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ABSTRACT 
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This thesis work is part of a project from Academy of Finland aiming at integrating bio-
logical components in sensor networks. The current integration goal considers neuronal 
cultures for achieving data processing. Due to the high capacity of neuronal cultures in 
parallel computation, the main assumptions of this project are that such integration will 
enable data processing that is not achievable with electrical components, and will reduce 
energy consumption. Within the scope of this project, the objective of this thesis is to 
develop realistic computational models of neuronal cultures plated on Multi-Electrode 
Arrays (MEAs). MEAs are integrated circuits used for stimulating cell cultures and re-
cording their electrophysiological activity. Such models are used in the project for feasi-
bility simulations and preliminary developments of bio-integrated systems (BIS). The 
contribution of this thesis is twofold: modeling plausible neural cultures on MEA, and 
analysis of the connectivity of neural networks. The first part contributes in gaining an 
in-depth understanding of the behavior of the neural network in MEA plate. A simulation 
framework is designed, implemented and used to simulate the neuronal activity in a MEA 
plate containing 1000 neurons. Using the implemented framework, it is now possible to 
simulate a MEA plate with many customizable parameters, e.g. MEA size, neuron size, 
type and morphology. The second part contributes with two implementations of a method 
for functional analysis of neural networks. Two GPU-accelerated algorithms of the Cox 
method were implemented with the CUDA platform. The Cox method is a proven robust 
method for the analysis of functional connectivity in networks. This method, formerly 
demanding a long time as well as consequent CPU power, can now run hundreds of times 
faster on CUDA-supported GPUs in personal computers.  
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1. INTRODUCTION 

1.1 Motivation 

Integrating biological components as part of computer is a present-day challenge as it can 
improve the devices in matter of energy consumption whilst keeping their computational 
performance high [1], [2]. Researchers from various disciplines, e.g. robotics [3], [4] and 
communication networks [5], [6] are recently paying more attention to systems integrat-
ing biological parts [7]–[9]. An interesting application of these systems, named Bio-Inte-
grated Systems (BISs), is a system controller interfaced with biological neuronal network 
cultured on an electrode grid surface. An example of these grids is Micro-Electrode Array 
(MEA) plate [10] that is capable of both stimulating the neurons and recording their firing 
patterns [9]. Advantage of neural interfacing is possibility of studying and manipulation 
of these networks which leads to clarification of their fundamental mechanisms. Further-
more, enhancement of current engineering functionalities as well as new ones would be 
made possible by interfacing with cell cultures [11]. 

Examples of the most recent stage in interface development of living culture with non-
biological systems would be the closed-loop stimulus-response system developed by Pot-
ter et al. [11], the robot with biological brain developed in [3], Lego Mindstorm robot 
created by Shahf et al. [12], robot arm controlled with a biological neuronal network [13] 
and using living neurons to control the flight of a simulated aircraft [14]. In the work done 
by Shahaf et al. [12] the data is produced from ultrasonic sensors, aka “the eye” of the 
robot, and is used for stimulation of large random networks of neurons.  In all of these 
examples, the vital component interfacing the non-biological system to biological neu-
ronal network is MEA plate. 

The early studies on field of MEA were mainly focused on development of MEA hard-
ware. The rapid growth of utilization of these instruments in electrophysiology commu-
nity has resulted in new applications. For instance, researchers used MEA to advance the 
study of hypothalamus, that is a key component of the brain regulating important body 
functions [15]. In other application, the hippocampus, that is a vital component in for-
mation of memories and is the main research focus for Alzheimer treatment, is studied 
using MEA plate [16], [17]. Regarding the spinal cord studies and treatments, several 
researches employed MEAs [18], [19]. Other areas utilizing MEA are heart research [20], 
Hippocampal oscillation studies [21] and studies regarding the he synchronized activity 
of the cardiac muscles and stem cells [22]. MEA enables new types of experiments that 
cannot be maintained with traditional instrumentation.  
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Observing the ensembles of biological neural networks is essential for developing novel 
topologies of Artificial Neural Networks (ANNs). With this regard, functional analysis 
of neuronal connections [23] and connection changes [24] plays crucial roles due to two 
reasons. Firstly, causal relations between input stimuli and the activation of paths in a 
neural network becomes possible using this analysis. Secondly, strong relation between 
structure and functionality of a network can be built based on the same analysis. There is 
a hypothesis proposing a strong correlation between network’s function and its structure. 
Based on this hypothesis, the analysis of the temporal connectivity between neurons can 
be utilized to reproduce neuronal network which was previously build for special func-
tionalities such as face recognition, natural language processing or machine learning 
[25]–[27]. 

1.2 Contribution 

Modeling and simulation is used to represent the behavior of a system, by reproducing 
the real experiments. The advantages of simulation and modeling are avoiding the ex-
penses for building a prototype, damage prevention, easy modification and re-testing, and 
error detection and correction. In a real experiment, error cause fault and damage which 
will demands a correction and finally leads to a new prototype. The contribution of this 
thesis can be divided into two main sections. First, a realistic model of MEA plate and 
second, connectivity analysis of the data recorded from simulated or real biological neu-
ronal network. 

First, having a model for MEA plate benefits us in many aspects: saving lab expenses, 
difficulties in preparing cell cultures, preventing spontaneous failures due to human er-
rors, re-performing an experiment with exact same condition, etc. This work is dedicated 
for implementing a model of MEA plate featuring as many realistic components as pos-
sible. The implementation of MEA plate in this work was implemented in python using 
the brain2 library for simulation of spiking neural networks. This library is easy to use 
and comprehensible for developers. Moreover, by employing other sophisticated python 
libraries alongside with brian2, better performance and representation for results were 
achieved.  

Second, in order to study the procedure of information processing in neuron groups and 
for understanding the neuronal interactions, a functional connectivity analysis method is 
demanded. Cox method, as a statistical technique for connectivity analysis that has been 
used in many previous studies, is capable of producing robust results. However, due to 
its statistical characteristic, this method is very heavy in matter of computation. By uti-
lizing the parallel nature of graphics processing, this study improves the runtime speed of 
Cox method enormously.  The second part of this work was implemented using PyCUDA, 
a wrapper of the CUDA API which provides the access to NVIDIA’s CUDA parallel 
computation API from python, enabling execution of parallel computations on GPU. 
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These two main parts can be combined by inputting the simulation outputs resulted from 
the first part to the second part, i.e. Cox method. This Combining has two major advan-
tageous. First, dynamic behavior of the connectivity in a neural network can be found and 
be compared to the known behaviors of a biological neural network. This can either 
strengthen or weaken the robustness of the simulation results and can be used as a tool to 
evaluate different behavioral models. Second, observing and controlling the connection 
of neurons in a neural network is the crucial part in the topic of supervised learning. Com-
bination of the two main tools of this study, can lead to a more realistic simulation of 
supervised learning using spiking neural networks. 

1.3 Structure 

In order to have a realistic model of MEA plate, it should be broken down into its consti-
tutive elements. Then, each element should be considered as a sub-system, necessitating 
a separate modeling and the seamless interaction of these sub-models should be handled 
as realistic as possible, whilst preserving the realistic characteristic. Based on these crite-
ria, seven vital components of MEA plate are considered in this study: 1) neuron model 
2) Neuronal interaction model 3) Stimulation 4) Distribution of neurons over the grid 5) 
Neuromorphology 6) Cell death 6) mini-compiler for inputting determined connection 
map to brian, cell stimulation. Beside above-listed components, there are two terms that 
are crucial for MEA when it is purposed to be employed as an interface in bio-integrated 
systems: Structural Connectivity and Functional Connectivity. These terms are also im-
plemented and explained in details. 

This thesis consists of major parts. In the second chapter, i.e. background studies, some 
well-known models of important components of a MEA plate, namely neurons and plas-
ticity, as well as different methods for connectivity analysis of spiking neural networks is 
presented. The reviewed neuron models are Hodgkin-Huxley, Leaky-Integrate-and-Fire 
(LIF) model and Izhikevich model and for Neuronal Plasticity four famous plasticity 
rules, namely Hebb’s rule, Oja’s Rule, Generalized Hebbian Algorithm (GHA) and Spike 
Timing Dependent Plasticity (STDP) are presented. In section 2.3, a review of different 
connectivity analysis methods are provided and the selection of the best method is justi-
fied as well.  

In chapter 3, first the internal components required for implementing a realistic simulation 
of MEA plate, i.e. neuron, synaptic plasticity, cell distribution, cell death, connections 
and neuromorphology, mini-compiler as well as the procedure of linking these compo-
nents, is provided. In the second section, Cox method is firstly reviewed in short. This is 
followed by presenting two different algorithms for accelerating its performance using a 
parallel computing. Finally, the testing protocol the methods for its performance evalua-
tion is provided. 
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Fourth chapter of this study provides the results from both the simulation of MEA plate 
after linking its internal components as well as a detailed performance evaluation and 
performance comparison of the Cox method. In the chapter 5 and 6, the discussion and 
potential future works of this study is presented. 
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2. BACKGROUND STUDIES 

In the following section, works related to each component are reviewed in brief. This 
covers the main neuron models, main models of neuroplasticity, distribution algorithms, 
cell death and growth. Moreover, methods related to functional connectivity analysis of 
neuronal networks are reviewed as well. 

2.1 Behavioral Models of biological neurons 

As the essence of MEA plate, having a realistic computational model for biological neu-
ron is vital. This model must at least represent the electrochemical behavior of neural 
cells as well as their growth. The former is modeled based on the flow of the ions as well 
as electrical current from outside to inside and vice versa. Regarding the neuronal con-
nectivity, i.e. plasticity, the methods reviewed in following sections are based on syn-
chronized activity of neurons. Inter-neuronal synapses strengthened as neurons fire syn-
chronously.  

2.1.1 Hodgkin-Huxley model 

The accurate model proposed by Hodgkin and Huxley in 1952 [28], provides an electrical 
circuit as a representation of differential equations describing the cell membrane ionic 
currents and its electrical potential, as illustrated in Figure 1. Since this model features 
four differential equations, it is computationally heavy and is not proper for large scale 
simulations. Hence the later models focused on the dynamics of neurons in order to pro-
pose a computationally simpler model. 

2.1.2 Leaky-Integrate-and-Fire (LIF) model 

This model[29] replaces the Hodgkin-Huxley’s four differential equations with one dif-
ferential equation described in equation (1): 

 𝐶𝐶𝑉̇𝑉 = 𝐼𝐼 − 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑉𝑉 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) (1) 

where the membrane potential 𝑉𝑉 is defined as a function of time and sum of ion gates 
currents, 𝐼𝐼. 𝐶𝐶, 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 represents the capacitance, leakage conductance and leak-
age equilibrium potential of the membrane respectively. When membrane potential 
reaches a threshold, the neuron is considered as firing an action potential. The drawback 
of this model is manual drawing of spikes when the membrane potential reaches the 
threshold. 
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Figure 1. Original Hodgkin-Huxley electrical circuit representing the differential 
equations relating membrane ionic currents and its electrical potential, repro-

duced from [28] 

2.1.3 Izhikevich Model 

Later on, the issue in LIF model was addressed by Ermentrout [30], proposing a quadratic 
integrate-and-fire model. As opposed to LIF, this model was intrinsically capable of gen-
erating spikes and a dedicated value controls the peak value of the spike. In Hodgkin-
Huxley model, there are many parameters that are dedicated to electrophysiological con-
ductance. In practice, however, these parameters are difficult to measure. On the contrary, 
quadratic models possess fewer parameters which are easily adjustable in a way to match 
the real recordings [30].  

Simple model of neuronal behavior proposed by Izhikevich [31], [32] can generate a very 
accurate dynamical behavior of neurons [24] whilst being computationally simpler than 
Hodgkin-Huxley model. This model is defined using following equations: 

 𝐶𝐶𝑣̇𝑣 = 𝑘𝑘(𝑣𝑣 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)(𝑣𝑣 − 𝑣𝑣𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ) − 𝑢𝑢 + 𝐼𝐼, 𝑖𝑖𝑖𝑖 𝑣𝑣 > 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑣𝑣
 
←  𝑐𝑐,𝑢𝑢

 
← 𝑢𝑢 + 𝑑𝑑  

 𝑢̇𝑢 = 𝑎𝑎[𝑏𝑏(𝑣𝑣 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) − 𝑢𝑢] (2)  

where 𝐶𝐶, 𝑣𝑣,𝑢𝑢, 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑣𝑣𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represent membrane capacitance, membrane po-
tential, recovery current, resting potential, threshold potential and peak potential respec-
tively and  𝑘𝑘, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 are constant parameters.  

As a basic benchmark for neuron of Izhikevich, this model was compared with a signal 
recorded from a real experiment. There are multiple ways of such comparison, among 
which the simplest manner is to subtract one to the other and analyze the value of the 
resulting error. This practice, depicted in Figure 2 is usually used in closed-loop control. 
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Figure 2. An example for comparison between signals generated from models and 
signals recorded from biological neuron. (a) Illustration of comparison between 
data from a model and from ‘in-vitro’ experiment. (b) Comparison of short-term 

synaptic plasticity (STP) signal (in red) extracted from the model proposed in 
[33] with a signal of STP from in-vitro experiment (black signal with noise). 

As an example of this practice applied on Izhikevich model, Figure 2 illustrates the short-
term plasticity (STP) in ‘in-vitro’ environment (black curves with noise). The red curve, 
which represents the generated STP model proposed in [33], is almost identical to the 
black curve.  Nevertheless, determination of structure and function of a neuronal network 
necessitate an in-depth behavioral analysis of neurons during the network formation and 
solely modeling of firing patterns is not sufficient. 

2.2 Models of neuronal plasticity  

Neuronal plasticity is defined as the way with which neurons connect together and make 
their connection stronger. 

2.2.1 Hebb’s Rule 

Regardless of its over-simplicity [34], the first model of plasticity, known as Hebb’s rule 
[35], is the ground rule for modeling Spike-Timing Dependent Plasticity (STDP). In sim-
ple words, this models is expressed as “neurons that fire together, wire together” [36]. 
Hebb’s rule is expressed as follows: 

 

b) 

a) 
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 𝑦𝑦 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
(3) 

 

 ∆𝑤𝑤𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦, 𝑖𝑖 ∈ ⟦1,𝑛𝑛⟧ (4) 

 

Where 𝑤𝑤𝑖𝑖 is the synaptic strength between pre-synaptic neuron 𝑥𝑥𝑖𝑖 and post synaptic neu-
ron 𝑦𝑦. However, based on to equation (4), the main issue in Hebb’s rule is the fact that 
the connection can only grow in strength and it does not weaken in any circumstances. 

