

AIBIKE YESSIMBEKOVA

Master of Science Thesis

“Autonomous Navigation of Mobile Robots: Marker-based Localization System

and On-line Path”

Examiner:
Prof. Jose L. Martinez Lastra
Examiner and topic approved on 3th
of January 2018

i

ABSTRACT

AIBIKE YESSIMBEKOVA:
Tampere University of technology
Master of Science Thesis 60 pages, 11 Appendix pages
September 2018
Master’s Degree in Automation Engineering,
Major: Factory Automation and Industrial Informatics
Examiner: Professor Jose L. Martinez Lastra

Keywords: autonomous navigation, intelligent wheelchair, indoor navigation, hu-
man-computer interaction

Traditional wheelchairs are controlled mainly by joystick, which is not suitable
solution with major disabilities. Current thesis aiming to create a human-machine
interface and create a software, which performs indoor autonomous navigation
of the commercial wheelchair RoboEye, developed at the Measurements Instru-
mentations Robotic Laboratory at the University of Trento in collaboration with
Robosense and Xtrensa,. RoboEye is an intelligent wheelchair that aims to sup-
port people by providing independence and autonomy of movement, affected by
serious mobility problems from impairing pathologies (for example ALS – amyo-
trophic lateral sclerosis).

This thesis is divided into two main parts – human machine interface creation
plus integration of existing services into developed solution, and performing pos-
sible solution how given wheelchair can navigate manually utilizing eye-tracking
technologies, TOF cameras, odometric localization and Aruco markers.

Developed interface supports manual, semi-autonomous and autonomous navi-
gation. In addition to that following user experience specific for eye-tracking de-
vices and people with major disabilities. Application delevoped on Unity 3D soft-
ware using C# script following state-machine approach with multiple scenes and
components.

In the current master thesis, suggested solution satisfies user’s need to navigate
hands-free, as less tiring as possible. Moreover, user can choose the destination
point from defined in advance points of interests and reach it with no further input
needed. User interface is intuitive and clear for experienced and unexperienced
users. The user can choose UI’s icons image, scale and font size. Software per-
forms in a state machine module, which is tested among users using test cases.
Path planning routine is solved using Dijkstra approach and proved to be efficient.

ii

PREFACE

This Master of Science Thesis is made at the Laboratory of Measurements Instrumenta-

tion and Robotics in the University of Trento as a part of the exchange studies. This work

is not a usual thesis, since it is a continuation of an existing project, which aims to improve

the life of people with limited mobility. From the beginning of my studies, I always

wanted to create a product that can be beneficial for people. I was looking for a right topic

for a while and today I am happy that I was a part of this important project.

The process of working on this Master thesis was challenging not only from the technical

point of view but also from also from the personal side. Even though I had a great oppor-

tunity to explore a new country, culture, language, working environment, sometimes I

found it very difficult to adapt, since Italian lifestyle is completely different not only from

my home country life but from also Finnish one. Unfortunately, not every step of the

thesis work was rewarding. Often I spent a lot of time to find a great solution, but instead,

I kept finding thousands of ways that did not work. However, when the solution was ready

I felt a great happiness and satisfaction, so I came back to Finland relieved. I was lucky

to have a support from right people during the project completion; I want to express my

gratitude to all of them.

First, I want to thank Professor Mariolino de Cecco for giving me an opportunity to be a

part of RoboEye challenge. Also thank you all the MIRO team members, special thanks

to Luca Maule for being patient and supportive every time I needed.

I want also to thank Professor Jose L. Martinez Lastra for examining this thesis.

I would like to thank my friends who helped me to stay motivated and productive. The

great gratitude to those who tested my solution and gave the honest feedback.

Last but not the least, thanks to my family who always supports me.

In Tampere, Finland, 2018

Aibike Yessimbekova

iii

CONTENTS

1. INTRODUCTION .. 1

1.1 Motivation and Justification ... 1

1.2 Problem statement .. 3

1.3 Objectives ... 4

1.4 Outline .. 5

2. LITERATURE AND BEST PRACTICES REVIEW .. 7

2.1 Autonomous Exploration and Navigation .. 7

2.2 Autonomous Navigation Using Intermediate Targets 9

2.3 Wheelchair controlled by eye-only .. 11

2.4 Autonomous Mobile Robot Navigation in Indoor Environment 14

2.5 Commercialization of intelligent wheelchairs.. 15

2.6 Environment and common techniques for developing UI 16

2.6.1 Programming environment .. 17

2.6.2 Cameras ... 18

2.6.3 Assets ... 19

Components and Scripts ... 20

2.6.4 UI development essentials ... 20

Reason for choosing C# over UnityScript ... 21

2.6.5 Software development. State Machine approach. 22

2.6.6 Delegating game control to a State .. 24

Switching to another State when called to do so ... 25

2.6.7 Keeping track of the active State ... 25

Unity creates Components behind the scenes .. 26

2.6.8 Changing Scenes destroys the existing GameObjects 26

2.6.9 UI control. Eye Tracking. .. 27

3. THEORETICAL PROPOSAL .. 29

3.1 User experience for Eye-Tracking based HMI .. 29

3.2 Path planning .. 31

3.2.1 Localization of the wheelchair inside domestic environment........ 31

3.2.2 Dijkstra algorithm .. 32

3.2.3 Environmental Map of Point of Interests and Graph-Based

Adaptation 34

4. PROOF OF IMPLEMENTATION OF THE DEVELOPED SOLUTION 39

4.1 Testbed description .. 39

4.1.1 Architecture overview .. 39

4.1.2 Manual navigation ... 40

4.1.3 Semi-autonomous navigation .. 42

4.1.4 Software overview ... 43

4.2 Human machine interface implementation .. 44

4.3 Path planning solution .. 52

iv

4.3.1 Environmental map validation, graph based adaptation 52

4.3.2 Dijkstra algorithm simulation .. 54

5. CONCLUSIONS AND FUTURE IMPROVEMENTS .. 59

6. REFERENCES .. 61

APPENDIX A: .. 65

v

LIST OF FIGURES

Figure 1 System structure diagram ... 8

Figure 2 The distances measured by the ultrasonic sensor .. 11

Figure 3 Camera placement comparison. Usually a camera placed at point 2, but

in proposed prototype, it is place at point 2 .. 12

Figure 4 Wheelchair control with user of four key commands on a user interface 13

Figure 5 Illumination influence on a success rate .. 13

Figure 6 Invisible UI layout put on top of a video scene image 14

Figure 7 Representation of World Space and Local Space coordination systems 18

Figure 8 Camera components ... 18

Figure 9 Transform component of a GameObject. ... 20

Figure 10 State Machine diagram .. 24

Figure 11 State Manager control delegation .. 25

Figure 12 State Machine SwitchState() diagram .. 25

Figure 13 Five steps of a high-performing Tobii eye-tracking system 28

Figure 14 Canvas components and it's settings .. 30

Figure 15 Example of the Dijkstra algorithm ... 33

Figure 16 CAD map of the environment ... 35

Figure 17 Representation of a JSON map of the environment 36

Figure 18 Graph class and Graph Nodes ... 36

Figure 19 UML diagram point of interest... 36

Figure 20 ReadData() function's block diagram .. 38

Figure 21 RoboEye prototype ... 40

Figure 22 Control law of angular and frontal velocities .. 41

Figure 23 DLL structure [2] ... 43

Figure 24 Developed State Machine of the Human-Machine Interface 44

Figure 25 State Manager and IState base classes .. 45

Figure 26 Main screen human machine interface .. 50

Figure 27 Menu settings.. 51

Figure 28 Manual navigation mode .. 51

Figure 29 Semi-autonomous navigation mode ... 52

Figure 30 User interface, rooms menu ... 53

Figure 31 Path planning scene user interface .. 53

Figure 32 Class diagram Graph, GraphNodes... 54

Figure 33 Graph-based map ... 54

Figure 34 Scene Idle, flow chart, StateUpdate() part 1/2 ... 65

Figure 35 Scene Idle, flow chart, StateUpdate(), part 2/2 .. 66

Figure 36 Manual/Semi-autonomous scenes, flow chart, StateUpdate() 67

Figure 37 Map autonomous navigation, Flow chart, StateUpdate(), part 1/2 68

Figure 38 Map autonomous navigation, Flow chart, StateUpdate(), part 2/2 69

Figure 39 Map autonomous navigation, flow chart, Buttons() 70

vi

Figure 40 Map autonomous navigation, flow chart, ButtonsHorizontal() 71

Figure 41 Map autonomous navigation, flow chart, ReadData() 72

Figure 42 Path planning, flow chart, StateUpdate(), part 1/2 73

Figure 43 Path planning, flow chart, StateUpdate(), part 2/2 74

Figure 44 Path planning, flow chart InternalFind() ... 75

Figure 45 Software architecture scheme .. 76

vii

 LIST OF TABLES

Table 1 Comparison of all related wheelchairs .. 16

Table 2 Test cases to be followed for the IDLE state .. 46

Table 3 Test cases to be followed for the MANUAL state .. 46

Table 4 Test cases to be followed for the SEMI-AUTONOMOUS state 47

Table 5 Test cases to be followed for the SETTINGS state ... 47

Table 6 Test cases to be followed for the MAP AUTONOMOUS state 50

Table 7 Simulation results from node 1001 to the rest of nodes 55

Table 8 Results of simulation from the node 1002 to the rest of nodes 55

Table 9 Results of simulation from node 1003 to the rest of nodes 55

Table 10 Results of simulation from the node 1004 to the rest of nodes 56

Table 11 Results of simulation from the node 1101 to the rest of nodes 56

Table 12 Results of simulation from the node 1102 to the rest of nodes 56

Table 13 Results of simulation from the node 1103 to the rest of the nodes................... 57

Table 14 Results of simulation from the node 1201 to the rest of the nodes................... 57

Table 15 Results of simulation from the node 1202 to the rest of the nodes................... 57

Table 16 Results of simulation from the node 1203 to the rest of the nodes................... 58

viii

LIST OF ACRONYMS

TUT Tampere University of Technology

ALS Amyotrophic Lateral Sclerosis

HMI Human Machine Interface

UI User Interface

AR Augmented Reality

EOG Electrooculography

EMG Electromyography

LIDAR Light Identification Detection and Ranging

PLC Programmable Logic Controller

ROS Robot Operating System

RGB-D a combination of a RGB (Red, Green, Blue) image and its corre-

sponding Depth image

TOF Time of flight

CAD Computer aided design

JSON JavaScript Object Notation

ID Identification number

PWM Pulse-Width Modulation

APP Application Software

LED Light-emitting Diode

LUX International System of Units of illuminance

RFID Radio-Frequency identification

GPS Global Positioning System

FPS Frame-per-second

POI Point of Interest

IC Integrated circuit

DLL Data Link Layer

OS Operating System

ix

LIST OF SYMBOLS

Symbol SI unit Description

T [s] the sampling time

𝑉 [m/s] speed

Θ [˚] orientation in Cartesian space

X, Y [m] position of a wheelchair in Cartesian space

𝑅𝑅 and 𝑅𝐿 [m] Right and left wheels radius

𝑛𝑅𝑘 and 𝑛𝐿𝑘 [-] the number of counts from the right and left encoders re-

spectively between two subsequent step

𝑛𝑜 [-] the number of counts of the encoder

𝑥𝑘, 𝑦𝑘 [m] the estimated position

𝛿𝑘 [m] the estimated attitude

𝑦𝑁𝐴𝑍 [m] y normalized at zero is set to be 0.25

𝑦𝑃 [m] the actual position of eye gaze on a monitor

𝑋𝑁𝐴𝑍 [m] x normalized at zero, is set to 0.15

𝑥𝑃 [m] the actual position of the eye on the screen

W [m] a width of the screen

𝑉 𝑙𝑎𝑡 𝑀 [m/s] the maximum values of the lateral speed.

x

. LIST OF EQUATIONS

Kinematic model equations (1-6)

Equation 1…………………………………………………………………………………………9

Equation 2…………………………………………………………………………………………9

Equation 3…………………………………………………………………………………………9

Equation 4…………………………………………………………………………………………9

Equation 5…………………………………………………………………………………………9

Equation 6…………………………………………………………………………………………9

Localization equations (7)

Equation 7…………………………………………………………………………………..…..39

Manual navigation equations (8-13)

Equation 8………………………………………………………………………………………51

Equation 9………………………………………………………………………………………51

Equation 10……………………………………………………………………………………..51

Equation 11……………………………………………………………………………………..51

Equation 12……………………………………………………………………………………..51

Equation 13……………………………………………………………………………………..51

1

1. INTRODUCTION

1.1 Motivation and Justification

Development of manually powered and electrical wheelchairs for people suffering from

the paralyzed condition is not wide. Standard wheelchairs usage assumes that a person

still can move their hands; however, that excludes paralyzed people from an end-user

group. Various diseases or accidents influencing the nervous system also might cause

paralysis which is divided into three groups: local, global and specific. Unfortunately,

most of the paralysis diseases are constant, but sometimes this condition is temporary.

The most-well known victim of Amyotrophic Lateral Sclerosis which cases paralysis was

a scientist Stephen W. Hawking. He was using a wheelchair on a constant base. The most

limiting disabilities are those that prevent a person to move independently. People who

are not able to use their arms and legs encounter severe problems and absolutely depend

on others. This creates a need to have a device that can ensure independent living for

disabled people. It is obvious that the primary solution is to have an electric wheelchair

that can be controlled mechanically by any mobile part of the body under their own com-

mand.

Today, many solutions of wheelchair are controlled by joysticks using chin or mechanical

devices attached to the headrest. However, those solutions are lacking the user comfort

because these people have to move their chin or head at all times in order to navigate.

