designs into
Real-time FPGA applications. Mission critical applications, such as Unmanned air vehicle
(UAV), Advanced drive-assistance systems (ADAS), medical devices, self-driving automo-
tive require stringent timing guarantees for assessing and handling worst-case behavior.
Furthermore, the state-of-the-art analysis of NoC buffer bounds is pessimistic due to the
complexity of modeling pipelining effects and merging of various flows in more conventional
buffered mesh networks with backpressure.

Configurable interconnect was adequate for circuit communication needs until recently,
but not any longer. System-level IO bandwidth requirements due to HBM memory chan-
nels, and high-speed serial IO transceivers are pushing FPGA vendors to implement hard-
ened NoCs, such as the Xilinx Versal NoC [55] for data transport, without using any soft
fabric logic. Intel uses a hardened configuration NoC design on Stratix 10 [39]. This
hardened NoC allows programmers to support high-performance transactions on FPGA
using a flexible interconnect that uses separate command and response networks for higher
parallelism and lower resource utilization. Xilinx uses a hardened AXI memory-mapped
NoC architecture in their ACAP/Versal FPGA that supports various full-duplex 128-bit
links providing a throughput of over 16GB/s. It creates a high-speed interconnect to move
data between system-level I/O like HBM, and compute accelerators to various parts of
the FPGA fabric. An embedded hard-NoC along with custom interfaces was presented by
University of Toronto [4]. This NoC can transport 150 bits of data at 1.2 Ghz clock speed
and support an overall bandwidth of 22.5GB/s.

2

Regardless of the choice of soft or hard NoC technology, real-time system developers
wishing to use FPGAs need tool support to analyze the timing properties of their FPGA
mappings to ensure they are able to meet relevant scheduling deadlines. Real time systems
are characterized by a need to rigorously prove timing requirements of various computing
and communicating blocks. For instance, the ISO 26262 standard [29] requires performance
isolation between communicating components on a chip. Livelocks in NoCs violate this
isolation requirement. While timing analysis of statically-scheduled FPGA datapaths is
simple, the analysis of communicating components using a shared dynamically-scheduled
resource like a NoC is not so. NoC performance analysis is notoriously hard; it is often
pessimistic and leads to over-provisioning of resources. In this work, we aim to build
analysis-friendly, low-cost FPGA NoC architectures and develop accompanying analysis
tools to prove worst-case NoC packet routing latencies.

In this paper, we propose the HopliteBuf NoC, shown in Figure 1.1, derived from
the low-cost Hoplite NoC. HopliteBuf introduces (1) small stall-free buffers for certain
router functions to simplify flow control, to (2) eliminate deflections with any associated
livelocks, (3) provides optional linearization of vertical NoC rings to enhance analysis that,
(4) bounds buffer sizes to distributed-RAM friendly implementation sizes.

0,1

0,0

1,1

1,0

(a) Single Corner-Turn Buffer

0,1

0,0

1,1

1,0

o o
(b) Dual Corner-Turn Buffer

Figure 1.1: 2×2 HopliteBuf NoC Topology with Stall-Free Corner-Turn buffers ().
Stall-Free buffers are sized to never go full avoiding the need for backward flow control.

The dual buffer (W → S +N) topology disconnects vertical rings (o) and introduces an
extra uphill multiplexer in each router.

3

The key contributions of our work is the microarchitecture of analysis-friendly HopliteBuf
NoC (including routers, and topology modifications) coupled with a buffer sizing algorithm
that is able to determine the worst-case occupancies for all the FIFOs in the NoC. In
particular, the proposed topology in Figure 1.1b with two corner-turn buffers and no
vertical loopback simplifies static analysis of buffer sizes. This also improves provable
wire utilization while preserving wiring cost and requiring a modest increase in LUT count
over Figure1.1a. For our workloads we observe that these occupancies are small enough
to be realizable in LUT-based FIFOs (Xilinx SRL32s, and Intel MLABs). On an average,
HopliteBuf NoC is more expensive that Hoplite or HopliteRT by 3−4× due to buffering (5×
5 system size), but still cheaper than conventional buffered NoCs. HopliteBuf incorporates
stall-free FIFOs that guarantees in-order packet delivery and uses a static-analysis tool
that not only size these FIFOs but also provide detailed information, such as per-flow
latency, and bandwidth availability at each switch in the network.

1.1 Main Contributions

We summarize the main contributions of our work here:

• Design of an FPGA NoC router microarchitecture design with stall-free FIFOs to
eliminate deflections and provide in-order packet delivery. Optimization and cus-
tomization of the NoC router RTL to match Xilinx and Intel FPGA LUT organiza-
tion.

• Development of a buffer sizing algorithm using network calculus to compute the
worst-case bounds on FIFO occupancies. Static analysis tools compute upper bounds
on size of FIFOs required for stall-free operation, source queueing delay, in-flight
routing latency under various conditions.

• Use of vertical NoC link linearization to improve provable link utilization.

• Engineering of a robust simulation infrastructure to compute cycle counts of packet
traversals in the NoC. Resource and performance analysis of the NoC under various
synthetic workloads.

• The proposed design reduces the latency by 1.2− 2×, achieves 10% higher injection
rate, supports 30-60% more feasibility rate while paying 3−4× extra cost of buffering
than Hoplite(RT).

4

1.2 Thesis Organization

The remainder of the thesis is organized as follows.

• Chapter 2 presents a detailed literature review on Soft and Hard NoCs implemented
on FPGAs and ASICs, their implementation, limitations and advantages. It then
presents a detailed background on Xilinx and Intel FPGA architectures, their LUT
design and memory implementations. And then it reviews existing Traffic regulations
techniques and basic Network Calculus.

• Chapter 3 presents the main idea of this work including the architecture of the two
variants of NoCs. It then reviews the FPGA implementation of these NoC designs
and explains the details of the arbitration scheme.

• Chapter 4 explains, in detail, the mathematics behind static analysis to implement
the buffer sizing algorithm including concepts of Network Calculus and Traffic regu-
lation. It then explains the linearization model that gives the dual-buffer design an
upper hand over the single buffer design.

• In Chapter 5, we demonstrate the quantitative benefits of this work over the previous
designs. We explain the detailed results of various synthetic traffic models.

• Finally, Chapter 6 concludes the work presented in this thesis and outlines future
research directions.

5

Chapter 2

Background and Literature Review

In this chapter, we review existing literature on deflection-routed FPGA overlay NoCs,
buffered FPGA overlay NoCs and understand their limitations and advantages. Next, we
review real-time NoCs and identify the features that makes them suitable for mission-
critical applications. We then provide a brief tutorial on LUT architecture for Intel and
Xilinx FPGAs. Finally, we look at the concept of traffic regulation and network calculus
to lay the groundwork for understanding analysis of NoC flow.

2.1 Idea of Deflection Routing

Deflection Routing is key to building high-performance and low-cost NoC designs on ASICs
as well as FPGAs. Deflection routing eliminates buffers and misroutes packets to keep cost
low. Surprisingly, this does not lead to dramatic performance losses for real world appli-
cations. We have seen some state-of-the-art deflection routed NoCs like Hoplite [31], Ho-
pliteRT [57], CHIPPER (Cheap-Interconnect Partially Permuting Router) [19] and MinBD
(Minimally-Buffered Deflection) [20]. While Hoplite and HopliteRT are FPGA-overlay
NoCs, CHIPPER and MinBD taregt ASICs. Let’s take a closer look at their underlying
architecture and understand their limitations and advantages:

2.1.1 Hoplite

Hoplite [31] is an FPGA-friendly NoC router that uses deflection routing on a torus topol-
ogy 2.1. It eliminates buffering and flow control to provide a low-cost implementation

6

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

Figure 2.1: An example 3 × 3 torus with horizontal and vertical wire rings. The
processing element (PE) can be an FPGA datapath that injects packet in the network,
while the Switches (SW) arbitrate the packets based on network status and arbitration

scheme.

on modern Xilinx and Intel FPGAs. Packets traverse using Dimension-ordered routing
(DOR) policy in the X-dimension (horizontally, W→E) first before turning (W→S) and
then routing in the Y-dimension (vertically, N→S). While DOR is not strictly required for
deflection-routed switches, Hoplite includes this routing scheme to reduce switching cost
by eliminating certain turns in the router. The internal microarchitecture of the router is
shown in Figure 2.2. This simple design requires a pair of 2:1 muxes and DOR logic that
defines the arbitration scheme with three inputs N (North), W (West) and P E (processing
element/client) and two outputs S (South + Switch exit, shared) and E (East). The DOR
control logic is very simple and consumes very few LUTs as it can be constructed directly
on valid signals of the incoming packets alone. Packets exiting the NoC must do so over the
S port to allow the mux and wires to be shared by both south-bound and exiting packets.
A separate output valid signal helps determine the nature of the packet.

When packets at two input ports contend to access the same output port, one of them
is intentionally mis-routed/deflected adhering to the concept of DOR along an undesirable
direction to avoid the need for buffering. The fractured implementation 2.2a of the NoC
serializes the multiplexing decisions to enable a compact single Xilinx 6-LUT realization of
the switching crossbar per bit. However, this sacrifices the routing freedom to achieve this
low cost. A larger design 2.2b that needs two 6-LUTs per bit (2 more cost) permits a greater
bandwidth through the switches. The larger cost is due to the inability to share enough

7

2
:1

2:1

W
E

N

SPE

(a) Shared East exit

2
:1

3:1

W
E

N

SPE

(b) Without sharing

Figure 2.2: Implementation choices for the Hoplite FPGA NoC Router. A
LUT-economical version (left) is able to exploit fracturable Xilinx 6-LUTs to fit both 2:1

muxes into a single 6-LUT. The larger, higher-bandwidth version (right) needs two
6-LUTs instead as the number of common inputs is lower than required to allow

fracturing.

inputs that would have allowed fracturing the Xilinx 6-LUT into dual 5-LUTs. Details
of FPGA LUT organization is explained later in Section 2.5. The arbitration scheme is
illustrated in Table 2.1 for the shared input fracturable design of Hoplite and in Table 2.2
for the non-shared two 6-LUT implementation of the same design.

Livelock in Hoplite

A key limitation of Hoplite is the inability of the NoC to avoid livelock. This is because a
W packet continues to get deflected to the E port as long as a packet on N port wants to
travel S. Furthermore, a series of packets sent from a source client to a destination client
may take different paths through the network and need not deflect in identical manner.
An example flow to create a livelock situation has been shown in Figure 2.3 where PE
(0,0) wants to communicate with PE (3,3) and follows the red-path in the figure and PE
(3,3) wants to communicate with PE (3,1) and follows the blue path. Following DOR,
there is a contention among red and blue packets to access the South port. The arbitration
scheme of Hoplite prioritizes N → S packets; and therefore, blue packet gets access to
the South port while red gets mis-routed back in the horizontal lane. When this situation
continues on the following cycles as well, the red packet gets deflection over and over again
and creates a situation of livelock. It is only allowed to reach it’s destination once there
is no contention and hence the worst-case latency is outrageously high. Due to this, the

8

Table 2.1: Routing Function Table to support single 6-LUT implementation of Hoplite.
N has highest priority, followed by W port and PE has the least priority. PE and W
cannot inject simultaneously if W has a packet even if the flows are non-overlapping.

Mux select Routes Explanation

s sel e sel

0 0 PE→E or PE→S No W or N packet
0 1 W→S or W→E Even if PE has packet
1 0 N→S + PE→E No W packet
1 1 N→S + W→E No N packet

Table 2.2: Routing Function Table to support two 6-LUT implementation of Hoplite.
This supports all routing possibilities. Allows PE and W to inject simulataneously when

there is no overlap.

Mux select Routes Explanation

s sel1 s sel0 e sel

0 0 1 W→E + PE→S No N packet
0 1 0 W→S + PE→E No N packet
1 0 0 N→S + PE→E No W packet
1 0 1 N→S + W→E Non overlapping

amount of time a packet has to wait at the source client node before it is allowed to enter
the network, called the source-queueing latency, and the amount of time a packet takes to
reach its destination, called in-flight latency, for Hoplite are both ∞.

2.1.2 HopliteRT

HopliteRT [57] is a refinement over Hoplite that inverts the priorities and deflects N packet
to the E (hence the new N→E turn in Figure 2.4). By doing this, HopliteRT achieves
livelock freedom and bounds the worst-case latency as a function of system size. HopliteRT
requires two 3:1 muxes but still requires the same number of LUTs as Hoplite. This is
possible because the multiplexer inputs are shared and it requires a 5-input, 2-output
function which can be implemented using careful mapping using a LUT-6 (explained in
Section 2.5). HopliteRT overcomes the livelock limitation of Hoplite by forcing the low-

9

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Figure 2.3: Endless deflection scenario (adapted from [57]) where red packets from PE
(0,0) → PE (3,3) are perpetually deflected by blue packets from PE (3,3) → PE (3,1).

The red spaghetti is the flight path of one packet that gets trapped in the top-most ring
of the NoC and never gets a chance to exit due to the green packets.

priority N packet to deflect E in case of contention cause by high-priority W→ S flow. The
N packet then reappear as a W packet with higher priority. This simple modification means
that a packet will only suffer a single deflection at a given switch as it descends down the
NoC. The adaptation not only avoids livelock but puts an upper bound on in-flight NoC
latency to ∆X + ∆Y ×m + 2 for an m ×m NoC, where ∆X and ∆Y is the number of
steps or nodes a packet has traversed in the X and Y direction respectively. This indicates
that, in the worst-case (when ∆X = m and ∆Y = m), the torus NoC could reduce down
to a ring O(m2).

HopliteRT limits the number of deflections by inverting the priorities of the router to
always prefer W traffic over N traffic (opposite to Hoplite) and an extra turn from N → E.
This modified policy makes the X-ring (West) completely conflict free, while the Y-ring
traffic (North) suffers deflections. Once the Y-ring traffic is deflected onto the X-ring, it
gains a higher priority over any other Y-ring traffic. This ensures that the packet will
always make forward progress in HopliteRT unlike Hoplite where packet can stuck in the
X-ring. Note that the source-queueing and in-flight latency were unbounded in case of

10

3
:1

3:1

W
E

N

SPEi

PEo

Figure 2.4: High-level design sketch of HopliteRT [57] FPGA NoC Routers. HopliteRT
adds a N→E turn to Hoplite to eliminate livelock. This design also fit one bit of crossbar

in one Xilinx 6-LUT.

Hoplite, but due to the modified arbitration scheme and architecture of HopliteRT – we
can get an upper bound on in-flight latency. To bound source-queueing latency, HopliteRT
uses the concept of Traffic regulation explained later in Section 2.6.1.

Table 2.3: FPGA costs for 64b router (4×4 NoC) with Vivado 2016.4 (Default settings)
+ Virtex-7 485T FPGA (adapted from [57])

Router LUTs FFs Period (ns)

Hoplite 89 149 1.29 ns
HopliteRT 86 146 1.22 ns

Table 2.4: Routing Function Table (adapted from [57]) for HopliteRT. PE injection has
lowest priority and will stall on conflict. PE→E + W→S is not supported to avoid an

extra select signal driving the multiplexers and doubling LUT cost by preventing
fracturing a 6-LUT into 2×5-LUTs.

Mux select Routes Explanation

sel1 sel0

0 0 W→E + N→S Non-interfering
0 1 W→S + N→E Conflict over S (Not supported in Hoplite)
1 0 PE→E + N→S No W packet
1 1 PE→S + W→E No N packet (Not possible in Hoplite)

The routing policy for HopliteRT is shown in Table 2.4. The routing policy is built

11

such that it uses the same select bits for both 3:1 multiplexers. Hence, the design can
exploit fracturability of the 6-LUT by supplying identical 5 inputs to the 3:1 mux. The
interpretation of the select bits for each mux is different thus ensuring desired routing
decision. However, the routing policy does not support, the PE→E with W→S turns
happening in the same cycle even though the mux bandwidth is rich enough to support
this condition. This is done to avoid creating a third mux select signal that would prevent
the fractured 6-LUT mapping. The bandwidth capability of the HopliteRT switch is in-
between Figure 2.2a and Figure 2.2b. Thus, HopliteRT is equally expensive (shown in
Table 2.3) to a less-capable switch in Figure 2.2a while it offers extra bandwidth and
latency guarantees.

