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Smart and connected health technologies as part of the digitally supporting health
and heathcare plans can play an explicitly important role in improving preventive
healthcare and patient outcomes, decreasing costs, and speeding up the scientific
discoveries. Rigorous information processing approaches, such as outlier detection
and data cleaning, are therefore needed to enhance the reliability of the acquired
data. A "smart electronic weight scale" is a connected sensor that regularly mea-
sures and stores time series of body mass values. The long-term self-weighing time
series data, like any other time series data, may occasionally contain abnormal val-
ues which are called "outliers". The existence of these outlying values can distort
or mislead the data analysis. In this thesis, detection of outliers in time series of
weight measurements of 10,000 anonymous Withings weight scale users is inves-
tigated. Four point-wise outlier detection approaches are studied and compared
from different aspects. These techniques are: (1) a method based on Autoregressive
Integrated Moving Average (ARIMA) time series modelling, (2) moving Median
Absolute Deviation (MAD) scale estimate, (3) conventional Rosner statistic, and
(4) windowed Rosner statistic. The results suggest that ARIMA approach, moving
MAD and windowed Rosner statistic can properly find the outliers; however, in case
of facing missing data the only method which was able to ideally identify the out-
liers was ARIMA approach. In contrast, conventional Rosner statistic did not show
acceptable outlier detection power. The computational complexity of the ARIMA
approach was unsatisfactorily costly, whilst the rest of the tested techniques were
quite fast in terms of computation time.



ii

PREFACE

This thesis was done as part of the research projects in Personal Health Informatics
(PHI) group in Department of Signal Processing, Tampere University of Technology,
Finland between July 2015 and February 2016 under the supervision of PhD Elina
Helander and Prof. Ilkka Korhonen.

Here I would like to express my deep gratitude to PhD Elina Helander, Prof. Ilkka
Korhonen, Dr. Hannu Nieminen, and Prof. Misha Pavel for all of the invaluable
support and recommendations they gave me during my thesis work.

Many thanks also to Withings as the provider of the data set used in this study.
They enabled a new era of research by gathering a wealth of physiological data
collected in everyday life.

Last, but not the least, I wish to thank my family for all their priceless encourage-
ments and faith, specially my mother, Maryam, with her unconditional support.

Tampere, September 2016

Saeed Mehrang



iii

Table of Contents

1. Introduction 1

2. Theoretical background 4
2.1 Essence of Self-Weighing . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Variability of Body Mass . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Properties of Weight Time Series . . . . . . . . . . . . . . . . . . . . 6

3. Weight Time Series and Outliers 8
3.1 Problem of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Types of Univariate Time Series . . . . . . . . . . . . . . . . . . . . . 9
3.3 Types of Outliers in Univariate Time Series . . . . . . . . . . . . . . 10
3.4 Types of Outlier Detection Methods Based on Data Labels . . . . . . 11

4. Outlier Detection Methods 12
4.1 ARIMA Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Moving Median Absolute Deviation Scale Estimate . . . . . . . . . . 16
4.3 Conventional Rosner Statistic . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Windowed Rosner Statistic . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Materials 20
5.1 Description of Underlying Data Set . . . . . . . . . . . . . . . . . . . 20
5.2 Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Simulated Test Set . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Real Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. Results and Discussion 26
6.1 Results of Simulated Test Set . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Results of Simulated Test Set: ARIMA Technique . . . . . . . 29
6.1.2 Results of Simulated Test Set: Moving MAD . . . . . . . . . . 32



TABLE OF CONTENTS iv

6.1.3 Results of Simulated Test Set: Conventional Rosner Statistic . 34
6.1.4 Results of Simulated Test Set: Windowed Rosner Statistic . . 37

6.2 Results of Real Test Set . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Results of Real Test Set: ARIMA Technique . . . . . . . . . . 44
6.2.2 Results of Real Test Set: Moving MAD . . . . . . . . . . . . . 46
6.2.3 Results of Real Test Set: Conventional Rosner Statistic . . . . 48
6.2.4 Results of Real Test Set: Windowed Rosner Statistic . . . . . 51

6.3 Performance Comparison Summary . . . . . . . . . . . . . . . . . . . 53

7. Conclusions and Future Work 55

References 58

APPENDIX A 65



v

List of Figures

Figure 5.1 Distribution of measurement times within day. . . . . . . . . 21
Figure 5.2 Frequency of self-weighing within different time intervals. . . 22
Figure 5.3 Average percentages of weekly measurement activity over the

whole data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 5.4 Average percentages of monthly measurement activity over

the whole data set. . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 6.1 ROC curves related to the results of simulated test set. . . . 28
Figure 6.2 Simulated test set: ARIMA technique sample output 1 . . . 30
Figure 6.3 Simulated test set: ARIMA technique sample output 2 . . . 31
Figure 6.4 Simulated test set: moving MAD technique sample output 1 33
Figure 6.5 Simulated test set: moving MAD technique sample output 2 34
Figure 6.6 Simulated test set: conventional Rosner statistic sample out-

put 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 6.7 Simulated test set: conventional Rosner statistic sample out-

put 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 6.8 Simulated test set: histograms of the time series shown in

Figure 6.6(a) and Figure 6.7(a) . . . . . . . . . . . . . . . . . 37
Figure 6.9 Simulated test set: windowed Rosner statistic sample output 1 38
Figure 6.10 Simulated test set: windowed Rosner statistic sample output 2 39
Figure 6.11 Simulated test set: windowed Rosner statistic sample output 3 40
Figure 6.12 ROC curves related to the results of real test set. . . . . . . . 43
Figure 6.13 Real test set: ARIMA technique sample output 1. . . . . . . 45
Figure 6.14 Real test set: ARIMA technique sample output 2. . . . . . . 46
Figure 6.15 Real test set: moving MAD technique sample output 1. . . . 47
Figure 6.16 Real test set: moving MAD technique sample output 2. . . . 48
Figure 6.17 Real test set: conventional Rosner statistic sample output 1. 49
Figure 6.18 Real test set: conventional Rosner statistic sample output 2. 50
Figure 6.19 Real test set: windowed Rosner statistic sample output 1. . . 52
Figure 6.20 Real test set: windowed Rosner statistic sample output 2. . . 53



LIST OF FIGURES vi

Figure A.1 Critical values of extreme studentized deviate (ESD statistics). 65



vii

List of Tables

Table 5.1 Demographics of the data set . . . . . . . . . . . . . . . . . . 20

Table 6.1 The best controlling parameters of the implemented algo-
rithms regarding simulated test set. . . . . . . . . . . . . . . 29

Table 6.2 The best statistical performance of implemented outlier de-
tection techniques in simulated test set. . . . . . . . . . . . . 29

Table 6.3 Average processing time of implemented outlier detection
techniques for each time series in simulated test set. . . . . . 29

Table 6.4 The best controlling parameters of the implemented algo-
rithms regarding real test set. . . . . . . . . . . . . . . . . . 42

Table 6.5 The best statistical performance of implemented outlier de-
tection techniques in real test set. . . . . . . . . . . . . . . . 42

Table 6.6 Average processing time of implemented outlier detection
techniques for each time series in real test set. . . . . . . . . 42



viii

LIST OF ABBREVIATIONS AND SYMBOLS

ADHR Acute Decompensated Heart Failure
AM Before Noon
AO Additive Outlier
AUC Area Under Curve
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
BMI Body Mass Index
CSS Conditional Some of Squares
ESD Extreme Studentized Deviate
FPR False Positive Rate
HF Heart Failure
IO Innovational Outlier
LS Level Shift
MA Moving Average
MAD Median Absolute Deviation
ML Maximum Likelihood
ROC Receiver Operating Characteristic
TC Temporary Change
TPR True Positive Rate

at forecast error at time point t
B backward shift operator
c number of outliers in conventional Rosner statistic
C critical value of ARIMA algorithm
d differencing order
D seasonal differencing order
k moving MAD window length
L window length in conventional Rosner statistic
Lj outlier dynamic of type j
m number of outliers in ARIMA algorithm
maxit maximum outer loop iteration in ARIMA algorithm
maxit.iloop maximum inner loop iteration in ARIMA algorithm
MEDj median of jth window



ix

n time series length
p autoregressive polynomial order
P seasonal autoregressive polynomial order
q moving average polynomial order
Q seasonal moving average polynomial order
s seasonality period
t time
x̄ arithmetic mean of x
α Type-I error rate
β Type-II error rate
δ dampening effect
θm moving MAD threshold value
θp autoregressive polynomial of order p
ΘP seasonal autoregressive polynomial of order P
φq moving average polynomial of order q
ΦQ seasonal moving average polynomial of order Q
ω magnitude of outlier



1

1. INTRODUCTION

According to World Health Organization (WHO) prevalence of obesity almost dou-
bled between 1980 and 2008. Based on the estimation of countries in WHO European
Region, more than 50 percent of men and women were overweight in 2008 [1]. In
the same year, near 23 percent of women and 20 percent of men were obese. WHO
reported also that in 2014 every third 11-year-old child is overweight or obese. Such
a huge rising prevalence of obesity can be observed in United States of America as
well. As reported by Obesity Rate and Trends, in the whole country more than 68
percent of adults were overweight of whom half were obese as of 2011 to 2012 [2]. In
September 2015, the minimum rate of adult obesity was as big as 20 percent among
all the states while, in as many as 25 states, close to one third of the citizens were
obese. Moreover, according to the 2015 Youth Risk Behavior Surveillance System
(YRBSS) in USA, almost 30 percent of high school students were overweight or
obese.

One of the solutions that has been proved to be effective in weight-loss and weight-
maintenance interventions, is self-weighing. That is, self-monitoring of weight can
help those who wish to either lose weight or keep their weight at a constant level
[3, 4, 5, 6, 7]. Currently self-weighing can be easily done via "smart connected
weight scales" or simply "smart weight scales". These weight scales provide the
capability of storing a digital version of body mass along with corresponding mea-
surement time. These digitally available series of weight measurements are then
called "weight time series" in this thesis. The analysis of these weight time series
plays an important role in understanding the changes in body mass and the overall
health status of individuals throughout the time [8, 9, 10]. Multivariate analysis of
weight time series along with other physiological and psychological variables using
connected sensors can be counted as the next frontier of healthcare informatics. At
population level, the weight time series analysis can also increase the insight about
the effect of climate, public holidays, and cultural factors on body mass variations
in different time intervals and geographical areas [11, 12, 13]. Investigation of differ-
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ences between the behavioral models of weight gainers and weight losers is another
application of weight time series analysis at population level.