2.2.2 Oja’s Rule 

In Oja’s model of plasticity [37], the previous issue of Hebb’s rule is solved. This was 
solved using a “forgetting” term (−𝑦𝑦2𝑤𝑤𝑖𝑖). Oja’s rule is expressed as following expression 
[38]:  

 𝛥𝛥𝑤𝑤𝑖𝑖 = 𝛼𝛼(𝑥𝑥𝑖𝑖𝑦𝑦 − 𝑦𝑦2𝑤𝑤𝑖𝑖), 𝑖𝑖 ∈ ⟦1,𝑛𝑛⟧ (5) 

 

where 𝑤𝑤𝑖𝑖 is connection strength and ∆𝑤𝑤𝑖𝑖 is the growth rate between pre-synaptic 𝑥𝑥𝑖𝑖 and 
post synaptic 𝑦𝑦 and 𝛼𝛼 is learning rate. As an additional feature, this rule is capable of 
convergence testing by finding the covariance matrix of network connectivity with Oja’s 
rule as principal component analyzer. 

2.2.3 Generalized Hebbian Algorithm (GHA) 

This model, proposed by Sanger [39], combines the Oja’s rule and Gram-Schmidt process 
of orthogonalizing [40]. This model is presented in following equation: 

 ∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛾𝛾(𝑡𝑡)(𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗�𝑤𝑤𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘

𝑗𝑗

𝑘𝑘=1

) (6) 

In equation (6) γ represents learning rate as a function of time, 𝑊𝑊𝑖𝑖𝑖𝑖 is connection strength 
between the ith input and the jth output. The conclusion of Sanger can be phrased as “the 
weights converge to the eigenvectors of the input distribution”. As oppose Oja’s rule 
which creates a neuronal network that converges to the first principal component, GHA 
is capable of finding eigenvector of a Principal Component Analysis [39]. 
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2.2.4 Spike Timing Dependent Plasticity (STDP) 

As the reference model of per- and post-synaptic connections. This model was proposed 
by Sjöström et al. [41] as follows: 

 ∆𝑤𝑤𝑗𝑗 = ��𝑊𝑊(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑗𝑗
𝑓𝑓)

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑓𝑓=1

 (7) 

where ∆𝑤𝑤𝑗𝑗 is strength changes in synapse j, calculated using sum of STDP function 

𝑊𝑊(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑗𝑗
𝑓𝑓), in which W, 𝑡𝑡𝑛𝑛 represents the nth spiking time of the postsynaptic neuron 

and fth spiking time of the presynaptic neuron j is represented as 𝑡𝑡𝑗𝑗
𝑓𝑓. The function 𝑊𝑊(𝑥𝑥) 

is expressed as following form: 

 𝑊𝑊(𝑥𝑥) = �𝐴𝐴+𝑒𝑒
− 𝑥𝑥
𝜏𝜏+ , 𝑥𝑥 > 0

𝐴𝐴−𝑒𝑒
− 𝑥𝑥
𝜏𝜏− , 𝑥𝑥 ≤ 0

 (8) 

Figure 3. Schematic of STDP drawn after 60 spike pairing from [42], regression 
curves reproduced using equation (8) 

 

This model is depicted in Figure 3, where positive growth of synaptic connection is hap-
pened due to pre-synaptic neuron activity. This effect can be presented as a negative 
strength when the pre-synaptic spikes arrives after post-synaptic spike. 
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2.3 Connectivity Analysis 

Generally, connectivity analysis methods can be categorized based on four criteria: 
whether or not a method is statistical, pairwise, Binless or real-time. This classification is 
illustrated in Table 1. In [43], Functional connectivity methods are expressed in two main 
categories: phase synchronization and statistical measures. This division is integrated as 
the first criterion in Table 1. There are two steps in synchronization analysis: instantane-
ous phase estimation and quantification of phase locking. PHs methods, however, are not 
applicable for BISs as it is based on deterministic dynamical system principle. 

Table 1. Classification of methods for analysis of connectivity of neural networks 

  Criteria 
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M
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Kalman Filter X X X X 

Cox X X X  

CuBIC X X X  

GLM X X   

MI X  X  

MSC X  X  

Cross-correlation     

Phase-Synchro.     

Instant phase estima-
tion 

    

 

 Pair-wise comparison methods of connectivity analysis are being widely used, e.g. cross 
correlation method. Mutual Information (MI) [44] and Mean-Square-Contingency (MSC) 
[45] can be used to quantify statistical dependencies. These methods utilize the statistical 
information of the joint space between two random variables. The major problem with 
these category is that they only consider the influence from the pair of trains being stud-
ied. However, since a single spike is affected by many more factors than a spike train 
from one post-synaptic neuron [46], the methods that rely on the pair-wise analysis of 
spike trains are not sufficient to characterize the connectivity of neuronal network. 
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The essence of the pair-wise methods for analysis of dependencies between spike trains, 
e.g. CCF [47], cross-intensity function [48], method of moments [49], coherence calcu-
lation [50] and joint peristimulus time histogram (JPSTH) [51], is to compare the spike 
trains pair by pair. For this reason, these methods have a main weakness of not observing 
the influence of all neurons in the network and therefore cannot distinguish the direct and 
indirect connectivity between the nodes as depicted in Figure 4. 

 

Figure 4. Example of two connectivities that pairwise methods cannot differentiate 
but can be recognized by both ML estimation methods and Granger causality 

analysis, redrawn from  [52] 

Regarding the next criterion, i.e. bin-dependency, this group of methods study the prob-
ability of appearance of a spike resulting from influence of all other spike trains and even 
its own previous activity. This probability is evaluated by calculating the Maximum of 
Likelihood function (ML). Generalized Linear Model (GLM) is among these group of 
methods taking into account all these influences and is applied to different cases of con-
nectivity analysis. The best practice for functional connectivity is deduced to be using 
multiple time scales. In this case, the results would be highly dependent on the testing 
window (bin) [53].  

The preferences for selecting a proper method is to select among binless ones as they are 
sensitive even with small amount of data. CuBIC method [54], is a successful attempt to 
suppress the effect of the bin in the computation of higher order correlations. The need 
for higher-order computation is estimated and unnecessary high-order computation is by-
passed. 

As for the final criterion, based on the time scale of ‘in-vitro’ experiment protocols and 
purpose of BIS development, the real-time connectivity analysis of a neural network with 
methods such as Kalman Filter [55] is not crucial.  

Based on granger causality, for two signals 𝑋𝑋1 and 𝑋𝑋2 where the former “Granger-causes” 
the latter, a better prediction of 𝑋𝑋2 can be achieved using the past values of 𝑋𝑋1 compared 
to the information contained in past values of 𝑋𝑋2 alone [52]. For instance, suppose we 
have three terms 𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑊𝑊𝑡𝑡 and the goal is to predict the value of 𝑋𝑋𝑡𝑡+1. If better pre-
diction is achieved using the past terms of all three variables compared to using only 𝑋𝑋𝑡𝑡 
and 𝑌𝑌𝑡𝑡, it can be said that past values of 𝑊𝑊𝑡𝑡 contain helpful information in forecasting 

1 2

3

1 2

3
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𝑋𝑋𝑡𝑡+1 which cannot be found in 𝑌𝑌𝑡𝑡 and 𝑋𝑋𝑡𝑡 itself. Therefore, 𝑊𝑊𝑡𝑡 would "Granger cause" 
𝑋𝑋𝑡𝑡+1 in two conditions [52]:  

 

- The occurrence of 𝑊𝑊𝑡𝑡 is before 𝑋𝑋𝑡𝑡+1 
- The information  found in 𝑊𝑊𝑡𝑡 is useful for predicting the value of 𝑋𝑋𝑡𝑡+1 and cannot 

be found in 𝑌𝑌𝑡𝑡  

Based on the aforementioned characteristics, many of the common methods of connec-
tivity analysis were classified and reviewed in [56]. The Cox method as a non-pairwise, 
statistical and binless method is known as a robust method for offline study of network 
connectivity. This method was initially proposed in signal processing area with the pur-
pose of analyzing the multivariate point processes. In [23], Borisyuk et al. showed that 
such analysis is proper for analyzing the signal recorded from spiking neural network. 
Cox method is built on the assumption that a spike on a spike train is modulated by other 
trains produced by other neurons of the network, i.e. the modulated renewal process 
(MRP). The model of this MRP is presented as a hazard function expressing the proba-
bility of a spike rate at time t relatively to all inter-spike intervals (ISIs) of a spike train 
of length t or more [23], [55]. In this model, the proportional hazard function for a spike 
train recorded from neuron A, in a network with n+1 neurons is formulated as: 

 φA(t) = φA�UA(t)�. e∑ βiZBi(t)
n
i=1  (9) 

 

where 𝜑𝜑𝐴𝐴(𝑡𝑡) represents the proportional hazard function of spike train of neuron A, 𝑈𝑈𝐴𝐴(𝑡𝑡) 
is the duration since the last spike of neuron A, 𝛽𝛽𝑖𝑖 is a representation for other neurons of 
the network affecting neuron A, and 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡) is the influence function of 𝛽𝛽𝑖𝑖 to A. The com-
putation of the log likelihood function is required for estimating the exponential part of 
the equation (9). This log likelihood function is expressed as following equation: 

 L�β�⃗ � = ��βi. ZBi(tkk)
m

k=1

n

i=1

−� log �� exp��βi. ZBi(tlk)
n

i=1

�
m

l=k

�
m

k=1

 (10) 

 

where n and m are the number of neurons that possibility can have effect on the target and 
number of recorded spikes respectively. With a spike train sorted based on the length of 
its ISIs and ∀k < l (l and k are indices of an ISI), 𝑡𝑡𝑙𝑙𝑙𝑙 is calculated as right end of the kth 
ISI whilst it is inserted inside the lth ISI in a way that their left ends coincide. This sorting 
process is presented with the example of a spike train of 3 spikes as in Figure 5, for which 
ISIs are sorted in Figure 6. Equation (10) is build based on the fact that the shortest ISIs 
between spikes has the highest influence on the target spike. 
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Figure 5.  Simple spike train of three spikes and corresponding ISIs 𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3. 

 

 

Figure 6. Spike train of Figure 5 sorted in ascending order based on length of ISIs 
and addressed as new values 𝑥𝑥(1), 𝑥𝑥(2) and 𝑥𝑥(3). The 𝑡𝑡𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑗𝑗) values resulted by 
allocating smaller ISIs inside the larger ones ( i ≥ j ), coinciding left ends and 

considering right end of 𝑥𝑥(𝑗𝑗) as the t value. 

 

Eventually, connectivity analysis will provide us with the results in form of adjacency 
matrix, as will be presented and described in section 4.2 in which cox method is applied 
on a simple network of 5 neurons. This adjacency matrix consists of three parts: 1) adja-
cency matrix of beta values, 2) adjacency matrix of confidence interval for beta values 
and 3) final connectivity results. In the first part, the value of Cox coefficients for each 
neuron is presented. Due to statistical nature of Cox method, these values are measured 
statistically and cannot be relied on without considering the Confidence Intervals which 
are provided in the second part. Based on the confidence intervals which are provided in 
this part, it is possible to find out which values in first table are reliable: if the confidence 
interval range contains zero, the cox-coefficient value is not a reliable once, hence should 
be removed from final results.  
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Figure 7. Example of adjacency matrix previously proposed in [23] as the final out-
put of the cox method indicating both the connectivity map and the strength of 

the connection. 

 

In other words, if the confidence interval values of a Cox coefficient value are both either 
positive or negative, the Cox coefficient value is acceptable, otherwise it should be omit-
ted.The connectivity result can be represented in the form of a connection scheme as is 
presented in Figure 7. This figure, is built after applying cox method on the spike trains 
recorded from neurons with the original connectivity scheme provided in Figure 8. In 
in Figure 7, not only the connection map of the neurons are observable, the strength of 
each connection can be understood based on the area of its circle. 
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Figure 8. Original connection scheme proposed in [23], on which Cox method was 
applied. The length of spike trains recorded from each neuron was equal to 

20,000 milliseconds. 
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3. IMPLEMENTATION AND OUTPUTS 

The description of methodologies in this section consists of two main parts: in the first 
section, the components of the MEA plate are described and in the second section, the 
components for functional connectivity analysis are presented. Note that in each section, 
for better understanding of the implementation and methodology approaches, the partial 
output related to that sub-section is presented in this section and in the result section, the 
final output resulted from the whole system as a combination of all components will be 
produced.  

3.1 MEA Plate 

The model of MEA plate contains eight components, each of which simulates a vital part 
of the MEA plate: the morphology, distribution of the cells, cell death, stimulator, mini-
compiler for brian and neuron and neuroplasticity models in brian.  

 

Figure 9. The components considered in the model of MEA plate in current study.  
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Figure 10. Example of the firing pattern of a Regular Spiking (RS) pyramidal 
neuron simulated with Izhikevich’s simple model [32]. (a) Simulation of the 
membrane potential response to a 70pA continuous excitation during 1s. (b) 

Phase portrait representation of the relations between the membrane potential v 
and the recovery current u. 

The approach taken here is bottom-up approach. As can be seen in figure (8) the idea of 
this approach begins with testing the model of single neuron. In the next step of this ap-
proach, the model is extend with neuronal plasticity, connectivity between the neurons 
and their growth. Finally, the model and its components are scaled up to full network of 
neurons with help of a cells distribution and evaluation of death rate during the process. 
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Regarding the provided components in figure (8), the intra-component relations are rep-
resented in the form of arrows. After determining the distribution of the neurons and using 
the source morphology file downloaded from neuromorpho library, the location of each 
point of cells are determined. In the next step, the death rate is applied on the neural 
population. The final results are compiled to be usable in brian. This compilation is main-
tained by generating syntaxes and running them inside brian, hence the link between mi-
ini-compiler and brian. In brian, the effect of stimulator is applied on both recording from 
neurons and stimulating them with current. Finally, the neuron model as well as plasticity, 
which is inextricably linked with the neuron model, are used inside brian.  

3.1.1 Neuron 

As described in section 2.1, there are many representations of neurons. Izhikevich model 
of spiking neuron was selected and implemented for this component. As oppose to Hodg-
kin-Huxley model which has a representation of neuronal components, this model repro-
duce the neuronal behavior mathematically. Whilst having a rational computational com-
plexity, Izhikevich model produce precise results very close to real neurons. In brian the 
Izhikevich equation was reproduced using the following part of code:  

 
2 
 

4 
 

6 
 

8 
 

10 

eqs_neurons = ''' 
dv/dt=(k*(v-vr)*(v-vt)-u)/memc + (-ge*v - gi*(v-er)+ external)/memc : 
volt 
du/dt=a*(b*(v-vr)-u) : amp 
dge/dt = -ge / taue : siemens 
dgi/dt = -gi/taui : siemens 
''' 
reset = ''' 
v=c 
u+=d 
''' 

Program 1. The code implemented in brian for Izhikevich neuron. 

