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ABSTRACT 

AIBIKE YESSIMBEKOVA:  
Tampere University of technology 
Master of Science Thesis 60 pages, 11 Appendix pages 
September 2018 
Master’s Degree in Automation Engineering,  
Major: Factory Automation and Industrial Informatics 
Examiner: Professor Jose L. Martinez Lastra 
 
Keywords: autonomous navigation, intelligent wheelchair, indoor navigation, hu-
man-computer interaction 

 

Traditional wheelchairs are controlled mainly by joystick, which is not suitable 
solution with major disabilities. Current thesis aiming to create a human-machine 
interface and create a software, which performs indoor autonomous navigation 
of the commercial wheelchair RoboEye, developed at the Measurements Instru-
mentations Robotic Laboratory at the University of Trento in collaboration with 
Robosense and Xtrensa,. RoboEye is an intelligent wheelchair that aims to sup-
port people by providing independence and autonomy of movement, affected by 
serious mobility problems from impairing pathologies (for example ALS – amyo-
trophic lateral sclerosis).  

This thesis is divided into two main parts – human machine interface creation 
plus integration of existing services into developed solution, and performing pos-
sible solution how given wheelchair can navigate manually utilizing eye-tracking 
technologies, TOF cameras, odometric localization and Aruco markers.  

Developed interface supports manual, semi-autonomous and autonomous navi-
gation. In addition to that following user experience specific for eye-tracking de-
vices and people with major disabilities. Application delevoped on Unity 3D soft-
ware using C# script following state-machine approach with multiple scenes and 
components. 

In the current master thesis, suggested solution satisfies user’s need to navigate 
hands-free, as less tiring as possible. Moreover, user can choose the destination 
point from defined in advance points of interests and reach it with no further input 
needed. User interface is intuitive and clear for experienced and unexperienced 
users. The user can choose UI’s icons image, scale and font size. Software per-
forms in a state machine module, which is tested among users using test cases. 
Path planning routine is solved using Dijkstra approach and proved to be efficient.  
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1. INTRODUCTION 

1.1 Motivation and Justification 

Development of manually powered and electrical wheelchairs for people suffering from 

the paralyzed condition is not wide. Standard wheelchairs usage assumes that a person 

still can move their hands; however, that excludes paralyzed people from an end-user 

group. Various diseases or accidents influencing the nervous system also might cause 

paralysis which is divided into three groups: local, global and specific. Unfortunately, 

most of the paralysis diseases are constant, but sometimes this condition is temporary. 

The most-well known victim of Amyotrophic Lateral Sclerosis which cases paralysis was 

a scientist Stephen W. Hawking. He was using a wheelchair on a constant base. The most 

limiting disabilities are those that prevent a person to move independently. People who 

are not able to use their arms and legs encounter severe problems and absolutely depend 

on others. This creates a need to have a device that can ensure independent living for 

disabled people. It is obvious that the primary solution is to have an electric wheelchair 

that can be controlled mechanically by any mobile part of the body under their own com-

mand.  

Today, many solutions of wheelchair are controlled by joysticks using chin or mechanical 

devices attached to the headrest. However, those solutions are lacking the user comfort 

because these people have to move their chin or head at all times in order to navigate. 

Additionally, chin movements are limited and cannot ensure the desired level of control. 

Also using chin to control a joystick is cosmetically unpleasant for the user. Other chairs 

can be controlled by user’s puffing or sipping a plastic tube. This method has several 

disadvantages such as increased difficulty in adjusting control plus sanitation problems. 

All the above-mentioned solutions case disturbance for the users and are found to be very 

tiring. Moreover, it is hard for a user to master control. 

Existing wheelchairs are used only for disabled and elderly people that can partially move 

their limbs. In contrast, there are cases when people are affected by serious diseases caus-

ing the paralyzed condition and the only agile parts are eyes. Therefore, nowadays avail-

able for sale wheelchairs controlled by the joystick are not useful for people suffering 

from ALS or Parkinson diseases due to very limited mobility. Wheelchairs suitable to be 

used for paralyzed people can be divided in the following manner: 
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1. Biosignal-based, thus EOG and EMG might transfer bio signals received from 

the brain into a control signal that can be used to control an electric wheelchair. 

For example, when one of the above-mentioned methods perform analysis on the 

user’s eye movement by directly connecting recognition device’s electrodes on 

the eye. On the other hand, brain signals and muscle signals can be used to con-

trol the wheelchair, if the output signal is converted accordingly into the control 

signal.  

2. Voice-based. In this case, a wheelchair is controlled by means of speech recog-

nition systems, user interface, etc. While controlled by voice, the patient can 

pronounce command to the wheelchair to move to the desired position, for ex-

ample, left, right, forward, etc. 

3. Vision-based. The user intents are captured and transformed into a control signal 

with help of a camera. Some of those are head gestures, horizontal eye gaze, and 

blinking. Also, this cameras are widely used to detect obstacles, create a map 

used for autonomous navigation and provide an image of the surrounding envi-

ronment is required.  

Extensive research [1] has shown that wheelchairs controlled by voice, brain control sys-

tem and vision can fulfill the needs of people with abovementioned diseases. Voice con-

trolled systems do not work well when used in a noisy environment, the voice command 

might be confused or not detected. In brain-controlled devices, using EEG signals it is 

easy to navigate, but setting up the system might be too demanding and somehow incon-

venient for the patient. Even though these systems save a significant amount of energy 

and require less external manpower, it might still be very difficult for a paralyzed person 

to use it.  

To address these issues many wheelchairs have been upgraded with equipment such as 

cameras, sensors, equipment and technologies such as image processing, simultaneous 

navigation, and localization, moving these wheelchairs into a category of a “smart” 

wheelchairs. Semi-autonomous, autonomous navigation, mapping, and obstacle avoid-

ance make these chairs “intelligent” and extremely comfortable for the user. In addition 

to that, vision-based control does not require direct contact, e.g. electrodes attached to the 

body of the user. However, with the advanced technical capabilities arises cost of main-

taining and creating such wheelchairs. In addition to that, these systems are often not 

reusable, so thus changing from one wheelchair to another might be very costly. Another 

problem is a human-machine interface, which is not user-friendly. Most of the smart 

wheelchairs are used mainly for the research purposes, lacking commercialization. 

One of the important issues of any commercial product is its price. Nowadays, most ro-

botics applications use highly precise and very expensive sensors in order to provide the 
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desired output, for example, LIDAR-based lasers. Not every person with limited abilities 

can afford an expensive wheelchair. Moreover, often it is not sufficient to have an am-

biguous technology in order to satisfy everyday needs. Therefore, it is important to find 

a right balance between cost and performance. Another challenge, the algorithms required 

to run a mobile-wheelchair are demanding, which require a personal computer with great 

performance characteristics. Moreover, physical interface is poor on the most of wheel-

chairs, and there is no standard in communication protocols required by wheelchair’s in-

put devices and various modules. This problem can be solved by utilizing common ro-

botic frameworks. Last but not the least, currently wheelchairs are not accepted much by 

society and clinic. It remains immature technology, which is hardly desired and appreci-

ated by disabled people. 

1.2 Problem statement  

The number of wheelchair users increases dramatically, thus creating a comfortable and 

up-to-date robotic wheelchair is important. The desired wheelchair should be able to plan 

a path fast and efficiently, while the user should feel calm and comfortable. The wheel-

chair should be intractable with the user, thus semi-autonomy is preferred rather than 

being completely autonomous. Moreover, the mobile robot should have the ability to per-

ceive data not only at the very beginning of a trip but also during its navigation, thus 

efficient user interface is crucial.  

In addition to that, the user interface is required to be easy-customizable in order to satisfy 

the needs of each user. If it is impossible to adapt to the specific user the system will fail 

to satisfy basic needs of the patient. It is well-known fact that assistance robot shall im-

prove the user’s ease to move independently yet be able to work in pair with the user. It 

is not required to have a high-level path planning for its navigation but rather to keep the 

patient safe and comfortable. A system is required to be more than a navigation system. 

It is important to create a system able to assist the user in navigation providing safety and 

ease.  

This master thesis is a part of a commercial RoboEye project [2]. RoboEye aims to sup-

port people affected by mobility problems that range from very impairing pathologies 

(like ALS, amyotrophic lateral sclerosis) to old age. In this context, mobile robotic can 

play a key role to improve autonomy and lifestyle of the patients. The focus of this project 

is the restore of users’ mobility using novel technology based, in this case, on the gaze. 

At this point the navigation of the wheelchair can be performed using different methods: 

• Direct navigation by the user; 
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• Semi-Autonomous navigation. 

In order to form a testbed an electric wheelchair is used. The two original motors are 

connected with an industrial PLC that performs the low-level control of the device (odo-

metric localization, path following, safety). A Windows PC, connected with the PLC, 

runs the high-level application that consists of the HMI, the communication with external 

devices (Kinect, Eye tracker, and monitor) and the path planning. However, the user in-

terface of the developed prototype needs to be improved. The functionality needs to be 

extended offering competitive value to the start-up company owning this product.  

The thesis was performed as a part of an exchange program between the Tampere Uni-

versity of Technology and The University of Trento, Italy. Given thesis was performed 

as a part of a teamwork project, which is not a standalone research topic but it is a part of 

a large continuous activity started more than one year ago. 

1.3 Objectives 

The aim of the master thesis is to develop an application designed to move a wheelchair 

from one point to another inside a civil environment. The main goal is the development 

of an autonomous navigation software in order to give to the patient a novel control tech-

nique. This software has to be integrated into the main application of the current project. 

With the autonomous navigation, the user can select a target point, where a person wants 

to arrive, and then the wheelchair has to reach the goal without any other additional input. 

This type of navigation aims to be as little tiring as possible. 

The autonomous navigation application research is divided into three major objectives: 

• Development of a graphical interface easy to use for people affected by mobility prob-

lems. In particular, the user has to be able to select the target position from a map of the 

environment displayed on the monitor. 

• Localization of the wheelchair inside the environment using some visual tags mounted 

in key points (doors, tables, etc.). This part will start with two algorithms developed in 

the lab during past works. 

• Planning of the path to reach the selected target. The environment has to be represented 

with a graph base schema and then used to find the path. The collaboration with patients 

allows evaluating all the parts in order to reach better the needs of the user. 

As explained in the introduction it is clear that in order to complete above-mentioned 

objectives it is important to answer following questions:  
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 What would be the most suitable solution to provide accurate mapping of an in-

door environment? Moreover, this solution should not be source demanding and 

expensive. To be short, it should be simple, inexpensive and be suitable for au-

tonomous navigation in the flat of a patient.  

 How to localize a wheelchair inside environment? The localization of the wheel-

chair inside the environment is necessary to allow a mobile robot to move auton-

omously. Therefore, the localization should be effective and cheap.  

 Which algorithm would be the best option to perform the shortest path planning 

from the position localized by the wheelchair to the desired position chosen by 

the user?   

 In which way a human-machine interface should be developed in order to solve 

above-mentioned problems. The UI should give a user opportunity to navigate in 

manual, semi-autonomous and autonomous modes, to change settings and to see 

the map of the environment when is necessary. Moreover, software should include 

previous prototype’s functionalities (for example Kinect data acquisition) and 

should work on a given configuration (hardware configuration should not be 

changed). It is important to choose how disabled people should control a wheel-

chair.  

1.4 Outline 

The thesis is composed of five themed chapters, including Introduction, Existing solu-

tions, Methods and Algorithm, An Overview of RoboEye project and Results of the the-

sis. 

