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ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master‘s Degree Programme in Signal Processing
NAITHANI, GAURAV: Acoustic Analysis of Infant Cry Signals.
Master of Science Thesis, 68 pages
May 2015
Major: Signal Processing
Examiners: Associate Prof. Tuomas Virtanen, MSc. Katariina Mahkonen
Keywords: Infant cry analysis, Audio segmentation, Fundamental frequency estimation

Crying is the first means of communication for an infant through which it ex-
presses its physiological and psychological needs. Infant cry analysis is the inves-
tigation of infant cry vocalizations in order to extract social and communicative
information about infant behavior, and diagnostic information about infant health.
This thesis is part of a larger study whose objective is to analyze the acoustic proper-
ties of infant cry signals and use it for early assessment of neurological developmental
issues in infants.

This thesis deals with two research problems in the context of infant cry signals:
audio segmentation of cry recordings in order to extract relevant acoustic parts,
and fundamental frequency (F0) estimation of the extracted acoustic regions. The
extracted acoustic regions are relevant for extracting parameters useful for drawing
correlation with developmental outcomes of the infants. Fundamental frequency
(F0) , is one such potentially useful parameter whose variation has been found to
correlate with cases of neurological insults in infants. The cry recordings are cap-
tured in realistic hospital environments under varied contexts like infant crying out of
hunger, pain etc. A hidden Markov model (HMM) based audio segmentation system
is proposed. The performance of the system is evaluated for different configurations
of HMM states, number of component Gaussians, and using different combinations
of audio features. Frame based accuracy of 88.5 % is achieved. YIN algorithm, a
popular F0 estimation algorithm, is utilized to deal with the fundamental frequency
estimation problem, and a method to discard unreliable F0 estimates is suggested.
The statistics associated with distribution of F0 estimates corresponding to different
components of cry signals are reported.

This work would be followed up to find meaningful correlations between extracted
F0 estimates and developmental outcomes of the infants. Moreover, other acoustic
parameters would also be investigated for the same purpose.
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1. INTRODUCTION

Infant cry analysis is a multidisciplinary field of research and researchers from var-
ious fields, e.g., pediatrics, developmental psychology, communication sciences, and
signal processing, have contributed to it. Crying can perhaps be regarded as the
first means of communication for an infant with its environment. It conveys to the
caregiver any physiological or psychological requirement the infant may have and
is therefore an important indicator of the biological and psychological status of the
infant. There are two kinds of information that we can derive from cry sounds of
infants: health related information, and social or psychological information. In or-
der to extract these, acoustic analysis of cry signals and perception experiments [1]
have been performed. In this thesis, our interest is in diagnostic value of infant cry.

Acoustic analysis of infant cry has existed as an active field of research for a long
time. It generally involves analysis of acoustic characteristics of cry signals, e.g.,
fundamental frequency, temporal variation of fundamental frequency, amplitude,
formants, etc. [1–9]. The primary motive that fueled research in this field was the
possibility of finding correlations between extracted cry characteristics and medical
condition of ailing infants. These correlations, once found, could then possibly be
used for the development of a diagnostic tool. Any such diagnostic tool should have
some or all of the following characteristics:

1. It would be non invasive in nature. It would help in diagnosis of conditions
which can only be detected by invasive procedures.

2. It would be able to detect conditions which warrant immediate diagnosis.
Sudden infant death syndrome (SIDS) is one such condition which involves
sudden, unexpected death of an infant, usually during sleep. Researchers have
pointed to a relation between cry characteristics and SIDS [6, 10].

3. It would be useful for prognosis of long term neurological development of the
infant.
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1.1 Objective of the Thesis

This thesis is a part of a larger study at University of Tampere on analyzing infant
cry recordings for finding potentials markers of child development and health. The
study aims to develop a method making it possible to detect health and develop-
mental issues in infants at very early age. Infant cognition Laboratory, University
of Tampere School of Medicine; and Audio Research Group, Tampere University of
Technology are contributing to this study.

The scope of this thesis is divided into two tasks. The first task is to devise
methods to extract relevant parts from the infant cry recordings. These recordings
are captured in real hospital environment and thus contain background noises as well
as portions which are not useful for further analysis. The composition of an infant
cry elucidating its useful and irrelevant parts will be discussed in more detail in
Section 1.2. The second task is to develop analytical tools to analyze the extracted
relevant parts. Fundamental frequency (F0) estimation is one such analytical tool
which has been widely used in infant cry research. The same is investigated in this
thesis.

This study will involve further development of analytical tools and investigation
of other acoustic characteristics of infant cry signals apart from F0 . The aim would
be to use them for the purpose of deriving meaningful correlations between the cry
characteristics and cognitive developmental outcomes of the infants. The scope of
this thesis is however limited as this analysis will not be a part of it.

1.2 Infant Cry Signal

An infant cry signal consists of a series of expirations and inspirations produced by
an infant. The expirations and inspirations are separated by bouts of silence. The
signal may also contain non cry vocals produced by the infant in between the series
of expirations and inspirations.A cry signal captured in a realistic environment like
pediatric ward of a hospital usually also contains background noise which may be
contributed by the environment in which the recording is done, or by the recording
equipment itself. Hence the signal can be thought of as a combination of expirations,
inspirations, non cry vocals, and background noise.

The terminology used in infant cry literature to describe components of a cry
signal can sometimes be quite confusing. In order to avoid this, we will now define
some terms,

• An expiratory phase is a bout of expiration in the cry recording separated from
the other bouts of expiration/ inspiration by a period of silence.

• An inspiratory phase is a bout of inspiration in the cry recording separated
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from other bouts of expiration/ inspiration by a period of silence.

It should be noted that the above mentioned period of silence between an expiratory
phase and the inspiratory phase following it can be very short in some instances.
Figure 1.1 is an example of portion of a cry recording captured in hospital environ-
ment. It depicts the different components of cry signal discussed here.
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Figure 1.1: An example of infant cry signal exhibiting expiratory and inspiratory
phases.

In this thesis, we aim to extract the relevant parts from cry recordings captured
under realistic hospital environment in the presence of non cry vocals and back-
ground noise. Most of the previous infant cry research has been primarily focused
on analysis of expiratory phases, and analysis of inspiratory phases has been given
comparatively less attention. The relevance of anatomical and physiological bases
of inspiratory phonation has been pointed out by Grau et al. [11]. In this thesis,
we aim to develop a method to segregate expiratory phases as well as inspiratory
phases from the cry recordings. The regions of interest, namely, expiratory and
inspiratory phases, have to be accurately identified in the cry recordings in presence
of background noise and non cry vocals. One solution to this problem is manually
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annotating the recordings using some sound editing software, e.g., Audacity. This
method is subjective, time consuming and prone to errors. Moreover, it becomes
impractical if the number of audio files to be annotated is large. In such a case,
there is need for an automated method to be developed. We have proposed a hidden
Markov model (HMM) based audio segmentation system to achieve this. Using it,
the cry signal under inspection is segregated into what we call the regions of in-
terest,namely expiratory and inspiratory phases, and regions not significant for our
purpose, which in this thesis we term as residual. Residual is basically a garbage
class consisting of acoustic regions except the above mentioned regions of interest.

The regions of interest would then be used to extract parameters which would
then be used for finding meaningful correlations with the developmental outcomes.
Fundamental frequency F0 is one such crucial parameter. In this thesis, we have
investigated fundamental frequency estimation of these regions of interests using
YIN algorithm. YIN algorithm [12] is a popular pitch estimation algorithm used for
speech and music processing.

1.3 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents a brief review of previous work done in the field of infant cry
analysis in the contexts of audio segmentation and fundamental frequency (F0) esti-
mation. It is followed by a description of theoretical concepts of audio segmentation
and fundamental frequency estimation which are used in this thesis.

Chapter 3 presents a description of the implemented systems proposed to solve
the problems of audio segmentation and fundamental frequency (F0) estimation for
infant cry signals. An HMM based audio segmentation system to extract expiratory
and inspiratory phases from cry recordings has been proposed. Subsequently, appli-
cation of YIN algorithm to infant cry signals and a method to refine the obtained
F0 estimates is described.

Chapter 4 is devoted to evaluation of the implemented systems described in Chap-
ter 3. The performance metric used for evaluation and the data set on which exper-
iments were conducted is described as well.

Chapter 5 summarizes the entire work done in this thesis and suggests directions
for future work.
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2. THEORETICAL BACKGROUND AND

LITERATURE REVIEW

The chapter serves as the theoretical background to this thesis. Two problems have
been investigated in this thesis: audio segmentation of the infant cry recordings
to extract the acoustic regions of interest and fundamental frequency estimation of
these regions. The chapter starts with a review of the previous work done in the field
of infant cry research in the context of above two research problems. It is followed by
a discussion on the fundamentals of audio segmentation and fundamental frequency
estimation on which the proposed solutions described in this thesis are based upon.
This chapter lays the foundation for clear understanding of the implemented systems
which will be described in next chapter.

2.1 Literature Review

Infant cry research, in its initial days, was based on auditory identification of various
cry types [13]. In the decades of 1960 and 1970, advancement in the sound recording
technology like sound spectrographs led to progress in this field. Sound spectrograms
of healthy as well as sick infants were analyzed to obtain acoustic characteristics from
which a number of descriptive characteristics could be derived [13–15]. This method
was heavily dependent on subjective visual examination rather than quantitative
objective methods and allowed for derivation of only a limited number of acoustic
characteristics. The other issues plaguing it were poor dynamic range and poor
frequency resolution of the sound spectrograms [16]. Moreover, this method was
unsuitable for analysis in cases where a large number of audio files needed to be
examined in a short period of time. Advancement in the computing technologies
and signal processing methods allowed for the use of computer based methods. Using
these methods, a number of useful acoustic parameters could now be derived directly
instead of relying upon visual examination alone.

It has been postulated that emission of cry sounds by the infant is not mere an
acoustic-linguistic event. Researchers have long been trying to extract diagnostic,
communicative and predictive information contained in it. Infants suffering from
specific medical conditions are known to produce cry sounds different from healthy
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infants. It has also been argued that neurological status of an infant is interlinked
with the cry signal it produces [1,2]. A Cry signal is produced by a complex biological
phenomenon which is a combination of neural and physiological mechanisms [9]. Its
correlation with medical conditions like encephalitis [17], Down’s syndrome [18,19],
Cri-du-chat syndrome [20], cleft palate [8], brain damage [21, 22], etc., have been
widely studied. In these studies, acoustic characteristics were mainly extracted from
cry signal spectrograms and correlations were drawn with the associated medical
conditions of the infants.