1-D Ring Scenario in HopliteRT

While HopliteRT costs the same as Hoplite and removes livelocks, it still suffers from
an unusually high deflection in worst cases while doing nothing to eliminate out-of-order
delivery.

Lets take a look at an example of how HopliteRT reduces a torus NoC to a 1-D ring,
as we mentioned above. In Figure 2.5, we show a red path taken by a packet from PE
(0,0)→(3,3) and a blue path taken by a packet from PE (3,3)→(3,1) same as the example
earlier in Figure 2.3 . The arbitration scheme of HopliteRT prioritizes the W → S over
N → S packets. In this scenario, we assume there are W → S flows in each X-ring 0, 1,
2, and 3 that will interfere with the red packets as it descends down in the network. Due
to the presence of high-priority (W → S) flows, the low-priority red packets are forced to
deflect at each X-ring. Hence, in the worst case the 2-D torus becomes a 1-D ring with
O(m2) deflections.

Reducing a bandwidth-rich torus to a ring is neither an efficient, nor a scalable use of
FPGA resources. Also, HopliteRT reorders the packets in the NoC and hence reordering
of packets now becomes the responsibility of the NoC client and can add extra memory
resources at the endpoints.

2.2 Survey of FPGA-overlay NoCs

In this section, we will review existing FPGA-overlay NoCs, such as, CMU CON-
NECT [49], Penn Split-Merge [27], PaterNoster NoC [42], and Kim NoC router [35].
We will try to understand the benefits and features supported on this NoC designs. We are

12

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Figure 2.5: Worst-Case path on Hoplite-RT for packet traversing from top-left PE (0,0)
to bottom-right PE (3,3). The red packets will deflect N→E in each ring due to a

conflicting flow (not shown). The blue packets previously had priority are now deflected
in the top-most ring before delivery. (Adapted from [57])

also going to take a look at their limitations to generate a low-cost and high-performance
design on FPGAs.

2.2.1 CMU CONNECT NoC

CMU CONNECT [49] is a FPGA-overlay NoC with flexible construction methodologies
such as topology, buffer, and virtual channels. It supports various routing algorithms,
including DOR, implements optional virtual channels, and supports variety of flow-control
options. CONNECT was implemented using Bluespec System-Verilog (BSV) [1] which
makes it possible to maintain a flexible design supporting a wide-range of features, such
as variable IO ports, flit support, variable flit width, virtual channel support, pipelining in
Virtual channels, and flexible routing. Each IO port in the router consists of two channels:
one for data transmission and the other for handling flow-control. CONNECT supports
wormhole switching by attaching a header to each flit of the message.

13

Problems with CONNECT design

Unlike traditional ASIC like NoCs, support for Virtual-channel (VC), large buffering, and
other exotic NoC features are too expensive to implement on FPGA. This is because ASICs
can support custom SRAM buffers, and crossbar arrays can be implemented directly on
silicon without any intermediate configuration layer. CONNECT tried to replicate those
features on an FPGA which resulted in a bloated and slow implementation of this NoC.
We list some of the exotic features of this NoC here:

• Flow Control: The flow-control logic in this NoC used a credit-based system. In
credit-based flow control a sending router keeps track of credits from its downstream
receiving routers. Implementing such counters on FPGA fabric will use multi-bit
adders which are inherently slow. Moreover, this design implemented a separate
counters for each Virtual-Channel.

• Optional Virtual Channels: The way CONNECT implements virtual-channels
on FPGAs increases the cost massively as each VC-buffer and its associated control
adds to circuit complexity. While CONNECT allows a VC-free design, they still need
FIFO-based flow control.

• Routing strategy: This NoC uses routing-tables implemented using LUTs to store
the output port information for every possible destination in the network. This
creates a major problem while scaling the NoC architecture to support large number
of IOs. As large number of bits and location will be required to store the routing
information in LUTs.

• Use of Flit-Buffers: This NoC implements a flit buffer for every input port. The
NoC builds a Circular-FIFO using Distributed RAMs (LUTs) for each virtual channel
in the network. Again, this requires a lot of memory which is not efficient to be built
using Distributed RAMs.

In summary, due to inefficient buffer implementation this architecture is not scalable and
use a lot of resources on the FPGA, around 1,500 LUTs for a 32-bit payload and runs at
a very low speed of 9.6 ns.

2.2.2 Penn Split-Merge NoC

Split-Merge [27] is another FPGA-overlay NoC that fixes the architectural issues associated
with CMU CONNECT by decoupling routing into composable split and merge blocks. The

14

NoC architecture implements a VC-free, handshake-based NoC. This NoC design takes
advantage of highly-pipelined FPGA-friendly design units that results in building a high-
speed solution and runs upto 3× faster than CONNECT.

This NoC reduces the logic complexity by a large margin by employing a decentralized
implementation of routing and arbitration functionality. It has programmable input and
output queues that can be deeply pipelined. It uses FPGA’s inbuilt Shift-Register LUT
(SRL) logic to implement FIFOs. The NoC can support DOR, and West-side first (WSF)
routing algorithms and also supports Wormhole switching. The dataflow path in the NoC
is streamlined where the packets pass through input queues to reach the Split/Routing
stage. The Split logic looks at the header of each flit that enters the NoC and sends them
to appropriate output port. The packets then goes through the output queues and reach
the Arbitration/Merge stage where the merge logic interleaves messages from different
input ports to the same output port while maintaining packet completeness.

Drawbacks of implementing Split-Merge on FPGA fabric

The Split-Merge NoC use deep pipelines to achieve higher clock speed and hence increase
the worst case latency. Although this architecture is more FPGA-friendly as it does not use
Virtual-channels and implements a hand-shake based flow-control, it still requires a large
amount of buffering. Split-Merge NoC spends about 40% of its resources in buffering.

To summarize, Split-Merge NoC creates an FPGA-friendly architecture and provides a
high-speed design than CONNECT. However, due to other design overheads and deep
pipelining it ends up using more resources than CONNECT, 1,700 LUTs for 32-bit payload
and 2-stage pipelining and runs at clock speed of 4.5 ns.

2.2.3 PaterNoster NoC

PaterNoster NoC [42] exploits the benefits of a 2-D torus topology just like Hoplite,
HopliteRT and uses DOR routing policy. The switch architecture has similar logic blocks
like Hoplite, HopliteRT as shown in Figure 2 in [42]. The architecture of the NoC has
3-inputs (West In, Local In, and South In) and 3-outputs (North Out, East Out, and Local
Out) with an additional Corner-Turn buffer for the turning packets. It supports wormhole
switching with multiple flits, however, all the flits along with the head flit are assumed to
have same header that contains information about the source and destination of a flit which
adds a little extra overhead but also reduces the complexity of the router of implementing
flow control logic and router information storage.

15

Arbitration and Switching

The arbitration scheme of this NoC prioritizes SouthIn port over WestIn and LocalIn
ports. Following DOR routing, a packet is first routed in the X-ring and when it reaches the
right column it is turned to Y-ring through the Corner-Turn buffer. In case of a contention
between SouthIn and turning WestIn packets to access the NorthOut port, SouthIn
packet wins and WestIn packet gets in the Corner-Turn buffer. A packet only leaves the
buffer once the NorthOut port is free. Also, in a case when WestIn and SouthIn packets
contend to exit the switch, due to higher priority SouthIn wins and WestIn is deflected
towards EastOut to take another round and try again.

In a situation, when the Corner-Turn buffer is full and a WestIn packet wants to turn,
it is deflected on the EastOut port back to the X-ring to take another round. Additionally,
the router makes sure that a new turning flit is not added to the buffer before the previously
deflected flit comes back and try again to get into the buffer. This also ensures that flits
from the same source leave the ring in the same order.

The downside of this NoC is that it is not optimized to exploit FPGA-architectures and
uses many LUTs to implement the large amount of multiplexing logic. Also, to preserve
the order of packets, each flit that takes an extra round (deflected) is marked to make sure
that it is injected in the corner-turn buffer first before any other flit from source is added
to the buffer. To implement the marking scheme each node uses a counter equal to the
length of a round.

A 4 × 4 implementation of this NoC takes ≈750–1200 ALMs and supports 64-bit wide
datapath with 8-deep corner-turn FIFOs whereas HopliteBuf supports a 5 × 5 implemen-
tation with 64-bit datapath and 64-deep FIFOs with just 400 ALMs. Also, since a counter
is needed at each node within a ring, the hardware costs for PaterNoster NoC increases
dramatically.

2.2.4 Kim NoC router

The Kim NoC router [35], uses a bi-directional 2-D torus topology with two ports at
each direction (North, West, East, and South) for input and output. As shown in Figure
5 in [35], it creates separate X and Y rings like Hoplite. The router microarchitecture uses
prioritized switch allocation, and crossbar partitioning to achieve high-throughput.

16

Arbitration and Switching

The microarchitecture uses two separate routers (sliced) - one for each dimension, X and
Y to create a dimension-sliced router. The slicing of the router into two dimensions create
two small crossbar switches: the x router (Rx) and the y router (Ry). The switch follows
Dimension-Ordered Routing policy and hence a packet has to traverse in both dimensions
(X and Y) to reach its destination and switch dimensions exactly once. Even if the source
and destination share the same row or column, the packet will still need to switch as the
local injection port is at Rx router and local ejection port is at Ry router. The switch
microarchitecture uses buffers to decouple the two-sliced routers. It uses backpressure flow
control to manage full buffers and avoid misrouting of packets. Just like HopliteBuf, it
also implements turn-buffers when a packet switches from X to Y dimension and buffers a
packet only once.

The arbitration scheme prioritizes North packets over west and locally injected packets.
It uses a simple 2-deep turn buffer for the packets turning from X to Y and uses classic
backpressure when the buffer is full. To avoid client starvation, where a client connected
to local input port does not get a chance to inject packets into the network due to the
presence of other high-priority packets, the switch uses a handshake based strategy.

However, the switch pays in terms of large resource costs and design complexity to im-
plement the handshake based strategy to avoid client starvation. This topology also uses
multiplexers abundantly as it is targeted as ASICs, and would not match the LUT fabric
of the FPGA as well as Hoplite or HopliteBuf. Furthermore, HopliteBuf does not require
backpressure flow control either as FIFOs are not allowed to go full.

2.3 Survey of Real-time NoCs

In this section, we are going to take a look at some of the existing real-time NoCs and
what features make them suitable to implement mission-critical applications. Real-time
NoC designs has mostly focused in two directions:

• Time division multiplexed (TDM) NoCs [24, 30, 43]: These NoCs require
complete knowledge of the communication flows in advance and create a routing
decision table upfront in each switch of the network. By doing so, they achieve a
low-latency, fast packet delivery solution without any deflection or waiting time in the
buffer. However, to build these static TDM scheduling tables both packet injection
and routing, these NoCs require a lot of expensive storage for routing decisions and

17

tends to be unsuitable for NoCs that need to support both real-time flows requiring
worst case guarantees and best effort flows where average case delay matters.

• Prioritized NoCs [34, 53]: Priority-aware network-on-chip designs incorporate
virtual-channels for each priority flow in the network. Here, packets are arbitrated
based on the relative priority of the constituent flow instead of requiring complete
knowledge of flows. While this approach is more favorable to effectively supports
clients of different criticality, it requires expensive virtual channels: at each port,
every priority flow needs a separate buffer. Since a lot of buffering space is required
to build these NoCs, they are unsuitable to be effectively overlay on FPGA devices.

2.4 Emergence of Hard NoCs

So far we have reviewed some of the best soft and statically analyzed network-on-chip
designs. In the section, we are going to review state-of-the-art hardened NoC designs
that can gain performance benefits and can extract more information from our analysis
approach to enhance their NoC.

2.4.1 Xilinx Versal

In 2018, Xilinx released their next generation Versal architecture, where they added a hard
NoC to FPGAs [55]. In the proposed architecture they added several components, such as,
an on-chip dual-core ARM processor, multiple DDR4 memory controllers, 16-lanes PCIe
Gen4, 32G SerDes, and large amounts of high-speed on-chip memory. And to satisfy the
intra-chip communication requirement among these high-speed logic blocks, they added a
highly configurable memory mapped network-on-chip. They also added a buffered AXI-
stream based NoC inside the AI Engine sub-block to transfer the intermediate computation
data among different compute units.

The proposed NoC architecture supports dataflows with different Quality of Service
(QoS) traffic classes: Low-latency (LL), Isochronous (ISOC), and Best-effort (BE). The
different traffic classes assert a different level of priority for transporting packets from source
to destination. For instance, LL traffic is treated as highest-priority and is typically requires
variable bandwidth and burstiness. Cache line refills from CPU is a typical example of
LL traffic class. ISOC has the same priority as LL, but packets with ISOC class have a
deadline after which they are redundant. BE has the least priority and can be serviced
whenever bandwidth is available.

18

Limited information is available about the NoC at the time this thesis was written. The
paper [55] mentions that the hard NoC implements a deterministic routing with wormhole
switching and it uses a packetized network. It also supports multiple VCs to avoid deadlock
and head-of-line blocking. It also provide offline routing, configurable paths and weighted
arbitration.

Packet communication

The packet communication in the Versal NoC architecture was supported with AXI4 [59]
protocol. The paper [55] refers the source/master port as NoC Master Unit (NMU) and the
destination/slave port as NoC Slave Unit (NSU). As shown in Figure 5 in [55], the master
and slave interfaces show the channels required for AXI memory mapped operation. The
NoC design uses a separate VC for each of these interface signals and the same process is
followed to capture the response signals. It uses Request, Reply buffers in side the NoC
architecture that runs at a decoupled clock frequency from the source and destination logic
frequency.

Toplogy

As the paper explains, the topology is not mesh. However, as shown in Figure 6 in [55] there
are Horizontal NoCs (HNoC) and Vertical NoCs (VNoC) which are irregularly provisioned
across the entire chip to provide high-speed communication interconnect. The HNoCs
are used to connect accelerators and memory controllers with the FPGA fabric while the
VNoCs are used to connect Programmable FPGA fabric with each other. The NoC uses
a programmable routing table that is programmed with a dedicated on-chip processor. It
also implements a tree-structured peripheral bus that provides a deterministic routing path
before the NoC is configured. The NoC routers support a datawidth of upto 128 and can
run at a frequency of 900Mhz - 1Ghz and can achieve a raw throughput of 16 GB/sec.

2.4.2 Embedded NoC

In 2016, Mohamed et al. [4] presented an embedded hard NoC design on FPGAs to support
system-level communications. They implement an embedded FPGA NoC and custom
interfaces to connect this NoC design to the FPGA and I/Os as well. The NoC architecture
uses a credit-based flow control and Virtual-channels to support wormhole routing. It

19

supports data widths of upto 150 bits and can route DDR3 data using a single port at a
speed of 1.2 Ghz. This NoC supports a bandwidth of 22.5 GB/s on each link.

As shown in Figure 3 in [4], the overall network-on-chip architecture includes soft/fabric
logic to append/strip metadata to/from the incoming packets and there is a custom fabric
and NoC design which is hardened in the middle. The clock speed at which soft and hard-
logic operates is also decoupled. The incoming translator unit takes the incoming data
and appends header and other information to it and then it stores upto 4 flits of data to
send to the hard custom fabric. The custom fabric serializes these flits of data at a higher
clock speed and pass it to the vitual channels in the NoC. When the flits are received at
the other end, the output translator strips the control headers from the data and pass it
to the output nodes.

In this work, the authors mentiones that they over-provision the resources based on the
the highest-bandwidth interface, DDR3, on an FPGA. We believe that this could lead to
problems such as (1) not supporting newer applications that require even more bandwidth,
DDR4 or the upcoming DDR5, (2) waste of on-chip resources for applications that do not
require such a high bandwidth.

2.5 LUT organization in Intel and Xilinx devices

In this section, we cover the basic details about the architecture, features, and functionality
of Look-up-tables in Xilinx and Intel FPGAs. LUTs are the basic building blocks to
assemble a complex system on FPGAs. Lets first take a look at Xilinx’s LUT structure:

2.5.1 Xilinx LUT organization

With modern Xilinx FPGA devices, you can build a maximum of 6-input and 1-output
function by using one 6-LUT [58]. A 6-LUT is fracturable into two 5-LUTs with five
common inputs across both LUTs. This allows you to implement one function of 5-inputs
(any function) and one function of 6-inputs (if it overlaps with the 5-input function) in the
same LUT. Figure 2.6 shows the LUT organization of Xilinx FPGA device.