Since self-monitoring of weight is done during daily life and mainly in uncontrolled
conditions, it can be contaminated by outliers. Here outliers are the measurements
that are distinctly separate from the rest of the adjacent measurements or in other
words, the measurements which are physiologically unlikely to occur. These out-
lying values can arise from conditions where different persons are using the weight
scale, carrying some objects during measurement such as suitcase, or due to some
external influences such as exceptionally heavy clothing. Weighing pets can be an-
other source of producing outlying values in the case of weight time series [14]. The
presence of these noticeably deviated values usually lead to remarkable distractions
in the outcome of analysis. For instance, properties of a mathematical model fitted
to a weight time series could dramatically change in presence of outliers. It can be
even more critical if heart failure patients’ weight are being screened. In this case,
a deviation from baseline weight values may notify body overfluid that if neglected,
may lead to mortal outcomes. Discriminating these natural deviations from out-
liers is exceptionally crucial and challenging. Subsequently, the problem of outliers
needs to be addressed before designing any study, any intervention, or drawing any
conclusion.

Basically, outlier detection procedure can be dramatically challenging depending on
the nature of the data. Presence of missing data and diversity of the range of normal
data usually complicate the process of identifying outliers. In the context of weight
time series, a challenge may arise from temporal variation of people’s adherence to
self-weighing. Stopping self-weighing for a while leads to generation of missing data.
The long periods of time without measurements then might cause larger than average
fluctuations in weight levels [15]. The average daily variations of body mass can rise
even up to 3 percent [16]. In longer periods the normal fluctuations can follow even
more disparate models depending on the people’s behavior. Therefore distinguishing
physiologically unreasonable measurements from normal measurements would be an
extremely difficult process.

In this thesis the main objective is to tackle the problem of detecting outliers in
weight time series of connected scales. After a comprehensive literature analysis,
a few of the most suitable statistical outlier detection methods were selected to
be investigated. The chosen methods were regarded as the most fitting techniques
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considering the nature of the problem. The examined techniques are: (1) a method
based on Autoregressive Integrated Moving Average (ARIMA) time series modelling,
(2) moving Median Absolute Deviation (MAD) scale estimate, (3) conventional Ros-
ner statistic, and (4) windowed Rosner statistic. Detailed explanation about each
technique can be found in chapter 4. It should be noted that, there has not been
any study of similar kind addressing detection of outliers in time series of weight
measurements recorded in uncontrolled daily life conditions.

Withings as a consumer electronics company manufactures smart weight scales that
can be connected with mobile phones and personal computers. This thesis work is
based on a data set that includes weight time series of 10,000 randomly selected
anonymous Withings weight scale users from all over the world.

This document is structured as follows. Chapter 2 discusses briefly the essence
of self-weighing, variability of body mass, and weight time series properties. In
Chapter 3, a short review of literature about different outlier detection techniques
along with a concise explanation of context-wise categorization of univariate time
series are described. Different types of outliers and categorization of outlier detection
methods based on data labels are discussed in Chapter 3 as well. Chapter 4 accounts
for the implemented outlier detection methods. Chapter 5 describes the used data set
and some of the statistical properties of the included population. Chapter 6 includes
the results and discussion corresponding to comparison of statistical performance of
the used methods. Finally in Chapter 7 conclusions of the acquired results are
presented.
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2. THEORETICAL BACKGROUND

2.1 Essence of Self-Weighing

According to [17], the rate of mortality in population of young and middle-aged
white inhabitants of North America and Europe increases when the body mass index
(BMI) value exceeds 30(kg/m2). Having a BMI value over 30(kg/m2) means being
exceptionally vulnerable to heart problems, diabetes, musculoskeletal disorders and
high blood pressure [18, 14]. In addition, based on what has been presented in
[19], obesity and inactivity together are the second cause of death and disability in
the United States after smoking. The two mentioned factors contribute in forming
"behavioral determinants of health". Therefore, refining the individuals’ behavior
is considered to be the key element in not only improving the health status but
also decreasing the costs of healthcare. Increasing the people’s awareness about the
effect of their behavior on their health and well-being using what is called "self-
monitoring" can be a fundamental solution. In this regard, a variety of equipment
and services are available for consumers to support behavior change by means of
self-monitoring that provides the capability of collecting and displaying a wealth of
personal health and wellness data. In the case of self-monitoring of weight, smart
connected weight scales have been recently designed and are now widely used. In
fact, they help increasing the understanding about the variations of individuals’
body mass as a function of time. Recently, self-monitoring of weight combined with
automatic feedback have shown helpful outcomes in weight management since it
increases the people’s insight about both short and long-term changes occurring in
their weight [4, 20, 21, 22]. Therefore, regular self-weighing can play an important
role in long-term weight-loss and weight-maintenance interventions.

A series of weight measurements recorded by connected weight scales is called
"weight time series". The analysis of these time series enables us to investigate the
individual and population level variations of body mass. This can further lead to pro-
found understanding about the individuals’ behavior [23, 24]. Weekly and monthly
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fluctuations, correlation of self-monitoring frequency and weight change, as well as
behavioral models are a few of the things that can be studied using weight time
series data. The effect of self-weighing adherence is one of the factors that has lately
been studied and claimed to be impactful in weight-loss and weight-maintenance
interventions. Frequent self-weighing may have considerable positive influence on
the procedure of losing or maintaining weight [20, 16]. Nevertheless, a number of
studies have argued that the self-weighing by itself cannot affect the weight-loss
interventions if it is added to traditional methods of weight-loss. However, it was
claimed that "daily weighing" either combined with or without electronic feedback
can produce a small, but significant weight-loss [6, 25]. Daily weighing also appears
to be beneficial in inhibiting weight-regain after weight-loss [26]. In opposition to
supporters of frequent self-weighing, cognitive behavioral interventions advised at
most weekly self-weighing to prevent the discouragement caused by negligible weight
losses [27, 28].

2.2 Variability of Body Mass

Weight varies due to various factors such as body fluid status, digestion, and diet.
Detection of the changes in above-mentioned factors can be utilized by analysis
of body mass changes. On the other hand, the current digital weight scales are
equipped with a new technology that enables body fat measurements at the same
time with scaling the weight. utilizing both fat mass and body weight screening,
subtle variations in fat mass, lean mass, and even body fluid level can be monitored.
As mentioned earlier, up to 3 percent of daily weight variations can be considered
normal [15]. In addition to daily variations, body mass also varies weekly, that is
typically leading to weight-gain during weekends as opposed to weight-loss during
weekdays [8].

By looking into short-term variations of body mass we can obtain invaluable infor-
mation about the body fluid status. The clinical importance of body fluid via body
mass screening is unveiled regarding heart failure (HF) patients whose fluid balance
is of great importance. Fluid retention can sometimes lead to severe impacts such
as Acute Decompensated Heart Failure, therefore assessment of fluid status is cru-
cial in managing hypervolemia (or fluid overload) in both hospitalization and after
discharge of HF patients [29, 30].

The imbalance of electrolytes can also be tracked by body mass screening. The
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imbalance of electrolytes might be caused by excessive sweating, diuretic medicines,
heart failure, or kidney disease. The mentioned imbalance is usually followed by
the variations in either ionic or water levels of the body [31]. Detection of such
variations can be managed by careful tracking of the body mass changes.

The effect of ambient temperature and humidity on body fluid changes can also be
studied via weight time series analysis. As the temperature and humidity rises the
rate of sweating also increases by up to approximately 1 liter per hour. In case
of ultra endurance sports, the rate of sweating may even grow up to 3 liter per
hour. Healthy individuals are able to compensate the mentioned water outtake by
increasing the water intake but in case any fluid imbalance happens, there will be a
noticeable change in the body mass [32].

2.3 Properties of Weight Time Series

Every time series can be decomposed into a combination of trend, seasonal, and
irregular components [33]. These components are basically used for describing the
properties of a time series. In this section the weight time series properties are
discussed in terms of the trend, seasonal, and irregular components.

The trend component is the first and sometimes the most informative feature of the
weight time series in the context of weight-loss/maintenance interventions. Here,
the trend component represents the long-term variations of weight indicating if the
person is either losing, gaining, or maintaining his/her weight. The second element
which is called seasonal component parametrizes the periodic variations of weight
such as diurnal [16], weekly [8], quarterly, and menstrual [34]. The irregular compo-
nent describes the random variations of body mass. These random variations might
be related to irregular changes in diet [35], physical activity [12, 36], fluid balance
[37, 38], and ambient temperature [32].

In time series analysis the "stationarity" of time series is of great importance. For
example, in order to model the time series using ARIMA, the staionarity condition
must be met. By definition, a time series is stationary if its statistical properties
such as mean, variance, and autocorrelation are constant over time [33]. On the
other hand, presence of stationarity is necessary in forecasting time series values
in future. If the time series properties are not meeting the stationarity criteria,
then a set of actions like detrending, differencing, and log-transforming are used to
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stationarize the time series. According to the aforementioned principles, weight time
series can be easily "non-stationary" since most of them generally contain non-zero
trend, non-zero seasonal component, or varying autocorrelation through time.

It is worth mentioning that, like all other digital sensors, connected weight scales
rounds the measurand (weight) to the nearest tenths value. Such a discretization
inevitably leads to a discrete probability density function.
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3. WEIGHT TIME SERIES AND OUTLIERS

3.1 Problem of Outliers

The problem of outlier detection has been investigated extensively since the very
beginning stages of digital signal processing. Basically, an outlier (or anomaly) is
defined as the abnormalities that do not follow the well-defined expected normal be-
haviors. The anomalies can be induced by several factors such as malicious activity,
breakdown of the system, fraud, user interferences, and etc. It should be noted that
detection of anomalies is distinct but related to "noise removal" [39]. Noise denotes
the unwanted data which is not of interest of the data analyst; however, there is an
"interestingness" in the detection and observation of the anomaly values and their
occurrence in the data [40].

The outlier detection process sometimes becomes a challenging procedure owing to
the following items [40, 41]:

1. Identifying and defining a normal region that comprises all the possible normal
behavior is always very complex.

2. Current normal behavior may evolve throughout the time, and in case of
biomedical signals the normal behavior probably varies person-wise.

3. Definition of anomaly in one application domain can dramatically be different
than other domains. That means, normal behavior in one domain may cover
even significantly large fluctuations; however, in another domain very tiny
deviations are counted as anomaly.

4. It might be sometimes a challenging issue to find sufficient amount of training
and validation data.

5. The process of outlier detection becomes notably complicated if the data con-
tains noise and outliers at the same time.
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6. Presence of missing data in the time series complicates the outlier detection
process as well.

Based on the formerly published review articles and books, nature-wise the follow-
ing major categories of outlier detection techniques can be considered. Classification
based [42, 43], clustering based [42, 44, 45], statistical based [46, 47, 48, 49, 50, 51],
and information theoretic [52, 53, 54]. Each one of the above-mentioned categories
has broad applicability in different domains. Further description of the each tech-
nique can be found in cited references.