The main issues addressed in this paper are: a) Human machine interface development b) 

Path planning issues c) Wheelchair solutions for disabled people  

Chapter two begins by laying out the theoretical dimensions of the research and looks at 

how some researches were trying to create an intelligent wheelchair aiming to ensure 

manual, autonomous, semi-autonomous navigation of the wheelchair. It suggests some 

tricks on methods and algorithms of a software development on Unity 3D.  

The third chapter is concerned with methodology used for this study. In order to achieve 

set objectives the author researched path planning methods, localization approaches, and 

human machine interface development with high user experience and software develop-

ment strategies. The chosen approach is discussed in this chapter. In other words, theo-

retical approach is presented in this chapter. 
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The fourth section presents the finding of the research. Here presented results of the sim-

ulation of path planning algorithm, test cases results tested by two groups of users and 

user’s satisfaction survey results.  

Chapter 5 concludes whether problem is solved or not and analyses the results of work 

done and focuses on limitations of the study, in addition to that proposing future improve-

ments for further research.  

Appendix contains block diagrams for the each state of the state machine based software 

and main software architecture scheme.  
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2.  LITERATURE AND BEST PRACTICES REVIEW 

Research of the intelligent wheelchairs does not have a long history. The first serious 

discussions and analyses of smart wheelchair emerged during the 1986, where these de-

vices were controlled and navigated by means of vision. David L. Jaffe [3] suggested 

using a totally non-contacted electrically powered wheelchair to provide mobility to dis-

abled people, addressing problems of collision avoidance and tracking along a straight 

path. In this manner the term “smart” electric wheelchair appeared. This prototype and 

research have established that set goals are achievable. The given model uses Polaroid 

Ultrasonic Sensor Technology in order to achieve mentioned goals. Polaroid sensors are 

utilized to detect subject-to-camera distance needed to focus. It is required to triangulate 

the user’s head position on the wheelchair. [3].  

Next, during the next 40 years of extensive researchers’ work, many various intelligent 

wheelchairs from different countries appeared. For example, Wheelesley of Massachu-

setts Institute of Technology [4], wheelchair named SIAMO developed in Spain [5] and 

numerous work from China such as head movements controlled wheelchair platform of 

Shenzhen Institute of Advanced Technology, Chinese Academy of Science, etc. There-

fore, there are many different solutions for the stated problem. However, the developed 

solutions have their pros and cons being expensive, too complex and not reusable in gen-

eral. The subsections below describe some outstanding solutions to various wheelchair 

problems, which combination might be an ultimate solution to problems discussed in 

chapter 1 of the given thesis.  

2.1 Autonomous Exploration and Navigation 

Recently, numerous researchers have attempted to design an intelligent wheelchair en-

suring low cost and high reusability yet realizing navigation and autonomous exploration. 

For example, on 10th International Symposium on Computational Intelligence and De-

sign, which is held on 2017, a low cost highly reusable wheelchair was presented.  

Suggested solution runs on ROS – open source framework, which provide point-to-point 

connection, thus network is capable to connect to each process in the system. Indoor en-

vironmental data is collected using low cost (compared to laser sensors) RGB-D camera. 

The motors of wheels are controlled with help of Arduino microcontroller. The navigation 

is performed using Pulse Width Modulation (PWM) algorithms, calculating this value 

with respect to the path planning routine, further the value is sent to the microcontroller. 

Finally, wheelchair motors controlled according to received PWM, meanwhile the patient 
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can control wheelchair distantly, see information from depth perception camera, take ac-

tions with created indoor map, such as open and save using APP running on Android 

operating system.  

 

Figure 1 System structure diagram 

Figure 1 depicts a system structure diagram of the developed wheelchair. The wheelchair 

works as follows: to begin a process, the wheelchair gathers environmental information, 

meanwhile edge-based autonomous navigation technique determines navigation target. 

During that process, Gmapping algorithm creates an indoor map according to the gathered 

data from the camera, within movement the map is updated continuously. The map is 

fully created once autonomous exploration and map building are completed.  

Further, A* algorithm [6] uses generated map as an input in order to perform global path 

planning. DW methods are used to perform obstacle avoidance routine with help of Point 

Cloud Images. Combined results are sent to ROS, which is generating the shortest path 

to the target with no obstacles on a way. In this wheelchair’s configuration, environmental 

map is grid-based, the main disadvantage of which is in high resolution. Thus, the cost of 

finding path is high; therefore, timeliness should be reduced as much as possible. The 

reason why global path planning is performed with use of A* is because this algorithms 

has strong timeliness and able to find the shortest path, which is highly needed when grid 

based map is used.  
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In order to ensure human-computer interaction, a user interface is performed on ROS that 

provides a package for creating ROS programs on Android. Rosjava uses standard Java 

programming language and Java’s libraries. Moreover, it is easy to quickly invoke ROS 

Nodes, Topics and Services. In addition to that, Android_core is implemented inside ROS 

to help developers to create programs designed for the Android devices. Laboratory tests 

indicated that the wheelchair is able to create a partial map of the laboratory, and more 

preciseness can be achieved by expanding the search area. The wheelchair can effectively 

avoid obstacles and calculate the shortest path to reach a target. In case of a deadlock, the 

wheelchair runs exception-handling mechanisms and perform rotation in order to find a 

way to exit from this state. Created HMI is giving an opportunity for a user to navigate 

using virtual joystick and a user can obtain an indoor map and obstacle scanning infor-

mation on a screen. To be short, user-friendly interface gives an opportunity to interact 

with user and provides satisfaction of the basic needs of the user [7]. 

However, researchers have not treated importance of the wheelchair’s functionalities for 

patient in much detail. For example, the HMI is user-friendly, yet too basic and lacking 

user experience. Overall functionality is low, does not include semi-autonomous naviga-

tion opportunities and does not give a user freedom to adjust interface according to the 

user’s needs. Research on the subject has been mostly restricted to be used for paralyzed 

people. Although extensive research has been carried out, this model does not have much 

competitive value on a market, thus cannot be used to set as a commercial product.  

2.2 Autonomous Navigation Using Intermediate Targets 

The previous section showed how authors tried to solve navigation problems inside une-

ven and unknown environment. In the section that follows, it will be argued that people 

suffering from severe diseases mostly spend their time indoor. Therefore, an intelligent 

wheelchair should be mostly adapted to be used in flat or hospital. A significant analysis 

and discussion on the subject was presented on International Conference on Advanced 

and Electric Technologies where an autonomous wheelchair navigation in indoor envi-

ronment using Fuzzy logic and intermediate targets were presented [8]. The goal of the 

research was to provide a wheelchair with an autonomous navigation ability inside une-

ven and unknown indoor environment by exploiting artificial intelligence technique – 

Fuzzy logic. Authors claim that fuzzy logic is a method that is good to be used in cases 

when the system require many efforts to be modeled and human expert knowledge is 

available. This type of controller should be used when developers willing to imitate the 

human reasoning and simulate human behavior.  

It is well known fact that in order to navigate from one room to another it is crucial to 

take into consideration the position, size of doors and of course, obstacles on its way. 
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Therefore, the path between initial point and a target is complex and uneven, thus authors 

propose using intermediate targets in order to facilitate moving to the desired position. 

This approach preventing the mobile robot from being trapped in front of the obstacle and 

roving with no direction. For this purpose, researchers analyzed kinematic model of a 

unicycle type of mobile robot, which is equipped with two rotating and two driving 

wheels. Note, this model allows to navigate a robot to any direction by orienting wheels 

of the robot. This configuration can be characterized by the position, x and y coordination 

and the orientation θ in a Cartesian space. Researches assuming that there is no slipping 

during rolling motion, the system performs movement on the horizontal ground and the 

wheel ground contact is a point, the kinematic model is created as follows:  

𝑑𝑋

𝑑𝑡
=

𝑉𝐿+𝑉𝑅

2
cos 𝜃          (1) 

𝑑𝑌

𝑑𝑡
=

𝑉𝐿+𝑉𝑅

2
sin 𝜃          (2) 

𝑑𝜃

𝑑𝑡
=

𝑉𝑅−𝑉𝐿

2
           (3) 

 

While discrete form of the abovementioned model is (T – is the sampling time):  

𝑋𝑘+1 = 𝑋𝑘 + 𝑇
𝑉𝑅𝑘 +𝑉𝐿𝑘

2
cos 𝜃𝑘         (4) 

𝑌𝑘+1 = 𝑌𝑘 + 𝑇
𝑉𝑅𝑘 +𝑉𝐿𝑘

2
sin 𝜃𝑘        (5) 

𝜃𝑘+1 = 𝜃𝑘 + 𝑇
𝑉𝑅𝑘 −𝑉𝐿𝑘

𝐿
         (6) 

Above-mentioned equations are used to simulate a robot model in MATLAB, exploiting 

fuzzy logic on the discrete form. One of the most important feature to be implemented in 

order to ensure adequate autonomous navigation is an ability of a robot to sense surround-

ing environment. Researchers in order to fulfill this requirement mounted appropriate ul-

trasonic sensors, which are able to detect distance from the wheelchair to the walls, ob-

stacles and the desired position. This sensor is able to provide information, so the distance 

can be easily calculated. As it can be seen from Figure 2, the proposed configuration is 

equipped with three ultrasonic sensors in order to calculate the distance, so the robot 

might obtain the info regarding left, right, front distances, which are inputs for the fuzzy 

logic controller. Thus, outputs are the speeds of the wheels of the robot – in such a way 

the wheelchair is avoiding obstacles. 
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Figure 2 The distances measured by the ultrasonic sensor 

In a comprehensive study of intermediate target usage, it was proved that the navigation 

without intermediate targets is extremely time consuming, the trajectory is not the shortest 

which is not efficient. However, the implementation of the abovementioned approaches, 

such as pointing the doors as an intermediate target, brings impressive results. Robot does 

not move directly to the desired position but chooses the nearest intermediate target in 

order to achieve desired position. Afterwards, the robot moves toward the chosen target, 

once reached this target is considered the starting point, the robot once again chooses a 

new the most relevant intermediate target and algorithm repeats, until the target is 

reached. Results demonstrated that the robot moves along the shortest path with appro-

priate execution time. Fuzzy logic ensures robot’s autonomy and obstacle avoidance rou-

tine.  

2.3 Wheelchair controlled by eye-only  

So far, this chapter has shown how interaction problems can be solved for people with 

limited mobility, however, these solutions cannot entirely address problems of paralyzed 

people. Kohei Aarai proposed a prototype of the electric wheelchair controlled by eye-

gaze specifically developed for paralyzed people [9]. Researchers suggest controlling a 

wheelchair with help of eye gaze and not blinking as it commonly used, because constant 

blinking might be jerky for a user. System is including NAC Company’s camera mounted 

on glasses of the wheelchair user and designed to be used in the following environment: 

illumination is less than direct sunlight (around 1400 lux), the surface with no slopes, 

minimum required rotational space is 2𝑚2. Unfortunately, this system is not supported 

for people with squinting problems and intensive make-up. 

This wheelchair will require assistance from a nurse or assistant in order put glasses, 

switch on power for computer and motors, unlock wheelchair’s brakes. Of course, in or-

der to finish a wheelchair’s usage the same help would be needed from the assistant, but 

performed in reversed order. The tested includes: infrared camera, personal computer, a 
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microcontroller and an adapted wheelchair. Ultrasonic sensor amounted in frontal part is 

used for collision and obstacle avoidance. 