The shared East exit version of Hoplite NoC (Figure 2.2a) and HopliteRT (Figure 2.4)
uses the fracturability of Xilinx’s 6-LUT architecture. In both of these designs, 5-inputs
are shared and the 6th input is used to separate O5 from O6 in figure 2.6. Hoplite shares
N , W , PE, and 1-bit select line each for Emux and Smux, while HopliteRT shares N ,
W , PE, and 2-bit common select lines for Emux and Smux.

20

5-LUT

5-LUT

2
:1

O5

O6

I0
I1
I2

I4

I5

I3

Figure 2.6: Xilinx LUT-6 sturcture. A fracturable Xilinx 6-LUT can fit two 5-LUTs with
common inputs

Xilinx’s CLB structure is extremely flexible and allows to be configured as Storage elements,
such as, Distributed RAM, and Shift-Registers [58]. Figure 2.7a shows how a LUT can be
configured to work as 32-bit SRL. The 32:1 mux selects one of the 32 inputs coming from
the shift-register based on the address port A. By adding a slight amount of logic on top
of this module can make it work like a 32-deep 1-bit FIFO.

Multiple LUTs can be cascaded to increase the depth and width of the FIFO im-
plemented using SRLs. One such example is shown in Figure 2.7b where two LUTs are
cascaded such that the FIFO depth is 64. In a similar manner, within a SLICE, a maximum
of four 32-bit SRL32 can be cascaded with the help of F7AMUX and F8AMUX to implement a
128-bit Shift-Register or FIFO.

2.5.2 Intel LUT organization

Now that we know how LUTs are organized in the Xilinx FPGA devices, lets take a look at
how Intel FPGAs implement them. An Intel Adaptive Look-up Table (ALUT) is organized
differently and has 8-inputs shared across two 6-LUTs [7]. Intel ALUTs are much more
flexible when it comes to implementing different input size functions, Figure 2.8 shows
various configurations that you can choose on a modern device like Arria-10.

21

32-bit shift register

SHIFTIN (D)

WE

CLK

SHIFTOUT (Q31)

Address (A[4:0])

Q

(a) 32b Shift Register

SRL 32
D O6
A
CLK MC31
WE

SRL 32
D O6
A
CLK MC31
WE

SHIFTIN (D)

A[5:0]

CLK
WE

F7AMUX

Q

SHIFTOUT (Q63)

(b) 64b Shift Register

Figure 2.7: (a) A LUT-6 based 32-bit Shift Register on Xilinx FPGA (b)Two LUT-6 cascaded
to implement a 64-bit Shift register. The cascading is done with the help of F7AMUX which is

available in SLICEM of a Combinational Logic Block in Xilinx FPGAs

ALUTs can be configured to work in the following modes:

1. to implement a 6-input 1-output function. (only one 6-ALUT)

2. to implement two independent 4-input functions. Shown in Figure 2.8a

3. to implement one 5-input function and a separate 3-input function. Shown in Fig-
ure 2.8b

4. to implement one 5-input function and one 4-input function with one input shared.
Shown in Figure 2.8c

5. to implement two 6-input functions with four common inputs and two distinct inputs
each. Shown in Figure 2.8d

Hoplite needs one 5-input function and a separate 3-input function to implement the
multiplexing logic and hence uses the Intel LUT architecture shown in figure 2.8b. While,
HopliteRT needs two 5-input functions with 3 common inputs and hence it uses the Intel
LUT architecture with 6-inputs shown in figure 2.8d.

22

4-LUT

4-LUT

combout0

combout1

I0
I1
I2
I3

I4
I5
I6
I7

(a) Two 4-ALUTs

5-LUT

3-LUT

combout0

combout1

I0
I1
I2
I3
I4

I5
I6
I7

(b) One 5-ALUT and One 3-ALUT

5-LUT

4-LUT

combout0

combout1

I0
I1
I2
I3
I4

I5
I6
I7

(c) One 5-ALUT and One 4-ALUT with a shared input

6-LUT

6-LUT

combout0

combout1

I0
I1
I2
I3
I4
I5

I6
I7

(d) Two 6-ALUTs with four shared inputs

Figure 2.8: Various Intel ALUT configurations

23

Similar to what Xilinx LUTs can do to implement shift-registers and memories, Intel
implements this functionality with their Memory Logic Array Block (MLAB) resources.
MLABs are a superset of Logic Array Block (LAB) and support all the features that
LABs can support MLABs have a slightly different architecture to build the memory
configuration. Each MLAB supports a maximum of 640bits of simple dual-port SRAM.
MLABs can configured to implement 32-deep and 20bit wide simple dual-port SRAMs.
For more information, please refer to [7].

The stall-free buffer component of our new NoC designs are implemented using cheap
resources like LUTs, and MLABs.

2.6 Basics of Network Regulation

We now turn our attention to some basic concepts of traffic regulation and network calculus
needed to understand the static analysis section of the HopliteBuf NoC. Let us take a look
at Traffic regulation first.

2.6.1 Need for Traffic Regulation

In Hoplite, PE port always gets the least priority than network ports N and W . What
it means is that, a client waiting to inject packets into the network may be dominated
profusely by other client’s packets which are already travelling in the network. Hence, in
the worst case source-queueing latency is also unbounded for Hoplite.

Consider an example shown in Figure 2.9 to visualize this situation– We have two flows:
the blue flow from PE (0,0)→ PE (3,0) is already in the network and sending packets at a
100% rate (back-to-back on every clock cycle) while the unlucky red flow at switch (1,0)
is trying to enter into the network but it will never get a chance to do so because of the
least priority and no open window to inject. So we can say that for Hoplite, both in-flight
latency and source queueing latency is ∞.

We can correct this by asserting a discipline on traffic injection. HopliteRT uses one such
mechanism to bound the source-queueing latency by regulating traffic injection into the
switch which is explained next.

24

PE
(0,0)

sw
PE
(1,0)

sw
PE
(2,0)

sw
PE
(3,0)

sw
PE
(1,0)

Figure 2.9: The example shows an inundated client at (1,0) that has flooded the NoC
with packets at full link bandwidth (one packet per cycle)

2.6.2 Token-bucket Regulator

In networking, traffic control is the process of managing, controlling, and reducing the
network traffic through network schedulers. Without effective traffic control, networks are
vulnerable to congestion when the injected traffic exceeds the network capacity, leading
to serious deterioration of network performance. The goal of traffic control is to achieve
fairness in traffic injection and guaranteed service to each node. One such traffic control
algorithm is the Token bucket regulation [38]. The regulator ensures that the data injected
in the network conform to defined limits on rate and burstiness. This regulator is highly
efficient and cheap to implement with just two counters. Figure 2.10 shows a high-level
cartoon diagram of a Token Bucket Regulator inserted on the client→ NoC interface. The
regulator restricts the amount of traffic injected into the NoC and also bounds the amount
of time a client has to wait to inject a packet into the network. The regulator is user
programmable with two-parameters: b, burst and ρ, rate of injection.

Two counters: rate counter, and a token counter, are required to implement token
bucket regulation. Rate counter, is a free-running counter that is programmed to add a
token into the token bucket, shown in Figure 2.10, when it overflows after a period of every
1
ρ

cycles. Token counter, keeps track of tokens consumed by the client/user logic and also
makes sure that the token bucket never exceeds it’s maximum size, b. The token bucket
is assumed to initially full with, b tokens (user programmable) in it. Whenever a client
wishes to inject a packet in the network, it checks if the NoC is ready to accept packets
and client has enough tokens in the token counter. For each packet sent in the network,
token counter is decremented by one which also represents that we have one empty slot in
the token bucket.

25

Token
Bucket

rate
counter

token
counter

User
Logic

NoC
Switch

NoC ready

Packet

(rate+1)%1
ρ

max(token+1,b)

b

overflow

Figure 2.10: A cartoon diagram representing the Token Bucket regulation. A regulator is
used at the injection port of each NoC client. Number of tokens represent the number of

packets allowed to inject in the network by a client.

2.6.3 Traffic Modelling with Token bucket regulator

Lets understand Token bucket regulation with the help of an example as we use the same
regulation scheme for the new HopliteBuf NoC.

Traffic curve: To analyze the traffic characteristics, we introduce a traffic curve λb,ρ(t)
to denote the maximum number of packets sent on a NoC link in any interval of t cycles.
By definition, a token bucket regulator with parameters b, ρ provides a traffic curve:

λb,ρ(t) = min
(
t, b+ bρ · (t− 1)c

)
Example: Traffic curve with one regulator with b = 3, ρ = 1/4 are depicted in Fig-

ure 2.11. The traffic curve derivation assumes that the bucket is initially full. Hence, b = 3
packets can be sent consecutively at times t = 1, 2, 3. After the first packet is sent at time
t = 1, the regulator starts generating a new packet, which is then added to the bucket
at time 1 + 1/ρ = 5; this corresponds to the fourth transmitted packet. Afterwards, new
packets are sent every 1/ρ cycles.

So a regulator gives all the clients a fair chance to inject packets by asserting a discipline
as shown in Figure 2.11.

26

0 2 4 6 8 10
0

2

4
λb=3,ρ=1/4

Time (cycles)

P
ac

ke
ts

Figure 2.11: Example traffic curve for λb=3,ρ=1/4.

27

Chapter 3

HopliteBuf Microarchitecture

We now present the hardware design of the proposed FPGA-overlay NoC with stall-free
buffering, HopliteBuf. We present two variants of HopliteBuf: W → S, W → S + N and
discuss the benefits and limitations of each architecture and specifically, we highlight how
the W → S + N enhances the static analysis to produce concrete bounds on the FIFO
sizes. We also studied the behavior of two more variants of buffer NoC designs: W → S
buffer design with back-pressuring and N → S buffer design with deflections beyond those
covered in the original HopliteBuf proposal 1.1. We will look at the micro-architecture of
all these designs in this chapter and then we will see how they compare with each other in
the Evaluation chapter. Let us start with the idea of stall-free buffering.

3.1 Stall-free Buffers

This work is targeted for real-time applications that are characterized by a need to rig-
orously prove timing requirements of various computing and communication blocks. We
saw deflection routing NoCs implemented on FPGAs in Sections 2.1.1 and 2.1.2 which are
cheap to implement (≈90 LUTs) and runs at a high clock speed (2.9 ns). However, the
penalties these NoCs pay in terms of latency, out-of-order delivery, and throughput are due
to mis-routing and deflections. HopliteRT 2.1.2 improves and bounds the worst-case la-
tency but again, due to large number of deflections, the latency is still unacceptably large.
In this work, we eliminate deflections entirely by implementing corner-turn buffers in the
NoC. However, we have already seen in Sections 2.2.1 and 2.2.2 that adding buffering can
lead to a bloated design with other complexities of flow control. Hence, we want to add
the benefits of buffering to low-cost deflection routing with excessive resource overheads.

28

We use the architecture of Hoplite NoC (Figure 2.2) as our starting point and add
buffers for corner turns only. Earlier in Figure 1.1, we sketched two variants of the proposed
HopliteBuf topologies with buffers for turning packets. In Figure 3.1, we show the switch
microarchitectures of these variants.

2
:1

3:1

W
E

N

SPEi

PEo

(a) FIFO on W → S Turn

2
:1

3:1

3:1

W
E

Ni

So

No

SiPEi

PEo

(b) FIFOs on W → S +N Turns

Figure 3.1: Two design alternatives for adding buffers to the Hoplite NoC router. W → S
adds a buffer on the corner turn, while W → S +N adds an extra uphill buffer.

The basic multiplexing functionality implements turns to support DOR routing scheme.
What this means is that, unlike the HopliteRT design, our proposed microarchitecture
does not support the N → E turn. Now, recall that contention in Hoplite arises from
packets wanting the same South (S) resource either for turns (W → S) or for vertical
descent (N → S) and during contention, the arbitration scheme of Hoplite gave priority
to (N → S) while packets from (W → S) gets deflected back creating potential livelock
situation. In this NoC, we avoid livelocks by having buffers for low-priority (W → S) turn

29

packets and do not deflect them.

Why buffer W → S packets?

Now one might argue that, why don’t we put buffers on the (N → S) and give high-priority
to (W → S) turn packets? Well, we can choose to make either or both of these conflicting
parties wait in buffers, but the W → S option is preferred as it limits buffering penalty for
a given flow to a single buffer. Buffering the N → S path will force packets descending
vertically to wait at each hop prolonging their stay in the network. This would make both
end-to-end routing latency as well as FIFO size larger than needed. And, along with that
this architecture also complicates the flow analysis.

Let us take a look at an example to understand this:

• If N → S is buffered: Figure 3.2a shows the torus structure with an example flow
from switch (2,2) → (1,3). The arbitration scheme in this example gives priority to
W → S packets and N → S packets are going to be stored in the buffer during
contention. If you consider the worst case assumption that at each switch in column-
3 there is a contention caused by W → S packets, the example flow packet is going
to take the red-path and it has to go through all the buffers in the vertical ring.
This design not only makes the FIFO sizes larger, to store the same packet multiple
times, but also adds to the latency of waiting in the buffer.

• If W → S is buffered (advocated by this work): Figure 3.2b shows the torus
structure with the same example flow that we saw earlier from switch (2,2) → (1,3).
Only this time the arbitration scheme is similar to Hoplite and gives priority to
N → S packets and W → S packets are going to be stored in the buffer during
contention. In this case, even in the worst case assumption that at each switch in
column-3 there is a contention caused by N → S packets, the example flow packet
is going to take the red-path and it needs to be stored only in a single buffer at
switch (2,3). This design is more favorable to achieve lower-latency and lower FIFO
occupancy bounds. Hence, we focus only on W packets for buffering.

We now elaborate on the two design options that only buffer W packets in two ways:

30

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(2,2)

PE
(3,2)

(a) Multi buffering with N → S

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(2,2)

PE
(3,1)

(b) Single buffering with W → S

Figure 3.2: Routing scenario to show the number of buffers required to support a flow of
packets from PE (2,2) → PE (3,2). For N → S buffering case, the packet is required to
be stored at multiple times in each buffer along column-3. For single-buffering case, the

packet is stored only once at PE (3,2) to reach its destination.

3.2 W → S buffer design

Refer to Figure 3.1a. In this scenario, packets turning from W port to S will be buffered
if a N → S packet arrives at that router in the same cycle. The routing policy now
prioritizes N packets over W packets as there is no longer the option of deflecting to E
like in HopliteRT. The East mux now sees W , and PE as input, and South mux sees
W ′ (FIFO output), N , and PE as inputs. The multiplexer select lines also need to be
distinct as the routing combinations prevent sharing. We discuss how this may fit on the
FPGA fracturable LUT organization in the Section 3.4 and the restrictions of the routing
combinations with an example in Section 3.5. From the perspective of the NoC, the packet
will have to wait in a buffer only at the point of turn. The PEo exit shares the same wires
as the S just like in the original Hoplite and HopliteRT routers to avoid paying the extra
cost of exit multiplexers. Empirical evaluation has shown negligible performance hit from
this cost-saving transformation.

31

3.3 W → S +N buffer design

Refer to Figure 3.1b. In this second scheme, the routing policy introduces a S → N link
and allows a new W → N turn. At first glance, this may seem like an unlikely design
choice as inserting an entirely new routing path will increase LUT resource costs. While
this is true, this scheme does not increase wiring requirements as seen in Figure 1.1b. The
vertical wrap-around link in the original Hoplite ring is now forced to traverse through the
switch on the way uphill. Thus total wirelength stays unchanged. Furthermore, as we will
see later, this organization enhances the static analysis pass by removing the loopback and
allows a higher provable link utilization on the vertical ring. You may notice we retain the
shared single exit to the client PEo that shares wires with the So port. As the vertical ring
is disconnected, traffic is delivered to destination PEs only on the downhill traversal. This
is another cost-saving measure that eliminates introducing an exit multiplexer along with
an accompanying FIFO for packets on the uphill Si → No that may wish to exit sooner.

3.4 FPGA Implementation

We saw in Section 2.5 the details about implementing deep memories and shift registers
using LUTs in Xilinx devices and using MLABs in Intel devices. In this section, we are
going to see how muxes and the stall-free component of our new designs are implemented
using these cheap resources.