Additionally, chin movements are limited and cannot ensure the desired level of control.

Also using chin to control a joystick is cosmetically unpleasant for the user. Other chairs

can be controlled by user’s puffing or sipping a plastic tube. This method has several

disadvantages such as increased difficulty in adjusting control plus sanitation problems.

All the above-mentioned solutions case disturbance for the users and are found to be very

tiring. Moreover, it is hard for a user to master control.

Existing wheelchairs are used only for disabled and elderly people that can partially move

their limbs. In contrast, there are cases when people are affected by serious diseases caus-

ing the paralyzed condition and the only agile parts are eyes. Therefore, nowadays avail-

able for sale wheelchairs controlled by the joystick are not useful for people suffering

from ALS or Parkinson diseases due to very limited mobility. Wheelchairs suitable to be

used for paralyzed people can be divided in the following manner:

2

1. Biosignal-based, thus EOG and EMG might transfer bio signals received from

the brain into a control signal that can be used to control an electric wheelchair.

For example, when one of the above-mentioned methods perform analysis on the

user’s eye movement by directly connecting recognition device’s electrodes on

the eye. On the other hand, brain signals and muscle signals can be used to con-

trol the wheelchair, if the output signal is converted accordingly into the control

signal.

2. Voice-based. In this case, a wheelchair is controlled by means of speech recog-

nition systems, user interface, etc. While controlled by voice, the patient can

pronounce command to the wheelchair to move to the desired position, for ex-

ample, left, right, forward, etc.

3. Vision-based. The user intents are captured and transformed into a control signal

with help of a camera. Some of those are head gestures, horizontal eye gaze, and

blinking. Also, this cameras are widely used to detect obstacles, create a map

used for autonomous navigation and provide an image of the surrounding envi-

ronment is required.

Extensive research [1] has shown that wheelchairs controlled by voice, brain control sys-

tem and vision can fulfill the needs of people with abovementioned diseases. Voice con-

trolled systems do not work well when used in a noisy environment, the voice command

might be confused or not detected. In brain-controlled devices, using EEG signals it is

easy to navigate, but setting up the system might be too demanding and somehow incon-

venient for the patient. Even though these systems save a significant amount of energy

and require less external manpower, it might still be very difficult for a paralyzed person

to use it.

To address these issues many wheelchairs have been upgraded with equipment such as

cameras, sensors, equipment and technologies such as image processing, simultaneous

navigation, and localization, moving these wheelchairs into a category of a “smart”

wheelchairs. Semi-autonomous, autonomous navigation, mapping, and obstacle avoid-

ance make these chairs “intelligent” and extremely comfortable for the user. In addition

to that, vision-based control does not require direct contact, e.g. electrodes attached to the

body of the user. However, with the advanced technical capabilities arises cost of main-

taining and creating such wheelchairs. In addition to that, these systems are often not

reusable, so thus changing from one wheelchair to another might be very costly. Another

problem is a human-machine interface, which is not user-friendly. Most of the smart

wheelchairs are used mainly for the research purposes, lacking commercialization.

One of the important issues of any commercial product is its price. Nowadays, most ro-

botics applications use highly precise and very expensive sensors in order to provide the

3

desired output, for example, LIDAR-based lasers. Not every person with limited abilities

can afford an expensive wheelchair. Moreover, often it is not sufficient to have an am-

biguous technology in order to satisfy everyday needs. Therefore, it is important to find

a right balance between cost and performance. Another challenge, the algorithms required

to run a mobile-wheelchair are demanding, which require a personal computer with great

performance characteristics. Moreover, physical interface is poor on the most of wheel-

chairs, and there is no standard in communication protocols required by wheelchair’s in-

put devices and various modules. This problem can be solved by utilizing common ro-

botic frameworks. Last but not the least, currently wheelchairs are not accepted much by

society and clinic. It remains immature technology, which is hardly desired and appreci-

ated by disabled people.

1.2 Problem statement

The number of wheelchair users increases dramatically, thus creating a comfortable and

up-to-date robotic wheelchair is important. The desired wheelchair should be able to plan

a path fast and efficiently, while the user should feel calm and comfortable. The wheel-

chair should be intractable with the user, thus semi-autonomy is preferred rather than

being completely autonomous. Moreover, the mobile robot should have the ability to per-

ceive data not only at the very beginning of a trip but also during its navigation, thus

efficient user interface is crucial.

In addition to that, the user interface is required to be easy-customizable in order to satisfy

the needs of each user. If it is impossible to adapt to the specific user the system will fail

to satisfy basic needs of the patient. It is well-known fact that assistance robot shall im-

prove the user’s ease to move independently yet be able to work in pair with the user. It

is not required to have a high-level path planning for its navigation but rather to keep the

patient safe and comfortable. A system is required to be more than a navigation system.

It is important to create a system able to assist the user in navigation providing safety and

ease.

This master thesis is a part of a commercial RoboEye project [2]. RoboEye aims to sup-

port people affected by mobility problems that range from very impairing pathologies

(like ALS, amyotrophic lateral sclerosis) to old age. In this context, mobile robotic can

play a key role to improve autonomy and lifestyle of the patients. The focus of this project

is the restore of users’ mobility using novel technology based, in this case, on the gaze.

At this point the navigation of the wheelchair can be performed using different methods:

• Direct navigation by the user;

4

• Semi-Autonomous navigation.

In order to form a testbed an electric wheelchair is used. The two original motors are

connected with an industrial PLC that performs the low-level control of the device (odo-

metric localization, path following, safety). A Windows PC, connected with the PLC,

runs the high-level application that consists of the HMI, the communication with external

devices (Kinect, Eye tracker, and monitor) and the path planning. However, the user in-

terface of the developed prototype needs to be improved. The functionality needs to be

extended offering competitive value to the start-up company owning this product.

The thesis was performed as a part of an exchange program between the Tampere Uni-

versity of Technology and The University of Trento, Italy. Given thesis was performed

as a part of a teamwork project, which is not a standalone research topic but it is a part of

a large continuous activity started more than one year ago.

1.3 Objectives

The aim of the master thesis is to develop an application designed to move a wheelchair

from one point to another inside a civil environment. The main goal is the development

of an autonomous navigation software in order to give to the patient a novel control tech-

nique. This software has to be integrated into the main application of the current project.

With the autonomous navigation, the user can select a target point, where a person wants

to arrive, and then the wheelchair has to reach the goal without any other additional input.

This type of navigation aims to be as little tiring as possible.

The autonomous navigation application research is divided into three major objectives:

• Development of a graphical interface easy to use for people affected by mobility prob-

lems. In particular, the user has to be able to select the target position from a map of the

environment displayed on the monitor.

• Localization of the wheelchair inside the environment using some visual tags mounted

in key points (doors, tables, etc.). This part will start with two algorithms developed in

the lab during past works.

• Planning of the path to reach the selected target. The environment has to be represented

with a graph base schema and then used to find the path. The collaboration with patients

allows evaluating all the parts in order to reach better the needs of the user.

As explained in the introduction it is clear that in order to complete above-mentioned

objectives it is important to answer following questions:

5

 What would be the most suitable solution to provide accurate mapping of an in-

door environment? Moreover, this solution should not be source demanding and

expensive. To be short, it should be simple, inexpensive and be suitable for au-

tonomous navigation in the flat of a patient.

 How to localize a wheelchair inside environment? The localization of the wheel-

chair inside the environment is necessary to allow a mobile robot to move auton-

omously. Therefore, the localization should be effective and cheap.

 Which algorithm would be the best option to perform the shortest path planning

from the position localized by the wheelchair to the desired position chosen by

the user?

 In which way a human-machine interface should be developed in order to solve

above-mentioned problems. The UI should give a user opportunity to navigate in

manual, semi-autonomous and autonomous modes, to change settings and to see

the map of the environment when is necessary. Moreover, software should include

previous prototype’s functionalities (for example Kinect data acquisition) and

should work on a given configuration (hardware configuration should not be

changed). It is important to choose how disabled people should control a wheel-

chair.

1.4 Outline

The thesis is composed of five themed chapters, including Introduction, Existing solu-

tions, Methods and Algorithm, An Overview of RoboEye project and Results of the the-

sis.

The main issues addressed in this paper are: a) Human machine interface development b)

Path planning issues c) Wheelchair solutions for disabled people

Chapter two begins by laying out the theoretical dimensions of the research and looks at

how some researches were trying to create an intelligent wheelchair aiming to ensure

manual, autonomous, semi-autonomous navigation of the wheelchair. It suggests some

tricks on methods and algorithms of a software development on Unity 3D.

The third chapter is concerned with methodology used for this study. In order to achieve

set objectives the author researched path planning methods, localization approaches, and

human machine interface development with high user experience and software develop-

ment strategies. The chosen approach is discussed in this chapter. In other words, theo-

retical approach is presented in this chapter.

6

The fourth section presents the finding of the research. Here presented results of the sim-

ulation of path planning algorithm, test cases results tested by two groups of users and

user’s satisfaction survey results.

Chapter 5 concludes whether problem is solved or not and analyses the results of work

done and focuses on limitations of the study, in addition to that proposing future improve-

ments for further research.

Appendix contains block diagrams for the each state of the state machine based software

and main software architecture scheme.

7

2. LITERATURE AND BEST PRACTICES REVIEW

Research of the intelligent wheelchairs does not have a long history. The first serious

discussions and analyses of smart wheelchair emerged during the 1986, where these de-

vices were controlled and navigated by means of vision. David L. Jaffe [3] suggested

using a totally non-contacted electrically powered wheelchair to provide mobility to dis-

abled people, addressing problems of collision avoidance and tracking along a straight

path. In this manner the term “smart” electric wheelchair appeared. This prototype and

research have established that set goals are achievable. The given model uses Polaroid

Ultrasonic Sensor Technology in order to achieve mentioned goals. Polaroid sensors are

utilized to detect subject-to-camera distance needed to focus. It is required to triangulate

the user’s head position on the wheelchair. [3].

Next, during the next 40 years of extensive researchers’ work, many various intelligent

wheelchairs from different countries appeared. For example, Wheelesley of Massachu-

setts Institute of Technology [4], wheelchair named SIAMO developed in Spain [5] and

numerous work from China such as head movements controlled wheelchair platform of

Shenzhen Institute of Advanced Technology, Chinese Academy of Science, etc. There-

fore, there are many different solutions for the stated problem. However, the developed

solutions have their pros and cons being expensive, too complex and not reusable in gen-

eral. The subsections below describe some outstanding solutions to various wheelchair

problems, which combination might be an ultimate solution to problems discussed in

chapter 1 of the given thesis.

2.1 Autonomous Exploration and Navigation

Recently, numerous researchers have attempted to design an intelligent wheelchair en-

suring low cost and high reusability yet realizing navigation and autonomous exploration.

For example, on 10th International Symposium on Computational Intelligence and De-

sign, which is held on 2017, a low cost highly reusable wheelchair was presented.

Suggested solution runs on ROS – open source framework, which provide point-to-point

connection, thus network is capable to connect to each process in the system. Indoor en-

vironmental data is collected using low cost (compared to laser sensors) RGB-D camera.

The motors of wheels are controlled with help of Arduino microcontroller. The navigation

is performed using Pulse Width Modulation (PWM) algorithms, calculating this value

with respect to the path planning routine, further the value is sent to the microcontroller.

Finally, wheelchair motors controlled according to received PWM, meanwhile the patient

8

can control wheelchair distantly, see information from depth perception camera, take ac-

tions with created indoor map, such as open and save using APP running on Android

operating system.

Figure 1 System structure diagram

Figure 1 depicts a system structure diagram of the developed wheelchair. The wheelchair

works as follows: to begin a process, the wheelchair gathers environmental information,

meanwhile edge-based autonomous navigation technique determines navigation target.

During that process, Gmapping algorithm creates an indoor map according to the gathered

data from the camera, within movement the map is updated continuously. The map is

fully created once autonomous exploration and map building are completed.

Further, A* algorithm [6] uses generated map as an input in order to perform global path

planning. DW methods are used to perform obstacle avoidance routine with help of Point

Cloud Images. Combined results are sent to ROS, which is generating the shortest path

to the target with no obstacles on a way. In this wheelchair’s configuration, environmental

map is grid-based, the main disadvantage of which is in high resolution. Thus, the cost of

finding path is high; therefore, timeliness should be reduced as much as possible. The

reason why global path planning is performed with use of A* is because this algorithms

has strong timeliness and able to find the shortest path, which is highly needed when grid

based map is used.

9

In order to ensure human-computer interaction, a user interface is performed on ROS that

provides a package for creating ROS programs on Android. Rosjava uses standard Java

programming language and Java’s libraries. Moreover, it is easy to quickly invoke ROS

Nodes, Topics and Services. In addition to that, Android_core is implemented inside ROS

to help developers to create programs designed for the Android devices. Laboratory tests

indicated that the wheelchair is able to create a partial map of the laboratory, and more

preciseness can be achieved by expanding the search area. The wheelchair can effectively

avoid obstacles and calculate the shortest path to reach a target. In case of a deadlock, the

wheelchair runs exception-handling mechanisms and perform rotation in order to find a

way to exit from this state. Created HMI is giving an opportunity for a user to navigate

using virtual joystick and a user can obtain an indoor map and obstacle scanning infor-

mation on a screen. To be short, user-friendly interface gives an opportunity to interact

with user and provides satisfaction of the basic needs of the user [7].