During the days of spectrographic analysis, the audio segmentation problem was
solved through visual inspection of sound spectrograms. Voiced crying sounds were
manually selected from the spectrograms of the cry recordings [2]. With the advent
of computer assisted methods for processing audio signals, it became possible to
extract specific regions from the cry recordings, which would then be utilized for
extraction of useful acoustic parameters. In many research efforts, the problem of
audio segmentation has been addressed as problem of voicing determination and
the problem of F0 estimation has been framed as being the preceding or subsequent
stage to it. Voicing determination is the problem of labeling each audio region
under consideration as either voiced or unvoiced. It is the voiced audio regions
that contribute to F0 estimation [23, 24]. In such cases, the audio signal is either
pre-processed to determine regions of interest (voiced audio regions) beforehand or
post-processed to extract regions having meaningful F0 (voiced audio regions). Var-
ious audio segmentation approaches have been reported apart from the traditional
approach of manual segmentation [25]. Use of commercial or freely available soft-
ware [5, 26] has been quite popular as well. Várallyay et al. [3] have used modified
harmonic product spectrum (HPS) based methods to extract expiratory phases from
the recordings while treating inspiratory phases as noise. Aucouturier et al. [27] have
previously used HMMs for segmenting cry recordings in a way similar to what we
have attempted in this thesis. We have investigated different configuration of HMM
states and experimented with some additional acoustic features in addition to con-
ventional mel-frequency cepstral coefficients (MFCCs) used in [27]. In most of these
studies inspiratory phases have not been treated as a separate class and the main
emphasis has been on extraction of expiratory phases.

Fundamental frequency of an infant cry signal corresponds to the rate of glottal
opening and closing in the vocal tract. The larynx, also known as voice box, houses
the vocal chords of an infant and is responsible for generating fundamental frequency
of a cry signal. It is postulated that larynx of an infant is controlled by the cranial
nerves of the nervous system [28, 29]. Moreover, fundamental frequency is found to
be exhibiting higher levels and more variability in infants suffering from neurological
insults [1].
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Fundamental frequency estimation is a complex task and the research in this field
has been largely context dependent. Hence, an F0 estimation algorithm has to be
chosen depending upon the context in which it is expected to perform. There have
not been many attempts of developing F0 estimation algorithms specifically for cry
signals. Use of commercial or freely available softwares has been quite popular for
F0 estimation and voicing determination in infant cry research. Two of the most
widely used systems are Praat [30] and Computerized Speech Laboratory (CSL) [31].
Praat has been used by Baeck et al. [32], Esposito et al. [4], Lin et al. [33] and
Irwin [34]. Similarly, CSL speech lab [31] has been used by Wermke et al. [7],
Rautava et al. [35] and Mampe et al. [36]. Others have utilized F0 estimation
algorithms devised for speech and music signal processing. Simplified inverse filter
tracking (SIFT) algorithm [37] and its modifications have been used by Kheddache
et al. [26], Lederman [38] and Manfredi et al. [24]. Similarly, Várallyay et al. [3]
employed smooth spectrum method (SSM) for F0 estimation, and cepstrum analysis
has been utilized by Reggiannini et al. [23].

2.2 Audio Segmentation: Feature Extraction

Audio segmentation is an important preprocessing method in audio signal process-
ing. The objective of audio segmentation is to divide an input audio signal into
acoustically homogeneous regions/classes. The output is a labeled audio signal on
which further analysis can be selectively performed on the region/class of choice
depending upon the application. There are two ways of segmenting an audio signal
into the regions of interest. It can either be done via unsupervised classification or
via supervised classification. In this thesis we have employed the latter. It consists
of two steps:

1. Feature extraction
2. Pattern recognition

Feature extraction involves converting a raw cry signal into a sequence of acoustic
feature vectors carrying characteristic information about the signal. The most pop-
ular choice for features in the field of audio and speech processing is mel frequency
cepstral coefficients (MFCCs) [39]. The same has been used as the principal feature
vector for cry signals in this thesis. In addition to MFCCs some other features have
been also been experimented with. They will be described in Section 2.2.3.
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2.2.1 MFCC

Mel frequency cepstral coefficients (MFCCs) are inspired by psychoacoustic model of
human auditory perception. The human ear does not interpret frequency in a linear
manner. The information carried by low-frequency components is more important
than carried by high frequency components [40]. Moreover, it can not resolve
between frequencies lying within the same critical band [41] and this effect becomes
more pronounced at higher frequencies. Mel scale, which is a perceptually motivated
scale of frequencies, exploits this property of human auditory system. It arranges
the frequencies in such a way so that the frequencies perceived by the listener are
equal in distance from each other. Mel scale is approximately linear below 1 kHz
and logarithmic above it. It can be derived from the linear frequency scale using
the mathematical expression

fmel = 2595 log10(1 +
f

700
), (2.1)

where f is frequency on the linear frequency scale in Hz. In order to extract MFCCs,
an audio signal is first broken down into short time frames, e.g., 25 ms with 50
percent overlap and then multiplied with a window function. This is followed by
computation of the fast Fourier transform (FFT) for each frame. The phase infor-
mation is subsequently discarded and magnitudes are squared to obtain the power
spectrum. This power spectrum is subjected to frequency warping from the linear
frequency scale to mel-frequency scale using the mel-scale triangular filterbank. As
the frequencies get higher, the width of the filters also increases. This reflects the
fact that ability of the human ear to resolve closely spaced frequencies decreases as
the frequency increases. The spectral energies within a band are then summed up
to obtain filterbank energies which are then subjected to logarithm operation. Fi-
nally, the discrete cosine transform (DCT) is computed of the log filterbank energies
according to the equation

c(i) =

√
2

Nf

Nf∑
j=1

ej cos(
πi

Nf

(j − 0.5)), (2.2)

where c(i) is the ith MFCC coefficient, ej is logarithm of the energy of the jth

filter in the filter bank for j = 1, 2, ...Nf , and Nf is the number of mel filters in
the filterbank. Again, both the steps, summing the energies within a band and the
taking logarithm of filterbank energies, are inspired by the model of human auditory
perception. Generally 13 MFCC coefficients are extracted for each frame. Figure
2.1 illustrates the whole process of MFCC extraction.
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Figure 2.1: Extraction of Mel frequency cepstral coefficients.

2.2.2 Delta and Delta-Delta Features

The MFCC feature vector computed as described in Section 2.2.1 contains the infor-
mation of only the power spectral envelope of a signal frame, but it fails to capture
the temporal dynamics of the audio signal. Delta features are used to capture this
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dynamics. They are basically time derivative of the MFCC features. Delta-delta
features are in turn time derivatives of the delta features and similarly capture the
temporal dynamics of . Delta and delta-delta features are also referred as differen-
tial and acceleration coefficients, respectively. They have been widely used in the
field of speech recognition, where generally they are used in conjunction with MFCC
feature vectors. Delta coefficients are calculated from MFFCs as

deln =

L∑
l=1

l(cn+l − cn−l)

2
L∑
l=1

l2
, (2.3)

where cn is the MFCC vector corresponding to nth signal frame. MFCC vectors
for frames ranging from n− L to n+ L are utilized to compute delta coefficient
vector deln for nth frame, L being the window size. Delta-delta coefficients are
similarly calculated using delta coefficients in the place of MFCCs. These features
are concatenated with the static MFCC features to give a combined feature matrix.
The delta and delta-delta features have rarely been used in the field of infant cry
analysis.

2.2.3 Other Features

The aim of audio segmentation in this thesis is to successfully discriminate between
expiratory and inspiratory phases. The acoustic characteristics that help in this
objective may prove to be useful features. In addition to the standard features used
in speech and audio signal processing, i.e., MFCCs, deltas and delta-deltas, we have
experimented with several other features, namely

1. Fundamental frequency : Fundamental frequency of a quasi-periodic signal,
e.g., infant cry, has been defined in Section 2.4.1. Expiratory and inspiratory
phases are known to have different distributions of fundamental frequencies
[11] with inspiratory phases exhibiting higher means and standard deviations.
Hence, this property can be utilized for achieving our audio segmentation
objectives.

2. Aperiodicity : Aperiodicity is the measure of harmonicity of the signal frame.
Expiratory phases are generally more harmonic than inspiratory phases. This
difference in harmonicity can be exploited via the aperiodicity feature. It has
been defined in more detail in Section 2.4.4.

3. Running averages and running variances : A moving average filter can be em-
ployed on the MFCCs to calculate running average vector ū. Similarly, a
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moving average filter can be employed on the square of MFCCs to get vector
ū2. Running variances can then be calculated using ū and ū2 using

uvar = ū2 − (ū)2, (2.4)

where uvar is the running variance vector, and the second term of the above
equation is simply the square of each component of running average vector
ū, each component here representing the running average of corresponding
MFFC term. Note that Equation (2.4) is employed upon a window of length
Wl signal frames. In order to compute uvar corresponding to a particular time
frame, both ū and ū2 are computed within the window of size Wl centered at
that frame. For the subsequent time frames, the window is shifted accordingly
and features are computed. Different window sizes, Wl can be employed to
calculate these features.

2.3 Audio Segmentation: Pattern Recognition

The output of feature extraction stage is a sequence of feature vectors denoted
as X = {x1,x2, ..,xn, ...,xZ} , where subscript n denotes the frame index and Z

denotes the total number of frames in the signal. In the second step, this sequence
of extracted features vectors is fed to a pattern classifier to get an output class
label for each of the Z frames. Segment boundaries for different class segments in
the signal can be deducted from these output labels. Statistical models like hidden
Markov models (HMMs) have been quite popular in conventional speech processing
for pattern classification. HMMs have been successfully applied to the problem of
speech recognition [42] to model variability in speech caused by different speakers,
speaking styles, vocabularies, and environments. In this thesis, HMMs have been
been used in the context of infant cry signals to model the variation of expiratory
and inspiratory phases in the cry signals from different infant subjects and recorded
under varying environmental conditions. In this section, hidden Markov models will
be formally defined, and the associated terms will be explained.

2.3.1 Distrete Time Markov Chains

Discrete time Markov chain is a stochastic process which takes on a finite number
of states from a set of N possible states, S = {s1, s2, ...., sN}. At each time instant1

t = 1, 2, ...., the system undergoes a transition from state si to state sj. This state
transition is governed by a probability aij, known as the state transition probability.