Original Hoplite Mapping: When implementing the original Hoplite router shown
in Figure 2.2 on a Xilinx FPGA, we can easily fit the two 2:1 muxes in two Xilinx 5-LUTs
to allow a compact 1 6-LUT mapping per bit of switching shown in Figure 2.6. This is
possible as the East 2:1 mux can use a 5-LUT (requiring 3 inputs), while the South 2:1 mux
can be mapped to the embedded 2:1 mux that drives the O6 output (needing two more
inputs, only one of which needs to be unique). When implementing the original Hoplite
router on an Intel FPGA, it is trivially possible to fit this in a single ALM with two 6-LUTs
without even forcing the East mux serialization shown in Figure 2.8d. This is because, the
3:1 mux (South mux if implemented fully) needs 5 inputs while the 2:1 mux only needs 3.
Two of these inputs are shared by both muxes (W and PEi), while the distinct mux select
inputs can be supplied to the two 6-LUTs independently without violating the common
input restriction.

Mapping W → S buffer Design: This design requires the switching crossbar to
consume four packet inputs: N , W , W ′ (FIFO output) and PEi inputs along with 3

32

mux-select inputs. This already exceeds the 6-input LUT capacity of the Xilinx FPGA
and cannot use fracturing (shown in Figure 2.6. On the Intel FPGA, however, we require
four common inputs to each 6-LUT (shown in Figure 2.8d; this constraint is satisfied
by our design thereby enabling a compact fit. Additionally, we can supply two unique
inputs to each 6-LUT which is adequate to support the mux-select signals. When it comes
to implementing deep FIFOs using this cheap resources, both Xilinx and Intel FPGAs
provide configuration to use LUT and ALMs as Memory registers. To implement deeper
FIFOs with Xilinx, we use the cascading strategy explained in Section 2.5.1 where multiple
LUTs can be cascaded with each other by using F7AMUX and F8AMUX. With Intel devices,
deeper memories can be built much easily by just instantiating multiple MLAB primitives
explained in [7].

Mapping W → S +N buffer Design This design requires the switching crossbar to
consume six packet inputs: Ni, Si, W , W ′ (W → S FIFO), W ′′ (W → N FIFO) and PEi
and 5 mux-select inputs. We choose to split the turning packets into separate FIFOs to
prevent mutual interference between traversing flows. The total distributed RAM capacity
stays same as it just split into two SRL32 or MLAB instantiations instead of a longer single
distributed RAM block. Here, with limited opportunity for input sharing, the resulting
design is larger in LUT cost, but as we will see later, this allows efficient use of the NoC
links. In this design as well, we implement the memory components using LUTs/MLABs
as in the W → S buffer design.

Table 3.1 and 3.2 shows the resource costs of implementing different variants of Hoplite-
Buf on Xilinx and Intel FPGAs. Maximum FIFO depth analyzed in this work is capped at
128, to reasonably implement them using LUTs and ALMs. As show in the table, the W
→ S design is slightly more expensive than HopliteRT on Xilinx FPGAs due to their LUT
architecture. However, W → S design uses same number of ALMs to implement the logic
as HopliteRT but is a little expensive in terms of buffer implementation using MLABs. In
the dual-buffer variant, W → S+N, the memory costs are identical to W → S but it is
slightly more expensive due to an added 3:1 mux to implement the upward logic. On an
average, HopliteBuf is around 3− 4× more expensive than HopliteRT but as you will see
in the evaluation section that this added cost is going to pay in terms of performance gain
over HopliteRT.

3.5 Routing Policy

Now that we understand the architecture and implementation details of the two variants of
HopliteBuf, W → S and W → S +N , now we are going to look at the arbitration scheme

33

Table 3.1: Resource utilization on a Xilinx Virtex-7 FPGA for different Data Width and
FIFO sizes.

Xilinx

HopliteRT W → S W → S+N

LUTs FFs LUTs FFs LUTs FFs

DW=32, FIFO=64 59 86 197 95 262 142
DW=64, FIFO=64 91 150 325 159 413 238
DW=32, FIFO=128 59 86 281 96 346 144
DW=64, FIFO=128 91 150 482 160 562 240

Table 3.2: Resource utilization on a Intel Arria-10 FPGA for different Data Width and
FIFO sizes.

Intel

HopliteRT W → S W → S+N

LUTs FFs LUTs FFs LUTs FFs

DW=32, FIFO=64 92 102 140 248 156 278
DW=64, FIFO=64 156 166 221 408 246 438
DW=32, FIFO=128 92 102 224 331 261 445
DW=64, FIFO=128 156 166 360 555 409 733

and routing policies to implement these structures.

The original Hoplite and HopliteRT routers implemented bufferless deflection routing
rooted in Dimension-Ordered Routing (DOR) policy. The policy ensured that arriving
packets from W and N ports were sent to E and S ports respectively. For turning packets,
Hoplite prioritizes N port over the W port thereby introducing the possibility of livelock,
while HopliteRT prioritizes W over N to ensure bounded NoC routing delays. Thus,
HopliteRT deviates from DOR by allowing a N → E deflection that is not permitted
under standard DOR implementation.

HopliteBuf: W → S design: For W → S design we restore DOR routing policy as
we move back to the same architecture (with an added buffer on W to S link) as Hoplite.
But in order to service FIFO packets, the routing policy has been modified. We list the
routing combinations for W → S NoC design in Table 3.3.

34

Table 3.3: DOR Routing Policy for FIFO-W router. PEi always has the least priority. S
exit is shared with port PEo exit. W′ →S uses WFIFO read port. Extra combination of

W→E and W′ →S also supported.

Packet paths Muxsel FIFO

W→E W′ →S N→S PE→E PE→S Smx Emx read

x 00 -
x 01 - 1

x – 0
x – 1

x 10 -

x x 00 0
x x 00 1

x x 10 0
x x 00 - 0
x x 01 1 1

x x 01 0

The upper half of the routing table shows the possible flow combinations when only
one-port, either W , W ’, N or PEi, has packets to transmit. The lower half shows more
complicated routing decision cases when multiple ports are willing to transmit simultane-
ously.

For South Mux, the arbitration scheme gives the highest priority to N port, as it is not
buffered and cannot hold the packets. The second-highest priority is given to W ’ (West
FIFO output) while PEi gets the least priority. For East mux, W port has higher priority
than PEi packets. The decision logic also takes of a unique and complex routing case of
simultaneous data transfer between W → E and W ′ → S.

The example in Figure 3.3 illustrates how the HopliteBuf W → S design fits in the
torus. The example also shows how two flows from PE (0,0) → PE (3,2) and PE (3,3) →
(3,1) contend to access the S port at switch (3,0). The arbitration scheme gives priority
to N packets (blue flow) and hence red flow goes in the buffer. Note that there is no flow-
control logic implemented in the switch and hence, static analysis of all the flows in the
network is needed to get accurate bounds on the buffer sizes so that they never overflow
and become stall-free. In this work, we provide the tools to analyze these flows and get
the buffer bounds on each switch in the network.

35

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw
PE
(0,0)

PE
(3,2)

PE
(3,3)

PE
(3,1)

Figure 3.3: Flow of traffic in the 2-D torus with HopliteBuf W → S switches. In case of
contention between W and N packets, W goes in the buffer and N gets access to S.

There is no backpressuring among the switches; and therefore, buffer sizing is done by
static analysis of flows.

HopliteBuf: W → S+N design: For W → S+N design as well we use DOR routing
policy. With buffering, W packets are forced to wait in the while thereby transferring
priority to Ni and Si packets. This design still accept PEi packets with the least priority.
We list the routing combinations for W → S +N NoC design in Table 3.4.

For HopliteBuf: W → S +N design, the routing logic is much complex in comparison
toW → S design as it has 8 possible flow combinations and all have different priority
structures. The table summarizes all the possible combinations along with their priority.

There is another example in Figure 3.4 illustrates how the HopliteBuf W → S + N
design fits in the torus. The example also shows how two flows from PE (0,0) → PE (3,2)
and PE (3,3)→ PE (3,1) travel in the network with a new upward path. The exit port PEo
is retained at So and hence if a packet wishes to exit at a switch above it, then it has to
travel all the way up take the upper turn-around link and then enter the downward chain
to exit at So port. The arbitration scheme gives priority to Ni and Si packets (blue flow)

36

T
ab

le
3.

4:
D

O
R

R
ou

ti
n
g

P
ol

ic
y

fo
r

F
IF

O
-W
→

S
+

N
ro

u
te

r.
P
E
i

ag
ai

n
h
as

th
e

le
as

t
p
ri

or
it

y.
S
o

ex
it

sh
ar

ed
w

it
h

p
or

t
P
E
o

ex
it

.
W
′
→

S
u
se

s
W

F
IF

O
re

ad
p

or
t,

W
′′
→

N
u
se

s
N

F
IF

O
re

ad
p

or
t.

P
a
ck

e
t

p
a
th

s
M

u
x
se

l
F

IF
O

W
→

E
W
′
→

S
W
′′
→

N
N
→

S
S
i→

N
P

E
→

E
P

E
→

S
P

E
→

N
S
m

x
E

m
x

N
m

x
re

a
d
S

re
a
d
N

x
00

-
–

x
01

-
–

1
x

–
-

00
x

–
-

01
1

x
–

0
–

x
–

-
10

x
10

-
–

x
–

1
–

x
x

x
00

0
00

x
x

x
00

0
01

1
x

x
x

00
0

10
x

x
x

00
1

00
x

x
x

00
1

01
1

x
x

x
01

0
00

1
x

x
x

01
0

01
1

1
x

x
x

01
0

10
1

x
x

x
01

1
00

1
x

x
x

01
1

01
1

1
x

x
x

10
0

00
x

x
x

10
0

01
1

37

and hence red flow goes in the buffer. Note that there is no flow-control logic implemented
in the switch and hence, static analysis of all the flows in the network is needed to get
accurate bounds on the buffer sizes so that they never overflow and become stall-free. We
will show in the next chapter how this design linearizes the analysis and helps achieving
more concrete buffer bounds.

To study the effect of backpressuring and deflections on the buffered NoC designs, we
created two more variants of HopliteBuf: W → S buffer design with backpressuring, and
N → S buffer design with deflections. Let us take at a look at their architecture and
arbitration scheme.

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw
PE
(0,0)

PE
(3,2)

PE
(3,3)

PE
(3,1)

o o o o

Figure 3.4: Flow of traffic in the network with HopliteBuf W → S +N switches. The
torus does not have vertical links going from bottom to top. Each switch has a dedicated
upward path. A packet trying to exit at a node above it will have to go all the way and

then come down to exit as shown in blue flow from switch (3,3) → (3,1).

38

3.6 W → S Buffer Design with Backpressure

The idea of this design is similar in concept to Kim NoC Router [35] where backpressure
is generated when the corner-turn buffer becomes full.

The microarchitecture of this NoC is similar to HopliteBuf W → S design with an
added Backpressure unit as shown in Figure 3.5a. The backpressure logic ensures that
when the FIFO is full or there is an input backpressure coming from the next switch in
the horizontal ring, then it generates an output backpressure to hold the packets in the
horizontal chain or/and at PE port. The backpressure logic is highly optimized and uses
only one register to hold the data in the case when backpressure is generated and the data
from the previous node has already entered the switch.

The priority is still at the N port, same as W → S HopliteBuf design, and W port has
higher priority than PE. As the NoC is simply backpressuring the switches or clients in
the horizontal ring, it doesn’t affect the flit order delivery and we still get in-order packet
delivery. We will evaluate and compare the latency and logic cost of this router with the
proposed NoC design in the evaluation section.

2
:1

BP

logic

3:1

W
E

N

S

BPinBPout

PEi

PEo

(a) FIFO on W → S Turn along with
Backpressure Unit

3
:1

3:1

W
E

N

SPE

(b) FIFOs on N → S Turns with N → E
connection for deflection

Figure 3.5: Buffered NoC designs with backpressuring and deflections

39

3.7 N → S Buffer Design with Deflections

The idea of this design is somewhat similar in concept to Pater Noster NoC [42] where in
both designs the packets are deflected/misrouted in case the FIFO becomes full. However,
the design and arbitration is entirely different from Pater Noster NoC. Unlike Pater Noster,
which deflects W packets to E, we deflect N packets to E same as HopliteRT [57] in the
event whenN → S buffer becomes full. Now, one might argue that we could have added the
buffer on the W → S turn and have deflected packets from W → E in case FIFO becomes
full, however, this would have created the livelock problem as we saw with Hoplite [31] if
the N port dominates the router with continuous packets.

The microarchitecture of this NoC is similar to HopliteRT with an added buffer on
N → S link as shown in Figure 3.5b. The arbitration scheme is also the same as HopliteRT
which prioritizes W packets over N and PE, and PE port has the least priority. The
routing policy forces N packets to go E in case FIFO becomes full and W is not accessing
E port. In the event of W going E and FIFO is full, N is simply moved into the FIFO as
W is not accessing the S port and hence FIFO can be read at the same cycle as it is being
loaded with a new N packet.

By deflecting N → E in the event of FIFO going full, it is noted that the deflected
packet comes back at the high-priority W port and is guaranteed to have progress towards
its destination. Hence, we can say that this design reduces to HopliteRT when FIFO
becomes full. We will look at the performance comparison of this NoC design with other
designs in the evaluation section.

40

Chapter 4

Network Calculus and Analysis

We now turn our attention to static analysis of the NoC traffic to bound buffer sizes and
worst-case injection (source queueing) and in-flight traversal latencies. This is important
to establish whether we can realize these buffers in distributed FPGA RAMs (SRLs and
MLABs). We first introduce our regulation and traffic model. We then develop a network
calculus approach to FIFO size and worst-case latency analysis for HopliteBuf. The pres-
ence of cycles in the torus topology make this analysis susceptible to instability, but we
are able to provide an analytic solution that employs a topology linearization alternative
(Figure 1.1b) to eliminate cycles and get accurate buffer bounds and latencies.

4.1 Client Traffic Regulation

Injection regulation is a known technique from network calculus to establish well-defined
behavior of network traffic at runtime for off-chip internet-scale systems. We adapt token
bucket regulation, explained in the background section 2.6.2 for use in an on-chip context
at the NoC clients to enforce traffic discipline on the NoC. This is done transparently
and the datapath design just needs to obey the standard NoC valid-ready interface (AXI-
stream). We can implement this regulation on the FPGA using two simple counters per
NoC client and require no buffers at the client-NoC interface. The regulator is programmed
with a rate ρ and burst b that reflects the communication requirements of the application.
At run-time, the regulator maintains a token counter. A packet can only be injected if
the NoC is ready (no other packet is blocking the client) and there is at least one token
in the counter; the token is consumed upon sending the packet. New tokens are generated

41

and added to the counter at a rate ρ, provided that the counter has not saturated to its
maximum value of b tokens.

4.2 Traffic Model

Definition 1 Traffic curve: We revisit the concept of Traffic curves to analyze the
traffic characteristics. We represent a traffic curve λb,ρ(t) to denote the maximum number
of packets sent on a NoC link in any interval of t cycles. By definition, a token bucket
regulator with parameters b, ρ provides a traffic curve:

λb,ρ(t) = min
(
t, b+ bρ · (t− 1)c

)
(4.1)

An extended version of Figure 2.11 is shown in Figure 4.1 that shows traffic curves
for two regulators with b = 2, ρ = 1/4 and b = 3, ρ = 1/4 (the arrival curve γ will be
introduced in Section 4.4).

0 2 4 6 8 10
0

2

4
λb=3,ρ=1/4

λb=2,ρ=1/4

γσ=7/4,ρ=1/4

Time (cycles)

P
ac

ke
ts

Figure 4.1: Example traffic curves for λb=3,ρ=1/4 and λb=2,ρ=1/4 along with an arrival curve
for γb=7/4,ρ=1/4.

In this analysis, we consider an (m × m) matrix of clients (x, y). Each client sends
packets as part of one or more flows; all packets within the same flow have the same
destination and use the same token bucket regulator. Hence, we use F = {f1, . . . , fi, . . .}
to denote the set of flows in the system, where for each flow f : (f.xs, f.ys) represents the
source client of the flow; (f.xd, f.yd) represents the destination client; and f.b, f.ρ represent
the regulator parameters. Note that two different flows fi and fj might share the same
source, or the same destination.