 

Figure 3 Camera placement comparison. Usually a camera placed at point 2, but in 

proposed prototype, it is place at point 2 

 

The goal of this project was to create a wheelchair that can be used robustly nevertheless 

vibration, changes in lightening and type of user (his/her pupil’s color, size, etc.). For 

these purposes LED camera, placed in front of the user (see Figure 3), compensates inac-

curate caused by illumination changes and stabilizes the image. Microcontroller connects 

wheelchair and the PC, converts data from RS 232 serial connection into signal needed 

to control the wheelchair. Software is developed by using C++ Visual Studio 2005 and 

OpenCV library for image processing. Using complex image processing algorithms, eye 

gaze signal is detected and converted into wheelchair commands, which PC sends to the 

wheelchair. The microcontroller converts serial data to I/O data, which is used to move a 

relay in order to get analog output, which is linked to the main controller in order to make 

it possible for the personal computer to control the wheelchair using serial RS 232 serial 

communication.  

There are four key commands on an invisible layout that are used to move the wheelchair 

(see Figure 4). These keys are intuitively understandable, i.e., when the user looks at right 

key – the wheelchair will be navigated to the right side until further notice of the user. In 

case when the user stops looking at the keys or eye gaze of the user inside the free zone, 

the wheelchair stops its navigation, since it is considered much safer, rather than spending 

time to hit the stop/off button. In this configuration, backward movement is not supported 
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since this kind of movement might be considered extremely dangerous for a paralyzed 

person. The user can switch to hold state by looking upward.  

 

Figure 4 Wheelchair control with user of four key commands on a user interface 

This prototypes were tested with help of five participants of different nationality, eye 

gazed detection is worked adequately. However, the accuracy was lower when the light 

of the surrounding environment was too bright (see Figure 5). As regards control, users 

considered it easy to use and control. Unfortunately, manual navigation of the same 

wheelchair against eye gazed navigation is four time faster. Nevertheless, eye-gazed con-

trolled wheelchair is proved to be adequate and efficient enough to be used under certain 

circumstances. Thus, developed prototype is a fully realized electric wheelchair con-

trolled by means of eye-gaze.  

 

Figure 5 Illumination influence on a success rate  

Similar research [10] suggest that eye gaze control might be used as hands free control 

for wheelchair. It common to exploit three types of a wheelchair control: 
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 Direct navigation by looking at the target point on the screen; 

 Indirect navigation by staring at UI buttons on a screen, so called keys “forward”, 

“left”, “right” etc.; 

 By looking on an image of the front view; 

In current research, the last type of interface is used with direct feedback loop; there are 

no visible UI components.  

 

Figure 6 Invisible UI layout put on top of a video scene image 

As it can be seen from the Figure 6, the UI organized in a way that the user can change 

rotation angle by staring along X-axis, while Y-axis is controlling a speed. The system is 

updating commands every 100ms, simultaneously adjusting the navigation. If a user will 

look on an obstacle, the speed will be reduced in a way avoiding an obstacle. The goal of 

the developed user interface was to ensure hands free control of a mobile robot. During 

the experiments, it was discovered that the stability of eye-tracking device is a crucial 

aspect, very good calibrated eye-tracker can provide the same accurate control as a mouse 

2.4 Autonomous Mobile Robot Navigation in Indoor Environment 

An intelligent wheelchair is a mobile robot, thus it needs to be able to localize itself in the 

environment in order to perform assigned task with high performance level. To be precise, 

navigation technologies are concerned about robot’s localization and pose estimation 

[11]. Data from several studies suggest that localization methods using dead reckoning in 

order to establish a distance between the initial and given points. This approach is not 

ideal, since it gathers errors from the each iteration without using external referencing for 

error correction. Up to now a number of studies suggests usage of external sensors such 

ultrasonic sensors, cameras, GPS, etc. In addition to that, these external sensors in order 
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to evaluate robot’s position and pose use landmarks. For example, GPS is widely used 

for abovementioned purposes, which is used mostly for outdoor navigation. However if 

receivers are not synchronized with the satellites and cannot be precise enough to be used 

for localization purposes of mobile robots. Sunhong Park and Shuji Hashimoto in their 

research carried out a number of experiments in this field using exclusive radio-frequency 

identification. In their work, the robot is able to estimate its position with help of IC tags 

and trigonometric functions and information of its location recorded dynamically. The 

usage of IC tags is determined by the low cost and small size, i.e., the tags could be easily 

installed inside the apartment. The robot in this experiment is based on an electric wheel-

chair for elderly and disabled people, with mounted distance and touch sensors. The in-

creased amount of IC tags are improving system’s accuracy, however the cost is increased 

accordingly, therefore in this research it is compromised with use of polar Cartesian co-

ordinates of the IC tags, thus these tags are arranged accordingly. In contrast with tradi-

tional methods offered algorithm reverberates robot’s posture each time it senses a new 

IC tag. The method works as follows: 

 User identifies initial position and desired location to be reached; 

 Robot navigates toward the goal by calculated rotational angle between start and 

finish points; 

 Its pose is estimated; 

 The angle is recalculated according to a newly reached position; 

 The systems reads new IC tags with interval of 0.2 seconds, estimating rotation 

angles, robot rotates accordingly. Otherwise, it keeps moving forward.  

Above mentioned algorithm works in loop until the target is reached. The validation of 

results showed that the method is precise and outcome the previous studies in similar 

topics. Despite the fact that the approach require low speed in order to perform accurately, 

the method is proved to be robust against dirt, wear, various covers and is suitable to be 

used for elderly and disabled people.  

2.5 Commercialization of intelligent wheelchairs 

There are relatively few commercial wheelchairs are available on the market, even though 

wide research was held on wheelchair studies. Often researchers purchase different 

wheelchairs with aim to conduct a research on it. Nevertheless, the usage of these wheel-

chairs is limited by a scope of laboratory room, lack of commercialization means that 

smart wheelchair are not widely spread in hospitals and clinics. This situation is due to 

the fact that most of the wheelchairs are very advanced and extravagant which makes it 

very challenging to purchase, since the cost is too high and configuration is complicated. 

However, there are few commercial wheelchairs available nowadays. One of an important 
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example is Smile Rehab Limited, which was developed by the University of Edinburg. 

Compared to the above-mentioned wheelchairs, the model relatively simple and cheap. 

Sensors are basic-line followers and contact switches. The end-user can add advanced 

functionality to the wheelchair with help of the serial port with additional expansion pro-

tocols. Another example is Boo Ki Scientific prototype, Robotic Chariot, developed for 

a Pride Mobility Jazzy wheelchair. This wheelchair supports advanced obstacle avoid-

ance routine and path planning. The end-user has an opportunity to customize its naviga-

tion functionality.  

This chapter has reviewed wheelchairs that were developed in laboratory premises with 

research purposes. Each model has its own pros and cons as it can be seen from the table 

below. 

Wheelchair Advantages Disadvantages 

ROS-based Indoor Autonomous 

Exploration and Navigation 

Wheelchair 

Low cost, human friendly 

interface, user interaction, 

consistent with the labora-

tory results 

Hardware might be opti-

mized, not possible to be 

used by paralyzed people, 

UI yet too basic, too de-

manding algorithms 

Autonomous wheelchair naviga-

tion using Fuzzy Logic controller 

with help of Intermediate Targets 

Effective path planning rou-

tine, great execution time, 

obstacles avoidance 

Cost, human machine in-

teraction is poor 

A prototype of electric wheel-

chair controlled by eye-only for 

paralyzed user 

Great and safe user-inter-

face for paralyzed people 

Too advanced image-pro-

cessing algorithm for eye 

tracking. Currently, can be 

replaced by the eye-track-

ing device 

Autonomous Mobile Robot Nav-

igation Using Passive RFID in 

Indoor Environment 

Cheap and effective locali-

sation 
Lacking User Experience 

 

Table 1 Comparison of all related wheelchairs 

Above-mentioned models inspire the author to create a commercial eye-gaze controlled 

wheelchair with adaptable user interface. In the prototype, author will use Aruco markers 

placed on point of interests and intermediate targets (doors) in order to ensure cheap lo-

calization and effective path planning.  

 

2.6 Environment and common techniques for developing UI 

Unity 3D is a game engine developed by Unity Technologies [12] which supports more 

than 27 platforms. This engine can be used to develop 3D and 2D games as well as many 

various applications. For this master thesis, it was required to use Unity 3D by the task 

description since the project implementation needed to use rich graphics and AR features. 
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Nevertheless, this constraint was not causing additional challenges to the author. This 

section is focused on a software description and a common software technique for devel-

oping HMI.  

2.6.1 Programming environment 

In order to create high fidelity user interface fulfilling wheelchair functionality and being 

able to be adaptive, Unity 3D is chosen. It gives a developer a lot of freedom to create 

powerful user interface with high graphical capability. Since Unity is a 3D development 

kit, it requires a certain level of understanding 3D space and 3D development. Moreover, 

it is essential to understand the difference between local space and world space. In any 

3D world 3D Cartesian space is used. The Z-axis represents depth in addition to the X for 

horizontal and Y for vertical axes, in such way can be represented positions, dimensions, 

rotational values, etc. and should be described as follows (X, Y, Z) due to programming 

reasons. In every world space, there is a term “origin” which is represented by the position 

(0, 0, 0). Thus all world positions in are relative to the “origin” or “would zero,” to make 

it more simple it is common to use local spaces and define object’s position relative to 

another, so-called parent-child relationships. In Unity 3D it is easy to form these relation-

ships by drugging and dropping elements one into another in a hierarchy of elements. 

Thus, the position of a child will be relative to the position of a parent. Using local spaces 

means that every object has its origin or zero points, the point where it is X, Y, Z axes are 

merged, which is usually a center of an element. When child-parents relationships are 

established, it is possible to calculate a distance from other elements by using coordinates 

of local space. Figure 7 depicts two diagrams, the first diagram (i) shows two objects 

coordinates with respect to world space, where a big pink cube has coordinates x equal to 

3 and y to 3 and a small blue cube with coordinates 6 and 7. In the second diagram (ii), 

the small cube is a child of the bigger cube. Thus, its coordinates are said to be (3, 4), the 

same goes for 3D space. 
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Figure 7 Representation of World Space and Local Space coordination systems 

2.6.2 Cameras 

Cameras are significant in the 3D world due to the fact that they represent a viewport for 

the screen. In Unity, cameras can be placed at any point in space, can be attached to any 

Game Object or Game character. A Scene can have many cameras. However, it is as-

sumed that exists a single main camera that will be rendering what the user sees. Unity 

creates the Main Camera project whenever a new scene is created. Cameras components 

are shown in the following figure (see Figure 8): 

 

Figure 8 Camera components 

Clear flags are set to Skybox by default to allow the camera to render the sky-box material 

currently applied to the scene. However, to allow the developer, to manage the use of 

multiple cameras to draw the game world, the Clear Flags parameter exists to allow a 

developer to set specific cameras, as well as to render specific parts of the game world.  
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The background color is the color rendered behind all objects in a game, in case if no 

skybox material is applied to the given scene. Clicking on the clock block will allow a 

user to change the color using the color picker or ink dropper icon.  

The Normalized View Port Rect parameter allows a user to give dimensions and a posi-

tion for the camera view. The X, Y coordinates are being set to 0; thus the camera view 

comes in the bottom-left of the screen. Values Width and Height are set to 1, so the view 

from this camera is filling the screen because these values are set in Unity’s coordinates 

system ranging from 0 to 1.  

Clipping Planes (Near/Far), the near plane is the closest distance to start rendering, and 

the far plane is the furthest start of the drawing.  

Field of View, this parameter establishes the width of the camera’s viewport in degrees. 

Currently, it is set to be 60 degrees, which gives the effect of a human vision.  

Depth is used in case of multiple cameras in a scene. This parameter establishes an order 

of priority for cameras views, the camera with higher depth value will be rendered in front 

of cameras with lower depths. By default camera has Perspective Projection mode, which 

has a pyramid-shaped Field of View (FOV). The projection mode of a camera depicts 

whether is rendered in 3D (Perspective) or 2D (Orthographic).  

