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Point clouds for immersive media technology have received substantial interest in

recent years. Such representation of three-dimensional (3D) scenery provides free-

dom of movement for the viewer. However, transmitting and/or storing such content

requires large amount of data and it is not feasible on today's network technology.

Thus, there is a necessity for having e�cient compression algorithms in order to

facilitate proper transmission and storage of such content.

Recently, projection-based methods have been considered for compressing point

cloud data. In these methods, the point cloud data are projected onto a 2D im-

age plane in order to utilize the current 2D video coding standards for compressing

such content. These coding schemes provide signi�cant improvement over state-of-

the-art methods in terms of compression e�ciency. However, the projection-based

point cloud compression requires special handling of boundaries and sparsity in the

2D projections. This thesis work addresses these issues by proposing two methods

which improve the compression performance of both intra-frame and inter-frame

coding for 2D video coding of volumetric data and meanwhile reduce the coding

artifacts. The conducted experiments illustrated that the bitrate requirements are

reduced by around 26% and 29% for geometry and color attributes, respectively

compared to the case that the proposed algorithms are not applied. In addition, the

proposed techniques showed negligible complexity impact in terms of encoding and

decoding runtimes.
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DEFINITIONS

Point Cloud Frame: For a static point cloud it is a representation at a certain

time instance and for dynamic, it is de�ned as capture of point clouds in a period

of time.

Geometry: The position of point clouds in 3D space, i.e. in 3D (x,y,z) is coordina-

tes of the points.

Attribute: A feature or set of features, excluding geometry, associated with a point,

e.g., (R, G, B) color values, I for re�ectance.

Lossy Geometry: The location of decoded compressed point cloud is not entirely

similar to the uncompressed one. Even the number of decoded points is not equal

to original cloud.

Lossless Geometry: The location of decoded compressed point cloud is identical to

the uncompressed one, in another words, the location of coordinates before compres-

sion and after compression does not change. Even the number of decoded points are

equal to original cloud.

Lossy Attribute: The attribute values of the compressed �le after decoding are

not necessarily numerically identical to the attribute values of uncompressed.

Lossless Attribute: The attribute values of the compressed �le after decoding are

numerically identical to the attribute values of uncompressed.
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1. INTRODUCTION

In recent years, immersive experience of real world in virtual environment has recei-

ved remarkable attention. Moreover, the capturing technology of 3D data which

enables us to reconstruct highly detailed volumetric data has been developed con-

siderably. Volumetric content represents a three-dimensional (3D) scene or object.

Such content is either generated from 3D models, i.e. Computer-generated Imagery

(CGI), or can be acquired from real-world scenes using a variety of capturing solu-

tions, e.g. multi-camera setup, advanced 3D laser scanner, depth sensors or other

technologies which are able to produce a 3D representation of the surface. Generic

representation formats for such volumetric data are triangle meshes, point clouds,

or array of voxels [3].

Point cloud is de�ned as a set of (x, y, z) in 3D coordinates without strict order and

local topology. Typically each point in the cloud has the same number of attributes

(i.e., color, normal directions, re�ectance) to represent a scene or an object [5].

In 360◦ omnidirectional content capturing, viewport of a scene is recorded regarding

one center point in 3D coordinate system. Therefore, there is a limitation for the

user to be involved in 3D scene for example to move forward and back of scene or

objects since depth information is not recorded. One of the problems of scene model

Figure 1.1 Tele-immersive experience enabled by point cloud compression.
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is occlusion. Whereas the volumetric content provide six degrees-of-freedom (6DoF)

capabilities, in which the viewer can freely move and choose viewpoint in addition

to the head movement by using for example a Head Mounted Display (HMD) de-

vice. Volumetric video represents 3D data in a way that the observer has freedom

to navigate freely in the captured scene. Hence, such data has high importance for

virtual reality (VR), augmented reality (AR), or mixed reality (MR) applications,

especially for providing 6DOF viewing capabilities [3].

Examples of volumetric data applications are in construction business, agricultu-

re and vegetation management, education, medicine, etc. Figure 1.1 presents an

example of tele-immersive experience of point cloud content by HMD.

Apart from the mentioned advantages and applications of such content, the large

number of points which are generated to represent the volumetric scenery introduce

challenges and limitations to storage and transmission over current network techno-

logy. Therefore, e�cient compression algorithms are needed to help this technology

to expand in all aspects. The aim of the proposed solution is to develop the compres-

sion algorithms that cope with the needs of interactive, tele-immersive applications,

such as VR, AR or MR with 6DoF capabilities.

Recently, projection-based point cloud compression solution has been introduced.

The projection-based point cloud compression signi�cantly improved over the state-

of-the-art method [1] in terms of coding e�ciency. However, this approach requires

special attention on the sharp transitions at the projected object boundaries and

sparsity in the 2D projections due to oversampling issues. Consequently, such areas

create sub-optimal compression performance using the traditional 2D video compres-

sion technology.

The aim of this thesis is to provide solutions for the above-mentioned challenges in

order to improve the coding e�ciency of the projection-based schemes. In this thesis,

two methods have been proposed for this purpose. The �rst proposal targets impro-

ving the coding performance in the generated sharp edges of the projection-based

method by applying a smoothing �lter in the boundary areas. The Edge Smoothing

operation intends to increase the correlation of samples in the boundary areas of

the projected content in order to make it suitable for compression operations. Furt-

hermore, Patch Re�nement technique is considered for �ltering the sparsely projec-

ted point cloud data in projection plane for reducing sparsity and improving the

compression performance.
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1.1 Thesis Outline

The rest of this thesis work is structured as follows:

• Chapter 2: Reviews the theoretical background of the study.

• Chapter 3: Introduces di�erent projection-based methods and functionality

of projection-based point cloud compression.

• Chapter 4: Discusses about the challenges of projection-based technique and

proposes two methods for improving coding e�ciency of the projection-based

point cloud compression.

• Chapter 5: Analyzes the experimental results and related discussions.

• Chapter 6: Provides a conclusion of the proposed methods for improving the

projection-based point cloud compression and discusses the potential future

works in this domain.

1.2 List of Publications

The conducted research study in this thesis was done in a collaboration with Nokia

Technologies and Tampere University of Technology (TUT). This document descri-

bes technical details of improvement methods for the Nokia Technologies' submis-

sion [3] to category two of the ISO/IEC JTC1/SC29/WG11 Moving Picture Experts

Group (MPEG) in response of Call for Proposals (CfP) for 3D point cloud compres-

sion [2].

The following publications were the outcome of the work conducted during this

thesis:

1. S. Schwarz, M. M. Hannuksela, V. Fakour-Sevom, andN. Sheikhi-Pour. "2D

video coding of volumetric video data,"In IEEE Picture Coding Symposium,

June 2018. San Francisco, California.

2. N. Sheikhi-Pour, S. Schwarz, V. Kumar Malamal Vadakital, and M. Gab-

bouj. "E�cient 2D Video Coding of Volumetric Video Data,"In European

Workshop on Visual Information Processing (EUVIP), November 2018. Tam-

pere, Finland.
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2. BACKGROUND TO THE STUDY

In the last few years, many research studies have been carried out on point cloud

compression and simultaneously quality metrics introduced to measure the distortion

in compression process. This chapter provides a brief background study for point

cloud compression. Section 2.1 provides a brief overview of early works on point

cloud compression. Section 2.2 describes the projection-based compression method

for point cloud compression and its challenges. Later, section 2.3 provides quality

metrics for point cloud compression.

2.1 Related Work

Several compression solutions for dynamic point cloud data have been proposed in

the literature [1,6�8], but many of these solutions su�er from poor spatial and tem-

poral compression performance.

For dynamic 3D data, since both geometry and corresponding attributes may change

independently, the motion estimation operation becomes an ill-de�ned problem [9].

For instance, temporal successive frames do not necessarily have the same number

of polygons, points or voxels. Thus, it is di�cult to determine spatial and temporal

redundancies for intra- and inter-frame compression.

The compression approach which is implemented in [1] do not use spatial predic-

tion in an object. One of the early works on motion estimation coding is introduced

in [10]. Utilizing multiview + depth approach for point cloud compression (PCC)

is suggested in [11] which shows better results in terms of temporal and spatial

compression e�ciency. However, the main issue regarding this solution is that it

does not cover full scene or object.

In [12], the approach is based on kd-tree structure, where the 3D space is divided

recursively, and points in each cell are encoded. For each division, empty cubes are

not divided further. A similar approach was implemented in [13] and [14] by applying

octrees. By considering the connection between points, these methods achieve bet-

ter results in terms of compression performance.

In addition to geometry compression, there are many methods which investigate

attribute compression. For instance, in [15] an octree structure is implemented and
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attributes are treated as signals. In each leaf of the octree, a graph is constructed.

The Karhunen-Loeve transform (KLT) is applied to decorrelate color attributes on

the graph and compress them.

A novel method for compressing both object and environment data by assisting

three-dimensional Discrete Cosine Transform (3D-DCT) is proposed in [16].