In Program 1, the first variable, i.e. eqs_neurons, represents the two main formula of 
Izhikevich and the other variable, reset, defines the reset event of that mode. The param-
eters ge and gi in the first variable are used for applying the excitatory and inhibitory 
synapses on the neuron. Figure 10 shows an example of dynamical behavior of the 
Izhikevich model. In this example, the firing pattern of a Regular Spiking (RS) pyramidal 
neuron simulated based on Izhikevich simple model [32] is illustrated. Moreover, the 
phase portrait representation of the membrane potential v and the recovery current u as-
sociation is depicted. 

3.1.2 Synaptic Plasticity 

The implementations of this study are based on STDP model which was illustrated 
in Figure 3. The strength of the connection between neurons changes as a result of spiking 
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in previous neuron. The formation of connections between neurons are considered as a 
separate component in this study, described in section 3.1.5. Figure 11, shows the changes 
of the synaptic weights between two groups of neurons. 

The presynaptic and post synaptic events are the most important variables for implement-
ing the STDP plasticity. These two variables are illustrated in Program 2. 

 
2 
 

4 
 

6 
 

8 
 

10 
 

12 
 

eqs_stdp_inhib = '''w : 1 
                dA_pre/dt = -A_pre / tau_stdp : 1 (event-driven) 
                dA_post/dt = -A_post / tau_stdp : 1 (event-driven)''' 
pre_in_ex = '''A_pre += 1. 
               w = clip(w+(A_post-alpha)*eta, 0, gmax) 
               gi += w*nS''' 
post_in_ex = '''A_post += 1. 
                w = clip(w+A_pre*eta, 0, gmax) 
                ''' 
S10 = Synapses (Pi,Pe, model= eqs_stdp_inhib, 
                   pre = pre_in_ex , 
                   post = post_in_ex) 

Program 2. Implementation of STDP in brian between inhibitory and excitatory neu-
rons.   

 

3.1.3 Cell Distribution 

In a real MEA plate, the way cells are distributed over the plate, has a strong effect on the 
formation of connection. In previous study maintained by Shultz [57], midpoint displace-
ment fractal algorithm [58] was selected for cell distribution. In this study, however, a 
new algorithm is proposed to reproduce a more realistic distribution of the neurons in 
MEA plate. This algorithm is entitled two-level inversed diamond-square algorithm.  

The core of this algorithm is the successive algorithm of midpoint displacement fractal 
algorithm proposed by Miller et al. [59], called diamond-square algorithm. However, the 
improved distribution still suffers from accumulation of the cells across the edges of the 
MEA plate. To address this issue, an inversion of the result produced by algorithm is 
considered, providing a sensible distribution. In other word, the random places which 
were generated with the algorithm were considered as the prohibited places and the orig-
inal prohibited places were used as the result of algorithm. Though, after using the inver-
sion, the neurons would still not be distributed evenly all over the MEA plate and will 
only concentrated in specific parts. The reason is the broad difference between the area 
of a single some, which is about 50µ𝑚𝑚2, and area of the whole MEA plate which is 
7,480,000 µ𝑚𝑚2.  

To compensate this enormous difference, the plating is implemented in two-levels. First 
a space of 5000 µ𝑚𝑚2 is preserved for each neuron. Then the diamond-square algorithm is 



20 

applied for determining the location of the MEA that neurons with large area of 5000 µ𝑚𝑚2 
are allowed to be placed on. At this stage, however, the possible space for soma of each 
neurons is 100 times greater than its real size. In the next step, the exact location of each 
soma, inside its square of area of 5000 µ𝑚𝑚2 is determined. This hybrid algorithm is called 
two-level inversed diamond-square algorithm from now on in this document. Apart from 
this algorithm, the resulted distribution is visualized in an interactive 3D image. An ex-
ample of the visualized MEA plate with an area of 7,480,000 µ𝑚𝑚2 containing at least 
1000 cells each with the area of 5000 𝜇𝜇𝑚𝑚2 is illustrated in Figure 12. 

 

Figure 11. Example of the synaptic change as a result of synchronous firing.  
a) spike timing in a network of 25 neurons. b) voltage in two firing neurons        

c) synaptic weight  

 

3.1.4 Cell Death 

Before the final formation of the network and in the first 17 Days In Vitro (DIV), up to 
60% of the cells die [60]. This death of the cultured neurons can have a marked effect on 
the other cells in the MEA plate. In the study presented by Shultz, this death was simu-
lated by removing 45-60% of the cells before starting the main simulation. Using this 
method, however, the effect of the cells which are supposed to die in the 17 first days, are 
not taken into effect. A more precise method would be to wipe out the effect of the dead 
cells at the time of their death. Using this method, the possible effects of a neuron on the 
whole system before its death, will not be overlooked. The implementation of this part is 
maintained by 2D random sampling over the minutes of the days and number of neurons. 

a) 

b) 

c) 
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Using this method, the time of death is determined with a precision of minute. Cell death 
progression is also visualized in 3D view as in Figure 13. In this figure, the death rate of 
cells are depicted after 3, 9 and 17 days in vitro. 

 

Figure 12. Output of two-level inversed diamond-square algorithm used for 
determining the “allowed” location of the neurons in the MEA plate. Red pixels 
represent the locations that neurons can be placed on.   a) 3D visualization of 

first level of algorithm b)2D visualization of the final result 

 

 

Figure 13. 3D visualization of the death rate. a) after 3 DIV, b) after 9 DIV,   
c) after 17 DIV. Red pixels represent the locations that neurons can be placed 

on. Black pixels show the neurons previously located on red pixels that are cur-
rently died.  

 

3.1.5 Connections and Neuromorphology 

Neuromorphology is defined as the study of the form and structure of the neurons. Have 
this concept not considered in any neuronal simulation, the result will suffer from many 
loopholes. This loopholes are mainly caused by the fact that neurons are considered solely 

a) b) 

a) b) c) 
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as a square or circular soma. However, a realistic modeling of connection formation be-
tween neurons should be at the minimum based on the position of axons and den-
drites. Figure 14, illustrates a morphology of a rat’s neocortex pyramidal cell from the 
NeuroMorpho database located at www.neuromorpho.org. The morphologies are pro-
vided in swc format which is simple to understand and easy to modify. 

As will be thoroughly discussed in section 5 major difference between this work and 
previous studies is taking the neuromorphology into account. It is of significant that the 
morphologies downloaded from aforementioned database are in 3D format. In MEA 
plate, however, the cells are connected to each other in a flat structure. In other word, 
cells will not grow connection vertically. For this reason, the 3D morphology is in the 
first step converted to a 2D one. Figure 15 shows the same morphology of Figure 14 
imported in the simulator, converted to a 2D structure, shifted right and above, and 
showed using the brian2 library. 

 

Figure 14. 3D Morphology of a rat’s neocortex pyramidal cell extracted from 
NeuroMorpho database. In this morphology, the white color corresponds to 

soma (the small white dot in the upper middle of the figure), the gray and green 
colors are dedicated to axons and dendrites respectively. The magenta color ad-

jacent to the soma illustrates the apical dendrite 

 

http://www.neuromorpho.org/
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Figure 15.  Morphology of the rat’s neocortex pyramidal cell extracted from 
NeuroMorpho database. a) 3D representation of the morphology imported from 
swc file and shown using brian2 library. b) The same morphology converted in 

2D and shifted 500 µm right and up in 2D coordinates 

 

Figure 16, shows the difference between considering the neuron as soma, as in previous 
studies, and considering the neuron as morphology. As can be seen, there major differ-
ences between previous model and current model. First, in previous model, all the cells 
were in predefined locations and the neurons were considered connected if their distance 
was lower than a specific value. In this model, the locations are predefined, but depending 
on the shape of the neuron, some adjacent neuron might not be connected together. Sec-
ond, in previous models, the distance that a neuron could reach was limited to its adjacent 
neurons (8 if the neuron is in the center of a square).  

 

Figure 16. Illustration of the difference between considering neuron as a) only 
a soma and b) a complete  morphology in a simple MEA containing 4 neurons. 

In this model, however, a neuron might reach to 2nd level neighbors as well, depending 
on the length of its axons. Moreover, the strength of the connection in previous models 

a) b) 

a) b) 
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was to be determined using some random parameters. In this model, the strength is esti-
mated based on the intersection of axons of the reference neuron and dendrites of the 
target neuron. Although the initial connection of the neurons is only needed once in a 
simulation, yet the main obstacle of such approach is its heavy computation. 

Each line of the swc file format indicates a single point in the structure of the neuron that 
create the whole neuron when connected. The pyramidal cell in Figure 14 has about 2200 
axonal points and about 1800 dendritic points. If all of the permutations are taken into 
account, in a MEA plate with 1000 neurons a rough estimation give us a runtime of 
500,000 years. This enormous runtime demands a novel algorithm for reducing the 
runtime to at least a few days.  

 

Figure 17. Adding random rotation to each neuron for a more realistic con-
nection between neurons 

This work propose an algorithm for reducing the runtime of this algorithm to 17 days. In 
the abovementioned simple approach, the calculation needed for calculating the intersec-
tions between axons and dendrites are performed between every two possible neurons. In 
other word, in a MEA plate with n neurons, n (n-1) sets of calculation must be performed. 
In the proposed algorithm, the accessibility level for each neuron is firstly defined by 
user. This level, ranging between 1 and n√2, defines the number of number of diametrical 
neurons that are to be taken into account. However, if a neuron is not connected to layer 
m, the algorithm would stop calculating for higher layers. 

The algorithm then uses the building box of reference axons and target dendrites in a 
branch-wise order. Hence, if building box of an axonal branch is intersecting a building 
box of a dendritic branch, then the possible intersection of the lines constraining those 
branches are calculated and the intersection points are found. In the next step, these inter-
secting points between neurons are used to generate synapses that will eventually be used 
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in brian2. The plotted result of this algorithm, applied on a network of 10 neurons (7 
pyramidal cells and 3 basket cells) are depicted in Figure 18. As can be seen, the neurons 
are tightly connected together, forming a cluster-form ensemble.   

  

Figure 18. The result of the connection_finder algorithm applied on a small 
network of 10 neurons with 7 pyramidal cells and 3 basket cells. Beginning from 

upper left figure, each plot is focused on part of the previous plot as indicated 
with a cyan square. In all four figures, the black and red lines represent axons 

and dendrites and the connection points are shown with green triangles.  

3.1.6 Mini-Compiler 

In order for the whole system to work, it is demanded that the Brian is linked with the 
output of the connection maps resulted using the neuromorphology. In Brian, it is possible 
to define any number of synapse between two specific neurons of any group using a one 
line of code. In this definition of the synaptic connection it is possible to add other pairs 
of neurons to prevent redundancy in coding. However, this can be achieved only if the 
number of synaptic connection between all given pairs are the same.  

For instance, it is possible to create 7 synaptic connection between neuron 2 and 6 with a 
line of code. The same exact line can be modified in a way that it creates 7 synaptic 
connections between neurons 3 and 4 or any other neuronal couple. However, as the num-
ber of synaptic connection changes to a number other than 7, it is not possible to create 
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the synaptic connections with a single line of code anymore and another line is needed. 
Therefore, for a network consist of about 10 neuron in which each neuron could possibil-
ity connect to other 9 neurons, there might be 90 different connection, hence 90 lines of 
code. To address this issue, a mini-compiler is built that generates the required syntaxes 
for brain based on the output of the connections determined by morphologies.   

3.1.7 Cell Stimulation 

The stimulation capability of the MEA plate, i.e. the input of the system, can be handled 
by using creating an input and connecting it to a neuron group. There are two facts that 
can be considered for a more realistic representation of the stimulation. First, the moni-
toring over the cells activity can be removed from the results on the time that the cells are 
stimulated. Second, the effect of the input can be considered as a square but not with an 
equal current and voltage all over the area of the square, but in a way that neurons that 
are placed closer to the electrode are more affected than the farther neurons. This can be 
achieved by implementing the input based on a multivariate Gaussian distribution de-
picted in Figure 19.  

 

Figure 19. Multivariate Gaussian distribution utilized for simulating the effect 
of a single electrode usable in both recording from neurons and stimulating 

them. The blue and red color represent maximum and minimum contact between 
the electrode and adjacent neuron, respectively.  

 

Figure 19 illustrate the affecting current in adjacency of each electrode of the model of 
MEA plate. In a standard MEA, there are 60 electrodes placed in an 8x8 layout grid. 
Remaining four electrodes are used as ground. The diameter of electrodes are either 10 
µm or 30 µm with 100 µm or 200 µm inter-electrode distances, respectively [61].  
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Figure 20 illustrate the formation of the electrodes in the simulator. Note that some fea-
tures in this figure is exaggerated for the matter of clarification. Nevertheless, the effect 
of the electrodes are completely customizable based on the parameters that are used for 
generating the multi-variant Gaussian distribution. 

3.1.8 Linking the Components 

Aforementioned components demand a right combination and practicable pattern of in-
teraction. This interaction is analyzed according to the bottom-up approach presented in 
section 3.1. Starting from the intrinsic parts of the model, both sets of equations for neuron 
and plasticity model are inputted in the definition of the NeuronGroup in the simulation. 

 

 

Figure 20. Formation of the electrodes in a standard MEA simulated using 
multivariate Gaussian distribution. The corner electrodes are omitted since they 

are not used for recording and stimulating.  

 

The Stimulator as one of the major components of MEA, is inevitably linked with the 
simulator itself. As using the state-monitors provide us with the data for variety of pa-
rameters, by using either SpikeGeneratorGroup or PoissonGroup it is possible to stimu-
late the neurons. The former induce spikes based on the pre-defined times whilst the latter 
connects a Poisson input to the target group of neurons. 

In the next step, each neuron of any NeuronGroup is assigned with a unique place in the 
MEA area. The location coordinates of a neuron is initially defined as an extra parameter 



28 

for an instance of neuron.  This allocation is done by choosing from the pool of available 
places resulted from the output of the distribution function.  