Culling Mask parameter works with Unity’s layers allowing deselecting the layer if 

needed.  

2.6.3 Assets 

In any Unity project exist Assets folder and mirrored in the Project panel, which contains 

building blocks such as images, 3D models, sounds effects. Scenes represent an individ-

ual level of a game content, some developers using only one Scene for developing a game, 

however in some cases using two or more scene is essential. It is essential to bear in mind 

that only one scene can be active at the moment. Scenes are manipulated employing Hi-

erarchy and Scene Views. GameObject is an active object is the currently used scene, 

which can be placed in a hierarchy, establishing child-parent relationship and always con-

tains at least one component, which is Transform that tells a developer a position, rotation, 

and scale of the object in X, Y, Z coordinates as is shown in a figure below. 

When utilizing fonts in any Unity project it is necessary to import into project as any 

media file needed for given project. This can be done by uploading media file into assets 

folder or by following steps, Assets-> Import New Asset. 
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Figure 9 Transform component of a GameObject. 

Components and Scripts 

There are many different types of components, defining behavior, appearance and other 

functionality of an object. Exists built-in components such as Rigid body, establishing 

physics of an object, and some simpler such as cameras, lights, etc. It is possible to extend 

functional abilities of an object by writing a script and attaching to the object. Scripts can 

be written in C#, JavaScript or Boo (a derivative language of Python). To write scripts, 

Unity provides standalone script editor, Monodevelop, a separate application that is 

launched any time when a script is edited. However, it is possible to designate a script 

creation and editing to other editors such as Visual Studio. Usually, games operate at a 

certain number of Frames per Second (FPS), and function Update() is called every frame. 

Thus, it is mostly used for detecting any changes happening in the game, which happens 

in a real-time, for example, mouse click or key press. 

2.6.4 UI development essentials 

Canvas is a component that contains all components of a UI. Thus buttons, panels, images 

and other elements of the UI are children of the canvas component. When a UI component 

is instantiated, the canvas – a parent of the component – is created automatically. Com-

ponents order determines a rendering order is a hierarchy, the first object is rendered first, 

and the last object is rendered the last and placed over other components.  

The canvas component representation depends on a “Render Mode” which has three dif-

ferent options of the Canvas rendering: 

1. Screen Space-Overlay. The canvas is rendered over all elements of a Scene. The 

great analogy for this rendering mode are stickers on a window of a train, where 

the canvas is a window and stickers are UI elements. The “stickers” remain the 

same, even if the world behind the window is changing. This rendering mode 

change size of the Canvas when the size of a screen is changed. Given rendering 

mode is suggested for a static object such as a panel of instruments, score panel, 

etc.  
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2. Screen Space-Camera – This is similar to Screen Space-Overlay, but in this render 

mode the Canvas is placed a given distance in front of a specified Camera. The 

UI elements are rendered by this camera, which means that the Camera settings 

affect the appearance of the UI. If the Camera is set to Perspective, the UI elements 

will be rendered with perspective, and the Camera Field of View can control the 

amount of perspective distortion. If the screen is resized, changes resolution, or 

the camera frustum changes, the Canvas will automatically change size to match 

as well [12]. 

3. World Space – In this render mode, the Canvas will behave like any other object 

in the scene. The size of the Canvas can be set manually using its Rect Transform, 

and UI elements will render in front of or behind other objects in the scene based 

on 3D placement. This is useful for UIs that are meant to be a part of the world. 

This is also known as a “diegetic interface” [12]. 

Each element displayed as a rectangle. To manipulate UI elements, Rect Tool and Rect 

Transform components are used. Rect Transform component has following fields – Pos 

X, PosY, Pos Z. Anchors: Min, Max, Pivot, Rotation X, Y, Z, Scale X, Y, Z.  

Anchors determine how the size of an element is changed concerning changing the size 

of a parent element. Each component has four anchors for each vertex of its rectangle. A 

position and size are counted based on a distance between a vertex and anchor and a 

position of an anchor itself. A position of the anchor is determined by a percentage ratio 

of a size of a parent element. Thus, if all four elements of an anchor are placed in the 

same place, the size of a component remains the same. In case if two anchors of the same 

plane (left and right, up and top) are placed in the same point, the element will not be 

stretched with respect to this plane. However, if anchors are not in the same point, the 

position of each anchor will be counted in a percentage and to the given value will be 

added distance to the vertex (which is not changed). 

Reason for choosing C# over UnityScript 

C# is a well know and widely used programming language developed by Microsoft in 

order to create Windows application and web-based applications. There are plenty of ma-

terials on Internet helping to learn fast how to use his programming language. UnityScript 

is a programming language similar to JavaScript but still different. Therefore material 

used to find a solution in JavaScript may not be applicable for UnityScript. In addition to 

that, it is better to apply already familiar language rather than learning entirely new pro-

gramming technique from scratch. C# gives developer flexibility to use scripts without 

attaching them to GameObjects, in addition to that developed State Machine in given 

Master Thesis is more natural to be done by using C# rather than UnityScript. Since C# 

is known as a strictly-typed language, thus Unity will catch errors at the moment, thus 

more comfortable to correct errors. UnityScript shows mistakes only when the developer 
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is compiling a file, which makes it more challenging to create a valid code. For an over-

view of a topic, a Reference Manual was used chiefly for Scripting Reference.  

Each script in Unity uses inheritance. By default, scripts are inheriting from MonoBehav-

iour class, which means MonoBehaviour is making few of its variables and methods 

available for the default script. When C# is used, it must explicitly derive from MonoBe-

haviour. When a developer uses UnityScript (a type of JavaScript), you do not have to 

derive from MonoBehaviour explicitly. Note: There is a checkbox for disabling Mono-

Behaviour on the Unity Editor. It disables functions when unticked. If none of these func-

tions are present in the script, the Editor does not display the checkbox.  

The functions are: 

 Start()Start is called on the frame when a script is enabled just before any of the 

Update methods is called the first time. 

 Update()Update is called every frame, if the MonoBehaviour is enabled. 

 FixedUpdate()This function is called every fixed framerate frame, if the Mono-

Behaviour is enabled.  

 LateUpdate()LateUpdate is called every frame, if the Behaviour is enabled.  

 OnGUI() OnGUI is called for rendering and handling GUI events. 

 OnDisable() This function is called when the behavior becomes disabled () or in-

active. 

 OnEnable()This function is called when the object becomes enabled and active. 

GameObjects have Components that make them behave in a certain way. Any component 

of any GameObject is a script, developed by Unity Team or by the user, that defines a 

class. Which means that the properties we see in Inspector are just variables of some type.  

If we use public variables in a script, we can change it from Inspector panel. 

 

2.6.5 Software development. State Machine approach.  

The best part of State Machine is simplicity; the great example of a State Machine is an 

everyday life of a person. For example, when a person sleeps he/she is in a “Sleep State” 

and during this state it is impossible to do anything else. The idea to remain in a particular 

state is that a person is allowed to do only what is allowed to do in this kind of state. 

When we use a State Machine we force a computer or in our case a wheelchair to be in a 

particular state. It will stay in one state until it is told to change to another state. Benefits 

of implementing a State Machine are  

1. Clean layout of a software control; 
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2. Very cleans points to add software functionality or feature; 

3. It is easy to extend software logic by adding another state; 

4. Code is smaller, cleaner and specific for each state.  

Developed HMI is not a simple code. Instead, the features are added on the fly and future 

improvements will require adding new states. Without implementing a State Machine it 

would be very difficult to edit code in order to follow all changes. In addition to that 

keeping track of variables, storing data would be a mess. All of this would lead to a dif-

ficult to understand and edit code. Therefore, it was decided to implement a state machine 

code instead of attaching components to GameObjects.  

Following diagram demonstrates the basic concept if a State Machine controlling a soft-

ware: 

 Unity calls Update() method every frame; 

 The State Manager script works as a manager of the whole mechanism of the State 

Machine, a component has the Update() method; 

 The code block Update is responsible for delegating control to the active state; 

 States represent regular C# Scripts, which are not components of Game Objects; 

 The active state determines what is happening at this specific moment, therefore 

it plays a role of a logic controller of the software; 

 The active state decided when and which State will be active further. 

In s State Manager script this is a Unity class, so it inherits from Mono Behavior class, 

this script is attached to a GameObject to become a component. State Manager has a three 

core features: 

1. Delegating control to a State; 

2. Switching to another State when called to do so; 

3. Keeping track of the active State. 
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Figure 10 State Machine diagram 

 

2.6.6 Delegating game control to a State 

The State Manager script is attached to a GameObject and becomes a Component object. 

This script uses the Update() method in order to pass the game control to the active state 

as it shown in the following diagram (Figure 11): 

State 1 

When active controls a game 

State 2 

When active controls a game 

State 3 

When active controls a game 

State n 

When active controls a game 

condition 

condition 

condition 

State Manager makes State active and gives control 

Unity calls Update () functions 



25 

 

Figure 11 State Manager control delegation 

The game control code that is usually is used in an Update() method is instead delegated 

to the StateUpdate() on the active State object. So every time Update() method is called 

on the State Manager Component, the StateUpdate() method is called on the currently 

active State object.  

No matter how many states are in the software, it is remember the following points: 

 Every State should have the StateUpdate() method; 

 However, each logic block will be different for each StateUpdate() method on 

every State, depending on what you want each State to accomplish; 

 Only one state is active at any moment of time. 

Switching to another State when called to do so 

Each state determine when to switch to another state and at which conditions, this should 

be coded inside the active state what will be a trigger to switch to another State. This is 

implemented by SwitchState() method on a State Manager Component.  

 

Figure 12 State Machine SwitchState() diagram 

When active state is determined, the software switches to another State, so SwichState () 

method is called with the argument of the following active state. 

2.6.7 Keeping track of the active State 

Newly created State is then assigned to the active state variable, to keep track of the active 

state. This is needed to give a State to control the game; State Manager needs to know 

which state is active now. So when Unity calls Update() on the State Manager script con-

trol is passed to the newly created State that is stored in the active state variable by calling 

its StateUpdate() method. The State Machine cycle of changing to a new State complete.  
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These steps are as following: 

•  The active state determined when its time to switch to a new state; 

•  A new state object is created and passed to the StateManager script using the Switch 

State() method; 

•  This new State object is assigned to the active State variable; 

•  When Update() is called on State Manager, the Update() method delegates control to 

the StateUpdate() method on the new State; 

•  So it starts from the beginning.  

Unity creates Components behind the scenes 

As mentioned previously, a Unity script is just a file that defines a class, thus attaching a 

script to the GameObject allows Unity to create a component object in a Memory when 

button “Play” is clicked.  

Instantiate means to create an object from a class. A namespace declares where a class 

file is located in the folder in the Unity Project’s file structure, using namespace means 

that the code is allowed to use any class file located in this folder.  

All states of a state Machine have to perform particular methods that StateManager class 

can call. In order to make State Machine works correctly, it was created an interface, 

which guarantees that the required methods are used.  

As it can be seen all states are equal from a structural point of view and inherits from 

IStateBase class, which provides guarantees that States will have the required methods 

which State Manager needs to access. In addition to that activeState variable of type, 

IStateBase requires implementing IStateBase.  

2.6.8 Changing Scenes destroys the existing GameObjects 

When more than two scenes are used appears two main issues: 

Every GameObject is destroyed while switching between scenes, while another Scene is 

loaded. In addition to that, every time the first scene is loaded UI manager GameObject 

with StateManager is created. For this purposes used DontDestroyOnLoad() for not de-

stroying the GameObject consisting the StateManager script and detecting whether a 

GameObject has existed thus a new GameObject is not created. StateManager is static 

means that each instance of the StateManager will share the same value, plus as its pri-

vate, it cannot be changed outside the StateManager class.  