However, researchers have not treated importance of the wheelchair’s functionalities for

patient in much detail. For example, the HMI is user-friendly, yet too basic and lacking

user experience. Overall functionality is low, does not include semi-autonomous naviga-

tion opportunities and does not give a user freedom to adjust interface according to the

user’s needs. Research on the subject has been mostly restricted to be used for paralyzed

people. Although extensive research has been carried out, this model does not have much

competitive value on a market, thus cannot be used to set as a commercial product.

2.2 Autonomous Navigation Using Intermediate Targets

The previous section showed how authors tried to solve navigation problems inside une-

ven and unknown environment. In the section that follows, it will be argued that people

suffering from severe diseases mostly spend their time indoor. Therefore, an intelligent

wheelchair should be mostly adapted to be used in flat or hospital. A significant analysis

and discussion on the subject was presented on International Conference on Advanced

and Electric Technologies where an autonomous wheelchair navigation in indoor envi-

ronment using Fuzzy logic and intermediate targets were presented [8]. The goal of the

research was to provide a wheelchair with an autonomous navigation ability inside une-

ven and unknown indoor environment by exploiting artificial intelligence technique –

Fuzzy logic. Authors claim that fuzzy logic is a method that is good to be used in cases

when the system require many efforts to be modeled and human expert knowledge is

available. This type of controller should be used when developers willing to imitate the

human reasoning and simulate human behavior.

It is well known fact that in order to navigate from one room to another it is crucial to

take into consideration the position, size of doors and of course, obstacles on its way.

10

Therefore, the path between initial point and a target is complex and uneven, thus authors

propose using intermediate targets in order to facilitate moving to the desired position.

This approach preventing the mobile robot from being trapped in front of the obstacle and

roving with no direction. For this purpose, researchers analyzed kinematic model of a

unicycle type of mobile robot, which is equipped with two rotating and two driving

wheels. Note, this model allows to navigate a robot to any direction by orienting wheels

of the robot. This configuration can be characterized by the position, x and y coordination

and the orientation θ in a Cartesian space. Researches assuming that there is no slipping

during rolling motion, the system performs movement on the horizontal ground and the

wheel ground contact is a point, the kinematic model is created as follows:

𝑑𝑋

𝑑𝑡
=

𝑉𝐿+𝑉𝑅

2
cos 𝜃 (1)

𝑑𝑌

𝑑𝑡
=

𝑉𝐿+𝑉𝑅

2
sin 𝜃 (2)

𝑑𝜃

𝑑𝑡
=

𝑉𝑅−𝑉𝐿

2
 (3)

While discrete form of the abovementioned model is (T – is the sampling time):

𝑋𝑘+1 = 𝑋𝑘 + 𝑇
𝑉𝑅𝑘 +𝑉𝐿𝑘

2
cos 𝜃𝑘 (4)

𝑌𝑘+1 = 𝑌𝑘 + 𝑇
𝑉𝑅𝑘 +𝑉𝐿𝑘

2
sin 𝜃𝑘 (5)

𝜃𝑘+1 = 𝜃𝑘 + 𝑇
𝑉𝑅𝑘 −𝑉𝐿𝑘

𝐿
 (6)

Above-mentioned equations are used to simulate a robot model in MATLAB, exploiting

fuzzy logic on the discrete form. One of the most important feature to be implemented in

order to ensure adequate autonomous navigation is an ability of a robot to sense surround-

ing environment. Researchers in order to fulfill this requirement mounted appropriate ul-

trasonic sensors, which are able to detect distance from the wheelchair to the walls, ob-

stacles and the desired position. This sensor is able to provide information, so the distance

can be easily calculated. As it can be seen from Figure 2, the proposed configuration is

equipped with three ultrasonic sensors in order to calculate the distance, so the robot

might obtain the info regarding left, right, front distances, which are inputs for the fuzzy

logic controller. Thus, outputs are the speeds of the wheels of the robot – in such a way

the wheelchair is avoiding obstacles.

11

Figure 2 The distances measured by the ultrasonic sensor

In a comprehensive study of intermediate target usage, it was proved that the navigation

without intermediate targets is extremely time consuming, the trajectory is not the shortest

which is not efficient. However, the implementation of the abovementioned approaches,

such as pointing the doors as an intermediate target, brings impressive results. Robot does

not move directly to the desired position but chooses the nearest intermediate target in

order to achieve desired position. Afterwards, the robot moves toward the chosen target,

once reached this target is considered the starting point, the robot once again chooses a

new the most relevant intermediate target and algorithm repeats, until the target is

reached. Results demonstrated that the robot moves along the shortest path with appro-

priate execution time. Fuzzy logic ensures robot’s autonomy and obstacle avoidance rou-

tine.

2.3 Wheelchair controlled by eye-only

So far, this chapter has shown how interaction problems can be solved for people with

limited mobility, however, these solutions cannot entirely address problems of paralyzed

people. Kohei Aarai proposed a prototype of the electric wheelchair controlled by eye-

gaze specifically developed for paralyzed people [9]. Researchers suggest controlling a

wheelchair with help of eye gaze and not blinking as it commonly used, because constant

blinking might be jerky for a user. System is including NAC Company’s camera mounted

on glasses of the wheelchair user and designed to be used in the following environment:

illumination is less than direct sunlight (around 1400 lux), the surface with no slopes,

minimum required rotational space is 2𝑚2. Unfortunately, this system is not supported

for people with squinting problems and intensive make-up.

This wheelchair will require assistance from a nurse or assistant in order put glasses,

switch on power for computer and motors, unlock wheelchair’s brakes. Of course, in or-

der to finish a wheelchair’s usage the same help would be needed from the assistant, but

performed in reversed order. The tested includes: infrared camera, personal computer, a

12

microcontroller and an adapted wheelchair. Ultrasonic sensor amounted in frontal part is

used for collision and obstacle avoidance.

Figure 3 Camera placement comparison. Usually a camera placed at point 2, but in

proposed prototype, it is place at point 2

The goal of this project was to create a wheelchair that can be used robustly nevertheless

vibration, changes in lightening and type of user (his/her pupil’s color, size, etc.). For

these purposes LED camera, placed in front of the user (see Figure 3), compensates inac-

curate caused by illumination changes and stabilizes the image. Microcontroller connects

wheelchair and the PC, converts data from RS 232 serial connection into signal needed

to control the wheelchair. Software is developed by using C++ Visual Studio 2005 and

OpenCV library for image processing. Using complex image processing algorithms, eye

gaze signal is detected and converted into wheelchair commands, which PC sends to the

wheelchair. The microcontroller converts serial data to I/O data, which is used to move a

relay in order to get analog output, which is linked to the main controller in order to make

it possible for the personal computer to control the wheelchair using serial RS 232 serial

communication.

There are four key commands on an invisible layout that are used to move the wheelchair

(see Figure 4). These keys are intuitively understandable, i.e., when the user looks at right

key – the wheelchair will be navigated to the right side until further notice of the user. In

case when the user stops looking at the keys or eye gaze of the user inside the free zone,

the wheelchair stops its navigation, since it is considered much safer, rather than spending

time to hit the stop/off button. In this configuration, backward movement is not supported

13

since this kind of movement might be considered extremely dangerous for a paralyzed

person. The user can switch to hold state by looking upward.

Figure 4 Wheelchair control with user of four key commands on a user interface

This prototypes were tested with help of five participants of different nationality, eye

gazed detection is worked adequately. However, the accuracy was lower when the light

of the surrounding environment was too bright (see Figure 5). As regards control, users

considered it easy to use and control. Unfortunately, manual navigation of the same

wheelchair against eye gazed navigation is four time faster. Nevertheless, eye-gazed con-

trolled wheelchair is proved to be adequate and efficient enough to be used under certain

circumstances. Thus, developed prototype is a fully realized electric wheelchair con-

trolled by means of eye-gaze.

Figure 5 Illumination influence on a success rate

Similar research [10] suggest that eye gaze control might be used as hands free control

for wheelchair. It common to exploit three types of a wheelchair control:

14

 Direct navigation by looking at the target point on the screen;

 Indirect navigation by staring at UI buttons on a screen, so called keys “forward”,

“left”, “right” etc.;

 By looking on an image of the front view;

In current research, the last type of interface is used with direct feedback loop; there are

no visible UI components.

Figure 6 Invisible UI layout put on top of a video scene image

As it can be seen from the Figure 6, the UI organized in a way that the user can change

rotation angle by staring along X-axis, while Y-axis is controlling a speed. The system is

updating commands every 100ms, simultaneously adjusting the navigation. If a user will

look on an obstacle, the speed will be reduced in a way avoiding an obstacle. The goal of

the developed user interface was to ensure hands free control of a mobile robot. During

the experiments, it was discovered that the stability of eye-tracking device is a crucial

aspect, very good calibrated eye-tracker can provide the same accurate control as a mouse

2.4 Autonomous Mobile Robot Navigation in Indoor Environment

An intelligent wheelchair is a mobile robot, thus it needs to be able to localize itself in the

environment in order to perform assigned task with high performance level. To be precise,

navigation technologies are concerned about robot’s localization and pose estimation

[11]. Data from several studies suggest that localization methods using dead reckoning in

order to establish a distance between the initial and given points. This approach is not

ideal, since it gathers errors from the each iteration without using external referencing for

error correction. Up to now a number of studies suggests usage of external sensors such

ultrasonic sensors, cameras, GPS, etc. In addition to that, these external sensors in order

15

to evaluate robot’s position and pose use landmarks. For example, GPS is widely used

for abovementioned purposes, which is used mostly for outdoor navigation. However if

receivers are not synchronized with the satellites and cannot be precise enough to be used

for localization purposes of mobile robots. Sunhong Park and Shuji Hashimoto in their

research carried out a number of experiments in this field using exclusive radio-frequency

identification. In their work, the robot is able to estimate its position with help of IC tags

and trigonometric functions and information of its location recorded dynamically. The

usage of IC tags is determined by the low cost and small size, i.e., the tags could be easily

installed inside the apartment. The robot in this experiment is based on an electric wheel-

chair for elderly and disabled people, with mounted distance and touch sensors. The in-

creased amount of IC tags are improving system’s accuracy, however the cost is increased

accordingly, therefore in this research it is compromised with use of polar Cartesian co-

ordinates of the IC tags, thus these tags are arranged accordingly. In contrast with tradi-

tional methods offered algorithm reverberates robot’s posture each time it senses a new

IC tag. The method works as follows:

 User identifies initial position and desired location to be reached;

 Robot navigates toward the goal by calculated rotational angle between start and

finish points;

 Its pose is estimated;

 The angle is recalculated according to a newly reached position;

 The systems reads new IC tags with interval of 0.2 seconds, estimating rotation

angles, robot rotates accordingly. Otherwise, it keeps moving forward.

Above mentioned algorithm works in loop until the target is reached. The validation of

results showed that the method is precise and outcome the previous studies in similar

topics. Despite the fact that the approach require low speed in order to perform accurately,

the method is proved to be robust against dirt, wear, various covers and is suitable to be

used for elderly and disabled people.

2.5 Commercialization of intelligent wheelchairs

There are relatively few commercial wheelchairs are available on the market, even though

wide research was held on wheelchair studies. Often researchers purchase different

wheelchairs with aim to conduct a research on it. Nevertheless, the usage of these wheel-

chairs is limited by a scope of laboratory room, lack of commercialization means that

smart wheelchair are not widely spread in hospitals and clinics. This situation is due to

the fact that most of the wheelchairs are very advanced and extravagant which makes it

very challenging to purchase, since the cost is too high and configuration is complicated.

However, there are few commercial wheelchairs available nowadays. One of an important

16

example is Smile Rehab Limited, which was developed by the University of Edinburg.

Compared to the above-mentioned wheelchairs, the model relatively simple and cheap.

Sensors are basic-line followers and contact switches. The end-user can add advanced

functionality to the wheelchair with help of the serial port with additional expansion pro-

tocols. Another example is Boo Ki Scientific prototype, Robotic Chariot, developed for

a Pride Mobility Jazzy wheelchair. This wheelchair supports advanced obstacle avoid-

ance routine and path planning. The end-user has an opportunity to customize its naviga-

tion functionality.

This chapter has reviewed wheelchairs that were developed in laboratory premises with

research purposes. Each model has its own pros and cons as it can be seen from the table

below.

Wheelchair Advantages Disadvantages

ROS-based Indoor Autonomous

Exploration and Navigation

Wheelchair

Low cost, human friendly

interface, user interaction,

consistent with the labora-

tory results

Hardware might be opti-

mized, not possible to be

used by paralyzed people,

UI yet too basic, too de-

manding algorithms

Autonomous wheelchair naviga-

tion using Fuzzy Logic controller

with help of Intermediate Targets

Effective path planning rou-

tine, great execution time,

obstacles avoidance

Cost, human machine in-

teraction is poor

A prototype of electric wheel-

chair controlled by eye-only for

paralyzed user

Great and safe user-inter-

face for paralyzed people

Too advanced image-pro-

cessing algorithm for eye

tracking. Currently, can be

replaced by the eye-track-

ing device

Autonomous Mobile Robot Nav-

igation Using Passive RFID in

Indoor Environment

Cheap and effective locali-

sation
Lacking User Experience

Table 1 Comparison of all related wheelchairs

Above-mentioned models inspire the author to create a commercial eye-gaze controlled

wheelchair with adaptable user interface. In the prototype, author will use Aruco markers

placed on point of interests and intermediate targets (doors) in order to ensure cheap lo-

calization and effective path planning.

2.6 Environment and common techniques for developing UI

Unity 3D is a game engine developed by Unity Technologies [12] which supports more

than 27 platforms. This engine can be used to develop 3D and 2D games as well as many

various applications. For this master thesis, it was required to use Unity 3D by the task

description since the project implementation needed to use rich graphics and AR features.