The above-mentioned approaches focus on static point cloud compression. Regar-

ding dynamic point cloud compression, in [6] the geometry compression considers the

octree structure for each frame of a point cloud sequence. Due to the lack of informa-

tion regarding point-to-point correspondence in a sequence, motion estimation for

compression is challenging. In [1], a hybrid architecture for progressive point cloud

compression was proposed, combining an octree-based structure with a common ima-

ge coding framework. This method was also selected as reference for the ISO/IEC

JTC1/SC29/WG11 (MPEG) Call for Proposals (CfP) for point cloud compression

technology [2].

In [3, 4], a Projection-based method for e�cient compression of point cloud data

is proposed, in which the 3D data are projected onto a 2D image plane and co-

ded by making use of the current 2D video coding technology. Spatial and temporal

compression e�ciency is highly improved over the state-of-the-art [1] for point cloud

compression.

2.2 Overview of 2D Video Coding of Point Cloud Data

As was mentioned in the Section 2.1, the projection-based method in [3,4] proposed

for e�ciently compressing point cloud data. The proposed approach in this work,

projects the 3D video data into 2D video and making use of currently available 2D

video compression to compress it and then reconstructs the 3D data based on sto-

red metadata. The main advantage of the proposed method is its compatibility with

current 2D video coding standards. As 2D video coding standards, such as High

E�ciency Video Coding (H.265/HEVC [17]), are already supported by billions of

devices and distribution solutions, thus it is possible to integrate this solution in the

products and services.

In addition, this method provides remarkable bitrate reduction compared to the re-

ference technology [1], in terms of both objective and subjective quality. Bitrate

requirements are reduced by around 75% for geometry and approximately 50% for

color attribute over the state-of-the-art compression technology. Out of the mentio-

ned bitrate reductions in [3], almost one third is achieved by the proposed algorithms

in this thesis work.

As mentioned before, the proposed method in [3] can take advantage of utilizing vi-

deo coding standards which are available for 2D video coding purposes, for instance
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Figure 2.1 The overall process of projection-based volumetric video coding.

H.265/HEVC. The 2D video coding which is used for projection-based point cloud

compression is scalable extension of HEVC (SHVC) [18] reference software (SHM)

version 12.2 [19], in which one texture plane as a base layer and one geometry plane

as an enhancement layer is used. It is also feasible to add more enhancement layers

or use di�erent video coding standard like 3D High E�ciency Video Coding (3D-

HEVC [20]). Since neither of these compression standards are designed for compres-

sing the point cloud data, it is essential to make them compatible for such content.

Figure 2.1 illustrates block diagram of overall process of the projection-based point

cloud compression. In below, a brief description of the block diagrams that are used

in the projection-based technique is provided:

• 3D to 2D projection: Projecting each individual point cloud of a sequence

onto the 2D geometry. One 2D plane is allocated for texture projections and

one for geometry.

• 2D encoding: The 2D planes (geometry and texture) are encoded with the

current standard 2D video codecs (e.g HEVC [17])

• 2D decoding: The encoded 2D planes are decoded with the current standard

2D video codecs.

• 3D to 2D projection: The PLY can be reconstructed by using decoded pla-

nes. In back-projection process, texture plane is used for color intensity value

of point and the position of point is determined by corresponding geometry

value.
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(a) (b) (c)

Figure 2.2 (a) Original point cloud (b) decoded point cloud at 13 Mbit/s for proposed
solution, and (c) reference technology [1]

Figure 2.2 illustrates subjective performance of the projection-based method com-

pared to the reference technology [1]. As can be seen, this method outperforms the

reference technology for compressing the point could data, signi�cantly.

2.3 Objective Evaluation Criteria and Metrics

Di�erent quality metrics have been considered for evaluating the quality of the

compressed point cloud data for geometry and color components. For this purpose,

two di�erent metrics were calculated for geometry component. The �rst metric is

a point-to-point quality assessment (referred to as D1 metric) which computes the

mean square error (MSE) between the reconstructed point and its closest point in

the original point cloud. The second metric assesses the point to the plane error

(referred to as D2 metric). D2 calculates the MSE between the reconstructed point

and the original point cloud surface [21]. The color distortion is computed on a



2.3. Objective Evaluation Criteria and Metrics 8

point-to-point level in YUV domain.

2.3.1 Geometric Distortions

This section describes brie�y the objective quality assessment metrics that are used

for evaluating the quality of compressed point cloud data.

Lets assume A as an original point cloud and B as a decoded compressed point

cloud. In this case, A is the reference for computing the quality of point cloud B

which is a degraded version of A and consist of N points. Where the number of

points in original and degraded one are not necessarily equal.

Two-pass computation is performed to evaluate the compression error. Therefore,

once compression error which is the distortion of point cloud B relative to the refe-

rence point cloud A is calculated and denoted by eA,B. In second pass, the recon-

structed point cloud B serves as reference and compression error is denoted as eB,A.

Finally, the worst metric between eA,B and eB,A is selected for �nal measurement

called symmetric compression error [21].

The nearest neighbor (NN) method is used to identify the correspondence between

in B and A. For the sake of computational complexity reduction, KD-tree search is

utilized in this process. If points in B are denoted by bj, the corresponding point in

A is identi�ed by KD-tree to perform nearest neighbor search and denoted by aj.

In Figure 2.3, the black point is collected from point cloud B and the red point is

the corresponding point of bj in the reference point cloud A.

Point-to-point Quality Assessment (D1 metric)

After identifying the point of B in the uncompressed point cloud A, an error vector

E(i,j ) is calculated by connecting the point in A to the corresponding point in

B. The length of error vector E(i,j ) is called point-to-point error and is calculated

according to below equation:

eD1
A,B(i) = ||E(i, j)||22 (2.1)

Based on the de�nition of point-to-point distance for one point in ( 2.1), the calcu-

lation of point-to-point error (D1) for all point (i.e., NB points) can be done by

equation ( 2.2):

eD1
A,B =

1

NB

∑
∀bi∈B

eD1
A,B(i) (2.2)



2.3. Objective Evaluation Criteria and Metrics 9

Figure 2.3 Illustration of point-to-point distance (D1) and point-to-plane distance (D2)
[2]

Point-to-plane Quality Assessment (D2 metric)

The point-to-plane distances rely on the normal vector for each point. Projection

of the error vector E(i,j ) along the normal direction Nj result in new error vector

Ê(i,j) which is parallel with the normal attributes.

D2 calculates the Mean squared error (MSE) between a reconstructed point and the

original point cloud surface [21]. The point-to-plane error is computed as:

eD2
A,B = || ˆE(i, j)||22 = (E(i, j).Nj)

2 (2.3)

Similarly, the point-to-plane error (D2) for all of points is calculated as below equa-

tion:

eD2
A,B =

1

NB

∑
∀bi∈B

eD2
A,B(i) (2.4)

Geometry PSNR Calculation

The PSNR value for geometry attribute is computed as:

PSNR = 10 log10(
3p2

MSE
) (2.5)

For each reference point cloud as speci�ed p is de�ned in Table 5.1 as the peak

constant value. And MSE is the mean squared error of one of the errors (point-to-

point (D1) or point-to-plane (D2)) which introduced before.
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2.3.2 Attribute Distortions

The attribute PSNR is calculated by using following equation:

PSNR = 10 log10(
p2

MSE
) (2.6)

For color attributes, the color of the original point cloud is compared to the most

nearby color in the reconstructed point cloud and calculate PSNR. The MSE for

each of the three color components is calculated in YUV domain. Color distortion is

performed in YUV color space, since YUV color space is closer to the human visual

system (HVS) [2].

A symmetric computation of the distortion is calculated, with the same method

which has been done for geometric distortions. The maximum distortion between

the two execution is selected as the �nal distortion. For PSNR calculation of color

components, the peak value p in ( 2.6) is set to 255, hence the bit depth for test

data is 8 bits per point.
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3. PROJECTION BASED POINT CLOUD

COMPRESSION

This chapter studies di�erent 2D projection methods for point cloud compression

purposes. The suitable projection is selected based on a certain criteria which are

described in section 3.1. The tested projections are described in section 3.2.

3.1 Introduction

There are variety of 3D to 2D projections and it is hardly possible to introduce one

projection as the best projection for mapping, since it is highly dependent on the

target application.

This work is a response to Call for Proposals (CfP) Category two of the ISO/IEC

JTC1/SC29/WG11 (MPEG) for Point Cloud Compression [2], in which the test sets

are single 3D model. Thus, the approach and evaluation are provided in this context.

Category two consists of scanning real moving people in di�erent time instances. The

target projection would cover the exterior part of the model.

The process of Figure 3.1 is used in order to select the best projection format.

To that end, the projection format that leads to minimum objective and subjective

quality degradation can be selected as the proper projection format for projection-

based compression purposes.

