

VAFA ANDALIBI
MODELING REALISTIC NEURONAL ACTIVITY IN MEA PLATES

Master of Science thesis

Supervisor: Dr. Francois Christophe
Examiner:Prof. Yevgeny Kucheryavy
Examiner and topic approved by the
council of the faculty of Natural Sci-
ences on October 7th 2015

i

ABSTRACT

VAFA ANDALIBI: MODELING REALISTIC NEURONAL ACTIVITY IN MEA
PLATES
Tampere University of technology
Master of Science Thesis, 54 pages, 24 Appendix pages
November 2015
Master’s Degree Program in Biomedical Engineering
Major: Medical Instrumentation – Communication Systems and Networks
Examiner: Professor Yevgeny Kucheryavy
 Dr. François Christophe

Keywords: Computational models, Electrophysiology, MEA plate, Spiking Neural
Networks, Bio-integrated Systems, Connectivity Analysis, Functional connectiv-
ity, Cox method, Causality.

This thesis work is part of a project from Academy of Finland aiming at integrating bio-
logical components in sensor networks. The current integration goal considers neuronal
cultures for achieving data processing. Due to the high capacity of neuronal cultures in
parallel computation, the main assumptions of this project are that such integration will
enable data processing that is not achievable with electrical components, and will reduce
energy consumption. Within the scope of this project, the objective of this thesis is to
develop realistic computational models of neuronal cultures plated on Multi-Electrode
Arrays (MEAs). MEAs are integrated circuits used for stimulating cell cultures and re-
cording their electrophysiological activity. Such models are used in the project for feasi-
bility simulations and preliminary developments of bio-integrated systems (BIS). The
contribution of this thesis is twofold: modeling plausible neural cultures on MEA, and
analysis of the connectivity of neural networks. The first part contributes in gaining an
in-depth understanding of the behavior of the neural network in MEA plate. A simulation
framework is designed, implemented and used to simulate the neuronal activity in a MEA
plate containing 1000 neurons. Using the implemented framework, it is now possible to
simulate a MEA plate with many customizable parameters, e.g. MEA size, neuron size,
type and morphology. The second part contributes with two implementations of a method
for functional analysis of neural networks. Two GPU-accelerated algorithms of the Cox
method were implemented with the CUDA platform. The Cox method is a proven robust
method for the analysis of functional connectivity in networks. This method, formerly
demanding a long time as well as consequent CPU power, can now run hundreds of times
faster on CUDA-supported GPUs in personal computers.

ii

PREFACE

This Master of Science thesis had been done in the Department of Pervasive Computing
in Tampere University of Technology, Tampere/Finland between November 2014 and
the September 2015.

The purpose of this master thesis is twofold: first, introduce and demonstrate a new frame-
work for simulating the behavior of biological neural network in MEA. Second, improve
the performance of a robust method for connectivity analysis of neural networks, i.e. cox
method, using a parallelization technique, i.e. CUDA programming. This dissertation will
certainly benefit a wide range of researchers in the fields of neural networks, neuroscience
as well as neurobiology labs, both by simulating the MEA plate and making it possible to
run the Cox method, formerly demanding a long time as well as consequent CPU power,
on CUDA-supported GPUs in personal computers.

I am very thankful to my supervisor Dr. Francois Christophe for having an open ear for
my questions. He gave me professional advices and let me work on my own at the same
time by evaluating my progress in working objectively. I also would like to say thank you
to head of department of Pervasive Computing, Prof. Dr. Tommi Mikkonen for letting
me to be part of his research group.

This research is funded by the Academy of Finland under project number 278882 – Bio-
integrated Software Development for Adaptive Sensor Networks.

Tampere, 28.09.2015

Vafa Andalibi

iii

CONTENTS

1. INTRODUCTION .. 1
1.1 Motivation .. 1
1.2 Contribution ... 2
1.3 Structure ... 3

2. BACKGROUND STUDIES ... 5
2.1 Behavioral Models of biological neurons .. 5

2.1.1 Hodgkin-Huxley model .. 5
2.1.2 Leaky-Integrate-and-Fire (LIF) model ... 5
2.1.3 Izhikevich Model ... 6

2.2 Models of neuronal plasticity ... 7
2.2.1 Hebb’s Rule .. 7
2.2.2 Oja’s Rule .. 8
2.2.3 Generalized Hebbian Algorithm (GHA) .. 8
2.2.4 Spike Timing Dependent Plasticity (STDP) 9

2.3 Connectivity Analysis .. 10
3. IMPLEMENTATION AND OUTPUTS .. 16

3.1 MEA Plate .. 16
3.1.1 Neuron .. 18
3.1.2 Synaptic Plasticity .. 18
3.1.3 Cell Distribution ... 19
3.1.4 Cell Death .. 20
3.1.5 Connections and Neuromorphology .. 21
3.1.6 Mini-Compiler ... 25
3.1.7 Cell Stimulation ... 26
3.1.8 Linking the Components .. 27

3.2 Functional Connectivity Analysis .. 28
3.2.1 Component Analysis of Cox method ... 28
3.2.2 1st algorithm ... 31
3.2.3 2nd algorithm .. 31
3.2.4 Test and performance evaluation of algorithms 33

4. RESULTS AND EVALUATION ... 34
4.1 MEA simulator ... 34
4.2 Functional Connectivity Analysis .. 36

4.2.1 CPU vs GPU .. 36
4.2.2 GPU alg. 1 vs GPU alg. 2 .. 39

5. DISCUSSION ... 41
5.1 MEA Simulator .. 41
5.2 Connectivity Analysis .. 43

6. FUTURE WORKS .. 45
6.1 MEA simulator ... 45

iv

7. CONCLUSION ... 47
7.1 Simulation of neuronal activity in MEA plate ... 47
7.2 Connectivity analysis of neuronal network .. 48

Appendix A1. Source Code of the Cox Method .. 55
Appendix A2. Cuda Kernel for Alg.1 ... 58
Appendix A3. Cuda Kernel for Alg. 2 .. 59
Appendix A4. Hessian Kernel .. 60
Appendix B. Inversed two-level diamond square alg. .. 61
Appendix C. Cell death... 65
Appendix D. Morphology ... 66

v

LIST OF FIGURES

Figure 1. Original Hodgkin-Huxley electrical circuit representing the
differential equations relating membrane ionic currents and its
electrical potential, reproduced from [28] .. 6

Figure 2. An example for comparison between signals generated from
models and signals recorded from biological neuron. (a)
Illustration of comparison between data from a model and from
‘in-vitro’ experiment. (b) Comparison of short-term synaptic
plasticity (STP) signal (in red) extracted from the model proposed
in [33] with a signal of STP from in-vitro experiment (black signal
with noise). .. 7

Figure 3. Schematic of STDP drawn after 60 spike pairing from [42],
regression curves reproduced using equation (8) 9

Figure 4. Example of two connectivities that pairwise methods cannot
differentiate but can be recognized by both ML estimation methods
and Granger causality analysis, redrawn from [52].............................. 11

Figure 5. Simple spike train of three spikes and corresponding ISIs 𝑥𝑥1, 𝑥𝑥2
and 𝑥𝑥3. ... 13

Figure 6. Spike train of Figure 5 sorted in ascending order based on length
of ISIs and addressed as new values 𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥(3). The
𝑡𝑡𝑡𝑡(𝑖𝑖)𝑥𝑥(𝑗𝑗) values resulted by allocating smaller ISIs inside the
larger ones (i ≥ j), coinciding left ends and considering right end
of 𝑥𝑥(𝑗𝑗) as the t value. ... 13

Figure 7. Example of adjacency matrix previously proposed in [23] as the
final output of the cox method indicating both the connectivity map
and the strength of the connection. .. 14

Figure 8. Original connection scheme proposed in [23], on which Cox
method was applied. The length of spike trains recorded from each
neuron was equal to 20,000 milliseconds.. 15

Figure 9. The components considered in the model of MEA plate in current
study. .. 16

Figure 10. Example of the firing pattern of a Regular Spiking (RS) pyramidal
neuron simulated with Izhikevich’s simple model [32]. (a)
Simulation of the membrane potential response to a 70pA
continuous excitation during 1s. (b) Phase portrait representation
of the relations between the membrane potential v and the recovery
current u. ... 17

Figure 11. Example of the synaptic change as a result of synchronous firing.
a) spike timing in a network of 25 neurons. b) voltage in two firing
neurons c) synaptic weight ... 20

vi

Figure 12. Output of two-level inversed diamond-square algorithm used for
determining the “allowed” location of the neurons in the MEA
plate. Red pixels represent the locations that neurons can be placed
on. a) 3D visualization of first level of algorithm b)2D
visualization of the final result .. 21

Figure 13. 3D visualization of the death rate. a) after 3 DIV, b) after 9 DIV,
c) after 17 DIV. Red pixels represent the locations that neurons can
be placed on. Black pixels show the neurons previously located on
red pixels that are currently died. ... 21

Figure 14. 3D Morphology of a rat’s neocortex pyramidal cell extracted from
NeuroMorpho database. In this morphology, the white color
corresponds to soma (the small white dot in the upper middle of the
figure), the gray and green colors are dedicated to axons and
dendrites respectively. The magenta color adjacent to the soma
illustrates the apical dendrite .. 22

Figure 15. Morphology of the rat’s neocortex pyramidal cell extracted from
NeuroMorpho database. a) 3D representation of the morphology
imported from swc file and shown using brian2 library. b) The
same morphology converted in 2D and shifted 500 µm right and up
in 2D coordinates .. 23

Figure 16. Illustration of the difference between considering neuron as a) only
a soma and b) a complete morphology in a simple MEA containing
4 neurons. .. 23

Figure 17. Adding random rotation to each neuron for a more realistic
connection between neurons .. 24

Figure 18. The result of the connection_finder algorithm applied on a small
network of 10 neurons with 7 pyramidal cells and 3 basket cells.
Beginning from upper left figure, each plot is focused on part of the
previous plot as indicated with a cyan square. In all four figures,
the black and red lines represent axons and dendrites and the
connection points are shown with green triangles. 25

Figure 19. Multivariate Gaussian distribution utilized for simulating the effect
of a single electrode usable in both recording from neurons and
stimulating them. The blue and red color represent maximum and
minimum contact between the electrode and adjacent neuron,
respectively. ... 26

Figure 20. Formation of the electrodes in a standard MEA simulated using
multivariate Gaussian distribution. The corner electrodes are
omitted since they are not used for recording and stimulating. 27

Figure 21. Flow chart of the main tasks of the Cox method presented
sequentially. The notations dL1 and dL2 in this chart correspond to
the first and second differential of the log likelihood L according to

vii

the coefficients of connectivity, 𝛽𝛽. Thus, dL1 corresponds to the
gradient of the log likelihood and dL2 corresponds to the Jacobian
of this gradient, also called the Hessian matrix of the log
likelihood. .. 30

Figure 22. Simple network topology considered as example for describing the
two GPU accelerated implementations of the Cox method. 31

Figure 23. Schematic of the grid formation for the first algorithm where
𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡) indicates the Z value of reference neuron n at time 𝑡𝑡𝑡𝑡𝑡𝑡. 32

Figure 24. Schematic of the grid formation for the first algorithm where
𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡) indicates the Z value of reference neuron n at time 𝑡𝑡𝑡𝑡𝑡𝑡. 32

Figure 25. Simulation of the neuronal behavior in MEA plate previously
presented in [57] ... 34

Figure 26. Output of the current simulator Error! Bookmark not defined.
Figure 27. Output of Cox method in this study. a) Adjacency matrix of Cox

coefficients b) Adjacency matrix of confidence intervals for Cox
coefficients in a. The Cox coefficients are considered as a real
connection if their corresponding confidence intervals does not
contain zero. In such a situation, the value of confidence interval is
taken as the connection strength. c) Adjacency matrix of
connectivity result of the network. The values strength of each
connection is extracted from the cox coefficient adjacency matrix. 37

Figure 28. Performance (runtime) comparison of the CPU implementation of
the Cox method with two GPU algorithms with number of neurons
in the network as the variable. .. 38

Figure 29. Performance (runtime) comparison of the CPU implementation of
the Cox method with two GPU algorithms with length of spike train
in the network as the variable. .. 39

Figure 30. Comparison of execution times of between the 2 GPU
implementations of the Cox method, as a variable of the number of
neurons in the studied network. ... 40

Figure 31. Comparison of execution times of between the 2 GPU
implementations of the Cox method, as a variable of the average
number of recorded spikes in the studied network. 40

viii

LIST OF TABLES

Table 1. Classification of methods for analysis of connectivity of neural
networks ... 10

Table 2. Distribution and types of the total of 493 neurons in the simulated
MEA. .. 34

ix

LIST OF PROGRAMS

Program 1. The code implemented in brian for Izhikevich neuron. 18
Program 2. Implementation of STDP in brian between inhibitory and excitatory

neurons. ... 19
Program 3. The source code for the entire method .. 57
Program 4. Kernel part (CUDA – part handled by GPU) of the code for the

first algorithm .. 58
Program 5. Kernel part (CUDA – part handled by GPU) of the code for the

second algorithm. .. 59
Program 6. Kernel for accelerating the computation of the Hessian of ML 60
This appendix, presents the code for inversed two-level diamond square

algorithm. .. 61
Program 7. The code for inversed two-level diamond square algorithm used for

plating .. 64
This appendix, presents the code for implementing cell death. 65
Program 8. Implementation of cell death ... 65
This appendix provides the code for generating the distributions based on

morphology. ... 66
Program 9. The implementation used for utilizing morphology for the purpose

of finding connections .. 74

x

LIST OF SYMBOLS AND ABBREVIATIONS

ANN Artificial Neural Network
BIS Bio-Integrated Systems
DIV Days In Vitro
GHA Generalized Hebbian Algorithm
GLM Generalized Linear Model
ISI Inter-Spike Intervals
JPTH Joint Peristimulus Time Histogram
LIF Leaky-Integrate-and-Fire
ML Maximum of Likelihood
MSC Mean-Square-Contingency
MEA Micro-Electrode Array
MI Mutual Information
RS Regular Spiking
STP Short-Term Plasticity
STDP Spike Timing Dependent Plasticity
C Constant parameter related to the capacitance of the membrane
V, v Membrane Potential
I Membrane Current
gleak Constant parameter leakage conductance of the membrane
Eleak Constant parameter related to the leakage equilibrium potential of the

membrane
k, a, b, c, d Constant parameters in Izhikevich model
Vreset Reset value of membrane potential
Vthresh Threshold value of membrane potential
u Membrane recovery current
α, γ Learning rate
wi Connection strength of the synapse j between pre-synaptic and post-

synaptic neurons
xi Pre-synaptic neuron
wij connection strength between the ith input and the jth output
tn Firing time of the postsynaptic neuron at the time of spiking n
𝑡𝑡𝑗𝑗𝑛𝑛 Firing time of the presynaptic neuron j at the time of spiking f
W(x) STDP function
𝜑𝜑𝐴𝐴(𝑡𝑡) Proportional Hazard Function of Spike train of neuron A
𝑈𝑈𝐴𝐴(𝑡𝑡) Duration since the last spike of neuron A
𝛽𝛽𝑖𝑖 Representation for other neurons of the network affecting neuron
𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡) Influence function of 𝛽𝛽𝑖𝑖 to A
L() Log likelihood function

1

1. INTRODUCTION

1.1 Motivation

Integrating biological components as part of computer is a present-day challenge as it can
improve the devices in matter of energy consumption whilst keeping their computational
performance high [1], [2]. Researchers from various disciplines, e.g. robotics [3], [4] and
communication networks [5], [6] are recently paying more attention to systems integrat-
ing biological parts [7]–[9]. An interesting application of these systems, named Bio-Inte-
grated Systems (BISs), is a system controller interfaced with biological neuronal network
cultured on an electrode grid surface. An example of these grids is Micro-Electrode Array
(MEA) plate [10] that is capable of both stimulating the neurons and recording their firing
patterns [9]. Advantage of neural interfacing is possibility of studying and manipulation
of these networks which leads to clarification of their fundamental mechanisms. Further-
more, enhancement of current engineering functionalities as well as new ones would be
made possible by interfacing with cell cultures [11].

Examples of the most recent stage in interface development of living culture with non-
biological systems would be the closed-loop stimulus-response system developed by Pot-
ter et al. [11], the robot with biological brain developed in [3], Lego Mindstorm robot
created by Shahf et al. [12], robot arm controlled with a biological neuronal network [13]
and using living neurons to control the flight of a simulated aircraft [14]. In the work done
by Shahaf et al. [12] the data is produced from ultrasonic sensors, aka “the eye” of the
robot, and is used for stimulation of large random networks of neurons. In all of these
examples, the vital component interfacing the non-biological system to biological neu-
ronal network is MEA plate.

The early studies on field of MEA were mainly focused on development of MEA hard-
ware. The rapid growth of utilization of these instruments in electrophysiology commu-
nity has resulted in new applications. For instance, researchers used MEA to advance the
study of hypothalamus, that is a key component of the brain regulating important body
functions [15]. In other application, the hippocampus, that is a vital component in for-
mation of memories and is the main research focus for Alzheimer treatment, is studied
using MEA plate [16], [17]. Regarding the spinal cord studies and treatments, several
researches employed MEAs [18], [19]. Other areas utilizing MEA are heart research [20],
Hippocampal oscillation studies [21] and studies regarding the he synchronized activity
of the cardiac muscles and stem cells [22]. MEA enables new types of experiments that
cannot be maintained with traditional instrumentation.