The abovementioned components are used during initial stage of the simulation. On the 
contrary, the remaining components which represent two vital neuronal dynamics, i.e. 
cell death and connection, are dynamically taken into account during the simulation. In 
each internal step of the simulation, the conditions for both death and connections are 
reviewed. Some cells are then connected accordingly and some die based on the prede-
fined timing. 

3.2 Functional Connectivity Analysis 

In this section, first a sequential algorithm for calculation of Cox coefficients and its con-
fidence intervals are presented. Using this illustration the parts that can potentially be 
implemented in parallel are determined. In the next parts, two algorithm for implementing 
these parts on CUDA are proposed. Each algorithm dedicates the blocks of GPU to a 
unique part of the algorithm, resulting in a better performance of each in a specific types 
of spike train. In the final section of this part, method used for testing and evaluating these 
two algorithms is presented. 

3.2.1 Component Analysis of Cox method 

The algorithm for computation of Cox coefficients is depicted in the flowchart of Figure 
21. As can be seen, the complex computation of first and second derivatives of the log 
likelihood function are implemented inside a triple nested for loop. It is clear from this 
representation that the first and second derivatives are independent, and thus, can be par-
allelized. 

Regardless of this potential, a greater optimization can be achieved by optimizing the 
common data required for computation of both derivatives. Based on the expression of 
first and second derivatives, it can be understood that the great optimization can be hap-
pened by finding the values of influence function 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡), from all neurons and all their 
spiking times in advance. 

The key approach for the two parallel algorithms is to use the blocks and corresponding 
threads of GPU to compute all the values of 𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡𝑙𝑙𝑙𝑙) in parallel prior to calculation of cox 
coefficients. With a network of n+1 neurons, each with a recorded spike train with length 
of m spikes, n.m2 values of  𝑍𝑍𝐵𝐵𝑖𝑖(𝑡𝑡) must be calculated. As an example, a network of 1025 
neurons with a recording time corresponding to a spike train with length of 1024 spikes 
will lead to computation of 536870912 values (10243/2) of influence function. Note that 
this amount of calculation is for computing the Cox method on only 1 neuron to find the 
effect of the other neurons of the network on this sole neuron. In the next two sections, 
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the two proposed algorithms are presented. The illustration of these algorithms are based 
on the network structure of Figure 22. 

In Figure 22, the cox coefficient from reference neurons, neuron 1 and 2, 𝛽̂𝛽 is to be com-
puted for the target neuron. Consider a simple scenario in which each neuron spikes three 
times. The goal is then to calculate the values of influence function Z() for each reference 
neuron at each spiking time of the target neuron. Although the amount of data used in this 
scenario is far below the required amount, this simple network topology and correspond-
ing data clarifies the structure of the implementations of Cox method in GPU.  
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Figure 21. Flow chart of the main tasks of the Cox method presented sequen-
tially. The notations dL1 and dL2 in this chart correspond to the first and second 
differential of the log likelihood L according to the coefficients of connectivity, 
𝛽𝛽. Thus, dL1 corresponds to the gradient of the log likelihood and dL2 corre-

sponds to the Jacobian of this gradient, also called the Hessian matrix of the log 
likelihood. 

 



31 

 

Figure 22. Simple network topology considered as example for describing the 
two GPU accelerated implementations of the Cox method. 

 

3.2.2 1st algorithm 

In this algorithm the Z values of all reference neurons for a specific target neuron’s spike 
is calculated in a single GPU block. The timing of this specific spike is resulted from 
sorting as depicted in Figure 6. Each of this influence function values is calculated using 
a thread of that block, as in Figure 23. Since each block calculates the values of Z for a 
unique time  𝑡𝑡𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑗𝑗) and for all reference neurons the blocks of this algorithm will expe-
rience an increase when the number of neurons grows. For this reason, the performance 
will not face a great deterioration y increasing the number of neurons. Using this imple-
mentation in a network with n+1 neurons whilst target neuron has m Inter Spike Intervals 
(ISI), each block will always have n threads. The grid in this algorithm contains m*m 
blocks. 

3.2.3 2nd algorithm 

In this approach, the row and column of grid are dedicated to the Z values of specific 
reference neuron and specific target time respectively. Hence, the threads within a block 
always contain Z values of the same reference neuron (e.g. ref1) and have the same value 
for the first index of tij (e.g. t3j). All Z values for all the smaller ISIs of that specific time 
i.e. 𝑍𝑍𝑟𝑟𝑟𝑟𝑓𝑓𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) with 𝑗𝑗 ≤ 𝑖𝑖, are computed using the threads of a block.  
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Figure 23. Schematic of the grid formation for the first algorithm where 
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) indicates the Z value of reference neuron n at time 𝑡𝑡𝑖𝑖𝑖𝑖. 

As for the size of the grid and blocks in this algorithm, the former has a size of n*m blocks 
and the latter contain m threads, with n and m indicating the same metric as previous 
section. The growth order of grid size is linear with reference to ISIs and number of neu-
rons.  The schematic of this algorithm is presented in Figure 24. 

 

Figure 24. Schematic of the grid formation for the first algorithm where 
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛(𝑡𝑡𝑖𝑖𝑖𝑖) indicates the Z value of reference neuron n at time 𝑡𝑡𝑖𝑖𝑖𝑖. 
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3.2.4 Test and performance evaluation of algorithms 

The algorithms were compared in two steps. Firstly, both algorithms are compared with 
sequential implementation in CPU. In this comparison the performance of CPU is evalu-
ated and compared to that of GPU with two variables of interest as the number of neurons 
and average number of spike. Secondly, same comparison criteria are applied to compare 
the performance of GPU algorithms with a more massive data set. For the first step, the 
number of neurons varies from 3 to 18 and the number of spikes for tests is between 30 
and 165. As for the second step, the average number of neurons varies between 3 and 70 
and the number of spikes varies between 160 and 945. Note that the results of both GPU 
algorithms in comparison with CPU were examined and with the same dataset, all three 
implementations produced identical results. It worth mentioning that in a network of n 
neurons, acquiring full network connectivity demands the method to be executed n times. 
For this reason, all runtimes provided in this work, consider the duration needed for at-
taining the full connectivity of the network. 



34 

4. RESULTS AND EVALUATION 

In this section final result of both parts of this work are presented. Note that the partial 
result of each component and sub-component of the section 4.1, was presented in different 
parts of section 3 and in this section, the output of the framework as a system is presented.   

4.1 MEA simulator 

The simulation presented in this section is based on a small model of MEA plate contain-
ing 1000 neurons over an area of 7,480,000 µ𝑚𝑚2. Among the 1000 neurons plated in this 
simulated MEA, 493 neurons survived after applying the death rate. There are 70% per-
cent excitatory pyramidal cells and 30% inhibitory basket cells, each from 5 different 
types (in total 10 types of neurons).  The type and number of neurons in the simulated 
MEA is illustrated in Table 2. 

Table 2. Distribution and types of the total of 493 neurons in the simulated MEA.  

Neuron 
Type 

Excitatory (Pyramidal) Cell Types Inhibitory (Basket) Cell Types 
D

27B
 

D
20D

 

I03481 

C
300898C

-P2 

C
031097B

-P3 

C
070600A

4 

C
010600C

1 

C
010600A

2 

B
E23B

 

B
E49B

 

Number of 
Neurons 

69 70 70 69 69 29 29 29 30 29 

 

 

Figure 25. Simulation of the neuronal behavior in MEA plate previously pre-
sented in [57] 
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The result of  the simulations in [57], as presented in Figure 25, suffers from over-activity 
in neurons. These over-activity is smoothened in current simulator, presented both 
in Figure 26 and 27.  

Figure 26 presents the final result presenting the neural activity (spiking) of all survived 
excitatory neurons. As can be seen, the vertical lines indicating the synchronous activity 
between neurons are not observable in Figure 25 [57]. In Figure 26, however, indications 
of synchronous activity between neurons are observable. In Figure 27, the simulation re-
sult based on the recording sides is presented.   

 

Figure 26. Output of the current simulator for all survived excitatory neurons 
in a simulated network of 1000 neurons. Black arrows shows indications of syn-

chronous activity between neurons. 

 

 

Figure 27. Output of the current simulator for survived excitatory neurons 
near the electrodes location in a simulated network of 1000 neurons 
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4.2 Functional Connectivity Analysis 

Figure 27 shows the output result of the cox method applied over a small network consist 
of 5 neurons. The output consists of three main parts: adjacency matrix of confidence 
interval for beta values (Figure 14-a), adjacency matrix of confidence intervals of the beta 
values of the previous part (Figure 14-b) and the output of the connectivity map (Figure 
14-c).  

As mentioned in section 2.3, Cox method is statistical in nature. Hence, it is essential to 
consider the confidence interval for each beta (cox coefficient) value. As can be seen 
in Figure 27-a, for every neuron pair there is a beta value and it cannot be determined if 
that value indicates a real connection or not. For confirming the integrity of the beta value, 
the corresponding confidence interval should be checked. In case the confidence interval 
does not include zero, the connection between the pair can be taken as a real connection 
and the strength of the connection can be considered as the beta value. In Figure 27, values 
with confidence intervals that does not contain zeros are shown in colors. Finally based 
on these values, the final table is formed as Figure 27-c.  

The results of this sections is presented in two sub-sections: first, the comparison between 
performance of CPU and that of both GPU algorithms are made. By justifying the use-
lessness of CPU for such statistical method, the performance of algorithms are evaluated 
against each other. In the second part larger datasets are used and comparison is per-
formed based on two major parameters of activity recording: network size, and duration 
of recording (i.e. length of spike trains). 

4.2.1 CPU vs GPU 

Figure 28 and Figure 29 illustrate the comparison between the performance of two GPU 
algorithms and CPU. In Figure 28, the comparison is made based on the number of neu-
rons in the network. In this figure, the results of the comparison are provided with regard 
to networks containing 3 to 18 neurons with a fixed recording time of 5s (this duration is 
equal to about 70 spikes per neuron). This comparison shows an exponential growth in 
runtime of CPU with increase of network size. The GPU runtime, however, stays under 
25 seconds with a very slight growth. In the largest network containing 18 neurons, CPU 
takes more than 570 seconds whilst both GPU algorithms take less than 25 seconds. 
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Figure 28. Output of Cox method in this study. a) Adjacency matrix of Cox co-
efficients b) Adjacency matrix of confidence intervals for Cox coefficients in a. 
The Cox coefficients are considered as a real connection if their corresponding 
confidence intervals does not contain zero. In such a situation, the value of con-
fidence interval is taken as the connection strength. c) Adjacency matrix of con-

nectivity result of the network. The values strength of each connection is ex-
tracted from the cox coefficient adjacency matrix. 
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Figure 29. Performance (runtime) comparison of the CPU implementation of 
the Cox method with two GPU algorithms with number of neurons in the net-

work as the variable. 

 

The comparison in Figure 29 is based on the average number of spikes recorded for each 
neuron. The length of spike trains for a network of 5 neurons varied between 33 and 165 
spikes in average which corresponds to recording time of 2s to 10s, respectively. The 
same exponential growth in CPU runtime with increasing the length of spike trains is 
observable in Figure 29 again. The runtime of CPU for spike trains of length 165 average 
spikes takes almost 155 seconds whilst both GPU algorithms remains under 10 seconds. 

Both of abovementioned evaluations were maintained over small networks with short 
length of recording. Increasing either number of neurons in the network or length of re-
cording will result in an overshoot in runtime of CPU which makes the comparison of 
GPU algorithms impossible owing to the fact that their timing bars will shrink to an un-
clear value near zero.  The next section covers the performance evaluation of the GPU 
algorithms on larger datasets. 
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Figure 30. Performance (runtime) comparison of the CPU implementation of 
the Cox method with two GPU algorithms with length of spike train in the net-

work as the variable. 

4.2.2 GPU alg. 1 vs GPU alg. 2 

Similar to previous section, the performance comparison of the two GPU algorithms is 
maintained based on network size and length of recording. The used datasets, however, 
vary in size enormously. In addition, this section focuses mostly on the runtime of the 
parallelized parts of the cox method, i.e. the computation of the values of the influence 
function Z(), as the remainder has to be calculated on CPU sequentially. For this reason, 
the next two plots illustrate GPU execution time only for computation of all necessary Z 
values which will consequently be used in sequential part of program. 

First, the algorithms are compared based on different sizes of network, ranging from 5 to 
120. In this evaluation, the average length of each spike train is 10s equal to average of 
150 recorded spikes per neuron. As can be observed in Figure 30, with smaller networks, 
first GPU algorithm has a better performance compared to the second one (for networks 
up to 32 neurons). However, the growth of runtime of first algorithm with 25ms for a 
network of 5 neurons is much smaller than that of second algorithm. 
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Figure 31. Comparison of execution times of between the 2 GPU implementa-
tions of the Cox method, as a variable of the number of neurons in the studied 

network. 

In the second evaluation, the algorithms are compared based on the data generated for a 
very small network of 5 neurons. In this evaluation, the duration of recordings varies from 
10 second to 1 minute, equal to average spike trains ranging between of 157 to 945 spikes. 
In this evaluation, since GPU grid size grows with number of spikes, first algorithm runs 
out of memory with grids of size bigger than 760x760 blocks. The runtime in this algo-
rithm, increases from less than 0.5s for spike trains with length smaller than 490 spikes, 
to almost 2s at 760 spikes. For algorithm 2, however, the increase in runtime is much 
slower and is still under 1s for recording with length of ~945 spikes. 

 

Figure 32. Comparison of execution times of between the 2 GPU implementa-
tions of the Cox method, as a variable of the average number of recorded spikes 

in the studied network. 
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5. DISCUSSION 

5.1 MEA Simulator 

In this section, the discussion regarding to both parts of this study, i.e. realistic modeling 
of the MEA plate and connectivity analysis based on the recorded data, are provided. 
First, the presented model is compared with four other models in the literature previously 
provided by Shultz [57], Chao et al [62], Bruzzone et al. [63] and Lenk & Priwitzer [64]. 
Each of these models are discussed in following sub-sections. This is followed by a thor-
ough discussion on the implementation of the Cox method. 

The essence of MEA functionality is the connection between the cultured neurons. In this 
regard, three different actions was previously considered in the model proposed by Shultz.  
Firstly, the growth rate and direction of the axons of a neuron, secondly, connecting of 
the adjacent neurons and thirdly, the migration of the neurons. For the first two behaviors, 
some limitations was considered too, owing to the fact that there are limitations to for-
mation of new connections in a real MEA plate. Such limitations are resulted from chem-
ical interactions between cells. In the stochastic model used in [57], which was previously 
presented by Kahng et al [65], the movement of the growing end of the axon happens in 
a form of a random walk on a grid. The direction of this growth is considered to be in 8 
directions in Shultz’s model: up, down, left, right or the diagonals between them.  After 
each step two neurons are logged as connected if one of the walking end is with 20 𝜇𝜇𝜇𝜇 of 
the other. Moreover, the connection are unlikely to happen with the reference neuron 
itself and is more likely to happen with its neighbors [66].  