In this process, the compression step is removed in order to determine the e�ect

Figure 3.1 Schematic overview of testing projections
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(a) (b)

Figure 3.2 First frame of Longdress point cloud data. (a) Bounding box for point cloud,
(b) projection of the point cloud on 2D and assigning one image for texture and one for
geometry

of projection itself. For that, the point cloud data is projected onto two 2D image

planes, one for texture and one for geometry (or depth). Then, the projected data is

back-projected to the point cloud format and compared to the original point cloud

by using objective and subjective evaluations.

The desirable projection consists of below features in order to be used for projection-

based compression purposes:

• Provides better coverage on the points

• Handles the occlusions in the reconstructed point cloud properly

• Provides high Peak Signal-to-Noise Ratio (PSNR)

3.2 Projection

Here, projection is de�ned as a transformation which performs translation from 3D

Cartesian coordinate to 2D coordinate. Di�erent approaches for projection have

been proposed and tested. In the following all the projections which are examined

for this study are presented.

Before performing any projection, in order to project samples of point cloud in 2D
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space, it is essential to analyze and initialize basic parameters. One of the most

important one is bounding box which is based on the attribute (minimum and

maximum) of the point cloud. In geometry, the bounding box is the smallest or

minimum box which encloses all sets of points in N dimension where in the 3D

space, the bounding volume is a cuboid shape. Figure 3.2(a) shows a bounding box

for Longdress point cloud in which all samples are surrounded by bounding volume

where lx, ly, lz are the length of each side of the bounding box. Hence, the edges of

th bounding box are derived from the following equations:

lx = maxx −minx (3.1a)

ly = maxy −miny (3.1b)

lz = maxz −minz (3.1c)

Therefore the length of space diagonal is calculated by:

d =
√
l2x + l2y + l2z (3.2)

Another substantial parameter is primary axis which is de�ned as longest axis of

bounding box. In all testset of this study Y is the primary axis, since between the

value ranges of X, Y, and Z, with Y>X>Z order, Y-axis has wider ranges of values,

hence it is selected as primary axis and X as an secondary axis.

And the position of 3D points after projection in 2D space is derived from :

positionx = b x− xmin

xmax − xmin

× lxc+ 1 (3.3a)

positiony = b
y − ymin

ymax − ymin

× lyc+ 1 (3.3b)

positionz = b
z − zmin

zmax − zmin

× lzc+ 1 (3.3c)

In which, length of cube edges is calculated by subtracting the minimum value of

coordinate from maximum value and it should be multiple of 8 in order to make

it align with the minimum coding unit (CU) size of the HEVC standard [17]. con-

sequently the size of image projection is determined by the 3D bounding box.

A 3D video object, e.g represented as a dynamic sequence of point clouds, is pro-

jected onto simple geometries. For each projection process two 2D image planes are

allocated, one for color attribute (i.e., the texture image) and one for 3D depth (i.e.,

the geometry image).

Assuming the 3D point p is located at [x, y, z] and the corresponding RGB attribute

[Rp, Gp, Bp] on texture image, the 2D projection of this 3D point on texture image

is shows by T and geometry image is shown by D.
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T (x, y) =

 Rp

Gp

Bp

 (3.4a)

D(x, y) = z (3.4b)

Where the resolution of D is x×y pixels and it stores the distance of each point from
the projection plane. All distance information for each plane is stores in one 2D grid

called geometry image. Figure 3.2(b) shows the texture and geometry images for

one frame of Longdress point cloud projected onto plane projection.

Assuming a cluster of points, the decision for keeping a point is made based on

the distance of a point from the plane. Which means the points that are closer to

the projection plane are prior to preserve in 2D grid. Therefore, since there is a

possibility to map more than one point from 3D space onto the same 2D coordinate,

depth bu�ering is applied to handle this problem. Z-bu�er is used to compare the

distance to the plane of the occupied coordinate and new point. In other words, the

point which has the smaller distance with plane will be stored in depth bu�er to

make sure that only visible points are mapped. Consequently, its color attribute is

stored it in separate 2D grid called texture image. The bu�er removes the far point

in the case of having same coordinate in 2D grid and replaces it with the closest one.

Information about the lost points of a projection is also reported as an evaluation

factor to compare the projection methods.

Inpainting

After projecting 3D model to 2D images, due to the possible sparsity of the point

cloud data, the 2D projections may contain points without any value assigned. Such

points create ine�ciencies in the compression process [3]. In order to solve this

issue, we use inpainting technique for calculating the missing pixel values between

known-value pixels. In the texture plane, these null-value pixels are interpolated

in the horizontal direction by using a linear interpolation method. By using such

inpainting operation, the missing values will be assigned to a particular color value

based on their neighboring color information.

The unknown values can be calculated by the linear interpolation equation in below:

f(n+ i) =
(D − i)× f(n) + i× f(n+D)

D
, 0 < i < D (3.5)
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(a) (b)

Figure 3.3 (a) Sparse projection of the model (b) Inpainted sparse projection by linear
interpolation (the colors are exaggerated for illustrative purposes).

(a) (b)

Figure 3.4 (a) Sparse projection of model (b) Inpainted by using linear interpolation

In which, f(n) and f(n+D) are known values and D is the distance between two

known values and i indicates which unknown pixel is interpolated. By using such

inpainting operation, the missing values will be assigned to a particular color value

based on their neighboring color information. The higher weights are assigned to

closer color intensity value which are unknown.

The inpainting process is only applied to the texture plane and not to the geometry

plane, as the geometry plane is essential for the reconstructing the 3D volumetric

data. Only pixels with a valid geometry value are reprojected back into 3D space.

The occupancy mask, which is derived from geometry plane, is a binary mask in

which occupied pixels are assigned to one, and the empty pixels are set to zero, so

only pixels which their corresponding occupancy mask value is equal to one are pro-

jected back to the 3D space. If inpainting technique is also applied on the geometry

plane, the reconstructed 3D data would include many invalid 3D points, unless ge-

nerating occupancy mask before interpolating geometry plane.

Figure 3.3(b) depicts the result after applying linear interpolation in horizontal di-

rection and �gure 3.4(a) shows the texture plane of Redandblack point cloud con-

tent. As it can be seen, some null-valued pixels in texture plane are shown as black.

The interpolated values will not be reconstructed in the back-projection from 2D to
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Figure 3.5 Drawing sphere projection plane around object based on the size of bounding
box

Figure 3.6 Three-dimensional to two-dimensional projection of Longdress sequence onto
sphere

3D, since the occupancy map for those interpolated values are zero. Figure 3.4(b)

illustrates the inpanited version of the content in which the null-valued pixels are

interpolated and the projected image contains smoother samples.
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(a) (b)

Figure 3.7 Transforming Cartesian coordinates to (a) spherical (b) cylindrical coordinates

3.2.1 Planar Projections

Sphere

This section describes the projection to sphere for the projection-based compression

scheme. This transformation turns the location of points in Cartesian space to sp-

herical coordinates. In this projection, rs is maximum radius value between a point

and origin. Therefore, for a point which is located in (a, b, c) and gains the highest

distance with the center, rs is a radius of sphere which passes through (a, b, c).

Hence, in order to project this point to sphere, the radius of projection should be

enlarged which is denoted by Rs in 3.6b.

The radius of projection and (Xs, Ys, Zs) coordinates are calculated using equations

of ( 3.6b)-( 3.6e).

rs =
√
a2 + b2 + c2 (3.6a)

Rs = rs × 1.2 (3.6b)

Xs = arccos(
x

rs
)×Rs (3.6c)

Ys = arccos(
y

rs
)×Rs (3.6d)

Zs = arccos(
z

rs
)×Rs (3.6e)
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(a) (b) (c) (d)

Figure 3.8 (a) Original Egyption point cloud (b) reconstructed point cloud in sphere
projection (c) Original Longdress point cloud, and (d) reconstructed point cloud in sphere
projection

The conversion from three-dimensional Cartesian coordinates into azimuth and ele-

vation for equirectangular mapping is derived from the following equations:

hs =
√
X2

s + Y 2
s (3.7a)

azimuth = atan2(Zs, Xs) (3.7b)

elevation = atan2(Ys, hs) (3.7c)

Where both azimuth and elevation are in radian. Azimuth is the counter-clockwise

angle in the x-y plane from the positive x-axis as shown in Figure 3.7(a). The

elevation is an angle between the radius and x-y plane. In Figure 3.7(a), in order

to project an arbitrary point in 3D model into 2D, the pixel coordinates for the

equirectangular grid with the size of W×H is calculated by:

xpos = b
azimuth+ π

2π

W

c+ 1 (3.8a)

ypos = b
elevation+

π

2
π

H

c+ 1 (3.8b)
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In back-projection process, pixels with a valid geometry value are reprojected back

into 3D space.

The problem with spherical projection is that it is suitable for round 3D models and

does not preserve points in other shapes. The 2D projection plane contains only one

pixel value per location, hence only points along the normal directions to the 2D

plane would be projected onto the planes and other points will be lost during the

projection process.