2

Observing the ensembles of biological neural networks is essential for developing novel
topologies of Artificial Neural Networks (ANNs). With this regard, functional analysis
of neuronal connections [23] and connection changes [24] plays crucial roles due to two
reasons. Firstly, causal relations between input stimuli and the activation of paths in a
neural network becomes possible using this analysis. Secondly, strong relation between
structure and functionality of a network can be built based on the same analysis. There is
a hypothesis proposing a strong correlation between network’s function and its structure.
Based on this hypothesis, the analysis of the temporal connectivity between neurons can
be utilized to reproduce neuronal network which was previously build for special func-
tionalities such as face recognition, natural language processing or machine learning
[25]–[27].

1.2 Contribution

Modeling and simulation is used to represent the behavior of a system, by reproducing
the real experiments. The advantages of simulation and modeling are avoiding the ex-
penses for building a prototype, damage prevention, easy modification and re-testing, and
error detection and correction. In a real experiment, error cause fault and damage which
will demands a correction and finally leads to a new prototype. The contribution of this
thesis can be divided into two main sections. First, a realistic model of MEA plate and
second, connectivity analysis of the data recorded from simulated or real biological neu-
ronal network.

First, having a model for MEA plate benefits us in many aspects: saving lab expenses,
difficulties in preparing cell cultures, preventing spontaneous failures due to human er-
rors, re-performing an experiment with exact same condition, etc. This work is dedicated
for implementing a model of MEA plate featuring as many realistic components as pos-
sible. The implementation of MEA plate in this work was implemented in python using
the brain2 library for simulation of spiking neural networks. This library is easy to use
and comprehensible for developers. Moreover, by employing other sophisticated python
libraries alongside with brian2, better performance and representation for results were
achieved.

Second, in order to study the procedure of information processing in neuron groups and
for understanding the neuronal interactions, a functional connectivity analysis method is
demanded. Cox method, as a statistical technique for connectivity analysis that has been
used in many previous studies, is capable of producing robust results. However, due to
its statistical characteristic, this method is very heavy in matter of computation. By uti-
lizing the parallel nature of graphics processing, this study improves the runtime speed of
Cox method enormously. The second part of this work was implemented using PyCUDA,
a wrapper of the CUDA API which provides the access to NVIDIA’s CUDA parallel
computation API from python, enabling execution of parallel computations on GPU.

3

These two main parts can be combined by inputting the simulation outputs resulted from
the first part to the second part, i.e. Cox method. This Combining has two major advan-
tageous. First, dynamic behavior of the connectivity in a neural network can be found and
be compared to the known behaviors of a biological neural network. This can either
strengthen or weaken the robustness of the simulation results and can be used as a tool to
evaluate different behavioral models. Second, observing and controlling the connection
of neurons in a neural network is the crucial part in the topic of supervised learning. Com-
bination of the two main tools of this study, can lead to a more realistic simulation of
supervised learning using spiking neural networks.

1.3 Structure

In order to have a realistic model of MEA plate, it should be broken down into its consti-
tutive elements. Then, each element should be considered as a sub-system, necessitating
a separate modeling and the seamless interaction of these sub-models should be handled
as realistic as possible, whilst preserving the realistic characteristic. Based on these crite-
ria, seven vital components of MEA plate are considered in this study: 1) neuron model
2) Neuronal interaction model 3) Stimulation 4) Distribution of neurons over the grid 5)
Neuromorphology 6) Cell death 6) mini-compiler for inputting determined connection
map to brian, cell stimulation. Beside above-listed components, there are two terms that
are crucial for MEA when it is purposed to be employed as an interface in bio-integrated
systems: Structural Connectivity and Functional Connectivity. These terms are also im-
plemented and explained in details.

This thesis consists of major parts. In the second chapter, i.e. background studies, some
well-known models of important components of a MEA plate, namely neurons and plas-
ticity, as well as different methods for connectivity analysis of spiking neural networks is
presented. The reviewed neuron models are Hodgkin-Huxley, Leaky-Integrate-and-Fire
(LIF) model and Izhikevich model and for Neuronal Plasticity four famous plasticity
rules, namely Hebb’s rule, Oja’s Rule, Generalized Hebbian Algorithm (GHA) and Spike
Timing Dependent Plasticity (STDP) are presented. In section 2.3, a review of different
connectivity analysis methods are provided and the selection of the best method is justi-
fied as well.

In chapter 3, first the internal components required for implementing a realistic simulation
of MEA plate, i.e. neuron, synaptic plasticity, cell distribution, cell death, connections
and neuromorphology, mini-compiler as well as the procedure of linking these compo-
nents, is provided. In the second section, Cox method is firstly reviewed in short. This is
followed by presenting two different algorithms for accelerating its performance using a
parallel computing. Finally, the testing protocol the methods for its performance evalua-
tion is provided.

4

Fourth chapter of this study provides the results from both the simulation of MEA plate
after linking its internal components as well as a detailed performance evaluation and
performance comparison of the Cox method. In the chapter 5 and 6, the discussion and
potential future works of this study is presented.

5

2. BACKGROUND STUDIES

In the following section, works related to each component are reviewed in brief. This
covers the main neuron models, main models of neuroplasticity, distribution algorithms,
cell death and growth. Moreover, methods related to functional connectivity analysis of
neuronal networks are reviewed as well.

2.1 Behavioral Models of biological neurons

As the essence of MEA plate, having a realistic computational model for biological neu-
ron is vital. This model must at least represent the electrochemical behavior of neural
cells as well as their growth. The former is modeled based on the flow of the ions as well
as electrical current from outside to inside and vice versa. Regarding the neuronal con-
nectivity, i.e. plasticity, the methods reviewed in following sections are based on syn-
chronized activity of neurons. Inter-neuronal synapses strengthened as neurons fire syn-
chronously.

2.1.1 Hodgkin-Huxley model

The accurate model proposed by Hodgkin and Huxley in 1952 [28], provides an electrical
circuit as a representation of differential equations describing the cell membrane ionic
currents and its electrical potential, as illustrated in Figure 1. Since this model features
four differential equations, it is computationally heavy and is not proper for large scale
simulations. Hence the later models focused on the dynamics of neurons in order to pro-
pose a computationally simpler model.

2.1.2 Leaky-Integrate-and-Fire (LIF) model

This model[29] replaces the Hodgkin-Huxley’s four differential equations with one dif-
ferential equation described in equation (1):

 𝐶𝐶𝑉̇𝑉 = 𝐼𝐼 − 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑉𝑉 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) (1)

where the membrane potential 𝑉𝑉 is defined as a function of time and sum of ion gates
currents, 𝐼𝐼. 𝐶𝐶, 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 represents the capacitance, leakage conductance and leak-
age equilibrium potential of the membrane respectively. When membrane potential
reaches a threshold, the neuron is considered as firing an action potential. The drawback
of this model is manual drawing of spikes when the membrane potential reaches the
threshold.

6

Figure 1. Original Hodgkin-Huxley electrical circuit representing the differential
equations relating membrane ionic currents and its electrical potential, repro-

duced from [28]

2.1.3 Izhikevich Model

Later on, the issue in LIF model was addressed by Ermentrout [30], proposing a quadratic
integrate-and-fire model. As opposed to LIF, this model was intrinsically capable of gen-
erating spikes and a dedicated value controls the peak value of the spike. In Hodgkin-
Huxley model, there are many parameters that are dedicated to electrophysiological con-
ductance. In practice, however, these parameters are difficult to measure. On the contrary,
quadratic models possess fewer parameters which are easily adjustable in a way to match
the real recordings [30].

Simple model of neuronal behavior proposed by Izhikevich [31], [32] can generate a very
accurate dynamical behavior of neurons [24] whilst being computationally simpler than
Hodgkin-Huxley model. This model is defined using following equations:

 𝐶𝐶𝑣̇𝑣 = 𝑘𝑘(𝑣𝑣 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)(𝑣𝑣 − 𝑣𝑣𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ) − 𝑢𝑢 + 𝐼𝐼, 𝑖𝑖𝑖𝑖 𝑣𝑣 > 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑣𝑣

← 𝑐𝑐,𝑢𝑢

← 𝑢𝑢 + 𝑑𝑑

 𝑢̇𝑢 = 𝑎𝑎[𝑏𝑏(𝑣𝑣 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) − 𝑢𝑢] (2)

where 𝐶𝐶, 𝑣𝑣,𝑢𝑢, 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑣𝑣𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represent membrane capacitance, membrane po-
tential, recovery current, resting potential, threshold potential and peak potential respec-
tively and 𝑘𝑘, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 are constant parameters.

As a basic benchmark for neuron of Izhikevich, this model was compared with a signal
recorded from a real experiment. There are multiple ways of such comparison, among
which the simplest manner is to subtract one to the other and analyze the value of the
resulting error. This practice, depicted in Figure 2 is usually used in closed-loop control.

7

Figure 2. An example for comparison between signals generated from models and
signals recorded from biological neuron. (a) Illustration of comparison between
data from a model and from ‘in-vitro’ experiment. (b) Comparison of short-term

synaptic plasticity (STP) signal (in red) extracted from the model proposed in
[33] with a signal of STP from in-vitro experiment (black signal with noise).

As an example of this practice applied on Izhikevich model, Figure 2 illustrates the short-
term plasticity (STP) in ‘in-vitro’ environment (black curves with noise). The red curve,
which represents the generated STP model proposed in [33], is almost identical to the
black curve. Nevertheless, determination of structure and function of a neuronal network
necessitate an in-depth behavioral analysis of neurons during the network formation and
solely modeling of firing patterns is not sufficient.

2.2 Models of neuronal plasticity

Neuronal plasticity is defined as the way with which neurons connect together and make
their connection stronger.

2.2.1 Hebb’s Rule

Regardless of its over-simplicity [34], the first model of plasticity, known as Hebb’s rule
[35], is the ground rule for modeling Spike-Timing Dependent Plasticity (STDP). In sim-
ple words, this models is expressed as “neurons that fire together, wire together” [36].
Hebb’s rule is expressed as follows:

b)

a)

8

 𝑦𝑦 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(3)

 ∆𝑤𝑤𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦, 𝑖𝑖 ∈ ⟦1,𝑛𝑛⟧ (4)

Where 𝑤𝑤𝑖𝑖 is the synaptic strength between pre-synaptic neuron 𝑥𝑥𝑖𝑖 and post synaptic neu-
ron 𝑦𝑦. However, based on to equation (4), the main issue in Hebb’s rule is the fact that
the connection can only grow in strength and it does not weaken in any circumstances.

2.2.2 Oja’s Rule

In Oja’s model of plasticity [37], the previous issue of Hebb’s rule is solved. This was
solved using a “forgetting” term (−𝑦𝑦2𝑤𝑤𝑖𝑖). Oja’s rule is expressed as following expression
[38]:

 𝛥𝛥𝑤𝑤𝑖𝑖 = 𝛼𝛼(𝑥𝑥𝑖𝑖𝑦𝑦 − 𝑦𝑦2𝑤𝑤𝑖𝑖), 𝑖𝑖 ∈ ⟦1,𝑛𝑛⟧ (5)

where 𝑤𝑤𝑖𝑖 is connection strength and ∆𝑤𝑤𝑖𝑖 is the growth rate between pre-synaptic 𝑥𝑥𝑖𝑖 and
post synaptic 𝑦𝑦 and 𝛼𝛼 is learning rate. As an additional feature, this rule is capable of
convergence testing by finding the covariance matrix of network connectivity with Oja’s
rule as principal component analyzer.

2.2.3 Generalized Hebbian Algorithm (GHA)

This model, proposed by Sanger [39], combines the Oja’s rule and Gram-Schmidt process
of orthogonalizing [40]. This model is presented in following equation:

 ∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛾𝛾(𝑡𝑡)(𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗�𝑤𝑤𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘

𝑗𝑗

𝑘𝑘=1

) (6)

In equation (6) γ represents learning rate as a function of time, 𝑊𝑊𝑖𝑖𝑖𝑖 is connection strength
between the ith input and the jth output. The conclusion of Sanger can be phrased as “the
weights converge to the eigenvectors of the input distribution”. As oppose Oja’s rule
which creates a neuronal network that converges to the first principal component, GHA
is capable of finding eigenvector of a Principal Component Analysis [39].

9

2.2.4 Spike Timing Dependent Plasticity (STDP)

As the reference model of per- and post-synaptic connections. This model was proposed
by Sjöström et al. [41] as follows:

 ∆𝑤𝑤𝑗𝑗 = ��𝑊𝑊(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑗𝑗
𝑓𝑓)

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑓𝑓=1

 (7)

where ∆𝑤𝑤𝑗𝑗 is strength changes in synapse j, calculated using sum of STDP function

𝑊𝑊(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑗𝑗
𝑓𝑓), in which W, 𝑡𝑡𝑛𝑛 represents the nth spiking time of the postsynaptic neuron

and fth spiking time of the presynaptic neuron j is represented as 𝑡𝑡𝑗𝑗
𝑓𝑓. The function 𝑊𝑊(𝑥𝑥)

is expressed as following form:

 𝑊𝑊(𝑥𝑥) = �𝐴𝐴+𝑒𝑒
− 𝑥𝑥
𝜏𝜏+ , 𝑥𝑥 > 0

𝐴𝐴−𝑒𝑒
− 𝑥𝑥
𝜏𝜏− , 𝑥𝑥 ≤ 0

 (8)

Figure 3. Schematic of STDP drawn after 60 spike pairing from [42], regression
curves reproduced using equation (8)

This model is depicted in Figure 3, where positive growth of synaptic connection is hap-
pened due to pre-synaptic neuron activity. This effect can be presented as a negative
strength when the pre-synaptic spikes arrives after post-synaptic spike.

10

2.3 Connectivity Analysis

Generally, connectivity analysis methods can be categorized based on four criteria:
whether or not a method is statistical, pairwise, Binless or real-time. This classification is
illustrated in Table 1. In [43], Functional connectivity methods are expressed in two main
categories: phase synchronization and statistical measures. This division is integrated as
the first criterion in Table 1. There are two steps in synchronization analysis: instantane-
ous phase estimation and quantification of phase locking. PHs methods, however, are not
applicable for BISs as it is based on deterministic dynamical system principle.

Table 1. Classification of methods for analysis of connectivity of neural networks

 Criteria

St
at

is
tic

al

N
on

-p
ai

rw
is

e

B
in

le
ss

R
ea

l-t
im

e

M
et

ho
ds

Kalman Filter X X X X

Cox X X X

CuBIC X X X

GLM X X

MI X X

MSC X X

Cross-correlation

Phase-Synchro.

Instant phase estima-
tion

 Pair-wise comparison methods of connectivity analysis are being widely used, e.g. cross
correlation method. Mutual Information (MI) [44] and Mean-Square-Contingency (MSC)
[45] can be used to quantify statistical dependencies. These methods utilize the statistical
information of the joint space between two random variables. The major problem with
these category is that they only consider the influence from the pair of trains being stud-
ied. However, since a single spike is affected by many more factors than a spike train
from one post-synaptic neuron [46], the methods that rely on the pair-wise analysis of
spike trains are not sufficient to characterize the connectivity of neuronal network.

11

The essence of the pair-wise methods for analysis of dependencies between spike trains,
e.g. CCF [47], cross-intensity function [48], method of moments [49], coherence calcu-
lation [50] and joint peristimulus time histogram (JPSTH) [51], is to compare the spike
trains pair by pair. For this reason, these methods have a main weakness of not observing
the influence of all neurons in the network and therefore cannot distinguish the direct and
indirect connectivity between the nodes as depicted in Figure 4.

Figure 4. Example of two connectivities that pairwise methods cannot differentiate
but can be recognized by both ML estimation methods and Granger causality

analysis, redrawn from [52]

Regarding the next criterion, i.e. bin-dependency, this group of methods study the prob-
ability of appearance of a spike resulting from influence of all other spike trains and even
its own previous activity. This probability is evaluated by calculating the Maximum of
Likelihood function (ML). Generalized Linear Model (GLM) is among these group of
methods taking into account all these influences and is applied to different cases of con-
nectivity analysis. The best practice for functional connectivity is deduced to be using
multiple time scales. In this case, the results would be highly dependent on the testing
window (bin) [53].

The preferences for selecting a proper method is to select among binless ones as they are
sensitive even with small amount of data. CuBIC method [54], is a successful attempt to
suppress the effect of the bin in the computation of higher order correlations. The need
for higher-order computation is estimated and unnecessary high-order computation is by-
passed.

As for the final criterion, based on the time scale of ‘in-vitro’ experiment protocols and
purpose of BIS development, the real-time connectivity analysis of a neural network with
methods such as Kalman Filter [55] is not crucial.