42

Flows entering from different ports into a switch might affect the traffic injection rate by
the client at that switch. To determine the affect, we need to analyze the combined traffic
rate of all the flows entering the switch. To calculate the combined traffic load we consider
two traffic flows, λb1,ρ1 and λb2,ρ2 entering a node from two different ports and directed to
the same output. Lemma 1 adapted from [57] defines an operator ⊕ that combines the
two traffic curves to compute a tight bound on the resulting aggregated traffic.

Lemma 1 Let λb1,ρ1 and λb2,ρ2 bound the traffic on input ports (West, North or PE) di-
rected to the same output port (East or South). Then the traffic on the output port is
bounded by the following curve:

(λb1,ρ1 ⊕ λb2,ρ2)(t) = min
(
t, b1 + b2 + bρ1 · (t− 1)c+ bρ2 · (t− 1)c

)
. (4.2)

in general terms,

⊕A(t) = min

t, b(A) +
∑
∀λb,ρ∈A

bρ · (t− 1)c

 (4.3)

Deriving Conflicting Flows ΓC : Following Lemma 1, on how to combine traffic
curves for multiple flows, the next step is to define the set of conflicting flows, that is,
those flows that block the injection of packets at the analyzed client. It comprises:

• all other flows injected by the same source client, since a client can inject only one
packet per cycle. For the example shown in Figure 4.2, Table 4.1 shows that there is
no conflicting flows for flow f1 since no other flows are originating from source (0,1).
However, f3 becomes a conflicting flow for flow f2 since f3 is originating from the same
source at f2.
• Second, we need to add to ΓC all the flows generated by other clients that traverse the

same mux used by f at its source router (f.xs, fxs). If f injects packets to the East
port, then it suffers conflicts from any flow W → S. If f injects packets to the South
port, then it suffers conflicts from flow W ′ → S or N → S. For the example shown
in Figure 4.2, Table 4.1 shows that f2 is injecting packets to East port and the East
traversing f1 is conflicting with it.

Example: We present a running example of a NoC with five flows f1...5 using the
W → S buffer design in Figure 4.2. Note that we use f ′i to denote a flow after it leaves a
buffer, as buffering can increase the burstiness of the flow (packets queued up in a buffer
can be flushed directly back-to-back). Relevant flow parameters are tabulated in Table 4.1.
We discuss how to apply the analysis to the W → S+N design in Section 4.6 as the flows

43

have been linearized and have no loops. For the W → S design, the analysis is harder due
to the loopback of the vertical ring. The instability created by loopbacks is a notoriously
challenging problem in network calculus [38] and results in lower provable bounds on link
utilization. We analyze the unique problem formulation presented by the HopliteBuf torus
network and propose a technique for deriving these bounds and improving link utilization
through linearization of the vertical ring.

0,2

0,1

0,0

1,2

1,1

1,0

2,2

2,1

2,0

f1

f1′

f2

f2′

f3

f4f5

f5′

Figure 4.2: Example W → S NoC design with five flows f1...5.

Table 4.1: Flow parameters for the example NoC. ΓC are the conflicting flows used in
Section 4.3; fW→S and fN→S are the W → S and N → S interfering flows used in

Section 4.4. ‘-’ denotes not applicable.

flow source dest ΓC fW→S fN→S

f1 (0,1) (2,1) none f2 f ′5
f2 (1,1) (2,0) f3, f1 f1 f ′5
f3 (1,1) (1,2) f2 - -
f4 (2,1) (2,2) f ′1, f

′
2, f

′
5 - -

f5 (1,2) (2,1) none none f ′2 + f4

Our analysis derives three sets of parameters:

• Injection latency Injection(f) for each flow f ∈ F ; this is the maximum time that the
source client (f.xs, f.ys) can be stalled waiting to send a packet of f .

44

• Maximum queuing delay Delay(f) for each turning flow f .
• Backlog for each router; this is the maximum number of packets that are queued waiting

to be transmitted (excluding the packet that might be transmitted in the current clock
cycle).

4.3 Injection Latency

Once the set of conflicting flows ΓC has been derived, we can now compute the maximum
delay suffered by a client (x, y) to inject a sequence of k packets of flow f , where k ≤ f.b.
Assume that each flow in ΓC is bounded by a traffic curve λb,ρ(t); we define b(ΓC) as the
sum of burstiness parameters b of traffic curves for all flows in ΓC , and ρ(ΓC) as the sum
of their rate parameters.

In any window of time of length t, by definition there must be at least t−⊕ΓC(t) free
clock cycles, that is, when client is free to inject upto clock cycles t−⊕ΓC(t) packets and
is not obstructed by conflicting flows.

To compute the upper bound on packet injection latency, we first see Lemma 2 and
3 from HopliteRT [57] which proves that a client is guaranteed to receive free cycles for
injection, if ρ(ΓC) < 1 and also that the number of free cycles is given by equation 4.4
shown below:

t−⊕ΓC(t) ≥ max
(
0, b
(
t− (T s + 1)

)
·
(
1− ρ(ΓC)

)
c+ 1

)
(4.4)

where,

T s =

⌈
b(ΓC)

1− ρ(ΓC)

⌉
. (4.5)

This implies that the flow might receive no free cycles for T s clock cycles, but is then guar-
anteed to receive slots at a rate of 1 − ρ(ΓC). Using Lemma 2 and 3 from [57], Theorem 1
adapted from the same work [57], proves that the first packet in the sequence waits for at most
d1/f.ρe − 1 + T s cycles; successive packets are sent either every 1/f.ρ or every 1/

(
1 − ρ(ΓC)

)
cycles, whichever is higher.

Theorem 1 Assume ρ(ΓC) < 1 and the client wishes to inject a sequence of k ≤ f.b packets for
flow f . Then the delay to inject all packets in the sequence is upper bounded by:

d1/f.ρe − 1 + T s +

⌈
(k − 1) ·max

(
1

f.ρ
,

1

1− ρ(ΓC)

)⌉
. (4.6)

45

For simplicity, we assume k = 1 with f.b = 1. Hence, from Equation 4.6, the maximum time
that a source client can be stalled waiting to send a packet is represented by:

Injection(f) = d1/f.ρe − 1 +

⌈
b(ΓC)

1− ρ(ΓC)

⌉
(4.7)

It remains to determine the traffic curve λb,ρ(t) for each interfering flow. For a flow fi that
has not yet traversed a buffer, the curve is simply λf.b,f.ρ(t). We show how to derive the traffic
curve for a flow f ′i that leaves a W → S buffer in the next section.

4.4 Vertical Ring Analysis W → S Design

We now analyze the behaviour of flows turning on a vertical ring through a W → S buffer.
We employ the theory of network calculus [38] for FIFO-arbitrated flows to derive deterministic
bounds on queuing delay and backlog. In particular, we show that the delay and backlog depend
on the burstiness and rate of flows entering the FIFO buffer, as well as the burstiness and rate
of flows routed N → S. To apply the theory, we need to introduce a new type of curve.

Definition 2 Leaky bucket arrival curve: A flow f is said to the bounded by a leaky bucket
arrival curve γσ,ρ(t) if the number of packets transmitted by the flow in any time interval t is
bounded by:

γσ,ρ(t) = σ + ρ · t.

In this case, f.σ and f.ρ are arrival curve parameters for the flow.

Luckily, we can convert between traffic curves of the form λb,ρ(t) and arrival curves γσ,ρ(t)
according to the following lemma (a formal proof is provided in Lemma 2):

• to convert λb,ρ(t) into γσ,ρ(t), we set σ = b− ρ;

• to convert γσ,ρ(t) into λb,ρ(t), we set b = dσ + ρ+ 1e.

Lemma 2 (1) A flow bounded by traffic curve λb,ρ(t) is also bounded by arrival curve γb−ρ,ρ(t).
(2) Similarly, a flow bounded by arrival curve γσ,ρ(t) on any NoC link is also bounded by traffic
curve λdσ+ρ+1e,ρ(t).

46

Proof : Part (1). Based on the curve definitions, we have:

λb,ρ(t) = min
(
t, b+ bρ · (t− 1)c

)
≤ b+ ρ · (t− 1) = b− ρ+ ρ · t = γb−ρ,ρ(t).

Part (2). Again by definition:

γσ,ρ(t) = σ + ρ · t = σ + ρ+ ρ · (t− 1) ≤ σ + ρ+ bρ · (t− 1)c+ 1

≤ dσ + ρ+ 1e+ bρ · (t− 1)c.

Since furthermore a NoC link cannot transmit more than one packet every clock cycle, the flow
is bounded by:

min(t, dσ + ρ+ 1e+ bρ · (t− 1)c) = λdσ+ρ+1e,ρ(t).

Example: Refer again to Figure 4.1. The traffic curve λb=2,ρ=1/4(t) is upper
bounded by γσ=7/4,ρ=1/4(t). Similarly, arrival curve γσ=7/4,ρ=1/4(t) is upper bounded by
λb=d7/4+1/4+1e,ρ=1/4(t) = λb=3,ρ=1/4(t); γσ=7/4,ρ=1/4(t) > λb=3,ρ=1/4(t) for t = 1, 2, but since
the NoC link cannot send more than one packet per cycle, λb=3,ρ=1/4(t) is still a valid traffic
bound. In essence, Lemma 2 allows us to “convert” a flow with a traffic curve λb,ρ(t) into an
arrival curve γσ,ρ(t) and vice-versa, albeit at some loss of precision.

Finally, there are situations where we need to aggregate (combine) flows transmitted on the
same link; for example, flows f ′2 and f4 entering router (2, 2) from N . Note that for two arrival
curves γσ′,ρ′(t) and γσ′′,ρ′′(t), it immediately holds that γσ′,ρ′(t) + γσ′′,ρ′′(t) = γσ′+σ′′,ρ′+ρ′′(t):
hence, the arrival curve for the aggregate of flows traversing the same link can be expressed by
summing the σ and ρ parameters of the arrival curves for the individual flows.

Let us take a look at the equations for Backlog and Delay calculation at a switch:

Figure 4.3 illustrates the flows required for analysis at one NoC router. Here, f and f ′

represent a flow under analysis before and after leaving the W → S buffer; fW→S represents
the aggregate of all other interfering flows traversing the buffer; fN→S represents the aggregate
of all interfering flows traversing the router in the N → S direction; and fPE→S represents the
aggregate of all flows injected by the client at that router directly S. As discussed in Section 3.5,
the S mux arbitration gives lowest priority to the client; hence, we do not have to consider
flow fPE→S when analyzing flow f , but it will interfere in the N → S direction on the next
router. Regarding the other flows, fN→S has higher priority than f , while fW→S and f are FIFO
scheduled as they traverse the same buffer.

Assuming that each flow is described by an arrival curve, we now introduce some propositions
and corollaries from [38] that will helps us derive the equations for Backlog and Delay:

47

W

Ni

So

f

f ′

fW→S

f ′W→S

fN→S

fPE→S

Figure 4.3: Flows through a W → S router.

Proposition 1 : (Proposition 1.10 in [38]) Consider a constant bit rate server, with rate C,
serving two flows, H and L, where H is of high-priority than L. If flow H is γσ,ρ-smooth, with
ρ < C, then the low priority flow, L, is guaranteed a rate-latency service curve with rate C − ρ
and latency σ

C−ρ .

Corollary 1 : (Corollary 6.3 [38]) Consider a node serving two flows, 1 and 2 in FIFO order.
Assume that flow i is constrained by one leaky bucket with rate ρi and burstiness σi. Assume
that the node guarantees to the aggregate of the two flows a rate latency service curve βR,T . If
ρ1 + ρ2 < R, then flow 1 has a service curve equal to the rate latency function with rate R − ρ2
and latency T + σ2

R and at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and
burstiness σ′1 with

σ′1 = σ1 + ρ1

(
T +

σ2
R

)
(4.8)

Since we know that flow fPE→S does not affect the backlog and delay at a particular switch,
we are going to ignore fPE→S from figure 4.3 in our calculations.

Following Proposition 1, we can now generate a service curve for the combined flows (f and
fW→S) on W port as shown in Figure 4.4. α is the arrival curve for the flows on Wand βR,T is
the service curve that is delayed due to the obstruction caused by high-priority N → S packets.

48

T

σ
x = σ + ρT

d = T + σ
R

slope ρ

α

βR,T

R

Time

Pkts

Figure 4.4: Arrival (α) and Service (βR,T) curve that shows the delay (d) and rate (R) for
the aggregate flow on W port when obstructed by the high-priority N → S flow. x

denotes the backlog (amount of buffering) on W → S.

x denotes the backlog, σ and ρ denotes the burstiness and rate of the aggregate (f + fW→S)
flows on the W port, respectively. Backlog and Delay calculation follow Theorems 1.4 and 1.5
in [38]. We can now calculate Backlog as:

From Proposition 1,

T =
fN→S .σ

1− fN→S .ρ
, (4.9)

R = 1− fN→S .ρ, (4.10)

and backlog is given as x = σ + ρT , here, σ and ρ is the total burstiness and rate of flow f
and fW→S .

hence,

Backlog = f.σ + fW→S .σ + (f.ρ+ fW→S .ρ) · fN→S .σ

1− fN→S .ρ
(4.11)

Since buffering does not increase the rate of flows (Corollary 1), Equation 4.12 shows that rate
of flow before and after buffering is the same. And, we can compute the burstiness of the flow
from the buffer output, f ′.σ, using Equation 4.8 from Corollary 1:

f ′.ρ = f.ρ (4.12)

f ′.σ = f.σ + f.ρ · fN→S .σ + fW→S .σ

1− fN→S .ρ
(4.13)

49

under the condition that f.ρ+ fN→S .ρ+ fW→S .ρ < 1 (that is, the link is not saturated).

To compute the delay for flow f , Delay(f) we need to separate flow f from W → S flow and
hence we can make another service curve βR′,T ′ using Proposition 1.

T ′

σ
d = T ′ + f.σ

R′

βR′,T ′

R′

Time

Pkts

Figure 4.5: Service curve (βR′,T ′) that extracts flow f from the aggregate flow (f + fW→S)
βR,T shown in Figure 4.4. d is the queueing delay for turning flow, f .

Again from Proposition 1,

T ′ =
fN→S .σ + fW→S .σ

1− fN→S .ρ
(4.14)

R′ = 1− fN→Sρ− fW→Sρ (4.15)

Substituting values of T ′ and R′ in the delay expression, d, we get:

Delay(f) =
f.σ

1− fN→S .ρ− fW→S .ρ
+
fN→S .σ + fW→S .σ

1− fN→S .ρ
(4.16)

under the condition that f.ρ+ fN→S .ρ+ fW→S .ρ < 1 (that is, the link is not saturated).

Based on Equation 4.12, buffering does not increase the rate of flows. Furthermore, based on
Lemma 2, for any flow fi that has not been buffered, including flow f , we have fi.σ = fi.b− fi.ρ.
Hence, the only unknowns in Equation 4.13 are the values f ′i .σ for flows that have crossed a
buffer. To analyze the system, we thus apply the so-called Time Stopping Method in network
calculus [38]: we treat the values f ′i .σ as variables, and write a system of linear equations by
applying Equation 4.13 to each flow that enters a given vertical ring. If the values of f ′i .σ obtained
by solving the system of equations are valid (that is, bounded and positive), then γf ′i .σ,f ′i .ρ(t) upper
bounds flow f ′i . Otherwise, the network cannot be analyzed.

50

Example: Let us consider flows at switch (2,2) from Figure 4.2. f1.ρ+ f2.ρ+ f5.ρ < 1. For
flow f1, fW−>S comprises flow f2, while fN−>S comprises flow f ′5. Since for any flow fi.σ = f ′i .σ
and fi.σ = fi.b− fi.ρ, we obtain:

f ′1.σ = f1.b− f1.ρ+ f1.ρ · (f ′5.σ + f2.b− f2.ρ)/(1− f5.ρ).

Similarly, applying Equation 4.13 to flows f2, f5 under the added assumption f2.ρ+f4.ρ+f5.ρ < 1
yields:

f ′2.σ = f2.b− f2.ρ+ f2.ρ · (f ′5.σ + f1.b− f1.ρ)/(1− f5.ρ),

f ′5.σ = f5.b− f5.ρ+ f5.ρ · (f ′2.σ + f4.b− f4.ρ)/(1− f2.ρ− f4.ρ).