Figures 3.8(b) and 3.8(d) show the reconstructed result of two point clouds with sp-

herical projection. As it can be seen, this projection is highly dependent on the ove-

rall shape of the input content and it is not able to preserve all points in the point

cloud data in the projection and back-projection processes. In case of Longdress

point cloud, as can be observed from Figure 3.8(d), the reconstructed point cloud

compared to the Egyption in Figure 3.8(b), includes higher lost points in the pro-

jection and back-projection processes.

Figure 3.17 illustrates the subjective performance of all tested projections in this

work according to the proposed evaluation scheme of Figure 3.1. Among that, Fi-

gure 3.17(b) presents the result of sphere projection, in which this projection su�ers

from huge amount of lost points in the reconstructed point cloud compared to other

projections.

Table 3.1 provides the objective results for the sphere projection using the process

that is described in Figure 3.1. As the table illustrates, the PSNR values of both

geometry and color components of the reconstructed point cloud using this projec-

tion are signi�cantly lower when compared to other projections in the table. Moreo-

ver, this projection results in very high number of lost points in the forward- and

back-projection operations. This projection for the tested point cloud was able to

preserve only around 24% of the original points and 76% of the points were lost.

Thus, considering both objective and subjective performances, this projection is not

suitable for projection-based point cloud compression purposes.

Cylinder

The second type of examined projection is cylinder projection. Similar to sphere

projection, it projects points into the corresponding cylindrical coordinates. In this

projection, rc is maximum radius of a circle perpendicular to primary axis (here is

y-axis) which passes through the point which has maximum distance to the center.

Therefore, similar to the sphere projection, the radius of cylinder is multiplied by a

constant to embrace all points (equation 3.9b). Figure 3.7(b) depicts conversion of

Cartesian coordinates to cylindrical. The corresponding cylindrical coordinates are
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Figure 3.9 3D to 2D projection of Longdress sequence onto cylinder

derived from the following equations:

rc =
√
a2 + c2 (3.9a)

Rc = rc × 1.2 (3.9b)

Xc = arccos(
x

rc
)×Rc (3.9c)

Yc = 1 (3.9d)

Zc = arccos(
z

rc
)×Rc (3.9e)

The conversion from Cartesian coordinates to cylindrical is done by following equa-

tions:

hc = Yc (3.10a)

theta = atan2(Xc, Zc) (3.10b)

rho =
√
X2

c + Z2
c (3.10c)

In these equations, theta is in radian and, similar to azimuth in spherical projection,

it is the counter-clockwise angle in the x-y plane from positive side of x-axis. The

distnace between the projection of point in x-y plane to the origin is denoted by rho

as depicted in Figure 3.7(b). Therefore, the position of arbitrary point in the 3D
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Figure 3.10 Inclined plane can be seen di�erently from several angles of the cube

model in 2D plane is calculated by:

xpos = b
theta+ π

2π
× wc+ 1 (3.11a)

ypos = b
y − ymin

ymax − ymin

H

c+ 1 (3.11b)

Where ymin and ymax are the minimum and maximum values of the point cloud,

respectively, in y-axis. The projected point cloud data is later unfolded to a 2D

image plane. Figure 3.9 depicts the �rst frame of Longdress point cloud surrounded

by a cylinder and the unfolded result of the projection in P1.

Even though table 3.1 indicates cylinder projection gained higher PSNR and lower

number of lost point in comparison to sphere projection, however it is not able to

preserve around 70% of the original points after reconstruction. This phenomenon

is also visible in visual comparison in Figure 3.17(c), in which the reconstructed

data contains a lot of holes in the content. Therefore, the cylinder projection is not

considered as a suitable projection for point cloud compression.

Cube

This mapping is used for projecting points from 3D space onto 4 sides of the cube.

In fact, the goal of this projection is to see the 3D object from 4 di�erent perspecti-

ves of the cube. Figure 3.10 shows that a single object can be seen di�erently from

each angle.

As mentioned in section 3.2, the Z-bu�ering process assists in keeping the closest

point to each plane. Therefore, each side of the cube stores the points which their

normals are perpendicular to the projection plane. Figure 3.10 shows the process

of this projection onto cube faces. As can be seen, projection of the inclined plane

onto P1 is demonstrated as a line that is representative of 'ab' line which is near P1.
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Figure 3.11 3D to 2D projection of Longdress sequence onto cube

Projection of two opposite sides of the plane is done simultaneously. Therefore, if a

point has a chance to be projected onto one of these two planes, it will be projected

to the one that is closer to the point.

According to the results in Table 3.1, the cube projection provides signi�cantly

better geometry and color PSNRs compared to sphere and cylinder projections.

However, this projection is able to preserve only around 58% of the original points

in the reconstructed point cloud and around 42% of the points are lost during the

projection and back-projection operations. These lost points result in poor subjec-

tive performances after reconstruction. As shown in Figure 3.17(d), this projection

provides better visual performance compared to sphere and cylinder. However, due

to the occlusion, some concave areas are not covered properly. Hence, in order to

cover more points another projection on top of cube projection is studied in the

following sections.

3.2.2 Planar Rotation

Simple Planar Rotation

In order to handle occlusion and cover more points, the simple planar rotation met-

hod is studied in this section. The functionality of planar rotation is similar to cube

projection. This extension adds more projection of surfaces at di�erent rotations to
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Figure 3.12 3D to 2D mapping onto four rectangular planes with planar rotation projec-
tion

cover the exterior side of 3D object more coherently. Yet, adding projections does

not necessarily cover all the areas. In other words, this projection is a generic form

of cube mapping since in this form of projection there is possibility to change the

rotation between each plane and also increase the number of rotations in order to

cover more points.

Figure 3.12 depicts one example projection with four planes and 90-degree rotation

between each plane, where the starting plane is P1 and it is aligned to X axis.

In Figure 3.13, an o�set is applied after �rst four rotations in order to help better

coverage of the 3D object and reducing occlusions. Thus, occlusions can be improved

by increasing the number of projection as depicted. But the main objection to this

method is the redundant projected points. As can be seen in Figure 3.13, there are

signi�cant similarities between the �rst four rotations and the last four projections

which leads to higher bitrate. Therefore, this projection needs some developments

in order to save bitrate.

Sequential Decimation

As illustrated in Figure 3.13, there is a considerable similarities between the �rst

four rotations and the last four rotations, thus sequential decimation is studied in
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Figure 3.13 Texture of projection planes for �rst frame of Longdress sequence, covered
by 8 rotations with rotation setp-size 90-degree and 45-degree o�set after 4 rotations.

this section in order to alleviate such issues of planar rotation method.

Figure 3.14 depicts the concept of the sequential decimation method. As shown in

the �gure, points which are projected successfully removed from point cloud, there-

fore the last projection is more sparse in comparison to the �rst one. The number

of planes, the angle of �rst plane to start, number of projection and angle between

each rotation can be given in the encoding parameters.

Figure 3.15(a) represents an example of sequential decimation with 4 primary ro-

tations and 4 additional rotations. As it can be observed, those points which are

successfully projected in the �rst 4 rotations are removed, then the rotation plane

is shifted by 45 degrees to cover points which do not have chance to project in the

earlier projections. Table 3.1 reveals that the sequential decimation method gained

remarkable higher PSNR and lower number of lost points in comparison to all exa-

mined projections. This method is able to preserve around 84% of the point cloud

content in the reconstruction process which is signi�cantly higher compared to other

methods that are studied before.

Furthermore, in terms of subjective performance, as shown in Figure 3.17(e), the

distortion of reconstructed point cloud is negligible and it is almost similar with the

original point cloud.
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Figure 3.14 E�ect of sequential decimation after each projection
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(a)

(b)

Figure 3.15 (a) Texture and (b) geometry projection images examples for Longdress sequence.
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Figure 3.16 Sequential decimation improves the occlusion handling in some concave areas
(left)

Table 3.1 Objective comparison of the 2D projection methods for point cloud compression

Projection
Symmetric PSNR Number of lost points Number of �nal points Original number of points

D1 D2 Y U V
Sphere 41.08 50.23 22.12 30.34 28.14 585282 180539 765821
Cylinder 56.16 63.90 25.96 35.04 33.23 536253 229568 765821
Cube 64.29 71.62 32.58 42.61 41.28 315868 449953 765821

Sequential decimation 69.43 75.44 31.24 32.94 34.82 116650 649171 765821
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(a) (b) (c) (d) (e)

Figure 3.17 Subjective comparison of studied projection methods for projection-based point cloud compression for (a) Original point cloud, (b)
Sphere, (c) Cylinder, (d) Cube, (e) Sequential decimation
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4. PROPOSED METHODS

This chapter includes motivation of the research and implementation details of the

proposed methods for improving 2D video coding of volumetric data.

Section 4.1 discusses the challenges ahead for the projection-based methods in intra-

and inter-frame coding operations. Section 4.2 includes the proposed solutions for

improving the performance of such approach.