Based on granger causality, for two signals 𝑋𝑋1 and 𝑋𝑋2 where the former “Granger-causes”
the latter, a better prediction of 𝑋𝑋2 can be achieved using the past values of 𝑋𝑋1 compared
to the information contained in past values of 𝑋𝑋2 alone [52]. For instance, suppose we
have three terms 𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑊𝑊𝑡𝑡 and the goal is to predict the value of 𝑋𝑋𝑡𝑡+1. If better pre-
diction is achieved using the past terms of all three variables compared to using only 𝑋𝑋𝑡𝑡
and 𝑌𝑌𝑡𝑡, it can be said that past values of 𝑊𝑊𝑡𝑡 contain helpful information in forecasting

1 2

3

1 2

3

12

𝑋𝑋𝑡𝑡+1 which cannot be found in 𝑌𝑌𝑡𝑡 and 𝑋𝑋𝑡𝑡 itself. Therefore, 𝑊𝑊𝑡𝑡 would "Granger cause"
𝑋𝑋𝑡𝑡+1 in two conditions [52]:

- The occurrence of 𝑊𝑊𝑡𝑡 is before 𝑋𝑋𝑡𝑡+1
- The information found in 𝑊𝑊𝑡𝑡 is useful for predicting the value of 𝑋𝑋𝑡𝑡+1 and cannot

be found in 𝑌𝑌𝑡𝑡

Based on the aforementioned characteristics, many of the common methods of connec-
tivity analysis were classified and reviewed in [56]. The Cox method as a non-pairwise,
statistical and binless method is known as a robust method for offline study of network
connectivity. This method was initially proposed in signal processing area with the pur-
pose of analyzing the multivariate point processes. In [23], Borisyuk et al. showed that
such analysis is proper for analyzing the signal recorded from spiking neural network.
Cox method is built on the assumption that a spike on a spike train is modulated by other
trains produced by other neurons of the network, i.e. the modulated renewal process
(MRP). The model of this MRP is presented as a hazard function expressing the proba-
bility of a spike rate at time t relatively to all inter-spike intervals (ISIs) of a spike train
of length t or more [23], [55]. In this model, the proportional hazard function for a spike
train recorded from neuron A, in a network with n+1 neurons is formulated as:

 φA(t) = φA�UA(t)�. e∑ βiZBi(t)
n
i=1 (9)

where 𝜑𝜑𝐴𝐴(𝑡𝑡) represents the proportional hazard function of spike train of neuron A, 𝑈𝑈𝐴𝐴(𝑡𝑡)
is the duration since the last spike of neuron A, 𝛽𝛽𝑖𝑖 is a representation for other neurons of
the network affecting neuron A, and 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡) is the influence function of 𝛽𝛽𝑖𝑖 to A. The com-
putation of the log likelihood function is required for estimating the exponential part of
the equation (9). This log likelihood function is expressed as following equation:

 L�β�⃗ � = ��βi. ZBi(tkk)
m

k=1

n

i=1

−� log �� exp��βi. ZBi(tlk)
n

i=1

�
m

l=k

�
m

k=1

 (10)

where n and m are the number of neurons that possibility can have effect on the target and
number of recorded spikes respectively. With a spike train sorted based on the length of
its ISIs and ∀k < l (l and k are indices of an ISI), 𝑡𝑡𝑙𝑙𝑙𝑙 is calculated as right end of the kth
ISI whilst it is inserted inside the lth ISI in a way that their left ends coincide. This sorting
process is presented with the example of a spike train of 3 spikes as in Figure 5, for which
ISIs are sorted in Figure 6. Equation (10) is build based on the fact that the shortest ISIs
between spikes has the highest influence on the target spike.

13

Figure 5. Simple spike train of three spikes and corresponding ISIs 𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3.

Figure 6. Spike train of Figure 5 sorted in ascending order based on length of ISIs
and addressed as new values 𝑥𝑥(1), 𝑥𝑥(2) and 𝑥𝑥(3). The 𝑡𝑡𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑗𝑗) values resulted by
allocating smaller ISIs inside the larger ones (i ≥ j), coinciding left ends and

considering right end of 𝑥𝑥(𝑗𝑗) as the t value.

Eventually, connectivity analysis will provide us with the results in form of adjacency
matrix, as will be presented and described in section 4.2 in which cox method is applied
on a simple network of 5 neurons. This adjacency matrix consists of three parts: 1) adja-
cency matrix of beta values, 2) adjacency matrix of confidence interval for beta values
and 3) final connectivity results. In the first part, the value of Cox coefficients for each
neuron is presented. Due to statistical nature of Cox method, these values are measured
statistically and cannot be relied on without considering the Confidence Intervals which
are provided in the second part. Based on the confidence intervals which are provided in
this part, it is possible to find out which values in first table are reliable: if the confidence
interval range contains zero, the cox-coefficient value is not a reliable once, hence should
be removed from final results.

14

Figure 7. Example of adjacency matrix previously proposed in [23] as the final out-
put of the cox method indicating both the connectivity map and the strength of

the connection.

In other words, if the confidence interval values of a Cox coefficient value are both either
positive or negative, the Cox coefficient value is acceptable, otherwise it should be omit-
ted.The connectivity result can be represented in the form of a connection scheme as is
presented in Figure 7. This figure, is built after applying cox method on the spike trains
recorded from neurons with the original connectivity scheme provided in Figure 8. In
in Figure 7, not only the connection map of the neurons are observable, the strength of
each connection can be understood based on the area of its circle.

15

Figure 8. Original connection scheme proposed in [23], on which Cox method was
applied. The length of spike trains recorded from each neuron was equal to

20,000 milliseconds.

16

3. IMPLEMENTATION AND OUTPUTS

The description of methodologies in this section consists of two main parts: in the first
section, the components of the MEA plate are described and in the second section, the
components for functional connectivity analysis are presented. Note that in each section,
for better understanding of the implementation and methodology approaches, the partial
output related to that sub-section is presented in this section and in the result section, the
final output resulted from the whole system as a combination of all components will be
produced.

3.1 MEA Plate

The model of MEA plate contains eight components, each of which simulates a vital part
of the MEA plate: the morphology, distribution of the cells, cell death, stimulator, mini-
compiler for brian and neuron and neuroplasticity models in brian.

Figure 9. The components considered in the model of MEA plate in current study.

17

Figure 10. Example of the firing pattern of a Regular Spiking (RS) pyramidal
neuron simulated with Izhikevich’s simple model [32]. (a) Simulation of the
membrane potential response to a 70pA continuous excitation during 1s. (b)

Phase portrait representation of the relations between the membrane potential v
and the recovery current u.

The approach taken here is bottom-up approach. As can be seen in figure (8) the idea of
this approach begins with testing the model of single neuron. In the next step of this ap-
proach, the model is extend with neuronal plasticity, connectivity between the neurons
and their growth. Finally, the model and its components are scaled up to full network of
neurons with help of a cells distribution and evaluation of death rate during the process.

18

Regarding the provided components in figure (8), the intra-component relations are rep-
resented in the form of arrows. After determining the distribution of the neurons and using
the source morphology file downloaded from neuromorpho library, the location of each
point of cells are determined. In the next step, the death rate is applied on the neural
population. The final results are compiled to be usable in brian. This compilation is main-
tained by generating syntaxes and running them inside brian, hence the link between mi-
ini-compiler and brian. In brian, the effect of stimulator is applied on both recording from
neurons and stimulating them with current. Finally, the neuron model as well as plasticity,
which is inextricably linked with the neuron model, are used inside brian.

3.1.1 Neuron

As described in section 2.1, there are many representations of neurons. Izhikevich model
of spiking neuron was selected and implemented for this component. As oppose to Hodg-
kin-Huxley model which has a representation of neuronal components, this model repro-
duce the neuronal behavior mathematically. Whilst having a rational computational com-
plexity, Izhikevich model produce precise results very close to real neurons. In brian the
Izhikevich equation was reproduced using the following part of code:

2

4

6

8

10

eqs_neurons = '''
dv/dt=(k*(v-vr)*(v-vt)-u)/memc + (-ge*v - gi*(v-er)+ external)/memc :
volt
du/dt=a*(b*(v-vr)-u) : amp
dge/dt = -ge / taue : siemens
dgi/dt = -gi/taui : siemens
'''
reset = '''
v=c
u+=d
'''

Program 1. The code implemented in brian for Izhikevich neuron.

In Program 1, the first variable, i.e. eqs_neurons, represents the two main formula of
Izhikevich and the other variable, reset, defines the reset event of that mode. The param-
eters ge and gi in the first variable are used for applying the excitatory and inhibitory
synapses on the neuron. Figure 10 shows an example of dynamical behavior of the
Izhikevich model. In this example, the firing pattern of a Regular Spiking (RS) pyramidal
neuron simulated based on Izhikevich simple model [32] is illustrated. Moreover, the
phase portrait representation of the membrane potential v and the recovery current u as-
sociation is depicted.

3.1.2 Synaptic Plasticity

The implementations of this study are based on STDP model which was illustrated
in Figure 3. The strength of the connection between neurons changes as a result of spiking

19

in previous neuron. The formation of connections between neurons are considered as a
separate component in this study, described in section 3.1.5. Figure 11, shows the changes
of the synaptic weights between two groups of neurons.

The presynaptic and post synaptic events are the most important variables for implement-
ing the STDP plasticity. These two variables are illustrated in Program 2.

2

4

6

8

10

12

eqs_stdp_inhib = '''w : 1
 dA_pre/dt = -A_pre / tau_stdp : 1 (event-driven)
 dA_post/dt = -A_post / tau_stdp : 1 (event-driven)'''
pre_in_ex = '''A_pre += 1.
 w = clip(w+(A_post-alpha)*eta, 0, gmax)
 gi += w*nS'''
post_in_ex = '''A_post += 1.
 w = clip(w+A_pre*eta, 0, gmax)
 '''
S10 = Synapses (Pi,Pe, model= eqs_stdp_inhib,
 pre = pre_in_ex ,
 post = post_in_ex)

Program 2. Implementation of STDP in brian between inhibitory and excitatory neu-
rons.

3.1.3 Cell Distribution

In a real MEA plate, the way cells are distributed over the plate, has a strong effect on the
formation of connection. In previous study maintained by Shultz [57], midpoint displace-
ment fractal algorithm [58] was selected for cell distribution. In this study, however, a
new algorithm is proposed to reproduce a more realistic distribution of the neurons in
MEA plate. This algorithm is entitled two-level inversed diamond-square algorithm.

The core of this algorithm is the successive algorithm of midpoint displacement fractal
algorithm proposed by Miller et al. [59], called diamond-square algorithm. However, the
improved distribution still suffers from accumulation of the cells across the edges of the
MEA plate. To address this issue, an inversion of the result produced by algorithm is
considered, providing a sensible distribution. In other word, the random places which
were generated with the algorithm were considered as the prohibited places and the orig-
inal prohibited places were used as the result of algorithm. Though, after using the inver-
sion, the neurons would still not be distributed evenly all over the MEA plate and will
only concentrated in specific parts. The reason is the broad difference between the area
of a single some, which is about 50µ𝑚𝑚2, and area of the whole MEA plate which is
7,480,000 µ𝑚𝑚2.

To compensate this enormous difference, the plating is implemented in two-levels. First
a space of 5000 µ𝑚𝑚2 is preserved for each neuron. Then the diamond-square algorithm is

20

applied for determining the location of the MEA that neurons with large area of 5000 µ𝑚𝑚2
are allowed to be placed on. At this stage, however, the possible space for soma of each
neurons is 100 times greater than its real size. In the next step, the exact location of each
soma, inside its square of area of 5000 µ𝑚𝑚2 is determined. This hybrid algorithm is called
two-level inversed diamond-square algorithm from now on in this document. Apart from
this algorithm, the resulted distribution is visualized in an interactive 3D image. An ex-
ample of the visualized MEA plate with an area of 7,480,000 µ𝑚𝑚2 containing at least
1000 cells each with the area of 5000 𝜇𝜇𝑚𝑚2 is illustrated in Figure 12.

Figure 11. Example of the synaptic change as a result of synchronous firing.
a) spike timing in a network of 25 neurons. b) voltage in two firing neurons

c) synaptic weight

3.1.4 Cell Death

Before the final formation of the network and in the first 17 Days In Vitro (DIV), up to
60% of the cells die [60]. This death of the cultured neurons can have a marked effect on
the other cells in the MEA plate. In the study presented by Shultz, this death was simu-
lated by removing 45-60% of the cells before starting the main simulation. Using this
method, however, the effect of the cells which are supposed to die in the 17 first days, are
not taken into effect. A more precise method would be to wipe out the effect of the dead
cells at the time of their death. Using this method, the possible effects of a neuron on the
whole system before its death, will not be overlooked. The implementation of this part is
maintained by 2D random sampling over the minutes of the days and number of neurons.

a)

b)

c)

21

Using this method, the time of death is determined with a precision of minute. Cell death
progression is also visualized in 3D view as in Figure 13. In this figure, the death rate of
cells are depicted after 3, 9 and 17 days in vitro.

Figure 12. Output of two-level inversed diamond-square algorithm used for
determining the “allowed” location of the neurons in the MEA plate. Red pixels
represent the locations that neurons can be placed on. a) 3D visualization of

first level of algorithm b)2D visualization of the final result

Figure 13. 3D visualization of the death rate. a) after 3 DIV, b) after 9 DIV,
c) after 17 DIV. Red pixels represent the locations that neurons can be placed

on. Black pixels show the neurons previously located on red pixels that are cur-
rently died.

3.1.5 Connections and Neuromorphology

Neuromorphology is defined as the study of the form and structure of the neurons. Have
this concept not considered in any neuronal simulation, the result will suffer from many
loopholes. This loopholes are mainly caused by the fact that neurons are considered solely

a) b)

a) b) c)

22

as a square or circular soma. However, a realistic modeling of connection formation be-
tween neurons should be at the minimum based on the position of axons and den-
drites. Figure 14, illustrates a morphology of a rat’s neocortex pyramidal cell from the
NeuroMorpho database located at www.neuromorpho.org. The morphologies are pro-
vided in swc format which is simple to understand and easy to modify.

As will be thoroughly discussed in section 5 major difference between this work and
previous studies is taking the neuromorphology into account. It is of significant that the
morphologies downloaded from aforementioned database are in 3D format. In MEA
plate, however, the cells are connected to each other in a flat structure. In other word,
cells will not grow connection vertically. For this reason, the 3D morphology is in the
first step converted to a 2D one. Figure 15 shows the same morphology of Figure 14
imported in the simulator, converted to a 2D structure, shifted right and above, and
showed using the brian2 library.

Figure 14. 3D Morphology of a rat’s neocortex pyramidal cell extracted from
NeuroMorpho database. In this morphology, the white color corresponds to

soma (the small white dot in the upper middle of the figure), the gray and green
colors are dedicated to axons and dendrites respectively. The magenta color ad-

jacent to the soma illustrates the apical dendrite

http://www.neuromorpho.org/

23

Figure 15. Morphology of the rat’s neocortex pyramidal cell extracted from
NeuroMorpho database. a) 3D representation of the morphology imported from
swc file and shown using brian2 library. b) The same morphology converted in

2D and shifted 500 µm right and up in 2D coordinates

Figure 16, shows the difference between considering the neuron as soma, as in previous
studies, and considering the neuron as morphology. As can be seen, there major differ-
ences between previous model and current model. First, in previous model, all the cells
were in predefined locations and the neurons were considered connected if their distance
was lower than a specific value. In this model, the locations are predefined, but depending
on the shape of the neuron, some adjacent neuron might not be connected together. Sec-
ond, in previous models, the distance that a neuron could reach was limited to its adjacent
neurons (8 if the neuron is in the center of a square).

Figure 16. Illustration of the difference between considering neuron as a) only
a soma and b) a complete morphology in a simple MEA containing 4 neurons.

In this model, however, a neuron might reach to 2nd level neighbors as well, depending
on the length of its axons. Moreover, the strength of the connection in previous models

a) b)

a) b)

24

was to be determined using some random parameters. In this model, the strength is esti-
mated based on the intersection of axons of the reference neuron and dendrites of the
target neuron. Although the initial connection of the neurons is only needed once in a
simulation, yet the main obstacle of such approach is its heavy computation.

Each line of the swc file format indicates a single point in the structure of the neuron that
create the whole neuron when connected. The pyramidal cell in Figure 14 has about 2200
axonal points and about 1800 dendritic points. If all of the permutations are taken into
account, in a MEA plate with 1000 neurons a rough estimation give us a runtime of
500,000 years. This enormous runtime demands a novel algorithm for reducing the
runtime to at least a few days.

Figure 17. Adding random rotation to each neuron for a more realistic con-
nection between neurons

This work propose an algorithm for reducing the runtime of this algorithm to 17 days. In
the abovementioned simple approach, the calculation needed for calculating the intersec-
tions between axons and dendrites are performed between every two possible neurons. In
other word, in a MEA plate with n neurons, n (n-1) sets of calculation must be performed.
In the proposed algorithm, the accessibility level for each neuron is firstly defined by
user. This level, ranging between 1 and n√2, defines the number of number of diametrical
neurons that are to be taken into account. However, if a neuron is not connected to layer
m, the algorithm would stop calculating for higher layers.

The algorithm then uses the building box of reference axons and target dendrites in a
branch-wise order. Hence, if building box of an axonal branch is intersecting a building
box of a dendritic branch, then the possible intersection of the lines constraining those
branches are calculated and the intersection points are found. In the next step, these inter-
secting points between neurons are used to generate synapses that will eventually be used

25

in brian2. The plotted result of this algorithm, applied on a network of 10 neurons (7
pyramidal cells and 3 basket cells) are depicted in Figure 18. As can be seen, the neurons
are tightly connected together, forming a cluster-form ensemble.

Figure 18. The result of the connection_finder algorithm applied on a small
network of 10 neurons with 7 pyramidal cells and 3 basket cells. Beginning from

upper left figure, each plot is focused on part of the previous plot as indicated
with a cyan square. In all four figures, the black and red lines represent axons

and dendrites and the connection points are shown with green triangles.