1In this section, Markov chains are described in general and hence a notation of system transi-
tions with respect to time index t is adopted. In the context of this thesis, we have an audio system
where system transitions would occur each frame index n. The two notations are thus equivalent.
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The system may make a transition from a particular state into a different or into the
same state. Let the states of the system at time instants t and t− 1 be qt and qt−1,
respectively. In general, the probability that the system is in state qt, is a function
of complete history of the system which makes the analysis quite complicated. Here
"the Markov property" can be utilized to simplify the analysis. The Markov property
asserts the principle, "Given the present, the future is independent of the past,"
which essentially means that the system is memoryless. Hence the probability of
the system to be in state qt depends only upon the preceding state qt−1 and not on
the entire past history of the states taken by the system. Mathematically, this can
be expressed as

P (qt = sj|qt−1 = si, qt−2 = st−2, ..., q1 = s1) = P (qt = sj|qt−1 = si) . (2.5)

The corresponding joint probability for a sequence of Z states, (q1, q2, q3, ..., qZ) is
given by

P (q1, q2, ...., qZ) =
Z∏
z=1

P (qz|q1, ...., qz−1) = P (q1)
Z∏
z=2

P (qz|qz−1) . (2.6)

This is known as the first order Markov assumption, which implies that the memory
of the system is restricted to one preceding state. Similarly, nth order Markov chain
can be constructed which is able to memorise n preceding states instead of just one.
The state transition probabilities, aij, are assumed to be stationary, i.e., they are
independent of time. Mathematically, this be expressed as

aij = P (qt = sj|qt−1 = si), 1 ≤ i, j ≤ N . (2.7)

Moreover, in accordance with the laws of probability, we have

aij ≥ 0 and
N∑
j=1

aij = 1 . (2.8)
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The state transition probabilities can be represented in the form of a state tran-
sition probability matrix

A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

... . . . ...

aN1 aN2 · · · aNN

 (2.9)

where the ith row represents the probability of transitioning from ith state to all other
possible states. In order to completely characterize a Markov model, probability of
a state of being the initial state of the system has to be defined. This is called the
initial state distribution. Let πi be the probability that i is the initial state of the
system then

Π = {πs1 , πs2 , ......, πsN} = {P (q1 = s1), P (q1 = s2), ..., P (q1 = sN)} (2.10)

constitutes the initial state distribution of the system, where

N∑
i=1

πi = 1 . (2.11)

A Markov model is said to be ergodic if it is possible to reach one state from all
the other states in a finite number of steps. Figure 2.2 illustrates an example of such
a model.

2.3.2 Hidden Markov Models

A discrete time Markov model assumes that each state of the system can be uniquely
associated with an observable event. This assumption is too restrictive and it holds
true for only simple modeling tasks. Discrete time hidden Markov models are an
extension of discrete time Markov models where a state is no longer associated
with a single output observation, but is capable of generating a number of outputs
according to a probability distribution. The name, "hidden Markov model", implies
that the sequence of states taken by the system is not directly observable and can not
be deduced with absolute certainty by observing the outputs. The actual underlying
states of the system are therefore "hidden".

Rabiner and Juang [43] define an HMM as, "A doubly stochastic process with
an underlying stochastic process that is not observable, but can only be observed
through another set of stochastic processes that produce the sequence of observed
symbols". Here the first stochastic layer is a first-order Markov process consisting



2. Theoretical Background and Literature Review 14

State S1 State S2 State S3

a11

a23

a13

a12

a22

a33

a32a21

a31

Figure 2.2: An example of an ergodic Markov model.

of hidden states characterized by a set of initial state probabilities Π, and state
transition probabilities A. The second stochastic layer produces observable outputs,
V = {v1, v2....., vK}, for the hidden states, S = {s1, s2, ....., sN}. If we represent the
probability of observing output vk at time instant t when the underlying state of the
system is sj as bj(k), then the set of all such probabilities for K observable outputs
and N hidden states can be denoted as

Bs = {bj(k)}
where bj(k) = P (ot = vk|qt = sj) .

(2.12)

ot is the observation emitted at time instant t. This distribution is known as the
state emission distribution. In accordance with the laws of probability, we have

bi(k) ≥ 0 and
K∑
k=1

bi(k) = 1 . (2.13)

Each underlying state thus has a probability distribution over the set of possible
output observations. For N underlying states and K possible output observations,
2.12 can be expressed as a N ×K matrix
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B =


b1(1) b1(2) · · · b1(K)

b2(1) b2(2) · · · b2(K)
...

... . . . ...

bN(1) bN(2) · · · bN(K)

 (2.14)

which is known as the emission probability matrix of the system. Figure 2.3 illus-
trates an example of a hidden Markov model producing a sequence of observations
and having three underlying states. Note that in such a model, state transitions
are possible either only in the forward direction or to the same state from which it
originated. Such a model is known as left-to-right HMM.

Si SkSj

aii ajj
akk

o1 o2 o3
o4 o5 o6 o7

aij ajk

b1i b2i
b3i

b4j
b5j b6k b7k

Visible emitted 
observations

Hidden states Si , Sj  Sk

Figure 2.3: Left to right HMM topology.

In order to completely characterize a hidden Markov model, we need the following
components [42]:

1. N , the number of underlying hidden states S = {s1, s2, ...., sN} taken up by
the system.

2. K, the number of discrete output states V = {v1, v2, .....vK} generated by the
sequence of hidden states S, which are observable.

3. A set of initial state probabilities Π = {πi}Ni=1 given by Equation (2.10).
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4. A set of state transition probabilities A = {aij} given by Equation (2.9).

5. A set of state emission probabilities B = {bj(k)} given by Equation (2.14).

The notation λ = (A,B,Π) is often used in literature as a compact way to
represent HMMs. In addition to the Markov assumption, the following properties are
assumed in order to make the HMMs mathematically and computationally tractable,

1. Stationarity assumption: The state transition probabilities are assumed to be
independent of the time t at which the actual state transition takes place, i.e.,
Equation (2.7) holds for all values of t.

2. Output independence assumption: The emitted output observations V = {v1, v2,
...., vK} are conditionally independent of each other, i.e., the probability of ob-
serving ot = vk at time t is independent of previous observations ot−1, ot−2, ..., o1,
and the underlying states qt−1, qt−2, ..., q1, given the current state qt.

On the basis of the method of modeling state emission probabilities, HMMs can
be divided into three different categories, namely

1. Discrete HMMs : The output observation sequence V consists of discrete out-
puts. Each underlying state has a probability mass function which for all
states can be represented in the form of Equation (2.14). In the context of
speech recognition, the output observations correspond to quantization levels
of a vector quantization (VQ) codebook [44]. Discrete HMMs offer the advan-
tage of reduced computation, although systems based on them are less flexible
and suffer from inaccuracies due to quantization errors [45].

2. Continuous HMMs : The output observation is a continuous variable instead
of a discrete variable. The outputs are generally modeled by a mixture of
probability density functions. In order to ensure that the model parameters
can be re-estimated in a consistent manner, some restrictions are applied to
the form of the observation probability density function (pdf) [42]. A mix-
ture of Gaussian probability density functions, i.e., Gaussian mixture model
(GMM), is chosen as the most common form of representation for the output
observation. For continuous HMM case, Equation (2.12) can be expressed as

bj(ot) =
M∑
m=1

cjm N (ot,µjm,Σjm) (2.15)
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where ot is the vector being modeled for the system at time t and jth state sj,
cjm is the mixture coefficient for the mth mixture component, M is the num-
ber of Gaussian pdfs in the mixture and N (ot,µjm,Σjm) is the mth Gaussian
distribution with mean vector µjm and covariance matrix Σjm. The mth com-
ponent for multivariate Gaussian distribution is thus given by the expression,

N (ot,µjm,Σjm) =
1

(2π)
D
2 |Σjm|

1
2

exp(−1

2
(ot − µjm)T Σ−1jm (ot − µjm)) .

(2.16)

where exp denotes the exponential function, Σ−1jm denotes the inverse of covari-
ance matrix Σjm and T denotes the matrix transpose operation. Moreover,
the mixture weights cjm follow the stochastic constraints

M∑
m=1

cjm = 1 ∀j ∈ {1, 2, ...., N}

and, cjm ≥ 0 ∀j ∈ {1, 2, ...., N}, m ∈ {1, 2, ....,M}

(2.17)

Continuous HMMs, while on one hand avoid some of the shortcomings of
the discrete HMMs like quantization errors, on the the other hand, require
considerable large amount of training data and training times [45].

3. Semi continuous HMMs : It is the combination of the above two HMM types.
Similar to the Discrete HMMs, it involves use of vector quantization, but each
VQ codeword is regarded as a continuous pdf. It is similar to parameter tying
of a continuous HMM such that the states share the same distribution, which
in effect happens to be the VQ codebook [46]. They have become less popular
due to improvements in the estimation techniques for more efficient models
like continuous HMMs, and availability of sufficient amount of training data
for training these efficient models.

In order to apply an HMM to the real world problems, we must be able to:

1. Evaluate the probability of an observation sequence O = (o1, o2, ..., ) if we
know the model parameters λ = (A,B,Π). In other words, evaluate P (O|λ) ,
the likelihood of the observation given the model. This is known as probability
evaluation problem. It can be used to score several competing models and
choose the best one out of them. Forward algorithm and Backward algorithm
are used to solve this problem.

2. Finding out the sequence of underlying states Q = (q1, q2, .....) that best ex-
plains a given sequence of observations O = (o1, o2, ...) if we know the model
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parameters λ = (A,B,Π). This is known as the decoding problem and is
solved by a sequential decoding algorithm known as the Viterbi algorithm.

3. Estimating the parameters of the model λ = (A,B,Π) in order to maximize
the probability of observing an observation sequence O = (o1, o2, ..), i.e., max-
imize P (O|λ). In other words, finding parameters of the model which best fits
a given sequence of observations. This is known as the training problem for
an HMM and is solved by Baum-Welch algorithm.

In this thesis, we are concerned with the latter two problems.

Baum-Welch algorithm: The first problem of our interest is estimating the param-
eters of an HMM given a set of observations consisting of features extracted from
a cry signal. Estimating HMM parameters involves estimating transition probabil-
ities, initial state distribution, and emission probability distribution from training
data. In the context of this thesis, it would involve the estimation of state transi-
tion probabilities and parameters associated with Gaussian mixture models (GMM)
which constitute the emission probability distribution in the continuous HMM case.
The GMM parameters to be estimated are mixture weights, means, and variances of
the component Gaussian distributions. The initial state distributions are computed
by assuming each one of the states to be the initial state with equal probability.

Solving the training problem amounts to choosing an HMM from a set of pos-
sible models which best explains the given observations. Probabilistically, it can
be framed as the problem of maximizing probability of an HMM model given the
observations, i.e., P (λ|O), which can be framed as maximum likelihood estimation
problem

λopt = arg max
λ

P (O|λ) (2.18)

where λopt is the optimal model that best fits the observations O. Equation 2.18
is very difficult to solve analytically [43]; hence, an iterative approach has to be
adopted. Baum-Welch algorithm [47] is a form of Expectation Maximization (EM)
algorithm [48] which iteratively refines the model parameters until Equation 2.18 is
maximized. An EM algorithm iteratively alternates between two stages : expecta-
tion (E)-step and maximization (M)-step. We start with a random estimate of HMM
parameters λ, which can be computed from prior information if available. The E
step estimates likelihood of observations under current parameters, and M step then
uses the computed likelihoods to re-estimate the model parameters. This allows the
estimate of model parameters to be refined in each step of the iterative procedure
until no further improvement in the likelihood function is achieved. It also implies
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that the final likelihood obtained is only a local maximum and can not be guaran-
teed to be a global maximum. A detailed mathematical treatment of the algorithm
can be found from [42]. In this thesis, AHTO toolbox from Audio Research Group,
Tampere University of Technology, has been used to train the HMMs.