4.1 Challenges in 2D Video Coding of Volumetric Data

As described in Section 3.2.2, the projection-based approach provides signi�cant

compression performance improvements over the state-of-the-art [1]. However, the

projected of 2D data includes sharp boundaries which are not rectangular and the-

refore it is not aligned with the block partitioning that are used in the 2D video

coding process. The sharp edges introduce crucial issues when using conventional

block-based DCT video coding schemes [22]. In the object boundaries, some blocks

may contain partial data from the projected point cloud content and partially from

the image plane background. In de-correlation process of video compression stan-

dards (e.g., DCT, DST, etc.), sharp edges in the boundary areas of projected ima-

ge are not coherent in terms of color intensity, because they contain information

from the projected point cloud data and the background of the projection plane.

And applying DCT/DST to such non-homogeneous content results in a lot of high-

frequency components. In block-based video coding standards, some functionalities

(e.g., zig-zag scan of DCT coe�cients) are tuned in a way that the high-frequency

components are less likely and/or with a smaller values than the low-frequency com-

ponents, therefore, after de-correlation and quantization processes of blocks in textu-

re plane, these non-homogeneous blocks generate many high-frequency components

which leads to visible artifact, in particular ringing e�ect and requires more bitrate

in the compression process [23].

Furthermore, these high-frequency components produce coding artifacts in the deco-

ded point cloud contain �ying points in the boundary areas of the point cloud da-

ta [3]. In order to alleviate some of the coding artifacts, a depth o�set z0 is de�ned



4.2. Proposed Methods 30

Figure 4.1 Small patches which are generated in sequential decimation.

to reduce te e�ect of coding artifacts. So the 3.4b is changed to:

D(x, y) = z + z0 (4.1)

In addition, sparsity of the point cloud data and having small patches in 2D pla-

ne leads to ine�ciencies in the compression process. As mentioned in Section 3.2

some of values in 2D color plane can be linearly interpolated if the missing points

are a few. But as it can be seen in �gure 4.1 the sequential decimation produces

small patches which leads to the sparse data in the projection plane. And since the

mentioned interpolation is applied the inner part of the patches, the interpolation is

not su�cient and other solutions must be considered as well. This chapter describes

methods in order to resolve the above-mentioned issues of projection-based point

cloud compression and improves the coding e�ciency.

4.2 Proposed Methods

This section describes the details of proposed algorithms and how the applied met-

hods in [3] helped the coding e�ciency and how they alleviate the above-mentioned

challenges of projection-based point cloud compression.

4.2.1 Padding

In order to resolve the issues which caused by the sharp edges in the projection boun-

daries, in this section some padding algorithms are proposed for providing smoother
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Figure 4.2 Applying simple padding to the sub-frame of projected patches edges.

transition between the projected point cloud data and the background of the ima-

ge plane. The performances are evaluated based on one frame for each point cloud

sequence by using the evaluation method which has been described in Section 2.3.

The BD-Rate results are reported in Table 4.1.

For the sake of simplicity, all the tested methods are applied to four rotation tech-

nique. The method which results in higher bitrate reduction is selected as the best

method.

Simple Padding

With the purpose of achieving smoother boundaries for the projected patches, a

simple padding method is studied in this section.

In this method, the border pixel values of the projected point cloud data in each

rotation is extended (or padded) in horizontal direction to the entire sub-frame of

that rotation. Figure 4.2 depicts the result of applying simple padding to the �rst

frame of Longdress sequence. As can be seen, the padded samples improved the

correlation of content particularly in the border areas of the projected point cloud.

Results in Table 4.1 show that this simple method provides around 7% and 6%

BD-Rate improvements in D1 and D2 quality metrics, respectively.

Replication of Patch Edges

This algorithm is follow almost the same principle as simple padding method, but

in this experiment there is not any sub-frame for each patch. Therefore, the padding
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Figure 4.3 Applying the replication to the edges of projected patches.

is applied from one known pixel value to the next known value.

Figure 4.3 shows how this padding a�ects the background data in the projection

plane. The unknown pixel values in left side of the 2D image are replicated from the

�rst pixel value of the edge in vertical axis, but for other values, pixel value of the

patch replicated from left to reach the next known value.

In comparison to Figure 4.2, the background is more coherent and the e�ect of

sharp edges in the border of each sub-frame has been disappeared. As can be seen

from the results in Table 4.1, this method improved the compression performance.

A negligible di�erence can be observed between this method and the simple padding

method in the geometry attributes. However, in terms of color attributes, improve-

ment the color edge extension provides better compression performance.

Interpolation Padding

As discussed in Section 3.2, it is feasible to estimate the color intensity of unknown

pixels between two known values by interpolation algorithms. Similar to above-

mentioned paddings, the left and right side of the 2D image can be replicated based

on the edge pixel value. Other unknown values which are located between two known

values can be interpolated based on the equation ( 3.5).

Figure 4.4 presents the result of applying the Interpolation Padding to the �rst

frame of Longdress sequence in which the left and right side of the image is padded

similar to aforementioned paddings.

The results in Table 4.1 illustrate that the Interpolation Padding method provides

lower compression gain when it is compared to the previous methods for geometry
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Figure 4.4 Applying the Interpolation Padding to the �rst frame of Longdress sequence.

attribute. However, this method reduces the bitrate signi�cantly in color attributes.

Edge Smoothing

This section studies a smoothing method for handling the sharp edge issues of the

projection-based point cloud compression method. In this method, prior to applying

the Edge Smoothing technique, the unoccupied projection planes (i.e., geometry

and texture) are initialized with zero values for each pixel. Then, the 3D data is

projected onto the corresponding 2D planes. Moreover, the background samples are

replaced with gray values. In order to increase the correlation of the background

data and the projected point cloud.

Then, Edge Smoothing is applied to the projected point cloud boundaries. This

technique includes applying averaging �lters in horizontal and vertical directions

successively.

For this purpose, the averaging �lter of equation ( 4.2) is used. In this formula, N

is the �lter kernel size and Xi,j is the pixel value at (i,j ) location inside the �lter

kernel. In our experiments, the kernel size of 7 provided the best results.

P =

∑N−1
i=0

∑N−1
j=0 Xi,j

N2
, (4.2)

Figure 4.6 illustrates an example of applying the proposed Edge Smoothing �lter

in horizontal direction. In this �gure, the blue part indicates a portion of the pro-

jected point cloud. The purple, pink and green kernels show the �lter kernels that
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Figure 4.5 Applying the replication to the edges of projected patches.

are applied in horizontal direction. The smoothing process stops at projected data

boundaries. Moreover, it does not a�ect the pixel values inside the projection areas.

By employing this algorithm, in both horizontal and vertical directions, the sharp in-

tensity transitions in the boundaries between the point cloud content and background

is reduced. And reducing this contrast, results in a coherent and smooth transition

between the projected point cloud data and the image plane background. Therefore,

the de-correlation process in the compression operation can take place properly and

the bitrate would decrease signi�cantly. Figure 4.5 depicts the result image after

using Edge Smoothing along horizontal and vertical directions.

It must be noticed that, the proposed padding method is only applied to the texture

plane not the geometry plane. The reason is that, if this �ltering is applied to the

geometry plane, the decoder will not be able to generate the original point cloud

data and the decoded point cloud will contain a lot of unwanted data that are used

for smoothing the boundaries of the projected data.

Table 4.1 reveals that the Edge Smoothing method shows signi�cant improvement

in terms of geometry and color attribute in comparison with other padding methods.

therefore Edge Smoothing method is chosen for reducing sharp edges and making

homogeneous 2D image and it will apply to sequential decimation which is main

projection approach for 2D video coding of point cloud.

The result of applying the proposed Edge Smoothing method is illustrated in Figure

4.7. In this �gure, the top �gure shows the original projected point cloud data and

the bottom one demonstrates the e�ect of Edge Smoothing operation. As can be

observed, the proposed method decreased the contrast of the background data and

point cloud data, particularly in the projection boundaries.

As the results in Table 4.1 demonstrate, the Edge Smoothing technique provide
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Figure 4.6 Employing Edge Smoothing in horizontal direction.

substantial BD-Rate performance in both geometry and color attributes compared

to other methods. Hence, this method is selected as the proper one among the stu-

died methods in order to handle the sharp edges of the projection-based point cloud

compression method.
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Figure 4.7 Top) Texture plane for decimation rotation, Bottom) Edge Smoothing applied for projected 3D data
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Table 4.1 BD-Rate (%) of applying di�erent padding methods to four rotation projection approach for one frame with the same QP.