27 

2.6.9 UI control. Eye Tracking.  

With technology development, it is crucial for society to have an ability to keep up with 

the advancement; otherwise, the technology becomes not in use. Since the personal com-

puter became a standardly used device, corporations are trying to create more user-

friendly solutions. The primary goal of manufacturers is to create the most favorable de-

vices, for example, personal computers, phones, and tablets, to stay on top of the market 

and, thus, staying one-step ahead of new trends. A notable example of advancing tech-

nology is a touch control system used by Apple Corporation, which after quickly becom-

ing fashion-able expanded to other devices. Voice control illustrates this point clearly as 

being used on computers for people with limited abilities to communicate. Thus, manu-

facturers are looking for a new disruptive control technology that will be used for com-

mercial purposes for different business units. Eye control is a technology that allows com-

puters to detect at which point a user is looking. Eye-tracking devices, which recognize 

and track eyes’ movements. The term gaze-tracking software refers to software that cal-

culates the eye gaze from the features in a process called gaze estimation. Four functions 

are defined to be key functions for most eye tracking devices: connection, calibration, 

synchronization, and data streaming [13]. Connection has been broadened to include es-

tablishment with eye tracking device, then calibration has been used to define the user’s 

eyes location and synchronization the computer’s display with the eye movement by dis-

playing calibration points. Another example of what is meant by calibration is a dot mov-

ing around the screen and the user’s eye following it to let the eye-tracking device to 

know the particular eye moves. Synchronization can be loosely described as data stream-

ing which is sent to the software of the eye tracker’s device, thus allowing the user to see 

what is happening at this particular moment. 

An eye tracker is a helpful device for many different fields. “We may presume that if we 

can track someone’s eye movements, we can follow along with the path of attention de-

ployed by the observer” [14] which give clear understanding what the user perceived and 

interpreted whatever he or she saw. It is a well-known fact that eye-tracking might be a 

helpful tool for people with disabilities that limit movements and voice usage; thus key-

board cannot be used.  

One of the leaders on the current market is Swedish company – Tobii, which was founded 

in 2001 and currently has more than 1000 employees in six different countries. Tobii is 

trying to provide this technology in many industries – medicine, gaming, diagnostics, 

software development. [14]. Andrew Duchowski in his book “Eye-Tracking Methodol-

ogy: Theory and Practice” explain Tobii, a camera and infrared LED optics are embedded 

under LCS display, which is looking like a flat panel display. The camera and infrared 

light are required for the eye-tracking technology to detect the user’s eye position and 

movement. The hardware of Tobii is designed for high-performance sensors; it consists 

of specially designed projectors, customizable image sensors, and optics, as well as cus-

tom processing with built-in algorithms. Tobii uses sophisticated algorithms to interpret 
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images; these algorithms are considered to be a “brain” of the system. Moreover, the 

technology has an intelligent application layer to allow the many chooses of the technol-

ogy usage. The figure below provides an overview of Tobii system [14].

 

Figure 13 Five steps of a high-performing Tobii eye-tracking system 

Since eye-tracking technology provides a measurement of the gazed point on a monitor, 

this technology continually improving. Moreover, nowadays is it considered suitable to 

be applied for controlling HMI, which is a primary advantage over standard control 

means, because people with severe disabilities broaden the end-users of this interface. 
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3. THEORETICAL PROPOSAL  

Based on literature review made in chapter 2, the author made decision to implement a 

user interface controlled by eye-gaze using eye tracker. The software will be developed 

on Unity 3D following State Machine approach, so it can include the previous work done 

prior to the thesis work. Mapping of the environment implemented with use of CAD 

drawings, forming graph-based map. At the same time, localization is performed with 

help of Kinect camera acquisition and ArUco markers. These markers are placed on each 

point of interest inside environment and form each node of a graph. Path planning is im-

plemented with use of Dijkstra algorithm. Above-mentioned solution are presented in 

more details in following chapter.  

3.1 User experience for Eye-Tracking based HMI 

Free software, downloaded from [12] was used for implementation of the human-machine 

interface. A standard free version of Unity gives an opportunity to build developed soft-

ware for: 

 PC and Mac standalone; 

 Mac OSX Dashboard widget; 

 Web Player. 

The version for Professional or Pro version of Unity can be used to develop all of the 

above and for mobile devices and consoles. Pro Mac Standalone building will create a 

folder containing an exe file and the associated assets required to run the game in folders 

alongside it. 

Unity supports two modes to create a GUI and UI. In case of GUI the interface is created 

by scripting and using function OnGUI() and UI approach, when it is needed to drag and 

drop UI elements such as Buttons, Images, Toggles etc. Both methods are good, however 

according to a small research on Unity users’ forums it was decided to use UI since it is 

more visible and gives more freedom to design and ensure full graphical support.  

Given interface is able to adapt to any given resolution. Is tested to be adaptive to standard 

resolution such as Standalone (1024x768), 16:9, 16:10, 3:2, 4:3, 5:4. This was achieved 

by using the Canvas’s Render Mode – “Screen Space Overlay”. As it was mentioned 

above, there are three available Canvas’s Render Modes, which are Screen Space Over-

lay, Screen Space – Camera, World Space. In case of Screen Space Overlay mode the UI 

elements are placed on the screen rendered on top of the scene. Thus is the resolution of 

the screen is changed or the screen is resized the Canvas is automatically change its size 

in order to match this [12]. 
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In addition to that, it is an important step to add a component to the Canvas a “Canvas 

Scaler”. Canvas Scaler aims to control the overall scale and pixel density of UI elements 

in the Canvas, so the scaling effects all children of Canvas (Figure 14). This is important 

to choose UI Scale Mode as Scale with the Screen Size out of three possible options, 

which are Constant Pixel Size, Constant Physical Size and Constant Pixel Size. Screen 

Match Mode is Match Width or Height.  

 

Figure 14 Canvas components and it's settings 

In order to obtain correctly Rect transform of the button it is important to take into account 

the coordination system of the Rect Transform, position of the buttons and position of the 

Mouse Pointer. In order to use x,y position of the eye tracker it is important translate the 

position of the rect of the button with respect to the world coordinate system. By obtaining 

Rect transform of the buttons, the HMI is ready to be used for every and each tracking 

system, since this approach require only position of eye-gaze without using specific li-

braries such as Tobii Pro. Main thing to be taken into account while creating user interface 

using eye-tracker, is critical to choose correct position of buttons in a way that user use it 

efficiently. Buttons should not overlap between scenes or be located too close to each 

other. In addition to that, it was decided to locate button on a bottom panel of the screen, 

according to the questionnaire which has been help by the team in prior to the user inter-

face creation.  

User interface should follow state machine approach as it was stated in chapter 2. States 

are following: Idle, Manual, Semi-autonomous, Map autonomous navigation, Path-plan-

ning. By pressing buttons user can switch between states ensuring smooth usage of the 

software. The software is fully performed using C# script.  
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3.2 Path planning  

3.2.1 Localization of the wheelchair inside domestic environment 

The localization of the wheelchair is performed by fusing the incremental recursion from 

encoders (see Eq.1) [15] and a custom designed absolute localization method on a data 

received from ToF.  

{
 
 

 
 𝑥𝑘+1 = 𝑥𝑘 + 𝜋 ×

𝑛𝑅𝑘×𝑅𝑅+𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜
× cos 𝛿𝑘

𝑦𝑘+1 = 𝑦𝑘 + 𝜋 ×
𝑛𝑅𝑘×𝑅𝑅+𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜
× sin 𝛿𝑘

𝛿𝑘+1 = 𝛿𝑘 + 2𝜋 ×
𝑛𝑅𝑘×𝑅𝑅−𝑛𝐿𝑘×𝑅𝐿

𝑛𝑜×𝑏

,      (7) 

where 𝑥𝑘, 𝑦𝑘, 𝛿𝑘 are estimated position and attitude at 𝑘 of the odometric update recur-

cion loop 𝑛𝑅𝑘 and 𝑛𝐿𝑘 are the number of counts from the right and left encoders respec-

tively between two subsequent step, 𝑛𝑜 is the number of counts of the encoder, 𝑅𝑅 and 

𝑅𝐿 are the wheel radius and 𝑏 is the wheel base [15]. It is a well-known fact that odometric 

localization has incremental nature; therefore, it is crucial to evaluate uncertainty propa-

gation. As for the absolute localization, this was designed differently from the canonical 

ones, which are usually based on the matching of range data with a preventively created 

map. A vision based solution that foresees the use of augmented reality (AR) functional-

ities, from [16] enables the robust localization of the wheelchair without the use of a map. 

Main advantages or this approach can be listed as follows: simplification of data structure, 

lower computation cost, possibility to used cheap sensors.  

RoboEye is created to be used inside the house of a user; therefore, the environment of 

the home is structured. In this case, it can be assumed that furniture represents reliable 

landmarks, since then they are not moved very often. AR tags reference doors, tables, 

sofas and different targets that might be a target point for the user of the wheelchair. 

Possible target pose [x,y,θ] is defined for each reference point of interest. This can be 

illustrated briefly by some aspect of interest such as TV. This point of interest is defined 

concerning the tag referenced to this device, thus using “semi-autonomous” navigation 

user can choose TV as a target and move to this POI.  

Algorithm 1 Localization algorithm 

while KeepRunning do 

If CameraConnected then 

Acquire RGB and depth frames 

Calculate plane equation relative to the floor 

Determine camera pose w.r.t te wheelchair 

Transform cloud point into the wheelchair reference system 

Search ArUco marker in RGB image 

for EachMarkerDetected do 
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Determine pose of the POI related to each market  

end for 

Send POIs detected information to the HMI 

end if 

end while  

Algorithm 1 provides the detailed steps of the localization process of the wheelchair. 

These steps as follows: 

•  Data acquisition: ToF collects information regarding color and depth stream data. Later 

this data is passed to processing block; 

•  Assessment of Kinect position: this algorithm determines the height and attitude trans-

formation between sensors and ground, employing a RANSAC (Random Sample Con-

sensus) plane fitting. This crucial algorithm compensates mobility of a camera attached 

to a frame; 

•  Roto-translation of the 3D points: the depth frames (3D cloud points) are transformed 

from the Kinect reference system (raw data) to the wheelchair one. This step enables the 

organization of a more versatile and efficient AR framework; 

•  Target detection: an ArUco libraries help to the system to analyze RGB frames needed 

for marker search. If the system detects markers, it evaluates 3D point concerning the 

tags. This strategy does not require specific knowledge of the intrinsic parameters of the 

camera. Later data about localized markers and relative POIs are transferred to the HMI 

as an optional target and anchor for autonomous navigation. 

3.2.2 Dijkstra algorithm 

One of the most important problem solved in graph theory is the short path finding, which 

is divided into:  

 Finding shortest path between two nodes; 

 Finding shortest paths starting from a particular node; 

 Finding shortest paths leading to a particular end-point;  

 Finding all the shortest paths. 

In general, the single source shortest path problems are solved not only graph-based al-

gorithms, but also dynamic programming, neural networks, hybrid and improved algo-

rithms [17]. Currently, the most widely used path planning algorithms are Dijkstra algo-

rithm, A* algorithm, Johnson algorithm, Floyd-Warshall algorithm, Bellman-Ford algo-

rithm [18]. However, Dijkstra approach was proposed by Edsger Dijkstra in 1959 and 

remains the best-known algorithm in theory [19]. In addition to that Zhan and Noon have 

utilized 15 various types of algorithms in Cherkassky 17 specie research on an actual 
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transport work. The wide research showed that Dijkstra algorithm is more suitable for 

finding the shortest path between two nodes [20]. Thus, this approach was selected for its 

reliability and validity. 