Viterbi algorithm: The second problem of interest in this thesis is finding an optimal
sequence of states given a trained HMM model and observation sequence. The
observation sequence is the set of acoustic features vectors derived from a cry signal.
This can be solved by Viterbi algorithm [49] which was invented by Andrew Viterbi
as a solution to the problem of decoding convolutional codes. It is basically a
dynamic programming algorithm which . The search space mentioned here is the
set of all possible combinations of hidden states. The algorithm maximizes the
probability of occurrence of state sequence Q = (q1, q2, ....) while observing the
observation sequence O = (o1, o2, ...) when we already know the model parameters
λ. Mathematically, it can be put as

Sopt = arg max
Q

P (Q|O, λ) (2.19)

where Sopt is the optimal sequence of states. In practice, log probabilities are maxi-
mized instead. The search space can be formulated as a trellis graph structure. At
each time step t, all paths leading to a particular state from all possible old states
at t − 1 time step are explored, and only the one with maximum log probability is
retained. This is done for all possible states at t, and corresponding log probabilities
and states are saved. This procedure is followed for each time step and the path
with maximum log probability is selected. The best path is then given by the one
giving maximum cumulative log probability, and it is discovered by tracing back
through the trellis from the state at final time step to the state at initial time step
using backpointers. The backpointers mentioned here are the states of maximum
log probabilities saved earlier for each time step. The whole process is analogous
to breadth first search through the trellis structure with the aim of maximizing the
cost, and cumulative log probabilities serving as the cost function. A detailed math-
ematical treatment of the algorithm can be found from [42]. Figure 2.4 shows a
trellis structure depicting four possible states and four time instants for illustration.
Note that at each time step, one possible paths is retained for each state yielding the
maximum cumulative log probability. Finally, the path yielding overall maximum
cumulative log probability is chosen.
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Figure 2.4: Illustration of Viterbi decoding through a search space of four states.
The final optimum path is shown by dark arrows giving the output sequence,
(s1, s1, s3, s2, s4). The dotted arrows show the most optimal path chosen for each
state at every time step.

2.4 Fundamental Frequency Estimation

Fundamental frequency is an acoustic characteristic associated with harmonic sig-
nals. In this section, we will describe the concept of periodicity for a signal which
forms the basis of the definition of fundamental frequency. It will be followed by an
overview of popular fundamental frequency estimation methods. Finally, description
of a popular time domain fundamental frequency algorithm called YIN algorithm
will be given. YIN algorithm has been used in this thesis to solve the problem of
fundamental frequency estimation in the context of cry signals.

2.4.1 Periodicity of a Signal

A signal is said to be periodic if it repeats itself at specific intervals of time. This
specific interval of time is said to be the period of the signal. Mathematically, this
property of a signal y(t) can be described as

y(t) = y(t+ T0) ∀t (2.20)

where the signal y(t) is a function of time t and T0 is period of the signal. It is also
evident that the above equation will hold for all integer multiples of T0. Cheveigné
and Kawahara define fundamental period as the smallest positive member of an
infinite set of time shifts that leave the signal invariant [12].
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Fundamental frequency, F0 is thus defined as the inverse of this fundamental period
T0,

F0 =
1

T0
. (2.21)

Integer multiples of fundamental frequency are referred to as harmonic frequencies.
The Equation (2.20) only holds for signals which are perfectly periodic. The real
world signals like speech and cry signals are of finite duration and are not perfectly
periodic. Moreover, these signals often exhibit variations in periodicity with time
and hence the notion of a fixed F0 for them is irrelevant. Such signals may however
be assumed to be periodic in very small time frame in which the signal is assumed to
be stationary. This is known as the assumption of quasi-periodicity. Fundamental
frequency estimation is the problem of assigning a fundamental frequency for each
such frame. For biological audio signals like speech and cry, fundamental frequency
(F0) is the rate of vibration of the vocal folds of the speaker [50, 51]. F0 exhibits
a temporal variation which is dependent upon the size and tension in the vocal
folds [50].

Depending upon the domain of operation, there exists two approaches to solve
the problem of fundamental frequency estimation, namely

1. Time domain approach

2. Frequency domain approach

We will now give an brief overview of different techniques which utilize these two
approaches.

2.4.2 Time Domain Approach

1. Time event rate detection: The time event rate detection methods of F0 es-
timation rely on the principle that for a periodic signal there must be time
repeating events in the signal which can be counted [52]. This information can
be used to detect F0. Zero crossing rate (ZCR) [53], which involves counting
how many times a signal crosses zero per unit time; Peak rate, which involves
counting positive peaks in a signal per unit time; Slope event rate, which in-
volves counting the number of zeros or peaks of the slope of a signal per unit
time, are some of the time event detection methods. These methods, although
fairly simple to implement, suffer from a major drawback that harmonically
complex signals may have more than one events per cycle [52].
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2. Autocorrelation: Correlation of two signals is the measure of similarity between
them. It is expressed as a function of time lag τ , where τ is the lag introduced
in one of the signals while keeping the other unaffected. Autocorrelation is
defined as the correlation of a signal with itself. It can be expressed using the
equation

rt(τ) =
t+W∑
j=t+1

y(j) y(j + τ), (2.22)

where rt(τ) is the autocorrelation function (ACF) of signal y(t), calculated at
time index t with integration window size W . Note that the above expression
for autocorrelation is short-time autocorrelation function calculated over frame
of size W . For periodic signals, ACF exhibits peaks at zero lag as well as at
lags corresponding to multiple of the fundamental period [52]. The first peak
after zero thus gives the fundamental period of the signal.

The autocorrelation method gives good results for perfectly periodic signals.
However, for a quasi-periodic signal consisting of multiple harmonic compo-
nents, ACF peaks may correspond to the period of the constituent harmonics.
Hence, a distinction has to be made between these erroneous peaks and the
actual peaks corresponding to period of the overall signal. Also ACF method
has tendency to pick up the formant frequency instead of the fundamental fre-
quency [54]. Various improvements have been suggested in the ACF method
to avoid these shortcomings. YIN algorithm is one such time domain method
which improves upon it. It will be separately discussed in detail in Section
2.4.4.

2.4.3 Frequency Domain Approach

The frequency domain approach involves analysis of short term Fourier transform
of a signal. It relies upon the principle that a periodic signal exhibits peaks in its
frequency spectrum at frequencies which are multiples of fundamental frequency.

1. Harmonic Product Spectrum: The harmonic product spectrum method [55,56]
is based on the principle that downsampling a signal by a factor of two makes
the peak at second harmonic frequency in the frequency spectrum to appear
at the fundamental frequency. Similarly, a downsampling by a factor of three
would make the third harmonic frequency to appear at the fundamental fre-
quency. Multiplying a signal with its various downsampled versions would
make the peak at fundamental frequency to be emphasized and hence easy
to extract. This methods fails in the case where harmonic component being
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multiplied with the peak at fundamental frequency has very low energy. The
product would be almost zero in this scenario. Moreover, the frequency res-
olution is dependent upon the length of FFT used which if increased would
decrease the temporal resolution.

2. Cepstral analysis : Cepstral analysis has been used in speech signal processing
to deconvolve the source excitation of speech signal and the transfer function of
vocal tract of the speaker [57]. The cepstrum is formally defined as the inverse
discrete Fourier transform of logarithm of the discrete Fourier transform of the
signal. Mathematically, it can be expressed as

C(q) = F−1{log |F(y(t))|}, (2.23)

where C(q) is the cepstrum of signal y(t), F and F−1 denote discrete Fourier
transform and inverse discrete Fourier transform of the signal, respectively.
The variable q here has dimensions of time and is referred to as quefrency.
Note that the Equation (2.23) gives an expression for the real cepstrum of
signal y(t) as it only takes the magnitude of the Fourier transform of the signal
into consideration. Taking the log magnitude of Fourier transform of the signal
allows for compression of the dynamic range of equally spaced harmonic peaks
in the spectrum. It essentially translates the amplitude to a usable scale. The
distance between periodic harmonic peaks can be extracted in the cepstrum as
a strong peak which gives the fundamental period of the signal. This methods
fails for signals which do not exhibit regularly spaced harmonic partials in
their frequency spectrum.

2.4.4 YIN Algorithm

YIN algorithm [12] was developed by Alain de Cheveigné and Hideki Kawahara.
The algorithm derives its name from the concept of "yin" and "yang" from oriental
philosophy which describes the phenomenon of contrary forces existing in a state
of duality and complementing each other. In this context, these dual forces are
autocorrelation and cancellation. YIN algorithm tries to overcome the shortcomings
of conventional autocorrelation method, which happens to be the first step of the
algorithm. The overall algorithm can be summarized in the following steps,

1. Autocorrelation: ACF is calculated according to Equation (2.22).

2. Difference function: Improvement in the ACF method is achieved via differ-
ence function. It is defined as the sum of the squares of the differences between
a signal and its delayed version with time lag τ over the analysis window W .
Mathematically, it is given by
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dt(τ) =
W∑
j=1

(y(j)− y(j + τ))2, (2.24)

where dt(τ) denotes the difference function for the signal y(t). The smallest
value of time lag τ which gives a zero value for the difference function is the
fundamental period of the signal. Here, instead of maximizing the product of
the signal and its delayed version as in autocorrelation method, difference of
the two is being minimized. An improvement in the error rates is achieved
which can be explained by the fact that ACF is sensitive to variations in the
signal. An increase in signal amplitude with time causes ACF peaks to grow
with lag which in turn encourages the selection of an erroneous peak [12]. The
difference function is immune to this issue as it is less sensitive to amplitude
changes.

3. Cumulative mean difference function: The difference function calculated in
step 2 is prone to picking zero lag as imperfect periodicity of the signal may
force it to have non zero values at the fundamental period. One way to avoid
this is to set a lower limit on the lag search range. This lower limit must also be
robust against erroneous minimas of the difference function which may occur as
a result of the presence of a strong first formant in the vicinity of F0 [12]. But
the ranges of first formant and F0 are known to overlap [12]; hence, setting a
lower limit on the search range is not a viable solution. The difference function
is adapted in the form of a cumulative difference mean function in order to
avoid these errors. The cumulative difference mean function d′t(τ) is given by
the expression,

d′t(τ) =


1 if τ=0

dt(τ)

1
τ

t∑
j=1

dt(j)

otherwise (2.25)

for difference function dt(j). Note that unlike dt(j) which has value 0 at zero
lag, function d′t(τ) has value 1 for zero lag. Additionally, d′t(τ) tends to remain
large at low lags, and drops below 1 only when dt(j) falls below average [12].