The studied methods in this thesis fall into the category of statistical based out-
lier detection techniques. The underlying concept of outlier detection techniques
under this category is: "An anomaly is an observation which is suspected of being
partially or wholly irrelevant because it is not generated by the stochastic model as-
sumed" [55]. There is a key assumption in all the statistical based outlier detection
techniques and that is: "Normal data instances occur in high probability regions
of a stochastic model, while anomalies occur in the low probability regions of the
stochastic model" [40]. These techniques work based on a statistical inference test
that detects the data points that have a low probability to be generated by the
model that represents normal behavior.

Dimensions of the data in process is a factor that restricts the number of alternatives
of outlier detection techniques. In general, each time series is a collection of data
instants. These data instants can nature-wise be described by either one variable
(univariate) or multiple variables (multivariate) at a time [40, 42]. The weight time
series in this study are univariate because for each time point there is only a one-
dimensional variable which is body mass in kilograms. Consequently, the outlier
detection approaches investigated in this study are restricted to the category of
univariate statistical based techniques. In following sections the detailed description
of the underlying principles concerning univariate time series categorization, types
of outliers in univariate time series, as well as types of outlier detection methods
based on data labels are presented.

3.2 Types of Univariate Time Series

The problem of outlier detection in univariate time series data is considerably diverse
and highly dependent on the context and nature of the data. Context wise, a set of
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univariate time series within a data set can be divided into four different categories
as follows [41]:

1. Periodic and synchronous that stands for constant periodicity as well as being
temporally aligned.

2. Aperiodic and synchronous that implies on temporally aligned time series that
are not periodic.

3. Periodic and asynchronous suggesting a category in which the time series follow
a constant time period but not a same starting time point.

4. Aperiodic and asynchronous time series that neither have periodicity, nor are
temporally aligned.

Identification of outliers become more complex in aperiodic and asynchronous cat-
egory in comparison with the other three categories. The main reason for this
complexity stems in lack of similarity criteria for selection of outlying values. In
other words, detection of anomalous behavior is much easier when all of the time
series follow a similar periodic and synchronous pattern. In contrast, if one of the
time series is allowed to follow a distinct unknown pattern, the detection procedure
cannot be established based on similarity tests using the rest of the time series avail-
able in the data set. Basically, weight time series fall into the category of aperiodic
and asynchronous time series.

3.3 Types of Outliers in Univariate Time Series

The outlying values (or anomalies) can be divided into three groups, (1) point
anomalies, (2) contextual anomalies, and (3) collective anomalies [40]. Point anoma-
lies are the values that abnormally deviate from the rest of the data points, whereas
contextual anomalies stand for the cases where an identical datum can be consid-
ered as normal in one context in spite of being anomaly in another context. The
collective anomalies represent a category in which a set of consecutive instances of
data are considered anomalous although none of them are abnormal individually.
The majority of the outliers in this study fall into the category of point anomalies.
There are a few cases where collective anomalies were observed in the data set but
they are not considered in this study since investigation of collective anomalies fall
outside the scope of this thesis.
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3.4 Types of Outlier Detection Methods Based on Data La-
bels

Depending on the availability and the extent of data labels, the anomaly (outlier)
detection methods usually operate in one of the three modes, namely supervised,
semi-supervised, and unsupervised [40]. In supervised mode there is usually a set
of training data where all of the normal and anomalous data points are labeled
by an expert. The goal of supervised methods is to find a predictive model using
the training data that classifies the unseen data points in the test data. In this
regard, one of the challenges is the process of labeling in which there might be
human faults. A solution for this challenge can be employment of different experts
to reduce the false labeling. Other than that, power of the model in predicting
test data labels collapses if the training data set does not cover all the possible
combinations of anomaly occurrences. However, this can be somehow addressed
by artificial injection of anomalies in training phase. The semi-supervised mode
similarly constitutes training and test phases whereas in training phase only the
normal data points will be labeled so that in test phase everything that differs from
the normal class will be considered as anomalies. In detail, the training phase in
semi-supervised mode tries to find a model that describes the normal behavior which
will be used as ground truth in test phase. Lastly, the unsupervised mode stands
for the cases where there is no training data. In this case the assumption is that
the anomalous values occur rarely in the test data. The weakness of unsupervised
methods is therefore the cases where the mentioned assumption is violated that
often leads to high false alarm rate [40].
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4. OUTLIER DETECTION METHODS

In this section the four studied outlier detection techniques are described in detail.
The four techniques are namely (1) ARIMA based approach, (2) moving MAD, (3)
conventional Rosner statistic, and (4) windowed Rosner statistic. Please note that
in this thesis "ARIMA approach" and "ARIMA technique" both refer to "ARIMA
based approach".

It should be emphasized here that none of the studied methods take the time domain
features of weight measurements into account. In other words, they do not differ-
entiate if two consecutive points are apart with hours of time difference or months
of time difference. Therefore, measurement time does not play any role in outlier
detection process.

4.1 ARIMA Approach

A non-seasonal time series named Xt follows an ARIMA process of order (p, d, q)

if the dth difference of the Xt can be considered as an ARMA (p, q) process. The
whole ARIMA model is represented in equation 4.1 where autoregressive part θp
and moving average φq are polynomials of order p and q, respectively. B represents
the backward shift operator, and d shows the order of differencing as well. Here
autoregressive (AR) term suggests that any value of a variable X at time point t can
be explained by p previous values of X at time points t−p, t−p+1, ..., t−1. Moving
average (MA) part of the model denotes that the forecast error at time instant t
can be explained by q past forecast errors at time points t − q, t − q + 1, ..., t − 1

[56, 57, 14].

θp(B)(1−B)dXt = φq(B)ωt (4.1)

Now a general representation of ARIMA models called Seasonal Autoregressive In-
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tegrated Moving Average model is shown in equation 4.2 which is the basis for
detection of outliers based on ARIMA approach in this study.

ΘP (Bs)θp(1−Bs)D(1−B)dXt = ΦQ(Bs)φq(B)ωt (4.2)

ΘP , θp, ΦQ , and φq are polynomials of order P , p, Q, and q, respectively. Here
seasonal autoregressive polynomial ΘP , seasonal moving average polynomial ΦQ as
well as D times seasonal differencing were added to the model to take seasonal
components of the time series into account. In addition, the variable s defines the
number of time points until the pattern repeats again (or seasonality period). In
general, seasonality refers to repeating patterns of time series such as diurnal, weekly,
monthly, and annual periods. A seasonal ARIMA model employs differencing at lags
equal to the periodicity of the time series in order to eliminate the additive effects
of seasonal components. The above-mentioned model will be considered stationary
if D = d = 0 and roots of the polynomials on the left hand side of equation 4.2 are
all out of unit circle [58]. Stationarity means having constant statistical properties
such as mean, variance, and autocorrelation over time.

There can be four types of outliers depending on the definition introduced in [58].
A level shift outlier (LS), an innovational outlier (IO), an additive outlier (AO), and
a temporary change (TC) are of those four types of outliers which can be detected
within the time series. Now, suppose that the series Xt is an n point time series in
which there arem outlier points. For the sake of simplicity it was assumed that Xt is
nonseasonal, hence the corresponding ARIMA model representing it is as equation
4.3.

Xt =
θ(B)

α(B)φ(B)
at , t = 1, ..., n (4.3)

θ(B), and φ(B) are polynomials with all roots out of the unit circle expressing
the autoregressive and moving average components of the model, respectively. In
contrast, α(B) is a polynomial with all roots on the unit circle denoting d times dif-
ferencing in case the time series is non-stationary. Moreover, the term at represents
the forecast error.

To consider the influence of outlying values in the model it is needed to expand the
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definition introduced in equation 4.3 in such a way that for every time point where a
potential outlying point might have occurred the effect of that outlier will be added
to model. If we assume that only one of the four types of outliers occurs at time
point t1 then the expanded model looks like equation 4.4.

X∗
t = Xt + ω

A(B)

G(B)H(B)
It(t1) (4.4)

Where Xt is the ARMA process described in equation 4.3, It(t1) = 1 if t = t1, and
It(t1) = 0 otherwise. This It(t1) is an indicator flag that turns to 1 for occurrence of
the outlier, ω stands for the magnitude of outlier, and A(B)

G(B)H(B)
denotes correspond-

ing dynamic of each outlier type [58]. These dynamics are illustrated in equation
4.5.

A(B)

G(B)H(B)
=



θ(B)
α(B)φ(B)

for innovative outlier (IO),
1

(1−δB)
for temporary change (TC),

1 for additive outlier (AO),
1

(1−B)
for level shift (LS).

(4.5)

As can be seen AO and LS are two boundary state of TC where the parameter δ
equals 1 for the LS and 0 for the AO, respectively. A TC produces an effect at time
point t with magnitude ω and it slowly decays by a pace specified by δ. The default
value for the parameter δ that controls the dampening effect is 0.7 although analyst
can define it accordingly. To explain more about the equivalent effects of outliers on
the time points, if the outlier is an AO then the effect is immediate like an impulse
however for LS there will be a step change that raises the level of succeeding time
points. It should be noted that the effect of AO, LS, and TC are all independent
of the model while in case of an IO it depends on the stationarity, seasonality, and
parameters of the time series model [58].

Now, a generalized version of the model introduced in equation 4.4 is expressed in
equation 4.6 for a time series of length n in which there are m outliers. The It(tj)
flag turns to 1 in case there is an outlying effect at time point tj with the dynamic
Lj corresponding to one of the four outlier types declared in equation 4.5.
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X∗
t =

m∑
j=1

ωjLj(B)It(tj) +
θ(B)

α(B)φ(B)
at (4.6)

After explaining the mathematical concepts of ARIMA outlier detection technique,
it is time to describe its iterative outlier detection process. Detection procedure can
be divided into three repeating steps as follows [14, 58, 59],

Step I

First the algorithm computes the initial model parameters based on the maximum
likelihood (ML) or minimize conditional some of squares (CSS) defined within the
ARIMA parameter selection. Afterward, it calculates four different τ -statistics cor-
responding to four types of outliers for every point of the time series. Now the
algorithm chooses the biggest absolute value of each time point τ -statistic as a dom-
inant outlying effect. Then it compares the dominant τ -statistic with the critical
value (C) which was defined for the function in advance in order to decide whether
the time point can be considered as an anomaly or it is a valid data point that must
be kept unchanged.