3.1.6 Mini-Compiler

In order for the whole system to work, it is demanded that the Brian is linked with the
output of the connection maps resulted using the neuromorphology. In Brian, it is possible
to define any number of synapse between two specific neurons of any group using a one
line of code. In this definition of the synaptic connection it is possible to add other pairs
of neurons to prevent redundancy in coding. However, this can be achieved only if the
number of synaptic connection between all given pairs are the same.

For instance, it is possible to create 7 synaptic connection between neuron 2 and 6 with a
line of code. The same exact line can be modified in a way that it creates 7 synaptic
connections between neurons 3 and 4 or any other neuronal couple. However, as the num-
ber of synaptic connection changes to a number other than 7, it is not possible to create

26

the synaptic connections with a single line of code anymore and another line is needed.
Therefore, for a network consist of about 10 neuron in which each neuron could possibil-
ity connect to other 9 neurons, there might be 90 different connection, hence 90 lines of
code. To address this issue, a mini-compiler is built that generates the required syntaxes
for brain based on the output of the connections determined by morphologies.

3.1.7 Cell Stimulation

The stimulation capability of the MEA plate, i.e. the input of the system, can be handled
by using creating an input and connecting it to a neuron group. There are two facts that
can be considered for a more realistic representation of the stimulation. First, the moni-
toring over the cells activity can be removed from the results on the time that the cells are
stimulated. Second, the effect of the input can be considered as a square but not with an
equal current and voltage all over the area of the square, but in a way that neurons that
are placed closer to the electrode are more affected than the farther neurons. This can be
achieved by implementing the input based on a multivariate Gaussian distribution de-
picted in Figure 19.

Figure 19. Multivariate Gaussian distribution utilized for simulating the effect
of a single electrode usable in both recording from neurons and stimulating

them. The blue and red color represent maximum and minimum contact between
the electrode and adjacent neuron, respectively.

Figure 19 illustrate the affecting current in adjacency of each electrode of the model of
MEA plate. In a standard MEA, there are 60 electrodes placed in an 8x8 layout grid.
Remaining four electrodes are used as ground. The diameter of electrodes are either 10
µm or 30 µm with 100 µm or 200 µm inter-electrode distances, respectively [61].

27

Figure 20 illustrate the formation of the electrodes in the simulator. Note that some fea-
tures in this figure is exaggerated for the matter of clarification. Nevertheless, the effect
of the electrodes are completely customizable based on the parameters that are used for
generating the multi-variant Gaussian distribution.

3.1.8 Linking the Components

Aforementioned components demand a right combination and practicable pattern of in-
teraction. This interaction is analyzed according to the bottom-up approach presented in
section 3.1. Starting from the intrinsic parts of the model, both sets of equations for neuron
and plasticity model are inputted in the definition of the NeuronGroup in the simulation.

Figure 20. Formation of the electrodes in a standard MEA simulated using
multivariate Gaussian distribution. The corner electrodes are omitted since they

are not used for recording and stimulating.

The Stimulator as one of the major components of MEA, is inevitably linked with the
simulator itself. As using the state-monitors provide us with the data for variety of pa-
rameters, by using either SpikeGeneratorGroup or PoissonGroup it is possible to stimu-
late the neurons. The former induce spikes based on the pre-defined times whilst the latter
connects a Poisson input to the target group of neurons.

In the next step, each neuron of any NeuronGroup is assigned with a unique place in the
MEA area. The location coordinates of a neuron is initially defined as an extra parameter

28

for an instance of neuron. This allocation is done by choosing from the pool of available
places resulted from the output of the distribution function.

The abovementioned components are used during initial stage of the simulation. On the
contrary, the remaining components which represent two vital neuronal dynamics, i.e.
cell death and connection, are dynamically taken into account during the simulation. In
each internal step of the simulation, the conditions for both death and connections are
reviewed. Some cells are then connected accordingly and some die based on the prede-
fined timing.

3.2 Functional Connectivity Analysis

In this section, first a sequential algorithm for calculation of Cox coefficients and its con-
fidence intervals are presented. Using this illustration the parts that can potentially be
implemented in parallel are determined. In the next parts, two algorithm for implementing
these parts on CUDA are proposed. Each algorithm dedicates the blocks of GPU to a
unique part of the algorithm, resulting in a better performance of each in a specific types
of spike train. In the final section of this part, method used for testing and evaluating these
two algorithms is presented.

3.2.1 Component Analysis of Cox method

The algorithm for computation of Cox coefficients is depicted in the flowchart of Figure
21. As can be seen, the complex computation of first and second derivatives of the log
likelihood function are implemented inside a triple nested for loop. It is clear from this
representation that the first and second derivatives are independent, and thus, can be par-
allelized.

Regardless of this potential, a greater optimization can be achieved by optimizing the
common data required for computation of both derivatives. Based on the expression of
first and second derivatives, it can be understood that the great optimization can be hap-
pened by finding the values of influence function 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡), from all neurons and all their
spiking times in advance.

The key approach for the two parallel algorithms is to use the blocks and corresponding
threads of GPU to compute all the values of 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡𝑙𝑙𝑙𝑙) in parallel prior to calculation of cox
coefficients. With a network of n+1 neurons, each with a recorded spike train with length
of m spikes, n.m2 values of 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡) must be calculated. As an example, a network of 1025
neurons with a recording time corresponding to a spike train with length of 1024 spikes
will lead to computation of 536870912 values (10243/2) of influence function. Note that
this amount of calculation is for computing the Cox method on only 1 neuron to find the
effect of the other neurons of the network on this sole neuron. In the next two sections,

29

the two proposed algorithms are presented. The illustration of these algorithms are based
on the network structure of Figure 22.

In Figure 22, the cox coefficient from reference neurons, neuron 1 and 2, 𝛽̂𝛽 is to be com-
puted for the target neuron. Consider a simple scenario in which each neuron spikes three
times. The goal is then to calculate the values of influence function Z() for each reference
neuron at each spiking time of the target neuron. Although the amount of data used in this
scenario is far below the required amount, this simple network topology and correspond-
ing data clarifies the structure of the implementations of Cox method in GPU.

30

Figure 21. Flow chart of the main tasks of the Cox method presented sequen-
tially. The notations dL1 and dL2 in this chart correspond to the first and second
differential of the log likelihood L according to the coefficients of connectivity,
𝛽𝛽. Thus, dL1 corresponds to the gradient of the log likelihood and dL2 corre-

sponds to the Jacobian of this gradient, also called the Hessian matrix of the log
likelihood.

31

Figure 22. Simple network topology considered as example for describing the
two GPU accelerated implementations of the Cox method.

3.2.2 1st algorithm

In this algorithm the Z values of all reference neurons for a specific target neuron’s spike
is calculated in a single GPU block. The timing of this specific spike is resulted from
sorting as depicted in Figure 6. Each of this influence function values is calculated using
a thread of that block, as in Figure 23. Since each block calculates the values of Z for a
unique time 𝑡𝑡𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑗𝑗) and for all reference neurons the blocks of this algorithm will expe-
rience an increase when the number of neurons grows. For this reason, the performance
will not face a great deterioration y increasing the number of neurons. Using this imple-
mentation in a network with n+1 neurons whilst target neuron has m Inter Spike Intervals
(ISI), each block will always have n threads. The grid in this algorithm contains m*m
blocks.

3.2.3 2nd algorithm

In this approach, the row and column of grid are dedicated to the Z values of specific
reference neuron and specific target time respectively. Hence, the threads within a block
always contain Z values of the same reference neuron (e.g. ref1) and have the same value
for the first index of tij (e.g. t3j). All Z values for all the smaller ISIs of that specific time
i.e. 𝑍𝑍𝑟𝑟𝑟𝑟𝑓𝑓𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) with 𝑗𝑗 ≤ 𝑖𝑖, are computed using the threads of a block.

32

Figure 23. Schematic of the grid formation for the first algorithm where
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) indicates the Z value of reference neuron n at time 𝑡𝑡𝑖𝑖𝑖𝑖.

As for the size of the grid and blocks in this algorithm, the former has a size of n*m blocks
and the latter contain m threads, with n and m indicating the same metric as previous
section. The growth order of grid size is linear with reference to ISIs and number of neu-
rons. The schematic of this algorithm is presented in Figure 24.

Figure 24. Schematic of the grid formation for the first algorithm where
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) indicates the Z value of reference neuron n at time 𝑡𝑡𝑖𝑖𝑖𝑖.

33

3.2.4 Test and performance evaluation of algorithms

The algorithms were compared in two steps. Firstly, both algorithms are compared with
sequential implementation in CPU. In this comparison the performance of CPU is evalu-
ated and compared to that of GPU with two variables of interest as the number of neurons
and average number of spike. Secondly, same comparison criteria are applied to compare
the performance of GPU algorithms with a more massive data set. For the first step, the
number of neurons varies from 3 to 18 and the number of spikes for tests is between 30
and 165. As for the second step, the average number of neurons varies between 3 and 70
and the number of spikes varies between 160 and 945. Note that the results of both GPU
algorithms in comparison with CPU were examined and with the same dataset, all three
implementations produced identical results. It worth mentioning that in a network of n
neurons, acquiring full network connectivity demands the method to be executed n times.
For this reason, all runtimes provided in this work, consider the duration needed for at-
taining the full connectivity of the network.

34

4. RESULTS AND EVALUATION

In this section final result of both parts of this work are presented. Note that the partial
result of each component and sub-component of the section 4.1, was presented in different
parts of section 3 and in this section, the output of the framework as a system is presented.

4.1 MEA simulator

The simulation presented in this section is based on a small model of MEA plate contain-
ing 1000 neurons over an area of 7,480,000 µ𝑚𝑚2. Among the 1000 neurons plated in this
simulated MEA, 493 neurons survived after applying the death rate. There are 70% per-
cent excitatory pyramidal cells and 30% inhibitory basket cells, each from 5 different
types (in total 10 types of neurons). The type and number of neurons in the simulated
MEA is illustrated in Table 2.

Table 2. Distribution and types of the total of 493 neurons in the simulated MEA.

Neuron
Type

Excitatory (Pyramidal) Cell Types Inhibitory (Basket) Cell Types
D

27B

D
20D

I03481

C
300898C

-P2

C
031097B

-P3

C
070600A

4

C
010600C

1

C
010600A

2

B
E23B

B
E49B

Number of
Neurons

69 70 70 69 69 29 29 29 30 29

Figure 25. Simulation of the neuronal behavior in MEA plate previously pre-
sented in [57]

35

The result of the simulations in [57], as presented in Figure 25, suffers from over-activity
in neurons. These over-activity is smoothened in current simulator, presented both
in Figure 26 and 27.

Figure 26 presents the final result presenting the neural activity (spiking) of all survived
excitatory neurons. As can be seen, the vertical lines indicating the synchronous activity
between neurons are not observable in Figure 25 [57]. In Figure 26, however, indications
of synchronous activity between neurons are observable. In Figure 27, the simulation re-
sult based on the recording sides is presented.

Figure 26. Output of the current simulator for all survived excitatory neurons
in a simulated network of 1000 neurons. Black arrows shows indications of syn-

chronous activity between neurons.

Figure 27. Output of the current simulator for survived excitatory neurons
near the electrodes location in a simulated network of 1000 neurons

36

4.2 Functional Connectivity Analysis

Figure 27 shows the output result of the cox method applied over a small network consist
of 5 neurons. The output consists of three main parts: adjacency matrix of confidence
interval for beta values (Figure 14-a), adjacency matrix of confidence intervals of the beta
values of the previous part (Figure 14-b) and the output of the connectivity map (Figure
14-c).

As mentioned in section 2.3, Cox method is statistical in nature. Hence, it is essential to
consider the confidence interval for each beta (cox coefficient) value. As can be seen
in Figure 27-a, for every neuron pair there is a beta value and it cannot be determined if
that value indicates a real connection or not. For confirming the integrity of the beta value,
the corresponding confidence interval should be checked. In case the confidence interval
does not include zero, the connection between the pair can be taken as a real connection
and the strength of the connection can be considered as the beta value. In Figure 27, values
with confidence intervals that does not contain zeros are shown in colors. Finally based
on these values, the final table is formed as Figure 27-c.

The results of this sections is presented in two sub-sections: first, the comparison between
performance of CPU and that of both GPU algorithms are made. By justifying the use-
lessness of CPU for such statistical method, the performance of algorithms are evaluated
against each other. In the second part larger datasets are used and comparison is per-
formed based on two major parameters of activity recording: network size, and duration
of recording (i.e. length of spike trains).

4.2.1 CPU vs GPU

Figure 28 and Figure 29 illustrate the comparison between the performance of two GPU
algorithms and CPU. In Figure 28, the comparison is made based on the number of neu-
rons in the network. In this figure, the results of the comparison are provided with regard
to networks containing 3 to 18 neurons with a fixed recording time of 5s (this duration is
equal to about 70 spikes per neuron). This comparison shows an exponential growth in
runtime of CPU with increase of network size. The GPU runtime, however, stays under
25 seconds with a very slight growth. In the largest network containing 18 neurons, CPU
takes more than 570 seconds whilst both GPU algorithms take less than 25 seconds.

37

Figure 28. Output of Cox method in this study. a) Adjacency matrix of Cox co-
efficients b) Adjacency matrix of confidence intervals for Cox coefficients in a.
The Cox coefficients are considered as a real connection if their corresponding
confidence intervals does not contain zero. In such a situation, the value of con-
fidence interval is taken as the connection strength. c) Adjacency matrix of con-

nectivity result of the network. The values strength of each connection is ex-
tracted from the cox coefficient adjacency matrix.

38

Figure 29. Performance (runtime) comparison of the CPU implementation of
the Cox method with two GPU algorithms with number of neurons in the net-

work as the variable.

The comparison in Figure 29 is based on the average number of spikes recorded for each
neuron. The length of spike trains for a network of 5 neurons varied between 33 and 165
spikes in average which corresponds to recording time of 2s to 10s, respectively. The
same exponential growth in CPU runtime with increasing the length of spike trains is
observable in Figure 29 again. The runtime of CPU for spike trains of length 165 average
spikes takes almost 155 seconds whilst both GPU algorithms remains under 10 seconds.

Both of abovementioned evaluations were maintained over small networks with short
length of recording. Increasing either number of neurons in the network or length of re-
cording will result in an overshoot in runtime of CPU which makes the comparison of
GPU algorithms impossible owing to the fact that their timing bars will shrink to an un-
clear value near zero. The next section covers the performance evaluation of the GPU
algorithms on larger datasets.

0

50

100

150

200

250

300

350

400

450

500

550

600

3 6 9 12 15 18

Ti
m

e
[s

]

Number of Neurons

GPU Alg. 1 GPU Alg. 2 CPU

39

Figure 30. Performance (runtime) comparison of the CPU implementation of
the Cox method with two GPU algorithms with length of spike train in the net-

work as the variable.

4.2.2 GPU alg. 1 vs GPU alg. 2

Similar to previous section, the performance comparison of the two GPU algorithms is
maintained based on network size and length of recording. The used datasets, however,
vary in size enormously. In addition, this section focuses mostly on the runtime of the
parallelized parts of the cox method, i.e. the computation of the values of the influence
function Z(), as the remainder has to be calculated on CPU sequentially. For this reason,
the next two plots illustrate GPU execution time only for computation of all necessary Z
values which will consequently be used in sequential part of program.

First, the algorithms are compared based on different sizes of network, ranging from 5 to
120. In this evaluation, the average length of each spike train is 10s equal to average of
150 recorded spikes per neuron. As can be observed in Figure 30, with smaller networks,
first GPU algorithm has a better performance compared to the second one (for networks
up to 32 neurons). However, the growth of runtime of first algorithm with 25ms for a
network of 5 neurons is much smaller than that of second algorithm.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

33.8 50 67.6 85.4 101 117.8 133.4 149.8 165

Ti
m

e
[s

]

Average Number of Spikes

GPU Alg. 1 GPU Alg. 2 CPU

40

Figure 31. Comparison of execution times of between the 2 GPU implementa-
tions of the Cox method, as a variable of the number of neurons in the studied

network.

In the second evaluation, the algorithms are compared based on the data generated for a
very small network of 5 neurons. In this evaluation, the duration of recordings varies from
10 second to 1 minute, equal to average spike trains ranging between of 157 to 945 spikes.
In this evaluation, since GPU grid size grows with number of spikes, first algorithm runs
out of memory with grids of size bigger than 760x760 blocks. The runtime in this algo-
rithm, increases from less than 0.5s for spike trains with length smaller than 490 spikes,
to almost 2s at 760 spikes. For algorithm 2, however, the increase in runtime is much
slower and is still under 1s for recording with length of ~945 spikes.

Figure 32. Comparison of execution times of between the 2 GPU implementa-
tions of the Cox method, as a variable of the average number of recorded spikes

in the studied network.

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

5 10 20 30 40 50 60 70 80 90 100 110 120

Ti
m

e
[s

]

Number of Neurons
GPU Alg. 1 GPU Alg. 2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

157.5 312.6875 482.8 639.4 759.75 945.625

Ti
m

e
[s

]

Average Number of Spikes

GPU Alg. 1 GPU Alg. 2 Out of Memory

41

5. DISCUSSION

5.1 MEA Simulator

In this section, the discussion regarding to both parts of this study, i.e. realistic modeling
of the MEA plate and connectivity analysis based on the recorded data, are provided.
First, the presented model is compared with four other models in the literature previously
provided by Shultz [57], Chao et al [62], Bruzzone et al. [63] and Lenk & Priwitzer [64].
Each of these models are discussed in following sub-sections. This is followed by a thor-
ough discussion on the implementation of the Cox method.