Gafarov in [67] indicated that whilst spiking, developing neurons attract other axons to-
wards a cell. Similarly in this model, the intense activity of the neurons resulted from 
stimulation in results in customized development in specific parts of the simulated MEA 
plate. Though, Shultz puts some limitations to this development based on two studies: 
first, the paper proposed by Segev et al [68] showing that the cultured neurons will grow 
and create new connections to at most 10 neurons. Second, the model presented by Patel 
et al [69] in which the out-degree is reproduced using a Poisson distribution with a mean 
of 22. It uses a Gaussian distribution to determine the connection probability of adjacent 
neurons with a straight-line distance between them. This parameters get the maximum 
value of connectivity around 200µm from the soma. Inducing connection between the 
neurons by stimulating the neurons can be used for training the network for performing 
variety of function, as the functionality of the neuronal network pertains for its internal 
connectivity structure.  

The model provided by Abraham Shultz, has some of the components taken into account 
in this study into account. Starting with model of the neuron, although that model uses 
the Izhikevich model of both excitatory and inhibitory neurons with considering “Fast 
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Spiking (FS)” behavior in the inhibitory neurons. Additionally, Shultz’s model utilizes 
the midpoint displacement fractal algorithm for plating the neurons in the simulated 
MEA. Moreover, it takes the death rate into account and removes the 40-60% of the cells 
in the beginning of the simulation.  

Shultz’s model, implement the cell connection and growth based on a completely differ-
ent approach. It uses a Gaussian distribution to determine the connection probability of 
adjacent neurons with a straight-line distance between them. This parameters get the max-
imum value of connectivity around 200µm from the soma.  

In that model, it is mentioned that it is possible for each cell to connect to any other node 
in the MEA plate. The positive point of that model is applying some limiters for the con-
nection formations, extracted from literature. As mentioned in section 3.1.5, due to nu-
merous branches in each cell and small size of a MEA, many synaptic connections might 
happen between two neurons, over-strengthening the connection in the whole MEA.  The 
model provided by Shultz, has a realistic model of electrodes for recording from the neu-
rons, which is also implemented in current study both for recording and stimulating.  

The model proposed by Chao et al, implements 1000 LIF neurons with total of 50,000 
synapse. The 1000 LIF neurons in that model are randomly distributed in a virtual MEA 
with size of 3mm by 3mm, i.e. area of 9,000,000 µ𝑚𝑚2. In this model, all the synapses 
were frequently dependent in order to model the synaptic depression. Moreover, 70% of 
the neurons were excitatory implemented with STDP, and the electrode formation was 
similar to that of a standard electrode, i.e. 8 by 8 grid of electrodes, 60 of which are used 
for recording and stimulating.   

The model provided by Bruzzone et al. is used to be connected to biological neural net-
work. In this model, they used a network of 100 Izhikevich neurons with 80 excitatory 
and 20 inhibitory randomly placed on the area of the MEA. The excitatory population of 
the neurons comprised regular spiking, intrinsically bursting and chattering neurons. Sim-
ilar to Shultz’s model, the model provided by Bruzzone et al. also considers the Fast 
Spiking neuron for inhibitory neurons. The connection between the neurons are also de-
termined based on the random distribution with average degree of 75 and uniform distri-
bution was also utilized for setting the synaptic weights. This uniform distribution was 
specified separately for excitatory and inhibitory populations. The model of Bruzzone, 
was implemented over the NEST simulator.  

The goal of the model presented by Lenk and Priwitzer [64] is to simulate the concentra-
tion-response curves that were previously observed in in-vitro experiment. The cells in 
this model, which are described as black boxes, have two states of ON and OFF and each 
neuron can have multiple inputs whilst it only produce a single output. To determine the 
occurrence of spikes, Poisson process was employed. Each cell can be connected with 
either inhibitory or excitatory synapse. The weight of the synaptic connection could vary. 
Apart from these, the network is fully connected featuring a spike time history. The final 
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simulation in this model ran for 10 seconds with a network of 100 neurons, containing 90 
inhibitory neurons and 10 excitatory neurons.  

5.2  Connectivity Analysis 

The sequential implementation of the Cox method was maintained and ran on MATLAB 
and in next step, PyCuda was used for implementing two parallel algorithms. The exper-
imental platform was a laptop equipped with an Intel Core i7-4702MQ CPU and NVIDIA 
GK208M (GeForce 740M GT) with 2 GB video memory. The results of all three imple-
mentations (CPU and two algorithms on GPU) were checked and compared with another 
and their integrity were confirmed. With identical datasets all three algorithms produced 
identical output. 

Note that each instance of running Cox method as described in this study, solely take the 
computation of connectivity coefficient to one neuron of the network into account. For 
this reason, for calculating the full connectivity map of a network with N neurons, it needs 
to be ran N times. Therefore, all the runtimes provided as a result in this work, considers 
the duration needed for calculating the full connectivity of the network.  

 The exponential growth in CPU runtime, demand a long time for providing the connec-
tivity map of a network with a minimum realistic size of 60 neurons (one neuron per 
electrode). With the small dataset, CUDA implementations provide results at almost con-
stant time (under 25s for 18 neurons, and under 10s for an average of 156 spikes).  

Applying the sequential implementation over a larger dataset will definitely rule out the 
use of sequential version of Cox method. For example, a network composed of 5 neurons 
with an average recorded spikes of 950 per neuron demands almost 17 minutes for com-
puting the Z values for a target neuron on CPU, taking almost ~90 minutes for calculating 
the connectivity map of the entire network. GPU algorithms, however, needs ~0.91 sec-
ond for each Z matrix and 2 minutes for creating the whole connectivity map. Similarly, 
a network containing 70 neurons with a recorded data of average 80 spike per neuron 
demands ~3mins for computing the Z values of a single neurons. Consequently 1.5 hours 
are needed to compute the entire connectivity. The first GPU algorithm, however, needs 
7ms for each Z matrix and ~1.5 minutes for total connectivity. As mentioned, the perfor-
mance of the first algorithm is better when the number of neurons per network is in-
creased. Conversely, the second algorithm performs better when length of spike trains are 
increased.  

The performance of the two proposed algorithms varies based on the characteristic of the 
data. Algorithm 1 supports connectivity analysis of datasets with larger number of neu-
rons. This algorithm, however, is weak against long spike trains since the increase of 
spike train length, induces an increase of GPU grid size. On the contrary, second GPU 
algorithm, has better performance for long spike trains compared to the first one. In turn, 
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this algorithm outperformed when the number of neurons increases, provided that the 
extensive number of neurons does not cause the algorithm to go out of memory. This 
analysis, gives us an estimation of the possibility to feed the first algorithm with a real 
dataset of up to 1024 neurons and in the second algorithm with maximum of 1024 spikes 
per train. Respectively, there is a limit for number of number of spikes in each train and 
total number of neurons in the network which is fully dependent on the memory of the 
GPU.  

Selecting the proper algorithm is inextricably linked to the number of neurons and the 
time of recording of the dataset. Theoretically, Cox method provides accurate results with 
recordings of length 512 spikes equal to approximately 40 seconds of recording [24]. This 
limit provides an important selection point between algorithms. Recordings need to last 
at least 40s. Obviously, in case of longer trains, they can always be split into recording 
parts of 40s. Now assuming a record length of 40s, i.e. equal to 512 spike per neuron, first 
algorithm should be selected. Conversely, when the connectivity map of a network with 
number of neurons fewer than 512, second algorithm should be chosen.   
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6. FUTURE WORKS 

6.1 MEA simulator  

In this section the possible future developments with the goal of extending the MEA sim-
ulator are presented. The goal of these development are twofold: performance improve-
ment and making the model more realistic. 

The first step to find the solution for performance improvement of the model is to find its 
performance bottlenecks. Two main performance bottlenecks of the model are brian sim-
ulator and the stage at which the initial connection are found based on the morphologies. 
These two bottlenecks are also directly linked together. Since using the morphology for 
finding the initial connections might lead to generating many instances of synapse ob-
jects, it will eventually reduce the performance of brian. The best solution for improving 
the performance of brian simulator for this work, is to employ the multithreading with 
OpenMP, for which instructions are available in brian documentation.    

As for the latter performance bottleneck, although the current algorithm is only needed to 
be run once, it still demands a performance improvement due to long runtime. By review-
ing the utilized algorithm, it will be understood that the nature of the algorithm is paral-
lelizable. The simplest parallelizing solution, would be to implement the algorithm over 
GPU and distribute the calculation of each cell, which are not dependent to each other, to 
separate cores. Another solution would be utilizing the Hadoop for a map-reduce imple-
mentation of the algorithm.   

Regarding the behavioral aspect of neurons, the growth of neurons is an important behav-
ioral aspect that could be improved in this model. The main drawback of the utilizing the 
morphologies is that each cell is already mature, in matter of size, from the beginning of 
the simulation. In reality however, the axons and dendrites grow over the MEA and make 
the connection. Another in-vitro behavior of the neurons is the migration during the early 
DIV [68]. These migrations will lead to formation of the clusters. The intra-cluster con-
nectivity of the neurons is very dense whilst the inter-cluster communications happens to 
be sparse. The implementation of neuronal migration, even if it is few in matter of dis-
tance, is a behavior that makes the model more realistic.  

A general improvement in this model can be achieved by implementing different types of 
neuronal behavior, i.e. Fast Spiking, Chattering, Intrinsically bursting, etc., using the 
known parameters of Izhikevich equations. In that case, the simulator can generate the 
proper neuronal behavior based on the morphology.   



46 

Eventually, a decent model of MEA plate can be used in variety of applications, ranging 
from bio-integrated system to researches in different areas of neuroscience. Other appli-
cations of a realistic simulation of MEA plate would be to evaluate a model before im-
plementing it using a biological neuronal network. For instance, a bio-integrated wireless 
sensor network, capable of detecting different shapes, e.g. cross, circle, rectangle, trian-
gle, etc., can be simulated and tested before spending budget on the expensive lab facili-
ties.   

For the second part of this study, i.e. connectivity analysis of the neuronal network, an 
important improvement would be enhance the improvement to make it possible to be ran 
on CUDA clusters. Moreover, there are some memory management techniques available 
for CUDA that would eventually help both algorithms to run on larger number of neurons 
as well as longer spike trains.  

The second part of this study is also advantageous with regard to intervals during which 
the connectivity map is going to be extracted, making functional connectivity evolution 
analysis available. By running the cox method on shorter periods, it would be possible to 

calculate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 to predict the succeeding Beta values, facilitating a more precise control over 

stimulations for obtaining a pre-defined topology. In this regard, controlling the artificial 
changes in the network structure could enable its engineering for specific cognitive tasks. 



47 

7. CONCLUSION 

7.1 Simulation of neuronal activity in MEA plate 

The main contribution of this study is the development of a framework for simulating the 
behavior of the neural network in MEA plate. This was achieved by considering and im-
plementing seven components in a real MEA plate, namely neuron, synaptic plasticity, 
electrodes, neuromorphology, cell distribution, cell connections and cell death. 

Whist the model of the neuron and its synaptic plasticity in the plate is implemented as 
that of Izhikevich and STDP, all remainder components are configurable: the electrode 
arrangement can be changed based on the type of the MEA and the range of the electrodes 
can be configured based on the type of electrodes. Additionally, this framework can be 
inputted with neuromorphology file extensions, i.e. swc, download from the large data-
base of the neuromorphology entitled NeuroMorpho. The distribution of the cells in this 
system is determined using the nested inversed diamond-square algorithm and the con-
nection between cells are determined using their real morphology.  

Aforementioned components can be customized using numerous parameters. The most 
important parameters are the size of MEA and somas in µm, number of electrodes, total 
number of neurons. Moreover, MEA can be inputted with different types of neurons with 
a provided distributions. For instance one might want to simulate a MEA with 30% in-
hibitory basket cells, 30% self-firing neurons and 40% excitatory pyramidal cells. Most 
of the other parameters, although configurable, but would be determined by the frame-
work automatically. Model of the cell and corresponding plasticity can also be configured 
and be fed to brian simulator.  

The provided framework and MEA model is advantageous in matter of employing state-
of-the-art Izhikevich model combined with STDP as well as the plating algorithm which 
provides a realistic distribution of the neurons in the MEA. Additionally finding the con-
nections based on the morphology of each cell in the MEA plate is an accurate approach. 
However, finding connections for a set of 1000 cells still takes a rather long time (about 
2 weeks). Though, the initial connections has only to be determined once and simulation 
of that specific MEA can be started based on the saved connection map.  

Definition of the synapses in Brian simulator can be troublesome in case the number of 
synaptic connection between neuron couples varies. In other words, due to different num-
ber of synaptic connection between neuron couples, each needs to be defined in a separate 
line. For instance, with a very small network of 10 neurons in which each neuron has 
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connection with other 9 neurons, 90 lines of code would be required to define the synap-
ses. This framework provides a mini-compiler which compiles the output of connectivity 
map inside Brian. 

7.2 Connectivity analysis of neuronal network 

In the second part of this work, Cox method, as a robust method for connectivity analysis 
of neuronal network based on spike train data, was implemented on GPU and its perfor-
mance was evaluated and compare with CPU. The GPU implementation was maintained 
based on two different algorithm each proper for a specific circumstance. Both GPU al-
gorithms focus on accelerating the calculation of the values of the influence function Z() 
which are eventually saved in the form of a 3D matrix. Apart from that, the calculation 
of the Hessian of ML was also accelerated with GPU.  

 The performance of these algorithms were evaluated based on increasing number of neu-
rons and increasing length of spike trains. The performance of the first algorithm deteri-
orate much less than the second algorithm in case the number of neurons in the network 
is increased. On the other hand, the second algorithm has a better performance when the 
length of the spike trains are longer. In a sample dataset of 70 trains with length of average 
75 spikes, both of these implementations run hundreds of times faster than the CPU in 
matter of performance both with regard to number of neurons and length of the spike 
trains.  