17

Nevertheless, this constraint was not causing additional challenges to the author. This

section is focused on a software description and a common software technique for devel-

oping HMI.

2.6.1 Programming environment

In order to create high fidelity user interface fulfilling wheelchair functionality and being

able to be adaptive, Unity 3D is chosen. It gives a developer a lot of freedom to create

powerful user interface with high graphical capability. Since Unity is a 3D development

kit, it requires a certain level of understanding 3D space and 3D development. Moreover,

it is essential to understand the difference between local space and world space. In any

3D world 3D Cartesian space is used. The Z-axis represents depth in addition to the X for

horizontal and Y for vertical axes, in such way can be represented positions, dimensions,

rotational values, etc. and should be described as follows (X, Y, Z) due to programming

reasons. In every world space, there is a term “origin” which is represented by the position

(0, 0, 0). Thus all world positions in are relative to the “origin” or “would zero,” to make

it more simple it is common to use local spaces and define object’s position relative to

another, so-called parent-child relationships. In Unity 3D it is easy to form these relation-

ships by drugging and dropping elements one into another in a hierarchy of elements.

Thus, the position of a child will be relative to the position of a parent. Using local spaces

means that every object has its origin or zero points, the point where it is X, Y, Z axes are

merged, which is usually a center of an element. When child-parents relationships are

established, it is possible to calculate a distance from other elements by using coordinates

of local space. Figure 7 depicts two diagrams, the first diagram (i) shows two objects

coordinates with respect to world space, where a big pink cube has coordinates x equal to

3 and y to 3 and a small blue cube with coordinates 6 and 7. In the second diagram (ii),

the small cube is a child of the bigger cube. Thus, its coordinates are said to be (3, 4), the

same goes for 3D space.

18

Figure 7 Representation of World Space and Local Space coordination systems

2.6.2 Cameras

Cameras are significant in the 3D world due to the fact that they represent a viewport for

the screen. In Unity, cameras can be placed at any point in space, can be attached to any

Game Object or Game character. A Scene can have many cameras. However, it is as-

sumed that exists a single main camera that will be rendering what the user sees. Unity

creates the Main Camera project whenever a new scene is created. Cameras components

are shown in the following figure (see Figure 8):

Figure 8 Camera components

Clear flags are set to Skybox by default to allow the camera to render the sky-box material

currently applied to the scene. However, to allow the developer, to manage the use of

multiple cameras to draw the game world, the Clear Flags parameter exists to allow a

developer to set specific cameras, as well as to render specific parts of the game world.

19

The background color is the color rendered behind all objects in a game, in case if no

skybox material is applied to the given scene. Clicking on the clock block will allow a

user to change the color using the color picker or ink dropper icon.

The Normalized View Port Rect parameter allows a user to give dimensions and a posi-

tion for the camera view. The X, Y coordinates are being set to 0; thus the camera view

comes in the bottom-left of the screen. Values Width and Height are set to 1, so the view

from this camera is filling the screen because these values are set in Unity’s coordinates

system ranging from 0 to 1.

Clipping Planes (Near/Far), the near plane is the closest distance to start rendering, and

the far plane is the furthest start of the drawing.

Field of View, this parameter establishes the width of the camera’s viewport in degrees.

Currently, it is set to be 60 degrees, which gives the effect of a human vision.

Depth is used in case of multiple cameras in a scene. This parameter establishes an order

of priority for cameras views, the camera with higher depth value will be rendered in front

of cameras with lower depths. By default camera has Perspective Projection mode, which

has a pyramid-shaped Field of View (FOV). The projection mode of a camera depicts

whether is rendered in 3D (Perspective) or 2D (Orthographic).

Culling Mask parameter works with Unity’s layers allowing deselecting the layer if

needed.

2.6.3 Assets

In any Unity project exist Assets folder and mirrored in the Project panel, which contains

building blocks such as images, 3D models, sounds effects. Scenes represent an individ-

ual level of a game content, some developers using only one Scene for developing a game,

however in some cases using two or more scene is essential. It is essential to bear in mind

that only one scene can be active at the moment. Scenes are manipulated employing Hi-

erarchy and Scene Views. GameObject is an active object is the currently used scene,

which can be placed in a hierarchy, establishing child-parent relationship and always con-

tains at least one component, which is Transform that tells a developer a position, rotation,

and scale of the object in X, Y, Z coordinates as is shown in a figure below.

When utilizing fonts in any Unity project it is necessary to import into project as any

media file needed for given project. This can be done by uploading media file into assets

folder or by following steps, Assets-> Import New Asset.

20

Figure 9 Transform component of a GameObject.

Components and Scripts

There are many different types of components, defining behavior, appearance and other

functionality of an object. Exists built-in components such as Rigid body, establishing

physics of an object, and some simpler such as cameras, lights, etc. It is possible to extend

functional abilities of an object by writing a script and attaching to the object. Scripts can

be written in C#, JavaScript or Boo (a derivative language of Python). To write scripts,

Unity provides standalone script editor, Monodevelop, a separate application that is

launched any time when a script is edited. However, it is possible to designate a script

creation and editing to other editors such as Visual Studio. Usually, games operate at a

certain number of Frames per Second (FPS), and function Update() is called every frame.

Thus, it is mostly used for detecting any changes happening in the game, which happens

in a real-time, for example, mouse click or key press.

2.6.4 UI development essentials

Canvas is a component that contains all components of a UI. Thus buttons, panels, images

and other elements of the UI are children of the canvas component. When a UI component

is instantiated, the canvas – a parent of the component – is created automatically. Com-

ponents order determines a rendering order is a hierarchy, the first object is rendered first,

and the last object is rendered the last and placed over other components.

The canvas component representation depends on a “Render Mode” which has three dif-

ferent options of the Canvas rendering:

1. Screen Space-Overlay. The canvas is rendered over all elements of a Scene. The

great analogy for this rendering mode are stickers on a window of a train, where

the canvas is a window and stickers are UI elements. The “stickers” remain the

same, even if the world behind the window is changing. This rendering mode

change size of the Canvas when the size of a screen is changed. Given rendering

mode is suggested for a static object such as a panel of instruments, score panel,

etc.

21

2. Screen Space-Camera – This is similar to Screen Space-Overlay, but in this render

mode the Canvas is placed a given distance in front of a specified Camera. The

UI elements are rendered by this camera, which means that the Camera settings

affect the appearance of the UI. If the Camera is set to Perspective, the UI elements

will be rendered with perspective, and the Camera Field of View can control the

amount of perspective distortion. If the screen is resized, changes resolution, or

the camera frustum changes, the Canvas will automatically change size to match

as well [12].

3. World Space – In this render mode, the Canvas will behave like any other object

in the scene. The size of the Canvas can be set manually using its Rect Transform,

and UI elements will render in front of or behind other objects in the scene based

on 3D placement. This is useful for UIs that are meant to be a part of the world.

This is also known as a “diegetic interface” [12].

Each element displayed as a rectangle. To manipulate UI elements, Rect Tool and Rect

Transform components are used. Rect Transform component has following fields – Pos

X, PosY, Pos Z. Anchors: Min, Max, Pivot, Rotation X, Y, Z, Scale X, Y, Z.

Anchors determine how the size of an element is changed concerning changing the size

of a parent element. Each component has four anchors for each vertex of its rectangle. A

position and size are counted based on a distance between a vertex and anchor and a

position of an anchor itself. A position of the anchor is determined by a percentage ratio

of a size of a parent element. Thus, if all four elements of an anchor are placed in the

same place, the size of a component remains the same. In case if two anchors of the same

plane (left and right, up and top) are placed in the same point, the element will not be

stretched with respect to this plane. However, if anchors are not in the same point, the

position of each anchor will be counted in a percentage and to the given value will be

added distance to the vertex (which is not changed).

Reason for choosing C# over UnityScript

C# is a well know and widely used programming language developed by Microsoft in

order to create Windows application and web-based applications. There are plenty of ma-

terials on Internet helping to learn fast how to use his programming language. UnityScript

is a programming language similar to JavaScript but still different. Therefore material

used to find a solution in JavaScript may not be applicable for UnityScript. In addition to

that, it is better to apply already familiar language rather than learning entirely new pro-

gramming technique from scratch. C# gives developer flexibility to use scripts without

attaching them to GameObjects, in addition to that developed State Machine in given

Master Thesis is more natural to be done by using C# rather than UnityScript. Since C#

is known as a strictly-typed language, thus Unity will catch errors at the moment, thus

more comfortable to correct errors. UnityScript shows mistakes only when the developer

22

is compiling a file, which makes it more challenging to create a valid code. For an over-

view of a topic, a Reference Manual was used chiefly for Scripting Reference.

Each script in Unity uses inheritance. By default, scripts are inheriting from MonoBehav-

iour class, which means MonoBehaviour is making few of its variables and methods

available for the default script. When C# is used, it must explicitly derive from MonoBe-

haviour. When a developer uses UnityScript (a type of JavaScript), you do not have to

derive from MonoBehaviour explicitly. Note: There is a checkbox for disabling Mono-

Behaviour on the Unity Editor. It disables functions when unticked. If none of these func-

tions are present in the script, the Editor does not display the checkbox.

The functions are:

 Start()Start is called on the frame when a script is enabled just before any of the

Update methods is called the first time.

 Update()Update is called every frame, if the MonoBehaviour is enabled.

 FixedUpdate()This function is called every fixed framerate frame, if the Mono-

Behaviour is enabled.

 LateUpdate()LateUpdate is called every frame, if the Behaviour is enabled.

 OnGUI() OnGUI is called for rendering and handling GUI events.

 OnDisable() This function is called when the behavior becomes disabled () or in-

active.

 OnEnable()This function is called when the object becomes enabled and active.

GameObjects have Components that make them behave in a certain way. Any component

of any GameObject is a script, developed by Unity Team or by the user, that defines a

class. Which means that the properties we see in Inspector are just variables of some type.

If we use public variables in a script, we can change it from Inspector panel.

2.6.5 Software development. State Machine approach.

The best part of State Machine is simplicity; the great example of a State Machine is an

everyday life of a person. For example, when a person sleeps he/she is in a “Sleep State”

and during this state it is impossible to do anything else. The idea to remain in a particular

state is that a person is allowed to do only what is allowed to do in this kind of state.

When we use a State Machine we force a computer or in our case a wheelchair to be in a

particular state. It will stay in one state until it is told to change to another state. Benefits

of implementing a State Machine are

1. Clean layout of a software control;

23

2. Very cleans points to add software functionality or feature;

3. It is easy to extend software logic by adding another state;

4. Code is smaller, cleaner and specific for each state.

Developed HMI is not a simple code. Instead, the features are added on the fly and future

improvements will require adding new states. Without implementing a State Machine it

would be very difficult to edit code in order to follow all changes. In addition to that

keeping track of variables, storing data would be a mess. All of this would lead to a dif-

ficult to understand and edit code. Therefore, it was decided to implement a state machine

code instead of attaching components to GameObjects.

Following diagram demonstrates the basic concept if a State Machine controlling a soft-

ware:

 Unity calls Update() method every frame;

 The State Manager script works as a manager of the whole mechanism of the State

Machine, a component has the Update() method;

 The code block Update is responsible for delegating control to the active state;

 States represent regular C# Scripts, which are not components of Game Objects;

 The active state determines what is happening at this specific moment, therefore

it plays a role of a logic controller of the software;

 The active state decided when and which State will be active further.

In s State Manager script this is a Unity class, so it inherits from Mono Behavior class,

this script is attached to a GameObject to become a component. State Manager has a three

core features:

1. Delegating control to a State;

2. Switching to another State when called to do so;

3. Keeping track of the active State.

24

Figure 10 State Machine diagram

2.6.6 Delegating game control to a State

The State Manager script is attached to a GameObject and becomes a Component object.

This script uses the Update() method in order to pass the game control to the active state

as it shown in the following diagram (Figure 11):

State 1

When active controls a game

State 2

When active controls a game

State 3

When active controls a game

State n

When active controls a game

condition

condition

condition

State Manager makes State active and gives control

Unity calls Update () functions

25

Figure 11 State Manager control delegation

The game control code that is usually is used in an Update() method is instead delegated

to the StateUpdate() on the active State object. So every time Update() method is called

on the State Manager Component, the StateUpdate() method is called on the currently

active State object.

No matter how many states are in the software, it is remember the following points:

 Every State should have the StateUpdate() method;

 However, each logic block will be different for each StateUpdate() method on

every State, depending on what you want each State to accomplish;

 Only one state is active at any moment of time.

Switching to another State when called to do so

Each state determine when to switch to another state and at which conditions, this should

be coded inside the active state what will be a trigger to switch to another State. This is

implemented by SwitchState() method on a State Manager Component.

Figure 12 State Machine SwitchState() diagram

When active state is determined, the software switches to another State, so SwichState ()

method is called with the argument of the following active state.

2.6.7 Keeping track of the active State

Newly created State is then assigned to the active state variable, to keep track of the active

state. This is needed to give a State to control the game; State Manager needs to know

which state is active now. So when Unity calls Update() on the State Manager script con-

trol is passed to the newly created State that is stored in the active state variable by calling

its StateUpdate() method. The State Machine cycle of changing to a new State complete.

26

These steps are as following:

• The active state determined when its time to switch to a new state;

• A new state object is created and passed to the StateManager script using the Switch

State() method;

• This new State object is assigned to the active State variable;

• When Update() is called on State Manager, the Update() method delegates control to

the StateUpdate() method on the new State;

• So it starts from the beginning.