Sequence
Simpe Paddign Replication of Patch Edges Interpolation Padding Edge Smoothing

D1 D2 Y U V D1 D2 Y U V D1 D2 Y U V D1 D2 Y U V
Loot -6.5% -6.3% -22.4% -49.0% -58.7% -4.7% -4.8% -24.5% -41.4% -55.7% -4.6% -4.6% -35.6% -59.1% -68.7% -5.6% -5.5% -34.8% -46.0% -59.7%

Redandblack -11.5% -9.6% -6.4% -19.5% -16.1% -11.5% -9.5% -16.0% -37.6% -24.6% -10.4% -8.3% -28.1% -47.2% -37.1% -12.8% -10.4% -18.1% -22.1% -26.4%
Soldier -9.1% -7.5% 47.0% -24.5% -26.3% -9.7% -7.9% -29.8% -29.3% -34.4% -8.1% -5.8% -18.4% -32.5% -42.7% -13.9% -11.0% -23.0% -32.8% -36.5%

Longdress -1.3% 0.5% -12.3% -100% -39.0% -1.6% -0.4% -9.3% -100.0% -34.8% -0.4% 1.7% -10.5% -98.3% -45.3% -6.1% 3.5% -15.2% -0.0% -44.3%
Average -7.1% -5.7% 1.5% -48.3% 35.0% -6.9% -5.5% -5.0% -52.1% -37.4% -5.9% -4.2% 23.2% -59.3% -48.4% -9.6% -7.6% -22.8% -25.2% -41.7%



4.2. Proposed Methods 38

Figure 4.8 An example of applying Patch Re�nement.

4.2.2 Patch Re�nement

As it was mentioned in Section 3.2.2, the sequential decimation method provides

additional projections to cover the points which are not initially projected to the

projection plane. As a result, their projections have a sparse distribution, as it can

be seen in Figure 4.7 (the last 4 projections). Such sparsity is not desirable in

image/video coding algorithms and increases the bitrate signi�cantly.

In order to decrease the e�ect of this sparse content, a method is studied in this

section that uses a �ltering operation for reducing the number of sparse content in

a way that can improve the compression performance and has negligible impact on

the quality of the decoded point cloud data.

For this purpose, after the interpolation and Edge Smoothing processes, a binary

occupancy mask is extracted from the output texture plane for processing such small

patches. The binary occupancy mask is a mask which indicates occupied pixels in

texture plane.

The Patch Re�nement technique includes a process of removing the samples in a

certain area of the sparse data that have less connection to the neighboring samples

than a per-de�ned threshold (i.e., based on number of samples). This process is

illustrated in Figure 4.8.

As it can be observed from the �gure, a 3×3 �lter is selected for this analysis.

The �lter kernel is applied to the sparse sampling area and detects whether the

central point of the kernel has connections to at least three samples inside the kernel.

Otherwise, the value of the point will be replaced by the background value in both

texture and geometry images. In another words, the more connection a certain point

has with its neighborhood samples, the more probable to preserve the point.

In the example of Figure 4.8, the center point of the red kernel is connected to only

one point, so this point will be removed. Whereas, for the green kernel the center

value is connected to 4 neighbors, so no change will occur.

As a result of the re-�ltering operation in Patch Re�nement, the discontinuity of
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the samples in the sparse area is reduced and consequently the required bitrate will

decrease signi�cantly.

Figure 4.9 illustrates the result of applying the Patch Re�nement technique to the

sparse data in the projection-based method (the last 4 projections). As can be seen

from the �gure (bottom �gure), the Patch Re�nement method reduced the sparsity

of the last four projections. This e�ect is highlighted by red circles in the top �gure

which indicates the samples that are removed in the re�nement process in bottom

�gure.
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Figure 4.9 Top) Texture plane for decimation rotation after applying Edge Smoothing, Bottom) Patch Re�nement technique is applied for
projected 3D data
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5. EXPERIMENTAL RESULTS

This chapter presents the experimental condition, results and analysis of the imple-

mented methods which are proposed in chapter 4.

Results were provided for dynamic objects testset (category two). Moreover, the ex-

periments were conducted for two coding con�gurations: 1) All Intra (AI) and, 2)

Random Access (RA).

5.1 Point Cloud Data

To evaluate the performance of the proposed algorithms 4 point cloud sequences

which are provided by 8i [24] are used for simulations. Table 5.1 shows a list of the

3D point cloud test material dataset and their speci�cations.

5.2 Implementation and Source Code

The projection-based point cloud compression have been implemented in C++ lan-

guage on top of scalable extension of the HEVC standard (SHVC), SHM reference

software version 12.2 [19], therefore all proposed methods have been implemented in

the same layout. It has been compiled and tested on Windows, Linux and MacOS

systems. Since the core of projection-based is 2D video coding, it can be integrated

on top of any 2D standard video coding.

Table 5.1 Video sequences of dynamic objects test Category two that are used in this
experiment

Test material dataset �lename Number of
frames

Average points
per frame

Geometry
Precision

Attributes Peak Value (p)

8i VFB Loot 300 782,000 10 bit R,G,B 1023
8i VFB RedandBlack 300 700,000 10 bit R,G,B 1023
8i VFB Soldier 300 1,500,000 10 bit R,G,B 1023
8i VFB Longdress 300 800,000 10 bit R,G,B 1023
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5.3 Experimental Condition

The evaluation of 2D video coding of volumetric data was performed under MPEG

Call for Proposals (CfP) for point cloud compression. For more details, please refer

to the CfP document [2] and its corrigenda [25].

The performances were analyzed for �ve di�erent bitrate targets in the range from

3 to 43 Mbit/s in All Intra and Random Access (RA) con�gurations.

The performances were analyzed based on the well-known Bjøntegaard Delta Bitrate

(BDBR) criterion [26], in which the negative values indicate the bitrate reduction

in the same peak signal-to-noise ratio (PSNR) quality. Similarly, the positive values

represent how much the bitrate is increased in the same quality level.

In order to compare Point cloud Compression (PCC) solutions, in addition to above-

mentioned evaluation criteria the compression rate is also considered. Therefore,

BD-rate is is used for assessment.

5.4 Results

This section presents the results of implemented proposed algorithms that were desc-

ribed in Section 4 for 2D compression of point cloud data.

The results of applying Edge Smoothing method of Subsection 4.2.1 is described in

subsection 5.4.1. The performance of Patch Re�nement method in Section 4.2.2 is

demonstrated in Subsection 5.4.2. Furthermore, the combined results of both met-

hods are illustrated in subsection 5.4.3.

Finally, the complexity evaluations of the proposed methods are described in Sub-

section 5.5.

5.4.1 Applying Edge Smoothing Method

Tables 5.2 and 5.3 show the performances of applying the proposed Edge Smoot-

hing method in the case of All Intra and Random Access con�gurations, respectively.

As can be seen from the tables, the Edge Smoothing method provides signi�cant

and consistent bitrate reduction for all the test data regardless of the utilized con-

�guration.

In the AI con�guration, the proposed method improves the compression performance

on average by around 13% for the geometry component by using D1 and D2 quality

metrics. This performance is higher for the color components in which on average

around 16%, 52% and 29% bitrate reductions were achieved for Y, U and V compo-

nents, respectively.



5.4. Results 43

Table 5.2 BD-Rate (%) and BD-PSNR [dB] performances for Intra-frame and applying
Edge Smoothing

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -11.7% -12.4% -15.8% -45.0% -40.3% 0.48 0.53 0.43 0.71 0.79

Redandblack -9.8% -9.3% -13.2% -36.7% -17.1% 0.45 0.49 0.34 0.35 0.21
Soldier -15.4% -13.7% -17.9% -96.0% -40.1% 0.68 0.65 0.43 0.28 0.44

Longdress -16.7% -14.5% -17.6% -31.5% -19.2% 0.77 0.73 0.35 0.14 0.24
Average -13.4% -12.5% -16.1% -52.3% -29.2% 0.60 0.60 0.38 0.37 0.42

Table 5.3 BD-Rate (%) and BD-PSNR [dB] performances for Inter-frame and applying
Edge Smoothing

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -18.4% -18.2% -18.8% -35.1% -39.0% 1.47 1.73 0.85 1.10 1.28

Redandblack -9.1% -9.1% -15.3% -22.7% -14.6% 0.64 0.75 0.80 0.56 0.54
Soldier -24.0% -23.4% -26.2% -29.5% -32.0% 1.32 1.67 1.00 0.68 0.99

Longdress -19.3% -19.2% -22.3% -24.8% -21.8% 1.21 1.41 0.76 0.50 0.62
Average -17.7% -17.5% -20.6% -28.0% -26.9% 1.16 1.39 0.85 0.71 0.86

For the RA scenario, the Edge Smoothing algorithm provided higher gains compared

to AI case. More than 17% bitrate reduction is achieved for geometry component

when using D1 and D2 metrics. The bitrate reductions of color components are

around 20%, 28% and 27% for the Y, U and V components, respectively.

Another observation from the results is that, the proposed Edge Smoothing method

performs better in sequences that have homogeneous texture in the content. For

example, in Longdress and Soldier, the performance is signi�cant for both AI and

RA con�gurations. On the other hand, for the Redandblack point cloud, the bitrate

reduction is lower when compared to other sequences due to the complex texture in

this content.

Figure 5.1 shows the Rate-Distortion (RD) curves of the proposed Edge Smoothing

method in the case of AI con�guration for Loot sequence. As can be observed from

the �gures, the Edge Smoothing technique provide consistent improvements for qua-

lity metrics of D1 (Figure 5.1.a), D2 (Figure 5.1.b) and luma component (Figure

5.1.c).