The essence of MEA functionality is the connection between the cultured neurons. In this
regard, three different actions was previously considered in the model proposed by Shultz.
Firstly, the growth rate and direction of the axons of a neuron, secondly, connecting of
the adjacent neurons and thirdly, the migration of the neurons. For the first two behaviors,
some limitations was considered too, owing to the fact that there are limitations to for-
mation of new connections in a real MEA plate. Such limitations are resulted from chem-
ical interactions between cells. In the stochastic model used in [57], which was previously
presented by Kahng et al [65], the movement of the growing end of the axon happens in
a form of a random walk on a grid. The direction of this growth is considered to be in 8
directions in Shultz’s model: up, down, left, right or the diagonals between them. After
each step two neurons are logged as connected if one of the walking end is with 20 𝜇𝜇𝜇𝜇 of
the other. Moreover, the connection are unlikely to happen with the reference neuron
itself and is more likely to happen with its neighbors [66].

Gafarov in [67] indicated that whilst spiking, developing neurons attract other axons to-
wards a cell. Similarly in this model, the intense activity of the neurons resulted from
stimulation in results in customized development in specific parts of the simulated MEA
plate. Though, Shultz puts some limitations to this development based on two studies:
first, the paper proposed by Segev et al [68] showing that the cultured neurons will grow
and create new connections to at most 10 neurons. Second, the model presented by Patel
et al [69] in which the out-degree is reproduced using a Poisson distribution with a mean
of 22. It uses a Gaussian distribution to determine the connection probability of adjacent
neurons with a straight-line distance between them. This parameters get the maximum
value of connectivity around 200µm from the soma. Inducing connection between the
neurons by stimulating the neurons can be used for training the network for performing
variety of function, as the functionality of the neuronal network pertains for its internal
connectivity structure.

The model provided by Abraham Shultz, has some of the components taken into account
in this study into account. Starting with model of the neuron, although that model uses
the Izhikevich model of both excitatory and inhibitory neurons with considering “Fast

42

Spiking (FS)” behavior in the inhibitory neurons. Additionally, Shultz’s model utilizes
the midpoint displacement fractal algorithm for plating the neurons in the simulated
MEA. Moreover, it takes the death rate into account and removes the 40-60% of the cells
in the beginning of the simulation.

Shultz’s model, implement the cell connection and growth based on a completely differ-
ent approach. It uses a Gaussian distribution to determine the connection probability of
adjacent neurons with a straight-line distance between them. This parameters get the max-
imum value of connectivity around 200µm from the soma.

In that model, it is mentioned that it is possible for each cell to connect to any other node
in the MEA plate. The positive point of that model is applying some limiters for the con-
nection formations, extracted from literature. As mentioned in section 3.1.5, due to nu-
merous branches in each cell and small size of a MEA, many synaptic connections might
happen between two neurons, over-strengthening the connection in the whole MEA. The
model provided by Shultz, has a realistic model of electrodes for recording from the neu-
rons, which is also implemented in current study both for recording and stimulating.

The model proposed by Chao et al, implements 1000 LIF neurons with total of 50,000
synapse. The 1000 LIF neurons in that model are randomly distributed in a virtual MEA
with size of 3mm by 3mm, i.e. area of 9,000,000 µ𝑚𝑚2. In this model, all the synapses
were frequently dependent in order to model the synaptic depression. Moreover, 70% of
the neurons were excitatory implemented with STDP, and the electrode formation was
similar to that of a standard electrode, i.e. 8 by 8 grid of electrodes, 60 of which are used
for recording and stimulating.

The model provided by Bruzzone et al. is used to be connected to biological neural net-
work. In this model, they used a network of 100 Izhikevich neurons with 80 excitatory
and 20 inhibitory randomly placed on the area of the MEA. The excitatory population of
the neurons comprised regular spiking, intrinsically bursting and chattering neurons. Sim-
ilar to Shultz’s model, the model provided by Bruzzone et al. also considers the Fast
Spiking neuron for inhibitory neurons. The connection between the neurons are also de-
termined based on the random distribution with average degree of 75 and uniform distri-
bution was also utilized for setting the synaptic weights. This uniform distribution was
specified separately for excitatory and inhibitory populations. The model of Bruzzone,
was implemented over the NEST simulator.

The goal of the model presented by Lenk and Priwitzer [64] is to simulate the concentra-
tion-response curves that were previously observed in in-vitro experiment. The cells in
this model, which are described as black boxes, have two states of ON and OFF and each
neuron can have multiple inputs whilst it only produce a single output. To determine the
occurrence of spikes, Poisson process was employed. Each cell can be connected with
either inhibitory or excitatory synapse. The weight of the synaptic connection could vary.
Apart from these, the network is fully connected featuring a spike time history. The final

43

simulation in this model ran for 10 seconds with a network of 100 neurons, containing 90
inhibitory neurons and 10 excitatory neurons.

5.2 Connectivity Analysis

The sequential implementation of the Cox method was maintained and ran on MATLAB
and in next step, PyCuda was used for implementing two parallel algorithms. The exper-
imental platform was a laptop equipped with an Intel Core i7-4702MQ CPU and NVIDIA
GK208M (GeForce 740M GT) with 2 GB video memory. The results of all three imple-
mentations (CPU and two algorithms on GPU) were checked and compared with another
and their integrity were confirmed. With identical datasets all three algorithms produced
identical output.

Note that each instance of running Cox method as described in this study, solely take the
computation of connectivity coefficient to one neuron of the network into account. For
this reason, for calculating the full connectivity map of a network with N neurons, it needs
to be ran N times. Therefore, all the runtimes provided as a result in this work, considers
the duration needed for calculating the full connectivity of the network.

 The exponential growth in CPU runtime, demand a long time for providing the connec-
tivity map of a network with a minimum realistic size of 60 neurons (one neuron per
electrode). With the small dataset, CUDA implementations provide results at almost con-
stant time (under 25s for 18 neurons, and under 10s for an average of 156 spikes).

Applying the sequential implementation over a larger dataset will definitely rule out the
use of sequential version of Cox method. For example, a network composed of 5 neurons
with an average recorded spikes of 950 per neuron demands almost 17 minutes for com-
puting the Z values for a target neuron on CPU, taking almost ~90 minutes for calculating
the connectivity map of the entire network. GPU algorithms, however, needs ~0.91 sec-
ond for each Z matrix and 2 minutes for creating the whole connectivity map. Similarly,
a network containing 70 neurons with a recorded data of average 80 spike per neuron
demands ~3mins for computing the Z values of a single neurons. Consequently 1.5 hours
are needed to compute the entire connectivity. The first GPU algorithm, however, needs
7ms for each Z matrix and ~1.5 minutes for total connectivity. As mentioned, the perfor-
mance of the first algorithm is better when the number of neurons per network is in-
creased. Conversely, the second algorithm performs better when length of spike trains are
increased.

The performance of the two proposed algorithms varies based on the characteristic of the
data. Algorithm 1 supports connectivity analysis of datasets with larger number of neu-
rons. This algorithm, however, is weak against long spike trains since the increase of
spike train length, induces an increase of GPU grid size. On the contrary, second GPU
algorithm, has better performance for long spike trains compared to the first one. In turn,

44

this algorithm outperformed when the number of neurons increases, provided that the
extensive number of neurons does not cause the algorithm to go out of memory. This
analysis, gives us an estimation of the possibility to feed the first algorithm with a real
dataset of up to 1024 neurons and in the second algorithm with maximum of 1024 spikes
per train. Respectively, there is a limit for number of number of spikes in each train and
total number of neurons in the network which is fully dependent on the memory of the
GPU.

Selecting the proper algorithm is inextricably linked to the number of neurons and the
time of recording of the dataset. Theoretically, Cox method provides accurate results with
recordings of length 512 spikes equal to approximately 40 seconds of recording [24]. This
limit provides an important selection point between algorithms. Recordings need to last
at least 40s. Obviously, in case of longer trains, they can always be split into recording
parts of 40s. Now assuming a record length of 40s, i.e. equal to 512 spike per neuron, first
algorithm should be selected. Conversely, when the connectivity map of a network with
number of neurons fewer than 512, second algorithm should be chosen.

45

6. FUTURE WORKS

6.1 MEA simulator

In this section the possible future developments with the goal of extending the MEA sim-
ulator are presented. The goal of these development are twofold: performance improve-
ment and making the model more realistic.

The first step to find the solution for performance improvement of the model is to find its
performance bottlenecks. Two main performance bottlenecks of the model are brian sim-
ulator and the stage at which the initial connection are found based on the morphologies.
These two bottlenecks are also directly linked together. Since using the morphology for
finding the initial connections might lead to generating many instances of synapse ob-
jects, it will eventually reduce the performance of brian. The best solution for improving
the performance of brian simulator for this work, is to employ the multithreading with
OpenMP, for which instructions are available in brian documentation.

As for the latter performance bottleneck, although the current algorithm is only needed to
be run once, it still demands a performance improvement due to long runtime. By review-
ing the utilized algorithm, it will be understood that the nature of the algorithm is paral-
lelizable. The simplest parallelizing solution, would be to implement the algorithm over
GPU and distribute the calculation of each cell, which are not dependent to each other, to
separate cores. Another solution would be utilizing the Hadoop for a map-reduce imple-
mentation of the algorithm.

Regarding the behavioral aspect of neurons, the growth of neurons is an important behav-
ioral aspect that could be improved in this model. The main drawback of the utilizing the
morphologies is that each cell is already mature, in matter of size, from the beginning of
the simulation. In reality however, the axons and dendrites grow over the MEA and make
the connection. Another in-vitro behavior of the neurons is the migration during the early
DIV [68]. These migrations will lead to formation of the clusters. The intra-cluster con-
nectivity of the neurons is very dense whilst the inter-cluster communications happens to
be sparse. The implementation of neuronal migration, even if it is few in matter of dis-
tance, is a behavior that makes the model more realistic.

A general improvement in this model can be achieved by implementing different types of
neuronal behavior, i.e. Fast Spiking, Chattering, Intrinsically bursting, etc., using the
known parameters of Izhikevich equations. In that case, the simulator can generate the
proper neuronal behavior based on the morphology.

46

Eventually, a decent model of MEA plate can be used in variety of applications, ranging
from bio-integrated system to researches in different areas of neuroscience. Other appli-
cations of a realistic simulation of MEA plate would be to evaluate a model before im-
plementing it using a biological neuronal network. For instance, a bio-integrated wireless
sensor network, capable of detecting different shapes, e.g. cross, circle, rectangle, trian-
gle, etc., can be simulated and tested before spending budget on the expensive lab facili-
ties.

For the second part of this study, i.e. connectivity analysis of the neuronal network, an
important improvement would be enhance the improvement to make it possible to be ran
on CUDA clusters. Moreover, there are some memory management techniques available
for CUDA that would eventually help both algorithms to run on larger number of neurons
as well as longer spike trains.

The second part of this study is also advantageous with regard to intervals during which
the connectivity map is going to be extracted, making functional connectivity evolution
analysis available. By running the cox method on shorter periods, it would be possible to

calculate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 to predict the succeeding Beta values, facilitating a more precise control over

stimulations for obtaining a pre-defined topology. In this regard, controlling the artificial
changes in the network structure could enable its engineering for specific cognitive tasks.

47

7. CONCLUSION

7.1 Simulation of neuronal activity in MEA plate

The main contribution of this study is the development of a framework for simulating the
behavior of the neural network in MEA plate. This was achieved by considering and im-
plementing seven components in a real MEA plate, namely neuron, synaptic plasticity,
electrodes, neuromorphology, cell distribution, cell connections and cell death.

Whist the model of the neuron and its synaptic plasticity in the plate is implemented as
that of Izhikevich and STDP, all remainder components are configurable: the electrode
arrangement can be changed based on the type of the MEA and the range of the electrodes
can be configured based on the type of electrodes. Additionally, this framework can be
inputted with neuromorphology file extensions, i.e. swc, download from the large data-
base of the neuromorphology entitled NeuroMorpho. The distribution of the cells in this
system is determined using the nested inversed diamond-square algorithm and the con-
nection between cells are determined using their real morphology.

Aforementioned components can be customized using numerous parameters. The most
important parameters are the size of MEA and somas in µm, number of electrodes, total
number of neurons. Moreover, MEA can be inputted with different types of neurons with
a provided distributions. For instance one might want to simulate a MEA with 30% in-
hibitory basket cells, 30% self-firing neurons and 40% excitatory pyramidal cells. Most
of the other parameters, although configurable, but would be determined by the frame-
work automatically. Model of the cell and corresponding plasticity can also be configured
and be fed to brian simulator.

The provided framework and MEA model is advantageous in matter of employing state-
of-the-art Izhikevich model combined with STDP as well as the plating algorithm which
provides a realistic distribution of the neurons in the MEA. Additionally finding the con-
nections based on the morphology of each cell in the MEA plate is an accurate approach.
However, finding connections for a set of 1000 cells still takes a rather long time (about
2 weeks). Though, the initial connections has only to be determined once and simulation
of that specific MEA can be started based on the saved connection map.

Definition of the synapses in Brian simulator can be troublesome in case the number of
synaptic connection between neuron couples varies. In other words, due to different num-
ber of synaptic connection between neuron couples, each needs to be defined in a separate
line. For instance, with a very small network of 10 neurons in which each neuron has

48

connection with other 9 neurons, 90 lines of code would be required to define the synap-
ses. This framework provides a mini-compiler which compiles the output of connectivity
map inside Brian.

7.2 Connectivity analysis of neuronal network

In the second part of this work, Cox method, as a robust method for connectivity analysis
of neuronal network based on spike train data, was implemented on GPU and its perfor-
mance was evaluated and compare with CPU. The GPU implementation was maintained
based on two different algorithm each proper for a specific circumstance. Both GPU al-
gorithms focus on accelerating the calculation of the values of the influence function Z()
which are eventually saved in the form of a 3D matrix. Apart from that, the calculation
of the Hessian of ML was also accelerated with GPU.

 The performance of these algorithms were evaluated based on increasing number of neu-
rons and increasing length of spike trains. The performance of the first algorithm deteri-
orate much less than the second algorithm in case the number of neurons in the network
is increased. On the other hand, the second algorithm has a better performance when the
length of the spike trains are longer. In a sample dataset of 70 trains with length of average
75 spikes, both of these implementations run hundreds of times faster than the CPU in
matter of performance both with regard to number of neurons and length of the spike
trains.

 The Cox method, previously requiring a long run-time even with an enormous computa-
tion power, is now runnable on CUDA-supported GPUs in personal computers. This im-
plementation will certainly be useful for wide range of researchers in the field of neuronal
network, neuroscience as well as neurobiology labs. Functional connectivity analysis
makes it possible to observe and recreate networks structure directly inspired from natural
structures, similar to Hierarchical Temporal Memory [70] or for reinforcement learning
[71]. On the other hand, use of biological neuronal networks for computation tasks would
provide an enormous improvement in cybernetics and in-terms of energy saving. Such
solutions would be available as biological feed-forward neural network have been devel-
oped [72].

49

REFERENCES

[1] M. Kocaoglu, D. Malak, and O. B. Akan, “Fundamentals of green
communications and computing: Modeling and simulation,” Computer (Long.
Beach. Calif)., vol. 45, pp. 40–46, 2012.

[2] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki,
R. Kobayashi, and T. Nakagaki, “Rules for biologically inspired adaptive
network design.,” Science, vol. 327, pp. 439–442, 2010.

[3] K. Warwick, “Implications and consequences of robots with biological brains,”
Ethics Inf. Technol., vol. 12, pp. 223–234, 2010.

[4] J. L. Krichmar and F. Röhrbein, “Value and reward based learning in
neurorobots,” Frontiers in Neurorobotics, vol. 7. 2013.

[5] D. Malak, M. Kocaoglu, and O. B. Akan, “Communication theoretic analysis of
the synaptic channel for cortical neurons,” Nano Commun. Netw., vol. 4, pp.
131–141, 2013.

[6] S. Balasubramaniam, S. Ben-Yehuda, S. Pautot, A. Jesorka, P. Lio’, and Y.
Koucheryavy, “A review of experimental opportunities for molecular
communication,” Nano Commun. Netw., vol. 4, pp. 43–52, 2013.

[7] W. van Eck and M. H. Lamers, “Hybrid biological-digital systems in artistic and
entertainment computing,” Leonardo, vol. 46, no. 2, pp. 151–158, 2013.

[8] T. DeMarse, A. Cadotte, P. Douglas, P. He, and V. Trinh, “Computation within
cultured neural networks,” in Engineering in Medicine and Biology Society,
2004. IEMBS’04. 26th Annual International Conference of the IEEE, 2004, vol.
2, pp. 5340–5343.

[9] T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter, “The neurally
controlled animat: Biological brains acting with simulated bodies,” Auton.
Robots, vol. 11, pp. 305–310, 2001.

[10] M. Taketani and M. Baudry, Advances in network electrophysiology: using multi-
electrode arrays. 2006.