Unity creates Components behind the scenes

As mentioned previously, a Unity script is just a file that defines a class, thus attaching a

script to the GameObject allows Unity to create a component object in a Memory when

button “Play” is clicked.

Instantiate means to create an object from a class. A namespace declares where a class

file is located in the folder in the Unity Project’s file structure, using namespace means

that the code is allowed to use any class file located in this folder.

All states of a state Machine have to perform particular methods that StateManager class

can call. In order to make State Machine works correctly, it was created an interface,

which guarantees that the required methods are used.

As it can be seen all states are equal from a structural point of view and inherits from

IStateBase class, which provides guarantees that States will have the required methods

which State Manager needs to access. In addition to that activeState variable of type,

IStateBase requires implementing IStateBase.

2.6.8 Changing Scenes destroys the existing GameObjects

When more than two scenes are used appears two main issues:

Every GameObject is destroyed while switching between scenes, while another Scene is

loaded. In addition to that, every time the first scene is loaded UI manager GameObject

with StateManager is created. For this purposes used DontDestroyOnLoad() for not de-

stroying the GameObject consisting the StateManager script and detecting whether a

GameObject has existed thus a new GameObject is not created. StateManager is static

means that each instance of the StateManager will share the same value, plus as its pri-

vate, it cannot be changed outside the StateManager class.

27

2.6.9 UI control. Eye Tracking.

With technology development, it is crucial for society to have an ability to keep up with

the advancement; otherwise, the technology becomes not in use. Since the personal com-

puter became a standardly used device, corporations are trying to create more user-

friendly solutions. The primary goal of manufacturers is to create the most favorable de-

vices, for example, personal computers, phones, and tablets, to stay on top of the market

and, thus, staying one-step ahead of new trends. A notable example of advancing tech-

nology is a touch control system used by Apple Corporation, which after quickly becom-

ing fashion-able expanded to other devices. Voice control illustrates this point clearly as

being used on computers for people with limited abilities to communicate. Thus, manu-

facturers are looking for a new disruptive control technology that will be used for com-

mercial purposes for different business units. Eye control is a technology that allows com-

puters to detect at which point a user is looking. Eye-tracking devices, which recognize

and track eyes’ movements. The term gaze-tracking software refers to software that cal-

culates the eye gaze from the features in a process called gaze estimation. Four functions

are defined to be key functions for most eye tracking devices: connection, calibration,

synchronization, and data streaming [13]. Connection has been broadened to include es-

tablishment with eye tracking device, then calibration has been used to define the user’s

eyes location and synchronization the computer’s display with the eye movement by dis-

playing calibration points. Another example of what is meant by calibration is a dot mov-

ing around the screen and the user’s eye following it to let the eye-tracking device to

know the particular eye moves. Synchronization can be loosely described as data stream-

ing which is sent to the software of the eye tracker’s device, thus allowing the user to see

what is happening at this particular moment.

An eye tracker is a helpful device for many different fields. “We may presume that if we

can track someone’s eye movements, we can follow along with the path of attention de-

ployed by the observer” [14] which give clear understanding what the user perceived and

interpreted whatever he or she saw. It is a well-known fact that eye-tracking might be a

helpful tool for people with disabilities that limit movements and voice usage; thus key-

board cannot be used.

One of the leaders on the current market is Swedish company – Tobii, which was founded

in 2001 and currently has more than 1000 employees in six different countries. Tobii is

trying to provide this technology in many industries – medicine, gaming, diagnostics,

software development. [14]. Andrew Duchowski in his book “Eye-Tracking Methodol-

ogy: Theory and Practice” explain Tobii, a camera and infrared LED optics are embedded

under LCS display, which is looking like a flat panel display. The camera and infrared

light are required for the eye-tracking technology to detect the user’s eye position and

movement. The hardware of Tobii is designed for high-performance sensors; it consists

of specially designed projectors, customizable image sensors, and optics, as well as cus-

tom processing with built-in algorithms. Tobii uses sophisticated algorithms to interpret

28

images; these algorithms are considered to be a “brain” of the system. Moreover, the

technology has an intelligent application layer to allow the many chooses of the technol-

ogy usage. The figure below provides an overview of Tobii system [14].

Figure 13 Five steps of a high-performing Tobii eye-tracking system

Since eye-tracking technology provides a measurement of the gazed point on a monitor,

this technology continually improving. Moreover, nowadays is it considered suitable to

be applied for controlling HMI, which is a primary advantage over standard control

means, because people with severe disabilities broaden the end-users of this interface.

29

3. THEORETICAL PROPOSAL

Based on literature review made in chapter 2, the author made decision to implement a

user interface controlled by eye-gaze using eye tracker. The software will be developed

on Unity 3D following State Machine approach, so it can include the previous work done

prior to the thesis work. Mapping of the environment implemented with use of CAD

drawings, forming graph-based map. At the same time, localization is performed with

help of Kinect camera acquisition and ArUco markers. These markers are placed on each

point of interest inside environment and form each node of a graph. Path planning is im-

plemented with use of Dijkstra algorithm. Above-mentioned solution are presented in

more details in following chapter.

3.1 User experience for Eye-Tracking based HMI

Free software, downloaded from [12] was used for implementation of the human-machine

interface. A standard free version of Unity gives an opportunity to build developed soft-

ware for:

 PC and Mac standalone;

 Mac OSX Dashboard widget;

 Web Player.

The version for Professional or Pro version of Unity can be used to develop all of the

above and for mobile devices and consoles. Pro Mac Standalone building will create a

folder containing an exe file and the associated assets required to run the game in folders

alongside it.

Unity supports two modes to create a GUI and UI. In case of GUI the interface is created

by scripting and using function OnGUI() and UI approach, when it is needed to drag and

drop UI elements such as Buttons, Images, Toggles etc. Both methods are good, however

according to a small research on Unity users’ forums it was decided to use UI since it is

more visible and gives more freedom to design and ensure full graphical support.

Given interface is able to adapt to any given resolution. Is tested to be adaptive to standard

resolution such as Standalone (1024x768), 16:9, 16:10, 3:2, 4:3, 5:4. This was achieved

by using the Canvas’s Render Mode – “Screen Space Overlay”. As it was mentioned

above, there are three available Canvas’s Render Modes, which are Screen Space Over-

lay, Screen Space – Camera, World Space. In case of Screen Space Overlay mode the UI

elements are placed on the screen rendered on top of the scene. Thus is the resolution of

the screen is changed or the screen is resized the Canvas is automatically change its size

in order to match this [12].

30

In addition to that, it is an important step to add a component to the Canvas a “Canvas

Scaler”. Canvas Scaler aims to control the overall scale and pixel density of UI elements

in the Canvas, so the scaling effects all children of Canvas (Figure 14). This is important

to choose UI Scale Mode as Scale with the Screen Size out of three possible options,

which are Constant Pixel Size, Constant Physical Size and Constant Pixel Size. Screen

Match Mode is Match Width or Height.

Figure 14 Canvas components and it's settings

In order to obtain correctly Rect transform of the button it is important to take into account

the coordination system of the Rect Transform, position of the buttons and position of the

Mouse Pointer. In order to use x,y position of the eye tracker it is important translate the

position of the rect of the button with respect to the world coordinate system. By obtaining

Rect transform of the buttons, the HMI is ready to be used for every and each tracking

system, since this approach require only position of eye-gaze without using specific li-

braries such as Tobii Pro. Main thing to be taken into account while creating user interface

using eye-tracker, is critical to choose correct position of buttons in a way that user use it

efficiently. Buttons should not overlap between scenes or be located too close to each

other. In addition to that, it was decided to locate button on a bottom panel of the screen,

according to the questionnaire which has been help by the team in prior to the user inter-

face creation.

User interface should follow state machine approach as it was stated in chapter 2. States

are following: Idle, Manual, Semi-autonomous, Map autonomous navigation, Path-plan-

ning. By pressing buttons user can switch between states ensuring smooth usage of the

software. The software is fully performed using C# script.

31

3.2 Path planning

3.2.1 Localization of the wheelchair inside domestic environment

The localization of the wheelchair is performed by fusing the incremental recursion from

encoders (see Eq.1) [15] and a custom designed absolute localization method on a data

received from ToF.

{

 𝑥𝑘+1 = 𝑥𝑘 + 𝜋 ×

𝑛𝑅𝑘×𝑅𝑅+𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜
× cos 𝛿𝑘

𝑦𝑘+1 = 𝑦𝑘 + 𝜋 ×
𝑛𝑅𝑘×𝑅𝑅+𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜
× sin 𝛿𝑘

𝛿𝑘+1 = 𝛿𝑘 + 2𝜋 ×
𝑛𝑅𝑘×𝑅𝑅−𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜×𝑏

, (7)

where 𝑥𝑘, 𝑦𝑘, 𝛿𝑘 are estimated position and attitude at 𝑘 of the odometric update recur-

cion loop 𝑛𝑅𝑘 and 𝑛𝐿𝑘 are the number of counts from the right and left encoders respec-

tively between two subsequent step, 𝑛𝑜 is the number of counts of the encoder, 𝑅𝑅 and

𝑅𝐿 are the wheel radius and 𝑏 is the wheel base [15]. It is a well-known fact that odometric

localization has incremental nature; therefore, it is crucial to evaluate uncertainty propa-

gation. As for the absolute localization, this was designed differently from the canonical

ones, which are usually based on the matching of range data with a preventively created

map. A vision based solution that foresees the use of augmented reality (AR) functional-

ities, from [16] enables the robust localization of the wheelchair without the use of a map.

Main advantages or this approach can be listed as follows: simplification of data structure,

lower computation cost, possibility to used cheap sensors.

RoboEye is created to be used inside the house of a user; therefore, the environment of

the home is structured. In this case, it can be assumed that furniture represents reliable

landmarks, since then they are not moved very often. AR tags reference doors, tables,

sofas and different targets that might be a target point for the user of the wheelchair.

Possible target pose [x,y,θ] is defined for each reference point of interest. This can be

illustrated briefly by some aspect of interest such as TV. This point of interest is defined

concerning the tag referenced to this device, thus using “semi-autonomous” navigation

user can choose TV as a target and move to this POI.

Algorithm 1 Localization algorithm

while KeepRunning do

If CameraConnected then

Acquire RGB and depth frames

Calculate plane equation relative to the floor

Determine camera pose w.r.t te wheelchair

Transform cloud point into the wheelchair reference system

Search ArUco marker in RGB image

for EachMarkerDetected do

32

Determine pose of the POI related to each market

end for

Send POIs detected information to the HMI

end if

end while

Algorithm 1 provides the detailed steps of the localization process of the wheelchair.

These steps as follows:

• Data acquisition: ToF collects information regarding color and depth stream data. Later

this data is passed to processing block;

• Assessment of Kinect position: this algorithm determines the height and attitude trans-

formation between sensors and ground, employing a RANSAC (Random Sample Con-

sensus) plane fitting. This crucial algorithm compensates mobility of a camera attached

to a frame;

• Roto-translation of the 3D points: the depth frames (3D cloud points) are transformed

from the Kinect reference system (raw data) to the wheelchair one. This step enables the

organization of a more versatile and efficient AR framework;

• Target detection: an ArUco libraries help to the system to analyze RGB frames needed

for marker search. If the system detects markers, it evaluates 3D point concerning the

tags. This strategy does not require specific knowledge of the intrinsic parameters of the

camera. Later data about localized markers and relative POIs are transferred to the HMI

as an optional target and anchor for autonomous navigation.

3.2.2 Dijkstra algorithm

One of the most important problem solved in graph theory is the short path finding, which

is divided into:

 Finding shortest path between two nodes;

 Finding shortest paths starting from a particular node;

 Finding shortest paths leading to a particular end-point;

 Finding all the shortest paths.

In general, the single source shortest path problems are solved not only graph-based al-

gorithms, but also dynamic programming, neural networks, hybrid and improved algo-

rithms [17]. Currently, the most widely used path planning algorithms are Dijkstra algo-

rithm, A* algorithm, Johnson algorithm, Floyd-Warshall algorithm, Bellman-Ford algo-

rithm [18]. However, Dijkstra approach was proposed by Edsger Dijkstra in 1959 and

remains the best-known algorithm in theory [19]. In addition to that Zhan and Noon have

utilized 15 various types of algorithms in Cherkassky 17 specie research on an actual

33

transport work. The wide research showed that Dijkstra algorithm is more suitable for

finding the shortest path between two nodes [20]. Thus, this approach was selected for its

reliability and validity.

Dijkstra algorithm finds the shortest path in a graph by calculating the length of paths. It

solves the short path problem from one node to another in a graph-based map with a single

source. First, at all, the algorithm calculate the path from the initial node to its adjacent

nodes. Then the conclusive of the shortest oath is considered as an intermediate node, and

then Dijkstra approach is searching for the shortest path from the intermediate node to its

neighbor nodes. Once every node is crossed over, the algorithm is completed, thus the

shortest path is found. It is obvious that in such a way all found sub-paths are shortest

paths between any node in the system until the target node.

This algorithm is considered as a labeling algorithm. Let’s consider a graph G = (V, E)

with n arcs and e arcs. V is a set of nodes, while E is a set of arcs. C (A,B) represents the

weight of arc between node A and B. The weight of non-existent arc is considered as an

infinity value (in current master thesis is taken as a large integer value). Array DIST (X)

denotes a distance to be traveled from the source node v to the target node x. A list S is

indicating which nodes where included in the algorithm, initially its contains only the

initial point of the path. V denotes a list of new nodes, which are not yet in use. The

algorithm works as follows [21]:

 Initialization: The initial node is identifies and marked as v, the set S = S U {v};

 Between the V-S, adjacent node i with respect to the node v is found, is the weight

of the corresponding arcs is the minimum the node i is added to the set S;

 Node i is used as an intermediate target, repeat previous step to find a new adjacent

node j from V-S. The distance between the initial node v to the node j is changed,

according to the following: if DIST(j)>DIST(i)+C(i,j) then

DIST(j)=DIST(i)+C(i,j). Add node j to the list S.