The behavior is similar in the RA con�guration in Figure 5.2. Moreover, in this case,

the bitrate reduction is signi�cantly higher in lower bitrates than higher bitrates.

5.4.2 Applying Patch Re�nement Technique

The result of applying proposed Patch Re�nement method in the case of AI and RA

con�gurations are illustrated in Tables 5.4 and 5.5, respectively.

Similar to the Edge Smoothing results, the Patch Re�nement method performs bet-
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Table 5.4 BD-Rate (%) and BD-PSNR [dB] performances for Intra-frame and applying
Patch Re�nement

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -3.6% -2.4% -3.2% -2.5% -3.0% 0.15 0.09 0.08 0.03 0.05

Redandblack -3.3% -2.2% -2.4% -2.1% -1.9% 0.15 0.11 0.06 0.02 0.02
Soldier -4.1% -2.8% -3.0% 81.0% -2.6% 0.16 0.13 0.07 0.03 0.03

Longdress -6.1% -5.4% -6.1% -5.3% -5.6% 0.27 0.27 0.12 0.02 0.07
Average -4.3% -3.2% -3.7% 17.8% -3.3% 0.18 0.15 0.08 0.02 0.04

Table 5.5 BD-Rate (%) and BD-PSNR [dB] performances for Inter-frame and applying
Patch Re�nement

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -12.9% -12.8% -12.1% -13.2% -13.0% 1.11 1.29 0.58 0.31 0.34

Redandblack -9.1% -9.1% -9.5% -9.6% -9.2% 0.63 0.74 0.49 0.21 0.32
Soldier -10.4% -10.4% -10.1% -9.6% -9.5% 0.55 0.71 0.37 0.20 0.27

Longdress -11.4% -11.3% -10.8% -11.1% -10.2% 0.67 0.77 0.35 0.19 0.27
Average -11.0% -10.9% -10.6% -10.9% -10.5% 0.74 0.88 0.45 0.23 0.30

ter in the RA con�guration than the AI case. In the case of AI con�guration, one

average of all sequences, around 3% - 4% bitrate reduction is achieved for geometry

and color components.

Similar sequence-wise performance variation can be seen from the results. Where,

the Patch Re�nement method provided higher bitrate reduction in the sequences

which uniform texture than the complex ones.

The proposed method reduced the bitrate by more than 10% on average for geomet-

ry and color components, when the Random Access con�gurations is used.

Figures 5.3 and 5.4 illustrate the RD-Curves of the proposed Patch Re�nement met-

hod for Loot point cloud sequence. As can be seen, the proposed method provides

better performance compared to the reference. The performance is higher in the ca-

se of random access con�guration, where the Patch Re�nement method reduces the

bitrate consistently in all bitrate levels. However, this performance behavior is di�e-

rent in all intra con�guration and the proposed method provides better performance

in higher bitrates.

5.4.3 Applying Edge Smoothing and Patch Re�nement Met-

hods

Tables 5.6 and 5.7 illustrate the performance of applying both Edge Smoothing and

Patch Re�nement methods when these methods are used in AI and RA con�gura-

tions, respectively.
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Table 5.6 BD-Rate (%) and BD-PSNR [dB] performances for Intra-frame and applying
both Edge Smoothing and Patch Re�nement

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -15.0% -14.5% -18.6% -45.8% -41.9% 0.65 0.64 0.52 0.75 0.85

Redandblack -13.1% -11.6% -15.5% -37.5% -18.7% 0.63 0.63 0.40 0.37 0.24
Soldier -18.4% -16.0% -20.0% -92.9% -40.7% 0.84 0.76 0.48 0.29 0.44

Longdress -20.5% -18.4% -21.8% -32.9% -23.2% 0.99 0.98 0.45 0.16 0.30
Average -16.8% -15.1% -19.0% -52.3% -31.1% 0.78 0.75 0.46 0.39 0.45

Table 5.7 BD-Rate (%) and BD-PSNR [dB] performances for Inter-frame and applying
both Edge Smoothing and Patch Re�nement

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -29.5% -29.3% -29.2% -43.9% -47.4% 2.36 2.79 1.35 1.39 1.61

Redandblack -17.5% -17.5% -23.3% -29.8% -22.5% 1.30 1.53 1.26 0.78 0.87
Soldier -31.4% -31.0% -33.1% -35.9% -37.7% 1.79 2.30 1.31 0.86 1.21

Longdress -27.6% -27.5% -29.6% -32.0% -28.9% 1.77 2.08 1.03 0.67 0.85
Average -26.5% -26.3% -28.8% -35.4% -34.1% 1.81 2.17 1.24 0.92 1.14

As can be seen from the results, the combination of both methods provide signi-

�cant bitrate reduction in both con�gurations.

In the AI test case, the combined methods reduced the required bitrate by around

16% for geometry component. For the color components, bitrate reductions of 19%,

52% and 31% achieved for Y, U and V components, respectively.

The performance is higher when these methods are used in RA con�gurations, whe-

re around 26% bitrate reduction was achieved for geometry and 29%, 35% and 34%

improvements for YUV color components, respectively.

The advantage of proposed methods it that they do not negate the e�ect of each

other, therefore the overall performance will boost by applying both.

As mentioned before, both proposed methods provide higher improvements when

they are used in Random Access con�guration than All Intra case. This is a welco-

med performance behavior since the inter prediction is normally considered for real-

world scenarios in point cloud compression.

The RD-Curves of this testing scenario is demonstrated in Figures 5.5 and 5.6 for

AI and RA con�gurations, respectively. As these curves illustrate, the combination

of the proposed methods provide signi�cant bitrate reduction in both AI and RA

con�gurations in all bitrate levels. In the case of RA con�guration, the bitrate re-

duction is higher in the lower bitrates compared to higher bitrates.
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(a)

(b)

(c)

Figure 5.1 Rate-Distortion curves for the Loot sequence compared to reference for AI
con�guration and applying Edge Smoothing. (a) D1 point-to-point , (b) D2 point-to-plane,
and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.2 Rate-Distortion curves for the Loot sequence compared to reference for RA
con�guration and applying Edge Smoothing. (a) D1 point-to-point , (b) D2 point-to-plane,
and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.3 Rate-Distortion curves for the Loot sequence compared to reference for AI
con�guration and applying Patch Re�nement. (a) D1 point-to-point , (b) D2 point-to-plane,
and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.4 Rate-Distortion curves for the Loot sequence compared to reference for RA
con�guration and applying Patch Re�nement. (a) D1 point-to-point , (b) D2 point-to-plane,
and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.5 Rate-Distortion curves for the Loot sequence compared to reference for AI
con�guration and applying Edge Smoothing Patch Re�nement. (a) D1 point-to-point , (b)
D2 point-to-plane, and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.6 Rate-Distortion curves for the Loot sequence compared to reference for RA
con�guration and applying edge smoothing Patch Re�nement. (a) D1 point-to-point , (b)
D2 point-to-plane, and (c) luma(Y) PSNRs
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Table 5.8 BD-Rate (%) and BD-PSNR [dB] performances for Intra-frame comparison of
reference technology [1] and improved 2D video coding of volumetric data [3,4]

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -54.9% -65.9% -59.6% -63.3% -81.0% 4.41 5.06 1.92 1.42 2.83

Redandblack -39.0% -48.6% -26.2% -75.0% -100.0% 2.79 3.46 0.69 1.60 3.52
Soldier -3.0% -56.8% 1.9% -6.6% 125.9% 0.36 4.17 -0.03 -0.82 -1.28

Longdress -68.1% -53.8% -56.8% -88.1% -100.0% 5.84 4.05 1.62 1.68 3.35
Average -41.2% -56.3% -35.2% -58.3% -38.8% 3.35 4.18 1.05 0.97 2.11

Table 5.9 BD-Rate (%) and BD-PSNR [dB] performances for Inter-frame comparison of
reference technology [1] and improved 2D video coding of volumetric data [3,4]

Sequence
BD-Rate (%) BD-PSNR [dB]

D1 D2 Y U V D1 D2 Y U V
Loot -71.2% -49.2% -64.8% -84.9% -100.0% 8.08 5.51 3.50 3.76 5.22

Redandblack -63.9% -35.1% -17.6% -66.3% -79.3% 5.63 3.29 0.56 2.10 4.17
Soldier -75.7% -67.2% -58.9% -62.0% -52.3% 6.06 6.78 2.31 1.51 1.48

Longdress -79.0% -59.5% -65.4% -86.4% -100.0% 8.26 5.69 2.72 3.18 4.71
Average -72.4% -52.8% -51.7% -74.9% -82.9% 7.01 5.32 2.27 2.64 3.90

5.4.4 Improved Projection-based Method Versus the State-

of-the-Art

Tables 5.8 and 5.9 demonstrate the comparison of improved projection-based and re-

ference technology in point cloud compression [1]. The tables reveal signi�cant bitra-

te improvement for adding proposed tools to projection-based point cloud compres-

sion for all metrics. In the AI scenario, the improved projection-based method re-

duced the required bitrate by around 40% for geometry component. For the color

components, bitrate reductions of 35%, 58% and 38% achieved for Y, U and V com-

ponents, respectively.