4. Absolute threshold : This step sets a threshold in order to prevent the algorithm
from choosing an erroneous higher-order minima of the cumulative mean dif-
ference function given by Equation (2.25). The threshold determines a set of
lags from which the smallest value of lag which gives a minima deeper than the
threshold is chosen. A global minimum is chosen if none is found. The min-
imum can be interpreted as proportion of aperiodic power in the signal [12].
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This proportion is referred to as aperiodicity in this thesis.

5. Parabolic interpolation: In cases where the fundamental period is not a mul-
tiple of used window length, there may be an error in the period estimate.
Parabolic interpolation of the local minima of function d′t(τ) is done in or-
der to achieve this [12]. The interpolated minima is then used in selection of
period.

6. Best local estimate: The last step of YIN algorithm concerns with the selection
of best possible estimate in the vicinity of each analysis point. The interval
[t − 0.5Tmax, t + 0.5Tmax] is searched for minimum of d′θ(Tθ) , where Tθ is
estimate at θ and Tmax is largest expected period [12].

Steps 5 and 6 are used to refine F0 estimates obtained through Step 3. Figure 2.5
depicts a chunk of a cry signal along with the computed difference function dt(τ),
and cumulative mean normalized difference function d′t(τ). The period of the signal
is determined by extracting the first minima of d′t(τ) below the threshold which
in the given example happens to be 0.3. The extracted lag value is 110 and the
corresponding F0 value is 436.3 Hz.
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Figure 2.5: F0 estimation using YIN algorithm. The top panel depicts a chunk of
a cry signal under investigation. The corresponding difference function dt(τ) and
cumulative mean difference function d′t(τ) are depicted in middle and bottom panels,
respectively. The value of absolute threshold is 0.3. Note that the first minima below
threshold occurs for lag value 110 which corresponds to the fundamental period of
the signal.
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3. IMPLEMENTED SYSTEM

This chapter is composed of two sections. In the first section, we will describe
the audio segmentation system which processes raw infant cry signals and identifies
the regions of interest, i.e., expiratory and inspiratory phases. It is followed by a
description of methods employed to estimate fundamental frequencies of these iden-
tified regions. The extracted fundamental frequency is one of the crucial parameters
which would help in further analysis in order to achieve our ultimate goal of finding
correlations between the the cry signals and developmental outcomes of the infants.

3.1 Audio Segmentation

This section describes the overall implementation of the audio segmentation system.
The problem statement is segmentation of an infant cry signal into three classes:
expiratory phases, inspiratory phases, and residual, by selecting appropriate features
and using a pattern recognizer which in this thesis is an HMM. As explained in
Section 2.2.1, the cry signal is divided into overlapping short time frames. For each
short time frame, the HMM pattern recognizer gives a set of observation probabilities
of the three classes being active in that frame. These probabilities are decoded using
Viterbi algorithm. Figure 3.1 depicts the block diagram of the process:

Feature 
Extraction

HMM Pattern 
Recognizer

Viterbi 
Decoder

Cry Signal Extracted 

features

Observation 

probabilities

Class label 

for each
 frame

Figure 3.1: Block diagram of the audio segmentation system.
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The overall implementation can be described in the following steps:

1. Manual annotations : In order to train our pattern recognizer and subsequently
test its performance, we need labeled audio signals. Labels for the raw cry
recordings can be generated by manually annotating the recordings using any
audio editing software. In this thesis, we have used Audacity [?] application.
Figure 3.2 is a snapshot of Audacity application showing a chunk of the labeled
cry signal. Expiratory and inspiratory phases were annotated as depicted in
Figure 3.2, and rest of the recording was considered as residual class.

Figure 3.2: Snapshot of Audacity application showing a manually annotated chunk
of a cry recording. Expiratory and inspiratory phases are coded by names exp_cry
and insp_cry, respectively.
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2. Division of data: A pattern recognition system uses two non overlapping data
sets: a training data set which is employed for training the system, and a test
data set which is used for evaluating the performance of the system. In order
to generate these two data sets, we split the total available annotated data
into training and test sets. The training set is 70 % of the total data set and
the rest 30 % is assigned to the test set. This splitting is done on the basis
of cry codes assigned to the recordings which correspond to the chronological
order in which the recordings were captured. This will be explained in more
detail in Section 4.2.1.

3. Feature extraction: Features are extracted from the manually annotated train-
ing data set. MFFCs, which are the primary audio features used in this thesis,
are extracted for each 25 ms time frame having 50% overlap between the
frames. For each frame, a 13 dimensional feature vector x = [x1, x2....., x13]

T

is extracted. This includes the zeroth order MFCC coefficient which is sum
of log energies from each mel filterbank and can be thought of as a measure
of energy of the frame. In conjunction with MFCCs, some additional features
are also experimented with, and different combination of these features are
investigated. While using these additional features, the corresponding feature
vector of dimension z is appended to the MFCC feature vector. The following
features are used,

• Deltas and delta-deltas : There are 13 delta coefficients and 13 delta-delta
coefficients for each frame, hence z here is 26.

• Running average and running variances of MFCCs : There are 13 running
average values and 13 running variance values for each frame, hence z here
is 26.

• Fundamental frequency of each frame: One fundamental frequency value
is obtained for each signal frame, hence z here is 1.

• Aperiodicity of each frame: One aperiodicity value is obtained for each
signal frame, hence z here is 1.

For Ni such frames for a particular target class, we have a ((13 + z) × Ni)

dimensional training feature matrix. Here Ni is variable with i denoting the
class index. It is equal to the number of frames available in the training data
set for that particular class. Features are extracted from all training files for
each of the three target classes. These features extracted from different audio
files are concatenated to give three training matrices, each corresponding to
one of the three classes: expiratory phases, inspiratory phases, and residual
class.
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4. HMM training : Three separate HMM models are trained corresponding to
the three target classes. Fully connected HMMs are used, and the standard
Baum-Welch algorithm is used for training the models. AHTO toolbox of
the Audio Research Group, Tampere University of Technology, has been used
for training and testing the HMM models. HMMs being used are continuous
density output HMMs for which two parameters have to be chosen: Ns, the
number of states used to adequately model the class; and Nc, the number of
Gaussian components in GMM used to model each state of the HMM. The
effect of both these parameters on model performance has been investigated
in this thesis and will be discussed in Section 4.2.3. Let us denote the number
of states in the three HMMs by Ns1, Ns2 and Ns3. Similarly, the number of
component Gaussians be denoted by Nc1, Nc2 and Nc3.

5. Combining HMM models : The HMMs trained for the three target classes are
then combined to form a single big network model having a combined state
space and transition probability matrix. The probability of transition from one
model to another is determined by calculating model priors from the training
data. This is done simply by counting the occurrences of that particular class
from the annotated data. State transitions from any state of one model to
any state of another model are possible. In other words, the combined HMM
model is fully connected, and no term of the combined transition probability
matrix is zero. There are two parameters which govern the transitions from
one HMM model to another in the combined network, namely grammar scaling
factor and inter model transition penalty. These parameters are widely used
for tuning automatic speech recognition (ASR) systems.

• Grammar scaling factor controls the weighing between acoustic and lan-
guage model scores in ASR systems. In this thesis, we are not using any
language model hence this factor is taken as 1 for all experiments.

• Inter model transition penalty is essentially logarithmic transition penalty
which controls transition from one component HMM model to another in
the combined network. A more negative value leads to fewer inter model
transitions and comparatively stable model. A less negative value, on the
other hand, leads to a model which is frequently fluctuating among the
the three target classes. We observed that a frequently fluctuating model
performs better in detecting the inspiratory phases, while a more stable
model is better suited for detecting expiratory phases. Thus, a trade off
is required to achieve an optimal performance. Figure 3.6 depicts the
predicted class labels for inter models transition penalty values -50, -20
and -1. In this thesis, we have used value of -1 which corresponds to inter
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model transition probability of e−1.

HMMs trained for the three target classes having Ns1, Ns2, and Ns3 states; and
Nc1, Nc2, and Nc3 component Gaussians, respectively, can be combined to form
a big HMM network which can be represented by Figure 3.3. Note that the
combined model has its own transition probability matrix having dimension
equal to (Ns1 +Ns2 +Ns3)× (Ns1 +Ns2 +Ns3 ).

HMM1
Ns1.  Nc1

HMM3
Ns3.  Nc3

HMM2
Ns2.  Nc2

Figure 3.3: Block diagram of combined HMM model.

Following is an example of state transition matrix for the combined model
with number of states in the individual HMMs, Ns1, Ns2 and Ns3 be 2, 1, and
3, respectively.

A =



0.949 0.035 0.001 0.005 0.005 0.005

0.039 0.945 0.001 0.005 0.005 0.005

0.004 0.004 0.962 0.010 0.010 0.010

0.002 0.002 0.001 0.956 0.003 0.038

0.002 0.002 0.001 0.003 0.935 0.059

0.002 0.002 0.001 0.044 0.049 0.904



Where A(i, j) is the probability of transition from state i to state j. In the
above matrix, the upper two rows with blue color corresponds to the 2 HMM
states for expiratory phase class, the third row with light blue color corresponds
to 1 HMM state for inspiratory phase class and the rest three rows with green
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color correspond to 3 HMM states for residual class. The parameters learned
for the combined HMM model are used in step 7 for decoding the observation
probabilities for each test file.

6. Generation of test observation probabilities : Features are extracted from the
test data in the same way as was done for the training data in step 3. Each
test file gives a ((13 + z) × Ni) feature matrix, where variable z depends on
the additional feature being used, and variable Ni depends upon the number
of frames in the test data file. This test feature matrix is fed to the three
HMM models trained in step 4, and observation probabilities are calculated
for each class. The output is a (Nsk×Ni) dimensional observation probability
matrix consisting of probabilities for the Ni frames corresponding to each of
the Nsk HMM states, where k = 1, 2, 3. Three such observation probability
matrices having dimensions (Ns1×Ni), (Ns2×Ni) and (Ns3×Ni) are generated
corresponding to three output classes.

7. Viterbi decoding : The observation probability matrices generated in step 6
are then vertically concatenated to give a combined observation probability
matrix of dimension ((Ns1 + Ns2 + Ns3) × Ni). Viterbi decoding is employed
upon this combined observation probability matrix using the parameters of
the combined HMM model of step 5 to give a sequence of output labels. The
output is a class assignment for each frame of the test data.