Step II

After finding a set of m potential outlying points, the algorithm computes new
τ -statistics for these data points based on outlier effects and estimated residuals
obtained from the fitted ARIMA model. In order to ascertain that valid data points
are not included in the set of outliers, the algorithm considers a condition by which
every outlying point with τ -statistics smaller than C in absolute value is removed
from the set of outliers. Then, again new τ -statistics will be computed based on
this new set of outliers and the above-mentioned condition is tested iteratively until
the point, no τ -statistics smaller than C is found within the set of outlying data
points. This repeating procedure is done as many as the maxit.iloop value which is
defined inside the options of the algorithm and is called the "maximum inner loop
iteration". The default value of maxit.iloop equals 4 which means the algorithm
repeatedly computes the new τ -statistics four times. At this point, the identified
outliers will be removed from the time series.
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Step III

The output of the algorithm is ready unless the user wants to repeat the two above-
mentioned steps for the time series obtained after removing the detected outliers in
previous step. This is allowed by increasing the value of an option named maxit

to higher than the default value which is 1. If the value of maxit, that is called
the "maximum outer loop iteration", is set to values bigger than 1, then a new
ARIMA model will be fitted to the time series based on Maximum Likelihood or
Conditional Some of Squares criteria. In this case the algorithm repeats the two
above-mentioned steps until reaching the maxit value.

4.2 Moving Median Absolute Deviation Scale Estimate

Detection of outliers using median absolute deviation (MAD) is much simpler from
both computation and implementation point of views compared to ARIMA ap-
proach. This method implements a moving window of length k centered at each
time point in which two principle values are calculated. First value is median of
the data points and second one is the MAD scale estimate. Based on equations
4.7 and 4.8 the MAD scale estimate is a measure of deviation of data points from
median of the corresponding window. Every data point on which the window is
centered will be compared to the corresponding MAD scale estimate. If there is an
absolute deviation of bigger than MAD scale estimate, then the data point is served
as an outlier and should be treated accordingly [60, 61, 62]. Equations 4.7 and 4.8
explicitly illustrates how MAD scale estimate is measured [14, 63].

MEDj = median(Xj) (4.7)

MAD scale estimate = θm ×median(abs(Xj −MEDj)) (4.8)

Here Xj is a window of length k centered at the data point j which is tested for
outlier decision. MEDj represents the median of the window while variable θm
controls the sensitivity of the algorithm. The bigger the θm the less sensitive the
algorithm will be. It should be noted that for the k−1

2
time points at the beginning

and the end of the time series the MAD scale estimate cannot be computed using a
centered window. In this case there are few alternatives such as leaving these data
points unchanged, appending the series from both ends as long as k−1

2
data points,



4.3. Conventional Rosner Statistic 17

or using right-sided and left-sided windows for the beginning and the end of time
series, respectively. In this study the time series are appended from both ends to
facilitate centered window implementation.

The two variables, window length k and threshold value θm, are the user defined con-
trolling parameters of the moving MAD algorithm. By changing these two variables,
sensitivity and specificity of the moving MAD can be adjusted accordingly.

4.3 Conventional Rosner Statistic

Conventional Rosner statistic is an outlier detection procedure applicable for those
time series that are normally distributed after exclusion of c outlying points. This
is the reason that allows no more than c = [ n

10
] outlying data points for a time series

of length n. Following steps must be taken to achieve the result of Rosner statistic
[50].

Step I

To initialize the algorithm, first the c extreme studentized deviate (ESD statistics)
values must be calculated according to equation 4.9,

ESD statistic = maxi=1,...,n
|Xi − X̄|

s
. (4.9)

where X̄ and s are the mean and standard deviation of the series, respectively. The
main idea of conventional Rosner statistic is that the first ESD statistics (or the
most extreme deviation) corresponding to Xn (that is the most outlying data point)
is computed based on the full sample size. Then, for estimation of the second ESD,
first the most outlying point (Xn) must be removed from the time series and this
procedure needs to be continued until reaching the cth outlying data point with its
equivalent ESD. Therefore, at the end of this step a series of ESDs are calculated
based on the sample size of n, n− 1, n− 2, ..., n− c+ 1, consecutively [14, 63, 64].

Step II
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In order to determine which one of the c potential anomalies are detected correctly,
their equivalent ESD statistics are successively compared with corresponding critical
values of ESD statistics (as shown in Appendix A) in each sample size of n, n −
1, ..., n− c+ 1 [65]. In detail, the decision is made based on the following procedure,
if ESD of the cth outlying point (the least extreme studentized statistic) is bigger
than corresponding cth critical value then all of the suspected c data points are
outliers. Otherwise, this point is eliminated from the set of outliers and similarly
the second least extreme outlying point is tested if it is greater than its equivalent
critical value. This procedure continues until all outlying data points with ESDs
bigger than their equivalent critical values are removed or all of the c potential
outlying points were tested [50].

The diagnostic performance of conventional Rosner statistic can be controlled by
setting the value of α (probability of Type-I error) or the significance level of the
test which is a value between 0 and 1. Accordingly, critical values of ESD statis-
tics change when different values of α are set. In other words, by increasing the
probability of Type-I error, the critical values of ESD statistics decrease allowing
more freedom to classify a point into the category of outliers. In fact, the role of
α is controlling the probability of wrong rejections of the null hypothesis. Here the
null hypothesis (H0) proposes that there are no outliers in the time series whilst
the alternative hypothesis (H1) suggests existence of up to c outlying points. By
setting bigger values of α, probability of wrong rejections of null hypothesis rises and
correspondingly causes reduction of specificity. On the other hand, increasing the
probability of Type-I error (α) coincides with decreasing the probability of Type-II
error (β) that is defined as not rejecting the null hypothesis when in fact the al-
ternative hypothesis is true. The more the Type-II error probability is shrunk, the
more sensitive the algorithm becomes.

4.4 Windowed Rosner Statistic

Windowed Rosner statistic was implemented after observing the weak points of the
conventional Rosner statistic. Windowed Rosner statistic operates in such a way
that the time series is first divided into 50 percent overlapping windows of length L.
Here L is a user defined variable and it has to be an even number. Then the ESD
statistics are computed within each window in a similar manner described in the
two-step procedure of conventional Rosner statistic (Section 4.3). A point is labeled
as an outlier if and only if it is found to be outlier in two adjacent overlapping
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windows. Note that for the first and last 0.5L points at the beginning and ending
of the time series there are not overlapping windows. In this case the classification
decision is done by looking into the only window comprising the aforementioned
points.

Diagnostic performance of windowed Rosner statistic can be controlled using both
window length (L) and Type-I error rate (α).
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5. MATERIALS

This study is based on a data set that includes weight time series of 10,000 randomly
selected anonymous Withings (Withings, Paris, France) weight scale users from all
over the world. All of the subjects whose data were used in this study gave their
consent to allow use of their anonymous data for research purposes at the time of
setting up their user accounts as part of approving the Terms and Conditions (see
[66]). All the data processed in this study were anonymized and identification of an
individual user was not possible. No experimental procedures or intervention of any
kind was provided for the users. In following section the detailed description of the
underlying data set can be found.

5.1 Description of Underlying Data Set

The data set contains 5,534,898 measurements altogether where anonymous With-
ings weight scale users from 109 countries are included. A few of the basic demo-
graphics of the data set are shown in Table 5.1.

The distribution of the measurement times within the day is the first statistical
parameter that is sketched in Figure 5.1. The daily measurement times are im-
portant in the sense that people usually have lower weight values in the morning
compared to the evening [16]. In other words, for comparing subsequent weight

Table 5.1 Demographics of the data set. The values are expressed as mean and standard
deviation (in parenthesis) or percentage.

Population Age BMI Males Number of Measurement
size (%) measurements period in days

10, 000 44.0 (11.1) 26.8 (5.3) 65.9 553.5 (474.1) 1094.4 (434.9)
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Figure 5.1 Distribution of measurement times within day.

values, self-weighers and health coaches should take the time of each measurement
into account, as well. Here, the studied population tended to weigh themselves more
in the morning between 5 to 10 AM as clearly shown in Figure 5.1. As mentioned
earlier the highest bars belong to morning hours in comparison with afternoon and
evening hours.

Yet another interesting parameter in terms of self-weighing is the frequency of self-
monitoring. Figure 5.2 shows how often the weight scale users tended to record their
weights. The most frequent time intervals between consecutive measurements are 12
to 24 and 24 to 36 hours. That means, most of the users repeated their recordings
between 12 to 36 hours after their previous recordings.

Figure 5.3 shows the average weekly measurement activity of all of the 10,000 sub-
jects in the data set. The following procedure was done to obtain the weekly mea-
surement activities of each subject. Firstly, for each subject the number of weekdays
and weekend days in which there were at least one weight measurement were counted.
Next, all of the weekdays and weekend days between the first and the last measure-
ment were counted. Then, the percentage of each measured weekdays and weekend
days with respect to the total number of the equivalent weekdays and weekend days
in the measurement period of each subject were calculated. Finally, the average
percentage of measurement activity in each day of the week was computed for all of
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Figure 5.2 Frequency of self-weighing within different time intervals. In the figure the
letters m, h, and d are abbreviations of minutes, hours, and days, respectively. The bars are
labeled with the total number of weight measurements corresponding to each time difference
within the whole data set.
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Figure 5.3 Average percentages of weekly measurement activity over the whole data set.

the 10,000 subjects. According to Figure 5.3, users weighed themselves more often
during weekdays than weekend days.
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Figure 5.4 Average percentages of monthly measurement activity over the whole data set.

With a similar approach to weekly measurement activity, the monthly measure-
ment activities of the studied population can be inspected. They are calculated
by counting the number of unique days in each month, in which there were weight
measurements, divided by the total number of days in the corresponding month.
Averaging the subject-wise monthly measurement activities over the whole data set,
Figure 5.4 was resulted.

The subjects’ adherence to self-weighing clearly decreased during July and August as
well as November and December. The reason for such a decrement may originate in
the occurrence of summer vacations in northern hemisphere countries and Christmas
holidays in the aforementioned months, respectively.

5.2 Test Sets

Examination of the four outlier detection methods was done using two different test
sets. The first one comprised simulated outliers added to 20 clean real weight time
series and the second one included 20 visually annotated real weight time series that
originally contained outliers. The reason for using simulated outliers was to test the
performance of outlier detection techniques under different circumstances. Testing
different controlling parameters of each method was another aim of employment of
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simulated outliers. After finding the strength, weaknesses, and best controlling pa-
rameters of each method, the performance of the algorithms were explored separately
over both simulated and real test sets.

5.2.1 Simulated Test Set

A subset of randomly selected 20 clean (i.e. no visually observable outliers in the time
series) weight time series, whose length varied between 300 and 350 measurements,
was chosen as simulated test set. Any time series containing possible anomalies were
excluded from this subset and replaced with another randomly selected time series.
The total number of weight measurements included in this subset is 6494.