[11] S. M. Potter, D. A. Wagenaar, R. M. R. Madhavan, and T. B. DeMarse, “Long-
term bidirectional neuron interfaces for robotic control, and in vitro learning
studies,” Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (IEEE Cat.
No.03CH37439), vol. 4, 2003.

[12] S. Marom, A. Gal, C. Zrenner, V. Lyakhov, G. Shahaf, and D. Eytan, “Order-
Based Representation in Networks of Cortical Neurons,” in 6th International
Meeting on SubstrateIntegrated Micro Electrode Arrays, 2008.

50

[13] A. M. Shultz, S. Lee, T. B. Shea, and H. A. Yanco, “Control of a Robot Arm
with Artificial and Biological Neural Networks,” in Workshops at the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

[14] T. B. DeMarse and K. P. Dockendorf, “Adaptive flight control with living
neuronal networks on microelectrode arrays,” in Proceedings of the International
Joint Conference on Neural Networks, 2005, vol. 3, pp. 1548–1551.

[15] D. K. Welsh, D. E. Logothetis, M. Meister, and S. M. Reppert, “Individual
neurons dissociated from rat suprachiasmatic nucleus express independently
phased circadian firing rhythms.,” Neuron, vol. 14, pp. 697–706, 1995.

[16] J. L. Novak and B. C. Wheeler, “Multisite hippocampal slice recording and
stimulation using a 32 element microelectrode array.,” J. Neurosci. Methods, vol.
23, pp. 149–159, 1988.

[17] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Müller,
and H. Hämmerle, “A novel organotypic long-term culture of the rat
hippocampus on substrate-integrated multielectrode arrays,” Brain Res. Protoc.,
vol. 2, pp. 229–242, 1998.

[18] A. Tscherter, M. O. Heuschkel, P. Renaud, and J. Streit, “Spatiotemporal
characterization of rhythmic activity in rat spinal cord slice cultures.,” Eur. J.
Neurosci., vol. 14, pp. 179–190, 2001.

[19] P. Darbon, C. Yvon, J. C. Legrand, and J. Streit, “INaP underlies intrinsic spiking
and rhythm generation in networks of cultured rat spinal neurons,” Eur. J.
Neurosci., vol. 20, pp. 976–988, 2004.

[20] Y. Feld, M. Melamed-Frank, I. Kehat, D. Tal, S. Marom, and L. Gepstein,
“Electrophysiological modulation of cardiomyocytic tissue by transfected
fibroblasts expressing potassium channels: A novel strategy to manipulate
excitability,” Circulation, vol. 105, pp. 522–529, 2002.

[21] K. Shimono, F. Brucher, R. Granger, G. Lynch, and M. Taketani, “Origins and
distribution of cholinergically induced beta rhythms in hippocampal slices.,” J.
Neurosci., vol. 20, pp. 8462–8473, 2000.

[22] K. Egashira, K. Nishii, K. I. Nakamura, M. Kumai, S. Morimoto, and Y. Shibata,
“Conduction abnormality in gap junction protein connexin45-deficient
embryonic stem cell-derived cardiac myocytes,” in Anatomical Record - Part A
Discoveries in Molecular, Cellular, and Evolutionary Biology, 2004, vol. 280,
pp. 973–979.

[23] M. S. Masud and R. Borisyuk, “Statistical technique for analysing functional
connectivity of multiple spike trains,” J. Neurosci. Methods, vol. 196, pp. 201–
219, 2011.

[24] T. Berry, F. Hamilton, N. Peixoto, and T. Sauer, “Detecting connectivity changes
in neuronal networks,” J. Neurosci. Methods, vol. 209, pp. 388–397, 2012.

51

[25] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y.
LeCun, “Learning Convolutional Feature Hierarchies for Visual Recognition,”
Adv. neural Inf. Process. Syst. 23, no. 1, pp. 1090–1098, 2010.

[26] J. Martens, “Generating Text with Recurrent Neural Networks,” Neural
Networks, vol. 131, no. 1, pp. 1017–1024, 2011.

[27] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” arXiv Prepr.
arXiv1410.5401, 2014.

[28] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” Bull. Math.
Biol., vol. 52, pp. 25–71, 1990.

[29] R. B. Stein, “Some models of neuronal variability.,” Biophys. J., vol. 7, pp. 37–
68, 1967.

[30] B. Ermentrout, “Type I membranes, phase resetting curves, and synchrony.,”
Neural Comput., vol. 8, pp. 979–1001, 1996.

[31] E. M. Izhikevich and E. M. Izhikevich, “Simple model of spiking neurons.,”
IEEE Trans. Neural Netw., vol. 14, pp. 1569–72, 2003.

[32] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting, vol. First. 2007.

[33] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian
thalamocortical systems.,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, pp. 3593–
3598, 2008.

[34] J. Lisman and N. Spruston, “Questions about STDP as a general model of
synaptic plasticity,” Front. Synaptic Neurosci., pp. 1–5, 2010.

[35] D. O. Hebb, “The organization of behavior: a neuropsychological theory,” Sci.
Educ., vol. 44, p. 335, 1949.

[36] K. D. Miller, “Synaptic economics: competition and cooperation in synaptic
plasticity,” Neuron, vol. 17, no. 3, pp. 371–374, 1996.

[37] E. Oja, “A simplified neuron model as a principal component analyzer.,” J. Math.
Biol., vol. 15, no. 3, pp. 267–273, 1982.

[38] “E. Oja, Oja learning rule, Scholarpedia. 3 (2008) 3612.”

[39] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward
neural network,” Neural Networks, vol. 2, no. 6. pp. 459–473, 1989.

[40] A. Björck, “Solving linear least squares problems by Gram-Schmidt
orthogonalization,” Bit Numer. Math., vol. 7, no. 1, pp. 1–21, 1967.

52

[41] P. J. Sjöström, Spike-timing dependent plasticity. Frontiers Media SA, 2012.

[42] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type.,” J. Neurosci., vol. 18, no. 24, pp. 10464–10472, 1998.

[43] L. Li, I. M. Park, S. Seth, J. C. Sanchez, and J. C. Príncipe, “Functional
connectivity dynamics among cortical neurons: A dependence analysis,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 1, pp. 18–30, 2012.

[44] A.-H. Shapira and I. Nelken, “Binless Estimation of Mutual Information in
Metric Spaces,” Spike Timing Mech. Funct., p. 121, 2013.

[45] L. Li, I. Park, S. Seth, J. C. Sanchez, and J. C. Príncipe, “Neuronal functional
connectivity dynamics in cortex: An MSC-based analysis,” in 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC’10, 2010, pp. 4136–4139.

[46] I. H. Stevenson, J. M. Rebesco, L. E. Miller, and K. P. Körding, “Inferring
functional connections between neurons,” Current Opinion in Neurobiology, vol.
18, no. 6. pp. 582–588, 2008.

[47] D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neuronal spike trains and
stochastic point processes. II. Simultaneous spike trains.,” Biophys. J., vol. 7, pp.
419–440, 1967.

[48] D. Brillinger, “Nerve cell spike train data analysis: a progression of technique,” J.
Am. Stat. …, vol. 87, pp. 260–271, 1992.

[49] M. S. Bartlett, An introduction to stochastic processes, with special reference to
methods and applications. CUP Archive, 1978.

[50] D. R. Brillinger, H. L. Bryant, and J. P. Segundo, “Identification of synaptic
interactions,” Biol. Cybern., vol. 22, no. 4, pp. 213–228, 1976.

[51] A. M. Aertsen, G. L. Gerstein, M. K. Habib, and G. Palm, “Dynamics of
neuronal firing correlation: modulation of ‘effective connectivity’.,” J.
Neurophysiol., vol. 61, pp. 900–917, 1989.

[52] “A. Seth, ‘Granger causality,’ Scholarpedia, vol. 2, no. 7, p. 1667, 2007.”

[53] S. Eldawlatly, R. Jin, and K. G. Oweiss, “Identifying functional connectivity in
large-scale neural ensemble recordings: a multiscale data mining approach.,”
Neural Comput., vol. 21, no. 2, pp. 450–477, 2009.

[54] B. Staude, S. Rotter, and S. Grün, “CuBIC: Cumulant based inference of higher-
order correlations in massively parallel spike trains,” J. Comput. Neurosci., vol.
29, pp. 327–350, 2010.

53

[55] F. Hamilton, T. Berry, N. Peixoto, and T. Sauer, “Real-time tracking of neuronal
network structure using data assimilation,” Phys. Rev. E, pp. 1–6, 2013.

[56] T. L. T. M. K. K. Francois Christophe Vafa Andalibi, Survey and evaluation of
neural computation models for bio-integrated systems. Elsevier, 2015.

[57] A. M. Shultz, “Modeling of the networking and activity of cultured mouse
neurons for simulated experiments,” Master’s thesis, University of Massachusetts
Lowell, 2013.

[58] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic
models,” Communications of the ACM, vol. 25. pp. 371–384, 1982.

[59] G. S. P. Miller, “The definition and rendering of terrain maps,” ACM SIGGRAPH
Computer Graphics, vol. 20, no. 4. pp. 39–48, 1986.

[60] J. Erickson, A. Tooker, Y. C. Tai, and J. Pine, “Caged neuron MEA: A system
for long-term investigation of cultured neural network connectivity,” J. Neurosci.
Methods, vol. 175, no. 1, pp. 1–16, 2008.

[61] “Microelectrode Array (MEA) Manual [online]
Available:http://www.multichannelsystems.com/sites/multichannelsystems.com/f
iles/documents/manuals/MEA_Manual.pdf [Accessed 30th Aug 2015].”

[62] Z. C. Chao, D. J. Bakkum, and S. M. Potter, “Region-specific network plasticity
in simulated and living cortical networks: comparison of the center of activity
trajectory (CAT) with other statistics,” J. Neural Eng., vol. 4, no. 3, p. 294, 2007.

[63] A. Bruzzone, V. Pasquale, P. Nowak, J. Tessadori, P. Massobrio, and M.
Chiappalone, “Interfacing in Silico and in Vitro Neuronal Networks,” IEEE Eng.
Med. Biol. Soc., 2015.

[64] K. Lenk and B. Priwitzer, “INEX--A binary neuronal model with inhibitory and
excitatory synapses,” BMC Neurosci., vol. 12, no. Suppl 1, p. P260, 2011.

[65] D. S. Kahng, Y. Nam, and D. Lee, “Stochastic simulation model for patterned
neural multi-electrode arrays,” in Proceedings of the 7th IEEE International
Conference on Bioinformatics and Bioengineering, BIBE, 2007, pp. 736–740.

[66] R. Segev and E. Ben-Jacob, “Generic modeling of chemotactic based self-wiring
of neural networks,” Neural Networks, vol. 13, no. 2, pp. 185–199, 2000.

[67] F. M. Gafarov, “Self-wiring in neural nets of point-like cortical neurons fails to
reproduce cytoarchitectural differences.,” J. Integr. Neurosci., vol. 5, no. 2, pp.
159–169, 2006.

[68] R. Segev, M. Benveniste, Y. Shapira, and E. Ben-Jacob, “Formation of
electrically active clusterized neural networks.,” Phys. Rev. Lett., vol. 90, no. 16,
p. 168101, 2003.

54

[69] T. P. Patel, S. C. Ventre, and D. F. Meaney, “Dynamic changes in neural circuit
topology following mild mechanical injury in vitro,” Ann. Biomed. Eng., vol. 40,
no. 1, pp. 23–36, 2012.

[70] J. Hawkins and D. George, “Hierarchical temporal memory: Concepts, theory
and terminology,” 2006.

[71] T. H. Teng, A. H. Tan, and J. M. Zurada, “Self-Organizing Neural Networks
Integrating Domain Knowledge and Reinforcement Learning,” IEEE
Transactions on Neural Networks and Learning Systems, 2014.

[72] A. Natarajan, T. B. DeMarse, P. Molnar, and J. J. Hickman, “Engineered In Vitro
Feed-Forward Networks,” J. Biotechnol. Biomater., vol. 03, no. 01, pp. 1–7,
2013.

55

APPENDIX A1. SOURCE CODE OF THE COX METHOD

This appendix provides the source code for the entire method. This information can be
used to reproduce experiments and results presented in the paper.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

def cox (nn,maxi, target,tsp,delta):
 whole = datetime.now()
 p = nn-1
 if p == 1 :
 gamma0 = 0.95
 else:
 gamma0 = 1 - (1-0.05)/ (p*(p-1))
 if gamma0 < 0.95:
 gamma0 = 0.95
 pval = 1 - gamma0
 tol = 0.0001*ones((p))
 flag = 1
 tspa = target
 isi = target[1:] - target [:len(target)-1]
 v = zeros([p,len(tspa)])
 v1 = zeros ([p,len(tspa)])
 la = []

 for i in range (0,p):
 index = where((tspa-delta[i])>0)[0]
 k = min(index)
 start = tspa[k] - delta [i]
 isia = append(start,isi[k:])
 la = append(la,len(isia))
 tspam = cumsum(isia)
 v[i,0:la[i]] = isia [0:la[i]]
 v1[i,0:la[i]]= tspam [0:la[i]]

 laf = min (la)
 isiat = v [0:p,0:laf]
 tspamt = v1 [0:p, 0:laf]
 b = zeros(p)
 tspz = append(b,tsp)
 tspz = reshape(tspz, (maxi+1,p))
 inda = zeros_like(isiat)
 a = zeros_like(isiat)
 for i in range (0,p):
 inda [i,:] = sort (isiat[i,:])
 atmp = [[ii for (v, ii) in sorted((v, ii) for (ii, v) in
enumerate(isiat[i]))]]
 a[i,:] = array(atmp)
 mod = SourceModule("""
<<<ALG.1/ALG.2 KERNEL>>>
 """)
 mod2 = SourceModule("""
 <<<HESSIAN KERNEL>>>
 """)
 func = mod.get_function("z_function")
 tspamt =tspamt.astype(float32)
 inda = inda.astype(float32)
 a = a.astype(float32)
 isiat = isiat.astype(float32)

56

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

 tspz = tspz.astype(float32)
 b = zeros((p,laf,laf))
 z = b.astype(float32)
 tspamt_d = tspamt
 inda_d = inda
 a_d = a
 isiat_d = isiat
 tspz_d = tspz
 p_d = p-1
 maxi_d = maxi
 laf_s = int_(sqrt(laf)+1)
 start = datetime.now()
func(cuda.InOut(tspamt_d),cuda.InOut(inda_d),cuda.InOut(a_d),cuda.In-
Out(isiat_d),cuda.InOut(tspz_d),cuda.In-
Out(z),int32(p_d),int64(maxi_d),block = (laf_s,laf_s,1), grid =
(p,int_(laf)))
 end = datetime.now()
 ztime= end-start
 print(ztime)
 bet = 0.2*ones(p)
 landa = 1 ;
 for i in range (0,100):
 scc = zeros_like(z) ;
 for l in range (0,p):
 scc [l,:,:] = bet[l] * z[l,:,:]
 ssum = zeros((laf,laf))
 for g in range (0,p):
 ssum = ssum + scc[g,:,:]
 sumte = sum(tril(exp(ssum)),axis=0)
 score = zeros((p))
 for n in range (0,p):
 temp = sum(divide(sum(tril(multi-
ply(z[n,:,:],exp(ssum))),axis = 0),sumte))
 score[n] = trace(z[n,:,:])-temp
 vi = zeros ((p,p));
 vi =vi.astype(float32)
 laf_d = laf.astype(int32)
 z2 = z.astype(float32)
 func2 = mod2.get_function("hess")
 ssum_d = exp(ssum)
 ssum_d= ssum_d.astype(float32)
 sumte_d = sumte.astype(float32)

func2(cuda.InOut(float32(z2)),cuda.InOut(ssum_d),cuda.InOut(sumte_d),
int32(laf_d),int32(p),cuda.InOut(vi),block = (p,1,1) ,grid = (p,1,1))
 dot_temp = dot(vi.T,vi)
 estimate = bet + reshape(dot(linalg.inv(vi),reshape(score,
(p,1))),(1,p))[0]
 if i == 0:
 initial_score = zeros_like(score)
 if i > 1:
 if linalg.norm(score)<linalg.norm(initial_score):
 landa = landa/2
 else:
 landa = landa*2
 initial_score = score
 dif_temp = abs(bet-estimate)
 if ((dif_temp< tol).all()):
 bet_result = estimate

57

112

114

116

118

120

122

124

126

128

 flag = 0
 break
 bet = estimate
 if (flag==1):
 bet_result = 100000
 betahat = 1000000
 betaci = [1000000,1000000]
 else:
 betahat = bet_result
 x = norm.ppf(1-pval/2)
 nx = [-x,x]
 betaci = zeros((p,2))

 for i in range (0,p):
 betaci[i,0] = betahat[i] + nx[0] / sqrt(vi[i,i])
 betaci[i,1] = betahat[i] + nx[1] / sqrt(vi[i,i])
 whole_end = datetime.now() - whole
 print (" the whole is" , whole_end)
 return (betahat, betaci,ztime)

Program 3. The source code for the entire method

58

APPENDIX A2. CUDA KERNEL FOR ALG.1

This appendix shows kernel part (CUDA – part handled by GPU) of the code for the first
algorithm.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

__global__ void z_function(float *tspamt, float *inda, float *a, float
*isiat, float *tspz, float *z, int *p_d , int *maxi_d)
{
 float gm = 0.0955 ;
 float alphas = 10 ;
 float alphar = 0.1 ;
 float t1;
 int m = threadIdx.y + threadIdx.x * blockDim.y;
 int i = blockIdx.y;
 int j = blockIdx.x;
 int maxi = (int) maxi_d + 1;
 int p = (int)p_d +1;

 if (i>=j)
 {
 int temp = a[m*gridDim.y+i];
 int temp2 = a[m*gridDim.y+j];
 int index = 0 ;
 t1 = tspamt [m*gridDim.y+temp] - isiat[m*gridDim.y+temp] +
isiat[m*gridDim.y+temp2] ;

for (int k = m; k < p*maxi ;k+=p)
 {
 if (tspz [k] < t1 && tspz [k] != -1)
 {
 if (index < k)
 {
 index= k ;
 }
 }
 }
float bwt;
bwt = t1 - tspz [index];
z[gridDim.y*gridDim.y*m + gridDim.y*i + j] = (1/gm)*((exp(-bwt/al-
phas)-exp(-bwt/alphar)) /(alphas-alphar));
 }
}

Program 4. Kernel part (CUDA – part handled by GPU) of the code for the first algo-
rithm

59

APPENDIX A3. CUDA KERNEL FOR ALG. 2

This appendix shows kernel part (CUDA – part handled by GPU) of the code for the
second algorithm.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

__global__ void z_function(float *tspamt, float *inda, float *a, float
*isiat, float *tspz, float *z, int *p_d , int *maxi_d)
{
float gm = 0.0955 ;
float alphas = 10 ;
float alphar = 0.1 ;
float t1;
int m = blockIdx.x;
int i = blockIdx.y;
int j = threadIdx.y + threadIdx.x * blockDim.y;;
int maxi = (int) maxi_d + 1;
int p = (int)p_d +1;

if (i>=j)
 {
int temp = a[m*gridDim.y+i];
int temp2 = a[m*gridDim.y+j];
int index = 0 ;
t1 = tspamt [m*gridDim.y+temp] - isiat[m*gridDim.y+temp] + isiat
[m*gridDim.y+temp2] ;
for (int k = m; k < p*maxi ;k+=p)
 {
if (tspz [k] < t1 && tspz [k] != -1)
{
if (index < k)
{
index= k ;
}
}
}
float bwt;
bwt = t1 - tspz [index];
z[gridDim.y*gridDim.y*(blockIdx.x) + gridDim.y*i+j] = (1/gm)*((exp(-
bwt/alphas)-
exp(-bwt/alphar))/(alphas-alphar));
}
 }

Program 5. Kernel part (CUDA – part handled by GPU) of the code for the second
algorithm.