Steps 4- 7 can be represented by a block diagram given by Figure 3.4.
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HMM 2 
Ns2, Nc2

HMM 1 
Ns1, Nc1

HMM 3 
Ns3, Nc3

(13+z)x Ni)
Feature 
matrix

(Ns1 x Ni)
 matrix

(Ns2 x Ni)
 matrix

(Ns3 x Ni)
 matrix

Expiratory phase

Inspiratory phase

Residual

(Ns1+Ns2+Ns3) 
x Ni

 matrix

Concatenated combined  
observation probability 

matrix

HMM trained for different 
classes

Viterbi decoder

HMM1

HMM3

HMM2

HMM parameters

Combined HMM 
network

2 1 1 23 11

Output class label for each of 
the Ni frames

Observation 
probabilities

Figure 3.4: Block diagram of the audio segmentation system depicting the imple-
mentation Steps 4- 7. The input to the system is (13 + z)×Ni dimensional feature
matrix derived from a test data file, where variables z and Ni depend upon dimen-
sions of the additional features being used, and number of frames in the test data
file, respectively. The output is class label assigned for each of the Ni frames.

Let us assign class labels 1, 2, and 3 to expiratory phase, inspiratory phase and
residual classes, respectively. Figure 3.5 exhibits the results of segmentation for a 5
second portion of a cry signal.
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Figure 3.5: Segmentation results for a chunk of a cry signal. The class labels for
expiratory phase, inspiratory phase and residual are 1, 2 and 3, respectively.

Labels generated by the HMMmodel are tested against the available ground truth
to calculate the performance metrics of the model for the test file under inspection.
Steps 6 and 7 are repeated for all the test data files and performance metrics are
calculated for them. The evaluation of the model will be discussed in detail in
Chapter 4 along with the used performance metrics. Figure 3.7 depicts the overall
implementation.
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Figure 3.6: Segmentation results for different values of inter model transition penalty.
a) Actual class labels, b) Predicted class labels for inter model transition penalty
values -50, c) -20, d) -1. Note that inspiratory phases in the signal are best captured
in (d).
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Figure 3.7: Overall audio segmentation system developed for cry signals.
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3.2 Fundamental Frequency Estimation

The output of audio segmentation stage for each cry recording under investigation is
a sequence of class labels. Based on these labels, desired regions can be identified in
the cry recording and acoustic parameters of interest can be extracted. In this thesis,
these desired acoustic regions are expiratory and inspiratory phases. Fundamental
frequency (F0) is an important acoustic parameter whose variation has been found to
be correlating with cases of neurological insults in previous infant cry studies [1]. In
this thesis we have used YIN algorithm, explained in Section 2.4.4, for F0 estimation.
A MATLAB implementation of the algorithm freely available at [58] has been used.
YIN algorithm has been found to perform well in the context of speech [59] and
music signals [60, 61]. But it has not been used in the context of infant cry signals
previously.

The output of the algorithm gives a fundamental frequency (F0) estimate for
each frame of the signal. Here it is assumed that each frame of the cry signal will
give a reliable F0 which is not true. The F0 estimate obtained for a signal frame
may or may not be useful depending upon whether or not the signal frame exhibits
periodicity. Let us illustrate it by giving example of two signal frames. Figure
3.8 shows an example of magnitude spectrum of a signal frame clearly exhibiting a
fundamental frequency F0 at 460 Hz and its harmonics at regular intervals equal to
F0. This F0 estimate is certainly reliable.
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Figure 3.8: Magnitude spectrum of a short time frame of a cry signal. The regular
structure of the spectrum exhibits the harmonicity of the signal frame.
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Similarly, Figure 3.9 shows an example of magnitude spectrum of an inharmonic
frame. It is quite clear that the notion of periodicity for such a frame is not mean-
ingful.
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Figure 3.9: Magnitude spectrum of a short time frame of a cry signal. F0 estimate
for such an irregular spectrum is not meaningful.

Figures 3.8 and 3.9 make it quite clear that there is a need to distinguish the
meaningful F0 estimates for harmonic frames from the unreliable F0 estimates for
inharmonic frames.

3.2.1 Refining F0 Estimation: Aperiodicity Criterion

In Section 2.4.4, the role of absolute threshold on cumulative mean normalized dif-
ference function d′t(τ), given by Equation (2.25) in restricting the number of possible
T0 candidates for a particular frame of the signal was explained. It essentially allows
for a mechanism against choosing an erroneous high order lag and correspondingly
an erroneous low F0. This absolute threshold can be thought of as controlling the
proportion of aperiodic power tolerated in the signal. At time lag equal to time
period of the frame T0, d′t(τ) is proportional to ratio of aperiodic power to total
power in the frame [12]. This ratio can be used to distinguish between the two types
of F0 estimates explained above. We will call this ratio aperiodicity of the frame.
The inharmonicity of the frame increases as the value of this ratio increases.
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The process of refining the F0 estimates, based on aperiodicity, can be summa-
rized in the following two steps:

1. The absolute threshold value is used to restrict the list of possible T0 candi-
dates for a particular frame. It effectively puts a bar on the proportion of
aperiodic power allowed in the frame. Only the T0 candidates which fulfill
this condition would be eligible for selection. Figure 3.10 shows the output
F0 values obtained along with the corresponding aperiodicity values for an
expiratory phase from a cry recording.

2. In cases where there is no eligible T0 candidate, the YIN algorithm outputs
the global minimum of d′t(τ) as T0 estimate. This estimate violates our limit
on aperiodicity set via absolute threshold parameter and is discarded. After
dropping such T0 estimates, the output F0 values are depicted in Figure 3.10.
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Figure 3.10: Refining F0 estimates for an expiratory phase of a cry signal. The top
panel shows a chunk of a cry signal under investigation, the second and third panels
show the variation of F0 and aperiodicity , respectively, obtained for the chunk via
YIN algorithm. The bottom panel shows F0 values obtained after discarding the
frames based on aperiodicity criterion. The absolute threshold used is 0.3.

3.2.2 YIN Algorithm Implementation

The overall procedure of F0 estimation can thus be listed out in the following steps,

1. YIN algorithm is applied to obtain an F0 estimate for each short time frame
of a cry signal under investigation. The application of YIN algorithm entails
deciding upon several parameters. These are,

• Maximum and minimum F0: Setting these parameters restricts the range
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for search of the minimum of cumulative mean normalized difference func-
tion d′t(τ) which gives the F0 estimate. In this thesis, we have used the
minimum and maximum F0 to be 200 and 800 Hz, respectively. Mo-
tivation for this are the F0 estimation results obtained from previous
studies [5, 62].

• Absolute threshold : This is a crucial parameter because it is being used
here not only for calculating the F0 estimates, but also for dropping F0

values in inharmonic frames in Step 3. Values from 0.1 to 0.4 have been
suggested as good by Cheveigné et al. [12]. Figure 3.11 shows magnitude
spectra of four frames of an expiratory phase with aperiodicity values
0.14, 0.28, 0.38, and 0.48, respectively. We have chosen 0.3 as the absolute
threshold in this thesis. The motivation for this is making a trade off
between dropping too many frames (small aperiodicity/threshold value)
versus allowing too many unreliable F0 estimates in our analysis (large
aperiodicity/threshold value).

2. The class labels obtained in audio segmentation step are used to identify F0
values for expiratory and inspiratory phases.

3. Using the absolute threshold decided above, unreliable F0 values are discarded.

YIN algorithm is applied for each cry recording and F0 estimates are extracted.
Their mean and standard deviation can be calculated and are two potential pa-
rameters which could be helpful in further analysis involving correlating them with
cognitive developmental outcomes. The evolution of F0 with time gives rise to
F0 contours which some researchers have termed as melody of a cry signal [7, 62].
Melody of a cry signal is another potentially useful parameter which would be in-
vestigated in this study.
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Figure 3.11: Magnitude spectra of four signal frames of an expiratory phase of a
cry signal for aperiodicity values, a) 0.14 b) 0.28 c) 0.38 d) 0.48. Note that the
inharmonicity of the frame increases with aperiodicity value.
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4. EVALUATION

In this chapter, we evaluate the proposed audio segmentation method and report
the results. We also report the results for the proposed fundamental frequency esti-
mation method. In the first part, the procedure of collecting data set of cry signal
recordings used in this thesis is described. It is followed by a general description of
the data set used in audio segmentation, and statistics associated with the distribu-
tion of time durations of components of a cry signal found in this data set. Then we
explain the performance metrics used to evaluate the audio segmentation results,
and performance of the system while using different combinations of audio features
and different system configurations. Finally, results of fundamental frequency esti-
mation are discussed, firstly for test data set (chosen for audio segmentation) and
then for entire available data set. In the former case, a comparison between the
distribution of F0 estimate derived on the basis of class information provided by
manual annotations is made with the one derived based on class information pro-
vided by audio segmentation system.

4.1 Data Collection

The cry recordings for this project were collected at Tampere University Hospital.
The recordings were captured by the researchers from Infant Cognition Laboratory,
School of Medicine, University of Tampere. A total of 117 infants were included in
the study, out of which recordings were successfully captured for 98 infants. The
rest either withdrawed or the quality of recording was not good enough to be used
in further analysis. Table 4.1 gives the chronological ages of the infants at the time
cry recordings were captured.

Table 4.1: The chronological ages of infant subjects

No. of Infants Chronological age

80 0-3 days
13 4-8 days
5 26-11 weeks1

1These were older babies that were delivered prematurely
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The chronological age of an infant is defined as the time elapsed since birth of
the infant. Similarly, Table 4.2 presents the gestational ages of the infants. The
gestational age of an infant is defined as the time elapsed between the first day of
last menstrual period of the mother and the day of delivery. It is divided into four
categories as depicted in Table 4.2.

Table 4.2: The gestational ages of infant subjects.

Gestational age Time duration No. of Infants

Very preterm 28-32 weeks 4

Moderate to late preterm 32-37 weeks 4

Term 37-43 weeks 89

Overtime more than 43 weeks 1

The research study followed the stipulated ethical guidelines and was approved
by the Ethical Committee of Tampere University. Consent forms were signed by
the guardians of the infants prior to their participation in the study. The recordings
were captured in normal hospital environment instead of controlled conditions. The
objective was to obtain results which could be useful for developing any possible
clinical application in future.

All recordings are 48 kHz sampling rate, two channel audio in 24 bit Waveform
Audio file (WAV) format. The audio recorder used was Tascam DR-100MK II with
Rode M3 cardiod microphone. The distance between infant’s mouth and the recorder
was kept at approximately 30 cm . Recordings conditions involved various contexts,
e.g., infant crying out of hunger, body temperature being measured, diapers being
changed, etc. It sometimes involved pain stimuli like removing a cannula or elec-
trocardiogram (ECG) electrodes from the infant body, or applying venipuncture to
draw blood from infant. Each recording is given a separate number code.