20 clean weight time series were randomly selected and intentionally corrupted with
normally distributed outliers. That is, the original data points were replaced with
simulated outliers. Mean value of half of the outliers was equal to mean value of
original weight time series increased by 5 kg. The mean value of the other half was
equal to mean value of the original weight time series minus 10 kg. The standard
deviation of the outliers was defined equal to the median standard deviation of the
time series included in the selected 20 clean time series. The goal was to simulate
outliers due to occasional interference by weighing two individuals different from the
target person. The total number of outliers simulated in this test set is 294 that
corresponds to 4.5 percent of the data points.

5.2.2 Real Test Set

A subset of 20 time series originally containing outliers were randomly selected
among a set of time series suspected to contain outliers. In order to identify the
subjects whose weight time series were probably contaminated by outliers, the whole
10,000 weight time series were fed into moving MAD technique. Here moving MAD
was chosen as the benchmark of outlier detection since it showed quite acceptable
performance in previous studies [14]. Then among the whole data set, those time
series that at least one of their measurements were detected as outlier were pres-
elected and filtered out. These preselected time series formed a group of subjects
whose measurements were expected to contain outlying values. In next step, for
final selection of 20 time series out of the aforementioned preselected group, random
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selection and visual inspection were employed. That is, a time series was first ran-
domly selected and then visually assessed if it contained at least one outlier. If the
randomly selected time series was confirmed of having outliers, then it was qualified
to be placed in the real test set. Outliers were then annotated by the author of the
thesis.

For the above-mentioned preselection step, moving MAD controlling parameters
were chosen in such as way that the algorithm became highly sensitive. Since there
was a visual inspection phase after the preselcetion, it was preferred to decrease
the chance of missing contaminated time series. Altogether 169 time series were
preselected before random picking and visual inspection phases. The number of
weight measurements included in the real test set altogether was 14112 in which 68
points were visually identified to be outliers.

5.3 Data Analysis

The data analysis and implementation of the algorithms were done using R version
3.2.1, on a 64-bit Intel Core i7 3.60 GHz processor, with 16 GB RAM.

The ARIMA algorithm was deployed from "tsoutliers" and "forecast" packages
[67, 68, 69]. Besides, conventional Rosner statistic algorithm was exploited from
the "EnvStats" package [70]. In addition, moving MAD was a modified versions of
Hampel filter that has been extensively used in digital filtering [60, 61, 62]. Win-
dowed Rosner statistic was also developed based on the conventional Rosner statistic.
Moving MAD and windowed Rosner statistic algorithms were implemented by the
author since they were not available in any R packages.
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6. RESULTS AND DISCUSSION

After implementation of the four outlier detection approaches explained in previous
chapter the results of the outlier detection processes are shown and discussed in
current chapter. There are three main sections in this chapter discussing the per-
formance of the implemented techniques firstly over simulated test set and secondly
over real test set. The last section comprises comparison of the observed weaknesses
and strengths of the studied techniques.

Diagnostic performance of each technique with respect to different cut-off (thresh-
old) values of a controlling parameter is investigated by looking into corresponding
receiver operating characteristic (ROC) curves at the beginning of the two first
sections of this chapter. Basically, the accuracy of a method in discrimination of
diseased cases (here outliers) from normal cases is evaluated using ROC curve anal-
ysis [71, 72]. In a ROC curve the true positive rate (TPR, i.e. the rate of correct
detection of diseased cases) is plotted as a function of the false positive rate (FPR,
i.e. the proportion of normal cases that are wrongly detected as outliers) for differ-
ent cut-off values of a controlling parameter. Each point on the ROC curve denotes
a pair of TPR and FPR values corresponding to a particular decision threshold. It
is worth mentioning that TPR and sensitivity are equivalent by definition and can
be used interchangeably. While, FPR is equivalent to 1−specificity (1 minus speci-
ficity), meaning that the lower the FPR, the more powerful a method is in terms of
finding normal cases.

Principally the points on ROC curves that are closer to the point (FPR=0,TPR=1)
represent the best cut-off values in terms of diagnostic performance [73]. The best
cut-off values basically provide the highest sensitivity and specificity rates regarding
a controlling parameter.

Furthermore, in ROC analysis, the variable named area under the ROC curve (AUC)
is estimated in order to compare the diagnostic performance of two or more methods
in a test. AUC is a measure of how well a technique distinguishes between diseased
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and normal cases with respect to different values of a controlling parameter [74].

6.1 Results of Simulated Test Set

ROC curves of each of the examined techniques corresponding to simulated test
set can be observed in Figure 6.1. The best parameters showing the highest aver-
age statistical sensitivity and specificity of each algorithm were identified based on
ROC curves. By definition the points on ROC curves that are closer to the point
(FPR=0,TPR=1) represent the best controlling parameters in terms of classification
[73]. These parameters are depicted in Table 6.1. The best average statistical per-
formance of each technique in terms of sensitivity and specificity using the identified
parameters can be seen in Table 6.2.

Average processing time of the studied techniques for each time series in simulated
test set can be explored in Table 6.3. Accordingly, the differences in terms of com-
putational complexity are comprehended.

The ROC curves in Figure 6.1(a) and Figure 6.1(b) demonstrate the evaluation
of different critical values (C) and Type-I error rate values (α) regarding ARIMA
approach and conventional Rosner statistic, correspondingly. The curves depicted in
Figure 6.1(c) and Figure 6.1(d) reveal the performance of moving MAD regarding the
two controlling variables, threshold value (θm) and window length (k), sequentially.
Similarly, Figure 6.1(e) and Figure 6.1(f) illustrates the performance of windowed
Rosner statistic concerning Type-I error rate value (α) and window length (L),
respectively.

In order to recognize the best choices of θm and k for moving MAD, first the window
length (k) was arbitrarily chosen to be 30, while different threshold values (θm) were
tested (Figure 6.1(c)). Thereafter, by choosing and keeping the best recognized
threshold value unchanged and varying the window length, the best value of k was
obtained (Figure 6.1(d)). In the same way, the best choices of Type-I error rate
values (α) and window length (L) for windowed Rosner statistic were determined.
First the window length was arbitrarily chosen to be 50 while different values of
Type-I error rate were examined (Figure 6.1(e)). Then by choosing the best value
of Type-I error rate and keeping it unchanged, different window length values were
evaluated (Figure 6.1(f)).
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(a) ARIMA with respect to critical value (C)
(AUC=0.973)
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(b) conventional Rosner statistic with respect
to Type-I error rate (α) (AUC=0.860)
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(c) moving MAD with respect to threshold
value (θm) (AUC=0.964)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 50
30
40
20
10

(d) moving MAD with respect to window
length (k) (AUC=0.962)
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(e) windowed Rosner statistic with respect to
Type-I error rate value (α) (AUC=0.963)
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(f) windowed Rosner statistic with respect to
window length (L) (AUC=0.957)

Figure 6.1 ROC curves of the simulated test set corresponding to (a) ARIMA ap-
proach with respect to critical value (C), (b) conventional Rosner statistic with respect
to Type-I error rate (α), (c) moving MAD with respect to threshold value (θm), (d)
moving MAD with respect to window length (k), (e) windowed Rosner statistic with re-
spect to Type-I error rate (α), and (f) windowed Rosner statistic with respect to win-
dow length (L). For ARIMA, five critical values C = {6, 5, 4, 3, 2.5} were tested. For
moving MAD five threshold values θm = {6, 5, 4, 3, 2} as well as five window length
k = {10, 20, 30, 40, 50} were examined. Conventional Rosner statistic was assessed by five
Type-I error rate values α = {0.05, 0.1, 0.5, 0.9, 0.99}. Windowed Rosner statistic was also
tested by five Type-I error rate values α = {0.05, 0.1, 0.5, 0.9, 0.99} as well as five window
length L = {20, 30, 40, 50, 60}.
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Table 6.1 The best controlling parameters of the implemented algorithms regarding sim-
ulated test set.

Variable Value
ARIMA critical value (C) 2.5

moving MAD threshold value (θm) 2
moving MAD window length (k) 10

conventional Rosner Type-I error rate (α) 0.99
windowed Rosner Type-I error rate (α) 0.99
windowed Rosner window length (L) 60

Table 6.2 The best statistical performance of implemented outlier detection techniques in
simulated test set.

Methods Average Sensitivity Average Specificity
ARIMA 0.952 0.967

moving MAD 0.966 0.951
conventional Rosner statistic 0.728 0.986
windowed Rosner statistic 0.932 0.987

Table 6.3 Average processing time of implemented outlier detection techniques for each
time series in simulated test set.

Methods time (s)
ARIMA 65.411

moving MAD 0.014
conventional Rosner statistic 0.003
windowed Rosner statistic 0.019

6.1.1 Results of Simulated Test Set: ARIMA Technique

The ARIMA outlier detection method was examined only by Critical value (C) as a
controlling parameter. The ARIMA technique can also be controlled by maximum
number of inner loop and outer loop iterations explained in Chapter 4. However,
increasing the number of iterations dramatically increases the computation time.
Indeed, in all stages of the current study the two above-mentioned variables were
set to their default values as in "tsoutliers" package [67]. The default values are as
follows, inner loop iteration (maxit.iloop = 4) and outer loop iteration (maxit = 1).



6.1. Results of Simulated Test Set 30

4
5

5
5

6
5

(a) original time series

w
e
ig

h
t 
(k

g
)

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014 Jul 2014 Oct 2014 Jan 2015 Apr 2015

4
5

5
5

6
5

(b) original time seris along with simulated outliers

w
e
ig

h
t 
(k

g
)

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014 Jul 2014 Oct 2014 Jan 2015 Apr 2015

4
5

5
5

6
5

(c) output of ARIMA based technique

time

w
e
ig

h
t 
(k

g
)

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014 Jul 2014 Oct 2014 Jan 2015 Apr 2015

Figure 6.2 (a) original time series before adding simulated outliers, (b) original time
series along with simulated outliers, represented by red dots, and (c) output of ARIMA
technique (C = 2.5) where green dots represent the points that the algorithm identified as
outliers.

The best classification performance was obtained with C = 2.5 as it led to closest
point to (FPR=0,TPR=1) coordinate on ROC graph (Figure 6.1(a)). The average
sensitivity and specificity values corresponding to the selected critical value were
equal to 0.952 and 0.967, respectively.

Strengths

The ARIMA outlier detection technique performed quite well over simulated test
set. The reason for such a strength is that the detection of outliers is done by
taking the sequential aspects of weight time series into account. In other words,
by iteratively fitting Autoregressive Integrated Moving Average models to each time
series, most of the artificially added outliers were spotted. Figure 6.2 depicts one
of the sample time series where artificial (simulated) outliers were added to a clean
time series. The result of ARIMA technique can be observed in Figure 6.2(c) where
almost all of the outliers were detected correctly.
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Figure 6.3 (a) original time series before adding simulated outliers, (b) original time
series along with simulated outliers, represented by red dots, and (c) output of ARIMA
technique (C = 2.5) where green dots represent the points that the algorithm identified as
outliers.