60

APPENDIX A4. HESSIAN KERNEL

This appendix presents a kernel for accelerating the computation of the Hessian of ML,
i.e. the second order differential of ML.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

__global__ void hess(float *z2,float *ssum_d,float *sumte_d ,int
laf,int p, float *vi)
{
 int m = threadIdx.x ;
 int n = blockIdx.x ;
 float temp1 = 0;
 float temp2 = 0;
 float temp3 = 0;
 float part1 = 0;
 float part2 = 0;
 float part3 = 0;
 float part4 = 0;

 for (int j = 0; j<laf ;j++)
 {
for (int i = j; i<laf*laf; i += laf)
 {
temp1 += z2[m*laf*laf + i] * z2[n*laf*laf + i] * ssum_d[i];
 temp2 += z2[m*laf*laf + i] * ssum_d[i];
 temp3 += z2[n*laf*laf + i] * ssum_d[i];
}
 part1 += temp1/sumte_d[j];
 part2 += temp2 ;
 part3 += temp3 ;
 part4 += (temp2*temp3)/ (sumte_d[j]*sumte_d[j]);
 temp1 = 0;
 temp2 = 0;
 temp3 = 0;
 }
vi[threadIdx.x * gridDim.x + blockIdx.x] =
part1-part4;
}

Program 6. Kernel for accelerating the computation of the Hessian of ML

61

APPENDIX B. INVERSED TWO-LEVEL DIAMOND SQUARE ALG.

This appendix, presents the code for inversed two-level diamond square algorithm.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

__author__ = 'V_AD'
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from numpy import *
import random
import visual
import math as mt
import matplotlib.pyplot as plt
from PIL.BmpImagePlugin import o32
from killer import killer

global r, stop_flag
stop_flag = False
def locations (gridsize,neuronsize,totalcell):
gridsize = raw_input('Enter the MEA area in micrometers^2: ')
neuronsize = raw_input ('Enter the neuron area in microme-
ters^2: ')
neuronnumber = raw_input ('Enter the total number of neurons :
')
 needed_cells = gridsize / neuronsize
 w = int(mt.sqrt(needed_cells))
 h = w
 global r,stop_flag
 r = -3
 def diamond(w,h,rand = -3,draw = False):
 global r,stop_flag
 def plasma(x, y, width, height, c1, c2, c3, c4):
 newWidth = width / 2
 newHeight = height / 2
 global idx,dots
 if (width > gridSize or height > gridSize):
 #Randomly displace the midpoint!
 midPoint = (c1 + c2 + c3 + c4) / 4 + Displace(rand)
 #Calculate the edges by averaging the two corners of
each edge.
 edge1 = (c1 + c2) / 2
 edge2 = (c2 + c3) / 2
 edge3 = (c3 + c4) / 2
 edge4 = (c4 + c1) / 2

 #Do the operation over again for each of the four new
grids.
 plasma(x, y, newWidth, newHeight, c1, edge1, mid-
Point, edge4)
 plasma(x + newWidth, y, newWidth, newHeight, edge1,
c2, edge2, midPoint)
 plasma(x + newWidth, y + newHeight, newWidth,
newHeight, midPoint, edge2, c3, edge3)
 plasma(x, y + newHeight, newWidth, newHeight, edge4,
midPoint, edge3, c4)
 else:

62

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

 #This is the "base case," where each grid piece is
less than the size of a pixel.
 c = (c1 + c2 + c3 + c4) / 4
 # dots[idx] = c
 # idx = idx + 1
 # print(c)
 if (c>0.5):
 c = 0
 if (draw == True):
 visual.points(pos=[x-(100),c,y-(100)],
color=(1,0.31,0.1))
 dots[idx] = c
 idx = idx + 1
 else:
 c= 5
 if (draw == True):
 visual.points(pos=[x-(100),c,y-(100)],
color=(0.8,1,1))
 dots[idx] = c
 idx = idx + 1

 def Displace(num):
 rand = (random.uniform(num, 1) - noise)
 # print rand
 return rand

 global gridSize, gamma, points, width, height, idx,dots
 random.seed('Albert Einstein was a German theoretical physi-
cist.')

 def reshaper (inpt):
 l= len(inpt)
 if (l>4):
 o1= inpt[0:l/4]
 o2= inpt[l/4:l/2]
 o3= inpt[l/2:3*l/4]
 o4= inpt[3*l/4:]
 temp1 = np.concatenate((reshaper(o1),re-
shaper(o2)),axis=1)
 temp2 = np.concatenate((reshaper(o4),re-
shaper(o3)),axis=1)
 temp3 = np.concatenate((temp1,temp2),axis = 0)
 return (temp3)
 else:
 outp = np.zeros((2,2))
 outp[0,0:2] = inpt [0:2]
 outp[1,0:2] = np.fliplr([inpt[2:]])[0]
 return(outp)

 nearest_2_power = 0
 while w>2**nearest_2_power:
 nearest_2_power += 1
 nearest_2 = 2**nearest_2_power
 idx = 0
 width = nearest_2*10
 noise = 0.02 # less noise = higher map
 height = nearest_2*10
 gridSize = 10 # size between pixels

63

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

 length = 0
 gridtemp = width
 while gridtemp > gridSize:
 gridtemp = gridtemp/2
 length +=1
print(length)
 dots = np.zeros (4**length)

 plasma(0,0, width, height, random.uniform(0, 1), random.uni-
form(0, 1), random.uniform(0, 1), random.uniform(0, 1))
 # print(dots)
 positions = np.zeros
((mt.sqrt(len(dots)),mt.sqrt(len(dots))))

 positions = reshaper(dots)
 # print (positions)
 cells = sum(sum(positions==5))
print (cells,'out of', len(positions)**2)
 return (positions,cells)
 position_final , cells = diamond(w, h)
 position_final_cropped = position_final [0:w,0:w]
 cells = sum(sum(position_final_cropped==5))

 while cells > totalcell:

 r += 0.1
 position_final , cells = diamond (w,h,r)
 position_final_cropped = position_final [0:w,0:w]
 cells = sum(sum(position_final_cropped==5))
 # print(cells)
 else:
 r -= 0.1
 position_final , cells = diamond (w,h,r)
 position_final_cropped = position_final [0:w,0:w]
 cells = sum(sum(position_final_cropped==5))

else:
if (stop_flag == False):
stop_flag = True
position_final , cells = diamond (w,h,r,True)
position_final , cells = diamond (w,h,r,True)
position_final_cropped = position_final [0:w,0:w]
cells = sum(sum(position_final_cropped==5))
 # else:
 # r = rand-0.1
 # locations (w,h,r)

 print (cells,'out of', len(position_final_cropped)**2)
 q = position_final_cropped
 eliminate = np.random.randint(cells,size = cells-totalcell)
 all_indices = where(q==5)
 for el in eliminate :
 q[all_indices[0][el]][all_indices[1][el]] = 0
 for i in range (0,len(q)):
 for j in range (0,len(q)):
 if (q[i,j]==0):
 visual.points(pos=[i,0,j], color=(0.8,1,1))
 else:
 visual.points(pos=[i,1,j], color=(1,0.31,0.1))

64

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

 p_temp = np.where(position_final_cropped == 5)
 p = [array([i[1],j[1]]) for i in list (enumerate(p_temp[0])) for
j in list(enumerate(p_temp[1])) if i[0] == j[0]]
 p = [array([pp[1]*(sqrt(neuronsize)),pp[0]*(-sqrt(neuronsize))])
for pp in p]
 return p,position_final_cropped

def MEA_locations (gridsize,neuronsize,totalcell):
 p,q = locations(gridsize,neuronsize,totalcell)
 ax = plt.subplot(111)
 # ax.plot ([-i[1] for i in p],[-i[0] for i in p],'ro')
 real_size = 50
 # origp = np.copy(p)
 # length = sqrt(neuronsize)
 for loc in p :
 i0,i1 = np.random.random(2) * (sqrt(neuronsize))
 loc[0] += i0
 loc[1] -= i1

 return p,q
p,q = locations(50000,5000, 4)
p,q = MEA_locations(7840000,5000,1000)

p2,_ = MEA_locations(7840000,50,1000)
print (q)
print(p)
ax = plt.subplot(111)
ax.plot ([-i[1] for i in p],[-i[0] for i in p],'ro')

ax.set_ylim([-2800,0])
ax.set_xlim([0,2800])

plt.show()
print(np.shape(q))
p = killer(q,0)
for i in range (0,len(p)):
for j in range (0,len(p)):
if (p[i,j]==0):
visual.points(pos=[i,0,j], color=(255/255, 255/255,
255/255))
elif (p[i,j]==2.5):
visual.points(pos=[i,1,j], color=(51/255, 102/255,
200/255))
else:
visual.points(pos=[i,1,j], color=(255/255 ,204/255
,10/255))
print (q)
for i in range (0,len(q)):
for j in range (0,len(q)):
if (q[i,j]==0):
visual.points(pos=[i,0,j], color=(0.8,1,1))
else:
visual.points(pos=[i,1,j], color=(1,0.31,0.1))

Program 7. The code for inversed two-level diamond square algorithm used for plating

65

APPENDIX C. CELL DEATH

This appendix, presents the code for implementing cell death.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

__author__ = 'V_AD'
import numpy as np
import random as rand
import matplotlib.pyplot as plt

def death_list (neurons):
 NN = len(neurons)
 output = np.zeros(12240);
 q = float(NN)
 percentage = float(rand.sample(range(45,55),1)[0])/100
 x = rand.sample(range(0,12240),int(q*percentage))
 y = rand.sample(neurons,int(q*percentage))
 output[x] = y
 return output

def killer (q,days):
 NN = np.count_nonzero(q)
 neurons = np.zeros (NN)
 l = len (q)
 counter = 0
 for i in range (0,l):
 for j in range (0,l):
 if q[i,j]!=0:
 idx = i*l+j
 neurons[counter] = idx
 counter+=1
 dead_idx = death_list(neurons)
 dead_idx = dead_idx [0:days*60*12]

 for i in range (0,len(dead_idx)):
 if dead_idx[i] !=0:
 dead = dead_idx[i]
 x = dead/l
 y = dead%l
 q[x,y] = 2.5
 return q

Program 8. Implementation of cell death

66

APPENDIX D. MORPHOLOGY

This appendix provides the code for generating the distributions based on morphology.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

from shapely.geometry import LineString
from matplotlib.pyplot import *
from locations import *
from numpy import *
import numpy as np
import numpy as np
from rotator import *
import matplotlib.pyplot as plt
import math as mth
import time
def morpho_generator (area, neuron , n, morpho_source) :
 p,q = MEA_locations(area,neuron, n)
 print (p)
 # print morpho_source [5]
 total_morpho = zeros ([n,shape(morpho_source)[0],shape(mor-
pho_source)[1]])
 morpho_temp = copy(morpho_source)
 for r in range (n):
 soma_x = float(morpho_temp[0][2]) + p[r][0]
 soma_y = float(morpho_temp[0][3]) + p[r][1]
 angle = np.random.random(1) * 360
 for l in range(len(morpho_temp)):
 temp_x = float(morpho_temp[l][2]) + p[r][0]
 temp_y = float(morpho_temp[l][3]) + p[r][1]
 point = rotator((soma_x,soma_y),(temp_x,temp_y),angle)
 # morpho_temp[l][2] = str(float(morpho_temp[l][2]) +
p[r][0])
 # morpho_temp[l][3] = str(float(morpho_temp[l][3]) +
p[r][1])
 morpho_temp[l][2] = str(point[0])
 morpho_temp[l][3] = str(point[1])
 # l[2] = str(float(l[2]) + p[r][1])
 # l[3] = str(float(l[3]) + p[r][0])
 total_morpho [r,:,:] = morpho_temp
 # print morpho_temp[0]
 morpho_temp = copy(morpho_source)

 # print morpho_source[5]
 return total_morpho , p,q

def multi_morpho_generator (area, neuron , n, morpho_source ,types,
dist) :

 p,q = MEA_locations(area,neuron, n)
 print (p)
 # print morpho_source [5]
 pick = array ([])
 for idx , qq in list(enumerate(dist)):
 temp_ = round(qq*n)
 pick = append(pick, (idx)*ones(temp_)) # this creates an ar-
ray of 1 , 2, ... each repeated by number of cells per type. in next

67

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

step it will be shuffled to determine the final formation of all
type of cells.
 np.random.shuffle(pick)
 while len(pick) < n :
 pick = append (pick, array([len(dist)]))
 random.shuffle(pick)
 total_morpho = {}
 # total_morpho = zeros ([n,shape(morpho_source)[0],shape(mor-
pho_source)[1]])
 # morpho_temp = copy(morpho_source)

 for r in range (n):
 morpho_temp = copy(morpho_source[types[int(pick[r])]]) #
this put the right model inside the temp
 # morpho_temp = [map(float,p) for p in morpho_temp]
 soma_x = float(morpho_temp[0][2]) + p[r][0]
 soma_y = float(morpho_temp[0][3]) + p[r][1]
 angle = np.random.random(1) * 360
 for l in range(len(morpho_temp)):
 temp_x = float(morpho_temp[l][2]) + p[r][0]
 temp_y = float(morpho_temp[l][3]) + p[r][1]
 point = rotator((soma_x,soma_y),(temp_x,temp_y),angle)
 # morpho_temp[l][2] = str(float(morpho_temp[l][2]) +
p[r][0])
 # morpho_temp[l][3] = str(float(morpho_temp[l][3]) +
p[r][1])
 morpho_temp[l][2] = str(point[0])
 morpho_temp[l][3] = str(point[1])

 # l[2] = str(float(l[2]) + p[r][1])
 # l[3] = str(float(l[3]) + p[r][0])
 total_morpho [r] = {}
 total_morpho [r]['type'] = types[int(pick[r])]
 total_morpho [r]['points'] = [map(float,pp) for pp in mor-
pho_temp]

 # total_morpho [r,:,:] = morpho_temp
 # print morpho_temp[0]
 # morpho_temp = copy(morpho_source)

 # print morpho_source[5]
 return total_morpho , p,q , pick

def rotator(centerPoint,point,angle):
 """Rotates a point around another centerPoint. Angle is in de-
grees.
 Rotation is counter-clockwise"""
 angle = math.radians(angle)
 temp_x = point[0]-centerPoint[0]
 temp_y = point[1] - centerPoint [1]
 dist = sqrt(temp_x**2 + temp_y**2)
 # old_ang = arccos(temp_x/dist)
 # total_ang = old_ang + angle
 new_x = float('%.2f'%(cos(angle)*temp_x - sin(angle)*temp_y +
centerPoint[0]))
 new_y = float('%.2f'%(sin(angle)*temp_x + cos(angle)*temp_y +
centerPoint [1]))