 Two previous steps are repeated (n-1) times. The shortest path is obtained as a

sequence of nodes, initial node, intermediate nodes and the target node.

Figure 15 Example of the Dijkstra algorithm

34

Figure 15 depicts a random graph with nodes from A to G and some weights of arcs.

According to Dijkstra algorithm the shortest path between the source node A to the target

node G is as follows: A-C-E-G. As it was mentioned above, the sub-paths are obtained as

well. Thus, the shortest path from C to G is C-E-G.

In our case, graph nodes represents rooms and point of interests. As initial node the ap-

plication detects a node which is the nearest to any marker or point of interest. A goal

node is chosen by the user with means of the user interface. After that, an application

marks all nodes as “new” of unvisited. For the each graph node V in the graph, we set a

distance from this initial node Vo to this node V as infinity. While exists any node which

is not visited, the application will be running. For each node U with the least distance,

application compares this distance of each neighbor’s node V with a sum of distance of

node U plus length of link between nodes V and U. If this distance is greater, then it is

replaced with the calculated sum. The function works until it finds the target node. The

block diagram (see Appendix Figure 44) depicts how algorithm works for this particular

case.

3.2.3 Environmental Map of Point of Interests and Graph-Based Adaptation

Autonomous navigation is a difficult task which includes mapping, localization and path

planning. Most are of research deals with uneven and unknown environment. Since Ro-

boEye prototype is designed to be used inside domestic environment, exist a map of a

point of interests. These points of interest are not changed during the whole period of

usage, hence we focus on a navigation inside known environment. For mapping we are

using ready CAD description of a flat, in this particular case map of the laboratory in the

university of Trento. The CAD diagram serves as a global map of the environment, even

if it is not accurate enough it makes the process of mapping easier.

The information from CAD is used as follows:

 Rooms are defined;

 Doors are defined;

 Point of interest are marked;

 Representing this information in a form suitable for planning.

For about mentioned reasons to the each point of interest is assigned Aruco marker, which

helps the system to detect relative position of these points.

35

Figure 16 CAD map of the environment

First we have proceed the CAD drawing to extract number of rooms which can be dealt

independently, giving a user freedom to choose particular room. Then doors and point of

interest are determined, further they are formed into topological map of the environment

where doors and POIs are nodes of the graph and distance between them are edges of the

graph. Manually we create a file of point of interests, where each point of interest has

related marker. Each marker gives to a robot information what kind of POI is in front of

it. From the map, the robot can understand to which room is it related, passing point and

the distance between nodes.

A map is formed as a JSON file, which is used for the graph initialization and has a

structure as follows:

Later the software is able to extract the graph from a JSON file. On a Figure 18 Graph

class and Graph Nodes) below show created class Graph and GraphModes, where Graph

represent a list of a list of Nodes.

+ ID of POI

+ Related marker

+ X, Y, θ of the POI

+ Reachable POI

+ Distance to each POI

MAP

36

Figure 17 Representation of a JSON map of the environment

The map consist all necessary information to create a graph-based map (see Figure 17).

Figure 18 Graph class and Graph Nodes

In addition to that JSON wrapper class in created. Which contains extracted information

from the JSON map.

Figure 19 UML diagram point of interest

The function below shows how the data is read from the file:

void ReadData()

 {dataIsRead = true;

 try

1..*

<<GraphNodes>>

+matrixID: int

+ID: int

+New: bool

+Links: List <GraphNode>

+caption: string

<<Graph>>

+Nodes: List<GraphNode>
2...* 1

<<JSON wrappers>>

+Pois[]: Pois

1..*

<<Pois>>

+ID: int

+caption: string

+room: string

+links: List<links>

<<Links>>

+ID: int

+length: float

37

 {myGraph.Nodes = new List<GraphNode>();

 matrixNumber = 0;

 if (System.IO.File.Exists(pathJSON))

 {string contents = System.IO.File.ReadAllText(pathJSON);

 JsonWrapper wrapper = JsonUtility.FromJson<JsonWrapper>(contents);

 poisList = wrapper.Pois;

 // Debug.Log("fileisread");

 foreach (Pois po in poisList)

 {GraphNode newGraphNode = new GraphNode();

 newGraphNode.matrixID = matrixNumber;

 newGraphNode.ID = po.ID;

 newGraphNode.caption = po.caption;

 newGraphNode.New = true;

 newGraphNode.Links = new List<GraphNode>();

 foreach (links li in po.links)

 {GraphNode newGraphNode2 = new GraphNode();

 newGraphNode2.ID = li.ID;

 newGraphNode.Links.Add(newGraphNode2);

 }myGraph.Nodes.Add(newGraphNode);

 matrixNumber++;}}

 else{Debug.Log("Unable to read the file, file does not exist");}}

 catch (System.Exception ex){Debug.Log(ex.Message);}}

Program 1. ReadData function

The figure below illustrates the block-diagram for above mentioned program code.

38

Figure 20 ReadData() function's block diagram

39

4. PROOF OF IMPLEMENTATION OF THE DEVELOPED SOLUTION

The theoretical approach discussed in chapter 3 implemented on a testbed provided by

the laboratory of the University of Trento. The research team is responsible for hardware

building and creating services to maintain smooth usage of the wheelchair. Developed

solution is not only extends functionally of the wheelchair but also fit into existing ones.

The code used before was so called “hardcoded”, thus adding new lines of code required

significant changes. The developed software is changed from a scratch following State

Machine method in order to include previous functionalities and make possible to add

code for future improvements. The following chapter explains results and achievements

of the project.

4.1 Testbed description

4.1.1 Architecture overview

RoboEYE is a modified version of an advanced wheelchair GR558 of Nuova Blandino

(Figure 21). For this project electronics enabling control by joystick are removed and

added hardware specified for eye tracking interface. Moreover, to support advanced ro-

botic technologies needed for semi-autonomous and autonomous navigation. Odometric

localization is enabled by two encoders which mounted on the wheels. Commercial driver

ensuring required power supports the standard motor. Couple centimeters over a position

of legs of a user is a place where a time of flight (ToF) Microsoft Kinect V2 camera is

mounted. This position is identified by a questionnaire which was held between a group

of wheelchair users, including standard and specific power wheelchairs. Respondents

were asked to identify the best position of the wheelchair by comparing images on a

screen projected from the camera. The majority of participants indicated that it is im-

portant to see their knees on display. Some of those interviewed suggested that this posi-

tion of a camera is classified as the most useful and productive in-depth perception of the

indoor environment, especially when a wheelchair moves close to obstacles or narrow

passages. It worth mentioning that the camera is attached to a frame through a revolute

joint, thus the position is adjustable to each person's preferences. Images transmitted from

ToF is displayed on a screen mounted in front of the user. The system is controlled by

interacting with the eye-tracking device, which is attached below the monitor and a screen

which serves as an output device for the Human-Machine Interface. The personal com-

puter manages a logic of the system, which collecting data about a position from encoders

and control parameters required to lead drivers of the wheelchair, moreover, supervise

the eye-tracking device, monitor, and ToF.

40

Figure 21 RoboEye prototype

4.1.2 Manual navigation

In this modality user navigate wheelchair and choose desired velocity directly looking at

the reserved areas of the screen. In this case, the wheelchair control is easy to understand

since it is intuitive. However, this is causing significant stress to the user, since this nav-

igation type require constant attention and eye movement. Even though eye movement is

considered the fastest, it is main role that is exploration, rather than control. The interface

foresees the continuous deviation of frontal and angular velocity in order to prevent jerks,

improve smoothness of a movement, which ensure comfortable user experience to a user.

User can change speed values by moving eye gaze from bottom to the top of a screen,

from minimum value to the maximum. Speed values are calibrated with respect to the

eye-tracking device’s uncertainty. For both control functions a “rest” zone is a place on a

screen where both speeds are equal to zero, this zone is reserved for UI buttons. Worth

mentioning maximum speed can be adjusted with assigned button in a settings panel.

Figure below illustrates velocity functions.

41

Figure 22 Control law of angular and frontal velocities

Following equation calculates control value of forward velocity, considering 𝑦𝑃 as the

actual position of eye gaze on a monitor; H is a height of the screen and 𝑦𝑁𝐴𝑍 (y normal-

ized at zero is set to be 0.25), which characterized by the part of the screen where the

speed is set to be zero.

𝐹(𝑦) =
1

1−𝑦𝑁𝐴𝑍
×
𝑦𝑃

𝐻
−

𝑦𝑁𝐴𝑍

1−𝑦𝑁𝐴𝑍
. (8)

Forward speed following the law depicted on the equation below, where maximum speed

is multiplied by F(y):

𝐹𝑓𝑟𝑤 𝑆𝑝𝑒𝑒𝑑 = {
𝑉𝑓𝑟𝑤𝑀 × 𝐹(𝑦), 𝑖𝑓 𝐹(𝑦) > 0

0, 𝑖𝑓 𝐹(𝑦) ≤ 0
. (9)

The lateral speed is calculated analogically to forward speed. Control laws for both right

and left movement is depicted below:

𝐺𝑅(𝑥) = − (𝑥𝑃 −
𝑊

2
) ×

2

𝑊

1

(1−𝑋𝑁𝐴𝑍)
−

𝑋𝑁𝐴𝑍

1−𝑋𝑁𝐴𝑍
, (10)

𝐺𝐿(𝑥) = −(𝑥𝑃 −
𝑊

2
) ×

2

𝑊

1

(1−𝑋𝑁𝐴𝑍)
+

𝑋𝑁𝐴𝑍

1−𝑋𝑁𝐴𝑍
, (11)

where 𝑋𝑁𝐴𝑍 is x normalized at zero, is set to 0.15, 𝑥𝑃 as the actual position of the eye on

the screen, W is a width of the screen.

Later speed is determined following this approach:

𝐿𝑎𝑡 𝑆𝑝𝑒𝑒𝑑 𝑅= {
𝑉 𝑙𝑎𝑡 𝑀 × 𝐺𝑟(𝑥), 𝑖𝑓 𝐺𝑅(𝑥) > 0

0, 𝑖𝑓 𝐺𝑟(𝑥) ≤ 0
, (12)

42

𝐿𝑎𝑡 𝑆𝑝𝑒𝑒𝑑 𝐿= {
𝑉 𝑙𝑎𝑡 𝑀 × 𝐺𝑙(𝑥), 𝑖𝑓 𝐺𝐿(𝑥) < 0

0, 𝑖𝑓 𝐺𝐿(𝑥) ≥ 0
, (13)

where 𝑉 𝑙𝑎𝑡 𝑀 is the maximum values of the lateral speed.

4.1.3 Semi-autonomous navigation

Semi-autonomous navigation modality was developed to reduce user’s fatigue. This tech-

nology includes techniques from industrial mobile robotics which give the wheelchair the

capability to investigate surrounding environment, to detect a point of interest (POIs).

Moreover, the user can choose the POI from the offered variation and the wheelchair

capable of moving “semi-autonomously” to this point. The system being in semi-auton-

omous state searches for potential POIs in the surrounding and computes the most effi-

cient path to reach a chosen position. Human-machine interface illustrates to the user

detected POIs and calculated paths if feasible. Besides, it is essential for a user to select

desirable POI by looking continuously at it for some particular time to activate above-

mentioned point. In the case of activation of POI, the wheelchair initiates independent

movement toward the target. During this movement, the user has an opportunity to cancel

the navigation.

Since the “semi-autonomous” navigation requires implementation of advanced algo-

rithms, including image and 3D data processing, which involve specific libraries usage,

thus cannot be directly realized at the human-machine interface level. For these purposes

serves an operative core of RoboEye or C++ DLL. As it can be seen from the figure below

(Figure 23), the DLL has three levels and two parallel tasks. Two threads perform abso-

lute localization of the wheelchair and communication system with drives. In addition to

that, DLL wrapper connects C++ level with the C# level of Unity 3D software.

43

Figure 23 DLL structure [2]

4.1.4 Software overview

RoboEye runs on a Windows Operating System (OS), which manages hardware and

maintain a PID controller. That detect the variance between target and real set point ve-

locities, calculating a mistake, which is corrected afterwards to keep deviation minimal.

RS323 serial communication is establish to ensure smooth network between high level

software interface to low level data (such as variables, modules and functions controlling

the wheelchair’s movement).

As it can be seen from a Figure 45 (Appendix), software includes the following services.

Service 3 (Serial communication) is responsible for manual drive and autonomous com-

mands. Service 1 is responsible for detecting points of interests in surrounding environ-

ment, establishing current location of the wheelchair and performs path planning for semi-

autonomous navigation, which is sent to the interface. Human machine interface sends

data concerning chosen path to this Service. Afterwards the path is used by Service 2, in

order to perform path following and odometric localization.

Service 4 performs data collection from TOF camera Kinect or Real Sense cameras, de-

pending on the wheelchair’s configuration, and then this data is used by Services 1 and

5. Service 6 manages tilt of sitting, backrest and footboards and any other possible wheel-

chair setting, which can be controlled by user from HMI, thus status, is displayed on the

44

monitor. Service 9 and the rest services are working following Master -Slave relation-

ships, thus performs acknowledgement from all services and publish statuses to all ser-

vices.