Dijkstra algorithm finds the shortest path in a graph by calculating the length of paths. It 

solves the short path problem from one node to another in a graph-based map with a single 

source. First, at all, the algorithm calculate the path from the initial node to its adjacent 

nodes. Then the conclusive of the shortest oath is considered as an intermediate node, and 

then Dijkstra approach is searching for the shortest path from the intermediate node to its 

neighbor nodes. Once every node is crossed over, the algorithm is completed, thus the 

shortest path is found. It is obvious that in such a way all found sub-paths are shortest 

paths between any node in the system until the target node.  

This algorithm is considered as a labeling algorithm. Let’s consider a graph G = (V, E) 

with n arcs and e arcs. V is a set of nodes, while E is a set of arcs. C (A,B) represents the 

weight of arc between node A and B. The weight of non-existent arc is considered as an 

infinity value (in current master thesis is taken as a large integer value). Array DIST (X) 

denotes a distance to be traveled from the source node v to the target node x. A list S is 

indicating which nodes where included in the algorithm, initially its contains only the 

initial point of the path. V denotes a list of new nodes, which are not yet in use. The 

algorithm works as follows [21]:  

 Initialization: The initial node is identifies and marked as v, the set S = S U {v}; 

 Between the V-S, adjacent node i with respect to the node v is found, is the weight 

of the corresponding arcs is the minimum the node i is added to the set S;  

 Node i is used as an intermediate target, repeat previous step to find a new adjacent 

node j from V-S. The distance between the initial node v to the node j is changed, 

according to the following: if DIST(j)>DIST(i)+C(i,j) then 

DIST(j)=DIST(i)+C(i,j). Add node j to the list S.  

 Two previous steps are repeated (n-1) times. The shortest path is obtained as a 

sequence of nodes, initial node, intermediate nodes and the target node.  

 

Figure 15 Example of the Dijkstra algorithm 
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Figure 15 depicts a random graph with nodes from A to G and some weights of arcs. 

According to Dijkstra algorithm the shortest path between the source node A to the target 

node G is as follows: A-C-E-G. As it was mentioned above, the sub-paths are obtained as 

well. Thus, the shortest path from C to G is C-E-G.  

In our case, graph nodes represents rooms and point of interests. As initial node the ap-

plication detects a node which is the nearest to any marker or point of interest. A goal 

node is chosen by the user with means of the user interface. After that, an application 

marks all nodes as “new” of unvisited. For the each graph node V in the graph, we set a 

distance from this initial node Vo to this node V as infinity. While exists any node which 

is not visited, the application will be running. For each node U with the least distance, 

application compares this distance of each neighbor’s node V with a sum of distance of 

node U plus length of link between nodes V and U. If this distance is greater, then it is 

replaced with the calculated sum. The function works until it finds the target node. The 

block diagram (see Appendix Figure 44) depicts how algorithm works for this particular 

case.  

 

3.2.3 Environmental Map of Point of Interests and Graph-Based Adaptation 

Autonomous navigation is a difficult task which includes mapping, localization and path 

planning. Most are of research deals with uneven and unknown environment. Since Ro-

boEye prototype is designed to be used inside domestic environment, exist a map of a 

point of interests. These points of interest are not changed during the whole period of 

usage, hence we focus on a navigation inside known environment. For mapping we are 

using ready CAD description of a flat, in this particular case map of the laboratory in the 

university of Trento. The CAD diagram serves as a global map of the environment, even 

if it is not accurate enough it makes the process of mapping easier.  

The information from CAD is used as follows: 

 Rooms are defined; 

 Doors are defined; 

 Point of interest are marked; 

 Representing this information in a form suitable for planning. 

For about mentioned reasons to the each point of interest is assigned Aruco marker, which 

helps the system to detect relative position of these points.  
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Figure 16 CAD map of the environment 

 

First we have proceed the CAD drawing to extract number of rooms which can be dealt 

independently, giving a user freedom to choose particular room. Then doors and point of 

interest are determined, further they are formed into topological map of the environment 

where doors and POIs are nodes of the graph and distance between them are edges of the 

graph. Manually we create a file of point of interests, where each point of interest has 

related marker. Each marker gives to a robot information what kind of POI is in front of 

it. From the map, the robot can understand to which room is it related, passing point and 

the distance between nodes.  

A map is formed as a JSON file, which is used for the graph initialization and has a 

structure as follows: 

Later the software is able to extract the graph from a JSON file. On a Figure 18 Graph 

class and Graph Nodes) below show created class Graph and GraphModes, where Graph 

represent a list of a list of Nodes.  

 

 

 

 

 

 

 

+ ID of POI 

+ Related marker 

+ X, Y, θ of the POI 

+ Reachable POI 

+ Distance to each POI 

MAP 
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Figure 17 Representation of a JSON map of the environment 

 

The map consist all necessary information to create a graph-based map (see Figure 17). 

 

 

 

 

 

 

Figure 18 Graph class and Graph Nodes 

 

In addition to that JSON wrapper class in created. Which contains extracted information 

from the JSON map. 

 

 

 

 

 

 

 

Figure 19 UML diagram point of interest 

 

The function below shows how the data is read from the file:  

void ReadData() 

    {dataIsRead = true; 

      try 

1..* 

<<GraphNodes>> 

+matrixID: int 

+ID: int 

+New: bool 

+Links: List <GraphNode> 

+caption: string 

<<Graph>> 

+Nodes: List<GraphNode> 
2...* 1 

<<JSON wrappers>> 

+Pois[]: Pois 

1..* 

<<Pois>> 

+ID: int 

+caption: string 

+room: string 

+links: List<links> 

<<Links>> 

+ID: int 

+length: float 
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      {myGraph.Nodes = new List<GraphNode>(); 

        matrixNumber = 0; 

        if (System.IO.File.Exists(pathJSON)) 

        {string contents = System.IO.File.ReadAllText(pathJSON); 

          JsonWrapper wrapper = JsonUtility.FromJson<JsonWrapper>(contents); 

          poisList = wrapper.Pois; 

          // Debug.Log("fileisread"); 

          foreach (Pois po in poisList) 

          {GraphNode newGraphNode = new GraphNode(); 

            newGraphNode.matrixID = matrixNumber; 

            newGraphNode.ID = po.ID; 

            newGraphNode.caption = po.caption; 

            newGraphNode.New = true; 

            newGraphNode.Links = new List<GraphNode>(); 

            foreach (links li in po.links) 

            {GraphNode newGraphNode2 = new GraphNode(); 

              newGraphNode2.ID = li.ID; 

              newGraphNode.Links.Add(newGraphNode2); 

            }myGraph.Nodes.Add(newGraphNode); 

            matrixNumber++;}} 

        else{Debug.Log("Unable to read the file, file does not exist");}} 

      catch (System.Exception ex){Debug.Log(ex.Message);}} 

Program 1. ReadData function  

The figure below illustrates the block-diagram for above mentioned program code.  
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Figure 20 ReadData() function's block diagram 
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4. PROOF OF IMPLEMENTATION OF THE DEVELOPED SOLUTION  

The theoretical approach discussed in chapter 3 implemented on a testbed provided by 

the laboratory of the University of Trento. The research team is responsible for hardware 

building and creating services to maintain smooth usage of the wheelchair. Developed 

solution is not only extends functionally of the wheelchair but also fit into existing ones. 

The code used before was so called “hardcoded”, thus adding new lines of code required 

significant changes. The developed software is changed from a scratch following State 

Machine method in order to include previous functionalities and make possible to add 

code for future improvements. The following chapter explains results and achievements 

of the project.  

4.1 Testbed description 

4.1.1 Architecture overview 

RoboEYE is a modified version of an advanced wheelchair GR558 of Nuova Blandino 

(Figure 21). For this project electronics enabling control by joystick are removed and 

added hardware specified for eye tracking interface. Moreover, to support advanced ro-

botic technologies needed for semi-autonomous and autonomous navigation. Odometric 

localization is enabled by two encoders which mounted on the wheels. Commercial driver 

ensuring required power supports the standard motor. Couple centimeters over a position 

of legs of a user is a place where a time of flight (ToF) Microsoft Kinect V2 camera is 

mounted. This position is identified by a questionnaire which was held between a group 

of wheelchair users, including standard and specific power wheelchairs. Respondents 

were asked to identify the best position of the wheelchair by comparing images on a 

screen projected from the camera. The majority of participants indicated that it is im-

portant to see their knees on display. Some of those interviewed suggested that this posi-

tion of a camera is classified as the most useful and productive in-depth perception of the 

indoor environment, especially when a wheelchair moves close to obstacles or narrow 

passages. It worth mentioning that the camera is attached to a frame through a revolute 

joint, thus the position is adjustable to each person's preferences. Images transmitted from 

ToF is displayed on a screen mounted in front of the user. The system is controlled by 

interacting with the eye-tracking device, which is attached below the monitor and a screen 

which serves as an output device for the Human-Machine Interface. The personal com-

puter manages a logic of the system, which collecting data about a position from encoders 

and control parameters required to lead drivers of the wheelchair, moreover, supervise 

the eye-tracking device, monitor, and ToF. 
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Figure 21 RoboEye prototype 

 

4.1.2 Manual navigation 

In this modality user navigate wheelchair and choose desired velocity directly looking at 

the reserved areas of the screen. In this case, the wheelchair control is easy to understand 

since it is intuitive. However, this is causing significant stress to the user, since this nav-

igation type require constant attention and eye movement. Even though eye movement is 

considered the fastest, it is main role that is exploration, rather than control. The interface 

foresees the continuous deviation of frontal and angular velocity in order to prevent jerks, 

improve smoothness of a movement, which ensure comfortable user experience to a user. 

User can change speed values by moving eye gaze from bottom to the top of a screen, 

from minimum value to the maximum. Speed values are calibrated with respect to the 

eye-tracking device’s uncertainty. For both control functions a “rest” zone is a place on a 

screen where both speeds are equal to zero, this zone is reserved for UI buttons. Worth 

mentioning maximum speed can be adjusted with assigned button in a settings panel. 

Figure below illustrates velocity functions.  
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Figure 22 Control law of angular and frontal velocities 

 

Following equation calculates control value of forward velocity, considering 𝑦𝑃 as the 

actual position of eye gaze on a monitor; H is a height of the screen and 𝑦𝑁𝐴𝑍 (y normal-

ized at zero is set to be 0.25), which characterized by the part of the screen where the 

speed is set to be zero.  

𝐹(𝑦) = 
1

1−𝑦𝑁𝐴𝑍
×
𝑦𝑃 

𝐻
− 

𝑦𝑁𝐴𝑍 

1−𝑦𝑁𝐴𝑍 
.       (8) 

Forward speed following the law depicted on the equation below, where maximum speed 

is multiplied by F(y):  

𝐹𝑓𝑟𝑤 𝑆𝑝𝑒𝑒𝑑 =  {
𝑉𝑓𝑟𝑤𝑀 × 𝐹(𝑦), 𝑖𝑓 𝐹(𝑦) > 0

0, 𝑖𝑓 𝐹(𝑦) ≤ 0
.    (9) 

The lateral speed is calculated analogically to forward speed. Control laws for both right 

and left movement is depicted below: 

𝐺𝑅(𝑥) = − (𝑥𝑃 −
𝑊

2
) ×

2

𝑊

1

(1−𝑋𝑁𝐴𝑍)
− 

𝑋𝑁𝐴𝑍

1−𝑋𝑁𝐴𝑍
,     (10) 

𝐺𝐿(𝑥) = −(𝑥𝑃 −
𝑊

2
) ×

2

𝑊

1

(1−𝑋𝑁𝐴𝑍)
+ 

𝑋𝑁𝐴𝑍

1−𝑋𝑁𝐴𝑍
,     (11) 

where 𝑋𝑁𝐴𝑍 is x normalized at zero, is set to 0.15, 𝑥𝑃 as the actual position of the eye on 

the screen, W is a width of the screen.  