One of the most important assets of ARIMA outlier detection technique is the abil-
ity to spot the outlying values occurring immediately before and after long gaps of
measurements. Figure 6.3 clearly shows how the points lying on the edges of mea-
surement gaps were accurately identified. The simulated outlier which was placed
at the beginning of the second measurement gap (about June 2013 on time-axis)
looks almost in the same weight-axis level as the data points after the gap. This is
one of the most challenging cases where detection of the outlying value can only be
done by taking the dynamics of weight time series into consideration.

Weaknesses

Considering the weight time series shown in Figure 6.2(c) and Figure 6.3(c), there
are a few points which were wrongly detected as outliers. The average specificity of
the algorithm is roughly 97 percent, which means false positive rate of the algorithm
should be improved (Table 6.2).
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Another weakness of the ARIMA technique is being computationally expensive.
For each weight time series in simulated test set the average processing time of the
ARIMA technique was approximately 69.411 seconds using C = 2.5 (Table 6.3).
It is suspected that, the amount of time this algorithm needs for identification of
outliers may go beyond hours in case the time series length falls in the range of
thousand points. Complexity of the dynamics of time series may also affect the
computation time of the algorithm. That means, the more fluctuation in weight
values the heavier the computation of the algorithm might be.

6.1.2 Results of Simulated Test Set: Moving MAD

Moving Median Absolute Deviation (MAD) scale estimate is the second method
implemented in this study. It involves two controlling parameters named θm and k
that allow finding the optimal statistical performance. Based on Figure 6.1(c) and
Figure 6.1(d) the best threshold value (θm) was equal to 2 and the best window length
(k) was equal to 10. Accordingly, the average values of sensitivity and specificity
were 0.966 and 0.951, sequentially (Table 6.2).

Strengths

The results of this technique for the simulated test set showed quite reasonable
average sensitivity. Figure 6.4 shows how the moving MAD algorithm performed in
one of the simulated cases. All of the red dots in Figure 6.4(b) were replaced by
green dots in Figure 6.4(c) meaning that they were all accurately detected.

The low computation time of moving MAD is its another asset. The average compu-
tation time of each weight time series using the best identified controlling parameters
was estimated to be 0.014 seconds (Table 6.3).

Weaknesses

According to Figure 6.4, moving MAD false positive rate has to be improved since
there are quite a number of true weight measurements wrongly detected as outliers.
According to Figure 6.1(c), by decreasing the sensitivity of the algorithm the false
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Figure 6.4 (a) original time series before inserting simulated outliers, (b) original time
series after inserting simulated outliers, represented by red dots, and (c) output of moving
MAD (θm = 2 and k = 10) where green dots represent the points that the algorithm detected
as outliers.

positive rate can be decreased equivalently although the power of detecting true
outliers drops.

Another imperfection of the moving MAD can be noted in Figure 6.5(c) where the
outliers in the neighborhood of measurement gaps were remained undetected. This
was caused by occurrence of a "level shift" immediately after the measurement gap
started around June 2013. This has eventually led to reduction of sensitivity of
the algorithm. Except the points on the edges of measurement gaps, the rest of
outliers were reasonably detected. That means, the presence of measurement gaps
may become less destructive if the algorithm can be equipped with a new feature
by which the temporal variations of the weight are also considered in the process of
outlier detection.
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Figure 6.5 (a) original time series before inserting simulated outliers, (b) original time
series after inserting simulated outliers, represented by red dots, and (c) output of moving
MAD (θm = 2 and k = 10) where green dots represent the points that the algorithm detected
as outliers.

6.1.3 Results of Simulated Test Set: Conventional Rosner
Statistic

Conventional Rosner statistic is the third method implemented in this study. This
method involves only one controlling variable named Type-I error rate (α). It works
in such a way that by increasing the Type-I error rate the algorithm has more free-
dom to label a point as an outlier. In other words, increasing the Type-I error rate
leads to higher sensitivity whereas decreasing it causes higher specificity. Conse-
quently, the selected Type-I error rate value was equal 0.99 that resulted in 0.728

and 0.986 average sensitivity and average specificity levels.

Strengths

Conventional Rosner statistic showed significantly high average specificity that de-
notes considerably low number of wrongly detected outliers. According to the ROC
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Figure 6.6 (a) original time series before adding simulated outliers, (b) original time
series along with simulated outliers, represented by red dots, and (c) output of conventional
Rosner statistic (α = 0.99) where green dots are the detected outliers.

curve shown in Figure 6.1(b), the best statistical performance of the algorithm was
obtained by α = 0.99. Based on Table 6.2, the average specificity of the conventional
Rosner statistic in the best case was equal to 0.99 that is almost ideal. In Figure
6.6 the performance of the algorithm can be inspected where all of the outliers were
picked out correctly without inaccurate detection of even any single point.

The computation time of the conventional Rosner statistic was another strong point
of this algorithm. As shown in Table 6.3, taking only 0.003 seconds on average for
each weight time series announces an extremely fast algorithm.

Weaknesses

The most important downside of the Rosner statistic is its low power in detection
of outliers in case the dynamics of the weight time series increases. Having a time
series that follows an upward trend, containing two long gaps of measurements
like what has been shown in Figure 6.7, has led to significantly low true positive
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Figure 6.7 (a) original time series before adding simulated outliers, (b) original time
series along with simulated outliers, represented by red dots, and (c) output of conventional
Rosner statistic (α = 0.99) where green dots are the detected outliers.

rate. In the mentioned figure only one of the simulated outliers was recognized
correctly. This suggest that conventional Rosner statistic would not be the best
choice for dynamically variable weight time series such as the case shown in Figure
6.7. The reason for such a degraded performance may originate in the violation of the
Rosner statistic assumption implying on normality of the time series distribution.
To investigate the issue in more detail, histograms of the clean weight time series
used in Figure 6.6(a) and Figure 6.7(a) were sketched in Figure 6.8(a) and Figure
6.8(b), respectively. Although none of the histograms show normal distribution,
there is a big difference between these two histograms. That is, the above histogram
contains only one part despite the bottom one that comprises two separate parts.
That might be the justification of Rosner statistic inability in finding outlying values
for the case depicted in Figure 6.7 compared with the one in Figure 6.6.
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Figure 6.8 (a) histogram of the time series shown in Figure 6.6(a), and (b) histogram
of the time series shown in Figure 6.7(a).

6.1.4 Results of Simulated Test Set: Windowed Rosner Statis-
tic

The idea of implementing windowed Rosner statistic came into the consideration
after observing the weak points of the conventional Rosner statistic. Based on the
ROC curve depicted in Figure 6.1(e), the Type-I error rate (α) that gives the highest
statistical performance was equal to 0.99. Besides, the algorithm performance is also
affected by another controlling variable named window length (L). By keeping α =

0.99 and testing different window length values, the best statistical performance was
obtained by L = 60. The average sensitivity and specificity values obtained by the
aforementioned controlling parameters were equal to 0.932 and 0.987, respectively.
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Figure 6.9 (a) original time series before inserting simulated outliers, (b) original time
series after inserting simulated outliers, represented by red dots, and (c) output of windowed
Rosner statistic (α = 0.99 and L = 60) where green dots represent the points that the
algorithm identified as outliers.

The ROC curve in Figure 6.1(f) shows how different values of L affected the sta-
tistical performance of windowed Rosner statistic. In this figure it is quite clear
that lengthening the window has led to performance improvement until reaching
the peak performance. It should be mentioned that increasing the window length
to values beyond L = 60 has resulted in performance deterioration although they
are not included in Figure 6.1(f) due to visual complexity. In following paragraphs
the strength and weaknesses of the windowed Rosner statistic using α = 0.99 and
L = 60 are discussed.

Strengths

Considering the output of windowed Rosner statistic, in Figure 6.9(c) the true pos-
itive rate of the algorithm seems quite acceptable since there is no outlying point
that remained undetected. Based on the Table 6.2 the average sensitivity of the al-
gorithm equals 93 percent. Moreover, the average specificity of 99 percent suggests
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Figure 6.10 (a) original time series before inserting simulated outliers, (b) original
time series after inserting simulated outliers, represented by red dots, and (c) output of
windowed Rosner statistic (α = 0.99 and L = 60) where green dots represent the points
that the algorithm identified as outliers.

a moderately low rate of false positive detections although it can still be improved.

The low processing time of windowed Rosner statistic is on the other hand another
strong point of this algorithm. According to Table 6.3 the average duration of
processing for each time series in the simulated test set was about 0.019 seconds.
Therefore, windowed Rosner statistic can also be counted as a fast outlier detection
algorithm.

Weaknesses

By looking into Figure 6.10, it is comprehensible that the majority of outliers were
identified by the algorithm except the points lying on the edges of measurement gaps.
Presence of "level shifts" is the reason for inability of windowed Rosner statistic in
detection of the remained outliers. That is, when there is an outlier right before
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Figure 6.11 (a) original time series before adding simulated outliers, (b) original time
series along with simulated outliers, represented by red dots, and (c) output of windowed
Rosner statistic (α = 0.99 and L = 30) where green dots represent the points that the
algorithm identified as outliers.

the measurement gap (started on June 2013) followed by a level shift, the detection
power of windowed Rosner statistic deteriorates.

One solution for the above-mentioned challenge can be shortening the window length
L in case of encountering gaps of measurements followed by level shifts. In other
words, specifically for the time series similar to the one depicted in Figure 6.10,
shortening the window length would decrease the dominance of level-shifted points
in each window. Having fewer level-shifted points in each window can lead to better
performance at the end. This was proved in Figure 6.11(c) where the time series
was tested using L = 30. It is quite clear that shorter window length showed more
power in detection of outliers on the edges of measurement gaps comparing to the
output shown in Figure 6.10(c) where the window length (L) is 60.
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6.2 Results of Real Test Set

In this section the results of the outlier detection methods related to the real test
set are depicted and discussed. The real test set included the weight time series that
originally contain outliers. The suspected outlying values in each time series of this
test set were annotated by visual inspection. The criteria for labeling a point as
an outlier was the amount of weight difference in comparison with adjacent weight
measurements considering their time difference. At the end, the rate of true and
false detections were calculated to show the goodness of classification.

ROC curves of each of the examined techniques corresponding to real test set can be
observed in Figure 6.12. For ARIMA technique and conventional Rosner statistic,
critical value (C) and Type-I error rate (α) were the examined controlling variables
as shown in Figure 6.12(a) and Figure 6.12(b), respectively. For each of the two
techniques, moving MAD and windowed Rosner statistic, there are two ROC curves
because of having two controlling variables. For moving MAD, threshold value (θm)

and window length (k) and for windowed Rosner statistic, Type-I error rate (α) and
window length (L) are the controlling parameters, as illustrated in Figure 6.12(c)
to Figure 6.12(f). The best parameters showing the highest average statistical sen-
sitivity and specificity of each algorithm were then identified based on ROC curves.
By definition the best controlling parameters are the ones that fall closer to the
point (FPR=0,TPR=1) on the upper-left corner of the ROC curves. These param-
eters are depicted in Table 6.4. Accordingly, Table 6.5 shows the average statistical
performance of the implemented techniques in terms of sensitivity and specificity
related to the chosen controlling parameters.