Hence, we solve a linear system of three equations to determine the value of variables
f ′1.σ, f

′
2.σ, f

′
5.σ, which can then be used to determine the backlog at each router and delay for each

flow according to Equations 4.11, 4.16. Furthermore, by applying Lemma 2, we derive equivalent
traffic curves λdf ′i .σ+f ′i .ρ+1e,f ′i .ρ(t) for f ′1, f

′
2 and f ′5, which we use to bound the injection latency

of f4. As an example, if we set b = 1, ρ = 1/4 for all regulators, we obtain f ′1.σ = f ′2.σ = 33/20,
and f ′5.σ = 39/20, which result in backlogs of 14/5 at (2, 1) and 39/20 at (2, 2). Hence, we need
a minimum W → S buffer size of b14/5c+ 1 = 3 at (2, 1) and b39/20c+ 1 = 2 at (2, 2); note we
add 1 to the buffer size to account for a packet being read from the buffer and transmitted in the
current clock cycle.

Despite this, it is known [38, 8] that the circular dependencies introduced by a ring design can
reduce the sustainable (provable) per-link utilization of the network by up to 50%. We explain
cyclic dependencies in W → S buffer design of HopliteBuf in the next section.

4.5 Cyclic Dependencies in HopliteBuf W → S design

Figure 4.6 shows an example flow in the rightmost column of torus shown in Figure 4.2 where
each switch wants to communicate with the switch above. We have three flows: f1 from (2,0) →
(2,2), f2 from (2,1) → (2,0), and f3 from (2,2) → (2,1). Flow f ′i represents the output flow from
the buffer at each switch.

We can recreate the set of linear equations for these flows to get the bounds on buffer sizes in
the same way as we did in the example above. Using Equation 4.13, we can compute the output
burstiness for each of these flows (under the same assumption that the aggregate rate of flows at
a switch doesn’t exceed 100%) as follows:

51

2,2

2,1

2,0

f2

f2′

f1

f1′

f3

f3′

Figure 4.6: Cyclic dependency flow example in W → S HopliteBuf: rightmost column.

f ′1.σ = f1.σ + f1.ρ ·
f ′2.σ + f ′3.σ

1− f2.ρ− f3.ρ
(4.17)

f ′2.σ = f2.σ + f2.ρ ·
f ′1.σ + f ′3.σ

1− f1.ρ− f3.ρ
(4.18)

f ′3.σ = f3.σ + f3.ρ ·
f ′1.σ + f ′2.σ

1− f1.ρ− f2.ρ
(4.19)

(4.20)

Let us assume, f1.σ = f2.σ = f3.σ = σ and f1.ρ = f2.ρ = f3.ρ = ρ. We can re-write the
above equations as,

52

f ′1.σ = σ + ρ · f
′
2.σ + f ′3.σ

1− 2ρ
(4.21)

f ′2.σ = σ + ρ · f
′
1.σ + f ′3.σ

1− 2ρ
(4.22)

f ′3.σ = σ + ρ · f
′
1.σ + f ′2.σ

1− 2ρ
(4.23)

because, ρ ≤ 1
3 (aggregare sum of rate should be < 1) we can use Corollary 6.2 [38], and the

above equations can be represented as,

S ≤ A · S +K (4.24)

where, A is a non-negative matrix and K is non-negative vector represented as,

S =

f ′1.σf ′2.σ
f ′3.σ

 , A =

 0 ρ
1−2ρ

ρ
1−2ρ

ρ
1−2ρ 0 ρ

1−2ρ
ρ

1−2ρ
ρ

1−2ρ 0

 ,K =

σσ
σ

Assuming that the spectral radius of A is less than 1. In that case the power series I + A+

A2 + A3 + ... converges and is equal to (I − A)−1, where I is a identity matrix of same size
as A. Since A is a non negative matrix, (I − A)−1 is also non-negative; thus, we can multiply
equation 4.24 to the left by (I −A)−1 and obtain:

S ≤ (I −A)−1 ·K (4.25)

Defining η = ρ
1−2ρ and using some linear algebra we get

(I −A)−1 =

1−η2

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
1−η2

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
1−η2

1−3η2−2η3

If 0 ≤ η < 1

2 then (I −A)−1 is positive. Hence,

0 ≤ ρ

1− 2ρ
<

1

2

or,0 ≤ ρ < 0.25 (4.26)

53

It is evident from Equation 4.26 that the maximum per flow injection rate has to be less than
25%, making a combined injection rate supported to be less than 75% while we should be able
to support 100%.

Example: We analysed the same example flow design with our analysis tool to see what is the
maximum rate supported before our analysis becomes unstable:

The file to generate the flows looks like this:

// filename: flows_ws.dat

// command: python analyze.py -N 3 -f flows_ws.dat

sX , sY , dX , dY , B, R

1, 0, 2, 2, 1, 0.24000

1, 1, 2, 0, 1, 0.24000

1, 2, 2, 1, 1, 0.24000

where, sX, sY, dX, dY are the X and Y coordinates for source and destination. B, R are
the burst and rate of the individual flows. What we observed with our analysis tool is that the
design becomes unstable after 24% injection rate and burstiness of 1. This clearly states that due
to cyclic dependencies, we cannot support 33% per flow injection from each of these nodes which
is clearly possible. This is a weakness of analysis and not the architecture itself.

Now we will look at the linearized HopliteBuf W → S+N Design which breaks these dependencies
and helps us getting concrete bounds on the buffer sizes.

4.6 Linearized Analysis: W → S +N Design

The analysis for the W → S +N design proceeds in a similar manner, but is much simpler as no
vertical loopback exists. The same injection latency computation is performed, albeit the set ΓC

can be different compared to the W → S design since a flow that was conflicting on the S mux
could now turn N instead. Similarly, the same conditions in Equations 4.11, 4.12, 4.13, 4.16 can
be applied after decoupling each router in two parts: a south component containing the W → S
buffer and S mux, and a north component containing the W → N buffer and N mux. Since
packets are transmitted in different directions for the two components, when writing the equation
for the north components we use flows fS→N and fW→N in place of fN→S and fW→S .

Example: Figure 4.7 shows the resulting decomposition for the rightmost column of the
flow set depicted in Figure 4.2. Note that the topmost router (2, 0) only implements the south
component, as no flow can be injected north at (2, 0). The sets of conflicting flows ΓCf and
interfering flows fN→S , fW→S , fS→N , fW→N are provided in Table 4.2. Compared to the W → S
design, the number of conflicting and interfering flows is reduced.

54

Table 4.2: Conflicting and interfering flows for the W → S +N design. ‘-’ denotes not
applicable, as the flow is not buffered in that direction.

flow ΓC fW→S fN→S fW→N fS→N

f1 none none f ′5 - -
f2 f1, f3 - - none f ′5
f4 f ′1, f

′
5 - - - -

f5 none - - none none

2,2

2,1

2,0

f1

f1′

f2

f2′

f4
f5

f5′

Figure 4.7: W → S +N design example: rightmost column.

When compared to the W → S design, we do not need to solve a system of equations to
compute the f ′i .σ values: since the W → S + N design disconnects vertical rings, we can apply
Equation 4.13 to flows with destinations on a column x by ordering the flows based on the router
at which they turn, in the order of packet propagation: from (x,m− 1) to (x, 1) for flows turning
N , and then from (x, 0) back to (x,m − 1) for flows turning S. As long as no link is saturated,
it is guaranteed that the analysis will compute bounded delay and backlog. Let us see this with
the help of the same example as W → S design reproduced with W → S + N design (shown in
Figure 4.8)

Using Equation 4.13, we can compute the output burstiness for each of these flows as follows:

55

2,2

2,1

2,0

f2

f2′f1

f1′

f3

f3′

Figure 4.8: Solving cyclic dependency with linearization in W → S +N design example:
rightmost column.

f ′1.σ = f1.σ + f1.ρ ·
f ′2.σ + f ′3.σ

1− f2.ρ− f3.ρ
(4.27)

f ′2.σ = f2.σ + f2.ρ ·
f ′3.σ

1− f3.ρ
(4.28)

f ′3.σ = f3.σ (4.29)

By assuming, f1.σ = f2.σ = f3.σ = σ and f1.ρ = f2.ρ = f3.ρ = ρ and using Corollary 6.2 [38],
the above set of equations can be represented as,

S ≤ A · S +K (4.30)

where, A is non-negative matrix and K is non-negative vector represented as,

S =

f ′1.σf ′2.σ
f ′3.σ

 , A =

0 ρ
1−2ρ

ρ
1−2ρ

0 0 ρ
1−ρ

0 0 0

 ,K =

σσ
σ

56

Again, since A is a non negative matrix, (I−A)−1 is also non-negative; thus, we can multiply
equation 4.30 to the left by (I −A)−1 and obtain:

S ≤ (I −A)−1 ·K (4.31)

Defining η = ρ
1−2ρ and using some linear algebra we get

(I −A)−1 =

1 η η2 + η
0 1 η
0 0 1

If η ≥ 0 then (I −A)−1 is positive. Hence,

ρ

1− 2ρ
> 0

or,0 ≤ ρ < 0.5 (4.32)

It is evident from equation 4.32 that as long as no link is saturated, this guarantees that the
analysis computes bounded delay and backlog for W → S + N design. For this case we get a
bound of FIFO sizes if the per flow rate of injection does not exceed 33%.

Example: We analysed the same example again with our analysis tool to see what is the maxi-
mum rate supported with the dual buffer design before our analysis becomes unstable:

The file to generate the flows looks the same as before:

// filename: flows_wsn.dat

// command: python analyze_dualbuffer.py -N 3 -f flows_wsn.dat

sX , sY , dX , dY , B, R

1, 0, 2, 2, 1, 0.33000

1, 1, 2, 0, 1, 0.33000

1, 2, 2, 1, 1, 0.33000

where, sX, sY, dX, dY are the X and Y coordinates for source and destination. B, R are
the burst and rate of the individual flows. This time we observed that we support a maximum
injection rate of 33% before our analysis becomes unstable. Hence, not only is the dual buffer
design eliminates cyclic dependencies, it also supports higher injection rate and enhances the
static analysis as well.

The analysis tool is open-source: https://git.uwaterloo.ca/watcag-public/hoplitebuf-bounds

57

Chapter 5

Evaluation

We present the performance measurement results for our FPGA optimized NoC and associated
results from static analysis. We are interested in understanding the worst case NoC routing
latency properties, its breakdown, buffer depth bounds, as well as routing coverage. We also want
to confirm the properties of static analysis bounds and understand their impact of distributed
FPGA RAM mapping costs. We show results for 5×5 NoCs to retain narrative consistency, but
can generate other RTL networks and bounds for other sizes as well. We study four synthetic
workloads which are commonly used in the real-time systems community:

• We use ALL-TO-ONE pattern that gets all NoC clients to target a same NoC address (des-
tination PE (0,0)): a shared resource like an external DRAM, PCIe, or Network port.

• We use ALL-TO-ROW pattern that gets all NoC clients to target a same row in the torus
(destination row 0).

• We use ALL-TO-COLUMN pattern that gets all NoC clients to target a same column in the
torus (destination column 0).

• We also use synthetic uniform RANDOM traffic pattern that is expressed a set of flows, i.e.
flowsets. We evaluate the NoCs using 100 separately-generated synthetic flowsets. Each
flowset is a collection of m2 distinct streaming flows. Each flow captures data communica-
tion between a source-destination pair of clients. All flows have the same burstiness and
rate which is increased until the links saturate.

58

5.1 RTL Simulation Results

We first examine the results (feasibility, latency, FIFO sizing) of cycle-accurate RTL simulations
of the different NoCs.

5.1.1 Flowset Feasibility

For our designs, we cap the maximum FIFO occupancy at 128 to enable low-cost realizations.
As a result some combination of flowset communication pattern and injection rate ρ will likely
be infeasible. If any FIFO ever goes full, we classify that configuration as not feasible. We want
to know what fraction of our 100 randomly-generated flowsets were able to route without any of
the NoC FIFOs every going full at a given rate.

0

25

50

75

100

0 5 10 15 20 25
Injection Rate (%)

F
ea

si
bi

le
 (

%
)

RT W → S N → Sdef W → Sbp W → S + N

Figure 5.1: Feasible flowsets for RANDOM traffic with b=1 at 5×5 system size with
128-deep FIFOs in the NoC routers.

In Figure 5.1, we plot the number of feasible flowsets for RANDOM traffic pattern on the different
NoCs. For HopliteRT, there are no FIFOs, but we know that flowsets are not feasible when the
interfering flows on any link exceed the link bandwidth, i.e. you cannot use more than 100% of
any link capacity. For W → S buffer design with Backpressuring (W → Sbp) and N → S buffer
design with Deflections (N → Sdef), FIFO occupancy can never exceed the programmed depth
(128 in this case) and hence a flow in these designs become infeasible when the link bandwidth
exceeds 100%.

59

The deflection pattern for HopliteRT forces traffic to travel through longer paths through
the NoC thereby interfering with a lot of other traffic flows. Hence, the feasibility trends for
HopliteRT fall drastically above 10% injection rates. The HopliteBuf NoCs (W→ S, W→ S+N)
are more resilient and support a larger fraction of the flowsets for larger injection rates. At
the peak supported injection rate of 20%, HopliteBuf supports up to 50–60% of the flowsets,
while HopliteRT only routes 1–2% of the flowsets. As predicted from the linearization analysis
in Section 4.6, the W → S +N topology allows the system to support more traffic and a slightly
greater fraction of the synthetic combinations are feasible at even 20% injection rates. The
N → Sdef design is identical in performance to HopliteBuf W → S and it performs much better
than HopliteRT even though it reduces to HopliteRT once the buffer is full. The backpressure
design, W → Sbp, performs identical to HopliteBuf W → S design, however, at 20% we see
a slightly better performance with this design. But the dual buffer design W → S + N still
outperforms all the other designs. At 25%, we observe that no other design is feasible except for
W → Sbp and W → S + N , where W → S + N is still outperforming the backpressure design.
Higher feasibility translates into more FPGA developer freedom in being able to support their
communication requirements.

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

injection: 12.5 injection: 16.67 injection: 20 injection: 25

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
0

25

50

75

100

PEs

F
ea

si
bi

le
 (

%
)

● RT W−>S N−>Sdef W−>Sbkp W−>S+N

Figure 5.2: Feasible flowsets for RANDOM traffic with b=1, FIFO depth=128 with different
system sizes and injection rates.

In Figure 5.2, we plot the number of feasible flowsets for the RANDOM traffic pattern on the
different system-sizes. With increasing injection rates, HopliteRT becomes less feasible for all
system sizes. For smaller systems, HopliteRT performs identical to buffered NoC designs, however,
for large systems HopliteRT’s feasibility reduces drastically at higher injection rates.

60

5.1.2 Worst-Case Latency Trends

●

●

●

70

90

110

1.0 1.5 2.0 2.5 3.0
Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

ALL−TO−ONE

●●

●

●

●

25

50

75

100

2.5 5.0 7.5 10.0
Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

ALL−TO−ROW

●

●

●

●

40

60

80

100

120

1 2 3 4 5
Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

ALL−TO−COLUMN

● RT N−>S W−>Sbkp W−>S W−>S+N

Figure 5.3: Worst-case latency trends for ALL-TO-ONE, ALL-TO-ROW, and ALL-TO-COLUMN

traffic patterns on NoCs with 5×5 system sizes and b=1. HopliteBuf designs offers no
improvements for these traffic patterns.