Later speed is determined following this approach:  

𝐿𝑎𝑡 𝑆𝑝𝑒𝑒𝑑 𝑅= {
𝑉 𝑙𝑎𝑡 𝑀 × 𝐺𝑟(𝑥), 𝑖𝑓 𝐺𝑅(𝑥) > 0

0, 𝑖𝑓 𝐺𝑟(𝑥) ≤ 0
,      (12) 
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𝐿𝑎𝑡 𝑆𝑝𝑒𝑒𝑑 𝐿= {
𝑉 𝑙𝑎𝑡 𝑀 × 𝐺𝑙(𝑥), 𝑖𝑓 𝐺𝐿(𝑥) < 0

0, 𝑖𝑓 𝐺𝐿(𝑥) ≥ 0
,      (13) 

where 𝑉 𝑙𝑎𝑡 𝑀 is the maximum values of the lateral speed. 

 

4.1.3 Semi-autonomous navigation 

Semi-autonomous navigation modality was developed to reduce user’s fatigue. This tech-

nology includes techniques from industrial mobile robotics which give the wheelchair the 

capability to investigate surrounding environment, to detect a point of interest (POIs). 

Moreover, the user can choose the POI from the offered variation and the wheelchair 

capable of moving “semi-autonomously” to this point. The system being in semi-auton-

omous state searches for potential POIs in the surrounding and computes the most effi-

cient path to reach a chosen position. Human-machine interface illustrates to the user 

detected POIs and calculated paths if feasible. Besides, it is essential for a user to select 

desirable POI by looking continuously at it for some particular time to activate above-

mentioned point. In the case of activation of POI, the wheelchair initiates independent 

movement toward the target. During this movement, the user has an opportunity to cancel 

the navigation.  

Since the “semi-autonomous” navigation requires implementation of advanced algo-

rithms, including image and 3D data processing, which involve specific libraries usage, 

thus cannot be directly realized at the human-machine interface level. For these purposes 

serves an operative core of RoboEye or C++ DLL. As it can be seen from the figure below 

(Figure 23), the DLL has three levels and two parallel tasks. Two threads perform abso-

lute localization of the wheelchair and communication system with drives. In addition to 

that, DLL wrapper connects C++ level with the C# level of Unity 3D software.  
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Figure 23 DLL structure [2] 

 

4.1.4 Software overview 

RoboEye runs on a Windows Operating System (OS), which manages hardware and 

maintain a PID controller. That detect the variance between target and real set point ve-

locities, calculating a mistake, which is corrected afterwards to keep deviation minimal. 

RS323 serial communication is establish to ensure smooth network between high level 

software interface to low level data (such as variables, modules and functions controlling 

the wheelchair’s movement).  

As it can be seen from a Figure 45 (Appendix), software includes the following services. 

Service 3 (Serial communication) is responsible for manual drive and autonomous com-

mands. Service 1 is responsible for detecting points of interests in surrounding environ-

ment, establishing current location of the wheelchair and performs path planning for semi-

autonomous navigation, which is sent to the interface. Human machine interface sends 

data concerning chosen path to this Service. Afterwards the path is used by Service 2, in 

order to perform path following and odometric localization.  

Service 4 performs data collection from TOF camera Kinect or Real Sense cameras, de-

pending on the wheelchair’s configuration, and then this data is used by Services 1 and 

5. Service 6 manages tilt of sitting, backrest and footboards and any other possible wheel-

chair setting, which can be controlled by user from HMI, thus status, is displayed on the 
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monitor. Service 9 and the rest services are working following Master -Slave relation-

ships, thus performs acknowledgement from all services and publish statuses to all ser-

vices.  

 

4.2 Human machine interface implementation 

Software is performed following state machine approach, block diagrams are presented 

in the Appendix A. Application switching between following scenes: scene idle, autono-

mous navigation, manual navigation, autonomous map, path planning, settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Developed State Machine of the Human-Machine Interface 

 

STOP is pressed 

POI is chosen 

Idle Semi-autonomous 

Manual 

Map autonomous 

nav. 

Path planning 

START is pressed 

MAP button is pressed destination is chosen 

BACK is pressed 

BACK is pressed 

STOP is pressed 

EXIT is pressed 
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Figure 25 State Manager and IState base classes 

The software were give to be tested for experienced and non-experienced users. Due to 

several limitations, the team of the project is considered as experienced users, while ran-

dom people have no previous experience with a wheelchair or eye-tracking devices usage. 

For this case, we selected three team members as experienced users to test the software 

with use of mouse and eye-tracking device and five unexperienced volunteers. The test 

cases and results are given below. The testing were in held in four sessions, until all bugs 

were not fixed. Therefore, the test cases below has no fails.  

 

Test 

Case ID 
Test Steps Expected results 

Actual re-

sults 
Pass/Fail Comments 

IDLE _1 

Gaze on a "Start" but-

ton (Green button) for 

> 2 sec 

Cursor - timebar count-

ing lasts for 2 sec, fill-

ing is proportional to 

the time. Afterwards 

the systes switches to 

the manual navigation, 

manual navigation 

scene appears. 

As expected Pass 

Tested 

online, thus 

no move-

ment of the 

wheelchair 

is expected 

IDLE_2 
Gaze on a "any" button 

for < 2 sec 

Cursor timebar count-

ing lasts for the input 

time, filling out ac-

cordingly. After gazing 

is interrupted, the cur-

sor is filled for 100%.  

As expected Pass   

IDLE_3 
Gaze on a "MAP" but-

ton for 2 sec 

The system switches to 

the "autonomous navi-

gation" state 

As expected Pass   

IDLE_4 
Gaze on a "Pin" button 

for > 2 sec 

The system switches to 

the "semi-autonomous 

navigation" state, semi-

autonomous scene ap-

pears 

As expected Pass   
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IDLE_5 
Gaze on a "Settings" 

button for > 2 sec  

The system switches to 

the "Settings" state and 

Settings scene appears 

As expected Pass   

IDLE_6 
Move Aruco marker to 

the right 

Suggested path 

changes accordingly 
As expected Pass   

IDLE_7 
Move Aruco marker to 

the left  

Suggested path 

changes accordingly 
As expected Pass   

IDLE_8 Hide Aruco marker  

No suggested path is 

visible, pin button is 

not active 

As expected Pass   

IDLE_9 
Move Aruco marker 

online 

The path changes ac-

cordingly 
As expected Pass   

IDLE_10 
Explore the screen 

with the eyes gaze 

The cursor is moving 

along the eye-gaze 
As expected Pass   

IDLE_11 

Try above-mentioned 

steps on a different 

monitor's sizes 

The size of the buttons 

and distance between 

buttons/objects 

changes accordingly 

As expected Pass   

 

Table 2 Test cases to be followed for the IDLE state 

 

Test Case ID Test Steps Expected results 
Actual re-

sults 
Pass/Fail Comments 

MANUAL_1 
Gaze on "Stop" but-

ton for < 2 sec 

The movement is 

stopped, the state is 

switched to "Idle" 

mode, cursor filling is 

changed accordingly  

As expected Pass 

Due to lim-

itations, the 

movement 

is not per-

formed 

MANUAL_2 
Gaze on "Stop" but-

ton for < 2 sec 

Cursor is filled propor-

tionally to the time 
As expected Pass   

 

Table 3 Test cases to be followed for the MANUAL state 

 

Test Case ID Test Steps Expected results 
Actual re-

sults 
Pass/Fail Comments 

SEMI_AUT_1 
Gaze on "Stop" but-

ton for < 2 sec 

The movement is 

stopped, the state is 

switched to "Idle" 

mode, cursor filling is 

changed accordingly  

As ex-

pected 
Pass 

Due to lim-

itations, the 

movement 

is not per-

formed 
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SEMI_AUT_2 
Gaze on "Stop" but-

ton for < 2 sec 

Cursor is filled pro-

portially to the time 

As ex-

pected 
Pass   

 

Table 4 Test cases to be followed for the SEMI-AUTONOMOUS state 

 

Test 

Case ID 
Test Steps Expected results 

Actual re-

sults 
Pass/Fail Comments 

SET-

TINGS_1 

Gaze on "small" button 

for > 2 sec 

The buttons size are 

changed to the small 

size  

As expected Pass 

User 

should 

check all 

buttons in 

all the 

states, if 

satisfy then 

the test 

case is 

passed 

SET-

TINGS_2 

Gaze on "Stop" button 

for < 2 sec 

Cursor is filled propor-

tionally to the time 
As expected Pass 

User 

should 

check all 

buttons in 

all the 

states, if 

satisfy then 

the test 

case is 

passed 

SET-

TINGS_3 

Perform above-men-

tioned steps for the 

"medium" and "large" 

buttons 

The buttons size are 

changed to the medium 

and large sizes accord-

ingly, cursor's filling is 

changed accordingly 

As expected Pass 

User 

should 

check all 

buttons in 

all the 

states, if 

satisfy then 

the test 

case is 

passed 

 

Table 5 Test cases to be followed for the SETTINGS state 
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Test Case ID Test Steps Expected results 
Actual re-

sults 
Pass/Fail 

Com-

ments 

MAP_PLAN_1 
Gaze on "corridor" 

button for > 2 sec 

The corridor room is 

chosen, POIs appeared 

As ex-

pected 
Pass 

POIs are 

following: 

EntR3, 

EntR2, 

EntR3_1, 

EntR3_2 

MAP_PLAN_2 
Gaze on EntR3 for 

>2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_3 
Gaze on EntR2 for 

>2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_4 
Gaze on EntR3_1 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_5 
Gaze on EntR3_2 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_6 
Gaze on "Room1" 

button for > 2 sec 

The Room1 is chosen, 

POIs appeared 

As ex-

pected 
Pass 

POIs are 

following 

Table 1, 

Table 2. 

Table 3 
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MAP_PLAN_7 
Gaze on Table 

1for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_8 
Gaze on Table 2 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_9 
Gaze on Table 3 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_10 
Gaze on "Room 2" 

button for > 2 sec 

The Room 2 is chosen, 

POIs appeared 

As ex-

pected 
Pass 

POIs are 

following:  

Table 1 

Table2 

Table 3 

MAP_PLAN_11 
Gaze on Table 

1for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_12 
Gaze on Table 2 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_13 
Gaze on Table 3 

for >2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_14 
Gaze on "Room 3" 

button for > 2 sec 

The Room 3 is chosen, 

POIs appeared 

As ex-

pected 
Pass 

POIs is 

TV 

 

MAP_PLAN_15 
Gaze on TV for 

>2 sec 

The state is switched to 

the path planning state, 

scene path planning is 

loaded, path is calcu-

lated 

As ex-

pected 
Pass 

Path is 

calculated 

from the 

initial 

point to 

the POI 

MAP_PLAN_16 
Gaze on Exit for 

>2 sec 

The state is switched to 

the Idle state, scene Idle 

is loaded 

As ex-

pected 
Pass  
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Table 6 Test cases to be followed for the MAP AUTONOMOUS state 

 

 

Figure 26 Main screen human machine interface 

The image is obtained from the kinect acquisition service and rendered in front of a cam-

era view and it is updated in real time. Here are four buttons: autonomous navigation map, 

start, settings and home button. The user can “press” the button by keeping the eye contact 

for 2 seconds. While the user hovering button, application runs timer ensuring user 

friendly design. By pressing start button user can navigate in manual mode. The applica-

tion communicating with services, when detects Aruco marker – creates a button in shape 

of a navigation pin near it. In addition, to that path is calculated and illustrated graphically 

from the current location to the point of interest. If customer prefer to navigate in semi-

autonomous mode can hover this navigation pin. Home button is reserved for future pur-

poses, because navigation part will be a part of ready software, which is going to have 

more functionalities such as phone calls, email receiving and sending, calendar, etc. In 

menu settings envisaged speed changes - low, medium and high, in addition to that but-

ton’s size – small, medium and high as it can be seen from a figure below.  
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Figure 27 Menu settings 

In manual or autonomous navigation the user, see following screen (Figure 28) 

 

Figure 28 Manual navigation mode 
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Figure 29 Semi-autonomous navigation mode 

In this case functionalities are the same, if stop buttons is pressed application stops navi-

gation and scene is changed to main scene. Also if the user does not look anymore at the 

screen, the navigation is stopped.  