Average processing time of the studied techniques for each time series in real test
set can be reviewed in Table 6.6. The efficiency of each technique in terms of
computation time related to real weight time series can be discussed accordingly.

Two sample weight time series of real test set were intentionally selected for further
investigation and explanation of the strengths and weaknesses of the implemented
methods. The first sample weight time series depicts a case where a subject seemed
to weigh an additional object of about 7 to 8 kilograms in a few of the time instants
(Figure 6.13(a)). By careful tracking of the time intervals between the measurements
it was found that those measurements cannot be the true weight values of the user.
Instead, they might be representing the weight of the subject plus a back back or
a pet. Indeed, these values were annotated as being suspected outliers and can
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Table 6.4 The best controlling parameters of the implemented algorithms regarding real
test set.

Variable Value
ARIMA critical value (C) 2.5

moving MAD threshold value (θm) 4
moving MAD window length (k) 20
Rosner Type-I error rate (α) 0.99

windowed Rosner Type-I error rate (α) 0.1
windowed Rosner window length (L) 60

Table 6.5 The best statistical performance of implemented outlier detection techniques in
real test set.

Methods Average Sensitivity Average Specificity
ARIMA 0.956 0.966

moving MAD 1.000 0.994
conventional Rosner statistic 0.838 0.992
windowed Rosner statistic 0.985 0.995

Table 6.6 Average processing time of implemented outlier detection techniques for each
time series in real test set.

Methods time (s)
ARIMA 5, 714.670

moving MAD 0.029
conventional Rosner statistic 0.004
windowed Rosner statistic 0.038

be spotted by red dots in Figure 6.13(b). The second selected sample weight time
series visualizes a case where there were a few weight measurements with more than
20 kilograms difference compared to the rest of measurements. Those values are
counted as obvious outliers that may introduce conditions in which someone other
than the main user had used the weight scale (Figure 6.14(a)). Those outliers were
annotated in Figure 6.14(b) with red dots.
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(a) ARIMA with respect to (C) critical values
(AUC=0.975)
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to (α) Type-I error rate values (AUC=0.917)
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(c) moving MAD with respect to (θm) thresh-
old values (AUC=0.998)
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(d) moving MAD with respect to (k) window
length values (AUC=0.978)
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(e) windowed Rosner statistic with respect to
(α) Type-I error rate values (AUC=0.991)
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(f) windowed Rosner statistic with respect to
(L) window length values (AUC=0.976)

Figure 6.12 ROC curves of the real test set corresponding to (a) ARIMA approach
with respect to critical value (C), (b) conventional Rosner statistic with respect to Type-I
error rate (α), (c) moving MAD with respect to threshold value (θm), (d) moving MAD
with respect to window length (k), (e) windowed Rosner statistic with respect to Type-I
error rate (α), and (f) windowed Rosner statistic with respect to window length (L). For
ARIMA, five critical values C = {6, 5, 4, 3, 2.5} were tested. For moving MAD five thresh-
old values θm = {6, 5, 4, 3, 2} as well as five window length k = {10, 20, 30, 40, 50} were
examined. conventional Rosner statistic was assessed by five Type-I error rate values α =
{0.05, 0.1, 0.5, 0.9, 0.99}. Windowed Rosner statistic was also tested by five Type-I error rate
values α = {0.05, 0.1, 0.5, 0.9, 0.99} as well as five window length L = {20, 30, 40, 50, 60}.
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6.2.1 Results of Real Test Set: ARIMA Technique

The best classification performance of ARIMA technique was observed by setting
the critical value (C) equal to 2.5 (Fig 6.12). The average values of sensitivity and
specificity corresponding to the chosen critical value were 0.956 and 0.966, respec-
tively. The following paragraphs explains the assessment of its performance over
real test set.

Strengths

The cases shown in Figure 6.13 and Figure 6.14, reveal the power of ARIMA algo-
rithm in identification of annotated outliers. Almost all of the red dots were replaced
by green dots which means the true positive rate of the algorithm was quite accept-
able. It should be noted that the controlling parameters chosen for ARIMA approach
made it extremely sensitive in this section. The power of ARIMA algorithm stems
in its ability in considering sequential aspects of the time series shown in Figure
6.13(a) that allowed this algorithm to properly find all the outlying values.

Weaknesses

One of the notable drawbacks of highly sensitive ARIMA approach is its elevated
false positive rate, as depicted in Figure 6.13(c). In real test set, ARIMA technique
wrongly marked 487 points as outliers among total number of 14112 points. In other
words, 3.45 percent of the non-outlying values were misclassified. The rate of false
positives can be reduced by lowering the sensitivity of the algorithm but that leads
to reduction of true positive rate.

Another weak point of the ARIMA approach is its low power in detecting the outliers
at the very beginning of the time series. This happened in three different real cases
where the outlying value remained undetected. One of the mentioned cases can be
observed in Figure 6.14(c) where the first point of the time series was annotated as
outlier although in the output that point was not detected by the algorithm.

Computation time of the ARIMA approach imposes another limitation for large
scale usage of this technique. According to Table 6.6, the amount of time spent
for cleaning the time series in real test set was on average 5, 714.670 seconds. The



6.2. Results of Real Test Set 45

0
2
0

6
0

(a) original time series

w
e
ig

h
t 
(k

g
)

Jan 2010 Oct 2010 Jul 2011 Apr 2012 Jan 2013 Oct 2013 Jul 2014 Apr 2015

0
2
0

6
0

(b) original time series along with visually annotated outliers

w
e
ig

h
t 
(k

g
)

Jan 2010 Oct 2010 Jul 2011 Apr 2012 Jan 2013 Oct 2013 Jul 2014 Apr 2015

0
2
0

6
0

(c) output of ARIMA based technique

time

w
e
ig

h
t 
(k

g
)

Jan 2010 Oct 2010 Jul 2011 Apr 2012 Jan 2013 Oct 2013 Jul 2014 Apr 2015

Figure 6.13 (a) original time series, (b) original time series after visually annotating
the suspected outliers, showed by red dots, and (c) output of ARIMA approach (C = 2.5)
where green dots represent the points that the algorithm identified as outliers.

extremely low speed of ARIMA algorithm would not allow us to apply it for bigger
sets of weight time series data.
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Figure 6.14 (a) original time series, (b) original time series after visually annotating the
suspected outliers, represented by red dots, and (c) output of ARIMA approach (C = 2.5)
where green dots represent the points that the algorithm identified as outliers.

6.2.2 Results of Real Test Set: Moving MAD

Based on Figure 6.12(c) and Figure 6.12(d), and the ROC analysis described for-
merly, the best threshold value (θm) and the best window length (k) were equal
to 4 and 20. The average sensitivity and specificity values obtained by the chosen
controlling variables were equivalently 1.000 and 0.994. The next paragraphs clarify
the advantages and disadvantages of the moving MAD.

Strengths

Figure 6.15 and Figure 6.16 depict two cases where the annotated outliers were all
detected correctly. Sufficiently sensitive controlling variables helped detecting all of
the annotated outliers. In addition, Figure 6.16 clearly shows how all of the outlying
values were spotted no matter if there were at the beginning or ending side of the
time series. As can be seen in Table 6.5 the true positive rate and the true negative
rate of the algorithm are 1 and 0.99, respectively.
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Figure 6.15 (a) original time series, (b) original time series after visually marking the
suspected outliers, showed by red dots, and (c) output of moving MAD (θm = 4 and k = 20)
approach where green dots are the detected outliers.

The computation time for each of the time series in real test set was on average
0.029 seconds depicted in Table 6.6. Therefore, moving MAD can be considered
as a significantly fast outlier detection algorithm. The reason for such a short
computation time is the very few number of mathematical operations included in
the algorithm.

Weaknesses

According to Figure 6.15(c), the false positive rate of the algorithm needs to be im-
proved since there are a number of wrongly detected points. These wrongly detected
points are within the normal variations of body mass; however, because of setting
highly sensitive controlling parameters, the true negative rate of the results dropped
down. This can be solve by reduction of sensitivity of the algorithm although that
may cause neglecting some of the outliers.
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Figure 6.16 (a) original time series, (b) original time series after visually marking the
suspected outliers, showed by red dots, and (c) output of moving MAD (θm = 4 and k = 20)
approach where green dots are the detected outliers.

The key solution in improving the specificity of moving MAD might be providing
the capability of involving sequential aspects of the time series into outlier detection
procedure. This cannot be done though, unless by adding heavy mathematical
operations that may lead to computational complexity.

6.2.3 Results of Real Test Set: Conventional Rosner Statistic

Considering the ROC curve shown in Figure 6.12(b), the best Type-I error rate value
(α) was equal to 0.99 that subsequently resulted in 0.838 and 0.992 as the average
sensitivity and specificity values. Choosing such a high Type-I error rate value means
having more freedom in selecting points as outliers with less cautiousness compared
to lower Type-I error rate values. The benefits and drawbacks of the algorithm are
discussed next.

Strengths
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Figure 6.17 (a) original time series, (b) original time series after annotating the sus-
pected outliers, represented by red dots, and (c) output of conventional Rosner statistic
(α = 0.99) where green dots represent the points that the algorithm identified as outliers.

The outputs of conventional Rosner statistic shown in Figure 6.17(c) and Figure
6.18(c) suggest considerably low rate of false positives. In other words, conventional
Rosner statistic performed reasonably robust in terms of specificity because of having
very few wrong detections of non-outlying values.

Another advantage of this technique would be its markedly low computation time.
In more detail, for each of the weight time series in real test set, 0.004 seconds
on average elapsed to get the output (Table 6.6). This notably small amount of
computation time provides the conventional Rosner statistic great applicability in
case of dealing with large amount of data.