4.2 Human machine interface implementation

Software is performed following state machine approach, block diagrams are presented

in the Appendix A. Application switching between following scenes: scene idle, autono-

mous navigation, manual navigation, autonomous map, path planning, settings.

Figure 24 Developed State Machine of the Human-Machine Interface

STOP is pressed

POI is chosen

Idle Semi-autonomous

Manual

Map autonomous

nav.

Path planning

START is pressed

MAP button is pressed destination is chosen

BACK is pressed

BACK is pressed

STOP is pressed

EXIT is pressed

45

Figure 25 State Manager and IState base classes

The software were give to be tested for experienced and non-experienced users. Due to

several limitations, the team of the project is considered as experienced users, while ran-

dom people have no previous experience with a wheelchair or eye-tracking devices usage.

For this case, we selected three team members as experienced users to test the software

with use of mouse and eye-tracking device and five unexperienced volunteers. The test

cases and results are given below. The testing were in held in four sessions, until all bugs

were not fixed. Therefore, the test cases below has no fails.

Test

Case ID
Test Steps Expected results

Actual re-

sults
Pass/Fail Comments

IDLE _1

Gaze on a "Start" but-

ton (Green button) for

> 2 sec

Cursor - timebar count-

ing lasts for 2 sec, fill-

ing is proportional to

the time. Afterwards

the systes switches to

the manual navigation,

manual navigation

scene appears.

As expected Pass

Tested

online, thus

no move-

ment of the

wheelchair

is expected

IDLE_2
Gaze on a "any" button

for < 2 sec

Cursor timebar count-

ing lasts for the input

time, filling out ac-

cordingly. After gazing

is interrupted, the cur-

sor is filled for 100%.

As expected Pass

IDLE_3
Gaze on a "MAP" but-

ton for 2 sec

The system switches to

the "autonomous navi-

gation" state

As expected Pass

IDLE_4
Gaze on a "Pin" button

for > 2 sec

The system switches to

the "semi-autonomous

navigation" state, semi-

autonomous scene ap-

pears

As expected Pass

46

IDLE_5
Gaze on a "Settings"

button for > 2 sec

The system switches to

the "Settings" state and

Settings scene appears

As expected Pass

IDLE_6
Move Aruco marker to

the right

Suggested path

changes accordingly
As expected Pass

IDLE_7
Move Aruco marker to

the left

Suggested path

changes accordingly
As expected Pass

IDLE_8 Hide Aruco marker

No suggested path is

visible, pin button is

not active

As expected Pass

IDLE_9
Move Aruco marker

online

The path changes ac-

cordingly
As expected Pass

IDLE_10
Explore the screen

with the eyes gaze

The cursor is moving

along the eye-gaze
As expected Pass

IDLE_11

Try above-mentioned

steps on a different

monitor's sizes

The size of the buttons

and distance between

buttons/objects

changes accordingly

As expected Pass

Table 2 Test cases to be followed for the IDLE state

Test Case ID Test Steps Expected results
Actual re-

sults
Pass/Fail Comments

MANUAL_1
Gaze on "Stop" but-

ton for < 2 sec

The movement is

stopped, the state is

switched to "Idle"

mode, cursor filling is

changed accordingly

As expected Pass

Due to lim-

itations, the

movement

is not per-

formed

MANUAL_2
Gaze on "Stop" but-

ton for < 2 sec

Cursor is filled propor-

tionally to the time
As expected Pass

Table 3 Test cases to be followed for the MANUAL state

Test Case ID Test Steps Expected results
Actual re-

sults
Pass/Fail Comments

SEMI_AUT_1
Gaze on "Stop" but-

ton for < 2 sec

The movement is

stopped, the state is

switched to "Idle"

mode, cursor filling is

changed accordingly

As ex-

pected
Pass

Due to lim-

itations, the

movement

is not per-

formed

47

SEMI_AUT_2
Gaze on "Stop" but-

ton for < 2 sec

Cursor is filled pro-

portially to the time

As ex-

pected
Pass

Table 4 Test cases to be followed for the SEMI-AUTONOMOUS state

Test

Case ID
Test Steps Expected results

Actual re-

sults
Pass/Fail Comments

SET-

TINGS_1

Gaze on "small" button

for > 2 sec

The buttons size are

changed to the small

size

As expected Pass

User

should

check all

buttons in

all the

states, if

satisfy then

the test

case is

passed

SET-

TINGS_2

Gaze on "Stop" button

for < 2 sec

Cursor is filled propor-

tionally to the time
As expected Pass

User

should

check all

buttons in

all the

states, if

satisfy then

the test

case is

passed

SET-

TINGS_3

Perform above-men-

tioned steps for the

"medium" and "large"

buttons

The buttons size are

changed to the medium

and large sizes accord-

ingly, cursor's filling is

changed accordingly

As expected Pass

User

should

check all

buttons in

all the

states, if

satisfy then

the test

case is

passed

Table 5 Test cases to be followed for the SETTINGS state

48

Test Case ID Test Steps Expected results
Actual re-

sults
Pass/Fail

Com-

ments

MAP_PLAN_1
Gaze on "corridor"

button for > 2 sec

The corridor room is

chosen, POIs appeared

As ex-

pected
Pass

POIs are

following:

EntR3,

EntR2,

EntR3_1,

EntR3_2

MAP_PLAN_2
Gaze on EntR3 for

>2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_3
Gaze on EntR2 for

>2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_4
Gaze on EntR3_1

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_5
Gaze on EntR3_2

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_6
Gaze on "Room1"

button for > 2 sec

The Room1 is chosen,

POIs appeared

As ex-

pected
Pass

POIs are

following

Table 1,

Table 2.

Table 3

49

MAP_PLAN_7
Gaze on Table

1for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_8
Gaze on Table 2

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_9
Gaze on Table 3

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_10
Gaze on "Room 2"

button for > 2 sec

The Room 2 is chosen,

POIs appeared

As ex-

pected
Pass

POIs are

following:

Table 1

Table2

Table 3

MAP_PLAN_11
Gaze on Table

1for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_12
Gaze on Table 2

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_13
Gaze on Table 3

for >2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_14
Gaze on "Room 3"

button for > 2 sec

The Room 3 is chosen,

POIs appeared

As ex-

pected
Pass

POIs is

TV

MAP_PLAN_15
Gaze on TV for

>2 sec

The state is switched to

the path planning state,

scene path planning is

loaded, path is calcu-

lated

As ex-

pected
Pass

Path is

calculated

from the

initial

point to

the POI

MAP_PLAN_16
Gaze on Exit for

>2 sec

The state is switched to

the Idle state, scene Idle

is loaded

As ex-

pected
Pass

50

Table 6 Test cases to be followed for the MAP AUTONOMOUS state

Figure 26 Main screen human machine interface

The image is obtained from the kinect acquisition service and rendered in front of a cam-

era view and it is updated in real time. Here are four buttons: autonomous navigation map,

start, settings and home button. The user can “press” the button by keeping the eye contact

for 2 seconds. While the user hovering button, application runs timer ensuring user

friendly design. By pressing start button user can navigate in manual mode. The applica-

tion communicating with services, when detects Aruco marker – creates a button in shape

of a navigation pin near it. In addition, to that path is calculated and illustrated graphically

from the current location to the point of interest. If customer prefer to navigate in semi-

autonomous mode can hover this navigation pin. Home button is reserved for future pur-

poses, because navigation part will be a part of ready software, which is going to have

more functionalities such as phone calls, email receiving and sending, calendar, etc. In

menu settings envisaged speed changes - low, medium and high, in addition to that but-

ton’s size – small, medium and high as it can be seen from a figure below.

51

Figure 27 Menu settings

In manual or autonomous navigation the user, see following screen (Figure 28)

Figure 28 Manual navigation mode

52

Figure 29 Semi-autonomous navigation mode

In this case functionalities are the same, if stop buttons is pressed application stops navi-

gation and scene is changed to main scene. Also if the user does not look anymore at the

screen, the navigation is stopped.

In order to check UI design user’s satisfaction the anonymous survey were conducted.

Volunteers were invited to test the interface using eye-tracking device or an adapted Mar-

vel [22] prototype where a mouse pointer is simulating eye-tracking output. To check

how intuitive UI is, responders were asked to use an UI or a prototype with no instruction.

Almost 90% of responders reported that the design of the interface is simple and intuitive,

while the rest mentioned that they had some misunderstanding while using UI. There

were 20 positive responses to the question “Would you like to use this application

again?”, while five were not certain. In the comment field, those users mentioned that

icons design were poor, therefore the author enabled opportunity to customize icons de-

sign according to each user preferences. In summary, the results show that created inter-

face satisfy basic user experience and confirm need to be adaptive.

4.3 Path planning solution

4.3.1 Environmental map validation, graph based adaptation

It consists information about a marker related point of interest and links, or rooms that

can be reached from this particular point. For user experience in order to ensure readabil-

ity and user-friendly design added name of the room and its points of interest. Developed

application reads information from file generates a graph and offers a user possibility to

choose a destination (See Figure 30).

53

Figure 30 User interface, rooms menu

From the map application read that there are four rooms, after choosing room1 user can

choose POs inside this room which are: Table 1, Table 2 and Table 3. Buttons position,

captions are dynamic, depending on a JSON file content, and amount of buttons and the

size of a screen. As regards design of icons, the user can easily change it by replacing

default pictures in related folder. After choosing destination point, the wheelchair define

current position and calculates shortest path from detected starting point to the chosen by

the user a target point. The solution is shown as follows (Figure 31)

Figure 31 Path planning scene user interface

54

At this point of software development, the wheelchair is able to move using a list of pass-

ing point, when facing an obstacle application stops movement. However, the team de-

veloping a new solution which should perform smooth obstacle avoidance algorithm,

which is under development and cannot be implemented yet. Therefore, for testing pur-

poses was decided to print out suggested path.

Figure 32 Class diagram Graph, GraphNodes

4.3.2 Dijkstra algorithm simulation

In this work, the environmental map is represented as a graph of point of interest and can

be seen as follows.

Figure 33 Graph-based map

Above-mentioned map is formed in order to check if path planning works well and gives

adequate results. However, for user comfort results are shown in a readable form Figure

31Ошибка! Источник ссылки не найден..

55

The simulation were run from every node to each left nodes in this particular laboratory

map, results are shown below in the tables Table 7 -Table 9Table 16.

1001 1101

1001 1102

1001 1103

1001 1002

1001 1003

1001 1002 1201
1001 1002 1202
1001 1002 1203
1001 1003 1004
1001 1003 1004 1301

Table 7 Simulation results from node 1001 to the rest of nodes

1002 1001

1002 1003

1002 1201

1002 1202

1002 1203

1002 1001 1101
1002 1001 1102
1002 1001 1103
1002 1003 1004
1002 1003 1004 1301

Table 8 Results of simulation from the node 1002 to the rest of nodes

1003 1001
1003 1002
1003 1004
1003 1004 1301

1003 1001 1103

1003 1001 1102

1003 1001 1101

1003 1002 1201

1003 1002 1202

1003 1002 1203

Table 9 Results of simulation from node 1003 to the rest of nodes

1004 1003

1004 1301

56

1004 1003 1001
1004 1003 1002
1004 1003 1001 1101

1004 1003 1001 1102

1004 1003 1001 1103

1004 1003 1002 1201

1004 1003 1002 1202

1004 1003 1002 1203

Table 10 Results of simulation from the node 1004 to the rest of nodes

1101 1001

1101 1001 1102

1101 1001 1103

1101 1001 1002

1101 1001 1002 1201
1101 1001 1002 1202
1101 1001 1002 1203
1101 1001 1003

1101 1001 1003 1004
1101 1001 1003 1004 1301

Table 11 Results of simulation from the node 1101 to the rest of nodes

1102 1001

1102 1001 1101

1102 1001 1103

1102 1001 1003

1102 1001 1002

1102 1001 1002 1201
1102 1001 1002 1202
1102 1001 1002 1203
1102 1001 1003 1004
1102 1001 1003 1004 1301

Table 12 Results of simulation from the node 1102 to the rest of nodes

1103 1001

1103 1001 1101

1103 1001 1102

1103 1001 1003

1103 1001 1002

1103 1001 1002 1201
1103 1001 1002 1202
1103 1001 1002 1203

57

1103 1001 1003 1004
1103 1001 1003 1004 1301

Table 13 Results of simulation from the node 1103 to the rest of the nodes

1201 1002

1201 1002 1001

1201 1002 1003

1201 1002 1202

1201 1002 1203

1201 1002 1001 1101
1201 1002 1001 1102
1201 1002 1001 1103
1201 1002 1003 1004
1201 1002 1003 1004 1301

Table 14 Results of simulation from the node 1201 to the rest of the nodes

1202 1002

1202 1002 1001

1202 1002 1003

1202 1002 1201

1202 1002 1203

1202 1002 1001 1101
1202 1002 1001 1102
1202 1002 1001 1103
1202 1002 1003 1004
1202 1002 1003 1004 1301

Table 15 Results of simulation from the node 1202 to the rest of the nodes

1203 1002

1203 1002 1001

1203 1002 1003

1203 1002 1201

1203 1002 1202

1203 1002 1001 1101
1203 1002 1001 1102
1203 1002 1001 1103
1203 1002 1003 1004
1203 1002 1003 1004 1301

58

Table 16 Results of simulation from the node 1203 to the rest of the nodes

These results indicate that the path planning algorithm adequate and can be used for nav-

igation purposes. Implemented solution is simple and efficient, does not require many

calculations. Moreover, mapping, localization, path routines tested to be fit into adaptive

and intuitive interface. User can change one eye-tracker to one another or Kinect camera

with another ToF camera. These changes will not significantly effect code of the project.