In order to check UI design user’s satisfaction the anonymous survey were conducted. 

Volunteers were invited to test the interface using eye-tracking device or an adapted Mar-

vel [22] prototype where a mouse pointer is simulating eye-tracking output. To check 

how intuitive UI is, responders were asked to use an UI or a prototype with no instruction. 

Almost 90% of responders reported that the design of the interface is simple and intuitive, 

while the rest mentioned that they had some misunderstanding while using UI. There 

were 20 positive responses to the question “Would you like to use this application 

again?”, while five were not certain. In the comment field, those users mentioned that 

icons design were poor, therefore the author enabled opportunity to customize icons de-

sign according to each user preferences. In summary, the results show that created inter-

face satisfy basic user experience and confirm need to be adaptive.  

4.3 Path planning solution 

4.3.1 Environmental map validation, graph based adaptation 

It consists information about a marker related point of interest and links, or rooms that 

can be reached from this particular point. For user experience in order to ensure readabil-

ity and user-friendly design added name of the room and its points of interest. Developed 

application reads information from file generates a graph and offers a user possibility to 

choose a destination (See Figure 30). 
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Figure 30 User interface, rooms menu 

From the map application read that there are four rooms, after choosing room1 user can 

choose POs inside this room which are: Table 1, Table 2 and Table 3. Buttons position, 

captions are dynamic, depending on a JSON file content, and amount of buttons and the 

size of a screen. As regards design of icons, the user can easily change it by replacing 

default pictures in related folder. After choosing destination point, the wheelchair define 

current position and calculates shortest path from detected starting point to the chosen by 

the user a target point. The solution is shown as follows (Figure 31) 

 

 

Figure 31 Path planning scene user interface 
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At this point of software development, the wheelchair is able to move using a list of pass-

ing point, when facing an obstacle application stops movement. However, the team de-

veloping a new solution which should perform smooth obstacle avoidance algorithm, 

which is under development and cannot be implemented yet. Therefore, for testing pur-

poses was decided to print out suggested path.  

       

  

Figure 32 Class diagram Graph, GraphNodes 

4.3.2 Dijkstra algorithm simulation 

In this work, the environmental map is represented as a graph of point of interest and can 

be seen as follows. 

 

Figure 33 Graph-based map 

Above-mentioned map is formed in order to check if path planning works well and gives 

adequate results. However, for user comfort results are shown in a readable form Figure 

31Ошибка! Источник ссылки не найден..  
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The simulation were run from every node to each left nodes in this particular laboratory 

map, results are shown below in the tables Table 7 -Table 9Table 16.  

1001 1101   

1001 1102   

1001 1103   

1001 1002   

1001 1003   

1001 1002 1201  
1001 1002 1202  
1001 1002 1203  
1001 1003 1004  
1001 1003 1004 1301 

 

Table 7 Simulation results from node 1001 to the rest of nodes 

1002 1001   

1002 1003   

1002 1201   

1002 1202   

1002 1203   

1002 1001 1101  
1002 1001 1102  
1002 1001 1103  
1002 1003 1004  
1002 1003 1004 1301 

 

Table 8 Results of simulation from the node 1002 to the rest of nodes 

1003 1001  
1003 1002  
1003 1004  
1003 1004 1301 

1003 1001 1103 

1003 1001 1102 

1003 1001 1101 

1003 1002 1201 

1003 1002 1202 

1003 1002 1203 

 

Table 9 Results of simulation from node 1003 to the rest of nodes 

1004 1003   

1004 1301   
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1004 1003 1001  
1004 1003 1002  
1004 1003 1001 1101 

1004 1003 1001 1102 

1004 1003 1001 1103 

1004 1003 1002 1201 

1004 1003 1002 1202 

1004 1003 1002 1203 

Table 10 Results of simulation from the node 1004 to the rest of nodes 

1101 1001    

1101 1001 1102   

1101 1001 1103   

1101 1001 1002   

1101 1001 1002 1201  
1101 1001 1002 1202  
1101 1001 1002 1203  
1101 1001 1003   

1101 1001 1003 1004  
1101 1001 1003 1004 1301 

 

Table 11 Results of simulation from the node 1101 to the rest of nodes 

1102 1001    

1102 1001 1101   

1102 1001 1103   

1102 1001 1003   

1102 1001 1002   

1102 1001 1002 1201  
1102 1001 1002 1202  
1102 1001 1002 1203  
1102 1001 1003 1004  
1102 1001 1003 1004 1301 

 

Table 12 Results of simulation from the node 1102 to the rest of nodes 

1103 1001    

1103 1001 1101   

1103 1001 1102   

1103 1001 1003   

1103 1001 1002   

1103 1001 1002 1201  
1103 1001 1002 1202  
1103 1001 1002 1203  
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1103 1001 1003 1004  
1103 1001 1003 1004 1301 

 

Table 13 Results of simulation from the node 1103 to the rest of the nodes 

 

1201 1002    

1201 1002 1001   

1201 1002 1003   

1201 1002 1202   

1201 1002 1203   

1201 1002 1001 1101  
1201 1002 1001 1102  
1201 1002 1001 1103  
1201 1002 1003 1004  
1201 1002 1003 1004 1301 

 

Table 14 Results of simulation from the node 1201 to the rest of the nodes 

1202 1002    

1202 1002 1001   

1202 1002 1003   

1202 1002 1201   

1202 1002 1203   

1202 1002 1001 1101  
1202 1002 1001 1102  
1202 1002 1001 1103  
1202 1002 1003 1004  
1202 1002 1003 1004 1301 

 

Table 15 Results of simulation from the node 1202 to the rest of the nodes 

1203 1002    

1203 1002 1001   

1203 1002 1003   

1203 1002 1201   

1203 1002 1202   

1203 1002 1001 1101  
1203 1002 1001 1102  
1203 1002 1001 1103  
1203 1002 1003 1004  
1203 1002 1003 1004 1301 
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Table 16 Results of simulation from the node 1203 to the rest of the nodes 

 

These results indicate that the path planning algorithm adequate and can be used for nav-

igation purposes. Implemented solution is simple and efficient, does not require many 

calculations. Moreover, mapping, localization, path routines tested to be fit into adaptive 

and intuitive interface. User can change one eye-tracker to one another or Kinect camera 

with another ToF camera. These changes will not significantly effect code of the project. 

In addition to that, UI is adaptive to screen sizes, resolution etc, which was separately 

tested by changing resolution of Unity dashboard.  
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5. CONCLUSIONS AND FUTURE IMPROVEMENTS 

There are some solutions for the wheelchair navigation available for people with major 

disabilities, however, those solutions face lack of usability due to limited functionalities 

or high cost. Human machine interface based on eye-tracking device, Kinect camera, 

combining augmented reality and greatly developed software is one of the promising di-

rections in this areas. Path finding strategies are well-studied, thus, benefits and limita-

tions are quite known. One of the goals of thesis was to find the most appropriate solution 

according to the given requirements. Therefore, suggested solution might be not the most 

technologically advanced but provides the required usability in trade off the suitable price.  

Developed solution for path finding satisfy the requirements detected by the author. Note, 

it is needed to install Aruco markers inside apartment of the user before using the wheel-

chair. It is also necessary to define the points of interest to be included in autonomous 

navigation map. This significantly reduces cost of development, however, requires addi-

tional work of engineers and if user decides to move to another apartment, the map should 

be recreated from a scratch.  

UNITY Game Engine is used for the development of the HMI. Moreover, ArUco was 

used as a library for Augmented Reality AR applications based on OpenCV to identify 

the possible targets and then OpenCV for image processing. The proposed AR-based ap-

plication can recognize POIs visible to the camera, to plan a path and to give to the patient 

the possibility to eventually perform the preferred path after a proper checking. From an 

applicative point of view, when a POI enters in the field of view of the camera the user 

can select it, starting in this way the autonomous navigation. The tests on the application 

developed were performed evaluating the repeatability of the maneuvers starting from 

different positions. In this way, the impact of the uncertainty of the camera position was 

evaluated, with respect to the wheelchair, on the reached position. Moreover it is used 

also Microsoft Visual Studio for the image processing and Matlab. 

Developed human-machine interface is reusable, meaning that if eye tracking device or 

TOF camera will be replaced with another one, for example Kinect camera replaced by 

SensEye camera, the interface still will be useful and will not require a lot of changes. 

Design of interface is easily changeable according to the needs and preferences of the 

user, there is a folder with icons, these icons can be used by default or replaced with the 

preferred ones. In addition, to that interface is adjustable to any resolution and screen size.  

During the research, it was clear that:  
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 Mapping using CAD significantly reduces cost of the development. It is proven 

to be simple and elegant solution, because the environment stays the same. To be 

short, it is simple, inexpensive and suitable for autonomous navigation in the flat 

of a patient.  

 The localization of the wheelchair inside the environment is necessary to allow a 

mobile robot to move autonomously. ArUco markers is cheap and suitable solu-

tion to be used to perceive relative position and define POIs.  

 Graph-based map created using separately created JSON file and CAD is conven-

ient addition to Dijkstra algorithm. This algorithm proven to be classical and sim-

ple approach in path planning. The path planning was fast and did not require any 

improvement. 

 Last but not the least; State Machine is great solution to create UI. It not only 

allows including previously developed code but also gives future developers op-

portunity to add new states, keeping code simple and clear.  

During the thesis completion, the project faced many different changes proposed by stake-

holders; therefore, the interface’s and autonomous navigation solutions have been modi-

fied significantly. Due to high level of bureaucracy in Italy, it was impossible to test the 

solution with real users. The application for testing permission was submitted around a 

year prior to the publication of this thesis while the approval is still pending. Due to 

above-mentioned limitations, the final solution was tested only in laboratory premises. 

Project is dynamic and ongoing, therefore the wheelchair was not available for the final 

testing. However, in the nearest future the team is expecting to test this solution on a real 

wheelchair and results will be demonstrated in September for the stakeholders.  
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APPENDIX A:  

 

Figure 34 Scene Idle, flow chart, StateUpdate() part 1/2 
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Figure 35 Scene Idle, flow chart, StateUpdate(), part 2/2 
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Figure 36 Manual/Semi-autonomous scenes, flow chart, StateUpdate() 
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Figure 37 Map autonomous navigation, Flow chart, StateUpdate(), part 1/2 
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Figure 38 Map autonomous navigation, Flow chart, StateUpdate(), part 2/2 
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Figure 39 Map autonomous navigation, flow chart, Buttons() 
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Figure 40 Map autonomous navigation, flow chart, ButtonsHorizontal() 
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Figure 41 Map autonomous navigation, flow chart, ReadData() 
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Figure 42 Path planning, flow chart, StateUpdate(), part 1/2 
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Figure 43 Path planning, flow chart, StateUpdate(), part 2/2 
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Figure 44 Path planning, flow chart InternalFind() 
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Figure 45 Software architecture scheme 