Weaknesses

The lack of high enough sensitivity in detection of the whole set of outliers is the
main deficiency of conventional Rosner statistic. By taking Figure 6.17(c) into
consideration, it is quite obvious that a few of the outliers which are represented by



6.2. Results of Real Test Set 50

2
0

6
0

(a) original time series

w
e
ig

h
t 
(k

g
)

Sep 2011 Mar 2012 Sep 2012 Mar 2013 Sep 2013 Mar 2014 Sep 2014 Mar 2015

2
0

6
0

(b) original time series along with visually annotated outliers

w
e
ig

h
t 
(k

g
)

Sep 2011 Mar 2012 Sep 2012 Mar 2013 Sep 2013 Mar 2014 Sep 2014 Mar 2015

2
0

6
0

(c) output of conventional Rosner statistic

time

w
e
ig

h
t 
(k

g
)

Sep 2011 Mar 2012 Sep 2012 Mar 2013 Sep 2013 Mar 2014 Sep 2014 Mar 2015

Figure 6.18 (a) original time series, (b) original time series after annotating the sus-
pected outliers, represented by red dots, and (c) output of conventional Rosner statistic
(α = 0.99) where green dots represent the points that the algorithm identified as outliers.

red dots are undetected. The reason for that limitation may stem in the occurrence
of a slight level shift after April 2012. The whole level of the time series as well as the
outliers there slightly fell by a few kilograms. This resulted in a condition in which
the outliers after that level shift lie in an almost similar level as the non-outlying
values before the level shift. The non-outlying values masked the outliers after the
mentioned level shift therefore they were not regarded as outliers.

Another main weakness of this algorithm originates in the principle assumptions of
Rosner statistic. In detail, the maximum number of suspected outliers has to be
defined for the algorithm in advance. That means, if the user underestimates the
number of outliers, then some of the outliers will be obviously neglected. The other
limitation of Rosner statistic arises from restriction of the number of suspected
outliers. The assumptions is number of outliers cannot be more than 10 percent
of the time series length. Hence, in case of facing with highly corrupted data,
conventional Rosner statistic may not operate very well.
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6.2.4 Results of Real Test Set: Windowed Rosner Statistic

The windowed Rosner statistic was implemented for the sake of compensating the
weak points of conventional Rosner statistic. Based on the ROC analysis, the high-
est average sensitivity and specificity were reached using 0.1 and 60 for the two
controlling parameters, Type-I error rate (α) and window length (L). Correspond-
ingly, the peak average sensitivity and specificity values were equal to 0.985 and
0.995, respectively. The two cases in Figure 6.19 and Figure 6.20 demonstrate the
algorithm performance in detection of annotated outliers. The strong and weak
points of the windowed Rosner statistic are presented in the succeeding paragraphs.

Strengths

As can be seen in Figure 6.19 and Figure 6.20, all of the suspected outliers were
detected correctly. Evidently, windowed Rosner statistic is powerful enough to detect
the points lying either before or after the minute level shift which occurred after April
2012 in Figure 6.19(c). Moreover, considering the case in Figure 6.20, windowed
Rosner statistic idealistically identified all of the outlying values. The specificity
of the algorithm is also exemplary since there is only one false detection (Figure
6.20(c)).

Another advantage of windowed Rosner statistic is its low computation time. For
each of the time series in real test set 0.038 seconds was spent on average to get the
outputs (Table 6.6). Windowed Rosner statistic can also be classified as computa-
tionally fast outlier detection technique.

Weaknesses

The number of wrong detections or the false positive rate of the windowed Rosner
statistic should be improved for the cases where level shifts, missing data, and
fluctuating weight dynamics exist. For instance, the FPR rate of algorithm regarding
the weight time series depicted in Figure 6.20(c) clearly suffered from presence of
level shift that occurred near April 2012. As can be seen there are quite a number
of normal data points which were wrongly detected as outliers. Such a number of
wrong detections may impose limitations in applicability of this algorithm for outlier
detection in time series of weight measurements.
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Figure 6.19 (a) original time series, (b) original time series after marking the suspected
outliers, showed by red dots, and (c) output of windowed Rosner statistic (α = 0.1 and
L = 60) where green dots are the detected outliers.

A potential trick for reducing the number of false detections can be taking the
advantage of the initial guess about the number of suspected outliers in each window.
In other words, since the algorithm is repeating the conventional Rosner statistic
inside each sliding window, by adaptively reducing the number of suspected outliers
in each window (as explained in 4.3) the number of false detections can be restricted.
For example, considering the weight time series shown in Figure 6.19(b), there is
not any suspected outlier during the year 2010 although the algorithm made a few
false detections. If the number of suspected outliers in the windows sliding within
the year 2010 can be set to either zero or near zero, the algorithm makes less false
detections and accordingly the FPR rate is controlled in the corresponding sliding
windows.
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Figure 6.20 (a) original time series, (b) original time series after marking the suspected
outliers, showed by red dots, and (c) output of windowed Rosner statistic (α = 0.1 and
L = 60) where green dots are the detected outliers.

6.3 Performance Comparison Summary

In this section a comparison of the studied techniques is presented considering all
the discussed strengths and weaknesses found in simulated and real test sets.

As far as sensitivity of the outlier detection algorithms are concerned, moving MAD
and windowed Rosner statistic showed quite high performances over real test set.
The ARIMA technique performed slightly less powerful because of being unable
to identify the outlying points at the beginning of a few real time series. In the
simulated test set again the most sensitive method was moving MAD. The sec-
ond best method was ARIMA technique, while windowed Rosner statistic was the
third. Conventional Rosner statistic could not be considered as a highly sensitive
algorithm in comparison with the rest of the studied techniques. The violation of
primary assumptions of conventional Rosner statistic significantly deteriorated its
performance.



6.3. Performance Comparison Summary 54

Regarding the specificity, i.e. the ability of making as few wrong detections as
possible, the three algorithms, moving MAD, conventional Rosner statistic, and
windowed Rosner statistic showed significantly strong performances over the real
test set. However, the ARIMA technique performed scarcely less well. Regarding the
simulated test set, conventional and windowed Rosner statistic algorithms operated
the best. Afterward, ARIMA approach and moving MAD were placed.

In the case of outliers lying on the edges of measurement gaps, ARIMA algorithm
was the only method able to detect every single outlier. This suggests the superiority
of ARIMA technique in comparison with the rest of studied methods.

Implementation of windowed Rosner statistic truly enhanced the weaknesses of con-
ventional Rosner statistic. Improvement in sensitivity without losing much of speci-
ficity was optimally achieved.

From computational complexity viewpoint, the ARIMA approach ranked as the
heaviest algorithm among the studied techniques. In contrast, the rest of the tech-
niques performed extremely fast with average processing times less than 1 second
for each time series in both simulated and real test sets.

None of the tested algorithms showed robustness to parameter selection as there were
quite varying performance results corresponding to different controlling parameters.
Although it was not considered in this thesis, the best way of evaluating selected
controlling parameters is done via cross validation. In other words, after finding
the best set of controlling parameters via ROC analysis, there should have been a
testing phase in which the algorithms were tested over a set of unseen data.



55

7. CONCLUSIONS AND FUTURE WORK

This thesis was based on a data set that includes weight time series of 10,000 ran-
domly selected anonymous weight scale users from all over the world. The necessity
of self-weighing, vraiability of body mass, and properties of weight time series were
explained in Chapter 2. A thorough explanation of the outlier detection in univari-
ate time series was presented in Chapter 3. Subsequently, four point-wise outlier
detection techniques namely ARIMA technique, moving MAD, conventional Rosner
statistic, and windowed Rosner statistics were described in Chapter 4. Further-
more, a few of the behavioral patterns of the users in terms of self-weighing were
investigated and reported in Chapter 5.

Regarding the behavioral patterns of the studied self-weighers, after exploring the
measurement times during the day, it was comprehended that subjects tended to
monitor their weight mostly in the morning between 5 to 10 AM. Interestingly, the
most repeated time interval of self-weighing was between 12 to 36 hours that means
a large number of consecutive recordings had a time difference between 12 to 36
hours. Moreover, the studied population tended to weigh less during the weekend
days compared to the weekdays. The same phenomenon happened for monthly self-
weighing frequency in November and December every year. In other words, people
measured their weight less during the two mentioned months compared to the rest
of the months in each year.

The thorough evaluation of the outlier detection techniques unveiled that in general
moving MAD operated better comparing to other studied methods. The highest
average sensitivity along with the second highest average specificity in real test
set reveal the power of moving MAD in handling the outlier detection. Reaching
such a high diagnostic performance probably originates in the robustness of outlier
detection utilizing median deviations as compared to arithmetic mean deviations.
Windowed Rosner statistic performed slightly less powerful than moving MAD, and
ARIMA method slightly less powerful than windowed Rosner statistic. The con-
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ventional Rosner statistic did not seem to be contextually appropriate for outlier
detection in weight time series data.

Identification of the outlier detection ground truth can be one of the biggest chal-
lenges in biomedical time series analysis, particularly the time series recorded by
self-monitoring devices. The lack of reliable ground truth and the potential mis-
classification of the non-outlying values can sometimes become costly. For instance,
in case of treating heart failure patients, removing even a single true weight mea-
surement that indicates the hypervolemia (or body fluid overload) would lead to
dangerous outcomes. Therefore, specific enough algorithms are necessary in clinical
use.

In addition, defining a ground truth based on visual inspection may sometimes lead
to faulty decisions. One solution for this issue can be recognition and utilization
of highly accurate statistical models that represents the normal range of weight
variation as a function of time using large-scale data sets of weight time series. The
data set used in this study can be an appropriate choice for extraction of such models.
In future the applicability of these data-driven models will be further investigated.

Outlier detection methods assessed in this thesis were not working on a real-time
basis. In other words, weight measurements were gathered first before being fed to
the outlier detection algorithms. Outlier detection can also be done on a real-time
basis where every weight measurement that is recorded by digital weight scale is
immediately classified and labeled on the fly (either as an outlier or a normal data
point). This case has not been considered in this thesis and is postponed to future
studies.

To sum up, the main objective of this thesis was addressing the problem of outlier
detection in time series of weight measurements. As an overall conclusion, based to
the acquired results, none of the presented methods was able to ideally solve the
outlier detection problem. That is mainly because of lacking appropriate physiologi-
cally representative models of normal and abnormal weight variations. Hence, more
realistic results can be obtained by incorporating models of temporal dynamics of
weight variation into the outlier detection process.

As an overall self evaluation of the thesis work, the primary objective of the thesis
was ultimately met, i.e. comparison of univariate statistical based outlier detection
techniques in time series of weight measurements. The methodology can be im-
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proved though, specifically the final validation of optimized parameters. In other
words, the parameter optimization should typically be done over training data, while
the performance evaluation of the chosen parameters over test data. Lack of this
approach in the final performance evaluation might have slightly biased the final
conclusions. The greatest challenge of this thesis work was addressing the out-
lier detection in time series of weight measurements for the first time in history
of biomedical time series analysis. At last, the main strengths of this thesis was
comparison of studied techniques using both simulated outliers and real outliers.
Evaluating simulated outliers helped understanding the weak and strong points of
each method in a thorougher manner.
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APPENDIX A

The critical values of Extreme Studentized Deviate (ESD statistics) based on an
approximation provided by [65, 50].

Figure A.1 Critical values of extreme studentized deviate (ESD statistics).
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