4.2 Evaluation: Audio Segmentation

4.2.1 Database

The data set used for audio segmentation consists of 57 cry signal recordings se-
lected from the 98 available recordings. The recordings were selected on the basis of
number codes allotted to the cry recordings which correspond to the chronological
order in which they were recorded. The first 57 cry codes were chosen and were
manually annotated using Audacity [?] application. The annotations were done
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by the author of this thesis by carefully listening to every cry recording and using
subjective judgment to assign class labels. Inspiratory and expiratory phases were
quite straightforward to annotate because these sound events are accompanied by
characteristic sound of expiration and inspiration produced by an infant. The dif-
ficult part was to distinguish non cry vocals from expiratory phases. Expiratory
and inspiratory phases generally occur in continuous succession in a cry bout and a
cry recording may have several such cry bouts. Non cry vocals generally precede or
succeed such cry bouts and are low in amplitude as compared to expiratory phases.
This information was used to distinguish them from expiratory phases. In addition,
any vocals which did not sound like crying including voices of people talking in the
background and other noisy sounds were included in residual class.

Let us look at the three target classes we have in this study: expiratory phases,
inspiratory phases and residual class. Expiratory phases consists of expiratory cry
sounds with phonation. Expiratory phases without phonation were not found in
the data set. Inspiratory phases include inspiratory sounds both with and without
phonation. There were very few instances of inspiratory portions without phonation
and hence a separate class/label was not created for it. Residual class consists of
pauses of no audio activity in between expiratory/inspiratory phases, non cry vocals
produced by the infant and other background sounds

The database of 57 manually annotated audio recordings spans around 115 min-
utes in duration. A total of 1529 expiratory phases were found with mean duration
0.95 s and standard deviation 0.65 s. Figure 4.1 shows the distribution of the time
durations for expiratory phases.
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Figure 4.1: The distribution of time durations of expiratory phases.
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Similarly, 1005 inspiratory phases were found with mean duration 0.17 s and stan-
dard deviation 0.06 s. Figure 4.2 shows the distribution of time durations for inspi-
ratory phases.
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Figure 4.2: The distribution of time durations of inspiratory phases.

The distribution of time durations for expiratory and inspiratory phases is listed
out in Table 4.3. As can be inferred from Table 4.3, the inspiratory phases are
fewer in number and shorter in duration as compared to the expiratory phases.
Hence the data (number of frames) available for training an HMM for inspiratory
phases is also lesser as compared to expiratory phases. Moreover, it needs to be
emphasized that inspiratory phases also exhibit more variations throughout the data
in comparison to expiratory phases. For example, on the one hand, we have audio
recordings having very short or almost no discernible inspiratory phases, and on the
other hand, we have audio recordings which have unusually prominent inspiratory
phases as compared to expiratory phases. It is also possible to observe both these
extreme cases within the same audio recording. Figure 4.3 depicts a portion an audio
recording where inspiratory phases is almost absent in comparison to expiratory

Table 4.3: Statistics associated with the distribution of time durations of expiratory
and inspiratory phases

Class No. of segments Mean duration Std. deviation Median

Expiratory phases 1598 0.95 s 0.61 s 0.81 s
Inspiratory phases 1042 0.16 s 0.07 s 0.14 s
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phases, and Figure 4.4 depicts the opposite case where these are quite prominent.
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Figure 4.3: An example of a chunk of a cry signal with inconspicuous inspiratory
phases.

This wide variation in inspiratory phases is quite challenging to deal with while
training the corresponding HMM for audio segmentation. We have too few data
available for training and the data exhibits a wide range of variation across the
available data set. This observation is reflected in the poor performance of the
audio segmentation system for inspiratory phases as compared to expiratory phases.
Section 4.2.3 discusses the performance of the system for both these classes with
different configurations of the HMM states and number of component Gaussians.

As explained in Section 3.1, the available data set of 57 cry recordings is split into
training and test sets. First 70% of the available annotated data, i.e., 40 audio files
were selected for training the HMMs and the remaining 30% of the available data,
i.e., 17 files were used for testing the model. As the cry recordings are numbered
according to chronological order, the training data consists of files captured earlier
than test data recordings.
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Figure 4.4: An example of a chunk of a cry signal with prominent inspiratory phases.

4.2.2 Performance Metrics

The HMM pattern recognizer is evaluated on a test set and the output labels pro-
duced by it are compared against the ground truth. The ground truth in this thesis
are the manual annotations obtained via Audacity [?] application as described in
Chapter 3. There are two metrics which have been used in this thesis to evaluate
the performance of the system, namely, accuracy and F score. Note that both of
these metrics are frame based in this thesis.

1. Accuracy : The frame based accuracy is defined as the ratio of correctly labeled
frames to the total number of frames in a signal. A correctly labeled frame
is one for which output label generated by the pattern recognizer matches
with the true label learned from the ground truth. For binary classification
problem, accuracy can be defined for each target class, but for multi-class
classification problem it can only be defined for the overall system. Accuracy
can be calculated using,

accuracy =
number of correctly classified frames

total number of frames
. (4.1)
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2. F score: The F score is defined as the harmonic mean of precision and recall
values. Precision, also known as positive predictive value, is the ratio of true
positive value to the test outcome positives for a particular class. True positive
value is the number of frames correctly labeled by the system for a particular
class, and test outcome positive value is the number of frames detected by the
system belonging to that class.

Precision can be calculated using,

P =
number of true positive frames

number of test outcome positive frames
. (4.2)

Recall, also known as true positive rate or sensitivity of the system, is the ratio
of true positive values to total positive values for any class. Total positive
values are number of frames in the test set belonging to that particular class.
Hence, it is the number of actual positive frames for a particular class. Recall
can be calculated, using

R =
number of true positive frames
number of actual positive frames

. (4.3)

Note that both Precision and Recall are defined with respect to a particular
class. The same stands true for the F score measure as well. Using Equations
(4.2) and (4.3), F score can be calculated as,

F = 2
P ·R
P +R

. (4.4)

These performance metrics are calculated for all the available test files. The final
performance metric for the system is given by the average of metrics calculated for
the individual files.

4.2.3 Varying HMM States and Number of Gaussians

In Chapter 3, it was discussed that the HMM pattern recognizer system consisting
of three HMM models corresponding to three target classes is trained with different
number of states and component Gaussians. In this section, we will first describe
the baseline configuration of states and component Gaussians. The performance of
this baseline configuration is then compared with more sophisticated configurations
involving more HMM states and number of Gaussians. Features used in this baseline
configuration are MFCCs.
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In the baseline configuration, each HMM model corresponding to one of the three
target classes is trained with 1 state and 5 Gaussians. We observed that increasing
the number of Gaussians improves the overall accuracy of the classification. Corre-
sponding improvements in the F scores of expiratory and inspiratory phases was also
observed. The improvement in performance metrics while going from 15 component
Gaussians to 20 component Gaussians was however barely noticeable. Table 4.4
gives the system accuracy and F scores with varying number of component Gaus-
sians. An accuracy of 85.3 % and corresponding F scores of 82.37 % for expiratory
phases and 38.6 % for inspiratory phases were obtained for this system configura-
tion consisting of 1 HMM state and 15 Gaussian components for each class. HMM
configurations with one state and varying number of Gaussian components has been
previously explored in [27], where best average accuracy of 86.4 % has been reported
for 20 Gaussian components using MFCC features.

Table 4.4: The performance of the system with different number of component
Gaussians

Features No. of Gaussians Accuracy F score (%)

per state (%) Inspiratory phases Expiratory phases

MFCCs 5 84.2 37.6 81.4

MFCCs 10 84.7 38.5 82.3

MFCCs 15 85.3 38.6 82.7

MFCCs 20 85.3 38.7 82.6

Similarly, the effect of using more than one HMM state for the three target classes
was investigated. Different number of HMM states and number of component Gaus-
sians were experimented with. The accuracies and F scores of the model are reported
in Table 4.5. It can be observed that using more than one HMM states the system
accuracies can be improved up to 87.5 %. The best performance is achieved for 2, 1,
and 3 HMM states corresponding to expiratory phase, inspiratory phase and residual
classes, respectively, with each of them composed of 10 component Gaussians.
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Table 4.5: The performance of the system with different number of HMM states and
component Gaussians using MFCC features

No. of States No. of Gaussians F score (%) Accuracy

Exp2 Insp3 Res4 Exp2 Insp3 Res4 Insp3 Exp2 (%)

2 1 1 5 5 20 37.1 81.9 84.6

3 1 3 4 4 4 41.2 83.7 86.6

2 2 2 10 10 10 41.2 83.2 85.8

2 1 1 10 20 10 39.5 81.5 84.8

2 1 1 10 20 20 39.7 82.3 85.5

2 1 2 10 5 10 42.6 83.6 87.0

2 1 2 10 10 10 42.9 83.6 87.1

2 1 3 10 10 10 44.0 83.7 87.5

3 1 2 10 20 10 42.4 82.2 86.3

3 1 3 10 10 10 42.1 83.2 86.9

4.2.4 Use of Additional Features

In this section, we will describe the system performance with use of additional
audio features along with MFCCs. The best known configuration of HMM states
and component Gaussians learned from the previous section was experimented with
using different combination of audio features. The reference system configuration
thus consists of 2,1, and 3 HMM states for expiratory phase, inspiratory phase and
residual class, respectively, and each of the target class consists of 10 component
Gaussians. The following features were experimented with,

1. Delta coefficients and delta-delta coefficients : A combination of delta and
delta-delta features with MFCCs resulted in improved F score performance
of the system for inspiratory phase class. We were able to achieve 50 % F
scores with delta-delta features. Table 4.6 describes the system’s F score per-
formances and obtained accuracies. The overall accuracy of the system was
also improved to 88 %.

2Expiratory phases
3Inspiratory phases
4Residual
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2. Running average and running variance of MFCCs : The running averages and
running variances of MFCC features were calculated for sliding windows of
size 5, 10 and 15 frames. The accuracies obtained were poorer as compared to
the ones achieved MFCCs alone. However, improvements were observed in F
score performance for inspiratory phase class. This improvement, however is
poor compared to one achieved with delta and delta-delta coefficients. Table
4.6 describes the F score performances and obtained accuracies for the system.
The window length for calculating running averages and running variances are
indicated as well.

3. Fundamental frequency of the signal in each frame: An improvement in the
F score performance of the inspiratory phase class was observed by includ-
ing fundamental frequency of the frames as feature with MFCCs. A slight
improvement in overall accuracy of the system is observed as well.

4. Aperiodicity of the signal in each frame: An improvement in the F score per-
formance of both expiratory and inspiratory phases were observed by including
aperiodicity of the frames as feature with MFCCs. The overall accuracy of the
system was also improved to 88.0 %.