 The Cox method, previously requiring a long run-time even with an enormous computa-
tion power, is now runnable on CUDA-supported GPUs in personal computers. This im-
plementation will certainly be useful for wide range of researchers in the field of neuronal 
network, neuroscience as well as neurobiology labs. Functional connectivity analysis 
makes it possible to observe and recreate networks structure directly inspired from natural 
structures, similar to Hierarchical Temporal Memory [70] or for reinforcement learning 
[71]. On the other hand, use of biological neuronal networks for computation tasks would 
provide an enormous improvement in cybernetics and in-terms of energy saving. Such 
solutions would be available as biological feed-forward neural network have been devel-
oped [72].  
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APPENDIX A1. SOURCE CODE OF THE COX METHOD 

This appendix provides the source code for the entire method. This information can be 
used to reproduce experiments and results presented in the paper. 
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def cox (nn,maxi, target,tsp,delta): 
    whole = datetime.now() 
    p = nn-1 
    if p == 1 : 
        gamma0 = 0.95 
    else: 
        gamma0 = 1 - (1-0.05)/ (p*(p-1)) 
    if gamma0 < 0.95: 
        gamma0 = 0.95 
    pval = 1 - gamma0 
    tol = 0.0001*ones((p)) 
    flag = 1  
    tspa = target 
    isi = target[1:] - target [:len(target)-1] 
    v = zeros([p,len(tspa)]) 
    v1 = zeros ([p,len(tspa)]) 
    la = [] 
     
    for i in range (0,p): 
        index = where((tspa-delta[i])>0)[0] 
        k = min(index) 
        start = tspa[k] - delta [i] 
        isia = append(start,isi[k:]) 
        la = append(la,len(isia)) 
        tspam = cumsum(isia) 
        v[i,0:la[i]] = isia [0:la[i]] 
        v1[i,0:la[i]]= tspam [0:la[i]] 
     
    laf = min (la) 
    isiat = v [0:p,0:laf] 
    tspamt = v1 [0:p, 0:laf] 
    b = zeros(p) 
    tspz = append(b,tsp ) 
    tspz = reshape(tspz, (maxi+1,p)) 
    inda = zeros_like(isiat) 
    a = zeros_like(isiat) 
    for i in range (0,p): 
        inda [i,:] = sort (isiat[i,:]) 
        atmp = [[ii for (v, ii) in sorted((v, ii) for (ii, v) in 
enumerate(isiat[i]))]] 
        a[i,:] = array(atmp) 
 mod = SourceModule(""" 
<<<ALG.1/ALG.2 KERNEL>>> 
 """) 
 mod2 = SourceModule(""" 
  <<<HESSIAN KERNEL>>> 
 """) 
 func = mod.get_function("z_function") 
    tspamt =tspamt.astype(float32)  
    inda = inda.astype(float32) 
    a = a.astype(float32) 
    isiat = isiat.astype(float32) 



56 

 
54 
 
56 
 
58 
 
60 
 
62 
 
64 
 
66 
 
68 
 
70 
 
72 
 
74 
 
76 
 
78 
 
80 
 
82 
 
84 
 
86 
 
88 
 
90 
 
92 
 
94 
 
96 
 
98 
 
100 
 
102 
 
104 
 
106 
 
108 
 
110 
 

    tspz = tspz.astype(float32) 
    b = zeros((p,laf,laf)) 
    z = b.astype(float32) 
    tspamt_d = tspamt 
    inda_d = inda 
    a_d = a  
    isiat_d = isiat 
    tspz_d = tspz 
    p_d = p-1  
    maxi_d = maxi   
    laf_s = int_(sqrt(laf)+1) 
    start = datetime.now() 
func(cuda.InOut(tspamt_d),cuda.InOut(inda_d),cuda.InOut(a_d),cuda.In-
Out(isiat_d),cuda.InOut(tspz_d),cuda.In-
Out(z),int32(p_d),int64(maxi_d),block = (laf_s,laf_s,1), grid = 
(p,int_(laf))) 
    end = datetime.now() 
    ztime= end-start 
    print(ztime) 
    bet = 0.2*ones(p) 
    landa = 1 ; 
    for i in range (0,100): 
        scc = zeros_like(z) ; 
        for l in range (0,p): 
            scc [l,:,:] = bet[l] * z[l,:,:] 
        ssum = zeros((laf,laf)) 
        for g in range (0,p): 
            ssum = ssum + scc[g,:,:] 
        sumte = sum(tril(exp(ssum)),axis=0) 
        score = zeros((p)) 
        for n in range (0,p): 
            temp = sum(divide(sum(tril(multi-
ply(z[n,:,:],exp(ssum))),axis = 0),sumte)) 
            score[n] = trace(z[n,:,:])-temp 
        vi = zeros ((p,p)); 
        vi =vi.astype(float32)  
        laf_d = laf.astype(int32) 
        z2 = z.astype(float32) 
        func2 = mod2.get_function("hess") 
        ssum_d = exp(ssum) 
        ssum_d= ssum_d.astype(float32) 
        sumte_d = sumte.astype(float32) 
        
func2(cuda.InOut(float32(z2)),cuda.InOut(ssum_d),cuda.InOut(sumte_d),
int32(laf_d),int32(p),cuda.InOut(vi),block = (p,1,1) ,grid = (p,1,1)) 
        dot_temp = dot(vi.T,vi) 
        estimate = bet + reshape(dot(linalg.inv(vi),reshape(score, 
(p,1))),(1,p))[0] 
        if i == 0: 
            initial_score = zeros_like(score) 
        if i > 1: 
            if linalg.norm(score)<linalg.norm(initial_score): 
                landa = landa/2 
            else: 
                landa = landa*2 
        initial_score = score 
        dif_temp = abs(bet-estimate) 
        if ((dif_temp< tol).all()): 
            bet_result = estimate 
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            flag = 0 
            break 
        bet = estimate 
    if (flag==1): 
        bet_result = 100000 
        betahat = 1000000 
        betaci = [1000000,1000000] 
    else: 
        betahat = bet_result 
    x = norm.ppf(1-pval/2) 
    nx = [-x,x] 
    betaci = zeros((p,2)) 
     
    for i in range (0,p): 
        betaci[i,0] = betahat[i] + nx[0] / sqrt(vi[i,i]) 
        betaci[i,1] = betahat[i] + nx[1] / sqrt(vi[i,i]) 
    whole_end = datetime.now() - whole  
    print (" the whole is" , whole_end) 
    return (betahat, betaci,ztime) 

 

Program 3. The source code for the entire method 
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APPENDIX A2. CUDA KERNEL FOR ALG.1 

This appendix shows kernel part (CUDA – part handled by GPU) of the code for the first 
algorithm. 

 
2 
 

4 
 

6 
 

8 
 

10 
 

12 
 

14 
 

16 
 

18 
 

20 
 

22 
 

24 
 

26 
 

28 
 

30 
 

32 
 

34 
 

36 
 

__global__ void z_function(float *tspamt, float *inda, float *a, float 
*isiat, float *tspz,  float *z, int *p_d , int *maxi_d) 
{ 
    float gm = 0.0955 ; 
    float alphas = 10 ;  
    float alphar = 0.1 ;  
    float t1; 
    int m = threadIdx.y + threadIdx.x * blockDim.y; 
    int i = blockIdx.y; 
    int j = blockIdx.x; 
    int maxi = (int) maxi_d + 1; 
    int p = (int)p_d +1;  
   
    if (i>=j) 
        {    
          int temp = a[m*gridDim.y+i]; 
          int temp2 = a[m*gridDim.y+j]; 
          int index = 0 ; 
          t1 = tspamt [m*gridDim.y+temp] - isiat[m*gridDim.y+temp] +                                      
isiat[m*gridDim.y+temp2] ; 
        
for (int k = m; k < p*maxi ;k+=p) 
    {   
     if (tspz [k] < t1 && tspz [k] != -1) 
       {  
          if (index < k)  
            {  
              index= k ; 
             }      
        }   
    } 
float bwt; 
bwt = t1 - tspz [index]; 
z[gridDim.y*gridDim.y*m + gridDim.y*i + j] = (1/gm)*((exp(-bwt/al-
phas)-exp(-bwt/alphar)) /(alphas-alphar)); 
    } 
} 

 

Program 4. Kernel part (CUDA – part handled by GPU) of the code for the first algo-
rithm 
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APPENDIX A3. CUDA KERNEL FOR ALG. 2 

This appendix shows kernel part (CUDA – part handled by GPU) of the code for the 
second algorithm. 
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__global__ void z_function(float *tspamt, float *inda, float *a, float 
*isiat, float *tspz,  float *z, int *p_d , int *maxi_d) 
{ 
float gm = 0.0955 ; 
float alphas = 10 ;  
float alphar = 0.1 ;  
float t1; 
int m = blockIdx.x; 
int i = blockIdx.y; 
int j = threadIdx.y + threadIdx.x * blockDim.y;; 
int maxi = (int) maxi_d + 1; 
int p = (int)p_d +1;  
   
if (i>=j) 
     {    
int temp = a[m*gridDim.y+i]; 
int temp2 = a[m*gridDim.y+j]; 
int index = 0 ; 
t1 = tspamt [m*gridDim.y+temp] - isiat[m*gridDim.y+temp] + isiat 
[m*gridDim.y+temp2] ; 
for (int k = m; k < p*maxi ;k+=p) 
        { 
if (tspz [k] < t1 && tspz [k] != -1) 
{ 
if (index < k)  
{  
index= k ; 
}      
}   
} 
float bwt; 
bwt = t1 - tspz [index]; 
z[gridDim.y*gridDim.y*(blockIdx.x) + gridDim.y*i+j] = (1/gm)*((exp(-
bwt/alphas)- 
exp(-bwt/alphar))/(alphas-alphar)); 
} 
   } 

 

Program 5. Kernel part (CUDA – part handled by GPU) of the code for the second 
algorithm. 
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APPENDIX A4. HESSIAN KERNEL 

This appendix presents a kernel for accelerating the computation of the Hessian of ML, 
i.e. the second order differential of ML. 
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__global__ void hess(float *z2,float *ssum_d,float *sumte_d ,int 
laf,int p, float *vi) 
{ 
    int m = threadIdx.x ; 
    int n = blockIdx.x ; 
    float temp1 = 0; 
    float temp2 = 0; 
    float temp3 = 0;  
    float part1 = 0; 
    float part2 = 0; 
    float part3 = 0; 
    float part4 = 0; 
     
    for (int j = 0; j<laf ;j++) 
    {  
for (int i = j; i<laf*laf; i += laf ) 
      { 
temp1 +=   z2[m*laf*laf + i] * z2[n*laf*laf + i] * ssum_d[i]; 
       temp2 += z2[m*laf*laf + i] * ssum_d[i]; 
       temp3 += z2[n*laf*laf + i] * ssum_d[i]; 
} 
    part1 += temp1/sumte_d[j]; 
    part2 += temp2 ; 
    part3 += temp3 ;  
    part4 += (temp2*temp3)/ (sumte_d[j]*sumte_d[j]); 
    temp1 = 0;    
    temp2 = 0; 
    temp3 = 0; 
    } 
vi[threadIdx.x * gridDim.x + blockIdx.x] =  
part1-part4;  
} 

 

Program 6. Kernel for accelerating the computation of the Hessian of ML 
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APPENDIX B. INVERSED TWO-LEVEL DIAMOND SQUARE ALG. 

This appendix, presents the code for inversed two-level diamond square algorithm.  
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__author__ = 'V_AD' 
from mpl_toolkits.mplot3d import Axes3D 
from matplotlib import cm 
from matplotlib.ticker import LinearLocator, FormatStrFormatter 
import matplotlib.pyplot as plt 
import numpy as np 
from numpy import * 
import random 
import visual 
import math as mt 
import matplotlib.pyplot as plt 
from PIL.BmpImagePlugin import o32 
from killer import killer 
 
global r, stop_flag 
stop_flag = False 
def locations (gridsize,neuronsize,totalcell): 
#     gridsize = raw_input('Enter the MEA area in micrometers^2: ') 
#     neuronsize = raw_input ('Enter the neuron area in microme-
ters^2: ') 
#     neuronnumber = raw_input ('Enter the total number of neurons : 
') 
    needed_cells = gridsize / neuronsize 
    w = int(mt.sqrt(needed_cells)) 
    h = w 
    global r,stop_flag 
    r = -3 
    def diamond(w,h,rand = -3,draw = False): 
        global r,stop_flag 
        def plasma(x, y, width, height, c1, c2, c3, c4): 
            newWidth = width / 2 
            newHeight = height / 2 
            global idx,dots 
            if (width > gridSize or height > gridSize): 
                #Randomly displace the midpoint! 
                midPoint = (c1 + c2 + c3 + c4) / 4 + Displace(rand) 
                #Calculate the edges by averaging the two corners of 
each edge. 
                edge1 = (c1 + c2) / 2 
                edge2 = (c2 + c3) / 2 
                edge3 = (c3 + c4) / 2 
                edge4 = (c4 + c1) / 2 
 
                #Do the operation over again for each of the four new 
grids. 
                plasma(x, y, newWidth, newHeight, c1, edge1, mid-
Point, edge4) 
                plasma(x + newWidth, y, newWidth, newHeight, edge1, 
c2, edge2, midPoint) 
                plasma(x + newWidth, y + newHeight, newWidth, 
newHeight, midPoint, edge2, c3, edge3) 
                plasma(x, y + newHeight, newWidth, newHeight, edge4, 
midPoint, edge3, c4) 
            else: 



62 

 
56 
 

58 
 

60 
 

62 
 

64 
 

66 
 

68 
 

70 
 

72 
 

74 
 

76 
 

78 
 

80 
 

82 
 

84 
 

86 
 

88 
 

90 
 

92 
 

94 
 

96 
 

98 
 

100 
 

102 
 

104 
 

106 
 

108 
 

110 
 

112 
 

                #This is the "base case," where each grid piece is 
less than the size of a pixel. 
                c = (c1 + c2 + c3 + c4) / 4 
    #             dots[idx] = c 
    #             idx = idx + 1 
        #         print(c) 
                if (c>0.5): 
                    c = 0 
                    if (draw == True): 
                        visual.points(pos=[x-(100),c,y-(100)], 
color=(1,0.31,0.1)) 
                    dots[idx] = c 
                    idx = idx + 1 
                else: 
                    c= 5 
                    if (draw == True): 
                        visual.points(pos=[x-(100),c,y-(100)], 
color=(0.8,1,1)) 
                    dots[idx] = c 
                    idx = idx + 1 
 
        def Displace(num): 
            rand = (random.uniform(num, 1) - noise) 
        #     print rand 
            return rand 
 
 
        global gridSize, gamma, points, width, height, idx,dots 
        random.seed('Albert Einstein was a German theoretical physi-
cist.') 
 