68

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

 # temp_point = point[0]-centerPoint[0] , point[1]-centerPoint[1]
 # temp_point = (temp_point[0]*math.cos(angle)-
temp_point[1]*math.sin(angle) , temp_point[0]*math.sin(an-
gle)+temp_point[1]*math.cos(angle))
 # temp_point = temp_point[0]+centerPoint[0] , temp_point[1]+cen-
terPoint[1]
 temp_point = array([new_x,new_y])
 return temp_point

def all_permutations (temp_axons,temp_dends):
 results = array([])
 for a in range(1,len(temp_axons)) :
 if float(temp_axons[a][0]) == float(temp_axons[a][6])+1:
 temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[a-
1][2]),float(temp_axons[a-1][3]))])
 else:
 target_idx = [p[0] for p in zip(*where(temp_axons == ar-
ray([temp_axons[a][6]]))) if p[1] == 0][0]
 temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[tar-
get_idx][2]),float(temp_axons[target_idx][3]))])
 for d in range (1,len(temp_dends)):
 if float(temp_dends[d][0]) == float(temp_dends[d][6])+1:
 temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[d-1][2]),float(temp_dends[d-1][3]))])
 else:
 target_idx = [p[0] for p in zip(*where(temp_dends ==
array([temp_dends[d][0]]))) if p[1] == 0][0]
 temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[target_idx][2]),float(temp_dends[target_idx][3]))])
 temp_line = temp_line1.intersection(temp_line2)
 if temp_line :
 results = (results,array(temp_line1.intersec-
tion(temp_line2)))
 return len(results) , results # this function returns the number
of synapses between a set of dends which are totlaly inside a set a
axons as well as the points of connection

##
##############

def partial_permutation (temp_axons , temp_dends):
 results = array([])
 for a in range(1,len(temp_axons)) :
 temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[a-
1][2]),float(temp_axons[a-1][3]))])
 for d in range (1,len(temp_dends)):
 temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[d-1][2]),float(temp_dends[d-1][3]))])
 temp_line = temp_line1.intersection(temp_line2)

69

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

 if temp_line :
 results = (results,array(temp_line1.intersec-
tion(temp_line2)))
 return len(results[1:]) , results[1:]

def status (str):
 cleaner = ' ' * 100
 print '\r'+ cleaner + '\r' + str,

NN =100
neuron_size = 5000

plate_size = 851929
neuron = array(['1', '1', '2.39', '-1.6', '-563.94', '11.1795', '-
1'])
types = ['pyramidal','basket']
types_location = ['C:/Users/admin_tunnus/Desktop/pyrami-
dal.swc','C:/Users/admin_tunnus/Desktop/basket.swc']
neurons_source = {}
for i in range (len(types)) :
 neurons_source[types[i]] = array(['1', '1', '2.39', '-1.6', '-
563.94', '11.1795', '-1'])
 with open (types_location[i], 'r') as f :
 for line in f:
 if not (line.startswith('#')):
 neurons_source[types[i]] = vstack ((neu-
rons_source[types[i]], line.split()))
 neurons_source[types[i]] = neurons_source[types[i]][1:]
neuron = neuron [1:]
dist = array([0.7,0.3])
all_neurons,somas, structure , type_array = multi_morpho_genera-
tor(plate_size,neuron_size,NN,neurons_source,types,dist)
somas = divide (somas,neuron_size)
axons = {}
dends = {}
points = {}
for idx in range (NN):
 axons["a%d" %idx] = [p for p in all_neurons[idx]['points'] if
p[1]==2]
 dends["d%d" %idx] = [p for p in all_neurons[idx]['points'] if
p[1]==3]
 points["n%d" %idx] = {}
total_max = max(max([qq[2] for pp in all_neurons for qq in pp]),
max([q[3] for p in all_neurons for q in p]))
total_min = min(min([qq[2] for pp in all_neurons for qq in pp]),
min([q[3] for p in all_neurons for q in p]))
print "starting finding the branches"
all_branches = branch_finder (all_neurons)
print"branches are ready "

colors = array(['b','g','r','c','m','y','k'])

fig = plt.figure()
ax = fig.add_subplot(111)
print "plotting the neurons"
branch_status = 0
branch_total = len([ne for ne in all_branches])
indices_array = type_array

70

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

for pp in range(len (types)):
 temp_ar = zeros ([len(type_array)])
 counter = 0
 for ii, q in list(enumerate(type_array)) :
 if q == pp :
 temp_ar[ii] = counter
 counter +=1
 indices_array = vstack([indices_array,temp_ar])
indices_array =indices_array[1:]
final_result = {}
points = array([0,0])
passed_number = 0.
sh1 = shape ([axons[p] for p in axons])
sh2 = shape ([dends[p] for p in dends])
total_number = sh1[0] * (sh1[1]-1) * (sh2[0]-1) * (sh2[1]-1)
print (total_number)
fr = array([])
to = array([])
sy = array([])

print "finding boundry boxes"
axon_borders = zeros ([NN,4,2]) # border points of each neuron 0 is
upper left, 1 is upper right and so on
dend_borders = zeros ([NN,4,2])
counter1 = 0
for neuron in range (NN):
 axon_borders[neuron,0,:],axon_borders[neuron,1,:],axon_bor-
ders[neuron,2,:], axon_borders[neuron,3,:] = boundry_box (ax-
ons['a%d'%neuron])
 dend_borders[neuron,0,:] , dend_borders[neuron,1,:] , dend_bor-
ders[neuron,2,:], dend_borders[neuron,3,:] = boundry_box
(dends['d%d'%neuron])
 counter1+= 1
 percentage = float(counter1)/NN *100
 status ("%.2f %% of locating borders completed\n" %percentage)
print (structure)
print (axon_borders)
print(dend_borders)
next two lines draw the whole boundries
plt.plot([qq[0] for pp in axon_borders for qq in pp],[qq[1] for pp
in axon_borders for qq in pp],'ro')
plt.plot([qq[0] for pp in dend_borders for qq in pp],[qq[1] for pp
in dend_borders for qq in pp],'bs')
show()
raw_input("press to continue...")
dig_level = 1
zeros_src = 0
syn_set = -1

connection_map = {}

print "start finding axons and dends borders"
for q,t in zip(dend_borders,axon_borders) :
 col = random.choice(colors)
 for t2 in range (3) :
 plt.plot ([t[t2][0],t[t2+1][0]],[t[t2][1],t[t2+1][1]],col)
 plt.plot([q[t2][0],q[t2+1][0]],[q[t2][1],q[t2+1][1]],col)
 plt.plot ([t[0][0],t[3][0]],[t[0][1],t[3][1]],col)

71

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

338

340

342

344

346

348

 plt.plot ([q[0][0],q[3][0]],[q[0][1],q[3][1]],col)
show()

print "creating connection map "
map_current = 0
map_total = NN
for targ in range (NN) :
 temp_axon_border = axon_borders[targ,:,:]
 connection_map['n%d'%targ] = {}
 connection_map['n%d'%targ]['neuron_type'] = type_array[targ]
 for ref in range (NN):
 if targ!=ref :
 temp_dends_border = dend_borders[ref,:,:]
 _,temp_type,temp_boundry = intersect_finder
(temp_axon_border[0],temp_axon_border[1],temp_axon_bor-
der[2],temp_axon_border[3],temp_dends_border[0],temp_dends_bor-
der[1],temp_dends_border[2],temp_dends_border[3],boundry_flag=1)
 if temp_type != '0P':
 connection_map['n%d'%targ]['n%d'%ref]= {}
 connection_map['n%d'%targ]['n%d'%ref]['type'] =
temp_type
 connection_map['n%d'%targ]['n%d'%ref]['neuron_type']
= type_array[ref]
 connection_map['n%d'%targ]['n%d'%ref]['boundry'] =
temp_boundry
 map_current +=1
 map_perc = float (map_current *100) / map_total
 status ("%.2f%% of creating connection map completed"%map_perc)

show()
print (connection_map)
raw_input("somehting")
show()
print connection_map

total_calc = len([q for p in connection_map for q in connec-
tion_map[p] if q!= 'neuron_type'])
current_calc = 0
print "Finding Connections"
for src , target in list(enumerate(connection_map)):
 for dest, reference in list(enumerate(connection_map[target])):
 if reference != 'neuron_type' :
 print target,reference
 start_time = time.time()
 temp_boundries_boundry = connection_map[target][refer-
ence]['boundry']
 temp_type = connection_map[target][reference]['type']
 print temp_type
 temp_axons_branches = [all_branches[target]['axons'][b]
for b in all_branches[target]['axons'] if intersect_finder\
 (all_branches[target]['ax-
ons'][b]['boundry'][0],all_branches[target]['ax-
ons'][b]['boundry'][1],\
 all_branches[target]['ax-
ons'][b]['boundry'][2],all_branches[target]['ax-
ons'][b]['boundry'][3],\

72

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

temp_boundries_boundry[0],temp_boundries_boundry[1],temp_boundries_b
oundry[2],temp_boundries_boundry[3])[1] != '0P']
 temp_dends_branches = [all_branches[refer-
ence]['dends'][b] for b in all_branches[reference]['dends'] if in-
tersect_finder\
 (all_branches[refer-
ence]['dends'][b]['boundry'][0],all_branches[refer-
ence]['dends'][b]['boundry'][1],\
 all_branches[refer-
ence]['dends'][b]['boundry'][2],all_branches[refer-
ence]['dends'][b]['boundry'][3],\

temp_boundries_boundry[0],temp_boundries_boundry[1],temp_boundries_b
oundry[2],temp_boundries_boundry[3])[1] != '0P']
 syn_set+=1
 final_result['syn_set%d'%syn_set] = {}
 final_result['syn_set%d'%syn_set]['from'] = {}
 final_result['syn_set%d'%syn_set]['from']['idx'] = tar-
get
 final_result['syn_set%d'%syn_set]['from']['type'] =
connection_map[target]['neuron_type']
 final_result['syn_set%d'%syn_set]['to'] = {}
 final_result['syn_set%d'%syn_set]['to']['idx'] = refer-
ence
 final_result['syn_set%d'%syn_set]['to']['type'] =connec-
tion_map[target][reference]['neuron_type']
 final_result['syn_set%d'%syn_set]['n'] = 0
 final_result['syn_set%d'%syn_set]['points'] = array
([0,0]) # remeber to remove first element since it's an empty array
 total_per = len(temp_axons_branches) *
len(temp_dends_branches)
 current_per = 0
 for t_ax in temp_axons_branches :
 for t_de in temp_dends_branches:
 if (inter-
sect_finder(t_ax['boundry'][0],t_ax['boundry'][1],t_ax['boundry'][2]
,t_ax['boundry'][3],t_de['boundry'][0],t_de['boundry'][1],t_de['boun
dry'][2],t_de['boundry'][3])[1] != '0P'):
 temp_final_n ,temp_final_points = par-
tial_permutation([q1 for q1 in t_ax['points']],[q2 for q2 in
t_de['points']])
 final_result['syn_set%d'%syn_set]['n'] +=
temp_final_n
 if temp_final_n != 0 :
 final_re-
sult['syn_set%d'%syn_set]['points'] = vstack ([final_re-
sult['syn_set%d'%syn_set]['points'],temp_final_points])
 # status ("%d found"%final_re-
sult['syn_set%d'%syn_set]['n'])
 current_per += 1
 current_perc= float(current_per)*100/total_per
 status("%.2f%% of current neuron is finnished
"%current_perc)
 elapsed_time = time.time() - start_time
 print (" the time is : %f " %elapsed_time)
 final_result['syn_set%d'%syn_set]['points'] = final_re-
sult['syn_set%d'%syn_set]['points'][1:]
 current_calc += 1

73

410

412

414

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

464

466

 total_calc_perc= float(current_calc)*100 / total_calc
 status ("#################### Totally %.2f%% completed"
%total_calc_perc)
print(final_result)

following three lines gather the points of connection and plot
them with green triangles
for_plot1 = [i for i in [final_result[p]['points'] for p in fi-
nal_result] if len(i)!= 1]
for_plot = [qq for jj in for_plot1 for qq in jj]
plt.plot([i[0] for i in for_plot],[i[1] for i in for_plot],'b^')
plt.plot([i[0] for i in for_plot],[i[1] for i in for_plot],'y^')
#########
save('C:/Users/andalibi/Local/connectionmap', connection_map)
save('C:/Users/andalibi/Local/final_result', final_result)

pickle.dump(connection_map, open("C:/Users/admin_tunnus/Desk-
top/results/connectionmap.p", "wb"))
pickle.dump(final_result, open("C:/Users/admin_tunnus/Desktop/re-
sults/final_result.p", "wb"))
pickle.dump(indices_array, open("C:/Users/admin_tunnus/Desktop/re-
sults/indices_array.p", "wb"))
pickle.dump(all_branches, open("C:/Users/admin_tunnus/Desktop/re-
sults/all_branches.p", "wb"))
pickle.dump(all_neurons, open("C:/Users/admin_tunnus/Desktop/re-
sults/all_neurons.p", "wb"))
pickle.dump(somas, open("C:/Users/admin_tunnus/Desktop/results/so-
mas.p", "wb"))
pickle.dump(structure, open("C:/Users/admin_tunnus/Desktop/re-
sults/structure.p", "wb"))
plt.axis('equal')
show()

def branch_finder (all_neurons) :
 branches = {}
 finder_current = 0
 finder_total = len(all_neurons)
 for idx in range (len(all_neurons)):
 branches ["n%d"%idx] = {}
 branches ["n%d"%idx]['axons'] = {}
 branches ["n%d"%idx]['dends'] = {}
 # temp_1 = [p for p in all_neurons[idx] if ((p[0]!=p[6]+1)
and len([q for q in all_neurons[idx] if q[0]==p[6]])!=0)]
 temp_1 = [p for p in all_neurons[idx]['points'] if
((int(p[0])!=int(p[6])+1) and len([q for q in all_neu-
rons[idx]['points'] if q[0]==p[6]])!=0)]
 all_0 = array([int(j[0]) for j in all_neu-
rons[idx]['points']])
 places = [where (all_0 == int(jj[0])) for jj in temp_1]
 counter1 = 0 # this is for axons
 counter2 = 0 # this is for dendrites
 for m1 in range (1,len(temp_1)):
 start_idx = int(places[m1][0]) # start is the first
point of branch , begin is the 0 point of branch
 prev_start_idx = int(places[m1-1][0])
 begin_idx = int(all_neurons
[idx]['points'][prev_start_idx][6]) -1

74

468

470

472

474

476

478

480

482

484

486

488

490

 if int(all_neurons[idx]['points'][start_idx][1]) == 2:#
this goes for axonal brnaches
 branches ['n%d'%idx]['axons']['br%d'%counter1] = {}
 branches ['n%d'%idx]['axons']['br%d'%coun-
ter1]['points'] = vstack([all_neurons
[idx]['points'][begin_idx],all_neurons[idx]['points'][prev_start_idx
: start_idx]]) # the branch is created and the first point is also
considered
 branches ['n%d'%idx]['axons']['br%d'%coun-
ter1]['boundry'] = boundry_box (branches ['n%d'%idx]['ax-
ons']['br%d'%counter1]['points'])
 counter1+=1
 elif int(all_neu-
rons[idx]['points'][int(places[m1][0])][1]) == 3:
 branches ['n%d'%idx]['dends']['br%d'%counter2] = {}
 branches ['n%d'%idx]['dends']['br%d'%coun-
ter2]['points'] = vstack([all_neurons
[idx]['points'][begin_idx],all_neu-
rons[idx]['points'][prev_start_idx:start_idx]])
 branches ['n%d'%idx]['dends']['br%d'%coun-
ter2]['boundry'] = boundry_box (branches
['n%d'%idx]['dends']['br%d'%counter2]['points'])
 counter2+=1
 finder_current +=1
 finder_perc = float(finder_current*100)/finder_total
 status ("%.2f%% of branch finding completed"%finder_perc)
 return branches

Program 9. The implementation used for utilizing morphology for the purpose of find-
ing connections

	1. Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure

	2. BACKGROUND STUDIES
	2.1 Behavioral Models of biological neurons
	2.1.1 Hodgkin-Huxley model
	2.1.2 Leaky-Integrate-and-Fire (LIF) model
	2.1.3 Izhikevich Model

	2.2 Models of neuronal plasticity
	2.2.1 Hebb’s Rule
	2.2.2 Oja’s Rule
	2.2.3 Generalized Hebbian Algorithm (GHA)
	2.2.4 Spike Timing Dependent Plasticity (STDP)

	2.3 Connectivity Analysis

	3. Implementation and outputs
	3.1 MEA Plate
	3.1.1 Neuron
	3.1.2 Synaptic Plasticity
	3.1.3 Cell Distribution
	3.1.4 Cell Death
	3.1.5 Connections and Neuromorphology
	3.1.6 Mini-Compiler
	3.1.7 Cell Stimulation
	3.1.8 Linking the Components

	3.2 Functional Connectivity Analysis
	3.2.1 Component Analysis of Cox method
	3.2.2 1st algorithm
	3.2.3 2nd algorithm
	3.2.4 Test and performance evaluation of algorithms

	4. Results and Evaluation
	4.1 MEA simulator
	4.2 Functional Connectivity Analysis
	4.2.1 CPU vs GPU
	4.2.2 GPU alg. 1 vs GPU alg. 2

	5. Discussion
	5.1 MEA Simulator
	5.2 Connectivity Analysis

	6. Future Works
	6.1 MEA simulator

	7. Conclusion
	7.1 Simulation of neuronal activity in MEA plate
	7.2 Connectivity analysis of neuronal network