As is evident from the Table 4.6, use of deltas, delta-deltas; F0; and aperiodic-
ity features along with MFCCs led to overall improvement in the accuracy of the
system. A corresponding improvement in the F score performance was observed
as well, notably for inspiratory phases. The combination of MFCCs with deltas
and delta-deltas yielded most improvement in F score performance of inspiratory
phases. Hence, this combination is further investigated with F0 and aperiodicity
audio features. The obtained results are reported in Table 4.6. The overall ac-
curacy of the system was improved up to 88.5 % for a combination of MFCCs;
deltas, delta-deltas; and aperiodicity, with a corresponding improvement in the F
score performance, namely, 52.0 % for inspiratory phases and 84.8 % for expiratory
phases.
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Table 4.6: The performance of the model with additional features

Features Acccuracy F score (%)

(%) Insp3 Exp2

MFCCs 87.5 44.0 83.7

MFCCs + deltas and delta-deltas 88.0 50.5 84.3

MFCCs + running averages and 86.6 43.5 84.3

running variances (5 frames)

MFCCs + running averages and 86.1 44.3 83.0

running variances (10 frames)

MFCCs + running averages and 85.6 42.5 82.5

running variances (15 frames)

MFCCs + F0 88.1 51.3 83.8

MFCCs + F0 + deltas and 88.2 50.5 84.2

delta-deltas

MFCCs + aperiodicity 88.0 49.8 85.1

MFCCs + aperiodicity +deltas 88.5 52.0 84.8

and delta-deltas

4.3 Results: F0 Estimation

In this section, results obtained from fundamental frequency estimation of the cry
recordings will be presented. F0 estimates for each cry recording were collected
using YIN algorithm and post-processed via the aperiodicity criterion as explained
in Section 3.2.2. F0 estimate statistics, i.e., mean, median and standard deviations
are computed and reported here.

4.3.1 F0 Estimation for Test Data set

We have a database of 98 infants out of which 57 have been manually annotated for
class labels. Moreover, in the audio segmentation step, we divided this manually
annotated data into training and test data sets consisting of 40 and 17 recordings,
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respectively. In this section, we will describe the distribution of F0 estimates ob-
tained for the test data set. The objective is to compare the F0 estimates derived
on the basis of manual annotations with the ones derived on the basis of audio
segmentation results. Figures 4.5 and 4.6 show the distribution of F0 estimates
derived on the basis of class labels provided by manual annotations for expiratory
and inspiratory phases, respectively.

100 200 300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

Fundamental frequency (Hz)

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
a

ti
o

n
s
 

Figure 4.5: The distribution of F0 estimates for expiratory phases derived from the
test data set. The class information used for their extraction is provided by manual
annotations.

Table 4.7 shows the statistics derived from distributions shown in Figures 4.5 and
4.6. Note that mean, standard deviation, and median values are reported for F0

estimates collected for the entire test data set while maximum and minimum mean
values are reported for individual cry recordings.

Table 4.7: F0 statistics derived from test data on the basis of manually annotated
classes (in Hz)

Class Mean Std. dev. Median Max. mean Min. mean

Expiratory phases 437.4 81.8 437.2 503.5 391.1
Inspiratory phases 579.9 148.4 579.9 764.6 442.7
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Figure 4.6: The distribution of F0 estimates for inspiratory phases derived from the
test data set. The class information used for their extraction is provided by manual
annotations.

Similarly, Figures 4.7 and 4.8 depict the distributions of F0 estimates derived on
the basis of class information provided by audio segmentation system for expiratory
and inspiratory phases, respectively. The associated statistics are given in Table 4.8.
Here also the mean, standard deviation, and median values are reported for the F0

estimates collected for the entire test data-set while maximum and minimum mean
values are reported for individual cry recordings.

Table 4.8: F0 statistics derived from test data based on segmentation results (in
Hz)

Class Mean Std. dev. Median Max. mean Min. mean

Expiratory phases 441.9 84.4 439.2 506.8 392.3
Inspiratory phases 499.5 145.2 451 623.6 303.7
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Figure 4.7: The distribution of F0 estimates for expiratory phases derived from the
test data set. The class information used for their extraction is provided by audio
segmentation results.
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Figure 4.8: The distribution of F0 estimates for inspiratory phases derived from the
test data set. The class information used for their extraction is provided by audio
segmentation results.
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Tables 4.7 and 4.8 show that for expiratory phases the derived F0 estimate statistics
are quite similar. Although, the same is not true for inspiratory phases. This can
also be observed by comparing F0 distributions for expiratory phases (Figures 4.5
and 4.7) and inspiratory phases ( Figures 4.6 and 4.8). In fact, the distribution
of F0 estimates for inspiratory phases resembles that of expiratory phases due to
a lot of false positives from the former distribution leaking into the latter. This
further underlines the earlier observation that the audio segmentation works well
with expiratory phases but performs poorly for inspiratory phases. The diverse
nature of inspiratory phases present in our data set, explained in Section 4.2.1, is
responsible for this poor performance.

4.3.2 F0 Estimation for Entire Data set

In this section, the results obtained from F0 estimation of the entire available data
set of cry recordings i.e., 98 recordings will be presented. The estimates are derived
based on the class information provided by audio segmentation system. Figures
4.9 and 4.10 show the distribution of F0 estimates for expiratory and inspiratory
phases, respectively. The associated statistics are given by Table 4.9. We can again
see the distribution of inspiratory phases resembling that of expiratory phases due
to false positives in the audio segmentation outputs.
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Figure 4.9: The distribution of F0 estimates for expiratory phases derived from the
entire available data set. The class information used for their extraction is provided
by audio segmentation results.
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Figure 4.10: The distribution of F0 estimates for inspiratory phases derived from the
entire available data set. The class information used for their extraction is provided
by audio segmentation results.

Table 4.9: F0 statistics derived from entire available data set based on class infor-
mation derived from audio segmentation results (in Hz)

Class Mean Std. dev. Median Max. mean Min. mean

Expiratory phases 445.7 88.2 437.2 634.5 331.3

Inspiratory phases 514.8 146.0 476.5 677.3 272.8

We can alternatively calculate the mean F0 estimate for each cry recording in
order to reveal the F0 characteristics associated with each infant. Figures 4.11 and
4.12 show the distribution of file based F0 means for expiratory and inspiratory
phases, respectively.
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Figure 4.11: The distribution of mean F0 estimates for expiratory phases derived for
individual cry recordings. The class information used for their extraction is provided
by audio segmentation results.The mean of this distribution is 449.3 Hz.
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Figure 4.12: The distribution of mean F0 estimates for inspiratory phases derived
for individual cry recordings. The class information used for their extraction is
provided by audio segmentation results. The mean of this distribution is 505.3 Hz.
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In a similar fashion, file based variances and standard deviations of F0 estimates
can be calculated to reveal F0 variation within a file. We can even go further and
investigate micro level behavior of F0 estimates on the level of individual expiratory
and inspiratory phases. These file based F0 statistics along with individual expira-
tory/inspiratory phase level F0 behavior within each file would be most useful in
investigating the correlations with cognitive developmental outcomes of the infants.
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5. CONCLUSIONS AND FUTURE WORK

This thesis is a part of an ongoing study on infant cry analysis funded by Centre
for Child Health Research, University of Tampere. It is being contributed to by
Audio Research Group, Tampere University of Technology; and Infant Cognition
Laboratory, University of Tampere. This study aims to analyze infant cry record-
ings in order to find potential markers which would help in early assessment of
neurological development problems in infants. The present thesis is focused on two
research problems in the context of infant cry signals: audio segmentation of infant
cry recordings in order to extract audio parts that are relevant to further analysis
and fundamental frequency (F0) estimation of these extracted relevant parts. The
relevant parts here are expiratory and inspiratory phases. Fundamental frequency
(F0) is an important acoustic parameter of cry signals which has been found to be
useful in previous infant cry studies, and meaningful correlations have been drawn
between its behavior and cases of neurological insults.

The experiments have been conducted on an audio database consisting of cry sig-
nal recordings captured in a realistic hospital environment. The recording conditions
involved varied contexts like hunger cries, pain cries while applying venipuncture or
removing ECG electrodes from infant body, cries recorded while measuring infant
body temperature, cries recorded while changing diapers, etc. The diverse nature
of the contexts incorporated in the database used in this thesis distinguishes this
study from similar attempts done previously which have been mostly concentrated
on specific contexts.

An HMM based audio segmentation system has been proposed as a solution for
the audio segmentation problem which works well for expiratory phases but performs
poorly for inspiratory phases. The reason for this is the diverse nature of inspiratory
phases present in our data set. Some of the audio recordings exhibit quite promi-
nent inspiratory phases, in some cases even more prominent than the expiratory
phases, while others exhibit their complete absence altogether. The chosen perfor-
mance metrics to describe the system efficiency are frame based accuracy and frame
based F scores. Various configurations of HMM states and number of component
Gaussians were experimented with. Using MFCC features, the best performing con-
figuration involved 2,3, and 1 HMM states for expiratory phases, inspiratory phases
and residual classes, respectively, with each HMM state consisting of 10 component
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Gaussians. An accuracy of 87.5 % was achieved for this configuration which corre-
sponds to F scores of 44 % and 83.7 % for expiratory and inspiratory phases, respec-
tively. Various combinations of audio features, namely, MFCCs, deltas, delta-deltas,
running averages, running variances, fundamental frequency, and aperiodicity were
experimented with. The best performing feature combination employed MFCCs,
aperiodicity, deltas and delta-deltas. The final accuracy of 88.5 % was achieved for
this configuration and feature combination which corresponds to F scores of 53.3 %
and 84.7 % for expiratory and inspiratory phases, respectively.

YIN algorithm is applied in order to solve the fundamental frequency (F0) esti-
mation problem. Through this method, an F0 estimate is obtained for each frame of
a signal irrespective of the harmonicity of the concerned frame. Aperiodicity, which
is proportional to the amount of aperiodic power contained in a signal frame, is the
measure of inharmonicity of the signal frame. It can be used to discard the unreliable
F0 estimates. Use of aperiodicity to refine F0 estimates has been referred to as the
aperiodicity criterion in this thesis. The statistics associated with the distribution
of F0 estimates corresponding to expiratory and inspiratory phases are reported.

The application of YIN algorithm for F0 estimation in the context of cry signals
is novel in this thesis. One direction of future research could be the evaluation of
this algorithm against the other F0 estimation algorithms used previously in infant
cry research in order to ascertain how it fares in comparison.

The cognitive developmental outcomes for the infants are being collected at the
time this thesis is being written. It has two components: health data and eye
tracking data. The health data consists of collection of risk factors associated with
the infant as well as risk factors associated with the mother during pregnancy and
at delivery. It also consists of diagnosis of health and developmental problems of
the infant after delivery and on the day the cry recordings were captured. The
eye tracking data measures the oculomotor orientation and attentional focus of the
infant when presented with some visual stimuli. It serves as an early marker of
cognitive development of the infant. The future work would involve correlating the
F0 estimates and their variations within a cry recording or may be within an expi-
ratory/inspiratory phase with the cognitive developmental outcomes of the infants.
Moreover, other acoustic parameters, e.g., formants, duration of expiratory/ inspira-
tory phases, amplitudes of expiratory/ inspiratory phases, etc. can be investigated
and their correlation with the cognitive developmental outcomes can be studied.
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