We expect the use of buffering will help reduce worst-case routing latencies as we eliminate
deflections. However, the improvements will be balanced by the penalty of waiting in the FIFOs.
In Figure 5.3 we show this effect for three traffic patterns with burst b=1 and in Figure 5.4 we
show the same effect for 100 RANDOM flowsets. The common odd trend here is the decrease in
injection latency as a function of injection rate. This is not an illusion, and is a result of the fact
that the client is regulated and may miss the token cycle which scales with the injection rate ρ
of the regulator. At large enough injection rates we eventually start to see an increase due to
network congestion but this is marginal. For the ALL-TO-ONE traffic pattern, the waiting time in
the FIFOs lines up with the penalty of deflections resulting in no observable difference between the
different designs. For ALL-TO-ROW traffic pattern, there is no visible difference among the buffered
NoC designs except for N → Sdef which has slightly higher worst-case latency than other cases.
Another thing to note is that HopliteRT saturates at 7.5% injection rate while buffered NoCs
are saturating at a higher injection rate of 10%. For ALL-TO-COLUMN, all the NoC designs are
saturating at around 5% and they all perform almost identically except for HopliteRT which
shows substantially higher worst-case latency than other designs. The saturation rate for these
designs are in agreement with the system size where all the other nodes send packets randomly
to each other except to itself. For RANDOM traffic, we show a distribution of measured cycle
counts across the 100 flowsets. There is a clear benefit to using buffers to avoid deflections as
bufferless HopliteRT shows a wider spread of achieved worst-case latencies. The buffer waiting

61

25

50

75

100

125

0 5 10 15 20 25
Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

RT N → Sdef W → Sbp W → S W → S + N

Figure 5.4: Worst-case latency trends for RANDOM traffic pattern on NoCs with 5×5
system sizes and b=1. HopliteBuf performs better than other designs for this workload.

time is lower than the penalty of deflections resulting in tighter latency spreads for HopliteBuf
NoCs. Furthermore, W → S designs suffer a buffer wait only at a single turn, it exhibits slightly
better or identical performance to the two-FIFO W → S + N design. N → Sdef design suffer
a buffer wait at each switch when travelling in vertical direction and hence it performs worse
than HopliteBuf but much better than HopliteRT. The backpressure design W → Sbp, however,
performs similar to HopliteBuf W → S variant and in some case even better than the dual-buffer
W → S +N design. Overall HopliteBuf is 1.2–2× better than HopliteRT in terms of worse-case
routing latencies. We also see that HopliteRT is poorly unable to support the highest injection
rate of 20% that is well-supported by the HopliteBuf NoCs. Thus, the presence of buffers not only
improves (reduces) worst-case latencies, but also supports higher data rates. This is expected as
HopliteRT, N → Sdef , and W → Sbp steals unnecessary bandwidth in the X-ring due to deflection
or backpressuring.

5.1.3 Worst-Case Latency Breakdown

In Figure 5.5 we show a breakdown of worst-case latency into its source-queueing latency (waiting
time at PEs) and in-flight latency (actual routing time in the NoC). The improvements due to
elimination of deflections does show up in better in-flight routing latencies for HopliteBuf designs,
but larger wins are visible during source queueing. This is because the NoC is blocking the PE

62

Source Queueing In−Flight

0 10 20 0 10 20

0

25

50

75

100

Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

RT N → Sdef W → Sbp W → S W → S + N

Figure 5.5: Breakdown of Source-Queueing and In-Flight NoC latencies for RANDOM
workload with b=1, FIFO depth=128 at 5×5 system size. Both metrics improved due to

buffering.

injection ports less often by keeping packets in the buffers instead of wasting injection slots due to
deflection. For HopliteRT routing scheme, the N → E deflection potentially sends packets along
the scenic route around each X-ring (at most once) generating traffic conflicts where none would
exist for conventional DOR routing. N → Sdef design has better source-queueing latency than
HopliteRT from the fact that it absorbs most of the conflicting traffic in the buffer and resort to
deflection when the buffer is full.

We expect N → Sdef at most as worse as HopliteRT when the FIFO size is 0. As the FIFO
size goes down, N → Sdef design shows higher inflight latencies as number of deflections increase
with small FIFO size. We observe this behaviour in inflight latency vs injection rate plot in
Figure 5.6b for burst=1 and FIFO depth of 32.

W → Sbp design has comparable in-flight latencies but we expect the source-queuing latency
for this design to go high in case of small buffer sizes as PE will be backpressured and packets will
wait longer in the client if the buffer is full. We observe this We observe this behaviour in source
queueing vs injection rate plot in Figure 5.6a for burst=1 and FIFO depth of 32. HopliteBuf
chooses FIFO waiting on conflicts thereby reducing contention in other X-rings and a drop in

63

10

15

20

10 15 20 25

Injection Rate (%)

In
fli

gh
t L

at
en

cy

N → Sdef

W → Sbp

W → S
W → S + N

(a) Inflight latency vs Injection

6

8

10

10 15 20 25

Injection Rate (%)

S
R

C
Q

 L
at

en
cy

N → Sdef

W → Sbp

W → S
W → S + N

(b) Source queuing vs Injection

Figure 5.6: Source-Queueing and In-Flight NoC latencies for RANDOM workload with b=1,
FIFO depth=32 at 5×5 system size.

source queueing delays. As we see, the NoC traversal time is mostly unaffected even in presence
of FIFOs.

5.1.4 Latency Distribution

In Figure 5.7, we show the histogram of worst-case packet latencies for the different NoCs for
RANDOM traffic with burst b=1, and injection rate ρ=7.5% at 5×5 system size. We note that the
HopliteRT NoC has a much wider spread than the FIFO designs. This is because deflections
create unpredictable trips through the NoC X-rings. In contrast, a victimized packet just sits
in a buffer and the waiting time in the buffer is much lower than round-trips around the ring.
N → Sdef design is much better in terms of worst-case latency than HopliteRT given the size of
FIFO that absorbs most of the conflicting packets and avoid deflections. We see that W → Sbp
design performs better than Hoplite W → S design as more cases are feasible with backpressuring
that it was with just buffers. As expected, all the other buffered design has a marginally wider
distribution than the W → S +N design as the packets have an extra choice during the turn.

64

25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40

0

20

40

60

Worst−Case Packet Latency

C
ou

nt

RT N → Sdef W → Sbp W → S W → S + N

Figure 5.7: Distribution of worst-case packet latencies for RANDOM workload with b=1,
ρ=7.5% at 5×5 system size. HopliteRT has a wider spread due to the unpredictable

nature of the deflections. HopliteBuf has narrower spreads.

5.1.5 FIFO Sizing

Ultimately, the NoC with improved worst-case latencies is useful to us only if the buffer sizes
are reasonable to realize on modern FPGAs. For a single LUT we can get 16–32 storage bits
for our FIFOs making it possible to build LUTs using these low-cost components. We cap our
experiments at 128-deep FIFO sizes to keep NoC LUT cost at 4 LUTs/bit.

For ALL-TO-ONE traffic pattern shown in Figure 5.8, we will observe high FIFO usage in the
column containing the destination client. As burst length increases, the FIFO usage also scales
linearly with very low utilization with a burst length of 1–2. A similar FIFO usage is observed with
ALL-TO-ROW (shown in Figure 5.9) and ALL-TO-COLUMN (shown in Figure 5.10) traffic patterns as
they target a specific row and column in the torus as destination.

RANDOM traffic shown in Figure 5.11 exhibits slightly lower FIFO usage and demonstrates a
spread of occupancies depending on connectivity pattern. While no experiment occupies more
than 50 entries in the FIFO, on average, we only need ≈20–25 entries. We note an odd reduction
in FIFO occupancy above 10% injection rate. This is because an increasing subset of flowsets are
not feasible with 128-deep FIFO limit i.e. FIFOs start going full.

65

●●● ●●● ●●● ●●●

N−>S(def) W−>S(bp) W−>S W−>S+N

1 2 3 1 2 3 1 2 3 1 2 3

20

40

60

Injection Rate %

M
ax

im
um

 F
IF

O
 U

se

Burst ● 1 2 4 8

Figure 5.8: Maximum FIFO usage trends from RTL simulations of NoCs with 5×5
system sizes for ALL-TO-ONE pattern

●
●●●●● ●●●●●● ●●●●●● ●●●●●●

N−>S(def) W−>S(bp) W−>S W−>S+N

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
0

10

20

30

40

50

Injection Rate %

M
ax

im
um

 F
IF

O
 U

se

Burst ● 1 2 4 8

Figure 5.9: Maximum FIFO usage trends from RTL simulations of NoCs with 5×5
system sizes for ALL-TO-ROW pattern

66

●●●● ●●●● ●●●● ●●●●

N−>S(def) W−>S(bp) W−>S W−>S+N

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

25

50

75

100

Injection Rate %

M
ax

im
um

 F
IF

O
 U

se

Burst ● 1 2 4 8

Figure 5.10: Maximum FIFO usage trends from RTL simulations of NoCs with 5×5
system sizes for ALL-TO-COLUMN pattern

●●● ● ● ● ● ● ●
●●● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●●● ● ● ● ● ● ●

N−>S(def) W−>S(bp) W−>S W−>S+N

0 5 10 15 200 5 10 15 200 5 10 15 200 5 10 15 20
0

10

20

30

40

50

Injection Rate %

M
ax

im
um

 F
IF

O
 U

se

Burst ● 1 2 4 8

Figure 5.11: Maximum FIFO usage trends from RTL simulations of NoCs with 5×5
system sizes for RANDOM pattern

67

0

100

200

300

400

500

Hoplite RT N → Sdef W → S W → Sbp W → S + N

Router Type

A
re

a
(X

ili
nx

 6
−

LU
T

s)

Logic
Memory

(a) Xilinx Mapping

0

200

400

Hoplite RT N → Sdef W → S W → Sbp W → S + N

Router Type

A
re

a
(I

nt
el

 A
LU

T
s)

Logic
Memory

(b) Intel Mapping

Figure 5.12: LUT utilization for logic and memory across various Hoplite routers on
Xilinx and Intel FPGAs with Payload=64b and FIFO=64 deep.

5.2 FPGA Implementation Results

Now we compare the FPGA implementation costs of HopliteBuf to other FPGA-overlay NoCs
presented in this thesis. We quantify the LUT utilization of the various Hoplite routers in
Figure 5.12. We present resource costs on Xilinx and Intel FPGAs.

For HopliteBuf W → S + N design, we are essentially dividing the traffic into two buffers
going up and down and hence, the total distributed RAM capacity stays same as it just split into
two SRL32 or MLAB instantiations instead of a longer single distributed RAM block. Here, with
limited opportunity for input sharing, the resulting design is larger in LUT cost, but as we have
seen already, this allows efficient use of the NoC links.

As shown in the figure, the design size scales linearly with the product of Datawidth of the
NoC × Depth of the FIFO on both vendor parts. With 64-deep FIFOs mapped to distributed
RAMs, the storage fraction increases design size by ≈ 2 ×.

The logic cost varies with different router types. The N → Sdef and HopliteBuf W → S are
nearly identical in logic costs as they use same size multiplexers while N → Sdef uses a slightly
more logic for implementing deflections. For the dual-FIFO HopliteBuf W → S + N design,
the extra multiplexing needed for upward route also increases cost of the switching logic. We
observe the worst logic usage for W → Sbp backpressure design, where the classic flow-control
logic implementation uses almost 2 × more resources than other single-buffer designs. Both
HopliteBuf achieves better performance than W → Sbp while maintaining low implementation

68

costs.

● ● ● ● ● ● ● ● ●

0

5000

10000

15000

0 5 10 15 20
Injection Rate (%)

A
re

a
(X

ili
nx

 −
 L

U
T

s)

● Hoplite
HopRT

N−>Sdef
W−>S

W−>Sbkp
W−>S+N

Figure 5.13: Maximum Area usage at different injection rates for RANDOM pattern with
5× 5 system size. Each node in the system uses carefully picked FIFO sizes through

static analysis in case of W → S and W → S +N HopliteBuf designs.

In Figure 5.13, we show the area usage to implement a complete 5× 5 system with different
NoC designs. The experiment is done for 100 synthetic RANDOM flows where the prototype designs,
W → Sbp and N → Sdef , uses a fixed FIFO size of 128 whereas HopliteBuf (W → S, W → S+N)
implements carefully analyzed FIFO sizes by our analysis tool. As shown in figure, HopliteBuf
designs are ≈ 2− 3× worse than Hoplite(RT) for all injection rates whereas N → Sdef design is
around 5× worse and W → Sbp design is ≈ 7 times worse than Hoplite(RT). This clearly shows
the benefit of carefully analyzing the FIFO sizes for a particular application. Hence, we say that
not only are the HopliteBuf designs outperforms other NoCs in terms of latency and throughput
the overall hardware requirement is much better than the backpressure and deflection (fixed FIFO
size) designs as well.

69

5.3 Analysis Results

We now examine the quality of our static analysis predictions and compare them to simulated
data. The Static analysis was only done for HopliteRT and the two variants of HopliteBuf:
W → S and W → S + N . And hence, we only compare the simulation and analysis results for
these three router designs.

5.3.1 Feasible Flowsets

Our analysis tools take the communication pattern of a flowset, its injection rate ρ and burst
b to determine if it is can route successfully without making a FIFO ever go full. Analysis is
more conservative, and you will note that Figure 5.14 is different from the simulation data in
Figure 5.1. Our simulation results are for 1024 packets per client, and there may be longer
simulation conditions that ultimately go infeasible. Hence, we trust our analysis data as it is
backed by the formal proofs explained in Section 4. Here, we see HopliteRT dropping dramatically
above 8% while HopliteBuf clones closely track simulation results. At 11% rates, we see analysis
predict feasibility of only 2–3% of HopliteRT and ≈90% for HopliteBuf. Back in Figure 5.1,
simulation results showed 50% of HopliteRT were feasible and ≈90% for HopliteBuf. This suggests
tighter analysis bounds for HopliteBuf resulting in better provable utilization of resources.

5.3.2 Worst-Case Latency: Analysis vs. Simulation

In Figure 5.15, we show the predicted worst-case latency count as a result of our static analysis
vs. actual observed latencies through simulation. As expected, the predicted bounds are worse
with analysis due to pessimistic assumptions regarding interference of traffic flows. HopliteRT
predictions are as much as 1.5× worse than the W → S + N predictions due to pessimism
inherent in the HopliteRT routing algorithm. It is interesting to see that a few flowsets mapped
to HopliteRT at 16–20% injection rates actually simulate fine, but are discarded by analysis as
infeasible, yet again due to analytic pessimism. Furthermore, we see that the W → S + N
predictions are significantly tighter than the W → S predictions. This is primarily due to the
challenges associated with analyzing loopy flows in the vertical ring. When comparing the wider
W → S spread to HopliteRT, it is important to note that a significant chunk of flowsets were
infeasible when mapped to HopliteRT (See Figure 5.14). Thus, the larger latencies are due to
W → S being able to feasibly route flowsets and doing so with high latencies than not being able
to do so at all. The W → S + N analysis is significantly better than W → S and has a larger
feasibility to compound the matter.

70

RT W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

25

50

75

100

Injection Rate (%)

F
ea

si
bl

e
(%

)

Analysis Simulation

Figure 5.14: Feasible flowsets predicted by static analysis. Analysis is more conservative
than simulation for HopliteRT, but much tighter for HopliteBuf.

RT W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

100

200

300

Injection Rate (%)

W
or

st
−

ca
se

 L
at

en
cy

Analysis Simulation

Figure 5.15: Worst-Case Latency Prediction-vs-Simulation, RANDOM traffic, b=1, 5×5
system size, 128-deep FIFOs.

71

●●● ●
●

●
●

●

●

●●● ● ● ●
● ●

●

W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20
0

25

50

75

100

125

Injection Rate %

M
ax

im
um

 F
IF

O
 U

se
● Analysis Simulation

Figure 5.16: Worst-Case FIFO size Prediction-vs-Simulation for RANDOM traffic at 5×5
system size with 128-deep FIFOs and burstiness of 8.

5.3.3 FIFO Sizing: Analysis vs. Simulation

In Figure 5.16, we compare the result of static analysis with simulated data for FIFO usage for a
5×5 NoC with RANDOM traffic and a worst-case burstiness of 8. For the W → S topology, we cap
the maximum FIFO size to 128 to stay within reasonable 4 LUTs/bit FIFO cost. In this case,
the FIFOs go full for a few flowsets only above a healthy 15% injection rate. For the W → S+N
topology, the FIFO sizes are capped at 64 (for a sum of 128) and only go full at a higher 20$
injection rate. For both cases, we observe that simulated data shows lower occupancies than the
prediction by as much as 2.5× (on average 1.5×). This is expected due the pessimism in the
analysis but the LUT cost impact is limited due to SRL32 packing quantization. For FPGA
implementation, we can choose to size all FIFOs in the NoC to the largest size, or customize
each FIFO independently as per the static analysis. We observe that the largest size of 128 is
rarely observed, and roughly 50% of our occupancies are below the 32 threshold. Thus, we can
customize the right SRL depth to further save resources by as much as 2×.