In addition to that, UI is adaptive to screen sizes, resolution etc, which was separately

tested by changing resolution of Unity dashboard.

59

5. CONCLUSIONS AND FUTURE IMPROVEMENTS

There are some solutions for the wheelchair navigation available for people with major

disabilities, however, those solutions face lack of usability due to limited functionalities

or high cost. Human machine interface based on eye-tracking device, Kinect camera,

combining augmented reality and greatly developed software is one of the promising di-

rections in this areas. Path finding strategies are well-studied, thus, benefits and limita-

tions are quite known. One of the goals of thesis was to find the most appropriate solution

according to the given requirements. Therefore, suggested solution might be not the most

technologically advanced but provides the required usability in trade off the suitable price.

Developed solution for path finding satisfy the requirements detected by the author. Note,

it is needed to install Aruco markers inside apartment of the user before using the wheel-

chair. It is also necessary to define the points of interest to be included in autonomous

navigation map. This significantly reduces cost of development, however, requires addi-

tional work of engineers and if user decides to move to another apartment, the map should

be recreated from a scratch.

UNITY Game Engine is used for the development of the HMI. Moreover, ArUco was

used as a library for Augmented Reality AR applications based on OpenCV to identify

the possible targets and then OpenCV for image processing. The proposed AR-based ap-

plication can recognize POIs visible to the camera, to plan a path and to give to the patient

the possibility to eventually perform the preferred path after a proper checking. From an

applicative point of view, when a POI enters in the field of view of the camera the user

can select it, starting in this way the autonomous navigation. The tests on the application

developed were performed evaluating the repeatability of the maneuvers starting from

different positions. In this way, the impact of the uncertainty of the camera position was

evaluated, with respect to the wheelchair, on the reached position. Moreover it is used

also Microsoft Visual Studio for the image processing and Matlab.

Developed human-machine interface is reusable, meaning that if eye tracking device or

TOF camera will be replaced with another one, for example Kinect camera replaced by

SensEye camera, the interface still will be useful and will not require a lot of changes.

Design of interface is easily changeable according to the needs and preferences of the

user, there is a folder with icons, these icons can be used by default or replaced with the

preferred ones. In addition, to that interface is adjustable to any resolution and screen size.

During the research, it was clear that:

60

 Mapping using CAD significantly reduces cost of the development. It is proven

to be simple and elegant solution, because the environment stays the same. To be

short, it is simple, inexpensive and suitable for autonomous navigation in the flat

of a patient.

 The localization of the wheelchair inside the environment is necessary to allow a

mobile robot to move autonomously. ArUco markers is cheap and suitable solu-

tion to be used to perceive relative position and define POIs.

 Graph-based map created using separately created JSON file and CAD is conven-

ient addition to Dijkstra algorithm. This algorithm proven to be classical and sim-

ple approach in path planning. The path planning was fast and did not require any

improvement.

 Last but not the least; State Machine is great solution to create UI. It not only

allows including previously developed code but also gives future developers op-

portunity to add new states, keeping code simple and clear.

During the thesis completion, the project faced many different changes proposed by stake-

holders; therefore, the interface’s and autonomous navigation solutions have been modi-

fied significantly. Due to high level of bureaucracy in Italy, it was impossible to test the

solution with real users. The application for testing permission was submitted around a

year prior to the publication of this thesis while the approval is still pending. Due to

above-mentioned limitations, the final solution was tested only in laboratory premises.

Project is dynamic and ongoing, therefore the wheelchair was not available for the final

testing. However, in the nearest future the team is expecting to test this solution on a real

wheelchair and results will be demonstrated in September for the stakeholders.

61

6. REFERENCES

[1] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss and Wolfram Burgard, "A

tutorial on Graph-Based SLAM," IEEE INTELLIGENT TRANSPORTATION

SYSTEMS MAGAZINE, no. Winter, pp. 31-43, 2010.

[2] M. De Cecco and L. Maule, "Roboeye-project description," [Online]. Available:

http://www.miro.ing.unitn.it/index.php/robotics/191-roboeye-project.

[3] D. L. Jaffe, "An ultrasonic head position interface for wheelchair control," Journal

of Medical Systems, p. pp. 337–342, 1982.

[4] H. A. Yanco, "Wheelesley: A robotic wheelchair system: Indoor navigation and

user interface," Assistive Technology and Artificial Intelligence, pp. pp. 256-268,

31 May 2006.

[5] F. E. R. g. o. t. S. p. M. Mazo, "the Modularity if the Electronic Guidance Systems

of the SIAMO Wheelchair Allows for the User-Specific Adaptability Based on

Environment and Degree of Handicap," An Integral System for Assisted Mobility,

pp. 46-56.

[6] Zhengang Li, Yong Xiong and Lei Zhou, "ROS-Based Indoor Autonomous

Exploration and Navigation Wheelchair," in 10th International Symposium on

Computational Intelligence and Design, Wuhan, Hubei, China, 2017.

[7] Y. X. L. Z. Zhengang Li, "ROS- Based Indoor Autonomous Exploration and

Navigation Wheelchaur," in 10th International Symposium on Computational

Intelligence and Design, 2017.

[8] M. N. M. J. Khaoula Maatoug, "International Conference on Advanced Systems

and Electric Technologies," in Autonomous Wheelchair Navigation in Indoor

Environment Based on Fuzzy Logic Controller and Intermediate Targets, 2017.

[9] R. M. Kohei Arai, "A prototype of Electric Wheelchair Controlled by Eye-Only for

Paralyzed User," Saga, Japan, 2010.

[10] A. A. J. S. A. H. H. S. Martin Tall, "Gaze - controlled driving," Spotlight on Works

in Progress, Session 2, Boston, MA, USA, April 4-9, 2009.

62

[11] "Autonomous Mobile Robot Navigation Using Passive RFID in Indoor

Environment," IEEE TRANSACTIONS ON INDUTRIAL ELECTRONICS, VOL 56,

NO 7, July 2009.

[12] U. developer, "Unity Documentation," 23 Februart 2018. [Online]. Available:

https://docs.unit3d.com.

[13] A. Duchowski, Eye Tracking Methodology: Theory and Practice. 2nd ed., London:

Springer-Verlag London Limited, 2007.

[14] "Tobii: This is Eye Tracking," [Online]. Available:

https://www.tobii.com/group/about/this-is-eye-tracking/. [Accessed May 2018].

[15] De Cecco, Mariolino; Baglivo, Luca; Pertil, Marco;, "Real-time uncertainty

estimation of odometric trajectory as a function of the actual manoeuvres of

autonomous guided vehicles.," In Advanced Methods for Uncertainty Estimation in

Measurement, pp. 80-85, 2006.

[16] R. M.-S. F. J. M.-C. a. M. J. M.-J. Sergio Garrido-Jurado, "Automatic generation

and detection of highly reliable fiducial markers under occlusion.," Pattern

recognition, pp. 2280-2292, 2014.

[17] Y. Y. Z. M. Xu G.B, "The Present Simulation and Future of Technologies of

Intelligent Mobile Robots," Robot Technology and Application, pp. 29-34, 2007.

[18] W. H. Yin Chao, "International Conference on Computer Design and Appliations

(ICCDA)," in Developed Dijkstra Shortest Path Search Algorithm and Simulation

, Zibo, China, 2010.

[19] D. E. W., "A note on problems in connection with graphs," Numer Math , pp. 269-

271, 1959.

[20] W. Fen, "Dijkstra shortest path algorithm in the car navigation research and real,"

Shanghai: Shanghai Normal University, 2006.

[21] Z. Z. X. Y. Guo Qing, "Path-planning of Automated Guided Vehicle Based on

Improved Dijkstra Algorithm," College of Information Science and Technology,

Beijing University of Chemical Technology , Beijing.

[22] "Marvel prototyping online tool for UX designers," [Online]. Available:

https://marvelapp.com/.

63

[23] A Harrison, G. Derwent, A. Enticknap, FD Rose and EA Attree , "The role of virtual

reality technology in the assessment and training of inexperienced powered

wheelchair users," Disability and rehabilitation, Vols. 11-12, no. 24, pp. 599-606,

2002.

[24] Aayush Patial, Dhvanil Mandalia, Nikhil Nandoskar, G.T.Haldankar and

P.V.Kasambe, "FIS based autonomous navigation," in 8th ICCCNT 2017, Delhi,

India, July 3-5.

[25] Chaoqun Wang, Lili Meng, Sizhen She, Ian M. Mitchell, Teng Li, Frederick Tung,

Weiwei Wan, Max. Q. -H. Meng and Clarence W. de Silva, "Autonomous Mobile

Robot Navigation in Uneven and Unstructured Indoor Environments," in

International Conference on Intelligent Robots and Systems (IROS),

Vancouver,Canada , 2017.

[26] W. Coldsone, Unity 3x Game Development Essentials (Game Development with

C# and JavaScript), Birmingham - Mumbai: Packt Publishing , 2011.

[27] R. H. Creighton, Unity 4.x Game Development by Example Beginner's Guide, A

seat-of-your-pants manual for building fun, groovy little games with Unity 4.x,

Birmingham-Mumbai: Packt Publishing , 2013.

[28] K. D'Aoust, Unity Game Development Scripting, Write efficient C# scripts to create

modular key game elements that are usable for any kind of Unity project,

Birmigham: Packt Publishing, 2014.

[29] F. Duchoň, "Path Planning with Modified A Star Algorithm for a Mobile Robot,"

Procedia Engineering, pp. 59-69, 2014.

[30] N. C. U. A. A. G.Pires, "Autonomous Wheelchair for Disabled People," Institute of

Systems and Robotics, University of Coimbra, Polo II, Coimbra, Portugal.

[31] Hafid Niniss and Adbellah Nadif, "Simulation of the behaviour of a powered

wheelchair using virtual reality," in In 3rd International Conference on Disability,

Virtual Reality and Associated Technologies, 2000.

[32] Ian Stott and David Sanders, "The use of virtual reality to train powered wheelchair

users and test new wheelchair systems," International Journal of Rehabilitation

Research , vol. 4, no. 23, pp. 321-326, 2000.

[33] Khaoula Maatoug, Malek NJAH and Mohamed JALLOULI, "Autonomous

Wheelchair Navigation in Indoor Environment Based on Fuzzy Logic Controller

64

and Intermediate Targets," in International Conference on Advanced Systems and

Electric Technologies (IC_ASET), 2017.

[34] Luca Maule, Alberto Fornaser, Malvina Leuci, Nicola Conci, Mauro Da Lio and

Mariolino De Cecco, "Development of innovative HMI strategies for eye controlled

wheelchairs in virtual reality," in In International Conference on Augmented

Reality, Virtual Reality and Computer Graphics, Springer, 2016.

[35] M. De Cecco, A. Fornaser, M. Leuci, N. Conci, M.Daldoss and L.Maule, "Eye

trackers uncertainty analysis and modelling," in XXIII A.I.VE.LA. National

Conference, Perugia, Italy, 2015.

[36] Mariolino De Cecco, Matteo Zanetti, Alberto Fornaser, Malvina Leuci and Nicola

Conci, "INTER-EYE: Interactive error compensation for eye-tracking devices," in

12th International A.I.VE.LA. Conference on Vibration Measurements by Laser and

Noncontact Techniques, Ancona, Italy, 2016.

[37] Muhannad Mujahed, Dirk Fischer and Barbel Mertsc, "Robust Collision Avoidance

for Autonomous Mobile Robots in Unknown Environments," GET Lab, University

of Paderborn,Pohlweg 47-49, 33098 , Paderborn, Germany.

[38] T. Norton, Learning C# by Developing Games with Unity 3D, Mumbai: Packt

Publishing, 2013.

[39] A. Okita, Learning C# Programming with Unity 3D, New York: CRC Press,

Taylor&Francis Group, 2015.

[40] Rainer Kummerle, Michael Ruhnke, Bastian Steder, Cyrill Stachniss and Wolfram

Burgard, "Autonomous Robot Navigation in Highly Populated Pedestrian Zones,"

Department of Computer Science, University of Freiburg, Freiburg, Germany.

[41] A. Thorn, Learn Unity for 2D Games Development (Technology in Action), New

York: Apress, 2013.

[42] Yimin Zhou, Guolai Jiang, Guoqing Xu, Xinyu Wu and Ludovic Krundel, "Kinect

Depth Image Based Door Detection for Autonomous Indoor Navigation," in The

23rd IEEE International Symposium on Robot and Human Interactive

Communication, Edinburgh, Scotland, UK,, August 25-29, 2014.

65

APPENDIX A:

Figure 34 Scene Idle, flow chart, StateUpdate() part 1/2

66

Figure 35 Scene Idle, flow chart, StateUpdate(), part 2/2

67

Figure 36 Manual/Semi-autonomous scenes, flow chart, StateUpdate()

68

Figure 37 Map autonomous navigation, Flow chart, StateUpdate(), part 1/2

69

Figure 38 Map autonomous navigation, Flow chart, StateUpdate(), part 2/2

70

Figure 39 Map autonomous navigation, flow chart, Buttons()

71

Figure 40 Map autonomous navigation, flow chart, ButtonsHorizontal()

72

Figure 41 Map autonomous navigation, flow chart, ReadData()

73

Figure 42 Path planning, flow chart, StateUpdate(), part 1/2

74

Figure 43 Path planning, flow chart, StateUpdate(), part 2/2

75

Figure 44 Path planning, flow chart InternalFind()

76

Figure 45 Software architecture scheme