The performances are higher in RA con�guration compared to the AI testing case.

The required bitrate for D1 metric(point-to-point distortion) is reduced by 72% and

for YUV color components improved by 50%, 75% and 83%, respectively.

Figures 5.7 and 5.8 demonstrate the RD-Curves of the projection-based and the re-

ference technology for point cloud compression. As can be observed, the projection-

based approach outperforms the reference technology signi�cantly regardless of the

coding con�guration. However, the performance of the projection-based scheme is

higher in the RA con�guration than the AI con�guration compared to the reference

technology.
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(a)

(b)

(c)

Figure 5.7 Rate-Distortion curves for the Loot sequence compared to reference for AI
con�guration and projection-based approach. (a) D1 point-to-point , (b) D2 point-to-plane,
and (c) luma(Y) PSNRs
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(a)

(b)

(c)

Figure 5.8 Rate-Distortion curves for the Loot sequence compared to reference for RA
con�guration and applying Edge Smoothing Patch Re�nement. (a) D1 point-to-point , (b)
D2 point-to-plane, and (c) luma(Y) PSNRs
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(a) (b) (c) (d) (e)

Figure 5.9 (a) Original Longdress point cloud. Decoded Longdress point clouds in the 94 Mbit/s (b) without proposed methods, (c) applying
Edge Smoothing, (d) applying Patch Re�nement, (e) applying both Edge Smoothing and Patch Re�nement
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(a) (b) (c) (d) (e)

Figure 5.10 (a) Original Soldier point cloud. Decoded Soldier point clouds in the 63 Mbit/s (b) without proposed methods, (c) applying Edge
Smoothing, (d) applying Patch Re�nement, (e) applying both Edge Smoothing and Patch Re�nement
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Table 5.10 Complexity evaluation for all intra con�g and applying Edge Smoothing and/or
Patch Re�nement

Sequence
Edge Smoothing (%) Patch Re�nement (%) Both (%)
Encoder Decoder Encoder Decoder Encoder Decoder

Loot 100.7% 100.5 97.7% 100.2 100.4% 101.5%
Redandblack 99.4% 100.5 99.4% 100.4 99.0% 101.1%

Soldier 105.5% 101.7 105.0% 101.6 104.4% 102.2%
Longdress 96.7% 100.5 101.3% 103.6 104.1% 104.3%
Average 99.3% 100.9% 100.8% 101.4% 102.0% 102.3%

Table 5.11 Complexity evaluation for random access con�g and applying Edge Smoothing
and/or Patch re�nement

Sequence
Edge Smoothing (%) Patch Re�nement (%) Both (%)
Encoder Decoder Encoder Decoder Encoder Decoder

Loot 105.7% 101.1 103.5% 100.4 104.3% 101.8%
Redandblack 99.6% 100.9 97.8% 101.4 98.8% 101.4%

Soldier 95.3% 100.1 97.2% 98.5 95.6% 99.7%
Longdress 96.2% 101.0 96.9% 104.7 89.1% 101.9%
Average 99.1% 101.0% 98.8% 101.2% 96.8% 101.2%

Figure 5.9 and 5.10 demonstrate the subjective comparison between the original

point cloud, reference (decoded point cloud without using the proposed solutions

in this thesis), applied each proposed solutions separately and combined both pro-

posed solutions for Longdress and Soldier sequences at 94 Mbit/s and 63 Mbit/s,

respectively. The decoded point clouds for each sequence are in the same bitrate le-

vel in order to observe the quality performance of described methods. It may not be

possible to see the di�erences in the �rst glance, yet there are some places in which

the quality improvement is prominent and visible to the naked eyes. For instance,

the coding artifacts in the shoulder of the Longdress is removed or the scar in face

of Solider is almost �lled in addition to his sleeves. As it can be seen from the �gu-

res, the proposed algorithms have improved the quality of the decoded point clouds

signi�cantly compared to the reference method.

5.5 Complexity Analysis

The encoding and decoding complexities of the proposed methods in this work com-

pared to the projection-based scheme are shown in Tables 5.10 and 5.11 for AI and

RA con�gurations, respectively. The evaluations are done based on the encoding

and decoding runtimes in the same operating system.

As can be observed from the tables, the proposed methods has negligible impact

in the complexities in both encoder and decoder while providing signi�cant bitrate
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reductions.

The run time numbers for encoding and decoding is also reported as an comparison

factor to examine the complexity of proposed algorithms.

Tables 5.10 and 5.11 represent complexity of applying Edge Smoothing and Patch

Re�nement methods on top of the projection-based point cloud compression ap-

proach.

As shown for applying the Edge Smoothing in both all intra and random access the

run time for encoder is decreased by one percent, while in the decoder side the run

time is increased by one percent.

The complexity e�ect of the proposed Edge Smoothing method is on average 1%

decrease and 1% increase in encoding and decoding operations, respectively for both

AI and RA con�gurations. The Patch Re�nement method increases the encoding

and decoding time by around 1% on average for AI con�guration. However, in the

RA con�guration, the decoding time is increased by around 1% while the encoding

complexity is reduced by 1%. Such behavior can also be observed when both Edge

Smoothing and Patch Re�nement tools are enabled. In this case, the encoding and

decoding complexities are increased by around 2% on average for AI con�gurations.

In the case of RA con�gurations, the decoding runtime is increased by around 1%

whereas the encoding complexity is decreased by around 3%.
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6. CONCLUSION AND FUTURE WORK

This chapter provides a summary of the work which have been done in this thesis,

limitations of the studied methods, as well as the future work regarding the research

topic of this work.

Many point cloud compression solutions have been suggested in the literature and in

the recent study, a projections-based scheme has been proposed to compress point

cloud data e�ciently. In this approach, the volumetric video data is projected on

2D image planes and 2D video coding standards are utilized in order to compress

the projected 2D data.

In this study several projection methods have been examined in order to select the

best projection. In this context, a suitable projection was de�ned as an approach

which loses less points, handles the occlusions and gains high PSNR. The conducted

studies demonstrated that the sequential decimation method satis�es the above-

mentioned criterias for the 2D projection of point cloud content.

In addition, this thesis work highlighted the importance of addressing high-frequency

content in projection-based compression of volumetric data using 2D video coding

technology. Since most of 2D video coding standards are block-based, the sharp ed-

ges of projected patches in 2D plane would generate high-frequency components.

Therefore, the sharp edges of projected patches and sparsity in projected 2D ima-

ges require special attention. Accordingly, two algorithms have been added to the

projection-based approach to improve the coding e�ciency. First, in order to tackle

the high contrast and transition between the background and the projected patc-

hes, the Edge Smoothing method is proposed. The proposed method improved the

coding e�ciency remarkably. By applying this algorithm bitrate is decreased by

around 18% and 20% in geometry and color attribute, respectively. Moreover, for

the purpose of reducing the sparsity in the 2D plane, Patch Re�nement is introduced

to preserve points which has most connection with the neighbors. In this method,

bitrate is decreased by approximately 18% for geometry and 20% color attribute.

Applying the combination of both Edge Smoothing and Patch Re�nement methods

provided on average bitrate reductions of around 26% for geometry and 29% color

attributes.

In overall, the projection-based approach reduced the required bitrate by around
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(a) (b)

Figure 6.1 (a)Repartitioning of scene or (b) object into smaller generic projection geo-
metries

72% for geometry, and 51% color attribute compared to the reference technology

in which approximately one third of total bitrates saving is achieved by proposed

methods in this thesis. Furthermore, the proposed solutions reduced the coding ar-

tifacts in the boundary areas of the projected point cloud data.

The proposed algorithms have been implemented and integrated as part of a contri-

bution to the MPEG CfP on Point Cloud Compression [3,4] and objective evaluation

proves the claim of improvement.

Although projection-based method provides signi�cant coding gains compared to

the state-of-the-art, we are aware that our research may have two inevitable limita-

tions which originates from 3D to 2D projection. The �rst one is due to the occlusion

in the projections process leads holes in the reconstructed point cloud. The second

issue is related to invalid 3D points in the reconstruction point cloud due to the 2D

video coding artifacts [3].

The projection-based is a novel and e�cient method to compress point cloud data.

The principal advantage of this approach is that it uses the standard 2D video co-

ding technology, which is outcome of several decades of experts' work in the �eld

of 2D video coding. Furthermore, current software and hardware are compatible for

real-time implementation. Moreover, spatial and temporal compression e�ciency is

highly improves over the state-of-the-art for point cloud compression [1]. The cur-

rent form of point cloud compression is suitable for evaluation content for Category

2 of the CfP, i.e. a single, coherent, moving object without any additional scene-

ry or background. Although for future works it is feasible to use current approach

for complicated scenes. Figure 6.1 shows repartitioning of the object into smaller

projection planes and in larger scene subdivide the scene with di�erent objects and

project into smaller projection geometries.
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