72

Chapter 6

Conclusion and Future Research

Wider adoption of FPGAs to implement compute intensive applications has driven enhancements
in FPGA architecture. Embedded hard blocks like DSPs, high-speed memory interfaces like HBM,
and various IOs require an efficient way to move data among these high-speed blocks over FPGA
fabric. Network-on-Chips provide a scalable solution to satisfy the intra-chip communication
requirements over these dense systems. In this work, we present an efficient FPGA-overlay NoC
design with lightweight buffers. Existing state-of-the-art deflection routing NoCs like Hoplite and
HopliteRT provide a low-cost and high-speed design. However, they pay higher penalties due
to deflections like higher-latency, out-of-order delivery and low-throughput. The proposed NoC
design exploits the architectural benefits of deflection routed NoCs and use small stall-free FIFOs
to eliminate deflections and hence gain in-order delivery, lower latency and higher sustained
throughput. The NoC design also uses a static analysis tool to compute these buffer bounds and
also provide latency and bandwidth information of the workloads.

We summarize the main contributions of this work:

• Design of an FPGA NoC torus topology to enhance static analysis for computing buffer
bounds and NoC router microarchitecture redesign with stall-free FIFOs to eliminate de-
flections and provide in-order packet delivery. Optimization and customization of the NoC
router RTL to match Xilinx and Intel FPGAs.

• Development of a buffer sizing algorithm to compute the worstcase bounds on FIFO occu-
pancies. Use of vertical NoC link linearization to improve provable link utilization. Static
analysis tools compute upper bounds on size of FIFOs required for stall-free operation,
source queueing delay, in-flight routing latency under various conditions.

• Engineering of a robust simulation infrastructure to compute cycle counts of packet traver-
sals in the NoC. Resource and performance analysis of the NoC under various synthetic
workloads.

73

We saw two variants of HopliteBuf: single-buffer W → S and dual-buffer W → S+N . While
the W → S design overcomes the problems with deflection routed NoCs and provide an efficient
solution, it complicates the static analysis due to its architecture and Cyclic dependencies. Cyclic
dependencies reduce the provable network utilization and hence we get pessimistic bounds on the
buffer sizes needed to support a workload. The dual buffer W → S + N design linearizes the
analysis by breaking the vertical rings that create cyclic dependencies. We show that not only does
the dual-buffer design enhances the static analysis, it also shows significant performance gains
over Hoplite, HopliteRT, and the single buffer W → S design. Our static analysis tools that
can compute worst-case buffer occupancy bounds, along with latency bounds for communication
patterns with rate, and burst information known up-front. In our experiments with 100 randomly-
generated flowsets, we show that HopliteBuf is able to deliver 40-50% feasibility at 20% injection
rates while the competing state-of-the-art HopliteRT NoC only supports 25% feasibility at 10%
injection rates at 2 × worse latency bounds.

6.1 Future Research

In this section, we list the promising avenues for research – building on the work proposed in this
thesis.

Analysing Hard-NoCs

We anticipate our static analysis tools to help compute latency bounds on the newly-announced
Xilinx Versal NoC with hardened FIFOs of known sizes. Unlike LUT-based HopliteBuf NoC used
in this study, the Versal hard-NoC FIFOs do not need to be designed with LUT-FIFO capacity
constraints. If the workload information is known statically, the analysis tool can be used to
determine maximum rate and latency supported on a fixed hardware size.

74

References

[1] Bluespec system verilog: Efficient, correct rtl from high level specifications. In Proceedings
of the Second ACM/IEEE International Conference on Formal Methods and Models for
Co-Design, MEMOCODE ’04, pages 69–70, Washington, DC, USA, 2004. IEEE Computer
Society.

[2] P Abad, P Prieto, L G Menezo, A Colaso, V Puente, and J A Gregorio. TOPAZ: An Open-
Source Interconnection Network Simulator for Chip Multiprocessors and Supercomputers.
Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, pages 99–
106, 2012.

[3] M S Abdelfattah and V Betz. Design tradeoffs for hard and soft FPGA-based Networks-on-
Chip. In Field-Programmable Technology, pages 95–103, 2012.

[4] M. S. Abdelfattah, A. Bitar, and V. Betz. Design and applications for embedded networks-
on-chip on fpgas. IEEE Transactions on Computers, 66(6):1008–1021, June 2017.

[5] David H. Albonesi, Margaret Martonosi, David I. August, and José F. Mart́ınez, editors.
42st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-42 2009),
December 12-16, 2009, New York, New York, USA. ACM, 2009.

[6] Altera. Applying the benefits of network on a chip architecture to fpga system design. Altera
White Paper, apr 2011.

[7] Altera Corp. Arria 10 Core Fabric and General Purpose I/Os Handbook, May 2015.

[8] Ahmed Amari and Ahlem Mifdaoui. Worst-case timing analysis of ring networks with cyclic
dependencies using network calculus. In Proceedings of the IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 2017.

[9] Krste Asanović and David Patterson. Instruction sets should be free: the case for risc-v.
Technical Report No. UCB/EECS-2014-146, August 2014.

75

[10] M. Becker, B. Nikolic, D. Dasari, B. Akesson, V. Nelis, M. Behnam, and T. Nolte. Partition-
ing and Analysis of the Network-on-Chip on a COTS Many-Core Platform. In proceedings of
the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2017.

[11] Vaughn Betz and Jonathan Rose. FPGA routing architecture: Segmentation and buffering to
optimize speed and density. In Proceedings of the 1999 ACM/SIGDA Seventh International
Symposium on Field Programmable Gate Arrays, FPGA ’99, pages 59–68, New York, NY,
USA, 1999. ACM.

[12] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation, 2009.

[13] Buchholz. Comments on csma. IEEE, 802(11):802–11, 1992.

[14] Y. Cai, K. Mai, and O. Mutlu. Comparative evaluation of fpga and asic implementations of
bufferless and buffered routing algorithms for on-chip networks. In Sixteenth International
Symposium on Quality Electronic Design, pages 475–484, March 2015.

[15] T. E. Carlson, W. Heirmant, and L. Eeckhout. Sniper: Exploring the level of abstraction
for scalable and accurate parallel multi-core simulation. In 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), pages 1–12, Nov
2011.

[16] S. Corbetta, V. Rana, M. D. Santambrogio, and D. Sciuto. A light-weight network-on-
chip architecture for dynamically reconfigurable systems. In Embedded Computer Systems:
Architectures, Modeling, and Simulation, pages 49–56, July 2008.

[17] W J Dally and B Towles. Route packets, not wires: on-chip interconnection networks. In
Design Automation Conference, 2001. Proceedings, pages 684–689, 2001.

[18] Benôıt Dupont de Dinechin and Amaury Graillat. Network-on-chip service guarantees on the
kalray mppa-256 bostan processor. In Proceedings of the 2Nd International Workshop on Ad-
vanced Interconnect Solutions and Technologies for Emerging Computing Systems, AISTECS
’17, pages 35–40, New York, NY, USA, 2017. ACM.

[19] C. Fallin, C. Craik, and O. Mutlu. Chipper: A low-complexity bufferless deflection router.
In 2011 IEEE 17th International Symposium on High Performance Computer Architecture,
pages 144–155, Feb 2011.

[20] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu. Minbd:
Minimally-buffered deflection routing for energy-efficient interconnect. In 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pages 1–10, May 2012.

76

[21] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu. Minbd:
Minimally-buffered deflection routing for energy-efficient interconnect. In Networks on Chip
(NoCS), 2012 Sixth IEEE/ACM International Symposium on, pages 1–10, May 2012.

[22] Chris Fallin, Chris Craik, and Onur Mutlu. Chipper: A low-complexity bufferless deflection
router. In Proceedings of the 2011 IEEE 17th International Symposium on High Perfor-
mance Computer Architecture, HPCA ’11, pages 144–155, Washington, DC, USA, 2011.
IEEE Computer Society.

[23] Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei, Pasi Liljeberg,
Juha Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur Mutlu, and Hannu Tenhunen.
A low-overhead, fully-distributed, guaranteed-delivery routing algorithm for faulty network-
on-chips. In Proceedings of the 9th International Symposium on Networks-on-Chip, NOCS
’15, pages 18:1–18:8, New York, NY, USA, 2015. ACM.

[24] Kees Goossens and Andreas Hansson. The aethereal network on chip after ten years: Goals,
evolution, lessons, and future. In 47th DAC, pages 306–311. IEEE, 2010.

[25] J. Gray. Keynote 3 2014; the past and future of fpga soft processors. In ReConFigurable
Computing and FPGAs (ReConFig), pages 1–1, Dec 2014.

[26] Jan Gray. GRVI-Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accelerator. In
Proc. 24th IEEE Symposium on Field-Programmable Custom Computing Machines, pages
17–20. IEEE, 2016.

[27] Yutian Huan and A DeHon. FPGA optimized packet-switched NoC using split and merge
primitives. In Field-Programmable Technology, pages 47–52, December 2012.

[28] Mike Hutton. Understanding how the new hyperflex architecture enables next-generation
high-performance systems. Altera White Paper, Apr. 2015.

[29] S. Jeon, J. Cho, Y. Jung, S. Park, and T. Han. Automotive hardware development according
to iso 26262. In 13th International Conference on Advanced Communication Technology
(ICACT2011), pages 588–592, Feb 2011.

[30] N. Kapre. Marathon: Statically-scheduled conflict-free routing on fpga overlay nocs. In 2016
IEEE 24th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 156–163, May 2016.

[31] N. Kapre and J. Gray. Hoplite: Building austere overlay nocs for fpgas. In Field Pro-
grammable Logic and Applications, pages 1–8, Sept 2015.

[32] Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin, Henry Barnor, Michael J
Wilson, Michael Wrighton, and Andre DeHon. Packet switched vs. time multiplexed FPGA

77

overlay networks. In Proc. 14th IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 205–216. IEEE, 2006.

[33] H. Kashif and H. Patel. Bounding buffer space requirements for real-time priority-aware
networks. In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 113–118, Jan 2014.

[34] Hany Kashif and Hiren Patel. Buffer Space Allocation for Real-Time Priority-Aware Net-
works. In proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12. IEEE, April 2016.

[35] John Kim. Low-cost router microarchitecture for on-chip networks. In Albonesi et al. [5],
pages 255–266.

[36] John Kim. Low-cost router microarchitecture for on-chip networks. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 255–266.
ACM, 2009.

[37] B S Landman and Roy L Russo. On a Pin Versus Block Relationship For Partitions of Logic
Graphs. Computers, IEEE Transactions on, (12):1469–1479, 1971.

[38] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Springer-Verlag, 2001.

[39] Lu Ting, Kenny Ryan, and Atsatt Sean. Secure Device Manager for Intel Stratix 10 Devices
Provides FPGA and SoC Security, March 2018.

[40] E Matthews, L Shannon, and A Fedorova. Polyblaze: From one to many bringing the
microblaze into the multicore era with Linux SMP support. In 22nd Field Programmable
Logic and Applications, pages 224–230, 2012.

[41] G Michelogiannakis, D Sanchez, W J Dally, and C Kozyrakis. Evaluating Bufferless Flow
Control for On-chip Networks. Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE Inter-
national Symposium on, pages 9–16, 2010.

[42] Jörg Mische and Theo Ungerer. Low power flitwise routing in an unidirectional torus with
minimal buffering. In Proceedings of the Fifth International Workshop on Network on Chip
Architectures, NoCArc ’12, pages 63–68, New York, NY, USA, 2012. ACM.

[43] Jörg Mische and Theo Ungerer. Guaranteed Service Independent of the Task Placement in
NoCs with Torus Topology. In Proc. 22Nd RTNS., RTNS ’14, page 151:160. ACM, 2014.

[44] Thomas Moscibroda and Onur Mutlu. A case for bufferless routing in on-chip networks. In
Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA
’09, pages 196–207, New York, NY, USA, 2009. ACM.

78

[45] Thomas Moscibroda, Onur Mutlu, Thomas Moscibroda, and Onur Mutlu. A case for buffer-
less routing in on-chip networks, volume 37. ACM, New York, New York, USA, June 2009.

[46] T. D. A. Nguyen and A. Kumar. PR-HMPSoC: A versatile partially reconfigurable heteroge-
neous multiprocessor system-on-chip for dynamic FPGA-based embedded systems. In Field
Programmable Logic and Applications, pages 1–6, Sept 2014.

[47] Andreas Olofsson, Tomas Nordström, and Zain-ul-Abdin. Kickstarting high-performance
energy-efficient manycore architectures with epiphany. CoRR, abs/1412.5538, 2014.

[48] M. Panic, C. Hernandez, E. Quinones, J. Abella, and F. J. Cazorla. Modeling High-
Performance Wormhole NoCs for Critical Real-Time Embedded Systems. In proceedings
of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2016.

[49] Michael K Papamichael and James C Hoe. Connect: re-examining conventional wisdom for
designing nocs in the context of fpgas. In Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays, pages 37–46. ACM, 2012.

[50] Michael K Papamichael and James C Hoe. CONNECT: re-examining conventional wisdom
for designing nocs in the context of FPGAs. In the ACM/SIGDA international symposium,
page 37, New York, New York, USA, 2012. ACM Press.

[51] T. Pionteck, R. Koch, and C. Albrecht. Applying partial reconfiguration to networks-on-
chips. In Field Programmable Logic and Applications, pages 1–6, Aug 2006.

[52] M Ramirez, M Daneshtalab, J Plosila, and P Liljeberg. NoC-AXI interface for FPGA-based
MPSoC platforms. In Field Programmable Logic and Applications, pages 479–480, 2012.

[53] Zheng Shi and Alan Burns. Real-Time Communication Analysis for On-Chip Networks with
Wormhole Switching. In Second ACM/IEEE NOCS (nocs 2008), NOCS ’08, pages 161–170.
IEEE, apr 2008.

[54] J. Specht and S Samii. Urgency?based scheduler for time?sensitive switched ethernet net-
works. In Proceedings of the Euromicro Conference on Real?Time Systems (ECRTS), pages
75–86, 2016.

[55] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal Arbel. Network-
on-chip programmable platform in versaltm acap architecture. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’19,
pages 212–221, New York, NY, USA, 2019. ACM.

[56] Kizheppatt Vipin and Suhaib A Fahmy. Dyract: A partial reconfiguration enabled accel-
erator and test platform. In Field Programmable Logic and Applications, pages 1–7. IEEE,
2014.

79

[57] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. HopliteRT: An efficient FPGA NoC
for real-time applications. In F. Program. Technol. (ICFPT), 2017 Int. Conf., pages 64–71.
IEEE, 2017.

[58] Xilinx Inc. 7 Series FPGAs Configurable Logic Block User Guide, February 2015.

[59] Xilinx Inc. AXI Interconnect v2.1, LogiCORE IP Product Guide, December 2017.

80

	List of Tables
	List of Figures
	Abbreviations
	Nomenclature
	Introduction
	Main Contributions
	Thesis Organization

	Background and Literature Review
	Idea of Deflection Routing
	Hoplite
	HopliteRT

	Survey of FPGA-overlay NoCs
	CMU CONNECT NoC
	Penn Split-Merge NoC
	PaterNoster NoC
	Kim NoC router

	Survey of Real-time NoCs
	Emergence of Hard NoCs
	Xilinx Versal
	Embedded NoC

	LUT organization in Intel and Xilinx devices
	Xilinx LUT organization
	Intel LUT organization

	Basics of Network Regulation
	Need for Traffic Regulation
	Token-bucket Regulator
	Traffic Modelling with Token bucket regulator

	HopliteBuf Microarchitecture
	Stall-free Buffers
	WS buffer design
	WS+N buffer design
	FPGA Implementation
	Routing Policy
	W S Buffer Design with Backpressure
	N S Buffer Design with Deflections

	Network Calculus and Analysis
	Client Traffic Regulation
	Traffic Model
	Injection Latency
	Vertical Ring Analysis WS Design
	Cyclic Dependencies in HopliteBuf W S design
	Linearized Analysis: W S+N Design

	Evaluation
	RTL Simulation Results
	Flowset Feasibility
	Worst-Case Latency Trends
	Worst-Case Latency Breakdown
	Latency Distribution
	FIFO Sizing

	FPGA Implementation Results
	Analysis Results
	Feasible Flowsets
	Worst-Case Latency: Analysis vs. Simulation
	FIFO Sizing: Analysis vs. Simulation

	Conclusion and Future Research
	Future Research

	References