        def reshaper (inpt): 
            l= len(inpt) 
            if (l>4): 
                o1= inpt[0:l/4] 
                o2= inpt[l/4:l/2] 
                o3= inpt[l/2:3*l/4] 
                o4= inpt[3*l/4:] 
                temp1 = np.concatenate((reshaper(o1),re-
shaper(o2)),axis=1) 
                temp2 = np.concatenate((reshaper(o4),re-
shaper(o3)),axis=1) 
                temp3 = np.concatenate((temp1,temp2),axis = 0) 
                return (temp3) 
            else: 
                outp = np.zeros((2,2)) 
                outp[0,0:2] = inpt [0:2] 
                outp[1,0:2] = np.fliplr([inpt[2:]])[0] 
                return(outp) 
 
        nearest_2_power = 0 
        while w>2**nearest_2_power: 
            nearest_2_power += 1 
        nearest_2 = 2**nearest_2_power 
        idx = 0 
        width = nearest_2*10 
        noise = 0.02 # less noise = higher map 
        height = nearest_2*10 
        gridSize = 10 # size between pixels 
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        length = 0 
        gridtemp = width 
        while gridtemp > gridSize: 
            gridtemp = gridtemp/2 
            length +=1 
#         print(length) 
        dots = np.zeros (4**length) 
 
        plasma(0,0, width, height, random.uniform(0, 1), random.uni-
form(0, 1), random.uniform(0, 1), random.uniform(0, 1)) 
    #     print(dots) 
        positions = np.zeros 
((mt.sqrt(len(dots)),mt.sqrt(len(dots)))) 
 
        positions = reshaper(dots) 
    #     print (positions) 
        cells = sum(sum(positions==5)) 
#         print (cells,'out of', len(positions)**2) 
        return (positions,cells) 
    position_final , cells = diamond(w, h) 
    position_final_cropped = position_final [0:w,0:w] 
    cells = sum(sum(position_final_cropped==5)) 
 
    while cells > totalcell: 
 
        r += 0.1 
        position_final , cells = diamond (w,h,r) 
        position_final_cropped = position_final [0:w,0:w] 
        cells = sum(sum(position_final_cropped==5)) 
        # print(cells) 
    else: 
        r -= 0.1 
        position_final , cells = diamond (w,h,r) 
        position_final_cropped = position_final [0:w,0:w] 
        cells = sum(sum(position_final_cropped==5)) 
 
#     else: 
# #         if (stop_flag == False): 
# #             stop_flag = True 
# #         position_final , cells = diamond (w,h,r,True) 
#         position_final , cells = diamond (w,h,r,True) 
#         position_final_cropped = position_final [0:w,0:w] 
#         cells = sum(sum(position_final_cropped==5)) 
    # else: 
    #     r = rand-0.1 
    #     locations (w,h,r) 
 
    print (cells,'out of', len(position_final_cropped)**2) 
    q = position_final_cropped 
    eliminate  = np.random.randint(cells,size = cells-totalcell) 
    all_indices = where(q==5) 
    for el in eliminate : 
        q[all_indices[0][el]][all_indices[1][el]] = 0 
    for i in range (0,len(q)): 
        for j in range (0,len(q)): 
            if (q[i,j]==0): 
                visual.points(pos=[i,0,j], color=(0.8,1,1)) 
            else: 
                visual.points(pos=[i,1,j], color=(1,0.31,0.1)) 
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    p_temp = np.where(position_final_cropped == 5) 
    p = [array([i[1],j[1]]) for i in list (enumerate(p_temp[0])) for 
j in list(enumerate(p_temp[1])) if i[0] == j[0]] 
    p = [array([pp[1]*(sqrt(neuronsize)),pp[0]*(-sqrt(neuronsize)) ]) 
for pp in p] 
    return p,position_final_cropped 
 
 
 
def MEA_locations (gridsize,neuronsize,totalcell): 
    p,q = locations(gridsize,neuronsize,totalcell) 
    ax = plt.subplot(111) 
    # ax.plot ([-i[1] for i in p],[-i[0] for i in p],'ro') 
    real_size = 50 
    # origp = np.copy(p) 
    # length = sqrt(neuronsize) 
    for loc in p : 
        i0,i1 = np.random.random(2) * (sqrt(neuronsize)) 
        loc[0] += i0 
        loc[1] -= i1 
 
    return p,q 
# p,q = locations(50000,5000, 4) 
p,q = MEA_locations(7840000,5000,1000) 
 
# p2,_ = MEA_locations(7840000,50,1000) 
# print (q) 
# print(p) 
ax = plt.subplot(111) 
ax.plot ([-i[1] for i in p],[-i[0] for i in p],'ro') 
 
ax.set_ylim([-2800,0]) 
ax.set_xlim([0,2800]) 
 
plt.show() 
# print(np.shape(q)) 
# p = killer(q,0) 
# for i in range (0,len(p)): 
#         for j in range (0,len(p)): 
#             if (p[i,j]==0): 
#                 visual.points(pos=[i,0,j], color=(255/255, 255/255, 
255/255)) 
#             elif (p[i,j]==2.5): 
#                 visual.points(pos=[i,1,j], color=(51/255, 102/255, 
200/255)) 
#             else: 
#                 visual.points(pos=[i,1,j], color=(255/255 ,204/255 
,10/255)) 
# print (q) 
# for i in range (0,len(q)): 
#     for j in range (0,len(q)): 
#         if (q[i,j]==0): 
#             visual.points(pos=[i,0,j], color=(0.8,1,1)) 
#         else: 
#             visual.points(pos=[i,1,j], color=(1,0.31,0.1)) 

 

Program 7. The code for inversed two-level diamond square algorithm used for plating 
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APPENDIX C. CELL DEATH  

This appendix, presents the code for implementing cell death. 
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__author__ = 'V_AD' 
import numpy as np 
import random as rand 
import matplotlib.pyplot as plt 
 
def death_list (neurons): 
    NN = len(neurons) 
    output = np.zeros(12240); 
    q = float(NN) 
    percentage = float(rand.sample(range(45,55),1)[0])/100 
    x = rand.sample(range(0,12240),int(q*percentage)) 
    y = rand.sample(neurons,int(q*percentage)) 
    output[x] = y 
    return output 
 
def killer (q,days): 
    NN = np.count_nonzero(q) 
    neurons = np.zeros (NN) 
    l = len (q) 
    counter = 0 
    for i in range (0,l): 
        for j in range (0,l): 
            if q[i,j]!=0: 
                idx = i*l+j 
                neurons[counter] = idx 
                counter+=1 
    dead_idx = death_list(neurons) 
    dead_idx = dead_idx [0:days*60*12] 
 
    for i in range (0,len(dead_idx)): 
        if dead_idx[i] !=0: 
            dead = dead_idx[i] 
            x = dead/l 
            y = dead%l 
            q[x,y] = 2.5 
    return q 
 
 

Program 8. Implementation of cell death  
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APPENDIX D. MORPHOLOGY  

This appendix provides the code for generating the distributions based on morphology.  
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from shapely.geometry import LineString 
from matplotlib.pyplot import * 
from locations import * 
from numpy import * 
import numpy as np 
import numpy as np 
from rotator import * 
import matplotlib.pyplot as plt 
import math as mth 
import time 
def morpho_generator (area, neuron , n, morpho_source ) : 
    p,q = MEA_locations(area,neuron, n) 
    print (p) 
    # print morpho_source [5] 
    total_morpho = zeros ([n,shape(morpho_source)[0],shape(mor-
pho_source)[1]]) 
    morpho_temp = copy(morpho_source) 
    for r in range (n): 
        soma_x = float(morpho_temp[0][2]) + p[r][0] 
        soma_y = float(morpho_temp[0][3]) + p[r][1] 
        angle = np.random.random(1) * 360 
        for l in range(len(morpho_temp)): 
            temp_x = float(morpho_temp[l][2]) + p[r][0] 
            temp_y = float(morpho_temp[l][3]) + p[r][1] 
            point  = rotator((soma_x,soma_y),(temp_x,temp_y),angle) 
            # morpho_temp[l][2] = str(float(morpho_temp[l][2]) + 
p[r][0]) 
            # morpho_temp[l][3] = str(float(morpho_temp[l][3]) + 
p[r][1]) 
            morpho_temp[l][2] = str(point[0]) 
            morpho_temp[l][3] = str(point[1]) 
            # l[2] = str(float(l[2]) + p[r][1]) 
            # l[3] = str(float(l[3]) + p[r][0]) 
        total_morpho [r,:,:] = morpho_temp 
        # print morpho_temp[0] 
        morpho_temp = copy(morpho_source) 
 
    # print morpho_source[5] 
    return total_morpho , p,q 
 
 
 
def multi_morpho_generator (area, neuron , n, morpho_source ,types, 
dist ) : 
 
    p,q = MEA_locations(area,neuron, n) 
    print (p) 
    # print morpho_source [5] 
    pick = array ([]) 
    for idx , qq in list(enumerate(dist)): 
        temp_ = round(qq*n) 
        pick = append(pick, (idx)*ones(temp_)) # this creates an ar-
ray of 1 , 2, ... each repeated by number of cells per type. in next 
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step it will be shuffled to determine the final formation of all 
type of cells. 
    np.random.shuffle(pick) 
    while len(pick) < n : 
        pick = append (pick, array([len(dist)])) 
        random.shuffle(pick) 
    total_morpho = {} 
    # total_morpho = zeros ([n,shape(morpho_source)[0],shape(mor-
pho_source)[1]]) 
    # morpho_temp = copy(morpho_source) 
 
 
    for r in range (n): 
        morpho_temp = copy(morpho_source[types[int(pick[r])]]) # 
this put the right model inside the temp 
        # morpho_temp = [map(float,p) for p in morpho_temp] 
        soma_x = float(morpho_temp[0][2]) + p[r][0] 
        soma_y = float(morpho_temp[0][3]) + p[r][1] 
        angle = np.random.random(1) * 360 
        for l in range(len(morpho_temp)): 
            temp_x = float(morpho_temp[l][2]) + p[r][0] 
            temp_y = float(morpho_temp[l][3]) + p[r][1] 
            point  = rotator((soma_x,soma_y),(temp_x,temp_y),angle) 
            # morpho_temp[l][2] = str(float(morpho_temp[l][2]) + 
p[r][0]) 
            # morpho_temp[l][3] = str(float(morpho_temp[l][3]) + 
p[r][1]) 
            morpho_temp[l][2] = str(point[0]) 
            morpho_temp[l][3] = str(point[1]) 
 
            # l[2] = str(float(l[2]) + p[r][1]) 
            # l[3] = str(float(l[3]) + p[r][0]) 
        total_morpho [r] = {} 
        total_morpho [r]['type'] = types[int(pick[r])] 
        total_morpho [r]['points'] = [map(float,pp) for pp in mor-
pho_temp] 
 
        # total_morpho [r,:,:] = morpho_temp 
        # print morpho_temp[0] 
        # morpho_temp = copy(morpho_source) 
 
    # print morpho_source[5] 
    return total_morpho , p,q , pick 
 
def rotator(centerPoint,point,angle): 
    """Rotates a point around another centerPoint. Angle is in de-
grees. 
    Rotation is counter-clockwise""" 
    angle = math.radians(angle) 
    temp_x = point[0]-centerPoint[0] 
    temp_y = point[1] - centerPoint [1] 
    dist = sqrt(temp_x**2 + temp_y**2) 
    # old_ang = arccos(temp_x/dist) 
    # total_ang = old_ang + angle 
    new_x = float('%.2f'%(cos(angle)*temp_x - sin(angle)*temp_y + 
centerPoint[0])) 
    new_y = float('%.2f'%(sin(angle)*temp_x + cos(angle)*temp_y + 
centerPoint [1])) 
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    # temp_point = point[0]-centerPoint[0] , point[1]-centerPoint[1] 
    # temp_point = ( temp_point[0]*math.cos(angle)-
temp_point[1]*math.sin(angle) , temp_point[0]*math.sin(an-
gle)+temp_point[1]*math.cos(angle)) 
    # temp_point = temp_point[0]+centerPoint[0] , temp_point[1]+cen-
terPoint[1] 
    temp_point = array([new_x,new_y]) 
    return temp_point 
 
def all_permutations (temp_axons,temp_dends): 
    results = array([]) 
    for a in range(1,len(temp_axons)) : 
        if float(temp_axons[a][0]) == float(temp_axons[a][6])+1: 
            temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[a-
1][2]),float(temp_axons[a-1][3]))]) 
        else: 
            target_idx = [p[0] for p in zip(*where(temp_axons == ar-
ray([temp_axons[a][6]]))) if p[1] == 0][0] 
            temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[tar-
get_idx][2]),float(temp_axons[target_idx][3]))]) 
        for d in range (1,len(temp_dends)): 
            if float(temp_dends[d][0]) == float(temp_dends[d][6])+1: 
                temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[d-1][2]),float(temp_dends[d-1][3]))]) 
            else: 
                target_idx = [p[0] for p in zip(*where(temp_dends == 
array([temp_dends[d][0]]))) if p[1] == 0][0] 
                temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[target_idx][2]),float(temp_dends[target_idx][3]))]) 
        temp_line = temp_line1.intersection(temp_line2) 
        if temp_line : 
            results = (results,array(temp_line1.intersec-
tion(temp_line2))) 
    return len(results) , results # this function returns the number 
of synapses between a set of dends which are totlaly inside a set a 
axons as well as the points of connection 
 
 
####################################################################
############## 
 
 
 
 
def partial_permutation (temp_axons , temp_dends ): 
    results = array([]) 
    for a in range(1,len(temp_axons)) : 
        temp_line1 = LineString([(float(temp_ax-
ons[a][2]),float(temp_axons[a][3])),(float(temp_axons[a-
1][2]),float(temp_axons[a-1][3]))]) 
        for d in range (1,len(temp_dends)): 
            temp_line2 = Lin-
eString([(float(temp_dends[d][2]),float(temp_dends[d][3])),(float(te
mp_dends[d-1][2]),float(temp_dends[d-1][3]))]) 
            temp_line = temp_line1.intersection(temp_line2) 
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            if temp_line : 
                results = (results,array(temp_line1.intersec-
tion(temp_line2))) 
    return len(results[1:]) , results[1:]  
 
def status (str): 
    cleaner = ' ' * 100 
    print '\r'+ cleaner + '\r' + str, 
#################################################### 
 
NN =100 
neuron_size = 5000 
 
plate_size = 851929 
# neuron = array(['1', '1', '2.39', '-1.6', '-563.94', '11.1795', '-
1']) 
types = ['pyramidal','basket'] 
types_location = ['C:/Users/admin_tunnus/Desktop/pyrami-
dal.swc','C:/Users/admin_tunnus/Desktop/basket.swc' ] 
neurons_source = {} 
for i in range (len(types)) : 
    neurons_source[types[i]] =  array(['1', '1', '2.39', '-1.6', '-
563.94', '11.1795', '-1']) 
    with open (types_location[i], 'r') as f : 
        for line in f: 
            if  not (line.startswith('#')): 
                neurons_source[types[i]] = vstack ((neu-
rons_source[types[i]], line.split())) 
    neurons_source[types[i]] = neurons_source[types[i]][1:] 
# neuron = neuron [1:] 
dist = array([0.7,0.3]) 
all_neurons,somas, structure , type_array = multi_morpho_genera-
tor(plate_size,neuron_size,NN,neurons_source,types,dist) 
# somas = divide (somas,neuron_size) 
axons = {} 
dends = {} 
points = {} 
for idx in range (NN): 
    axons["a%d" %idx] = [p for p in all_neurons[idx]['points'] if 
p[1]==2] 
    dends["d%d" %idx] = [p for p in all_neurons[idx]['points'] if 
p[1]==3] 
    points["n%d" %idx] = {} 
# total_max = max(max([ qq[2] for pp in all_neurons for qq in pp ]), 
max([ q[3] for p in all_neurons for q in p ])) 
# total_min = min(min([ qq[2] for pp in all_neurons for qq in pp ]), 
min([ q[3] for p in all_neurons for q in p ])) 
print "starting finding the branches" 
all_branches = branch_finder (all_neurons) 
print"branches are ready " 
 
colors = array(['b','g','r','c','m','y','k']) 
 
fig = plt.figure() 
ax = fig.add_subplot(111) 
print "plotting the neurons" 
branch_status = 0 
branch_total = len([ne for ne in all_branches]) 
indices_array = type_array 
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for pp in range(len (types)): 
    temp_ar = zeros ([len(type_array)]) 
    counter = 0 
    for ii, q in list(enumerate(type_array)) : 
        if q == pp : 
            temp_ar[ii] = counter 
            counter +=1 
    indices_array = vstack([indices_array,temp_ar]) 
indices_array =indices_array[1:] 
final_result = {} 
# points = array([0,0]) 
# passed_number = 0. 
# sh1 = shape ([axons[p] for p in axons]) 
# sh2 = shape ([dends[p] for p in dends]) 
# total_number = sh1[0] * (sh1[1]-1) * (sh2[0]-1) * (sh2[1]-1) 
# print (total_number) 
fr = array([]) 
to = array([]) 
sy = array([]) 
 
print "finding boundry boxes" 
axon_borders = zeros ([NN,4,2]) # border points of each neuron 0 is 
upper left, 1 is upper right and so on 
dend_borders = zeros ([NN,4,2]) 
counter1 = 0 
for neuron in range (NN): 
    axon_borders[neuron,0,:],axon_borders[neuron,1,:],axon_bor-
ders[neuron,2,:], axon_borders[neuron,3,:] = boundry_box (ax-
ons['a%d'%neuron]) 
    dend_borders[neuron,0,:] , dend_borders[neuron,1,:] , dend_bor-
ders[neuron,2,:], dend_borders[neuron,3,:] =  boundry_box 
(dends['d%d'%neuron]) 
    counter1+= 1 
    percentage = float(counter1)/NN *100 
    status ("%.2f %% of locating borders completed\n" %percentage) 
print (structure) 
# print (axon_borders) 
# print(dend_borders) 
### next two lines draw the whole boundries 
plt.plot([qq[0] for pp in axon_borders for qq in pp],[qq[1] for pp 
in axon_borders for qq in pp],'ro') 
plt.plot([qq[0] for pp in dend_borders for qq in pp],[qq[1] for pp 
in dend_borders for qq in pp],'bs') 
# show() 
# raw_input("press to continue...") 
dig_level = 1 
zeros_src = 0 
syn_set = -1 
 
connection_map = {} 
 
 
print "start finding axons and dends borders" 
for q,t in zip(dend_borders,axon_borders) : 
    col = random.choice(colors) 
    for t2 in range (3) : 
        plt.plot ( [t[t2][0],t[t2+1][0]],[t[t2][1],t[t2+1][1]],col) 
        plt.plot([q[t2][0],q[t2+1][0]],[q[t2][1],q[t2+1][1]],col ) 
    plt.plot ( [t[0][0],t[3][0]],[t[0][1],t[3][1]],col) 
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    plt.plot ( [q[0][0],q[3][0]],[q[0][1],q[3][1]],col) 
# show() 
 
print "creating connection map " 
map_current = 0 
map_total = NN 
for targ in range (NN) : 
    temp_axon_border = axon_borders[targ,:,:] 
    connection_map['n%d'%targ] = {} 
    connection_map['n%d'%targ]['neuron_type'] = type_array[targ] 
    for ref in range (NN): 
        if targ!=ref : 
            temp_dends_border = dend_borders[ref,:,:] 
            _,temp_type,temp_boundry = intersect_finder 
(temp_axon_border[0],temp_axon_border[1],temp_axon_bor-
der[2],temp_axon_border[3],temp_dends_border[0],temp_dends_bor-
der[1],temp_dends_border[2],temp_dends_border[3],boundry_flag=1) 
            if temp_type != '0P': 
                connection_map['n%d'%targ]['n%d'%ref]= {} 
                connection_map['n%d'%targ]['n%d'%ref]['type'] = 
temp_type 
                connection_map['n%d'%targ]['n%d'%ref]['neuron_type'] 
= type_array[ref] 
                connection_map['n%d'%targ]['n%d'%ref]['boundry'] = 
temp_boundry 
    map_current +=1 
    map_perc = float (map_current *100 ) / map_total 
    status ("%.2f%% of creating connection map completed"%map_perc) 
 
 
# show( ) 
# print (connection_map) 
# raw_input("somehting") 
# show() 
# print connection_map 
 
 
total_calc =  len([q for p in connection_map for q in connec-
tion_map[p] if q!=  'neuron_type']) 
current_calc = 0 
print "Finding Connections" 
for src , target in list(enumerate(connection_map)): 
    for dest, reference in list(enumerate(connection_map[target])): 
        if reference != 'neuron_type' : 
            print target,reference 
            start_time = time.time() 
            temp_boundries_boundry = connection_map[target][refer-
ence]['boundry'] 
            temp_type = connection_map[target][reference]['type'] 
            print temp_type 
            temp_axons_branches = [all_branches[target]['axons'][b] 
for b in all_branches[target]['axons'] if intersect_finder\ 
                (all_branches[target]['ax-
ons'][b]['boundry'][0],all_branches[target]['ax-
ons'][b]['boundry'][1],\ 
                 all_branches[target]['ax-
ons'][b]['boundry'][2],all_branches[target]['ax-
ons'][b]['boundry'][3],\ 
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temp_boundries_boundry[0],temp_boundries_boundry[1],temp_boundries_b
oundry[2],temp_boundries_boundry[3])[1] != '0P' ] 
            temp_dends_branches = [all_branches[refer-
ence]['dends'][b] for b in  all_branches[reference]['dends'] if in-
tersect_finder\ 
                (all_branches[refer-
ence]['dends'][b]['boundry'][0],all_branches[refer-
ence]['dends'][b]['boundry'][1],\ 
                 all_branches[refer-
ence]['dends'][b]['boundry'][2],all_branches[refer-
ence]['dends'][b]['boundry'][3],\ 
                 
temp_boundries_boundry[0],temp_boundries_boundry[1],temp_boundries_b
oundry[2],temp_boundries_boundry[3])[1] != '0P' ] 
            syn_set+=1 
            final_result['syn_set%d'%syn_set] = {} 
            final_result['syn_set%d'%syn_set]['from'] = {} 
            final_result['syn_set%d'%syn_set]['from']['idx'] = tar-
get 
            final_result['syn_set%d'%syn_set]['from']['type'] =  
connection_map[target]['neuron_type'] 
            final_result['syn_set%d'%syn_set]['to'] = {} 
            final_result['syn_set%d'%syn_set]['to']['idx'] = refer-
ence 
            final_result['syn_set%d'%syn_set]['to']['type'] =connec-
tion_map[target][reference]['neuron_type'] 
            final_result['syn_set%d'%syn_set]['n'] = 0 
            final_result['syn_set%d'%syn_set]['points'] = array 
([0,0]) # remeber to remove first element since it's an empty array 
            total_per = len(temp_axons_branches) * 
len(temp_dends_branches) 
            current_per = 0 
            for t_ax in temp_axons_branches : 
                for t_de in temp_dends_branches: 
                    if (inter-
sect_finder(t_ax['boundry'][0],t_ax['boundry'][1],t_ax['boundry'][2]
,t_ax['boundry'][3],t_de['boundry'][0],t_de['boundry'][1],t_de['boun
dry'][2],t_de['boundry'][3])[1] != '0P'): 
                        temp_final_n  ,temp_final_points = par-
tial_permutation([q1 for q1 in t_ax['points']],[q2 for q2 in 
t_de['points']]) 
                        final_result['syn_set%d'%syn_set]['n'] += 
temp_final_n 
                        if temp_final_n != 0 : 
                            final_re-
sult['syn_set%d'%syn_set]['points'] =  vstack ([final_re-
sult['syn_set%d'%syn_set]['points'],temp_final_points]) 
                        # status ("%d found"%final_re-
sult['syn_set%d'%syn_set]['n']) 
                    current_per +=  1 
                    current_perc= float(current_per)*100/total_per 
                    status("%.2f%% of current neuron is finnished 
"%current_perc) 
            elapsed_time = time.time() - start_time 
            print (" the time is : %f " %elapsed_time) 
            final_result['syn_set%d'%syn_set]['points'] = final_re-
sult['syn_set%d'%syn_set]['points'][1:] 
            current_calc += 1 
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            total_calc_perc=  float(current_calc)*100 / total_calc 
            status ("#################### Totally %.2f%% completed" 
%total_calc_perc) 
print(final_result) 
 
# following three lines gather the points of connection and plot 
them with green triangles 
for_plot1 = [i for i in [final_result[p]['points'] for p in fi-
nal_result] if len(i)!= 1] 
for_plot = [qq for jj in for_plot1 for qq in jj] 
plt.plot([i[0] for i in for_plot],[i[1] for i in for_plot],'b^') 
plt.plot([i[0] for i in for_plot],[i[1] for i in for_plot],'y^') 
######### 
# save('C:/Users/andalibi/Local/connectionmap', connection_map) 
# save('C:/Users/andalibi/Local/final_result', final_result) 
 
 
pickle.dump( connection_map, open( "C:/Users/admin_tunnus/Desk-
top/results/connectionmap.p", "wb" ) ) 
pickle.dump( final_result, open( "C:/Users/admin_tunnus/Desktop/re-
sults/final_result.p", "wb" ) ) 
pickle.dump( indices_array, open( "C:/Users/admin_tunnus/Desktop/re-
sults/indices_array.p", "wb" ) ) 
pickle.dump( all_branches, open( "C:/Users/admin_tunnus/Desktop/re-
sults/all_branches.p", "wb" ) ) 
pickle.dump( all_neurons, open( "C:/Users/admin_tunnus/Desktop/re-
sults/all_neurons.p", "wb" ) ) 
pickle.dump( somas, open( "C:/Users/admin_tunnus/Desktop/results/so-
mas.p", "wb" ) ) 
pickle.dump( structure, open( "C:/Users/admin_tunnus/Desktop/re-
sults/structure.p", "wb" ) ) 
plt.axis('equal') 
show() 
 
def branch_finder (all_neurons ) : 
    branches = {} 
    finder_current = 0 
    finder_total = len(all_neurons) 
    for idx in range (len(all_neurons)): 
        branches ["n%d"%idx] = {} 
        branches ["n%d"%idx]['axons'] = {} 
        branches ["n%d"%idx]['dends'] = {} 
        # temp_1 = [p for p in all_neurons[idx] if ((p[0]!=p[6]+1) 
and len([q for q in all_neurons[idx] if q[0]==p[6]])!=0)] 
        temp_1 = [p for p in all_neurons[idx]['points'] if 
((int(p[0])!=int(p[6])+1) and len([q for q in all_neu-
rons[idx]['points'] if q[0]==p[6]])!=0)] 
        all_0 = array([int(j[0]) for j in all_neu-
rons[idx]['points']]) 
        places = [where (all_0 == int(jj[0])) for jj in temp_1] 
        counter1 = 0 # this is for axons 
        counter2 = 0 # this is for dendrites 
        for m1 in range (1,len(temp_1)): 
            start_idx = int(places[m1][0]) # start is the first 
point of branch , begin is the 0 point of branch 
            prev_start_idx = int(places[m1-1][0]) 
            begin_idx = int(all_neurons 
[idx]['points'][prev_start_idx][6]) -1 
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            if int(all_neurons[idx]['points'][start_idx][1]) == 2:# 
this goes for axonal brnaches 
                branches ['n%d'%idx]['axons']['br%d'%counter1] = {} 
                branches ['n%d'%idx]['axons']['br%d'%coun-
ter1]['points'] = vstack([all_neurons 
[idx]['points'][begin_idx],all_neurons[idx]['points'][prev_start_idx 
: start_idx]]) # the branch is created and the first point is also 
considered 
                branches ['n%d'%idx]['axons']['br%d'%coun-
ter1]['boundry'] = boundry_box (branches ['n%d'%idx]['ax-
ons']['br%d'%counter1]['points']) 
                counter1+=1 
            elif int(all_neu-
rons[idx]['points'][int(places[m1][0])][1]) == 3: 
                branches ['n%d'%idx]['dends']['br%d'%counter2] = {} 
                branches ['n%d'%idx]['dends']['br%d'%coun-
ter2]['points'] = vstack([all_neurons 
[idx]['points'][begin_idx],all_neu-
rons[idx]['points'][prev_start_idx:start_idx]]) 
                branches ['n%d'%idx]['dends']['br%d'%coun-
ter2]['boundry'] = boundry_box (branches 
['n%d'%idx]['dends']['br%d'%counter2]['points']) 
                counter2+=1 
        finder_current +=1 
        finder_perc = float(finder_current*100)/finder_total 
        status ("%.2f%% of branch finding completed"%finder_perc) 
    return branches 
 
 

Program 9. The implementation used for utilizing morphology for the purpose of find-
ing connections 
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